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Abstract

Transport in disordered systems is one of central themes in condensed matter

physics. For systems with an isotropic energy dispersion, various theoretical approaches,

including the Boltzmann transport theory and the Kubo formula, have provided us with

useful frameworks for studying transport in disordered systems. Notably, it turns out

that the two approaches give the consistent correction to dc conductivity in isotropic

systems.

However, it has been elusive to correctly compute transport properties of systems

with an arbitrarily anisotropic Fermi surface, especially by using a diagrammatic ap-

proach. Motivated by this point, this thesis is devoted to the development of a diagram-

matic formalism for computing the dc conductivity of anisotropic systems.

We start by developing a generalized theory of transport in the semiclassical regime

(i.e. kF`e � 1), in the presence of electron-impurity and electron-phonon scatterings,

respectively. First, we brief on the semiclassical Boltzmann approach in anisotropic

multiband systems. Next, using the Kubo formula, we study the ladder approxima-

tion in anisotropic multiband systems and derive a relation satisfied by the transport

relaxation time. As a result, we verify that the two theories are generally equivalent.

Then we turn to a unique transport feature in the quantum regime (i.e. kF`e ∼

1), so-called weak localization. We rewrite the Bethe-Salepter equation and derive a

Cooperon ansatz, which captures the anisotropy and Berry phase of the system. Us-

ing this ansatz, we develop a systematic quantum interference theory and apply it to

various phases of few-layer black phosphorus. As a result, we predict that the mag-

netoconductivity at the semi-Dirac transition point will exhibit a nontrivial power-law

dependence on the magnetic field, while following the conventional logarithmic field

dependence of two-dimensional systems in the insulator and Dirac semimetal phases.

Notably, the ratio between the magnetoconductivity and Boltzmann conductivity turns
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out to be independent of the direction, even in strongly anisotropic systems.

keywords: dc conductivity, disorder, anisotropy, Boltzmann transport theory, vertex

correction, weak localization, black phosphorus

student number: 2018-26410
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Chapter 1

Introduction

Transport properties of disordered systems have been subjects of intense study in

condensed matter physics [1–3]. They can be significantly altered depending on sev-

eral characteristic lengths of the system, including the de-Broglie wavelength and the

mean-free path [4, 5]. In weakly interacting systems, an electron can be interpreted

as a quasiparticle that suffers collisions at a finite time interval, which is referred to

as the relaxation time. The relevant characteristic length is the mean-free path, `e,

which characterizes the distance that the electron travels between two successive col-

lisions. When the de-Broglie wavelength is much smaller than the mean-free path (i.e.

kF`e � 1), electrons can be viewed as semiclassical particles. In contrast, when the

two characteristic lengths are comparable (i.e. kF`e ∼ 1), electrons should be regarded

as quantum particles, which can exhibit interference phenomena. Thus, one should ex-

pect that distinct transport features would be found in each regime.

In the semiclassical regime, the Boltzmann transport theory within the relaxation

time approximation is known to be valid. For an isotropic single-band system, the

transport relaxation time τ tr
k at state k in the relaxation time approximation is given

by [6]
1

τ tr
k

=

∫
ddk′

(2π)d
Wk′k(1− cos θkk′), (1.1)

where Wk′k is the transition rate from k state to k′ state. The inverse relaxation time
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is a weighted average of the scattering probability in which the forward scattering

(θkk′ = 0) receives reduced weight.

Figure 1.1: Schematic diagrams for (a) Drude conductivity without the (1 − cos θ)

factor, (b) ladder diagrams giving the (1− cos θ) factor

In a diagrammatic approach, one can study transport by incorporating relevant

corrections into the current-current correlation function. In the semiclassical regime,

ladder diagrams gives the dominant correction. For an isotropic system, the ladder

vertex corrections yield the same result as the Boltzmann transport theory [7, 8], as

shown in Fig. 1.1. The single bubble diagram [Fig. 1.1(a)] captures the Drude conduc-

tivity with the quasiparticle lifetime τqp
k , which does not contain the (1− cos θ) factor,

whereas ladder diagrams [Fig. 1.1(b)] give the leading-order corrections to the current

vertex from impurity scattering, which yield the (1−cos θ) factor replacing τqp
k by the

transport relaxation time τ tr
k in Eq. (1.1).

