
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학박사 학위논문

Topological ladders for neutral atoms in a

resonantly driven 1D optical lattice

공진하는 일차원 광격자 내 중성원자를 이용한 위상 사다리 연구

2020년 8월

서울대학교 대학원

물리 · 천문 학부

강 진 현



Topological ladders for neutral atoms in a

resonantly driven 1D optical lattice

by

Jin Hyoun Kang, M.S.

Dissertation

Submitted to the Department of Physics & Astronomy

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Seoul National University

August 2020



Abstract

Topological ladders for neutral atoms in a

resonantly driven 1D optical lattice

Jin Hyoun Kang
Department of Physics and Astronomy

The Graduate School of
Seoul National University

The phases of matter have been mostly associated with symmetry breaking ac-

cording to Landau theory. However, the discovery of the quantum Hall effect

has brought about a new paradigm of classification. The quantum Hall states

do not break any symmetry, but their phases are classified by their topological

invariants of band structure. Featuring with fundamental physical properties

that are determined by its topological invariant and insensitive to the micro-

scopic details, the topological states of matter represent the frontiers of modern

condensed matter physics.

Complex quantum many-body systems, such as correlated topological

insulators, represent one of the challenging problems in modern physics. Ul-

tracold atoms in optical lattices provide an ideal experimental platform for

studying correlated topological physics due to its good isolation from environ-

ment and high experimental controllability including interactions. Referring to

various well-known lattice models such as the Harper-Hofstadter model and

Haldane model, topological bands can be generated in optical lattice systems

by introducing strong magnetic field or next-nearest-neighbor tunneling. In this

thesis, I desribe a series of experimental works where we generate topological
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ladders in an 1D optical lattice system via resonant modulations of the lattice

potential. Taking Bloch states as a synthetic dimension, ladder models can be

constructed with real 1D optical lattice sites.

Generation of complex tunneling phases between Bloch states are demon-

strated by introducing moving optical lattice on the static optical lattice. When

an atom hops around a unit cell in this synthetic ladder, it acquires non-zero

quantum phase, which is equivalent to the Aharonov-Bohm phase accumulated

on a charged particle in a magnetic field. The artificial gauge field result in a

Harper-Hofstadter like model by breaking time-reversal symmetry. Using band

state and momentum resolved measurements, the chiral ground state was di-

rectly observed, and its stability was also investigated. The quench dynamics

of the system showed the strong uniform gauge field in the ladder system, and

the momentum dependent quench dynamics demonstrated the characteristic

next-nearest-neighbor tunneling in the synthetic ladder system.

Creutz ladder is demonstrated in a 1D optical lattice by resonantly driv-

ing the lattice position. When the shaking frequency reaches half of the en-

ergy difference between two band states, two-photon resonant process leads to

band-state changing nearest-neighbor tunneling, which is equivalent to next-

nearest-neighbor tunneling in ladder description. This diagonal tunneling leads

to winding structure of pseudospin through the Brillouin zone, and formation of

topological end states. Measured resonant frequency and interferometry results

clearly showed the topological pseudospin winding structure of the driven lat-

tice system. Moreover, a two-tone driving scheme, where the 1D optical lattice

is driven by two harmonic frequencies, is proposed for realization of topological

charge pumping in the driven lattice system.
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Chapter 1

Introduction

1.1 Quantum simulator

Simulating quantum mechanic problem has been regarded as a challenging prob-

lem, because of exponentially increasing computational cost. For example, a

simple localized spin-half system with size N has 2N different quantum states,

and one must consider all of these states to expect ground state. In con densed

matter, quantum statistics and interparticle interactions make quantum systems

more complex. As the huge capacity of memory is required to store exponen-

tially large number of quantum states, complex quantum systems are difficult

to be understood with conventional computers, altough its computing power

increases gradually.

Ingenious cocept has been come out to solve the problem, which is re-

ferred as quantum computer. The key idea is employing quantum mechanical

elements to calculate quantum mechanical problems [1]. These systems can

store exponenetially large amount of information with smaller number of ele-
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Ψ(0) Ψ(t)
e-iHt

Φ(0) Φ(t)
e-iH't

Figure 1.1: Schematic illustration of quantum simulator. The model quantum
system, composed of wave function |Ψ〉 and Hamiltonian H, is directly mapped
onto the wave function and Hamiltonian of quantum simulator, |Φ〉 and H ′.
By preparing initial state |Φ(0)〉 and measuring final state |Φ(t)〉, evolved by
Hamiltonian H ′, model quantum system can be simulated.

ments compared to the conventional computers, so it is suitable for investigating

complex quantum systems. For example, today’s state of the art quantum pro-

cessor with 53 qubits demonstrated quantum supremacy [2], where a quantum

computer can solve a problem that is impossible for classical computer [3, 4].

Quantum computers rely on qubits rather than bits, and they can approach

any quantum problems if their quantum gates are universal: different quantum

simulations can be run by just changing the programs [5, 6]. General purpose

quantum computers require high-fidelity, error-corrected logical gates composed

of multiple qubits, and these requirements have been accomplished step by step,

but many obstacles must be overcome [7–9].

In the middle of development of fully fledged quantum computers, inter-

esting quantum physics can be explored by quantum simulator [10–13]. Quan-

tum simulator is rather kind of problem-specific analog simulator, which em-

ploys simpler and intuitive quantum mechanical elements [14]. The Hamiltonian
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of the interesting quantum system can be directly mapped onto the Hamilto-

nian of quantum simulator [15–19]. In spite of its simple structure, these toy

models are powerful toolbox for studying difficult problems, such as high Tc

superconductivity [10, 20], quantum magnetism [21–23], and quantum phase

transitions [19,24,25].

1.2 Topology in condensed matter

Topology is concered with invariant properties under the smooth deformations.

Typically, the invariant properties are global properties rather than local prop-

erty. One of examples is the Gauss-Bonnet theorem, which states the relation

between curvature and the number of holes in a two-dimensional surface,

1

2π

∫
S

dA K = χ(S) = 2(1− g), (1.1)

where K is Gaussian curvature and χ(S) is Euler characteristic of the surface S.

Regardless of the local curvature, the net curvature of object has direct relation

to the the number of holes, or genus g. For example, the coffee mug and torus

have one hole in the surface (g = 1), so these are topologically equivalent.

However, they cannot be smoothly deformed to the spherical cow (g = 0).

Thus, topological objects can be classified by the topological invariant, such as

genus g [26].

Topology in condensed matter is recognized after the discovery of the

quantum Hall effect in 1980 [27,28]. The integer quantum Hall effect arises when

a 2D electon gas (2DEG) is under the strong magnetic field at low temperature.

If the interaction between electrons are negligible, the Hamiltonian of 2DEG
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under the constant magnetic field B is given by

Ĥ =
1

2m
(p+ eA)2 =

m

2
v2, (1.2)

where p is the momentum operator, m is mass of electron, and A is the vector

potential, and v = [p+ (e/c)A]/m. Then the Hamiltonian can be written in the

ladder operators in harmonic oscillators,

Ĥ = ~ωc
(
a†a+

1

2

)
, (1.3)

where

a =

√
m

2~ωc
(vx + ivy),

a† =

√
m

2~ωc
(vx − ivy), (1.4)

and ωc = eB/m is cyclotron frequency. Then the energy spectrum is given by

discrete levels,

En = ~ωc
(
n+

1

2

)
,with n ∈ Z≥, (1.5)

and these are called the nth Landau level. Landau levels are highly degenerate

as the number of states in area A is

N =
A

2πl2B
=
eBA

2π~
=

Φ

Φ0

(1.6)

where lB =
√

~/eB is the magnetic length, and Φ0 = 2π~/e is flux quantum

and Φ = AB is the total flux on the sample. These Landau levels are separated

by ~ωc, so it becomes insulating phase when the Fermi energy is located at the

energy gap. However, it shows intriguing properties at the interface: the chiral

conducting states at the edge of the system because of bending of Landau levels,

while the bulk is insulator. In the semi-classical picture, the chiral states can be
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understood as a skipping orbit motion at the edge under the strong magnetic

field. Because of these chiral states, Hall currents are expected.

Unexpectedly, Hall conductivity was exactly quantized to integer multi-

ples of fundamental conductance unit e2/h. The value of quantized Hall con-

ductivity is not altered by the geometry of the system, impurities, disorder, and

it is even same in different type of materials. The robustness against the per-

turbations implies that the quantum Hall effect has topological nature, which

was first explained by Thouless, Kohmoto, Nightingale and Nijs [29]. According

to TKNN, the Hall conductivity can be described by winding of phase of the

eigenstates around the 2D Brillouin zone,

σxy =
ie2

~
∑
j

∫
BZ

d2k

(2π)2

[
〈 ∂u
∂k1

| ∂u
∂k2

〉 − 〈 ∂u
∂k2

| ∂u
∂k1

〉
]

=
e2

~
∑
j

∫
BZ

d2k

(2π)2
Ωj(k), (1.7)

where j is index of filled bands, and the Ωj(k) is referred as Berry curvature

later [30]. Because Brillouin zone is closed surface, the integral of Berry cur-

vature over the Brillouin zone is given by the topological invariant, the Chern

number C,

C =
1

2π

∫
BZ

d2k Ω(k), (1.8)

where the Chern number is always given by integer C ∈ Z. Then the Hall

conductivity is given by

σxy =
e2

h

∑
j

Cj. (1.9)

Therefore, the Hall conductivity is determined by topological invariant of filled

bands. Because Chern number cannot be continuously changed, Hall conduc-

tivity shows a plateau until the abrupt change of topology. This explains the

robustness of the Hall current at the edge.
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The quantum Hall effect is an example of general class of materials that

are referred as topological insulators. It was first believed that topological states

can only exist by breaking time-reversal symmetry with external magnetic field,

but after the proposal of quantum Hall states without magnetic field by Hal-

dane [31], many types of topological insulators have been proposed and classified

by its symmetry [32–34]. A key feature of the topological insulators is the topo-

logically protected edge states at the boundary of the finite system. The edge

states exists because of non-trivial topology of the bulk bands, which is called

bulk-boundary correspondence.

The mathematical connection of topological insulators can be explained

in single-particle description. It becomes complicated when the interaction plays

major role in the system. The famous example is the fractional quantum Hall

effect (FQHE), where the Hall current shows plateaus at fractional values of

fundamental conductance unit e2/h [35,36]. The electron-electron interaction is

responsible for fractionally charged quasiparticle, which cannot be understood in

single-particle description. The discovery of FQHE has led to fractional statistics

and people has been concerned with many-body topological states. However,

because of complexity of the system, the exact solutions are not much known,

and numerical simulations are also limited by the capacity of computational

resource. Therefore, quantum simulation could be effective tool for studying

exotic topological matters.
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1.3 Ultracold atoms in optical lattices and topo-

logical band engineering

Ultracold atoms are dilute gas of neutral atoms, whose temperature are kept

below the regime where the quantum mechanical properties become important.

Over the past few decades, it has allowed the observation of Bose-Einstein con-

densation (BEC) [37–39] and degenerated Fermi gas [40–42], opening a new

avenue in quantum simulation. It is an useful platform to study many-body

physics in condensed matter, as interaction strength can be easily tuned in the

periodic potential generated by interference between laser beams [43–45]. For

example, Hubbard model contains quantum tunneling and on-site interactions

can be demonstrated with ultracold atoms in optical lattice [16, 46, 47], and

the quantum phase transition between superfluid to Mott insulator was directly

demonstrated [19]. In this platform, kinetic energy and interaction strength can

be fully tunable. Because of an exceptional experimental controllability, ultra-

cold atoms in optical lattices would be also promising candidate for simulat-

ing topological states [48]. Band structures and interactions between atoms are

highly tunable, offering opportunities for the realization of exotic topological

phases of matter. Also, new detection techniques may provide a different point

of view on underlying physics in conventional solid-state experiments [49–54].

However, ultracold atoms are charge neutral, so their dynamics under

the electronmagnetic fields is different to the electrons: a vector potential on

atoms produced by external magnetic field would be negligible. Also, a complex

geometry of periodic potential is hard to be constructed by laser interference

only. The dynamics in optical lattice is mainly governed by the nearest-neighbor

hopping, and higher order terms are difficult to be controlled independently. For
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example, simple geometries, such as hexagonal lattices, can be easily obtained

by monochromatic laser, and even Lieb [55] and Kagome lattice [56] can be gen-

erated by bichromatic fields, but lattices containing more than nearest-neighbor

hopping, such as Mielke checkerboard lattice [57,58], has not been much realized

in a static optical lattice setup.

These limitations can be overcome by various experimental techniques.

Rather than using external magnetic field, artificial gauge field was demon-

strated by a rotation of the system [59] or laser-assisted tunneling [60]. For

the latter method, a uniform flux of gauge field realized the Harper-Hofstadter

model [61,62], which is a lattice version of the integer quantum Hall effect [63–

65]. In addition, the Haldane model was first demonstrated in a circularly shaken

honeycomb optical lattice [66], which is a famous example of the quantum

anomalous Hall effect, but had not been founded in nature [31]. It was re-

cently realized in condensed matter system [67] as originally proposed by Oka

and Aoki [68]. These topological bands can be efficiently engineered by periodic

modulations, which are often referred as Floquet engineering.

1.4 Outline of the thesis

In this thesis, topological ladders are demonstrated with resonantly modulated

1D optical lattice. The structure of the thesis is given as below.

First, a brief overview of the apparatus for the production of Yb quantum

gas used in this thesis is provided in Chapter 2. The configuration of the setup

and experimental techniques will be described.

Chapter 3 provides an introduction of Floquet theory, and perturative

expansion methods to find simple description of effective Hamiltonian. This will

8



be illustrated with a two-states model and 1D optical lattice.

Theoretical background of topology and examples of model Hamiltonians

for topological states are considered in Chapter 4. Topological ladders realized

in 1D optical lattice based on synthetic dimension concept will be also discussed

in this chapter.

The first demonstration of Hall ladder using band states of a 1D optical

lattice is presented in Chapter 5. The band states are regarded as individual

sites, and interband couplings are considered as hopping terms between these

sites. Because of on-site energy modulation, atoms acquire quantum phase when

the initial band state is converted to another band state. As a consequence, the

dynamics of the system can be effectively described ladder under the arbitrary

gauge field. It is equivalent to the Hofstadter Hamiltonian with finite lattice

sites in synthetic dimension. In this system, ground states are chiral, which is

an analogue of chiral Hall current in integer quantum Hall effect.

The demonstration of Creutz ladder in a resonantly shaken 1D optical

lattice is shown in Chapter 6. The periodic shaking of lattice position can induce

dynamical localization, but the resonant shaking can lead to topological states

by a next-nearest-neighbor hopping in ladder description. The interband cou-

plings can be described by resonant processes occured by ’photon’, analogous to

the excitation in solid-state sample under the electromagnetic field. In this point

of view, interband couplings can occur by absorbing or emitting n-photons when

the integer multiples of modulation frequency is equivalent to the energy gap

between band states. Particularly, a 2-photon process leads neighbor-hopping

interband coupling, which can be described by a next-nearest-neighbor hopping

in ladder. An interferometric measurement scheme is demonstrated to infer the

winding structure of the effective Hamiltonian.
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As an extension of Chapter 6, 1D optical lattice driven by two harmonic

frequencies will be discussed in Chapter 7. The change of driving amplitude and

a relative phase of two harmonic resonant drivings lead to topological pump-

ing. Effective Hamiltonian descriptions and micromotions of the system will

be discussed. Particularly, a pseudo-spin winding, or Zak phase of the system

depends on the stroboscopic timeframe. The symmetry of the time-dependent

Hamiltonian will be also considered in this chapter.

Finally, a summary of the thesis and outlooks for future directions will

be considered in chapter 8.
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Chapter 2

Overview of the experimental

setup

The experiments in this thesis were performed with fermionic 173Yb atoms.

173Yb atoms were cooled down to quantum degeneracy regime, corresponding

to about 60 nK in our optical trap, and loaded into the optical lattice. The

ytterbium machine had been mainly developed by Min-Seok Kim, Moosong

Lee, and Jeong Ho Han [69]. During my first year of PhD course, degenerate

Fermi gas was achieved, and first experiment with degenerate fermionic 173Yb

atoms were reported [70]. In this section, I will look through basic properties of

ytterbium, laser cooling, and experimental apparatus and techniques.
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Figure 2.1: Electronic structure of ytterbium atom frequently used in ul-
tracold atom experiments. Natural linewidth of each transition Γ is noted.
1S0 →1P1 transition is employed for Zeeman slowing and absorption imaging,
and 1S0 →3P1 transition is used for magneto-optical trap (MOT) and spin ma-
nipulations.

2.1 Electronic structure of Yb and laser

2.1.1 Electronic structure

Ytterbium is a rare-earth element in the lanthanide series. Because of closed-

shell electronic configuration [Xe]4f 146s2, two valence electrons in s-shell mostly

determines its electronic property similar to alkaline-earth atoms. Ytterbium

naturally occurs in stable isotopes with zero nuclear spin (I = 0; 168Yb, 170Yb,

172Yb, 174Yb, 176Yb) or non-zero nuclear spin (I = 1/2; 171Yb, I = 5/2; 173Yb):

the formers are bosonic while the latters are fermionic.

The electronic structure of ytterbium can be described by LS-coupling

scheme, where the total electronic angular momentum is given by the combina-

tion of total orbital angular momentum L and total spin angular momentum S.

Total electronic angular momentum is given by J = L+S, and electronic levels

12
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Figure 2.2: Hyperfine structure of the 1S0 →1P1 and 1S0 →3P1 transitions for
173Yb.

are denoted by 2S+1LJ . Electronic levels of ytterbium typically used in ultracold

experiment are shown in Figure 2.1. Two valence electrons can be arranged in

spin singlet (S = 0) or spin triplet (S = 1) configuration. The lowest lying elec-

tronic state is 1S0, and excited states with L = 1 in spin singlet (triplet) config-

uration 1P1 (3P0,1,2) are shown. Because laser field cannot change electronic spin

directly, so electric dipole transition (E1) is only allowed to 1S0 →1P1 transition.

Other transitions are forbidden by selection rule. However, significant mixing

between 1P1 and 3P1 states via spin-orbit interaction provides transition proba-

bility on 1S0 →3P1, which is called intercombination line. In addition, hyperfine

mixing between 3P1 and 3P0,2 also enables direct transitions of 1S0 →3P0,2,

which are referred as clock transitions. Among these transitions, dipole allowed

1S0 →1P1 transition and intercombination line 3S0 →1P1 are mainly harnessed

for laser cooling of ytterbium atoms.
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The natural linewidth of dipole allowed 1S0 →1 P1 transition (λ = 398.9

nm) is Γ399/2π = 29.1 MHz. This transition is not completely closed because

of decay channel from 1P1 to metastable 3P0,2. Atoms which are leaked to

metastable 3P0,2 states can be brought into cooling cycle again by optical re-

pumping. The non-closed transition is an crucial issue for MOT, but it is not

much significant for Zeeman slowing. Therefore, 1S0 →1 P1 transition is suitable

for Zeeman slowing and imaging due to its strong photon scattering rate.

Intercombination line 1S0 →3 P1 (λ = 555.8 nm) is closed transition

with narrow linewidth of Γ556/2π = 182.4 kHz. Owing to the narrow linewidth,

using intercombination line would be a double-edged sword for laser cooling: low

Doppler cooling limit and low capture velocity. Atoms can be cooled down to few

µK owing to the lower Doppler temperature TD = ~Γ556/2kB, but low capture

velocity restricts direct loading of hot atoms into MOT. Therefore, proper aid

must be taken. In our laboratory, we adopted Zeeman slowing using 1S0 →1 P1

transition as a pre-cooling stage before MOT loading. Large photon scattering

rate and capture velocity of 1S0 →1 P1 transition offer sufficient flux of cold

atoms to MOT, which can allow efficient loading.

2.1.2 Laser system

For efficient laser cooling of ytterbium, both lasers with wavelengths of 398.9

nm and 555.8 nm are employed. Typical laser cooling experiment demands

high power (several hundreds of mW) and narrow linewidth (narrower than

linewidths of each transition). High-power lasers can be often produced by am-

plifying diode lasers via optical amplifiers such as tapered-amplifiers (TA) of

doped fiber amplifiers. Unfortunately, standard high-power, narrow linewidth

14



Figure 2.3: View of laser table for Yb machine in QGL. Bright violet and green
light make spectacular scene.

lasers for ytterbium were not available, because optical amplifiers had not been

much developed under the wavelength of 600 nm. In QGL, we opted second

harmonic generation (SHG) of IR lasers to achieve proper laser lights for laser

cooling experiment.

Blue laser

The fundamental laser with wavelength of 797.8 nm are generated by TA pro

(Toptica) which consists of external cavity diode laser (ECDL) and TA. The

gain chip TA-808-2000-1 had been used about 3 years and we barely managed

required laser power, because its power had significantly degraded. We have

replaced the old gain chip with new one TA-790-2000-1, which can provide

plenty of laser power maximum 2.8 W. The eliptical beam after TA is shaped

into circular beam with anamorphic prism pairs.
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Figure 2.4: Schematic of the 398.9 nm blue laser system. The fundamental laser
is produced by a commercial combination of ECDL and TA at 797.8 nm, and
its frequency is double by SHG bow-tie cavity. Cavity length is stabilized by
Hänsch-Couillaud scheme, and frequency of ECDL is stabilized by MTS. Re-
mainings are power distribution and frequency shift optics for experiment.
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The blue light at 398.9 nm is generated by SHG of fundamental laser.

When the light passes non-linear medium, frequency is doubled by second-order

nonlinear effect inside the medium. Nonlinear effect in single-pass configuration

is typically inefficient, but the efficiency can be largely enhanced with resonant

cavity. Our SHG module is composed of lithium triborate (LBO, Raicol Crys-

tals) crystal as a nonlinear medium and external bow-tie cavity for enhancement.

For LBO, phase matching condition can be achieved by angle, type-1 critical

phase matching (CPM), at the wavelength of 797.8 nm. In type-1 CPM condi-

tion, spatial walk-off angle make the frequency-doubled blue beam elliptical, so

it is reshaped with cylindrical lens pair.

The length of cavity is stabilized by mirror mounted on a piezo-electric

actuator via Hänsch-Couillaud method [71]. LBO crystal inside the cavity acts as

a polarizing element, so reflectance of input beam depends on the polarization.

Error signal is produced by substituting the intensity of reflected wave with

different polarization. Therefore it can generate error signal without modulating

the frequency of laser light. Then the cavity length is locked with fast PID

(SIM960, SRS ). At optimal condition, the conversion efficiency of SHG module

is about 20%, where maximum power of blue light is about 500 mW. In typical,

250 mW of 398.9 nm light was enough for our experiment. After optimization of

cavity, whole SHG module has been sealed with acryl box and filled with oxygen

to prevent the degradation of LBO in humid environment. The temperature of

the LBO crystal is stabilized at room temperature.

The frequency of the blue laser is locked to the atomic reference by using

modulation transfer spectroscopy (MTS), where the frequency modulation of

pump beam is transferred to the unmodulated probe beam by nonlinear inter-

action in atomic medium [72]. The pump-probe configuration of MTS allows
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sub-Doppler spectroscopy, and its zero-crossing is accurately located at the cen-

ter of atomic transition due to the characteristic background-free dispersive-like

signal. In our scheme, small amount of the beam is detuned +418 MHz before

spectroscopy by acousto-optic modulator (AOM). Pump beam is modulated by

passing electro-optic modulator (EOM-02-25-U, Photonics technologies) with

modulation frequency of 25 MHz. Hollow cathode lamp (L2738 Yb-Ne, Hama-

matsu) is used as atomic reference. Then modulated pump beam and unmod-

ulated probe beam are aligned collinearly through the atomic reference. The

transferred signal of probe beam is detected by photodiode, and frequency lock

is achieved by feeding error signal to the locking electronics of TA pro (DigiLock

110, Toptica).

Absorption imaging

Our experiments are demonstrated by measuring the atomic density distribution

via absorption imaging technique. We use vertical imaging path, where the

objective lens (5× telecentric, Mitutoyo) is installed in front of the CCD camera

(iXon ultra 888, Andor technology). The nominal numerical aperture and and

magnification of our objective are 0.13 and 5× respectively. The resolution of

imaging system is measured with USAF1951 test pattern, and we can achieve

the resolution about 2.2 µm. The magnification of the imaging was calibrated by

using Raman scattering on atomic gas, where departed momentum are precisely

defined. Measured magnification is 6.5×, which is mainly affected by divergence

of imaging beam in our system. Considering the pixel size of our CCD camera

(13 µm), each pixel corresponds to 2 µm at the imaging plane.

In absorption imaging scheme, the atoms are illuminated with a resonant

beam to dipole-allowed transition |1S0, F = 5/2〉 → |1P1, F
′ = 7/2〉, whose
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intensity ≈ 0.02Isat is much lower than the saturation intensity. In this low

intensity limit, the intensity ratio of transmitted light I(x) to incident light

I0(x) through the atomic sample with density n(r) follows the Beer-Lambert

law,

I(x) = I0(x)e−σ
∫
n(r)dz, (2.1)

where x is vectors in imaging plane, r = (x, z), and σ = 3λ2/2π is resonant

scattering cross section. Therefore, integrated atomic density per each pixel

(column density) along the imaging beam axis is given by

ncol(x) =

∫
n(r)dz = − 1

σ
ln
I(x)

I0(x)
. (2.2)

In principle, two images that correspond to initial intensity of probe light and

transmitted light is required to construct the atomic density. In experiment,

three consecutive images are taken to reduce systematic error in imaging system:

image of transmitted light through atomic sample I(x), image of initial intensity

of light without atoms I0(x), and background image without any light IB(x).