Consideration of further diagrams, called maximally crossed diagrams, enables

us to study transport in the quantum regime. These diagrams play a crucial role in

the quantum regime in that the crossings of interaction lines induce a reduction fac-

tor of order O( 1
kF`e

). The maximally crossed diagrams capture an inherent negative

correction to dc conductivity, so-called weak localization. Weak localization emerges
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as electrons obtain an enhanced probability of backscattering due to a quantum inter-

ference effect. In contrast, electrons carrying π Berry phase lead to a positive quan-

tum correction to dc conductivity, which is referred to as weak antilocalization. For

isotropic systems, one can straightforwardly obtain an analytical expression for these

corrections .

In anisotropic systems, transport theory requires more care. As for the semiclassi-

cal Boltzmann approach, the relaxation time is not simply given by Eq. (1.1); rather

its relation is generalized to coupled integral equations relating the relaxation times at

different states [9–14]. Many materials of current interest, such as nodal-line semimet-

als [15, 16], multi-Weyl semimetals [17], and few-layer black phosphorus [18–20],

have an anisotropic Fermi surface. In order to describe transport in these materials,

one should properly consider the effects of the lattice anisotropy.

Although the majority of materials have an anisotropic Fermi surface, diagram-

matic approach to calculate the dc conductivity of disordered anisotropic systems has

been elusive. Motivated by this, we develop a diagrammatic formalism for computing

dc conductivity, which can be applied to a general anisotropic system.

The rest of this thesis is organized as follows.

In chapter 2, we review the Boltzmann transport theory in anisotropic multiband

systems for both elastic and inelastic scatterings.

In chapter 3, using a diagrammatic approach, we develop a theory for the vertex

corrections in anisotropic multiband systems, proving that the diagrammatic approach

gives the same result as the Boltzmann approach. We verify the validity of the theory

by testing the Ward identity.

In chapter 4, we construct a weak localization theory in anisotropic systems. To

this end, we derive a Cooperon ansatz of the Bethe-Salpeter equation, which captures

the anisotropy and Berry phase effect of the system.

In chapter 5, we apply the generalized weak localization theory to various phases

of few-layer black phosphorus. We predict a nontrivial power-law dependence on the
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magnetic field at the semi-Dirac transition point. We demonstrate that the ratio be-

tween the magnetoconductivity and the Boltzmann conductivity is independent of the

direction, even in strongly anisotropic systems.

In chapter 6, we conclude this thesis by giving a summary.
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Chapter 2

Semiclassical Boltzmann transport theory

In this chapter, we provide the semiclassical approach to calculate transport properties.

We use the semiclassical Boltzmann theory within the first-order Born approximation,

which is known to be valid in the weak scattering limit [21–23].

2.1 Elastic scattering

In this section, we briefly review the semiclassical Boltzmann theory in d-dimensional

anisotropic multiband systems for elastic scattering. In the following derivation, we

assume that electrons are scattered from randomly-distributed impurities. We set the

reduced Planck constant ~ to 1 for convenience.

We start by considering the phase space of a semiclassical system. Let f(r,k; t)

denote the particle distribution function of an electron at the state k at position r at

time t. The rate of change of f(r,k; t) with respect to time satisfies the following

equation:
df

dt
=
∂f

∂r
· vk +

∂f

∂k
· k̇ +

∂f

∂t
, (2.1)

where vk is the velocity at the state k. Assuming a homogeneous system without the

explicit time dependence in f(r,k; t) ≡ fk, Eq. (2.1) reduces to df
dt = ∂fk

∂k · k̇. When

there is no collision in the system, the number of particles in a phase volume element

5



is conserved, and thus df
dt = 0. In the presence of collision, the collision integral reads

(
df

dt

)
c

=

∫
ddk′

(2π)d
[Wkk′fk′(1− fk)−Wk′kfk(1− fk′)] ,

(2.2)

where Wk′k is the transition rate from k to k′. The first term in the right-hand side

of Eq. (2.2) describes the probability per unit time that an electron is scattered into a

state k and the second term describes the probability per unit time that an electron in

a state k is scattered out. The Boltzmann transport equation is given by
(
df
dt

)
=
(
df
dt

)
c
.

For multiband systems, the Boltzmann transport equation can be generalized as

∂fα,k
∂k

· k̇ =
∑
α′

∫
ddk′

(2π)d
{Wα,k;α′,k′fα′,k′(1− fα,k)

−Wα′,k′;α,kfα,k(1− fα′,k′)}, (2.3)

where α and α′ denote band indices.

For elastic scattering, the transition rate Wα′,k′;α,k is given by

Wα′,k′;α,k = 2πnimp|Vα′,k′;α,k|2δ(ξα,k − ξα′,k′), (2.4)

where nimp is the impurity density, Vα′,k′;α,k = 〈α′,k′|V |α,k〉 is the matrix element

of the impurity potential V , which describes a scattering from (α,k) to (α′,k′), and

ξα,k ≡ εα,k − µ is the energy of an electron at the state (α,k) measured from the

chemical potential µ. Here, the effect of electron-electron interactions can be taken

into account through the screening of the impurity potential. Note that Wα,k;α′,k′ =

Wα′,k′;α,k; thus, Eq. (2.3) reduces to

∂fα,k
∂k

· k̇ =
∑
α′

∫
ddk′

(2π)d
Wα′,k′;α,k(fα′,k′ − fα,k). (2.5)

In the presence of a small external electric field, we assume that fα,k deviates slightly

from f0
α,k:

fα,k = f0
α,k + δfα,k, (2.6)
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where f0
α,k ≡ f0(ξα,k) =

[
eβξα,k + 1

]−1 is the Fermi–Dirac distribution function in

equilibrium with β = 1
kBT

. We assume that the deviation δfα,k can be parameterized

up to first order of the electric field E as follows [12–14]:

δfα,k = (−e)
∑
i

E(i)v
(i)
α,kτ

(i)
α,kS

0(ξα,k), (2.7)

where S0(ξ) = −∂f0(ξ)
∂ξ = βf0(ξ)

[
1− f0(ξ)

]
, and v(i)

α,k and τ (i)
α,k are the velocity

and transport relaxation time along the ith direction at the state (α,k), respectively.

Inserting Eq. (2.7) into Eq. (2.5), we have an integral equation relating the relaxation

times at different states

1 =
∑
α′

∫
ddk′

(2π)d
Wα′,k′;α,k

τ (i)
α,k −

v
(i)
α′,k′

v
(i)
α,k

τ
(i)
α′,k′

 , (2.8)

which reduces to Eq. (1.1) in an isotropic single-band system.

The deviation of the electron distribution function from the equilibrium value gives

rise to the current density

J (i) = g
∑
α

∫
ddk

(2π)d
(−e)v(i)

α,kδfα,k =
∑
j

σijE
(j), (2.9)

where g is the degeneracy factor and σij is a matrix element of the conductivity tensor

given by

σij = ge2
∑
α

∫
ddk

(2π)d
S0(ξα,k)v

(i)
α,kv

(j)
α,kτ

(j)
α,k. (2.10)

2.2 Inelastic scattering

For inelastic scattering, such as phonon-mediated scattering, Eq. (2.8) is no longer

valid and the principle of detailed balance should be considered [24]:

Wα′,k′;α,kf
0
α,k(1− f0

α′,k′) = Wα,k;α′,k′f
0
α′,k′(1− f0

α,k). (2.11)
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Expanding up to first order of δf , Eq. (2.3) reduces to

∂f0
α,k

∂k
· k̇ =

∑
α′

∫
ddk′

(2π)d
Wα′,k′;α,k

×

(
f0
α,k

f0
α′,k′

δfα′,k′ −
1− f0

α′,k′

1− f0
α,k

δfα,k

)
. (2.12)

Using the parameterization in Eq. (2.7), we obtain an integral equation for inelastic

scattering:

1 =
∑
α′

∫
ddk′

(2π)d
Wα′,k′;α,k

×

τ (i)
α,k −

v
(i)
α′,k′

v
(i)
α,k

τ
(i)
α′,k′

(1− f0
α′,k′

1− f0
α,k

)
. (2.13)

Note that the integral equation for inelastic scattering is different from that for elastic

scattering by the factor
(

1−f0
α′,k′

1−f0α,k

)
.