Then atomic density can be constructed as

nmeas(x) = − 1

σ
ln
I(x)− IB(x)

I0(x− IB(x))
. (2.3)

The number of atoms can be simply given by Nmeas(x) = (A/M2)nmeas(x),

where A is area of each pixel in CCD camera, and M is magnification.

Typically the absorption imaging is used to measure momentum distri-

bution of the atoms. The time-of-flight (TOF) absorption imaging is taken after

the switching off the all potentials, and allowing atomic samples to evolve freely.

When all trapping potentials are abruptly switched off, atoms can freely expand

according to their initial momentum if interaction between atoms are negligible.
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After sufficient expansion time, atomic distribution directly represents momen-

tum distribution of atoms right before abrupt potential switching. After TOF,

imaging beam is applied for 100 µs per a shot. Then the absorption image is

constructed with three consecutive images.

Green laser

The fundamental laser with wavelength of 1111.6 nm had been generated by

commercial fiber laser (Orange one, Menlo systems). Its seed laser diode had

been significantly degraded, so it was difficult to maintain the system. We have

installed new fundamental laser from Quantel (EYLSA-L-1111.6-3-P-SN-W-CO

v2.0), which is composed of seed laser (Koheras ADJUSTIK Y10, NKT Pho-

tonics) and ytterbium-doped fiber amplifier (CYFL-KILO-02-LP-1111.6-WT1-

FM1-STO-OM1-B301-FA, Keopsys). The linewidth of laser is <20 kHz, which

is narrower than the natural linewidth of the intercombination transition.

Similar to the blue laser, 555.8 nm laser light is generated by SHG of

fundamental laser at 1111.6 nm. LBO crystal is used as a nonlinear medium,

but phase matching condition is achieved with temperature, type-2 non-critical

phase matching (NCPM), at the wavelength of 1111.6 nm. Although NCPM

condition typically away from the room temperature, but it has advantage on

insensitivity to the misalignment and the absence of spatial walk-off. Length of

bow-tie cavity is again stabilized by Hänsch-Couillaud method, and its optimal

conversion efficiency is about 20%.

The frequency of the green laser is stabilized by MTS. Small portion of the

beam is detuned by -160 MHz before spectroscopy, and pump beam is modulated

by EOM (EOM-02-3-U, Photonics technologies) with modulation frequency of

3 MHz. The small saturation intensity Isat = 0.14mW/cm2 of intercombination
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Figure 2.5: Schematic of the 555.8 nm green laser system. The fundamental
laser produced by ytterbium-doped fiber laser at 1111.6 nm passes SHG bow-
tie cavity for frequency doubling. Similar to the blue laser system, cavity length
and frequency of seed laser are stabilized by Hänsch-Couillaud method and
MTS respectively. We have used Yb vapor cell for atomic reference, because
sufficient atomic flux had not been achieved by Yb HCL. Power of green lights
are redistributed and frequency shifted for experiment.
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line makes detection of spectroscopy signal difficult. To enhance the error signal,

atomic cell with sufficient flux was built rather than using hollow cathode lamp.

Also, photomultipier tube (PMT H10492, Hamamatsu) was used for detecting

modulation-transferred probe beam. Error signal is produced with homemade

electronics, and frequency lock is achieved by delivering error signal directly

into fundamental laser with PID (SIM960, SRS ).

Optical dipole trap and optical lattice laser

High-power optical dipole trap (ODT) beams are produced by 100W ytterbium

fiber laser with wavelength of 1070nm (YLR-100-1070-LP, IPG photonics). The

IR laser had been controlled by AOM, but high power incident light (>30 W)

has detrimental effect on AOM, results in beam shape deformation and beam

pointing instability. Therefore, we have controlled laser power itself by com-

puter with the aid of motorized rotating half wave plate. An overview of the

IR laser setup is shown in Fig. 2.6. The polarization of laser is first purified,

and reshaped with cylindrical lens pair. The beam power is monitored by two

photodiodes with different gain, which regulate beam power in different range

respectively. Laser power is manipulated and stabilized with single PID, so mon-

itoring photodiode is switched by muliplexer (ADG5209, Analog devices) at the

middle of experiment. Laser beam is then delivered to the chamber through the

optical transport setup which is composed of movable lens and lens pair.

The source of auxiliary ODT and optical lattice is a single-frequency

green fiber laser (GLR-20, IPG photonics), which is capable of producing 20

W output at 532 nm. The linewidth of laser is < 1MHz, so it is sufficient to

generate optical lattice. Laser output is divided and sent through AOMs for

power control and stabilization. AOMs are driven with different rf frequency to
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Figure 2.6: Schematic of the IR laser ODT and transport system. IR laser power
is monitored by two photodiodes, which are switced by muliplexer. Power range
of laser is coursely tuned by motorized wave plate, and finely stabilized by PID
servo. Then beam is injected to cylindrical lens pair to generate elliptical beam.
Tight focus (object plane) generated by lens on air-bearing stage is projected to
image plane via 4-f system with magnification of 2.3. When the focus is shifted
by d in the object plane, focus in the imaging plane is shifed by M2d.
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Figure 2.7: Schematic of the ODT and optical lattice setup at science chamber
in (a) top view and (b) side view. Each laser line is denoted by its color. Shifted
frequency is noted for auxiliary ODT and optical lattice at 532 nm. Because of
shifted frequency, OL2 and OL3 are independent. Auxiliary ODT and OL1 beam
are interfered to generate optical lattice in direction y. Optics for monitoring,
polarization, focusing are omitted in these illustrations.
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prevent inteference between distinct beams. We note that two beams, which are

labeled as auxiliary ODT and OL1 by its history, are diffrated by same rf source

to create accordian type optical lattice. Laser beams are resized with spherical

lens pair and coupled into single mode PM fibers, and then delivered to the

atoms.

2.2 Producing degenerate Fermi gas

The cooling procedure of ytterbium atoms can be separated by two stages; at

the main and the science chamber. Atoms are first cooled by Zeeman slowing

and magneto-optical trap (MOT) at main chamber. After pre-cooling step at

main chamber, atoms are tranferred to the ODT, and then transported to the

science chamber. Degeneracy is finally reached by evaporative cooling in crossed

optical dipole trap at science chamber.

2.2.1 Cooling procedures

Zeeman slowing and magneto-optical trap (MOT)

The alkaline-earth atoms such as ytterbium generally have narrow intercombi-

nation line, which can achieve low Doppler tempererature in MOT. However,

atoms ejected from oven cannot be directly trapped in MOT, because the av-

erage velocity of the collimated atomic beam flux right after the nozzle exceeds

the capture velocity of MOT. In our ytterbium machine, increasing field Zee-

man slower is used to provide slow atoms, where red-detuned light from atomic

transition is employed to compensate the Doppler shift. The slower beam is σ−

polarized 399 nm light, which corresponds to the |1S0, F = 5/2,mF = −5/2〉 →

25



Figure 2.8: Photo of the fermionic 173Yb magneto optical trap (MOT) during
the loading at the main chamber.

|1P1, F
′ = 7/2,mF ′ = −7/2〉 transition, and detuned by ∆ = −1 GHz. Suc-

cessive resonant photon scattering efficiently slows down the atomic beam flux

along the Zeeman slower, which can lower the average velocity of atoms under

the capture velocity of MOT.

After deceleration by Zeeman slowing, atoms are further cooled and cap-

tured by 3D MOT. The MOT operates on the |1S0, F = 5/2〉 → |3P1, F
′ = 7/2〉

transition with narrow linewidth of Γ = 182 kHz. In 3D MOT, position depen-

dent photon scattering occurs on atoms, trapping the atoms to the center. Detri-

mental effect from |1S0, F = 5/2〉 → |1P1, F
′ = 5/2〉 transition (∆ = −160MHz)

is reduced by introducing dark spot at the location of captured atoms in MOT.

Phase space density is further increased by compressing the MOT at the final

stage. After 15 s operation, about 108 atoms are collected with temperature

about 20 µK.
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Transport and evaporative cooling

Atoms in compressed MOT are directly transferred to the optical dipole trap

(ODT) by high-power, far red-detuned IR laser beam at 1070 nm. The trap

depth of ODT ≈ 540µK is much higher than the temperature of MOT, and

ODT beam has eliptical profile of wx : wz = 3 : 1 to make good spatial overlap

with MOT, and compensate the effect of gravity. The atoms are transported

to the science chamber to gain better optical access and imaging. In our setup,

4f system with magnification of M ≈ 2.3 is employed to mechanically shift

the focus of the ODT. As the first lens is moved by distance d from the initial

position, the focus is shifted by M2d with slight change of beam waist. About

34 cm travel within 1.6 s from main chamber to science chamber is in capability

of our air-bearing stage (ABL1000-100, Aerotech). Smooth velocity profile of

mechanical translation of lens was carefully chosen to minimize atom loss during

the transport, resulting in transport efficiency about 85%.

The final stage of cooling is evaporative cooling in crossed dipole trap.

The basic principle of evaporative cooling is to remove atoms with high kinetic

energy and redistribute thermal energy between the remaining atoms, which in-

creases the phase-space density. For efficient evaporation, density of atomic gas

should be high enough to provide fast rethermalization between atoms via elas-

tic collision. Therefore, focused green laser (532 nm), far red-detuned from 1P1

transition, is aligned to intersect the focus of IR ODT, giving additional confine-

ment on axial direction of IR ODT. The angle between two dipole trap is given

by 60◦ due to the limited optical access of our science chamber. Compared to

the single ODT configuration, increased density of atoms in crossed ODT makes

evaporative cooling efficient. Although increase in density of atoms would suffer
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inelastic three-body collision scales as ∝ n2a2, but our crossed ODT geometry,

tight vertical confinement with loose transverse confinement, can avoid severe

three-body loss by reducing atomic density in transverse direction.

Evaporative cooling starts by slowly decreasing the dipole trap potential.

After 3.5 s of evaporative cooling step, we can get degenerate ytterbium Fermi

gas. Typical trap frequencies at the final stage are determined by measuring

harmonic oscillation of atomic cloud, which is estimated as {ωx, ωy, ωz} ≈ 2π×

{30, 105, 146}Hz.

Thermometry of degenerate Fermi gas

When the temperature of atoms are sufficiently cold, the thermal de Broglie

wavelength is much larger than the distance between particles. In this regime,

atoms can be described by wave function, and will obey quantum statistics.

If atom follows Bose-Einstein statistics, bosonic atoms will be condensed into

single state below the critical temperature. It is dramatic in momentum space,

as the thermal bosons with wide Gaussian distribution disappears, while the

condensed atoms appear at zero momentum with very narrow distribution.

In contrast to the Bose-Einstein condensate (BEC), where the sharp

phase transition from thermal gas to condensate occurs, the onset of the de-

generacy of fermions is subtle to be characterized. Following Pauli exclusion

principle, same energy level cannot be filled with identical fermions. At zero

temperature, the fermions fills every energy levels up to Fermi energy from the

ground state. For homogeneous trap, it will show sharp momentum distribution.

However, at finite temperature, higher energy levels are occupied by thermally

excited fraction of fermions, and it is smoothly changed by temperature. There-

fore, temperature should be carefully determined from the density distribution.

28



Figure 2.9: (a) Schematic of harmonic trap frequency measurement. Additional
ODT in z direction is applied at the final stage of evaporative cooling to lo-
cate atomic clouds at off-center of harmonic trap. This additional ODT is then
abruptly turned off, and position of atomic cloud is recorded after 15 ms time-
of-flight (TOF), which magnifies the scale of movement. Because atoms deviated
from the center of x, y direction, dipole mode in both directions are excited. (b)
Temporal position of atomic cloud. Dipole oscillation frequency is determined
by sinusoidal fitting, {ωx, ωy} = 2π{30, 105}Hz. Trap frequency in z direction
is approximately estimated from calculation of beam waists, beam power dis-
tribution and trap geometry.
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In experiment, atoms are trapped in a 3D harmonic potential, which is

described by the Hamiltonian

Ĥ =
p̂2

2m
+
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.4)

where p̂ = (px, py, pz) is momentum operator. The density of states is given by

g(ε) =
ε2

2(~ω̄)3
, (2.5)

where ε is the energy of a particle, and ω̄ = (ωxωyωz)
1/3 is geometric mean of

the trap frequency. The Fermi-Dirac distribution is given by

f(ε) =
1

eβ(ε−µ) + 1
=

1

eβε/ξ + 1
, (2.6)

where β = 1/kBT , and ξ = exp(βµ) is fugacity. The number of atoms in each

spin state is then

Nσ =

∫ ∞
0

g(ε)f(ε)dε. (2.7)

At T = 0, f(ε) = 1 for energy under the Fermi energy ε < EF. Then Fermi

temperature is

TF =
EF

kB

=
~ω
kB

(6Nσ)1/3. (2.8)

At finite temperature, the number of atoms in each spin is given by

Nσ = −
(
kBT

~ω

)3

Li3(−ξ), (2.9)

where Lin is nth order Polylog function. Combining two equations, T/TF is

related to the fugacity as

Li3(−ξ) = − 1

6(T/TF)3
. (2.10)
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Then how can we obtain fugacity from the experiment? With Thomas-

Fermi approximation, which assumes local density distribution proportional to

the external potential, the number density in phase space is given by

f(r, p) =
1

(2π~)3

1

eβĤ(r,p)/ξ + 1
. (2.11)

Then the real space and momentum space distribution, integrated over p and r

respectively, are

n(r) = −
(
mkBT

2π~2

)3/2

Li3/2(−ξe−
V (r)
kBT ), (2.12)

n̄(p) = − kBT

(2π~2mω2)3/2
Li3/2(−ξe

p2

2mkBT ), (2.13)

where V (r) = m
2

(ω2
xx

2 + ω2
yy

2 + ω2
zz

2).

In experiment, momentum distribution is measured by absorptive imag-

ing method after TOF. Because 3D atomic density is projected on the 2D image,

the measured optical density shows information about momentum distribution

integrated over the z direction. The column density (optical density integrated

over z) is then given by

OD(x, y) = ODpeak
Li2(e−ξe

− x2

2σ2
x
− y2

2σ2
y )

Li2(e−ξ)
, (2.14)

where ODpeak is peak optical density and σ2
i = kBT

mω2
i
[1+(ωit)

2], and t is exansion

time.

Typical absorption image of the 173Yb Fermi gas after TOF is shown in

Figure 2.10. After the long expansion time ωit� 1 with collisionless expansion,

the aspect ratio goes to unity regardless of the trap geometry. By fitting the

TOF image with the equation (2.14), fugacity ξ can be determined. Then, T/TF

is obtained through the relation with fugacity. In our setup, N ' 105 atoms with

temperature T/TF ' 0.15 can be obtained after evaporative cooling.
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Figure 2.10: 173Yb degenerate Fermi gas with six spin states. (a) Momentum
distribution of fermi gas is detected with absorption imaging after 15 ms time of
flight. (b) Averaged column density over azimuthal angle. Large deviation from
the Gaussian distribution indicates the degenerate regime. From the Thomas-
Fermi fit, the temperature is determined by T/TF ' 0.15.

2.3 Manipulation of nuclear spin states

Optical Stern-Gerlach separation

Atoms in different spin states (or different magnetic spin number mF ) can be

spatially separated by spin-dependent force induced by magnetic field gradient:

the Stern-Gerlach effect. The technique can be well applied to separate spin

states of alkali atoms, as they have sufficient state dependent magnetic mo-

ment of single electron. On the other hand, for alkaline-earth like atoms, the

spin states of ground states 1S0 cannot be separated practically due to lack of

electronic angular momentum. As the nuclear magnetic moment is about three

orders smaller than electron magnetic moment, required magnetic gradient for

achieving sufficient separation is extremely large.

To overcome the limitation of applying enormous magnetic field gradient,
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Figure 2.11: (a) Schematic of the optical Stern-Gerlach method. Blue-detuned
σ+ polarized light is aligned to the atomic gas, where the cloud center is placed at
the intensity gradient of the Gaussian beam. (b) State-dependent force induced
by beam intensity gradient. The grey strip indicates the relative position of the
atomic cloud. (c) The ratio of resulting dipole force on different spin states,
determined by detuning of light and polarization. (d) Typical absorption image
taken after applying 4 ms OSG pulse followed by TOF expansion of 6 ms.
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state dependent dipole force can be generated by optical means instead, which

is referred to the optical Stern-Gerlach (OSG) effect [73, 74]. The transition

strengths of |1S0, F = 5/2〉 → |3P1, F
′ = 7/2〉 vary with mF and polarization of

light. If the polarization of light is σ±, every transition strengths are different to

each other, resulting in mF state dependent AC Stark shift. As a consequence,

the mF dependent force can be generated when optical intensity gradient is

applied to the atoms.

In our experiment, a σ+ polarized gaussian beam which is blue detuned

by +860 MHz from |1S0, F = 5/2〉 → |3P1, F
′ = 7/2〉 transition line is used to

provide state dependent force. During the OSG scheme, small magnetic field is

applied to define quantization axis. OSG beam center is displaced from center

of atomic cloud to induce state-dependent force. The main state-dependent

repulsive force is produced by positively detuned |1S0, F = 5/2〉 → |3P1, F
′ =

7/2〉 transition, but attractive forces generated by negatively detuned hyperfine

transitions |1S0, F = 5/2〉 → |3P1, F
′ = 3/2, 5/2〉 also participate. Including

these contributions, mF = −5/2,−3/2 are actually attractive to the OSG beam,

while other states are pushed away.

In experimental sequence, atomic cloud is illuminated by OSG beam

about 4 ms after all trapping potential is switched off, during the weak mag-

netic field is applied. Atoms start to fall by gravity, but state dependent force

spatially separates mF states in horizontal plane. After additional TOF time

of 6 ms to enhance spatial separation, absorption image was taken. Due to the

curvature of gaussian OSG beam, separated mF states shows deformed distribu-

tion from initial atomic cloud. If one wants to keep information of initial atomic

distribution, linear optical intensity gradient must be applied. For that purpose,

such as digital micromirror devices (DMD) can be further employed to design
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the OSG beam intensity profile.

Optical pumping

Since the intercombination transition is very narrow for Yb atoms, transition on

individual mF state can be selectively addressed under the sufficient magnetic

field. In experiment, |1S0, F = 5/2〉 → |3P1, F
′ = 7/2〉 transition is employed.

Sublevels of ground state |1S0, F = 5/2〉 shows small splitting under the external

magnetic field, but |3P1, F
′ = 7/2〉 has sufficient Zeeman splitting ∆Z/2π =

0.6kHz/G × B under the magnetic field B. Therefore, each mF state can be

excited to m′F = mF + ε at specific polarization, where ε = ±1, 0.

The ratio of spin states in mixture can be manipulated by optical pump-

ing method based on spin-selective transition. As excited state spontaneously

decays into ground states following selection rule, initial state can be pumped

into other states after cycles of resonant excitation and spontaneous decay. In

our experiment, optical pumping is implemented by applying σ± polarized reso-

nant light before the evaporative cooling sequence. Atoms can be kept inside the

deep dipole trap, although subsequent momentum trasfer from optical pumping

heats the atoms. Using sequential optical pumping, various statistical spin mix-

ture can be prepared. Collision rate is decreased for the mixture prepared with

reduced number of spin states, because s-wave collision is only enabled between

two different spin states. As a consequence, evaporative cooling is less efficient

than six-component case, resulting in increased final temperature of the atomic

gas.

If state selective transition is applied when the trap depth is lower than

kinetic energy acquired from spontaneous decay, it selectively removes specific

atomic states from the trap. This state selective removal can be used to prepare
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spinless fermi gas, or to analyze each spin state after the experiment. The latter

is useful for measuring information on momentum distribution of each spin

state, because spin selective removal does not much distort the distribution

than OSG scheme in our experiment. Although inelastic scattering can blur the

overall momentum distribution, key features can be clearly distinguished by this

technique.

2.4 Optical lattice

Loading atoms into the optical lattice

Optical lattice used in the experiments is generated by interference of 532 nm

laser beams. Three dimensional cubic optical lattice is composed of two retro-

reflected laser beams in x̂, ẑ directions, and interfering two beams with angle of

120◦ in ŷ direction. Interference between each optical lattice axis were eliminated

by separating the frequency of laser beams of each axis over tens of MHz using

AOM. The atoms are usually loaded into the optical lattice by exponentially

ramping to final lattice depth within 100 ms, while the ODT potential depth is

decreased at the same time to loosen the trapping frequency. The adiabaticity

of the lattice loading procedure can be characterized by measuring temperature

of atoms, which are transferred back into the original ODT. We found there is

negligible heating during the lattice loading, implying good adiabaticity.

Measurement of quasi-momentum distribution

In order to probe band structure of the optical lattice, useful observables are

momentum distribution and population of atoms in each band. Both observables
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can be measured by mapping quasi-momentum states of optical lattice into

free particle momentum states, called band-mapping technique [75, 76]. When

lattice potential is ramped down adibatically, quasi-momentum of optical lattice

q can be fully mapped into the free particle momentum state. Therefore, quasi-

momentum distribution can be observed in TOF image after band mapping.

However, for inhomogeneous system such as system including harmonic trap

potential, Bloch states in different quasi-momentum states are not independent

to each other. Therefore, ramp time must be shorter than the time scale of

external potential. In our experiment, the lattice depth is linearly ramped down

to zero within 0.5−1s, which is slow enough for band-mapping, but faster than

the harmonic trap frequency.

Typical absorption image taken after band mapping follwed by TOF is

shown in Fig. 2.12. The population of atoms clearly shows the first Brillouin

zone of 3D cubic lattice. Small population in higher bands implies that Fermi

energy of initial atomic gas is below the recoil energy of optical lattice, and good

adiabaticity of lattice loading and band mapping.

Calibration of the lattice depth

To calibrate the depth of the optical lattice potential, we typically use lattice

modulation spectroscopy [77]. After adiabatic loading process, most of the atoms

are in the lowest bands. When lattice depth is periodically modulated, atoms

can be transferred to the higher band states. Following Fermi’s golden rule,

most of the atoms are transferred at the resonant condition, which is given

by En(q) − E0(q) = hν, where En(q) is dispersion curve of nth band and ν

is modulation frequency. Therefore, dispersion curve of optical lattice can be

determined by measuring quasi-momentum and band index of excitations.
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Figure 2.12: (a) Schematic sequence of band-mapping process. (b) Absorption
image of band-mapped momentum distribution after 15 ms TOF. The depth
of optical lattice in both direction was V = 10Er. Dashed lines indicate first
Brillouin zone. Because kx =

√
3π/λ and ky = 2π/λ, length of Brillouin zone

differs about 13%.
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In experiment, modulation spectroscopy is applied after the optical lattice

loading. Following short stabilization time of 10 ms, lattice depth is modulated

for 2 ms with sinusoidal profile. Modulation amplitude is about 10% of optical

lattice depth, aepoxynd modulation frequency is varied over few tens of kHz.

After lattice modulation, optical lattice potential is linearly ramped down to

zero within 0.5 ms, follwed by 15 ms TOF, to resolve quasimomentum and

band states of excited atoms.

2.5 Two-photon Raman transition

When the matter is under the two optical fields, stimulated absorption and emis-

sion of photon can occur, leading momentum and energy transfer. In condensed

matter, transferred momentum and energy typically excites specific vibrational

modes. Similarly, stimulated two-photon Raman transition exerts momentum

and energy to atoms. Figure 2.13 shows schematic view of two-photon transi-

tion. When atoms absorbs photon with momentum k1 and emit photon with

momentum k2 stimulated by optical field, atom acquires momentum k1 − k2

and energy ~(ω1 − ω2). If dispersion of atom is given by free particle disper-

sion, the resonance condition is uniquely defined due to momentum and energy

conservation. The two-photon transition can occur between momentum states,

either with or without changing other states. In the view of atom optics, the

situation is analogous to the Bragg diffraction, as matter wave is diffracted by

optical lattice formed by two optical fields.

The stimulated two-photon Raman transition can be described by simple

three states scheme. Suppose that an atom is illuminated by bichromatic optical
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Figure 2.13: (a) Two states coupled by two optical fields, where ∆i = ωi−ω0i is
detuning of optical field to excited state. (b) Momentum transfer on atoms from
the light field. (c) Stimulated Raman transition in atoms. Atomic states are de-
scribed by spin state m and momentum q. Different spin states m,m′ can be
energetically shifted by Zeeman shift, and momentum states follow free-particle
dispersion. When the energy and momentum conservation condition is satisfied,
two states are coupled by stimulated two-photon Raman transition. When the
spin state is preserved (m → m), it is often called as Bragg transition because
it is equivalent to the situation, where the atoms are scattered by moving op-
tical lattice. (d) The absorption image of momentum distribution after Raman
transition followed by 15 ms TOF. Atoms are initially prepared in m = −5/2
state by optical pumping. Only specific momentum class of atoms that satisfy
resonant condition, | − 5/2, 0〉, are transferred to the | − 3/2, 2kR〉.
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fields with frequency ω1 and ω2,

E(r, t) = ê1E1 cos(k1 · r − ω1t) + ê2E2 cos(k2 · r − ω2t), (2.15)

where êi is polarization vector of the field. For simple three-states configuration

of atom, the atomic Hamiltonian can be described as

HA =
p2

2m
− ~ω01|1〉〈1| − ~ω02|2〉〈2|, (2.16)

where the energy of excited state |0〉 is taken to be zero. In the rotating wave ap-

proximation and dipole approximation, the atom-field interaction Hamiltonian

HAF = −d ·E is given by

HAF =
∑
i

~Ωi

2
(|i〉〈0|eiki·r + H.c.), (2.17)

where Ωi ≡ −〈i|êi ·d|0〉Ei/~ is Rabi frequency which describes coupling strength

between |i〉 and |0〉 through optical field Ei. The effective Hamiltonian of the

system under the adiabatic elimination of excited states, assuming sufficient

detuning to excited state, is given by

He =
p2

2m
+ ~

∑
i

(∆i + ξi)|i〉〈i|+
~ΩR

2
(|1〉〈2|ei(k2−k1)·r + H.c.), (2.18)

where ∆i = ωi−ω0i is detuning of optical field to excited state, and ξi = Ω2
i /4∆

is AC Stark shift with ∆ = (∆1 + ∆2)/2. The Raman Rabi frequency ΩR =

Ω1Ω2/2∆ describes coupling strength between two states |1〉 and |2〉 through

two-photon Raman transition.

In real atomic system, the excited state is not given by a single state

in general. To properly calculate the strength of Raman transition, every pos-

sible transitions must be counted. For example, considering |1S0, F = 5/2〉 →

|3P1, F
′〉 transition, there are three excited states F ′ = 7/2, 5/2, 3/2 due to
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hyperfine splitting. Then, the Rabi frequency of Raman transition between

mF ↔ m′F using these excited states is given by

ΩR =
∑
F ′

ΩΩ′

2∆F ′

=
3πc2

2ω3
0

3Γ

(∑
F ′

CF ′,mF (e)CF ′,m′
F

(e′)

∆F ′

)√
IeI ′e′ , (2.19)

where ω0 is frequency of light and Γ is natural linewidth. CF ′,mF (e) is Clebsch-

Gordan coefficient for mF → m′F = mF + e transition with polarization e.

The expression can be expressed in terms of one excited state by noting the

symmetry of the electron wave function [78], which leads to ΩR ∼ ∆HFS/∆
2
F ′

for specific F ′, where ∆HFS is hyperfine splitting [79]. The useful parameter for

experiment is ratio of Raman transition strength to inelastic scattering rate

ΩR/Γin, and it scales as ∼ ∆HFS/Γ [78].

In our setup, laser blue-detuned by 1.97 GHz from |1S0, F = 5/2〉 →

|3P1, F
′ = 7/2〉 transition is employed to induce Raman transition. The laser

light detuned by 1.81 GHz is divided, and pass another 80 MHz AOM in double

pass scheme respectively. Each Raman beam is delivered by an optical fiber and

focused into the atomic cloud with beam diameter of ≈ 300 µm. It is sufficiently

larger than the trapped sample ≈ 30 µm, which can reduce inhomogeneity of

beam intensity over the whole sample.

2.6 Periodic shaking of optical lattice

The position of optical lattice can be manipulated by two approaches.
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Frequency modulation

Frequency difference ∆ν between two optical lattice beams leads moving optical

lattice with velocity v = aL∆ν, where aL is lattice spacing. If frequency differ-

ence has time-dependence, inertial force F = −ma = −maL∆ν̇(t) is exerted on

the atoms in co-moving frame. In our setup, the position of optical lattice is

periodically driven by modulating the frequency of one of optical lattice beams.

By controlling the RF of AOM, frequency of the 1st order beam can be modu-

lated by νL + ∆ν(t), where νL is frequency of 0th order beam, while the other

lattice beam is maintained at frequency νL.

Mechanical modulation

Optical lattice can be spatially modulated by mechanically shifting the optical

path length. For retro-reflected configuration of optical lattice, it can be easily

achieved by shifting the position of the mirror. In our experiment, position of

mirror is precisely controlled by high bandwidth piezo chip. The piezo driven

mirror is composed of three piezo chips (PA4CE, Thorlabs), low mass mirror

(BB03-E02, Thorlabs), and a base plate for commercial optomechanical mirror

mount. The nominal free stroke of piezo chip is 2.0 µm, which can cover shift

about 7 lattice sites. A low capacitance of piezo chip (22 nF) is suitable for the

high frequency modulation up to few hundreds of kHz. Piezo chips are glued

to the brass base plate with epoxy in tripod configuration to cover the area of

mirror. The alumina end plates (PKCEP4, Thorlabs) are glued in between the

base plate and piezo chips to provide insulation. Then low mass mirror (≈ 0.17

g) is glued above the piezo tripod. By using low mass of mirror relative to

base plate, resonant frequency of the system would be formed at higher values,
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providing sufficient bandwidth.

The piezo mirror was driven by high voltage driver (PX200, PiezoDrive)

that covers frequency up to 100 kHz, which is externally controlled by arbitrary

function generator (AFG1022, Tektronics). Frequency response of the piezo-

driven mirror is measured with Michelson interferometer. Collimated laser beam

(λ = 532 nm) consists interferometer, whose optical path length of one arm is

modulated by piezo chip, and the intensity of inferenced signal is monitored by

photodiode.

In measurement, mirror position was modulated with sinusoidal function.

In the limit of small modulation length ∆x� λ/2 at the middle of interference

maximum and minimum, intensity of interference signal linearly depends on the

path length difference of interferometer. Figure 2.14 shows intensity and phase

of interference signal. The observed intensity shows flat response, and the phase

is linearly decreasing up to 80 kHz. The resonance position seems around 100

kHz as phase is clearly deviated from the linear fit. Linear slope of interference

phase corresponds to constant time delay, and we found that piezo mirror has

2.4 µs delay after trigger signal. It can be easily compensated by tuning the

trigger timing.
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Figure 2.14: Piezo mirror system. (a) Picture of piezo mirror. Mirror is glued
onto three piezo actuators with epoxy. (b) Schematics of piezo mirror and
Michelson interferometry. (c) Amplitude and (d) phase of interferometry sig-
nal with the sinusoidal driving of piezo mirror.
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Chapter 3

Floquet theory and stroboscopic

dynamics

The dynamics of the system governed by time-dependent Hamiltonian is gener-

ally difficult to predict, because instantaneous eigenstates and eigenvalues are

changing at every time step. However, if the perturbation is periodic in time,

the situation can be simplified. Long time dynamics of the system can be ef-

fectively described by time-independent Hamiltonian, which is derived by the

Floquet theorem. A well known example of Floquet system is Kapitza pendulum,

where the pivot point of pendulum is periodically modulated in the direction

of gravity. As the frequency increases, pendulum can oscillate upside down as

if gravity acts in opposite direction. Thus, periodically driven system can show

unique dynamics compared to the static system. In this regard, the concept of

Floquet engineering has gained interests in recent years. This section describes

basic Floquet theory, and perturbative expansion methods which approximate

the effective Hamiltonian.
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3.1 Floquet formalism

We consider a time-dependent periodic Hamiltonian with period of T ,

Ĥ(t) = Ĥ(t+ T ). (3.1)

The eigenstates of the Hamiltonian are solutions of time-dependent Schrödinger

equation

i~
∂

∂t
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 (3.2)

According to Floquet theory, the eigenstates |ψ(t)〉 called Floquet states can be

written in

|ψn(t)〉 = exp(−iεnt/~)|un(t)〉, (3.3)

where |un(t)〉 = |un(t+ T )〉 is Floquet mode, and εn is quasienergy [80].

Due to the periodicity of Floquet mode, the Floquet states are also eigen-

states of time-evolution operator over one period,

Û(t0 + T, t0)|ψn(t0)〉 = exp(−iεnT/~)|ψn(t0)〉, (3.4)

where Û(t, t0) is time evolution operator from t0 to t, which is generally given

by

Û(t, t0) = T exp

[
− i

~

∫ t

t0

Ĥ(τ)dτ

]
. (3.5)

Here T is time-ordering operator. From the relation, quasienergy spectrum can

be obtained by diagonalizing Û(t0 +T, t0), and it does not depend on the choice

of arbitrary time t0.

The stroboscopic dynamics of each time frame t = t0 + nT can be de-

scribed stroboscopic Floquet Hamiltonian [81], which is given by

Ĥ t0
F = i

~
T

log[Û(t0 + T, t0)]. (3.6)
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The stroboscopic Floquet Hamiltonian depends on the choice of initial time t0,

while it does not change the quasienergy spectrum. Therefore, Floquet Hamilto-

nians in other time frame are related by gauge transformation. From the relation

of time evolution operator,

Û(t′0 + T, t′0) = Û(t′0 + T, t0 + T )Û(t0 + T, t0)Û(t0, t
′
0)

= Û(t0, t
′
0)†Û(t0 + T, t0)Û(t0, t

′
0), (3.7)

we can derive unitary transformation between Floquet Hamiltonian in different

time frame,

Ĥ
t′0
F = Û(t0, t

′
0)†H t0

F Û(t0, t
′
0). (3.8)

Time evolution operator for arbitrary times can be written as

Û(t2, t1) = Û(t2, t0 + nT )exp[−iĤ t0
F nT ]Û(t0, t1)

= exp[= iK̂t0
F (t2)]exp[−iĤ t0

F (t2 − t1)]exp[iK̂t0
F (t1)], (3.9)

where exp[= iK̂t0
F (t)] ≡ Û(t, t0)exp[iĤ t0

F (t− t0)], and K̂t0
F (t) is stroboscopic mi-

cromotion operator. This description depends on the initial time t0, but one can

find more general description under the proper gauge transformation.

There exists Hermitian operator such that

Ĥeff = eiK̂(t0)H t0
F e
−iK̂(t0), (3.10)

where K̂(t0) is referred as kick operator which is periodic in time, K̂(t0 +nT ) =

K̂(t0), and Ĥeff is effective Hamiltonian. The time-indepedent effective Hamil-

tonian can be found by transforming the time-dependent Hamiltonian with

unitary gauge transformation. Assuming

|φ(t)〉 = Û(t)|ψ(t)〉 = eiK̂(t)|ψ(t)〉, (3.11)
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then by plugging the equation to the time-dependent Schrödinger equation,

i~
∂

∂t
|φ(t)〉 = Ĝ|φ(t)〉, (3.12)

where

Ĝ = eiK̂(t)Ĥ(t)e−iK̂(t) + i~
∂eiK̂(t)

∂t
e−iK̂(t). (3.13)

One can assume that unitary transformation eiK̂(t) maps Ĥ(t) into time-independent

Hamiltonian Ĝ ≡ Ĥeff. Then the time evolution operator can be written as [82]

Û(t2, t1) = e−iK̂(t2)e−
i
~ Ĥeff(t2−t1)eiK̂(t1). (3.14)

In this form of expression, the Floquet gauge dependence is all carried by the

kick operator, so effective Hamiltonian is independent of initial time. The time

evolution is composed of time-dependent micromotion at initial/final step and

evolution by time-independent effective Hamiltonian Ĥeff. Also, we can find

relation between stroboscopic micromotion operator and kick operator, such

that

e−iK̂
t0
F (t) = e−iK̂(t)e−iK̂(t0). (3.15)

3.2 Perturbative inverse frequency expansion

Floquet Hamiltonian can be directly computed from the intergration of time-

dependent Hamiltonian, but the simple form of time-independent Hamilto-

nian is difficult to be derived from this equation. Rather than integration of

time-dependent operators, Floquet Hamiltonian can be perturbatively expanded

when the driving frequency is much larger than the energy scale of the system.

In this section, we present two useful expansion methods.
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Magnus expansion

Magnus expansion is useful approach to compute the stroboscopic Floquet

Hamiltonian. In the high frequency limit, where the driving frequency is higher

than any energy scale in the system, the stroboscopic Floquet Hamiltonian and

micromotion operator can be expanded in a perturbative series as [83]

Ĥ t0
F =

∞∑
n=0

Ĥ
t0(n)
F , K̂t0

F (t) =
∞∑
n=0

K̂
t0(n)
F (t). (3.16)

The terms of expansion can be obtained by

Ĥ t0
F =

i

T
log

{
T exp

[
− i

~

∫ t

t0

Ĥ(τ)dτ

]}
,

K̂t0
F (t) = ilog

{
T exp

[
− i

~

∫ t

t0

Ĥ(τ)dτ

]
eiĤ

t0
F (t−t0)

}
. (3.17)

Then leading terms are given by Magnus expansion [84],

Ĥ
t0(0)
F =

1

T

∫ t0+T

t0

dτĤ(τ) = Ĥ0,

Ĥ
t0(1)
F =

1

2!Ti~

∫ t0+T

t0

dτ1

∫ t0

τ1

dτ2[Ĥ(τ1), Ĥ(τ2)]

=
1

~ω
∑
m=1

1

m

(
[Ĥm, Ĥ−m]− eimωt0 [Ĥm, Ĥ0] + e−imωt0 [Ĥ−m, Ĥ0]

)
,

Ĥ
t0(2)
F =

1

3!T (i~)2

∫ t0+T

t0

dτ1

∫ t0

τ1

dτ2

∫ t0

τ2

dτ3([Ĥ(τ1), [Ĥ(τ2), Ĥ(τ3)]] + [Ĥ(τ3), [Ĥ(τ2), Ĥ(τ1)]]),

(3.18)

K̂
t0(0)
F (t) = 0,

K̂
t0(1)
F (t) =

1

~

∫ t

t0

dτ(Ĥ(τ)− Ĥ t0(1)
F )

= − 1

2~

[ ∫ t

t+T

dτĤ(τ)

(
1 + 2

t− τ
T

)
−
∫ t0

t0+T

dτĤ(τ)

(
1 + 2

t0 − τ
T

)]
=

1

i~ω
∑
m6=0

Ĥm
eimωt − eimωt0

m
, (3.19)
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where we have expanded time-dependent Hamiltonian in Fourier series as

Ĥ(t) =
∑
m

Ĥme
imωt. (3.20)

The zeroth order term of the Floquet Hamiltonian is the time-averaged Hamil-

tonian, and the zeroth-order micromotion operator is zero, so both terms are

Floquet gauge invariant: no dependence on initial time t0. Floquet gauge de-

pence exists on the correction terms of both stroboscopic Floquet Hamiltonian

and micromotion operator, and these vanish in the high frequency limit ω →∞.

High frequency expansion

By changing basis, time-evolution can be described by Floquet gauge indepen-

dent effective Hamiltonian Ĥeff and kick operator K̂(t). In this description, kick

operator all carries the Floquet gauge dependence. In the high-frequency limit,

Ĥeff and K̂(t) can be perturbatively expanded [79,82,85],

Ĥeff =
∞∑
n=0

Ĥ
(n)
eff , K̂(t) =

∞∑
n=0

K̂(n)(t). (3.21)

Following operator expansion,

eiK̂(t)Ĥe−iK̂(t) =Ĥ + i[K̂, Ĥ]− 1

2!
[K̂, [K̂, Ĥ]]− 1

3!
[K̂, [K̂, [K̂, Ĥ]]] + · · · ,

(3.22)

∂eiK̂(t)

∂t
e−iK̂(t) =i

∂K̂

∂t
− 1

2!

[
K̂,

∂K̂

∂t

]
− i

3!

[
K̂(t),

[
K̂,

∂K̂

∂t

]]
+ · · · , (3.23)

effective Hamiltonian Ĥeff and the kick operator K̂(t) can be approximately

obtained. With Fouier expansion of time-dependent Hamiltonian, the effective
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Hamiltonian and kick operator are given by

Ĥ
(0)
eff =Ĥ0,

Ĥ
(1)
eff =

∑
m 6=0

[Ĥm, Ĥ−m]

m~ω
,

Ĥ
(2)
eff =

∑
m 6=0

[
[Ĥ−m[Ĥ0, Ĥm]]

2(m~ω)2
+
∑

m′ 6=0,m

[Ĥ−m′ [Ĥm′−m, Ĥm]]

3mm′(~ω)2

]
, (3.24)

K̂(0)(t) =0,

K̂(1)(t) =
∑
m6=0

eimωt

im~ω
Ĥm,

K̂(2)(t) =
∑
m 6=0

[
eimωt[Ĥ0, Ĥm]

(m~ω)2
+

1

2

∑
m′ 6=0,m

ei(m−m
′)ωt[Ĥ−m′ , Ĥm]

m(m−m′)(~ω)2

]
. (3.25)

The zeroth order term is simply the time-average of Hamiltonian, and higher

order terms is composed of combinations of different harmonic terms, which

do not commute with each other. For example, the first order term in effective

Hamiltonian describes the effect driven by combination of opposite harmonic

terms, resulting in time-independence.

Two-level system

We consider two-level system with energy gap ∆ driven by time-dependent

coupling. We choose simple sinusoidal modulation V (t) = A cos(ωt). The time-

dependent Hamiltonian is given by

Ĥ(t) =
∆

2
σz + V (t)σx, (3.26)
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where {σx, σy, σz} are the 2×2 Pauli matrices. Under the rotating frame R̂(t) =

exp(−iωtσz/2),

Ĥ ′(t) =R̂†(t)Ĥ(t)R̂(t)− i~R̂†(t)∂R̂(t)

∂t

=
1

2
(∆− ~ω)σz +

A

2
(1 + e2iωtσz)σx. (3.27)

Then we consider resonant driving case ~ω = ∆.

Using Magnus expansion method, the stroboscopic Floquet Hamiltonian

up to first order is given by

Ĥ t0
F =

A

2
σx +

1

2~ω

(
A

2

)2

[1− 2 cos(2ωt0)]σz +O(1/ω2) (3.28)

The leading terms of the stroboscopic micromotion are given by

K̂t0
F (t) =

A

4~ω
[(sin 2ωt− sin 2ωt0)σx + (cos 2ωt− cos 2ωt0)σy] +O(1/ω2)

(3.29)

Using high-frequency expansion method, the effective Hamiltonian up to

first order is given by

Ĥeff =Ĥ0 =
A

2
σx +

1

2~ω

(
A

2

)2

σz +O(1/ω2) (3.30)

The leading terms of the kick operator are given by

K̂(t) =
A

4~ω
[σx sin 2ωt+ σy cos 2ωt] +O(1/ω2) (3.31)

Both expansion methods agree with each other, but show distinctive fea-

tures. Stroboscopic Hamiltonian approximated from Magnus expansion contains

Floquet gauge dependent term, while the effective Hamiltonian approximated

from high-frequency expansion does not have any Floquet gauge dependence.

In the latter case, Floquet gauge dependence is migrated to the kick operator
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Figure 3.1: Dynamics of two-level system under the resonant modulation. The
state is initially prepared in the |1〉 = (0, 1)T state, and driven by driving
frequency ω = 2π × 10 = ∆/~ and amplitude A = 1. (a) Dynamics of the
driven two-level system projected on |1〉 and (b) proejcted on |y〉 = (1, i)T/

√
2.

The exact dyanmics by solving time-dependent Schrödinger equation is given
by black line. Blue line indicates the dynamics in the limit of ω → ∞. The
stroboscopic dyanamics and non-stroboscopic dynamics calculated from Magnus
exansion (hollow circles) and high-frequency expansion (red dashed line) well
agree with exact dynamics. (c) Bloch sphere representation of the dynamics.

K̂(t). If we are interested in stroboscopic dynamics, we can either use Ĥ t0
F or

Ĥeff with K̂(t). If one is interested in stroboscopic dynamics, Magnus expansion

would be preferable option, because it does not need to compute micromotion

operator Kt0
F . In contrast, high-frequency expansion has advantage on studying

non-stroboscopic dynamics and Floquet quasienergy, because Ĥeff is free from

the Floquet gauge.

Let us compare exact dynamics governed by time-dependent Hamiltonian

in rotating frame. The dynamics can be described by time-averaged Hamiltonian

Ĥ0 and micromotion vanishes in the high-frequency limit ω → ∞. When the

dynamics starts with initial state |1〉 = (0, 1)T , states will oscillate between |1〉

and |2〉 = (1, 0)T with frequency of A/~. However, for finite driving frequency,

dynamics deviates from the Ĥ0 and shows micromotion at the frequency of the
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driving. The Bloch-sphere representation can give further insight. While the

states are slowly driven from |1〉 to |2〉, additional oscillation at the driving

frequency also appears. Both the stroboscopic dynamics obtained from Magnus

expansion, and non-stroboscopic dynamics calculated by high-frequency expan-

sion well agress with the exact dynamics.

3.3 Driven optical lattices

In this thesis, we investigate the periodically modulated optical lattice. Periodic

modulation can be achieved by applying external magnetic field gradient to the

atoms, or modulating the optical lattice potential. The former is appropriate

for alkali atoms and dipolar atoms, but for alkaline-earth like atoms such as

ytterbium, the only option is the latter due to the extremely small magnetic

moment. Therefore, we mainly modulate the optical lattice to engineer the ef-

fective Hamiltonian. The common methods to driving the optical lattice are

using running wave to modulate the on-site energy of the optical lattice, or pe-

riodically modulate the position of the optical lattice to generate inertial force

in comoving frame. For any modulation methods, it can be categorized by the

range of driving frequency: off-resonant or resonant driving. Some intriguing ex-

amples of effective Hamiltonian generated by periodic modulation are discussed

in this section.

Driven lattice with off-resonant shaking

When the driving frequency is not resonant with any energy gap in the static

system, it is classfied as off-resonant driving. We consider one-dimensional opti-

cal lattice, whose position is periodically modulated. The dynamics of the atoms
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are described by the Hamiltonian

ĤLab(t) =
p̂2
x

2m
+
V0

2
cos

[
2π

a
(x̂− x0(t))

]
, (3.32)

where x0(t) = d sin(ωt) is trajectory of lattice and V0 is the lattice potential.

By gauge transformation, the Hamiltonian in co-moving frame is given by

Ĥcm(t) = Ĥstat − F (t)x̂

=
p̂2
x

2m
+
V0

2
cos

[
2π

a
x̂

]
− F (t)x̂, (3.33)

where F (t) = −mẍ0(t) = F0 sin(ωt). In the co-moving frame with moving

lattice, the Hamiltonian is given by atoms in static optical lattice with additional

time-dependent force term. It is expected that periodic force results in periodic

change of momentum, and effective dynamics would be governed by the average

of time-dependent momentum shift. To clearly visualize the effect of periodic

driving, we will discuss the situation with tight-binding approximation. With

tight-binding approximation, the Hamiltonian can be expressed as

ĤTB(t) =
∑
j

{
[ε− F (t)aj]c†jcj − tx(c

†
jcj+1 + H.c.)

}
, (3.34)

where cj is the annihilation operator for the atom in site j of lattice, ε =∫
dxw∗(x−xj)Ĥstatw(x−xj) and tx = −

∫
dxw∗(x−xj)Ĥstatw(x−xj+1) are on-

site energy and nearest-neighbor hopping amplitude, and w(x− xj) is Wannier

function localized at site j. Here, we assume that coupling to higher bands

does not occur, because the driving frequency is not resonant to any band gap

energy. In this form of Hamiltonian, site-dependent energy offset is periodically

modulated. However, the Bloch theorem cannot be applied because of broken

translational symmetry. To recover the translational symmetry, unitary operator

Û(t) = exp

[
i

~
∑
j

∫ t

0

dτF (τ)ajc†jcj

]
(3.35)
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is introduced. Under the gauge transformation, the Hamiltonian is given by

Ĥ ′TB(t) =
∑
j

{
εc†jcj − tx[e−iθ(t)c

†
jcj+1 + H.c.]

}
, (3.36)

where θ(t) = −a
~

∫ t
0
dτF (τ) = K cos(ωt), and K = F0a/~ω. Now the Hamilto-

nian describes nearest-neighbor hopping with time-periodic phase called Peierls

phase. Fourier components of the Hamiltonian Ĥ ′TB(t) = Ĥ0 +
∑

m6=0 e
imωtĤm

are then given by

Ĥ0 =
∑
j

εc†jcj − txJ0(K)[c†jcj+1 + H.c.],

Ĥm 6=0 =− tx
∑
j

imJm(K)[(−1)mc†jcj+1 + c†j+1cj], (3.37)

and Ĥ−m = Ĥ†m, where Jm is m th order Bessel function of the first kind.

Applying the high-frequency expansion method, the effective Hamiltonian is

given by

Ĥeff = Ĥ0 +O(1/ω2) ≈
∑
j

{
εc†jcj − txJ0(K)[c†jcj+1 + H.c.]

}
, (3.38)

as [Ĥm, Ĥ−m] = 0. As a result, periodic off-resonant driving renormalizes the

hopping amplitude by zeroth order Bessel function. As K increases, the effec-

tive hopping amplitude decreases and its sign can even become negative. The

bandwidth and position of band minimum can be adjusted by the dimensionless

forcing parameter K [86, 87].

Driven lattice with resonant moving optical lattice

When the driving frequency is resonant to some energy gap in static system, the

effective band structure can show intriguing effect. We consider tight-binding
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model with site-dependent energy offset,

Ĥstat = −tx
∑
j

(c†jcj+1 + H.c.) +
∑
j

∆jc
†
jcj. (3.39)

Hopping to neighbor sites is inhibited when |∆j+1 − ∆j| � |t| as wavefunc-

tions are localized at each site. The hopping between neighbor sites can be

restored by periodic modulation. Let the periodic modulation is driven by ad-

ditional moving optical lattice of potential depth Vm with propagation velocity

of vm = ω/2km, where km = π/am is lattice momentum of moving lattice.

In tight-binding approximation, the effect of moving lattice potential can lead

site-dependent on-site energy modulation and hopping, which can be derived

by

〈j|Ĥmod(t)|j〉 =
Vm
2
〈j| sin(2kmx+ ωt)|j〉

=
Vm
2
〈0| sin[2km(x+ aj) + ωt]|0〉

=
Vm
2
〈0| sin

[
2kmx+ 2π

(
a

am

)
j + ωt

]
|0〉

=Φ0 sin(ϕj + ωt) (3.40)

〈j|Ĥmod(t)|j + 1〉 =Φc
1 sin(ϕj + ωt) + Φs

1 cos(ϕj + ωt), (3.41)

where ϕ = 2π(a/am) and

Φ0 =
Vm
2
〈0| cos(2kmx)|0〉, (3.42)

Φc
1 =

Vm
2
〈0| cos(2kmx)|1〉, (3.43)

Φs
1 =

Vm
2
〈0| sin(2kmx)|1〉. (3.44)

(3.45)
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If the static optical lattice depth is sufficiently large, Φ1 terms are negligible.

Then the Hamiltonian with moving optical lattice can be written as

Ĥ(t) =Ĥstat + Ĥmod(t)

=− tx
∑
j

(c†jcj+1 + H.c.) +
∑
j

[∆j + Φ0 sin(ϕj + ωt)]c†jcj. (3.46)

We can introduce unitary transformation

Û(t) = exp

[
− i

~
∑
j

(
− Φ0

ω
cos(ϕj + ωt) + ∆jt

)
c†jcj

]
, (3.47)

then the transformedHamiltonian is given by

Ĥ ′(t) =Û †Ĥ(t)Û − i~Û †∂Û
∂t

=− tx
∑
j

(e−iθj(t)c†jcj+1 + H.c.), (3.48)

where

θj(t) =
2Φ0

~ω
sin

[
ϕ(2j + 1)

2
+ ωt

]
sin

(
ϕ

2

)
+
δ∆j

~
t

=K ′ sin(ϕ̄j + ωt) +
δ∆j

~
t (3.49)

is time-dependent hopping phase, and δ∆j = ∆j+1 −∆j. The Hamiltonian can

be expanded as

Ĥ ′(t) = −tx
∑
j,m

Jm(K ′)

[
(−1)mei(mω−

δ∆j
~ )teimϕ̄jc†jcj+1 + H.c.

]
. (3.50)

Therefore, the effective Hamiltonian is determined by the time-dependent phase

factor mω− δ∆j/~, as it decides Fourier components. For example, if the mod-

ulation frequency is resonant to the energy separation between neighbor sites,

namely δ∆j = ν~ω, the effective Hamiltonian is given by

Ĥeff ≈ Ĥ0 =− tx
∑
j

Jν(K ′)
[
(−1)meiνϕ̄jc†jcj+1 + H.c.

]
(3.51)
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Therefore, non-zero complex hopping phase called Peierl’s phase can be engi-

neered by resonant modulation. The site dependent complex phase is given by

ϕ̄j = ϕj + ϕ/2, so it is tunable by adjusting the ratio between lattice constant

of static lattice a and moving lattice am.
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Chapter 4

Topological insulator

Discovery and understanding the phases of matter are important goals in con-

densed matter physics to reveal microscopic and macroscopic states of the sys-

tem. The phases of matter can be often explained by Landau theory, which de-

scribes that the phase transition can be characterized by spontaneous symmetry

breaking of the system. Liquid-solid phase transition can be explained by broken

continuous translational symmetry, and ferromagnetism can be described by the

result of spin rotational symmetry breaking under the critical temperature. In

these phase transition, the long-range order is formed by symmetry breaking.

Although Landau’s approach can explain the phases of matter and its critical

behaviors beautifully, necessity of new paradigm have been claimed after the

discovery of quantum Hall effect [27, 88]. Physical properties of quantum Hall

states are insensitive to smooth changes in material parameters and details,

such as impurity and electron concentration, and it only changes when the sys-

tem undergoes quantum phase transition without symmetry breaking. It was

revealed that topology is closely related to the quantization of Hall conductance,

which can be understood in terms of topological invariant.
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Topological insulators are gapped insulating phase, but it has gapless

states at the edges of system protected by some symmetry. The surface states

are robust to the external perturbations, as long as the topology of system is

maintained. Due to its intriguing transport property, it has been one of frontiers

in modern condensed matter physics. In this chapter, we will review topological

insulators. We first start with the Harper-Hofstadter model, which is a represen-

tative model of 2D topological states. Then we also review the 1D topological

model, the Su-Schrieffer-Heeger (SSH) model and Creutz model.

4.1 Harper-Hofstadter model

Harper-Hofstadter model illustrates the dynamics of the particles in the lattice

in the presence of a external magnetic field, so it is discretized version of interger

QHE [63–65]. The lattice Hamiltonian can be written as

Ĥ = −t
∑
n,m

(eiφ
x
n,m ĉ†n+1,mĉn,m + eiφ

y
n,m ĉ†n,m+1ĉn,m + h.c.), (4.1)

where the ĉn,m is the fermionic annihilation operator at site (n,m), t is the

hopping amplitude between the nearest-neighbor sites, and φkn,m is Peierls phase

factor along direction k̂. The Peierls phase is related to the Aharonov-Bohm

phase accumulated on moving charged particle in magnetic field. In the absence

of magnetic field, lattice system has discrete translational symmetry. If magnetic

field B = ∇×A is applied, the electronic wave function acquires Peierls phase

φkn,m = eAkn,m/~ along the hopping between two sites. Then magnetic flux per

unit cell of square lattice is given by

Φm,n = φxm,n + φym+1,n − φxm,n+1 − φym,n. (4.2)
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Figure 4.1: Schematic drawing of Harper-Hofstadter model. The amplitude of
hopping is given by t, and the hopping phase is given by φkm,n. The artificial
gauge flux is determined by the difference of Peierls phase in the lattice system,
Φm,n = φxm,n + φym+1,n − φxm,n+1 − φym,n.

Because of U(1) gauge symmetry, Hamiltonian can be simplified under

the proper gauge transformation onA. The lattice Hamiltonian can be rewritten

as

Ĥ = −t
∑
n,m

(ĉ†n+1,mĉn,m + eiΦn,mmĉ†n,m+1ĉn,m + H.c.), (4.3)

with Landau gauge φn,m = (0,Φn,mm). Then the hopping phase along x̂ be-

comes real, while the hopping phase along ŷ becomes the magnetic flux per

each plaquette. This is known as the Harper-Hofstadter Hamiltonian.

Berry phase

When the parameter of the system is slowly altered, a quantum state adiabati-

cally evolves: the eigenstate will remain in eigenstate of instantaneous Hamilto-

nian. According to the quantum adiabatic theorem, initial eigenstate |n(R(0))〉

of Hamiltoniain H(R(0)) will stay as eigenstate of the Hamiltonian H(R(t)),
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but with some phase factors. Then the instantaneous state can be written as

|ψn(t)〉 = eiγn(t)exp

{
− i

~

∫ t

0

dτεn(R(τ))

}
|n(R(t))〉. (4.4)

The second exponential is known as the dynamical phase factor, and the first

exponential is geometric phase factor. The geometric phase can be canceled by

proper choice of gauge. From the time-dependent Schrödinger equation i~∂t|ψn(t)〉 =

H(R(t))|ψn(t)〉,

∂tγn(t) = i〈n(R(t))|∇R|n(R(t))〉∂tR(t). (4.5)

The total change around the cycle, the geometric phase can be expressed as a

path integral

γn =

∫
C

i〈n(R)|∇R|n(R)〉 · dR =

∫
C

dR · An(R). (4.6)

If we make gauge transformation with arbitrary smooth function ϕ(R), as

|n(R)〉 → eiϕ(R)|n(R)〉, the An(R) also transforms as

An(R)→ An(R)−∇Rϕ(R), (4.7)

so An(R) is gauge dependent. As a consequence, geometric phase can be can-

celed out by suitable gauge transformation. However, it can’t be removed if the

adiabatic evolution is cyclic, i.e.R(0) = R(T ), as Berry had found [30]. Because

|n(R(0))〉 = |n(R(T ))〉, the gauge transformed states also meet the condition

eiϕ(R(0))|n(R(0))〉 = eiϕ(R(T ))|n(R(T ))〉, requiring ϕ(R(T ))− ϕ(R(T )) = 2πK,

where K ∈ Z. Therefore, the geometric phase under cyclic evolution

γn =

∮
C

dR · An(R), (4.8)

is called Berry phase, which is invariant under the gauge choice.
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Berry curvature and Chern number

By applying the Stokes theorem,

γn =

∫
S

dS · i
[
〈∂n(R)

∂Rµ
|∂n(R)

∂Rν
〉 − 〈∂n(R)

∂Rµ
|∂n(R)

∂Rν
〉
]

=

∫
S

dS · Ωµν
n (R), (4.9)

where S is closed surface by the path C and Ωµν
n (R) is defined as a Berry

curvature. Ωµν
n (R) can be also written as

Ωµν
n (R) = i

∑
m6=n

〈n|∇RĤ|m〉 × 〈m|∇RĤ|n〉
(εm − εn)2

. (4.10)

In this form of formula, the total Berry curvature vanishes for certain R,∑
n Ωµν

n (R) = 0, so Berry curvature satisfy local conservation law. In contrast

to A(R), the Berry curvature is gauge invariant local quantity, providing local

geometric properties.

Chern theorem is a generalization of Gauss-Bonnet theorem in closed

even-dimensional Riemannian manifold [89]. In original Gauss-Bonnet theorem,

the total Gaussian curvature of closed surface is given by Euler characteristics

of the surface with factor of 2π. The Berry curvature is local curvature that is

given by the form of Levi-Civita connection, and its surface is typically in 2D,

so it follows the Chern theorem. Therefore, integral of Berry curvature in closed

surface divided by 2π is given by integer number, the Chern number Cn = γn/2π.

The total Chern number of the system would vanish:
∑

n Cn = 0. The Chern

number is topological invariant, which is preseved until the gap closing occurs.
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Particle-hole symmetry

We use ansatz for wave function

Ψm,n = eikxmaeikynaψm, (4.11)

where ψm+q = ψq, −π/(qa) < kx < π/(qa) and −π/a < ky < π/a. Here, q

is denominator of rational values of flux, Φ/2π = p/q (p, q ∈ Z). Then, The

Schrödinger equation of Harper-Hofstadter Hamiltonian is given by

Eψm = −t[eikxaψm+1 + e−ikxaψm−1 + 2 cos(kya− Φm)ψm]. (4.12)

Let us consider transformation Ψm,n → Ψ̄m,n = (−1)m+nΨm,n. Then

the transformed wave function under same ansatz Ψ̄m,n = eikxmaeikynap̄sim and

ψ̄m+q = ψ̄m satisfies Schrödinger equation

− Eψm = −t[eikxaψm+1 + e−ikxaψm−1 + 2 cos(kya− Φm)ψm], (4.13)

which results in same form of equation but E → −E. This indicates that if

eigenstate Ψm,n with energy E exist, Ψ̄m,n with energy −E should exist simul-

taneously. This type of symmetry is referred as particle-hole symmetry. The

direct relation between two wave function is given by

ψm(kx, ky) = ψ̄(kx + π/a, ky + π/a), (4.14)

El(kx, ky) = El̄(kx + π/a, ky + π/a), (4.15)

where l(l̄) is lth subband at E > 0 (E < 0), starting from E = 0. As a

consequence of particle-hole symmetry, the Berry curvature of lth band has

relation of

Ωl(kx, ky) = Ωl̄(kx + π/a, ky + π/a). (4.16)

Then the Chern number of two bands (l,l̄) will be equivalent: Cl = Cl̄.
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Figure 4.2: Energy spectrum of Harper-Hofstadter model at Φ = π/2. The
number of sites along y is 41. The edge states (red lines) exists between the
bulk spectrum (black lines). When the Fermi energy EF locates between the bulk
gap, currents at two edges flow in opposite direction. (b) Schematic drawing of
skipping orbit.

Chiral Edge states

The topological invariant cannot be changed unless the band gap is closed. When

the two insulators with different topological invariant are merged with each

other, the band gap must be closed and reopened at the interface. Therefore,

while the bulk is insulating at some Fermi energy, conducting states exists at

the interface.

If one of insulator is vacuum, then the edge states is conducting while the

bulk is insulator. For Harper-Hofstadter model with finite lattice sites in one

of direction, the energy spectrum shows gapless conducting states at the edges,

and the direction of current is opposite [Fig. 4.2]. Therefore, the edge state is

chiral, because it propagates in only one direction. In the classical point of view,

these edge modes can be understood in terms of skipping orbit motion, which is

a natural consequence of cyclotron motion of charged particle at the boundary
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of the system.

4.2 1D topological system

4.2.1 Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger (SSH) model was originally developed to explain soli-

ton formation in polyacetylene [90]. It is linear polymer, and the electron dis-

tribution is preferred to have alternate bond strength. Intriguing point is that

distinctive two ground states are degenerated. The electronic property of the

polyacetylene can be described by 1D tight-binding model with sublattice basis.

By neglecting the interactions between electron, the dynamics of single electron

in the chain consist of N unit cell can be described by Hamiltonian

Ĥ = J1

N∑
j

(|j, B〉〈j, A|+ H.c.) + J2

N−1∑
j

(|j + 1, A〉〈j, B|+ H.c.), (4.17)

where |j, α〉 with j ∈ {1, ..., N} and α ∈ {A,B} denotes the state of the electron

in j th unit cell and sublattice α. J1 and J2 describe intra and inter unit cell

hopping (figure 4.3). Corresponding Bloch Hamiltonian is given by

H(k) = [J1 + J2 cos(k)]σx + J2 sin(k)σy = h(k) · σ, (4.18)

where σ = {σx, σy, σz} are 2×2 Pauli matrices. The dispersion relation is given

by E(k) = ±
√
J2

1 + J2
2 + 2J1J2 cos(k). The energy dispersion clearly shows that

SSH model has gapped phase when J1 6= J2. At half-filling, the energy of oc-

cupied states can be decreased when the hopping amplitudes are staggered,

so alternate bond configuration is energetically favorable. This staggered hop-

ping (or dimerization) due to the coupling with phonon modes is called Peierls

instability.
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From the momentum space representation, the Bloch Hamiltonian, bulk

property can be well described. Then, we are going to look through the property

of finite size chain in the fully dimerized limit. When |J1| > 0, J2 = 0, every

unit cells are dimerized. The eigenstates are given by

Ĥ(|j, A〉 ± |j, B〉) = ±J1(|j, A〉 ± |j, B〉), (4.19)

showing gapped bulk energy. In another limit, the chain shows intriguing prop-

erty. When J1 = 0 and |J2| > 0, the bulk eigenstates are given by

Ĥ(|j, B〉 ± |j + 1, A〉) = ±J2(|j, B〉 ± |j + 1, A〉), (4.20)

so bulk eigenenergy is gapped again. However, at the end of chain, there exist

degenerated zero-energy modes,

Ĥ|1, A〉 = Ĥ|N,B〉 = 0. (4.21)

Chiral symmetry and winding number

The SSH model has two sublattice sites in one unit cell. The projector of sub-

lattices are given by

P̂α =
N∑
j=1

|j, α〉〈j, α|, (4.22)

where α ∈ {A,B}. We can define operator

Γ̂ = P̂A − P̂B. (4.23)

This operator is hermitian (Γ̂† = Γ̂) and unitary Γ̂†Γ̂ = 1. Then the SSH

Hamiltonian satisfies the following relation.

Γ̂ĤΓ̂ =− Ĥ. (4.24)

69



Figure 4.3: Schematic diagram of Su-Schrieffer-Heeger model. (a) It is bipartite
1D chain with intracell hopping J1 and intercell hopping J2. (b) In the limit of
zero intercell hopping J2 = 0, all the lattice sites are dimerized. (c) In the limit
of intracell hopping J1 = 0, the lattice sites also dimerized again, but the end
sites are remained uncoupled.

This relation indicates that the spectrum of Hamiltonian is symmetric, because

if there exists state |ψ〉 with energy E, there is symmetric state Γ̂|ψ〉 with energy

−E. This type of symmetry is called chiral symmetry.

The bulk Hamiltonian satisfies following relation,

σzH(k)σz = −H(k). (4.25)

Because of the chiral symmetry, the hamiltonian vector h(k) is confined in the

σx − σy plane. Then we can define winding number of the system to describe

topological property of the system [34]

ν =
1

2πi

∫
BZ

dk
d

dk
log[h(k)]. (4.26)

The winding number counts the number of times that h(k) wraps the origin

through the Brillouin zone k = 0 → 2π. Therefore, it is global property. Fol-

lowing this definition, winding number ν = 0 when |J2| < |J1|, while ν = 1

when |J2| > |J1|. Then we can classify the phase at |J2| > |J1| is topologically
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non-trivial, which has edgestates, while |J2| < |J1| is topologically trivial. Wind-

ing number defined in bulk can predict the number of edge states, so it follows

bulk-edge correspondence. Alternatively, The topological invariant can be also

characterized by the 1D Berry phase, which is called Zak phase [91]

γn = i

∫
BZ

dk〈un(k)|∂k|un(k)〉, (4.27)

where n is band index and |un(k)〉 is eigenstates of H(k). It is given by γ = π

for non-trivial phase, and γ = 0 for trivial phase.

The winding number, or the number of edgestates are topological in-

variant. During the continuous change (or, deformation) of parameters, these

numbers are invariant unless the bulk gap is closed. If the parameters cross the

gapless point J1 = J2, topological invariants are suddenly changed, showing

topological phase transition.

4.2.2 Creutz ladder

Creutz ladder was first introduced to study end states in the context of lat-

tice gauge theory [92]. Creutz ladder describes cross-linked ladder under the

magnetic field. The tight-binding Hamiltonian is given by

Ĥ =−
∑
j

[
K(eiθa†jaj+1 + e−iθb†jbj+1) +Kr(a†jbj+1 + b†jaj+1) +M(a†jbj) + H.c.

]
,

(4.28)

where aj and bj are fermionic annihilation operators at the nth site of the

upper/lower legs. The first term describes the hopping in each leg, and complex

phase θ is due to the magnetic field. Second term and third terms describe cross-

link and vertical hopping between two legs, respectively. The Bloch Hamiltonian
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is given by

H(k) =2K cos(k) cos(θ)I + [M + 2Kr cos(k)]σx + 2K sin(k) sin(θ)σz

=2K cos(k) cos(θ)I + h(k) · σ (4.29)

where I is 2× 2 identity matrix. In the case of θ = π/2 and no vertical hopping

M = 0, the topological features can be easily captured. In the limit of r = 1,

the eigenenergy ε± = ±2K. Considering hopping paths, particles cannot hop

two sites apart due to destructive interference between paths. Correponding

eigenstates can be found as

|±〉j =
1

2
{i|j, a〉+ |j, b〉 ∓ (|j + 1, a〉+ i|j + 1, b〉)}, (4.30)

where |j, α〉 is state at jth site and leg α. Accordingly, fermions are confined to

the square plaquette and cannot diffuse through the lattice. At the edges of the

lattice, we can find another type of eigenstates,

|0〉1 =
1√
2

(|1, a〉+ i|1, b〉)

|0〉N =
1√
2

(|N, a〉 − i|N, b〉). (4.31)

These zero-energy two states are confined to the edge sites j = 1, N , resulting in

the system topologically non-trivial. It is reminiscent of previous fully dimerized

SSH model, but the edge states in Creutz ladder occurs due to quantum inter-

ference. The winding number ν = 1 clearly shows bulk-edge correspondence. In

another limit of Creutz ladder such as M 6= 0 and r = 0, fermions can be diffuse

throughout the whole lattice without such a zero energy edge modes.

For θ = π/2, the Hamiltonian has chiral symmetry as σyH(k)σy =

−H(k). Accordingly, h(k) is confined in σx − σz plane, and winding number

and Zak phase are quantized. In general case, chiral symmetry no longer holds
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due to non-zero identity term. Although chiral symmetry is broken, the Hamil-

tonian has another type of symmetry σxH(k)σx = H(−k), and it also confines

the h(k) in the σx − σz plane. Therefore, the winding number and Zak phase

can be properly defined.

4.3 Synthetic dimension and topological lad-

ders

We reviewed three simple topological models. In practical point of view, topolog-

ical Hamiltonians can be realized by implementing gauge field (Harper-Hofstadter

model), or manipulate different tunneling terms (intra- and inter-cell hopping

in SSH model / vertical and diagonal hopping in Creutz ladder). The ultracold

atoms in optical lattices easily provides the lattice Hamiltonian, but gauge field

is difficult to be produced by external magnetic field due to its charge neutrality.

Also, quantum tunneling longer than the nearest-neighbor hopping cannot be

independently controlled with monochromatic laser.

Up to now, some techniques have been developed to engineer topological

Hamiltonian in optical lattice. The artificial gauge field in 2D optical lattice

system can be implemented by laser-assisted tunneling [60–62]. By adding lin-

ear energy offset in 2D optical lattice to suppress the next-nearest tunneling,

and applying resonant moving optical lattice, the next-nearest tunneling is re-

stored with complex phase. Then the effective Hamiltonian of this system can

be engineered to the Harper-Hofstadter Hamiltonian [61,62]. SSH model can be

realized by bichromatic lasers with harmonic wavelength λ and 2λ. The double-

well optical lattice, which is formed by overlapping two optical lattice potential,
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Ω

Ω

Figure 4.4: Concept of synthetic dimension. The internal degrees of freedom,
such as hyperfine, electronic, momentum, or band states, can be regarded as
extra dimension. If different internal states are resonantly coupled, the resonant
coupling between these states are regarded as hopping constant along that di-
rection. Then the dynamics in 1D optical lattice with internal states can be
directly mapped to the ladder Hamiltonian.

then exactly describes the SSH Hamiltonian [93].

We demonstrated topological ladders under the concept of synthetic di-

mension. The typical lattice sites are physically identified by the spatial location.

In our world, the spatial dimension is restricted to 3D. Synthetic dimension is a

direct mapping of some degrees of freedom to the extra dimensions [94,95]. For

example, if the spin states are regarded as lattice sites, spin degrees of freedom

is directly mapped to extra dimension. Then the resonant coupling between

spin states is mapped to hopping along that dimension. Applying synthetic di-

mension on ultracold atoms in 1D optical lattice, the ladder system is naturally

obtained.

This concept has advantages on the topological band engineering with

optical lattice. First, the edges along the synthethic dimension is sharply defined.

In conventional 2D optical lattice, the boundary of the system cannot be sharply

defined by lattice lasers only. The boundary of the system should be defined

by another repulsive potentials. In contrast, 2D lattice system composed of
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1D optical lattice and synthetic dimension naturally has sharp boundary, so

physics at the edges can be easily observed. Second, the sites along synthetic

dimension can be individually addressable. Therefore, the atoms indexed with

specific lattice site can be observed separately, and hopping constant can be

selectively engineered.

For example, atomic hyperfine states splitted by Zeeman effect can be res-

onantly coupled by Raman transition. Because the Raman transition is moving

optical lattice, the resonant coupling between two hyperfine states accompanies

with lattice position dependent complex phase, as we discussed in Chapter 3.

Therefore, the dynamics described by effective Hamiltonian contains the artifi-

cial gauge field. This approach allows to explore the chiral current at the edge

of the system via state-selective measurement [96,97].

After this chapter, we will present the experimental results on the real-

ization of topological ladders in two different ways: via moving optical lattice

(Raman coupling) and periodic shaking. First method has advantage on tun-

able gauge flux, while the latter has possibility on the independent control of

vertical/diagonal hopping. Therefore, these methods can allow to explore the

chiral edge physics under the artificial gauge field, and the 1D topological phase

in Creutz model, respectively.
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Chapter 5

Cross-linked chiral Hall ladder

with band states

This chapter describes realization of synthetic Hall ladder consists of band

states. In the ladder, the legs are formed by the orbital states of the optical

lattice and the complex inter-leg links are generated by the orbital-changing

Raman transitions that are driven by a moving lattice potential superimposed

onto the optical lattice. The effective magnetic flux per ladder plaquette is tuned

by the spatial periodicity of the moving lattice, and the chiral currents are ob-

served from the asymmetric momentum distributions of the orbitals. The effect

of the complex cross links is demonstrated in quench dynamics by measuring the

momentum dependence of the inter-orbital coupling strength. The experimental

results are published in the following paper.

• J. H. Kang, J. H. Han, and Y. Shin, “Realization of a Cross-Linked Chi-

ral Ladder with Neutral Fermions in a 1D Optical Lattice by Orbital-

Momentum Coupling,” Physical Review Letters 121, 150403 (2018).
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5.1 Introduction

Topological states of matter represent one of the frontiers of modern condensed

matter physics [88, 98]. Featuring tunable artificial gauge fields and spin-orbit

coupling [79], ultracold atoms in optical lattices provide a versatile platform to

realize topological states and study their phase transitions in a clean and well-

controlled manner [43,47]. The Hofstadter-Harper model, which is the paradig-

matic example of a topological Chern insulator, was realized in two-dimensional

(2D) optical lattices using laser-assisted tunneling effects [61, 62]; the Haldane

model was demonstrated in a hexagonal optical lattice by activating complex

next-nearest-neighbor (NNN) hopping with lattice shaking [66]. The high tun-

ability of the experimental parameters may enable one to explore a broad range

of topological states even beyond the conventional Altland-Zirnbauer classifica-

tion [32,99].

In recent optical-lattice experiments, an interesting framework was intro-

duced to realize chiral ladder systems with one-dimensional (1D) optical lattices,

where the internal atomic degrees of freedom, such as hyperfine spin, are taken

as a finite synthetic dimension and an artificial gauge field is engineered by

laser-induced couplings between the internal states [94, 95]. The synthetic lad-

der systems are highlighted by their edges, which are intrinsically sharp and can

be detected by internal-state-selective imaging, thus allowing direct observation

of the chiral edge currents in the systems [96, 97, 100]. Ladders with complex

hopping amplitudes have been discussed as a minimal model for 1D topological

matter [92] and also as a quasi-1D version of the Hofstadter problem for study-

ing the edge-mode states in 2D topological insulators [101]. In particular, it is

well recognized that NNN hopping, i.e., diagonal cross links between the legs,
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are responsible for the emergence of topologically non-trivial phases in the lad-

der system subject to a magnetic field [101–103]. Therefore, extensive control of

the complex inter-leg links is highly desirable in synthetic ladder experiments.

In this paper, we report the experimental demonstration of a synthetic

ladder scheme using the orbital degree of freedom of the optical lattice system.

The legs of the ladder are formed by the orbital states, and the inter-leg hop-

pings are generated by orbital-changing two-photon Raman transitions that are

resonantly driven by a moving lattice potential. The complex hoppling ampli-

tude is spatially modulated, giving rise to an effective magnetic flux Φ per ladder

plaquette, which we demonstrate by observing the corresponding chiral currents

of the orbital states. The key feature of our orbital-based ladder system is that

the cross inter-leg links are significantly strong due to the favorable condition

for the spatial overlap of the orbital wave functions. The complex cross link

effect is manifested in the momentum dependence of the inter-orbital coupling

strength, which we directly demonstrate via momentum-resolving analysis of

the quench dynamics of the ladder system. Finally, we discuss the topological

phase transition, which can occur in the system by further controlling the cross

link, possibly via tailoring the orbital wave functions. Our results present a new

perspective for studies of topological phases with optical lattice systems using

the orbital degree of freedom [104–106].

5.2 Experimental setup

The experimental setup for optical lattice and Raman coupling is sketched in

Fig. 5.1. A two-dimensional rectangular optical lattice is generated by using

Gaussian laser beams with a wavelength of λL = 532 nm, where a single laser

78



OLx2OLx1

OLy1

OLy2
R2

R1

OLx2

R1

R2

OLy2

OLy1

OLx1

x
y

Φ = 1.48π

θR

θ

θR

θ

kR

kR

k
1
, 
ω
+
δ
ω

k2, ω
k1, ω+δω

k
2
, 
ω

Φ = 2.44π(a) (b)

Figure 5.1: Experimental setup for optical lattice and Raman coupling. A
rectangular optical lattice is formed by two pairs of 532 nm laser beams
({OLx1,OLx2} and {OLy1,OLy2}) and the inter-orbital Raman coupling is gen-
erated by two 556 nm laser beams (R1 and R2). Raman beam configurations for
(a) Φ = 2π(kR/kL) + π = 1.48π and (b) 2.44π.

beam is propagating and retro-reflected along x-axis, and two laser beams are

placed in the xy plane symmetrically with respect to the x-axis to intersect with

each other at the angle of 2π/3. The lattice constants for x and y directions are

given by ax = λL/2 = π/kL and ay = λL/
√

3, respectively. The waists of the

lattice beams are ≈ 80 µm and the laser beam frequency for the y-axis lattice

is shifted by 200 MHz from that of the x-axis beam. In our experiment, the

depth of the lattice pontential is set to be VL,x = 5EL,x (VL,y = 20EL,y) along

the x (y) direction, where EL,x(y) = ~2π2

2ma2
x(y)

= h × 4.1(3.1) kHz and m is the

atomic mass. The lattice depths were calibrated by lattice amplitude modulation

spectroscopy [77].

The moving lattice potential for inter-orbital Raman coupling is gener-

ated by using two Gaussian laser beams with a wavelength of λR =556 nm,

which is blue-detuned by 1.94 GHz from the 1S0-3P1 narrow intercombination

transition line of 173Yb. The beam waists are 150 µm, much larger than the
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sample radius of 16 µm, and the intensity variations of the laser beams over the

sample are negligible. This is important to suppress the mechanical perturba-

tions to the sample caused by the inhomogeneous AC Stark shift at a sudden

turn-on of the Raman beams. In our experiment, the frequency difference ω for

the two laser beams is much smaller than the band gap energy associated with

the y-axis lattice potential and the y-directional Raman coupling is energeti-

cally prohibited. The wave number kR of the x-directional Raman coupling is

given by kR = (~k1 − ~k2) · x̂ = 2π
λR

sin θR cos θ, where ~k1,2 are the wave vectors of

the two Raman beams, 2θR is the angle between ~k1 and ~k2, and θ is the angle

of ~k1 − ~k2 to the x-axis. In Fig. 5.1, the two Raman-coupling configurations

used in the experiment are shown, which correspond to Φ = kR/kL +π = 1.48π

and 2.44π, respectively. The magnitude ts0 of the coupling between the s and

p bands was experimentally determined by measuring the momentum-averaged

Rabi frequency of band population oscillations, where the oscillations were in-

duced by suddenly turning on the Raman beams to a sample prepared in the s

band. For our experimental condition, the d-band population was less than 8%

during the oscillations.

5.3 Effective Hamiltonian

We consider a system of non-interacting spinless fermions in an 1D lattice poten-

tial V (x) = VL cos2(kLx), where the fermions are perturbed by a moving lattice

potential, δV (x, t) = VR cos2(kRx − ωt
2

) [Fig. 5.2(a)]. The Hilbert space of the

system is spanned by the Wannier states {|j, α〉} of the stationary lattice poten-

tial, where j and α are the indices for the lattice site and orbital, respectively.

Regarding the orbital degree of freedom as a virtual dimension orthogonal to
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the real lattice dimension, the system can be viewed as a synthetic 2D lattice

system that has a sharp edge formed by the s orbital, as depicted in Fig. 5.2(b).

When the modulation frequency ω of the moving lattice potential is close to a

band gap, orbital-changing Raman transitions are resonantly driven, realizing

hoppings for the synthetic dimension.

In the multi-band tight-binding approximation [107], the Hamiltonian of

a particle in an one-dimensional (1D) lattice potential V (x) = VL cos2(kLx) is

given by

H0 =
∑
j,α

[
εαc
†
j,αcj,α +

(
(−1)α+1trαc

†
j,αcj+1,α + h.c.

)]
, (5.1)

where cj,α (c†j,α) is the annihilation (creation) operator of the particle in the

Wannier state |j, α〉 localized at lattice site j in α band (α = 0, 1, 2, · · · for

s, p, d, · · · ). The on-site energy εα and the tunneling amplitude trα are given by

εα = 〈j, α|
[ p2

2m
+ V (x)

]
|j, α〉 (5.2)

trα = (−1)α+1〈j, α|
[ p2

2m
+ V (x)

]
|j + 1, α〉. (5.3)

Now we consider a situation where the particle is perturbed by a moving

lattice potential, δV (x, t) = VR cos2(kRx− ωt
2

). At the same level of approxima-

tion, the perturbations can be described by

H ′ =
∑
j,l

∑
α,β

〈j, α|δV (x, t)|j + l, β〉c†j,αcj+l,β, (5.4)

where l ∈ {−1, 0, 1}. In the case that the moving lattice frequency ω is close to

the band gap energy, the couplings between adjacent orbitals, i.e., |α−β| = 1 are

most relevant and the perturbation HamiltonianH ′ can be further approximated

as

H ′ =
∑
j,α

∑
l=0,±1

(
〈j, α|δV (x, t)|j + l, α + 1〉c†j,αcj+l,α+1 + h.c.

)
. (5.5)
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Figure 5.2: Orbital-momentum coupling in an optical lattice. (a) Schematic of
the experimental setup. Atoms are in a stationary 1D optical lattice poten-
tial V (x), with lattice constant π/kL, and driven by a moving lattice potential
δV (x, t), with lattice constant π/kR. The moving lattice induces two-photon Ra-
man transitions between the orbital states of the stationary lattice. (b) Ladder
description of the system. The orbitals constitute the ladder legs along the real
x dimension and the Raman coupling provides the inter-leg links. The complex
coupling amplitude is spatially modulated, resulting in an effective magnetic
flux per plaquette, Φ = 2π(kR/kL) + π. The subplaquette flux distribution is
assigned in accordance with the cross-links indicated by the diagonal dashed
green lines. (c) Amplitude ratio for the direct to diagonal hopping, tsα/t

d
α and

(d) their phase difference ϕ′α as functions of kR/kL.
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Using 〈j, α|k, β〉 = 0 for α 6= β, the coupling amplitude can be expressed as

〈j, α|VR cos2
(
kRx−

ωt

2

)
|j + l, α + 1〉

=
VR
2
〈0, α| cos

(
2kR(x+ axj)− ωt

)
|l, α + 1〉

=
VR
2

[
C l
α cos(ϕj − ωt)− Slα sin(ϕj − ωt)

]
(5.6)

where ax = π/kL is the lattice spacing, ϕ = 2π(kR/kL), C l
α = 〈0, α| cos(2kRx)|l, α+

1〉, and Slα = 〈0, α| sin(2kRx)|l, α + 1〉.

In the rotating-wave approximation under unitary transformation

UR(t) =
∑
j,α

eiα(ωt+π
2

)c†j,αcj,α, (5.7)

the total Hamiltonian of the system is given by

H = H0 +H ′

=
∑
j,α

[
ε′αc
†
j,αcj,α +

(
(−1)α+1trαc

†
j,αcj+1,α + h.c.

)
+

1

2

(
tsαe
−iϕjc†j,αcj,α+1 + h.c.

)
+

1

2

∑
l=±1

(
tdαe
−i(ϕj+ϕ′

αl)c†j,αcj+l,α+1 + h.c.
)]
, (5.8)

where ε′α = εα − α~ω, tsα = VR
2
S0
α, tdα = VR

2
|S1
α − iC1

α|, and ϕ′α = arg(S1
α − iC1

α).

In the derivation, we used the relations of C0
α = 0, C−1

α = −C1
α, and S−1

α = S1
α,

which are easily inferred from the parity property of the Wannier states. The

coefficients are determined by the distribution of Wannier states and the ratio

kR/kL, as shown in Fig. 5.3. Therefore, the ratio between tsα, tdα, and phase term

ϕ′α are mainly determined by kR/kL at fixed optical lattice depth.

In effective Hamiltonian, the first term is the on-site energy in the rotating

frame; the second and third terms describe the nearest neighbor hopping along
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Figure 5.3: Raman coupling coefficients C l
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the real and synthetic directions, respectively; and the fourth term represents the

NNN, diagonal hopping in the 2D rectangular lattice. The position dependent

complex phase factor eiϕj for orbital-changing hopping results from the spatial

variation of the phase of the moving lattice potential and ϕ = 2π(kR/kL).

When a fermion hops around a unit cell, it acquires a net phase of Φ = ϕ +

π, which can be interpreted as a magnetic flux piercing through the lattice

plaquette [61,62]. Here the phase of π in Φ is due to parity inversion between two

intermediate orbitals. Taking into account the additional complex phase factor

eiϕ
′
αl for diagonal hopping, a subplaquette flux distribution can be assigned, as

shown in Fig. 5.2(b), where φα = ϕ/2 − ϕ′α. For given orbital wave functions,

tsα/t
d
α and ϕ′α are determined to be functions of kR/kL [Figure 5.3].

The momentum-space representation of the system can be obtained by

the gauge and Fourier transformation

cj,α = (2N)−1/2
∑
q

ei[(α−1)ϕ+π]jeiqjcq,α, (5.9)

where 2N is the number of lattice site and q = n π
N

(n = −(N − 1), · · · , N) is

the quasi-momentum of the lattice. The Hamiltonian in momentum space is

H =
∑
q,α

[
ε′α + (−1)α2trαcos[q + (α− 1)ϕ]

]
c†q,αcq,α

+
1

2

∑
q,α

[
~Ωα(q)c†q,αcq,α+1 + h.c.

]
, (5.10)

where ~Ωα(q) = tsα− 2tdαcos(q+αϕ−ϕ′α), which shows that the momentum de-

pendence of the inter-orbital coupling strength results from the orbital-changing

hopping process with tdα 6= 0.
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5.4 Ground state and chiral current

Our experiment starts with the preparation of a spin-polarized degenerate Fermi

gas of 173Yb atoms in the |F,mF 〉 = |5/2,−5/2〉 hyperfine spin state, as de-

scribed in Ref. [70]. The total atom number is N ≈ 1.0 × 105 and the tem-

perature is T/TF ≈ 0.3, where TF is the Fermi temperature of the trapped

sample. The atoms are adiabatically loaded in a 2D optical lattice, which is

formed by laser light with a wavelength of λL = 532 nm in the xy horizon-

tal plane. The lattice spacing and depth are ax = λL/2 (ay = λL/
√

3) and

VL,x = 5EL,x (VL,y = 20EL,y) along the x (y) direction, respectively, where

EL,x(y) = ~2π2

2ma2
x(y)

= h × 4.1(3.1) kHz and m is the atomic mass. Since the

y-axis motion is frozen by the high lattice depth VL,y and the z-axis mo-

tion is irrelevant in the following experiment, our system realizes an effec-

tive 1D lattice system. Here, kL = π/ax and the tunneling amplitudes are

{tr0, tr1, tr2} = h×{0.27, 1.72, 3.90} kHz [77]. The trapping frequencies of the over-

all harmonic potential are estimated to be {ωx, ωy, ωz} ≈ 2π×{64, 49, 135} Hz.

After loading the atoms in the lattice, the fractional population of the p orbital

is less than 6%.

The frequency difference ω for the two Raman beams is set to ωc =

[(ε1−2tr1)− (ε0−2tr0)]/~, matching the energy difference between the dispersion

minima of the s and p bands. Under this condition, the coupling to orbitals

higher than the d orbital is off resonance and the system can be approximated as

a three-leg ladder consisting of s, p, and d orbitals. Then, the Bloch Hamiltonian
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of the three-leg ladder in momentum space is given by

H(q; Φ) =


ε0(q − Φ) ~Ω0(q)/2 0

~Ω0(q)/2 ε1(q)− ~ω ~Ω1(q)/2

0 ~Ω1(q)/2 ε2(q + Φ)− 2~ω

 , (5.11)

where the α-orbital energy dispersion is εα(q) = εα−2trα cos(q) and the α-(α+1)

orbital coupling is ~Ωα(q) = tsα − 2tdα cos(q + αϕ− ϕ′α). Here, q is Bloch quasi-

momentum normalized by a−1
x . Figs. 5.4(a) and (b) show the energy structures

of the ladder system for our experimental conditions. The orbital-mixed ground

band has a chiral region with only one pair of Fermi points, which is analogous

to the chiral edge states in the integer quantum Hall effect [101, 108]. We note

that the cross links of the ladder are manifested in the momentum dependence

of Ωα(q). In particular, when 2tdα > tsα, Ωα(q) changes its sign over a certain mo-

mentum range, implying that the topological character of the bands can change

for a strong tdα. For the two cases of Φ = 1.48π and 2.44π, {ts0/td0, ts1/td1} are

estimated to be {4.2, 1.5} and {4.2, 2.1}, respectively.

In equilibrium, the relative motion between pseudospin states can be

captured by momentum distribution. If chiral current exists in the system, mo-

tion of atoms in different legs show non-zero relative velocity. For ground bands

in Figs. 5.4(a) and (b), the momentum disbribution n(k) of orbital states show

asymmetry. Here, the atoms in α band are transferred to the α-th Brioulline zone

in the momentum space of free fermions, i.e., α < |k| < α+ 1 (k is expressed in

units of kL). The asymmetry can be quantified by function h(k) = n(k)−n(−k),

which is directly related to the chiral current. We note that our orbital-based

synthetic ladder shows an explicit broken leg symmetry trα 6= trβ. In addition,

on-site energy in rotating frame ε′α is also varied at experimentally probed ωc.

Therefore, chiral currents at the edges of our three-leg ladder (s, d orbitals) show
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Figure 5.4: Energy structures of the ladder system calculated from Eq. 5.11
for (a) Φ = 1.48π and ts0/t

r
0 = 3.4, and (b) Φ = 2.44π and ts0/t

r
0 = 2.6. The

color indicates the mean orbital value, 〈α〉. The dashed lines show the bare
band structures for zero inter-leg coupling. (c, d) Momentum distribution n(k)
and asymmetry function h(k) = n(k)− n(−k) calculated for the orbital-mixed
ground bands in (a) and (b). The signs of the Jα’s are consistent with the
experimental data. In the calculation of n(k), the initial momentum distribution
of the s bnad is set to be the same as the averaged lattice momentum distribution
of the sample prepared in the optical lattice without the Raman coupling beams
in the experiment.
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Figure 5.5: Experimental sequence for adiabatic loading and imaging of the syn-
thetic ladder system. The temporal control of the optical dipolt trap (ODT), the
optial lattice (OL), and the Raman beam intensity and detuning are displayed.
The time is not shown in absolute scale.

asymmetric amplitude, and bulk states (p orbital) show non-vanishing current,

in contrast to the symmetric Hall ladder system.

To probe the chirality of the ladder system, we load fermions in the

orbital-mixed ground band and measure the momentum distributions of the

orbitals. Fig. 5.5 shows schematic of experimental sequence for adiabatic load-

ing. First, we turn on the Raman beams at the off-resonant frequency ω =

ωc− 2π× 6 kHz and ramp ω to the target value ωc over 8 ms. The ramp time is

limited by the scattering atom loss from the Raman beams, and in our loading

process, the total atom number is reduced by 40%. The momentum distributions

of the orbitals are measured using an adiabatic band-mapping technique [76].

After suddenly turning off the Raman beams, we linearly ramp down the lattice

potential to zero within 1 m and subsequently, take an absorption image of the

atoms after a time-of-flight of 15 ms.

Figure 5.6 shows typical absorption image after band mapping and TOF.
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Figure 5.6: Chiral currents in the fermionic three-leg ladder. Band-mapped im-
ages of the samples adiabatically loaded into the ground band for (a) Φ = 1.48π
and ts0/t

r
0 = 3.4, and (b) 2.44π and ts0/t

r
0 = 3.4, respectively. (c, d) Corresponding

1D momentum distributions n(k) obtained by integrating the images along the y
direction. k is normalized by kL. (e, f) Asymmetry function h(k) = n(k)−n(−k),
demonstrating the chiral currents of the orbitals. (g) Evolution of C = J0 − J1,

where Jα =
∫ α+1

α
h(k)dk, as a function of ts0/t

r
0 for Φ = 1.48π (red) and 2.44π

(blue). Each data point was obtained by averaging twenty measurements from
the same experiment, with the error bar indicating the standard deviation of
the measurements.
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Integrating the measured 2D momentum distribution along the y direction, we

obtain the 1D distribution n(k) normalized as
∫
n(k)dk = 1 [Figs. 5.6(c) and

(d)]. The chiral currents of the system are clearly observed from the asymmetric

momentum distributions of the orbitals. The momentum asymmetry of the α

band is quantified with Jα =
∫ α+1

α
h(k)dk [Figs. 5.6(e) and (f)] [96, 100]. Our

measurements show {J0, J1, J2} = {−0.049, 0.020, 0.002} for Φ = 1.48π and

ts0 = 3.3tr0, and {J0, J1, J2} = {0.037,−0.019,−0.008} for Φ = 2.44π and ts0 =

3.5tr0. The signs of the Jα’s are consistent with the theoretical expectations

shown in Figs. 5.4 (c) and (d). It is noticeable that the d-band populations

are quite different in the two cases although the band structures are almost

mirror-symmetric to each other. This difference originates from the different

adiabaticity of the loading process due to the q dependence of the inter-orbital

coupling strengths. In Fig. 5.6(g), we display the evolution of C = J0 − J1 as a

function of the relative inter-leg coupling, ts0/t
r
0. |C| initially increases as ts0/t

r
0

increases, which is attributed to the gap opening, and reaches a maximum at

ts0/t
r
0 ∼ 4 before decreasing to zero for large ts0/t

r
0. In the limit of ts0/t

r
0 →∞, the

orbital states become fully mixed to suppress the chirality of the system [101,

109]. A similar behavior was observed in a previous experiment with a symmetric

three-leg ladder system [96].

5.5 Quench dynamics in cross-linked chiral lad-

der

Next, we investigate the quench dynamics of the ladder system to demonstrate

the effect of the cross links, wherein fermions are initially prepared in the s-
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orbital leg and the Raman beams are suddenly turned on at ω = ωc. The

sudden change of Ωα will lead to a so-called skipping cyclotron motion along

the ladder edge [96], which provides direct evidence of quantum Hall effect. The

time evolution of the total momentum asymmetry Jtot =
∑

α Jα and the p-band

population np are shown in Figs. 5.7(c) and (d). The in-phase oscillations for

Jtot and np are consistent with the skipping motion expected under a mangetic

flux in the synthetic ladder.

Recalling that the inter-orbital coupling strength is modulated as ~Ωα(q) =

tsα−2tdα cos(q+αϕ−ϕ′α), we expect that the cross-link effect can be directly re-

vealed by a momentum-resolving analysis of the quench dynamics. We examine

two cases, Φ = 2.44π and 0.52π, which show almost the same effective mag-

netic flux ∼ π/2 in a modulus of 2π but different modulation phases of Ω0(q)

with ϕ′0 = −0.5π and 0.75π, respectively [Figs. 5.7(a) and (b)]. In the case of

Φ = 2.44π (0.52π), the average coupling strength for q > 0, 〈Ω0〉+, is stronger

(weaker) than that for q < 0, 〈Ω0〉−, so the p band population with positive

momentum will show faster (slower) oscillations than that with negative mo-

mentum. Here, the case of Φ = 0.52π is generated by reversing the Raman beam

directions from those for Φ = 1.48π, i.e., kR → −kR.

The corresponding time evolution of the p band populations with posi-

tive and negative momenta, np±(t) =
∫ ±2

±1
n(k, t)dk are shown in figure 5.7(e)

and (f). We observe that np+ oscillates faster (slower) than np− for Φ = 2.44π

(Φ = 0.52π), which is in agreement with that expected from the momen-

tum dependence of Ω0(q). The oscillation time difference is characterized by

η = τp−/τp+, where τp± is the time at which the first oscillation minimum occurs

in np±(t), with our measurements giving η = 1.92 and 0.81 for Φ = 2.44π and

0.52π, respectively. We find that our results are quantitatively well accounted for
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Figure 5.7: Quench dynamics of the ladder system and effects of the complex
cross links. Energy band structures of the s-p, two-leg ladder and the inter-leg
coupling strength ~Ω0(q)/ts0 (red solid) for (a) Φ = 2.44π and (b) Φ = 0.52π.
Here, ts0/t

r
0 = 4 for both cases to clearly show the effect of the momentum

dependence of Ω0(q). Quench dynamics is initiated by suddenly turning on the
inter-leg coupling to the systems where atoms are initially prepared in the s
band. Time evolutions of the total momentum asymmetry Jtot = J0 + J1 + J2

and the p-band fractional population np for (c) Φ = 2.44π and ts0/t
r
0 = 11.3, and

(d) Φ = 0.52π and ts0/t
r
0 = 8.5. (e, f) Corresponding time evolutions of np± =∫ ±2

±1
n(k, t)dk. The different oscillation periods for np± reflect the modulations

of Ω0(q), which originate from the complex cross links of the ladder. Each data
point is the average of seven measurements, with the error bar showing the
standard deviation of the measurements. Dashed lines plotted in (e),(f) are the
numerical results with (e) ts0/t

r
0 = 11.3, and (f) ts0/t

r
0 = 8.5.
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by the average coupling strength ratio 〈Ω0〉+/〈Ω0〉− = (πts0 − 4td0 sinϕ′0)/(πts0 +

4td0 sinϕ′0) = 1.9 and 0.7 for Φ = 2.44π and 0.52π, respectively. We also ob-

serve that the numerical simulations based on equation 5.11 show reasonable

agreement with the experimental data.

5.6 Topological phase transition

In this section, we discuss the topological phase transition of the cross-linked

chiral ladder system, which is anticipated to occur with an increasing cross-link

strength. The three-leg ladder model described by H(q; Φ) in Eq. 5.11 consti-

tutes an 1D three-band system and its topological property can be characterized

by the Zak phases of the bands [91]. The Zak phase is defined by

γZ = i

∫
BZ

〈unq |∂q|unq 〉dq, (5.12)

where unq is the cell-periodic Bloch function of the n-th band and by numerically

calculating γZ of, e.g., the orbital-mixed ground band, we may investigate on

the condition for the three-leg ladder system to have a topologically non-trivial

phase. In a two-band model such as the Creutz ladder model [92], it can be easily

understood that a topologically non-trivial band with γZ 6= 0 will appear when

the inter-band coupling amplitude changes its sign at the two distinct band

crossing points because it means that the spin texture of the mixed band has

a full winding in the pseudo-spin space composed by the two band states. In a

similar manner, we expect that the topological property of the three-leg ladder

system would be determined by the sign changes of two coupling amplitudes

Ω0(q) and Ω1(q), and their relative positions to the band crossing points which

are determined by ϕ and ϕ′α.
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Figure 5.9: Topological phase transition of the three-leg ladder system. Band
dispersion of the system for (a) ts0/t

d
0 = 2.5, (b) 1.15, and (c) 0 with

{kR/kL, td0/tr0, ts1/tr0, td1/tr0, ϕ′0, ϕ′1} = {0.24, 1.5, 6.1, 3.6,−π/2, π/2}. The Zak
phase of the ground band changes from γZ = 0 in (a) to γZ = π in (c). The
topological phase transition is featured with a gap closing in the boxed region
in (b).
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We calculated the Zak phase γZ of the orbital-mixed ground band over

the parameter space of our ladder system and identify multiple regions of topo-

logically nontrivial phases with γZ 6= 0 for ts0/t
d
0 < 2. Some of the calculation

results for a parameter region close to our experimental condition are displayed

in figure 5.8. We find that a topological phase with γZ 6= 0 can emerge in the

system for the variations of the complex cross-link amplitudes. In particular,

we observe that the topologically non-trivial phase exists only in the regions

with tsα/t
d
α < 2. This is consistent with our anticipation from the relation of

~Ωα(q) = tsα − 2tdα cos(q + αϕ − ϕ′α), where the inter-band coupling amplitude

changes its sign in a certain range of q for tsα/t
d
α < 2. Band gap closing occurs at

the boundary of Zak phase, which is direct property of topological phase tran-

sition as shown in figure 5.9. One additional observation is that the Zak phase

also depends on ϕ and ϕ′0 even for fixed tsα/t
d
α < 2. It would be interesting to

clarify the geometric meaning of having nonzero γz in terms of the sign change

of Ωα and the band crossing points in the pseudo-spin-1 system.

5.7 Conclusion

In conclusion, we realized a cross-linked chiral fermionic ladder based on the

orbital states of a 1D optical lattice. The chiral edge currents were observed

and the cross-link effect was demonstrated by the momentum dependence of

the inter-orbital coupling strengths. The orbital-based synthetic ladder system

shows an explicitly broken leg symmetry with trα 6= trβ, providing an interesting

opportunity for studying topological phases that are protected by unconven-

tional symmetries [99,110]. As a means of controlling the strength and phase of

the complex cross link, tailoring the orbital wave functions by engineering lattice

96



potential is conceivable [111]. Our orbital-momentum coupling scheme can be

extended to multiple hyperfine spin states, which would allow for interactions

between fermions [112].

97



Chapter 6

Topological ladder in resonantly

driven optical lattice

This chapter describes experimental realization of a Creutz ladder for ultracold

fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder

consists of the two lowest orbital states of the optical lattice and the cross inter-

leg links are generated via two-photon resonant coupling between the orbitals

by periodic lattice shaking. The characteristic pseudo-spin winding structure

in the energy bands of the ladder system is demonstrated using momentum-

resolved Ramsey-type interferometric measurements. The experimental results

are published in the following paper.

• J. H. Kang, J. H. Han, and Y. Shin, “Creutz ladder in a resonantly shaken

1D optical lattice,” New Journal of Physics 22, 013023 (2020).
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6.1 Introduction

Topological phases such as quantum Hall states and topological insulators rep-

resent intriguing physics beyond the conventional Landau paradigm of phase

transition [98, 113]. Motivated further by their novel transport properties, the

study of topological phases constitutes one of the frontiers in modern condensed

matter physics. Ultracold atoms in optical lattices, featuring tunneling ampli-

tude engineering and tunable interaction strength, provide a unique platform for

realizing and exploring such exotic topological states [48, 114]. Along with the

steady development of experimental techniques, many topological model sys-

tems have been recently realized, which include the Harper–Hofstadter Hamil-

tonian in 2D rectangular lattices [61,62], the Haldane model in a 2D hexagonal

lattice [66], and various Hall and topological ladder systems based on additional

synthetic dimensions such as internal atomic states [96,97,99,100,115,116] and

lattice orbital states [117].

Periodic lattice shaking is one of the successful tools for exploring exotic

phases in optical lattices. Under periodic modulations of the lattice potential,

the system parameters such as tunneling magnitude [23,86] and phase [87] can

be coherently manipulated, giving rise to a hopping configuration that is difficult

to realize with static schemes. An outstanding example is the Haldane model

realized by circularly shaking a 2D hexagonal optical lattice potential to achieve

complex next-nearest-neighbor hopping [66,68]. From the perspective of Floquet

band engineering, the lattice shaking method has been extensively discussed

even in the resonant regime where the driving frequency is high enough to

match the energy gap between two bands [118]. Such strong orbital hybridization

may enable access to a broader range of effective Hamiltonians [119, 120]. In
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particular, it was anticipated that multi-photon inter-orbital resonant coupling

could yield a special route to engineer topological states [105, 121]. Thus, it is

highly desirable to examine the multifarious scope of Floquet band engineering

for the study of topological phases.

In this paper, we experimentally investigate the effects of two-photon

inter-orbital resonant coupling in a periodically driven 1D optical lattice, and

demonstrate the realization of a generalized Creutz ladder for ultracold fermionic

atoms in the shaken lattice system. The Creutz ladder is a cross-linked two-leg

ladder system under a magnetic field, which has been discussed as a minimal

model for 1D topological insulators [92, 122, 123]. Recently, it was extended to

an interacting case, referred to as the Creutz-Hubbard model, for the study of

correlated topological phases [102,104,124–126]. In our experiment, the two-leg

ladder is formed by the two lowest orbital states in optical lattice, and the cross

inter-leg links are generated via the two-photon resonant coupling between the

orbitals by lattice shaking. Using momentum-resolved Ramsey-type interfero-

metric measurements, we demonstrate the characteristic pseudo-spin winding

structure in the energy bands of the Creutz ladder. We also discuss the exten-

sion of the inter-leg link control with two-frequency driving, where the direct

links are additionally controlled by the one-photon resonant coupling between

the orbitals. Finally, based on the extented inter-leg link control, we propose an

experimental scheme for topological charge pumping in the generalized Creutz

ladder system.
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Figure 6.1: Creutz ladder model. A two-leg ladder system under a magnefic
field. t denotes the intra-leg hopping amplitude and Φ is the gauge flux per
plaquette. tv and td indicate the inter-leg hopping amplitudes in the ladder
along the vertical rungs and the diagonal links, respectively.

6.2 Creutz ladder

The Creutz model describes a spinless fermion system in a two-leg ladder under

a magnetic field [92]. The two-leg ladder system is sketched in figure 6.1, where t

denotes the hopping amplitude along the legs, tv along the rungs of the ladder,

td along the diagonal links, and Φ is the gauge flux penetrating each ladder

plaquette. The system’s Hamiltonian is given by

HCL =
∑
j

[{
Ψ†j(te

−i(Φ/2)σz + tdσx)Ψj+1 + H.c.

}
+ Ψ†j(tvσx)Ψj

]
, (6.1)

where Ψj = (cj,1, cj,2)T with cj,l being the annihilation operator of the fermion

at site j and leg l ∈ {1, 2}, and σ = {σx, σy, σz} are the Pauli matrices. The

corresponding Bloch Hamiltonian is expressed as

HCL,q = 2t cos(Φ/2) cos(q)I + [tv + 2td cos(q)]σx + 2t sin(Φ/2) sin(q)σz

= 2t cos(Φ/2) cos(q)I + hCL(q) · σ, (6.2)

where q is the quasimomentum, I is the identity matrix, and hCL(q) = {tv +

2td cos(q), 0, 2t sin(Φ/2) sin(q)}. Because the vector hCL is confined in the xz

plane, its winding around the origin for the whole Brillouin zone (BZ), −π <
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q ≤ π, characterizes the topology of the ladder system. A topologically non-

trivial state occurs when |tv/td| < 2, where hCL(q) fully encircles the origin,

giving a non-zero integer winding number representing the topological char-

acter of the system. The band dispersion of the system is given by E±(q) =

2t cos(Φ/2) cos(q) ± |hCL(q)|. It is remarkable that with Φ = π, tv = 0 and

td = t, the ladder system has E±(q) = ±2|t|, constituting a 1D topological

system with two flat bands.

The original Creutz model was proposed for a special case of Φ = ±π,

where the ladder system holds chiral symmetry for σyHCL,qσy = −HCL,q [92],

and it is equivalent to the Su-Schrieffer-Heeger model, which belongs to the BDI

class of the Altland-Zirnbauer classification [101, 102]. In an extended case of

Φ 6= ±π, the chiral symmetry is broken, but since hCL remains in the xz plane,

the topological character of the system is still unambiguously represented by

the winding number of hCL. It was discussed that the topological phase of the

extended Creutz model is protected by a hidden inversion symmetry [127,128].

6.3 Atom in a resonantly shaken optical lattice

We consider an atom in a 1D optical lattice potential V (x) = VL
2

cos[2π
a

(x−x0)],

where the position x0 of the lattice potential is periodically driven as x0(t) =

−d cos(ωt + ϕ) [figure 6.2(a)]. Here, VL is the lattice depth and a is the lattice

spacing. In the comoving reference frame with the vibrating optical lattice, the

Hamiltonian of the system is given by H = Hstat + δH with

Hstat =
p2
x

2m
+
VL
2

cos
(2π

a
x
)
,

δH = −dω sin(ωt+ ϕ)px, (6.3)
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where Hstat is the Hamiltonian of the stationary optical lattice system with px

being the atom’s momentum and m being the atomic mass, and δH represents

the perturbation from the inertial force induced by the lattice shaking, which

can make mixing between the energy bands of the stationary lattice system. In

this work, we are interested in the situation where the lattice shaking frequency

ω is close to the resonance frequency for the coupling between the two lowest, s

and p bands of the lattice potential [figure 6.2(b)]. From a synthetic dimension

perspective [95], the 1D shaken lattice system can be regarded as a two-leg lad-

der system constituted by the s and p orbitals, where the inter-orbital coupling

by lattice shaking is depicted as the inter-leg links between the two legs.

In a two-band tight-binding approximation, the Hamiltonian of the driven

lattice system is expressed as

H =
∑
j

Ψ†jK(t)Ψj −
∑
j

[Ψ†jJ(t)Ψj+1 + H.c.], (6.4)

where Ψj = (cj,p, cj,s)
T, cj,α is the annihilation operator for the atom in the

Wannier state |j, α〉 on lattice site j in orbital α ∈ {s, p}. The matrices K(t)

and J(t) are given by

K(t) =

 εp −ihsp0 sin(ωt+ ϕ)

ihsp0 sin(ωt+ ϕ) εs


J(t) =

tp − ihpp1 sin(ωt+ ϕ) ihsp1 sin(ωt+ ϕ)

−ihsp1 sin(ωt+ ϕ) ts − ihss1 sin(ωt+ ϕ)

 , (6.5)

where εα = 〈j, α|Hstat|j, α〉 and tα = −〈j, α|Hstat|j + 1, α〉 are the on-site en-

ergy and nearest-neighbor hopping amplitude of the α orbital, respectively, and

hαβ` = ~ωd〈j, α|(∂/∂x)|j + `, β〉 is the transition element between the α and β

orbitals separated by ` lattice sites.
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Figure 6.2: Creutz ladder in a resonantly shaken optical lattice. (a) Schematic of
the periodically driven 1D lattice system. The position of the lattice potential is
sinusoidally modulated with frequency ω and amplitude d. The lattice spacing is
denoted by a. (b) The s and p orbitals can be resonantly coupled via one-photon
(ν=1) or two-photon (ν=2) processes. Two-leg ladder diagrams for the systems
with (c) the ν=1 and (d) ν=2 resonant couplings. Band structures of the ladder
systems for our experimental conditions with (e) {ω/2π, d/a} = {13.4 kHz, 0.05}
and (f) {6.7 kHz, 0.2}, giving tv/h = 1.0 kHz (ν = 1) and td/h = 0.4 kHz
(ν = 2), respectively. The blue and red colors indicate the orbital composition
of the energy band, corresponding to s and p, respectively. The dashed lines show
the bare dispersion curves of the s and p bands for {ts, tp}/h = {0.1,−1.0} kHz.
(g), (h) Corresponding pseudo-spin distributions of the ground bands and their
trajectories on the Bloch sphere.
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When the shaking frequency ω is close to ω0
sp/ν with integer ν, where

ω0
sp = εsp/~ and εsp = εp − εs, a resonant inter-orbital coupling would be

generated via ν-photon transition process. To explicate the properties of the

inter-orbital couplings generated by the one-photon (ν = 1) and two-photon

(ν = 2) resonant processes, we calculate the effective Hamiltonian H
(ν)
eff of the

system in a rotating frame with frequency νω, using a high-frequency expansion

method [79,81,85]. The effective Hamiltonian is obtained as H
(ν)
eff = H

(ν)
0 +H

(ν)
C

with

H
(ν)
0 =

∑
j

{
Ψ†j(∆νσz)Ψj −

[
Ψ†j(t̄rI + trσz)Ψj+1 + H.c.

]}
H

(1)
C =

∑
j

Ψ†j

(
hsp0
2
Rẑ(ϕ)σx

)
Ψj

H
(2)
C =

∑
j

[
Ψ†j

(
hsp0 h1

2~ω
Rẑ(2ϕ)iσy

)
Ψj+1 + H.c.

]
. (6.6)

where ∆ν = ~(ω0
sp − νω)/2, t̄r = tp+ts

2
, tr = tp−ts

2
, Rn̂(η) = exp(−iηn̂ · σ) with

n̂ = n/|n|, and h1 = hpp1 −hss1 . H
(ν)
0 represents an uncoupled two-leg ladder with

energy imbalance ∆ν and intra-leg hopping, and H
(ν)
C describes the dominant

inter-leg coupling generated by the ν-photon resonant process.

The character of the inter-leg coupling given by H
(ν)
C is different for the

two cases, ν = 1 and ν = 2. H
(1)
C describes the on-site orbital-changing transi-

tions, corresponding to the direct inter-leg links with amplitude tv = hsp0 /2 in

the ladder system. On the other hand, H
(2)
C describes the second-order processes

consisting of on-site orbital changing and nearest-neighbor hopping along the

leg direction, giving the diagonal inter-leg links with amplitude td = hsp0 h1/2~ω.

The difference of H
(1)
C and H

(2)
C can be understood from parity conservation;

since the lattice shaking is an odd-parity operation, the two-photon on-site
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transition is forbidden between the s and p orbitals, which have opposite pari-

ties [105]. In figures 6.2(c) and (d), we present the schematic diagrams of the

resulting ladder systems for ν = 1 and 2, respectively. Note that the sign of tp

is opposite to that of ts, and under a proper transformation, the ladder systems

can be viewed as having a π gauge flux piercing each ladder plaquette.

The Bloch Hamiltonian of the two-leg ladder system is expressed as

H
(ν)
q = −2t̄r cos(q)I + hν(q) · σ, where q is expressed in units of a−1 and the

hν(q) is given by

h1(q) =tvρ̂1 + [∆1 − 2tr cos(q)]ẑ

h2(q) =2td sin(q)ρ̂2 + [∆2 − 2tr cos(q)]ẑ (6.7)

with ρ̂1 = cos(ϕ)x̂ + sin(ϕ)ŷ and ρ̂2 = − sin(2ϕ)x̂ + cos(2ϕ)ŷ. Under a trans-

formation of ρ̂ν → x̂ and q → q − π
2
, the functional form of H

(ν)
q on q becomes

same as that of HCL,q except the term of ∆ν ẑ in hν . Regardless of having the

additional term, hν is confined in the plane defined by ρ̂ν and ẑ, and thus, its

winding number determines the topological characteristic of the ladder system.

From equation 6.6, it is obvious that h1(q) cannot encircle the origin, whereas

h2(q) can give winding number of ±1 when |∆2| < 2|tr|. This means that a

topologically non-trivial phase would emerge in the shaken lattice system with

two-photon resonant coupling (∆2 ≈ 0). The chiral symmetry is generally bro-

ken in H
(2)
q due to t̄r 6= 0, and it was argued that the topologically non-trivial

phase is protected by symmetry composed of time-reversal and mirror symme-

tries [99]. It is interesting to note that one of the topological bands becomes

dispersionless when |∆2| = 2|t̄r| and t2d = |tstp|.

In figures 6.2(e) and (f), we display the band structures of the two-leg

ladder system with one-photon resonant coupling (∆1 = 0) and two-photon
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resonant coupling (∆2 = 0), respectively. The pseudo-spin distributions of the

ground bands over the BZ and their corresponding trajectories on the Bloch

sphere are also shown in figures 6.2(g) and (h). In the ν = 2 case, the pseudo-

spin trajectory make a great circle on the Bloch sphere, which is the key topo-

logical feature of the constructed Creutz ladder system. In the following section,

we present our experimental investigation, where the focus is to demonstrate

the winding structure of h2(q) in the resonantly shaken lattice system.

6.4 Experiment and result

6.4.1 Experimental setup

Our experiment starts with preparing a spin-balanced degenerate Fermi gas of

173Yb atoms in the F = 5/2 hyperfine ground state, which has all the six spin

components equally, in an optical dipole trap [70]. The total atom number is

≈ 1.5×105, and the temperature is≈ 0.35TF , where TF is the Fermi temperature

of the trapped sample. The atoms are adiabatically loaded in a 1D optical

lattice potential, which is formed along the x-direction by interfering two laser

beams with a wavelength of λL = 532 nm. The lattice spacing and depth are

a =
√

3λL/2 and VL = 8Er, respectively, where Er = h2/8ma2 = h × 3.1 kHz

(h is the Planck constant). The trapping frequencies of the overall harmonic

potential were estimated to be (ωx, ωy, ωz) ≈ 2π×(41, 61, 130) Hz. After loading

the atoms in the lattice potential, the fractional population of the p orbital

was about 3%. Shaking of the lattice potential is implemented by sinusoidally

modulating the frequency difference δωL between the two lattice laser beams as

δωL(t) = A sin(ωt + ϕ), which results in lattice site vibrations with amplitude
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d = A
2πω

a [figure 2(a)].

6.4.2 Shaking spectroscopy

We first investigate the resonance condition for inter-obital coupling by measur-

ing the momentum distribution n(k) of the atoms as a function of the driving

frequency ω. After preparing the atoms in the s band of the static lattice, we

suddenly apply the periodic driving over 20 cycles, which is longer than the

dephasing time of the system, and we measure n(k) by taking an absorption

image of the atoms after a band mapping protocol [75] and a subsequent time

of flight. In the band mapping, quasimomentum states are transformed onto the

corresponding real momentum states in free space by slowly ramping down the

lattice potential, and n(k) shows the quasimomentum distribution of the atoms

in the s band for |k| < π with k = q and that in the p band for π < |k| < 2π

with k = q − sgn(q)× (2π), where k is expressed in units of a−1.

In figure 6.3, we display the measurement result of the momentum dis-

tribution change, ∆n(k), from that of the non-driven sample as a function of ω.

Here n(k) is normalized as
∫
n(k)dk = 1. A strong spectral signal is observed in

the range ω/2π= 11∼17 kHz [figure 6.3(a)]. The spectral peak position follows

the one-photon resonance condition ω = ωsp(q) ≈ [εsp − 4tr cos(q)]/~, where

{εsp, tr}/h = {13.4,−0.54} kHz for our lattice parameters. The two-photon s-p

coupling is observed in the corresponding half-frequency range ω/2π=5.5∼8 kHz

[figure 6.3(b)], where the spectral structure appears consistent with the reso-

nance condition of 2ω = ωsp(q). In comparison with the one-photon resonance

case in figure 6.3(c), it is noticeable that the signal strength is suppressed at

2ω ∼ ωsp(0) and 2ω ∼ ωsp(±π), much weaker than that at 2ω ∼ ωsp(±π/2) [fig-
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Figure 6.3: Shaking spectroscopy of fermionic atoms in an optical lattice. (a), (b)
Spectra of the momentum distribution change ∆n(k) as a function of the driving
frequency ω. The driving amplitude A/2π = 2 kHz in (a) and 4 kHz in (b). The
dashed lines in (a) and (b) indicate the one-photon and two-photon resonance
conditions, i.e., ω = ωsp(q) and 2ω = ωsp(q), respectively. (c), (d) Spectral
profiles of ∆n(k) at various ω, indicated by the horizontal lines in (a) and (b).

ure 6.3(d)]. The suppression is consistent with the q-dependence of the trans-

verse field amplitude of h2, h2,ρ(q) ∝ sin(q), which determines the coupling

strength between the two orbital-momentum states, |q, s〉 and |q, p〉.

In the frequency range of ω/2π = 11∼14 kHz and ω/2π ≈ 8.5 kHz,

we observe substantial population transfer to the high-momentum region of

|k| > 2π, which result from the two-photon and three-photon couplings between

the s and d orbitals, respectively. In the effort to realize an effective two-leg

ladder system, coupling to higher orbitals from the s and p orbitals could be

detrimental, if its magnitude is not negligible to that of the s-p inter-orbital

coupling. In the two-photon resonance condition with ∆2 = 0, which is of our

main interest in this work, the atom loss rate out of the s-p ladder system
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Figure 6.4: Schematic of Ramsey interferometry using two separate pulses of lat-
tice shaking. (a) Schematic of the lattice shaking sequence and (b) the pseudo-
spin evolution on the Bloch sphere for the quasimomentum q state. ĥI(II) indi-
cates the direction of h for the first (second) shaking pulse. The orange disk
denotes the precession plane of the pseudo-spin during the intermittent period.

was measured to be ≈ 0.17td for A/2π = 8 kHz (td/h = 0.4 kHz), justifying

the effective two-band description of the shaken lattice system. In numerical

simulations of an atom in the 1D shaken lattice potential, the atom loss rate

due to the higher-band coupling was estimated to be 0.08td, which is less than

a half of the experimentally measured value. Further experimental optimization

might help reduce the loss rate, such as phase stabilization of the lattice laser

beams and transverse confinement of atoms with additional yz lattices beams.

It is worth noting that atom-atom interactions, which are present in our spin-

balanced sample, can be a source of heating and atom loss in a periodically

driven optical lattice system [129].
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6.4.3 Ramsey interferometry

In the shaking spectroscopy, the dispersion curve of ωsp(q) was measured for

the two-photon resonant coupling and it confirms the axial component of h2

is given by h2,z = ∆2 − 2tr cos(q). For verifying the winding stucture of h2(q),

therefore, it would be sufficient to demonstrate the asymmetric property of its

transverse component, h2,ρ(−q) = −h2,ρ(q).

As a means to probe the asymmetric property of h2,ρ(q), we employ

a Ramsey interferometry scheme, where two separate pulses of resonant lat-

tice shaking are applied with a variable time interval Te. The lattice shak-

ing sequence is described in figure 6.4(a), where the frequency modulations

are set as δω(t) = AI sin(ωIt + ϕI) for the first pulse in 0 < t < τI and as

δω(t) = AII sin(ωIIt
′ + ϕII) with t′ = t − (τI + Te) for the second pulse in

0 < t′ < τII. Here, ωI(II) = ω0
sp/νI(II) (ω0

sp/2π = 13.4 kHz) with νI(II)=1 or 2

so that during the first (second) pulse duration, the νI(II)-photon resonant cou-

pling is generated in the lattice system. In a rotating frame with frequency

ω0
sp = νI(II)ωI(II), the effective Bloch Hamiltonian of the resonantly shaken

lattice system is given by Hq(t) = −2t̄r cos(q)I + h(q, t) · σ with h(q, t) =

−2tr cos(q)σz +hρ(q, t)[cos
(
θ(t)

)
σx + sin

(
θ(t)

)
σy]. During the Ramsey interfer-

ometry sequence, the transverse component of h(q, t) is dynamically controlled

with the lattice shaking parameters, {νI(II), AI(II), ϕI(II)}.

For an atom initially prepared in the |q, s〉 state, its final state after the

Ramsey interferomentry sequence is given bycp(q)
cs(q)

 = RĥII(q)
(ξII)Rẑ(hz(q)Te/~)RĥI(q)

(ξI)

0

1

 , (6.8)

where hI(II) is the h vector in the first (second) lattice shaking and ξI(II) =
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|hI(II)|τI(II)/~. Here the global phase factor arising from the term of −2t̄r cos(q)I

in Hq is ignored under a proper gauge transformation. Rn̂(ξ) represents a rota-

tion around the n̂ axis by ξ on the Bloch sphere formed by |q, p〉 and |q, s〉, and

thus, the system’s overall evolution is described as a composition of three se-

quential rotations which correspond to the time evolutions in the first pulse, the

intermediate period, and the second pulse, respectively [figure 6.4(b)]. As the

time Te of the intermediate period increases, the atom population in the |q, p〉

state, np(q) = |cp(q)|2 would show oscillations, and its oscillation amplitude and

phases can reveal the geometric relation between hI(q) and hII(q).

In our experiment, we examine two cases of (νI, νII) = (1, 1) and (2, 1)

with ϕI(II) = 0 and τI(II) = 2π/ωI(II). We measure the momentum distribu-

tion n(k) after applying the two pulses of lattice shaking with increasing Te.

In figure 6.5(a), the measurement result for the (νI, νII) = (1, 1) case is pre-

sented, where the shaking amplitude is set to be AI(II)/2π = 5 kHz to obtain

ξI(II) = π/4 for q = ±0.7π. The population oscillations with increasing Te are

clearly observed for each q and the oscillation frequency is found to be in good

quantitative agreement with ωsp(q) [figure 6.7(a)]. Next, the measurement re-

sult for (νI, νII)=(2, 1) is presented in figure 6.5(b). In the measurement, the

driving amplitude for the first pulse (νI = 2) is changed to AI/2π = 8 kHz to

keep ξI = π/4 for q = ±0.7π, whereas that for the second pulse (νII = 1) is the

same as in the previous (νI, νII) = (1, 1) measurement. Remarkably, we observe

that the Ramsey signals exhibit an asymmetric fringe pattern with respect to

k = 0, which is in stark contrast to the (νI, νII) = (1, 1) case where the Ramsey

signals are mirror-symmetric. Based on the fact that the transverse component

of hII(q) with νII = 1 is uniform over the BZ, the observed asymmetric fringe

signals indicate that the transverse component of hI(q) with νI = 2 has opposite
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Figure 6.5: Momentum-resolved Ramsey interferometry signal. Momentum dis-
tribution n(k) as a function of Te for (a) (νI, νII) = (1, 1) and (b) (2,1), where
ϕI(II) = 0 and τI(II) = 2π/ωI(II). (c), (d) n(k) at k = ±1.3π as a function of Te
in (a) and (b), respectively. The solid lines are the damped sinusoidal function
fits to the data. Each data point was obtained from seven measurements and
its error bar indicates their standard deviation.
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directions for q > 0 and q < 0, i.e., h2,ρ(−q) = −h2,ρ(q), thus corroborating the

winding structure of h2(q).

In figures 6.5(c) and (d), we display the population n(k) at k = ±1.3π,

corresponding to np(q = ∓0.7π), as a function of Te for the (νI, νII) = (1, 1)

and (2, 1) cases, respectively. The population shows damped oscillations with

increasing Te and the damping might be attributed to atom-atom interactions

and/or the spatial inhomogeneity of the trapped sample. From the damped sin-

uoidal functions fit to the data, we measured the phase difference between the

two oscillation curves to be 0.10π for (νI, νII) = (1, 1) and 0.77π for (νI, νII) =

(2, 1), which are slightly different from the expected values of 0 and π, respec-

tively. We attribute such a small deviation to the off-resonant coupling effect,

which is neglected in our model description and will be further discussed in the

next section.

As a further comparison of the (νI, νII) = (1, 1) and (2, 1) cases, we also

examine the dependence of the Ramsey signal on the driving phases ϕI and

ϕII by measuring n(k = ±1.3π) as a function of ϕI and ϕII with a fixed evo-

lution time Te = 100 µs [figure 6.6]. For (νI, νII) = (1, 1), the two populations

at k = ±1.3π oscillate in phase with period of 2π in both ϕI and ϕII. In con-

trast, for (νI, νII) = (2, 1), they show out-of-phase oscillations with a different

period of π in ϕI and 2π in ϕII. This observation is consistent with the different

ϕ-dependence of ρ̂1 and ρ̂2. The π periodicity of the Ramsey signal with in-

creasing ϕI for νI = 2 is a direct consequence of that the inter-orbital coupling

is generated via two-photon process.
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Figure 6.6: Driving phase dependence of the Ramsey fringe signal. Atomic den-
sities n(k) measured at (a,c) k = −1.3π and (b,d) k = 1.3π as functions of the
driving phases ϕI and ϕII for Te = 100 µs. (νI, νII) = (1, 1) in (a,b) and (2, 1) in
(c,d). The experimental conditions are the same as those in figure 5. The dashed
lines are guides to the eyes, indicating the maxima of the Ramsey fringes. In the
case of (νI, νII) = (2, 1), the fringe signal shows π-periodicity with increasing ϕI.
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6.5 Discussions

6.5.1 Off-resonance coupling effect

In the model description of the resonantly shaken lattice system, we consider

only the effects of the resonant coupling between the s and p orbitals. Although

the model is efficient in capturing the essential topological features of the sys-

tem, its improvement, in particular, by including the off-resonant inter-orbital

coupling effects would be necessarily desirable for further development of the

ladder system. To evaluate the limitations of the current model, we make a

quantitative comparison between the experimental results in the Ramsey inter-

ferometry measurement and the prediction from the model. In figure 6.7, we

characterize the Ramsey interferometry data presented in figure 6.5(a) and (b)

with the oscillating frequency ωf (k) and the phase φ(k), where {ωf (k), φ(k)} are

determined from a damped sinusoidal function fit to the fringe signal n(Te; k)

at each k. In the (νI, νII) = (1, 1) case, we find that the measured {ωf (k), φ(k)}

are well described by the model [figure 6.7(a) and (c)]. Here, the model predic-

tion was numerically obtained by calculating equation 6.7 for the experimental

conditions. On the other hand, in the (νI, νII) = (2, 1) case, we observe that the

measured oscillation phase φ(k) shows a quantitatively non-negligible deviation

from the model prediction [figure 6.7(d)]. The deviation is pronounced near

k = 0 and ±π. These momentum regions are where the two-photon resonant

coupling is weak for h2,ρ(q) ∝ sin(q) so that it is not only technically difficult to

precisely determine φ but also likely to be sensitive to any off-resonant coupling

effect.

In the two-photon resonance condition, the dominant off-resonant cou-

pling must arise from the one-photon inter-orbital transition process. We spec-
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quency ωf (k) and phase φ(k) were determined from a damped sinusoidal func-
tion fit to the experimental data for each k. (a) and (c) for the data with
(νI, νII) = (1, 1) in figure 5(a), and (b) and (d) for the data with (νI, νII) = (2, 1)
in figure 5(b). The grey dashed lines indicate the model prediction calculated
from equation (8). The red dots in (d) show the numerical result for the case
where a uniform transverse vector of (max[hρ]/3)x̂ is added to hI (see the text
for details).
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ulate that its effect might be approximated to direct leakage links between the

two legs, and then represented by a uniform transverse component in h as ob-

served in the case of one-photon resonant coupling. To test the possibility, we

recalculate equation 6.7 for the (νI, νII) = (2, 1) experiment with adding a trans-

verse field of hxx̂ to hI for the first pulse period. We observe that the numerical

result evolves somewhat closely to the exeprimental data when hx increases to

max[hρ]/3 [figure 6.7(d)], supporting the leakage-link picture for the off-resonant

coupling effect. The presence of such leakage links has an important implication

that depending on the complex amplitude of the leakage links, h might not be

confined in a plane so that its winding number would be ill-defined. The off-

resonant coupling effects, including those from the coupling to higher orbitals,

warrant further theoretical and experimental investigations in future study.

6.5.2 Shaking with two resonant frequencies

The observation that one- and two-photon resonant couplings bring about the

distinctive effects of direct and cross inter-leg links, respectively, prompts us to

discuss an extension of the inter-leg link control in the ladder by using both

types of resonant couplings. Specifically, we consider a situation in which the

lattice shaking is applied as δωL(t) = A sin(ωt) + Ã sin(2ωt + ϕ) with ∆2 = 0.

Here, together with the ω driving generating two-photon resonant coupling, the

2ω driving provides one-photon resonant coupling. We find that the inter-orbital

coupling effects of the two drivings appears additive in the effective Hamiltonian

at the same level of approximation used in equation 6.6, giving

h(q) = t̃vρ̂1(ϕ) + 2td sin(q)ŷ − 2tr cos(q)ẑ,
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Figure 6.8: Topological charge pumping in the Creutz ladder. (a) Zak phase
γZ in the plane of t̃v/td and ϕ. The critical points are located at {t̃v/td, ϕ} =
{2,±π/2}. Along the path encircling one of the critical points, γZ continuously
changes by 2π. (b) Evolution cycle of the pseudo-spin trajectory of the ground
band on the Bloch sphere as the system adiabatically moves along the red
encircling path in (a). The trajectory line covers the whole Bloch sphere in each
cycle, resulting in one lattice site shift of atoms in the Creutz ladder.

with t̃v = (Ã/A)tv. This suggests that the direct inter-leg links can be generated

independently in the Creutz ladder by simply adding a 2ω driving; furthermore,

its complex amplitude can be controlled with the driving parameters Ã and ϕ.

Even with the off-resonant coupling effects discussed in the previous subsection,

this two-tone driving method would provide a flexible way to control the inter-

leg links of the Creutz ladder system.

The extended control of the inter-leg links will enable to explore many

interesting aspects of the topological ladder system. First of all, the topological

phase transition of the Creutz ladder can be studied in a controlled manner,

which occurs at {t̃v, ϕ}c = {2td,±π/2}, accompanied by the band gap closing

at q = ±π/2 and a sudden change of the winding number of h(q). Anomalous

scaling of defect formation was predicted for the phase transition dynamics due
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to the topological properties of the system [122]. Equipped with the dynamic

control of the inter-leg links, we can also envisage a realization of a topological

charge pump in the Creutz ladder [103]. For example, when the direct link

parameters {t̃v, ϕ} are controlled to adiabatically encircle one of the critical

points in the parameter space, the Zak phase, γZ , continuously changes by 2π

per cycle (figure 6.8), which would result in one lattice site shift of atoms in the

ladder.

6.6 Conclusion

We have demonstrated the realization of the Creutz ladder in a periodically

shaken 1D optical lattice via two-photon resonant coupling. The topological

structure of the Creutz ladder was characterized with the winding structure of

h2(q) in the BZ. By the shaking spectroscopy, the longitudinal component of h2

was directly measured as hz = −2tr cos(q), and using the Ramsey interferome-

try, the asymmetric relation of its transverse component, h2,ρ(−q) = −h2,ρ(q),

was demonstrated. From the observation that one- and two-photon resonant

couplings generate direct and diagonal inter-leg links, respectively, in the ladder

system, we suggested the two-tone driving method of simultaneously exploiting

both resonant couplings, which would allow the controlled study of the topolog-

ical phase transition dynamics and the realization of a topological charge pump.

As another extension of this work, topological flat band engineering may be pur-

sued with the Creutz ladder system, which would provide interesting opportuni-

ties for observing possible emergence of correlated topological phases [130,131].

In interacting two-leg ladder systems, many correlated topological phases and

associated edge states were theoretically discussed [102, 104, 124–126]. Finally,
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we also expect that the two-photon resonant coupling method can be readily ap-

plied to 2D optical lattice systems, providing an alternative route to investigate

anomalous quantum Hall states [132,133].
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Chapter 7

Topological pumping in

resonantly driven optical lattice

In this chapter, we numerically study the topological properties of a resonantly

shaken one-dimensional optical lattice system in a two-band approximation,

where the lattice position is periodically driven with two harmonic frequencies

to induce the on-site and site-hopping interband transitions. Using a Floquet

Hamiltonian description, we show that a pair of degenerate edge states appear

for a certain critical driving condition and that the corresponding topological

phase is protected by the chiral symmetry of the periodically driven system. The

Zak phase of the Floquet band oscillates in time due to the micromotion under

the periodic driving and we find that it has a quantized value only when the

symmetry condition is explicitly satisfied. We describe the topological charge

pumping effect arising from a cyclic change of the driving parameters and discuss

its experimental realization with a current optical lattice system.
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7.1 Introduction

Topological insulator has been extensively investigated because of its intriguing

gapless surface states protected by underlying symmetry [98]. In recent, this

unusual quantum phases have been realized and studied in periodically driven

system, which is referred as Floquet topological insulator [68, 134–139]. Based

on the Floquet theorem, the dynamics governed by periodic time-dependent

Hamiltonian can be well described by time-inpedendent Floquet Hamiltonian,

replacing properties of static system. Under the proper Floquet engineering,

system can acquire interesting topological properties.

The ultracold atoms in optical lattice is suitable platform to investigate

the Floquet topological insulator, due to its ability to tune the parameters in

large space, and isolation from environment. Periodic driving with proper res-

onant condition can generate non-trivial topological phases. Raman laser cou-

pling can implement synthetic gauge field [61, 96, 97, 116], and shaking optical

lattices can induce next-nearest hopping [66,105,140,141] in optical lattice sys-

tem, which lead to topological phases.

These Floquet engineerings are based on the time-independent descrip-

tion of the driven system. However, Floquet Hamiltonian actually depends on

the choice of initial time, which is referred as micromotion [79]. Because micro-

motion can strongly affect the topological properties and corresponding observ-

ables of the system, studying micromotion will improve understanding on the

Floquet topological phases.

Topological charge pumping is one of peculiar example of manifestation

of topology in 1D quantum transport, where transported charge per pump cycle

is connected to topological invariant [142–145]. It was suggested that topological
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charge pumping can be realized in Floquet 1D system [146], but the effect of

micromotion has not been much dealt with.

Recently, we demonstated that a 1D Floquet topological ladder can arise

in resonantly shaken 1D optical lattice [121, 141], whose structure is similar to

the topological two-leg ladder, the Creutz model [92]. Under the proper reso-

nant shaking frequency, non-trivial edge states occur due to the site-hopping

interband transition between two band states. In this work, we present a nu-

merical study on resonantly shaken one-dimensional optical lattice and investi-

gate topological charge pumping. We find that the bulk-edge correspondence of

the Floquet bands depends on stroboscopic timeframe, because of symmetry of

driven Hamiltonian. As a result, Zak phase oscillates within each period, while

the Floquet system maintains degenerate edge states. This crucially affects the

adiabatic transport, resulting in micromotion in pumped charge.

7.2 Resonantly shaken optical lattice

7.2.1 Two-band model description

Let us consider a fermionic atom in a 1D optical lattice potential, V
(
x−x0(t)

)
,

where the lattice position x0(t) is time-dependent. The lattice position is de-

termined by the relative phase of the two laser beams involved in forming the

optical lattice, and in experiment, its driving can be simply achieved by mechan-

ically modulating the position of a retro-reflecting mirror for the laser beams.

In the co-moving reference frame with the driven optical lattice, the system’s

Hamiltonian is given by

Ĥ(t) =
p̂2

2m
+ V (x)− F (t)x̂, (7.1)
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where m is the atomic mass and F (t) = −mẍ0(t) represents the inertial force

arising from the driving.

In the tight binding approximation, the Hamiltonian is expressed as

Ĥ(t) =
∑
j,α

[
εαc
†
j,αcj,α − (tαc

†
j,αcj+1,α + H.c.)

− F (t)a

(
jc†j,αcj,α +

∑
β 6=α

ηαβc
†
j,αcj,β

)]
, (7.2)

where cj,α (c†j,α) is the annihilation (creation) operator for the atom in the

Wannier state |j, α〉 on lattice site j in α band. εα = 〈j, α|Ĥstat|j, α〉 and tα =

−〈j, α|Ĥstat|j+1, α〉 with Hstat = p̂2

2m
+V (x) are the on-site energy and nearest-

neighbor hopping amplitude of the α band in the stationary system, respectively.

a is the lattice spacing and ηαβ = 1
a
〈j, α|x̂|j, β〉 is the dimensionless dipole matrix

element for on-site interband transition [147]. Under the gauge transformation

with Û(t) = exp[−iθ(t)
∑

j,α jc
†
j,αcj,α] and θ(t) = −a

~

∫ t
0
dt′F (t′), the system’s

Hamiltonian is re-expressed as

Ĥ(t) =
∑
j,α

[
εαc
†
j,αcj,α − (tαe

−iθ(t)c†j,αcj+1,α + H.c.)

− F (t)a
∑
β 6=α

ηαβc
†
j,αcj,β

]
, (7.3)

where the third term in Eq. 7.2 is absorbed into the time-dependent tunneling

amplitude.

We investigate a case where the optical lattice is periodically driven with

two harmonic frequencies, ω and 2ω, i.e., x0(t) = xω cos(ωt) + x2ω cos(2ωt+ ϕ)

with ϕ being the relative phase of the two harmonic driving, and the modulation

frequency 2ω is close to the energy gap between the two lowest, s and p bands,

resulting strong band hybridization. Here we assume that the two lowest bands
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are energetically well separated from higher bands in the static lattice system

so that the effects of their coupling to the higher bands under the driving are

negligible. We note that this condition can be met by engineering an optical

lattice potential with a double well structure (see Sec.V). Taking the two-band

approximation, we obtain the Bloch Hamiltonian for the system from Eq. 7.3

in the basis of Ψ̂q = (cq,p, cq,s)
T, where cq,s(p) is the annihilation operator for

momentum q in the s(p) band, as

Ĥ(q, t) =
(
ε̄− 2t̄ cos[q − θ(t)]

)
I− F (t)aηspσx

+
(
ε− 2t cos[q − θ(t)]

)
σz, (7.4)

where 2ε̄ = (εp + εs), 2ε = (εp− εs), 2t̄ = (tp + ts), 2t = (tp− ts), I is the identity

matrix, and σ = {σx, σy, σz} are the Pauli matrices. q is expressed in units

of 1/a. In the two-harmonic driving, F (t) = F0,ω cos(ωt) + F0,2ω cos(2ωt + ϕ)

with F0,ω′ = mx′ωω
′2, giving θ(t) = −Kω sin(ωt)−K2ω sin(2ωt+ ϕ) with Kω′ =

F0,ω′a/~ω′.

7.2.2 Effective static description

In periodically driven system, Floquet Hamiltonian is difficult to be expressed

in a simple form [81]. However, in the high-frequency limit, where the driving

frequency is sufficiently larger than any other energy scales, we can introduce

perturbative expansion of Floquet Hamiltonian to capture physically essential

features of driven system [79, 82, 85, 118]. From the expansion method, long-

time dynamics of the system can be described by effective Hamiltonian, which

is time-independent description.

We applied unitary transformation that rotates with frequency ~ω = ε

to investigate resonant process. Then, from the periodically driven Hamiltonian
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j

Figure 7.1: Effective ladder model of resonantly shaken optical lattice. Band
states compose legs of the ladder, and coherent 1(2)-photon resonant interband
coupling offers vertical (diagonal) hopping between legs. Here, tα denotes the
intraleg hopping amplitude of α band, tv and td indicate amplitude of interband
coupling. Relative driving phase ϕ adds hopping phase on tv. The opposite sign
of intraleg hopping (ts > 0, tp < 0) results in π flux per plaquette.

expanded in a Fourier form as Ĥ(t) =
∑

m e
imωtĤm, we can obtain the effective

time-independent Hamiltonian using the high-frequency expansion method,

Ĥeff = Ĥ0 +
∑
m>0

[Ĥm, Ĥ−m]

m~ω
, (7.5)

up to first order term [79,82,85,118]. We obtained the effective Hamiltonian for

Ĥ(t) in a form of

Ĥeff(q) ≈ Ē(q)I + h(q) · σ, (7.6)

where Ē(q) = ε̄−2t̄J0(Kω) cos(q), and the vector h(q) = {−tv cos(ϕ),−tv sin(ϕ)−

2td sin(q),−2t′ cos(q)}, with tv = ~ωK2ωηsp, td = KωηsptJ1(Kω), t′ = tJ0(Kω).

Here Jn is nth order Bessel function of the first kind. It is shown that tv is

induced by fast driving with frequency 2ω in zeroth-order process (1-photon

process), while the td is induced by slow driving with frequency ω in first-order

process (2-photon process).

The system can be depicted as a two-leg ladder system as shown in

Fig. 7.1 under the synthetic dimensional framework [95]. tv and td correspond
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to the amplitudes of the direct and diagonal links between the two legs, so effec-

tive Hamiltonian (7.6) realizes a generalized Creutz ladder model. Specifically,

toplogically nontrivial states can exist in the system because of diagonal links in

the ladder [101]. In the limit of ε̄ = t̄ = 0, which is a smooth deformation, effec-

tive Hamiltonian has chiral symmetry at ϕ = ±π/2, as σxĤeff(q)σx = −Ĥeff(q).

Two distinctive topological phases are separated by critical point {tv/td, ϕ} =

{2,±π/2}, where gap closing occurs. Interestingly, when ϕ 6= ±π/2, symmetry

of the effective Hamiltonian is broken. Therefore, two distinct topological phases

can be adiabatically connected in {tv/td, ϕ} space. Then, if the system follows a

cyclic path in parameter space {tv/td, ϕ}, pumped charge per cycle is quantized

to integer values [103].

7.3 Topological properties and micromotions

The effective Hamiltonian (7.6) can offer clear and intuitive picture on topo-

logical nature of resonantly shaken optical lattice. In the high frequency limit,

where the driving frequency is sufficiently larger than any other energy scale in

the system, physical properties of the system would be enough to be described

with effective Hamiltonian. However, away from this limit, micromotion within

each period can play crucial role in dynamics and measurement. It is practical to

exatly evaluate Floquet time-evolution operator without further approximation,

which naturally carries information on micromotion.

For periodically driven system, Floquet states are eigenstates of a time-

evolution operator over one driving period T = 2π/ω,

Û(T, 0) = T exp

(
− i

~

∫ T

0

M̂(t)dt

)
, (7.7)
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where T is time-ordering operator, and M̂(t) = Ĥ(t) or Ĥ(q, t) for finite real

space or bulk momentum Hamiltonian. Its eigenvalue and eigenstates are given

by Û(T, 0)|ψn〉 = e−iεnT/~|ψn〉, where εn ∈ [−~ω
2
, ~ω

2
] is quasienergy. As the initial

eigenstate |ψn〉 at t = 0 will be also eigenstate at t = mT , the dynamics of the

system can be described in stroboscopic manner by Floquet Hamiltonian

ĤF =
i

T
log[Û(T, 0)]. (7.8)

Quasienergy eigenvalues and eigenstates are numerically obtained by di-

agonalizing Floquet time-evolution operator with Û(T, 0) =
∏N−1

n=0 Û(tn+1, tn)

and Û(tn+1, tn) ≈ exp[− i
~M̂(tn)∆t], where tn = nT

N
and ∆t = T

N
. We consider

the parameters εs = 0, εp = 4.4Er, ts = 0.03Er, tp = −0.31Er, which are chosen

at previous experimental demonstration [141], where Er = ~π2/2ma2, and using

modulation frequency ~ω = ε = 2.2Er.

7.3.1 Edge states and symmetry

When the frequency of the periodic driving meets the condition ~ω ≈ ε, periodic

force induces coherent interband coupling, and corresponding Floquet states can

possess topological states. At xω 6= 0 and x2ω = 0, we can find degenerate in-

gap states exponentially localized at opposite edges which is a hallmark of 1D

topological phase [Fig. 7.2 (a) and (b)], indicating that the 2-photon resonant

shaking generates non-trivial topological state.

Topological property of the system can be changed when we introduce

high-frequency component, x2ω 6= 0. At ϕ = ±π/2, a pair of in-gap states

maintain degeneracy until the critical point xc2ω that is a gap closing point of

bulk spectrum [Fig 7.2(c)]. Therefore, it suggests that resonantly shaken optical

lattice has two distinctive topological phases, and their topology is protected by
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Figure 7.2: (a) Quasienergy spectrum of shaken 1D optical lattice of length
L = 150. Driving parameter is given by ~ω = ε and xω = 0.11a, without high
frequency driving x2ω = 0. (b) Probability density of wave functions for the
in-gap states in (a). (c) Quasienergy spectrum as a function of x2ω at ϕ =
0.5π. In-gap states survive and maintain its degeneracy until ciritical point. (d)
Quasienergy spectrum as a function of x2ω at ϕ = 0.45π.

some symmetry. If ϕ 6= ±π/2, degeneracy of edge states are lifted by arbitrary

small x2ω [Fig. 7.2(d)]. This gives us full controllability on topological property

of the driven optical lattice.

In static system, topological property can be characterized by bulk in-

variant of the bands, following bulk-edge correspondence. For example, bulk

winding number or Zak phase of 1D system with chiral symmetry has direct

relation to the number of edge states. In Floquet system, topological invariant
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also can be similarly defined with quasienergy bands, but symmetry should be

considered in time as well as in spatial dimension. Therefore, choice of timeframe

can play an important role in symmetry, eigenstates, and topological properties.

To simplify the discussion, we neglect the identity term in Ĥ(q, t) by

gauge transformation, which is equivalent to the limit of ts = −tp and εs = −εp.

Since it can be viewed as a smooth deformation, topological property, such as

the number of edge states, is preserved. Then smoothly-deformed Hamiltonian

is given by

H̃(q, t) = −F̃ (t)aηspσx +
(
ε− 2t cos[q − θ̃(t)]

)
σz, (7.9)

where we introduce F̃ (t) = F0,ω cos[ω(t + t0)] + F0,2ω cos[2ω(t + t0) + ϕ] and

θ̃(t) = −a
~

∫ t
0
dt′F̃ (t′) are similar as before except the addition of initial time

t0 ∈ [0, 2π/ω]. When ωt0 = ±π
2

and ϕ = ±π
2
, the Hamiltonian has chiral

symmerty as it satisfies relation

σxH̃(q, t)σx = −H̃(q,−t). (7.10)

Due to the chiral symmetry, the number of edge states corresponds to Zak phase

of quasienergy bands [134, 148, 149]. From the smooth deformation, Zak phase

of Floquet bands in original Hamiltonian 7.4 can be related to the number of

edge states.

7.3.2 Micromotions

In our system, the micromotion can be directly observed by charge transporta-

tion. As the quasienergy of Floquet state is preserved under the driving, we

can estimate charge transport based on adiabatic theorem. The transport of
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the system is directly related to the Berry curvature of the band in q − t space

Ωn
qt [150]. The transported charge of nth band is given by

∆cn(t) = − 1

2π

∫ t

0

dt′
∫

BZ

dq Ωn
qt, (7.11)

where Ωn
qt = i[〈∂ψn

∂q
|∂ψn
∂t
〉 − 〈∂ψn

∂t
|∂ψn
∂q
〉]. If we consider closed path in Brillouin

zone, it can be equivalently expressed by [151,152],

∆cn(t) =
i

2π

∫ t

0

dt′
∫

BZ

dq∂t′〈ψn(t′)|∂q|ψn(t′)〉

=
1

2π

∫ t

0

dt′∂t′γn(t′), (7.12)

where γn(t) = i
∫

BZ
dq〈ψn(t)|∂q|ψn(t)〉 is Zak phase of nth band [91].

We numerically calculated Zak phase of quasienergy bands of Û(t0 +

T, t0) = T exp[− i
~

∫ t0+T

t0
Ĥ(q, t)], to evaluate its dependence on timeframe. In

Figure 7.3, we present an overview on Zak phase of the resonantly shaken optical

lattice. Figure 7.3(a)-(c) show the Zak phase of lower Floquet band γ− at t0 =

0, T/4, T/2, as a function of {x2ω, ϕ} at xω = 0.11a. The critical point located at

{xc2ω, ϕc} = {0.0044a,±π/2} is fixed under the variation of t0, showing preserved

topological property. This critical point precisely corresponds to the tv/td = 2

in effective Hamiltonian description. Zak phase is continuous around the critical

point except the branch cut of size 2π, but, overall features different within t0.

Zak phase is only quantized at ωt0 = π
2

and ϕ = ±π
2

[Fig. 7.3b], where

H̃(q, t) has chiral symmetry. Zak phase of lower quasienergy bands is γ− = π

(mod 2π) when x2ω < xc2ω, which clearly corresponds to the nedge = 1 at each

edge. If x2ω > xc2ω, γ− = 0 indicates the trivial phase without edge states.

When ωt0 6= ±π
2

or ϕ 6= ±π
2
, Zak phase does not correspond to the

number of edge states, because H̃(q, t) has no chiral symmetry. Nonetheless,

we can discuss topological property of the system. Û(t0 + T, t0) is topologically
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Figure 7.3: (a) Zak phase of lower Floquet band γ− in parameter space {x2ω, ϕ}
with fixed xω = 0.11a, at t0 = 0, (b) t0 = T/4, and (c) t0 = T/2. (d) Zak phase
at ϕ = π/2, xω = 0.11a, and x2ω = 0, as a function of t0. (e) Micromotion of
transported charge. Amplitude of micromotion is given by 2A± = [max(γ±) −
min(γ±)]/2π. Here, we assume xω � x2ω.

equivalent in t0, as no gap closing occurs along the t0. Obviously, quasienergy

is equal in all timeframe, so the number of edge states is preserved in t0. For

example, degenerate edge states exist at ωt0 = 0 6= ±π
2

[Fig. 7.2(a)]. However,

because the Zak phase of quasienergy bands is ill-defined, its value is not quan-

tized to zero or π [Fig. 7.3(d)]. We can claim that non-trivial edge states are

preserved through the driving period, if the periodically driven Hamiltonian

has well-defined symmetry at certain timeframe t0. On the other hand, rela-

tive driving phase can actually lift the degeneracy of edge modes, because ϕ
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Figure 7.4: (a) Example of topological pumping trajectory with ϕ(t) = ϕ0 +
π
4

sin(2πt/Tp), x2ω(t) = xc2ω + xm2ω cos(2πt/Tp). Here, ϕ0 = π/2 ∈ {ϕc} and
xm2ω = 0.43xc2ω. This trajectory encircles the topological critical point {xc2ω, π/2}.
(d) Floquet quasienergy spectrum of finite system with L = 150, along the
trajectory given in (a). In this spectrum, propagating edge modes exist between
the bulk bands.

can change the quasienergy of the system. Indeed, driven Hamiltonian does not

have well-defined symmetry at any t0 when ϕ 6= ±π
2
.

In our resonantly shaken Hamiltonian (7.4), Zak phase oscillates within

period for each parameter set, such as shown in Fig. 7.3(d). Following equa-

tion 7.12, transported charge will oscillate, and its amplitude is determined by

Zak phase [Fig. 7.3(e)]. This is direct measurable quantity from micromotion in

our periodically driven system.

7.4 Topological charge pumping

In charge pump scheme, we consider cyclic change of x2ω(t) and ϕ(t) in pump-

ing period Tp, which satisfies x2ω(t + Tp) = x2ω(t) and ϕ(t + Tp) = ϕ(t). In

equilibrium 1D system under time-dependent cyclic perturbation, eigenstates

are periodic in two dimensions, because Hamiltonian will have periodic bound-

134



ary condition in q and t. If parameter changes slow enough, system follows

instantaneous eigenstates of the Hamiltonian. Following adiabatic transport re-

lation (7.11), pumped charge over one cycle is quantized to the first Chern

number [143,150].

Our topological charge pumping scheme is based on the Floquet states

of the resonantly shaken optical lattice. Although Hamiltonian cannot be ex-

actly periodic under the change of parameters, system can follow instantaneous

Floquet states in the adiabatic limit [153]. Therefore, we can get insight on

dynamics in the adiabatic limit by looking through Floquet quasienergy spec-

trum. In Fig. 7.4(a), we visualize an example of pumping trajectory which is

given by ϕ(t) = ϕ0 + π
4

sin(2πt/Tp), x2ω(t) = xc2ω + xm2ω cos(2πt/Tp), where

ϕ0 = π/2 ∈ {ϕc} and xm2ω = 0.43xc2ω. When the trajectory encircles the criti-

cal point {xc2ω, ϕc}, quasi-energy spectrum along the path clearly shows chiral

propagating edge modes in bulk gap, which is an analogue of Chern insulator

[Fig. 7.4(b)]. Therefore, system will show quantized transportation per each cy-

cle. Because the energy gap between bulk bands does not close along the time,

adiabatic condition can be satisfied when the Tp is sufficiently slower than the

smallest band gap energy.

In numerical simulation, we consider initial state as spinless fermions fully

filled in the lower (or upper) Floquet band, |ψ±(q, 0)〉. Then the time-evolved

states |ψ±(q, t)〉 are calculated by solving the time-dependent Schrödinger equa-

tion under the periodically driven Hamiltonian (7.4), under the change of pa-

rameters x2ω(t) and ϕ(t). Local current j± is calculated by computing ex-

pectation value of velocity operator v̂(q, t) = ∂Ĥ(q, t)/∂(~q), with relation

j±(t) = (1/2π)
∫

BZ
〈ψ±(q, t)|v̂(q, t)|ψ±(q, t)〉 [103, 150]. Pumped charge is cal-

culated by integrating the local current ∆c±(t) =
∫ t

0
dτj±(τ).
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Figure 7.5: Numerically calculated pumped charge (a) when the trajectory en-
circles the critical point {xc2ω, ϕ0 = π/2}, (b) or not {xc2ω, ϕ0 = π}. Here the
pumping period is Tp = 900T , and xm2ω = 0.43xc2ω. Inset shows micromotion
of pumped charge, whose period is exactly the inverse of resonant driving fre-
quency, T = 2π/ω. Dashed lines are expected ∆c calculated from effective
Hamiltonian Ĥeff. Faded lines shown in (a) are numerical results with non-
adiabatic condition, Tp = 50T . (c) Mean transported charge over 5 cycles along
the trajectory in (a). Red line indicates the scale of smallest energy gap ∆E
during charge pumping.
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Figure 7.5 shows the numerical results on the charge pumping. In the

adiabatic condition, i.e. Tp = 900T � h/∆E, where ∆E is the smallest gap be-

tween two Floquet bands, the pumped charge over one cycle is quantized. When

the parameters x2ω(t) and ϕ(t) encircles the the topological critical point, charge

in the system shifts by one site over each pumping cycle Tp, i.e. ∆c±(nTp) = ∓n

[Fig. 7.5(a)]. When the trajectory of the pumping does not encircle the topo-

logical critical point, for example ϕ0 = π, net transport after one cycle is zero

[Fig. 7.5(b)]. This clearly indicates the connection between transport and topo-

logical property. The pumped charge of the upper band is also quantized but

with opposite direction, because γ−(t) = −γ+(t) in two band model.

The numerical results is in agreement with dynamics of effective Hamil-

tonian description, except the oscillation with period of T . This is originated

from micromotion of the system. If we assume Tp � T , the values of x2ω(t)

and ϕ(t) are almost maintained during short period T . Under this condition,

instantaneous Floquet states and its Zak phase can be approximately defined.

Since Zak phase of the system oscillates, pumped charge shows micromotion in

addition to the global adiabatic current [Fig. 7.5(a), inset].

We note that topological relation in transport does not hold at the non-

adiabatic condition. The numerical estimation of mean pumped charge over 5

cycles indicates that the adiabaticity is broken around Tp = h/∆E [Fig. 7.5(c)].

7.5 Discussions

In typical experimental condition, ultracold atoms are initially prepared in the

lowest band of the static optical lattice. In this regard, loading atoms onto the

Floquet states is important preparing topological states. One possible approach
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is slowly introducing the periodic driving in the system, to continuously con-

nect the lowest band of the static lattice to the one of Floquet bands. If the

gap is always opened during the loading process, atoms can be fully loaded

onto the Floquet states in the adiabatic limit. Adiabatic passage can be ob-

tained by ramping up the driving at initial frequency ωi and slowly changing

frequency to the target frequency ωf , which can minimize Landau-Zener type in-

terband transition. Practical initial frequency ωi can be suggested in the range

of ε/2~ < ωi < ε/~, to reduce undesirable higher-order interband couplings

during frequency ramp.

We note that topology of the Floquet band also should be considered

for efficient loading [154]. Because the lowest band of the static optical lattice

is topologically trivial, gap closing is inevitable if the target Floquet state is

topologically non-trivial. Therefore, to make adiabatic passage, atoms should

be first loaded onto topologically trivial Floquet state. For example, atoms can

be loaded onto lower Floquet band linearly ramping up the driving amplitude

from zero to the xω = 0.11a, x2ω > xc2ω at frequency ωi = 0.75(ε/~) initially,

then increasing frequency to ωf = ε/~ slowly. Non-trivial Floquet states can be

prepared by route where x2ω and ϕ does not cross the topological critical point.

In this work, our numerical results are based on the two-band approx-

imation. Away from this approximation, higher bands in static optical lattice

can be resonantly coupled with two lowest bands. In this case, two-band topo-

logical phase can be interfered due to the participation of the other bands, or

suffered by heating from subsequent interband transition to higher bands. For

example, measurement on signature of topological ladder in shaken 1D optical

lattice implies the participation of higher bands.

To mitigate these effects, double well optical lattice can be employed,
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Figure 7.6: Dispersion of double well optical lattice as a function of V1, at
V0 = 8Er.

which is given by

Ĥ(t) =
p̂2

2m
+
V0

2
cos

(
2π

a
x

)
+
V1

2
cos

(
4π

a
x

)
− F (t)x̂. (7.13)

By increasing the depth of short lattice potential, V1, the lowest two bands are

energetically isolated from higher bands [Fig. 7.6]. As the strength of n-photon

resonant interband coupling is approximately given by order of (Kω)n [147], it

can effectively suppress the effect from the higher bands. For example, when

V0 = 8Er, V1 = 8Er, and 2~ω = εp − εs, p-band is coupled to d-band via n =

4 ∼ 6 process, while s-p bands are coupled via 2-photon process. In numerical

estimation, we found that the participation of higher bands is under 1% up to

Kω < 1.4, where driving offers sufficient gap between Floquet bands. Therefore,

effective two-band model can be realized because of negligible resonant coupling

to higher bands.

We have dealt with Floquet topological engineering of single-particle

Hamiltonian. This can be readily extended to many-body physics by adding
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interatomic interactions, which can offer opportunity for exploring many-body

effects on topological properties [102]. However, interactions redistribute ab-

sorbed energy from driving field, so Floquet system will be heat up to inifinite

temperature [155]. In addition, heating can be enhanced further because of com-

plicated excitation spectrum by interaction [129,156,157]. One approach to ob-

serve interacting Floquet states is to find and engineer prethermal state, which is

transient but stable Floquet state before infinite thermalization [158]. In recent,

prethermalization was observed in driven optical lattice system [159, 160], and

the existence of prethermal regimes for resonantly driven system were theoret-

ically expected [161, 162]. Therefore, experimental investigation on prethermal

state at resonant condition would be interesting future work.

7.6 Summary

We numerically study topological property and topological charge pumping in

resonantly shaken 1D optical lattice. Driven Hamiltonian have symmetry in

specific timeframe where Zak phase corresponds to the number of edge states.

In other stroboscopic timeframe, Zak phase is ill-defined, but degenerate edge

states are preserved in all timeframe. Therefore, although resonant driving gen-

erates non-trivial edge states in the system regardless of timeframe, selection

of timeframe is important to measure quantity related to the Zak phase. The

temporal oscillation of Zak phase is directly related to the micromotion in adi-

abatic transport. As a result, when the system adiabatically undergoes topo-

logical charge pumping sequence, transported charge after pumping period Tp

is quantized, but oscillates in a shaking period T . It suggests that micromotion

would be vanished if periodic driving maintains the symmetry of Hamiltonian at
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any timeframe. Our results demonstrate Floquet topological states in resonantly

driven 1D optical lattice, and importance of micromotion on experimental mea-

surement.
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Chapter 8

Conclusions and Outlook

The main topic of this thesis was the realization of the topological ladder with

resonant modulation. The ladder Hamiltonian was engineered in 1D optical lat-

tice under the concept of synthetic dimension, where the degrees of freedom are

regarded as extra dimension. Here, the band degree of freedom was first intro-

duced for topological band engineering. By implementing moving optical lattice

(or, Raman transition) and periodic shaking of lattice position with proper reso-

nant condition, the artificial gauge field and next-nearest-neighbor hopping were

successfully demonstrated, which led to the realization of topological ladders:

Harper-Hofstadter like ladder and Creutz ladder.

In chapter 5, resonant coupling between band states are triggered by Ra-

man transition. Raman transition acts as a moving optical lattice, and it offers

a complex phase on resonant transition between band states, which leads to uni-

form artifical gauge field in ladder description composed of real and synthetic

lattce sites. The band state resolved momentum distribution of the ground state

was directly measured by band-mapping technique, and experimental results

indicate chiral ground state. These chiral ground state were stable until the
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localized limit at strong resonant coupling. The experimental results on quench

dynamics, which can be interpreted as skipping orbit motion, also signifies the

effect of strong gauge field. The momentum asymmety in quench dynamics,

originated from the weak next-nearest-neighbor hopping (or, nearest-neighbor

hopping accompanied with band state changing), was also further examined

with numerically predicted dynamics.

In chapter 6, we introduced the periodic shaking of the lattice position

with frequency that is resonant to the energy difference between band states.

Interband transition occurs when the integer multiples of shaking frequency

reached band gap energy, and it was described by ladder model under the syn-

thetic dimensional concept. Two resonant conditions, 1-photon and 2-photon

resonant processes, are expected to generate vertical and diagonal hopping in the

ladder description, which lead to realization of Creutz ladder. In these systems,

the structure of effective Hamiltonian is examined by the resonant condition

and interferometry with band state resolved momentum distribution. Observed

experimental signatures indicated that 2-photon resonant process can generate

topological states. In chapter 7, the extended scheme with two harmonic fre-

quences was suggested to demonstrate topological charge pumping. Zak phase

of the system can be continuously manipulated by changing the relative driving

amplitude and phase between two modulations. The adaibatic changing of pa-

rameters in closed trajectory will fix the transported charge to integer number.

The micromotion and symmetry of the system were also discussed.

In this thesis, the experiments were demonstrated in the small interatomic

interaction regime, and the topological band engineering is based on single parti-

cle physics. In condensed matter physics, many intriguing phenomena are driven

by strong interaction, such as Kondo effect [163] and metal-insulator transi-
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tion [164]. When the interaction is strong enough, the topological band and

the correlation physics will compete with each other. Moreover, new topological

states can arise by spontaneous symmetry breaking due to interaction. There-

fore, implementing strong interaction in our engineered topological band will

allow us to expand our knowledge on topological physics. For alkaline-earth-like

Yb quantum gas, the ratio between interaction and kinetic energy can be tuned

by depth of optical lattice, or the interatomic interaction can be manipulated

through the scattering between two different electronic states, which is often

called as orbital Feshbach resonance [165–167]. With the strong interaction, the

stability of topological states in Hofstadter model which competes with magnetic

order can be studied in optical lattice setup with artificial gauge field [168,169].

Also, 1D topological Hubbard model could be studied with the inclusion of re-

pulsive on-site interactions [102,170]. Moreover, interaction induced topological

Kondo insulator [171–173] could be simulated in the 1D limit with our ladder

system composed of different band states [174–177]. With the aid of tomog-

raphy technique that employs interference between wave functions of different

band states [140], detailed information on correlate topological physics could be

investigated.

Because our topological bands are realized with periodic modulation, the

heating issue will be critical for the interacting system. According to eigenstate

thermalization hypothesis (ETH), driven many-body systems heat up to infinite

temperature, because driving energy will be redistributed and dissipated into

the system through the interaction [155, 178]. This inhibits the observation of

exotic correlated topological phases. One route to resolve the heating issue is to

find prethermal regime, which is a interaction time scale of Floquet Hamilto-

nian settled down to exotic phases before the infinite heating [81,179–182]. The
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heating mechanisms in interacting quantum gases in driven optical lattice have

been demonstrated recently [129,156,157,183], and signatures of prethermaliza-

tion were observed [159, 160]. Once understanding on heating mechanisms and

prethermalization in our system are achieved, intriguing correlated topological

phases could be observed in prethermal regime with strong interaction.
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L. Mazza, M. C. Bañuls, L. Pollet, I. Bloch, and S. Kuhr, “Observation

of Correlated Particle-Hole Pairs and String Order in Low-Dimensional

Mott Insulators,” Science, vol. 334, pp. 200–203, 2011.

[52] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß,

T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic

Mott insulator,” Nature, vol. 471, pp. 319–324, 2011.

[53] D. Greif, M. F. Parsons, A. Mazurenko, C. S. Chiu, S. Blatt, F. Huber,

G. Ji, and M. Greiner, “Site-resolved imaging of a fermionic Mott insula-

tor,” Science, vol. 351, pp. 953–957, 2016.

[54] M. F. Parsons, A. Mazurenko, C. S. Chiu, G. Ji, D. Greif, and M. Greiner,

“Site-resolved measurement of the spin-correlation function in the Fermi-

Hubbard model,” Science, vol. 353, pp. 1253–1256, 2016.

[55] S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and Y. Takahashi,

152



“Coherent driving and freezing of bosonic matter wave in an optical Lieb

lattice,” Science Advances, vol. 1, p. e1500854, 2015.

[56] G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M.

Stamper-Kurn, “Ultracold Atoms in a Tunable Optical Kagome Lattice,”

Physical Review Letters, vol. 108, p. 045305, 2012.

[57] A. Mielke, “Ferromagnetism in the Hubbard model on line graphs and

further considerations,” Journal of Physics A: Mathematical and General,

vol. 24, pp. 3311–3321, 1991.

[58] G. Montambaux, L.-K. Lim, J.-N. Fuchs, and F. Piéchon, “Winding Vec-
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[140] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S. Lühmann, K. Sen-

gstock, and C. Weitenberg, “Experimental reconstruction of the Berry

curvature in a Floquet Bloch band,” Science, vol. 352, pp. 1091–1094,

2016.

[141] J. H. Kang, J. H. Han, and Y. Shin, “Creutz ladder in a resonantly shaken

1D optical lattice,” New Journal of Physics, vol. 22, p. 013023, 2020.

[142] D. J. Thouless, “Quantization of particle transport,” Physical Review B,

vol. 27, pp. 6083–6087, 1983.

[143] L. Wang, M. Troyer, and X. Dai, “Topological Charge Pumping in a One-

Dimensional Optical Lattice,” Physical Review Letters, vol. 111, p. 026802,

2013.

[144] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang,

M. Troyer, and Y. Takahashi, “Topological Thouless pumping of ultra-

cold fermions,” Nature Physics, vol. 12, pp. 296–300, 2016.

[145] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I. Bloch,

“A Thouless quantum pump with ultracold bosonic atoms in an optical

superlattice,” Nature Physics, vol. 12, pp. 350–354, 2016.

164



[146] F. Mei, J.-B. You, D.-W. Zhang, X. C. Yang, R. Fazio, S.-L. Zhu, and L. C.

Kwek, “Topological insulator and particle pumping in a one-dimensional

shaken optical lattice,” Physical Review A, vol. 90, p. 063638, 2014.
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초 록

물질의 상은 Landau 이론에 따라 자발적인 대칭성 깨짐으로 분류되어

왔다. 그러나 양자 홀 효과의 발견은 물질의 상을 분류하는 새로운 패러다임을

제시하게되었다.양자홀효과의상태들은대칭성이깨지지않지만,밴드구조의

위상적불변수에따라그상이결정되게된다.위상적불변수에의해결정되고미

세한 변화에 둔감한 물리적 성질들을 특징으로, 위상적 물질들은 현대 응집물질

물리의 최전방을 대표하게 되었다.

상호작용하는 위상 절연체와 같은 복잡한 양자 다체 시스템은 현대 물

리의 어려운 문제로 남아있다. 광격자내의 초저온 원자들은 외부 환경에 대해

잘 고립되어 있고 원자간 상호작용을 포함한 실험 요소들을 쉽게 조절할 수 있

어 상호작용하는 위상 물리를 탐구하기에 적합하다. Harper-Hofstadter 모델과

Haldane 모델과 같은 잘 알려진 격자 모델을 참고하면 격자 내에 강한 자기장을

도입하거나 next-nearest-neighbor 터널링을 도입함으로써 위상 밴드들을 만들

수 있다. 이 학위논문에서는 공진하는 변조를 이용한 1차원 광격자에서 위상 사

다리를 구현한 일들을 다룬다. 1차원 광격자의 Bloch 상태들을 인공 차원으로

간주하여 실제 광격자점과 같이 사다리 모델을 구성하게 된다.

고정된 광격자에 움직이는 광격자를 도입함으로써 생성되는 Bloch 상태

간의 복소 터널링 위상에 대하여 연구하였다. 만들어진 인공 사다리 모델에서

원자가 단위 격자를 한바퀴 돌게 되면 위상을 얻게되는데, 이는 전하를 띤 입자

가 자기장 내에서 얻게되는 Aharonov-Bohm 위상과 동등한 것이다. 생성된 인공

게이지 장은 시간 반전 대칭을 깨트려 Harper-Hofstadter 모델과 비슷한 상황을

만들어낸다. 밴드 상태와 운동량 분석을 통해 비대칭 바닥상태를 직접 관측하

였고, 생성된 비대칭 바닥상태의 안정성도 조사할 수 있었다. 시스템을 갑자기

변화시켰을 때 나타나는 동역학도 시스템 내에 균일하고 강한 게이지 장이 존재
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한다는것을입증할수있었고,또한이의운동량의존성은인공사다리모델에서

특징적인 next-nearest-neighbor 터널링이 존재한다는 것을 의미한다.

격자 위치가 공진운동하는 1차원 광격자를 이용해 Creutz 사다리를 구현

하였다. 광격자를 흔드는 주파수가 두 밴드 상태간 에너지 차이의 절반이 되는

조건이 되면, 이광자 과정을 통해 밴드 상태가 바뀌는 nearest-neighbor 터널링이

유도되고, 이는 사다리 모델로 기술할 때 next-nearest-neighbor 터널링과 같다.

이러한대각선터널링은 Brillouin영역에서유사스핀의꼬임구조를만들고위상

끝 상태를 형성한다. 측정된 공진 주파수와 간섭 결과들은 유효 해밀토니안이 위

상적유사스핀꼬임구조를가지고있다는것을명확히보여준다.더나아가위상

전하 펌프 구현을 위해 1차원 광격자를 두개의 배음 주파수로 변조하는 방법을

제안하였다.

주요어 : 초저온 원자, 페르미 기체, 위상 절연체, 위상 사다리, 플로케 시스템,

위상 전하 펌프

학 번 : 2015-30971
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