For phonon scattering, the transition rate Wα′,k′;α,k is given by [25]

Wα′,k′;α,k = 2π
∑
λ

|
〈
α′,k′

∣∣Mλ

∣∣α,k〉 |2
× {[nB(Ωλ,q) + 1] δ(ξα′,k′ − ξα,k + Ωλ,q)

+ nB(Ωλ,q)δ(ξα′,k′ − ξα,k − Ωλ,q)}, (2.14)

where nB(Ωλ,q) =
[
eβΩλ,q − 1

]−1 is the Bose–Einstein distribution function, andMλ

denotes the electron-phonon interaction for the phonon polarization λ. Here, the first

(second) term on the right-hand side of Eq. (2.14) denotes the emission (absorption)

of a phonon with momentum q = ±(k − k′) and frequency Ωλ,q. In this thesis,

umklapp processes are neglected since we are interested in the weak scattering limit

where normal processes are dominant [26].
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Chapter 3

Ladder vertex corrections

In this chapter, we develop a theory for the vertex corrections to the dc conductivity for

elastic and inelastic scatterings in d-dimensional anisotropic multiband systems, and

verify that the results are consistent with those obtained from the Boltzmann approach

in chapter 2.

The dc conductivity can be obtained by taking the long wavelength limit and then

the static limit as follows [7]:

σdc
ij = − lim

ν→0

1

ν
ImΠij(q = 0, ν), (3.1)

where Πij(q, ν) is the retarded current-current response function, which is obtained

using the analytic continuation iνm → ν + i0+ of the current-current response func-

tion Πij(q, iνm). First, we consider the single bubble diagram without the vertex cor-

rections [Fig. 1.1(a)]

Πij(iνm)=
ge2

βV
∑

α,α′,k,iωn

Gα(k, iωn)v
(i)
α,α′(k,k)Gα′(k, iωn + iνm)v

(j)
α′,α(k), (3.2)

where Πij(iνm) = Πij(q = 0, iνm), ωn and νm are fermionic and bosonic Matsubara

frequencies, respectively, V is the volume of the system, Gα(k, iωn) is the interacting

Green’s function, and v(j)
α′,α(k) = 〈α′,k|v̂(j)|α,k〉 is the matrix element of the veloc-

ity operator v̂(j) = ∂Ĥ
∂kj

along the jth direction. The velocity matrix element can be

9



expressed as

v
(j)
α′,α(k) = v

(j)
α,k

〈
α′,k

∣∣α,k〉+ (εα,k − εα′,k)
〈
α′,k

∣∣ ∂
∂kj

∣∣α,k〉 . (3.3)

In the ν → 0 limit, the second term in Eq. (3.3) does not contribute to Πij(iνm) as

finite energy transfer between (α′,k) and (α,k) is not allowed in the single bubble

diagram. By choosing an orthonormal basis set, the right-hand side of Eq. (3.3) sim-

ply reduces to v(j)
α,kδα′,α, and only diagonal elements of the velocity matrix remain in

Eq. (3.2).

Incorporating the ladder diagrams, we finally obtain the current-current response

function supplemented with the vertex corrections as follows [Fig. 1.1(b)]:

Πij(iνm) =
ge2

βV
∑

α,k,iωn

Gα(k, iωn)v
(i)
α,kGα(k, iωn + iνm)

× v(j)
α,kΛ(j)

α (k, iωn, iωn + iνm), (3.4)

where v(j)
α,kΛ

(j)
α (k, iωn, iωn + iνm) is the vertex corresponding to the current density

operator along the jth direction. Note that we only included the diagonal elements of

the velocity matrix, as discussed above.

To compute the dc conductivity using a diagrammatic method, we can either per-

form the Matsubara frequency summation first or the momentum integral first. In the

following, we use the former method where the frequency summation is performed

first, and present the other method in chapter 3.4.

3.1 Impurity scattering

As for elastic scattering, we consider randomly distributed impurities. We consider the

effect of impurities using the disorder-averaged Green’s function

Gα(k, iωn) =
1

iωn − ξα,k − Σα(k, iωn)
, (3.5)

where Σα(k, iωn) is the electron self-energy from impurity scattering. The imaginary

part of the self-energy can be related to the quasiparticle lifetime τqp
α,k as ImΣα(k, iωn) =

10



− 1
2τqpα,k

sgn(ωn). Assuming small impurity density, we obtain the inverse of the quasi-

particle lifetime

1

τqp
α,k

= 2πnimp

∑
α′

∫
ddk′

(2π)d
|Vα′,k′;α,k|2δ(ξα,k − ξα′,k′)

=
∑
α′

∫
ddk′

(2π)d
Wα′,k′;α,k. (3.6)

Within the ladder approximation, the vertex correction is approximated by a sum

of ladder diagrams given by a self-consistent form as follows [Fig. 3.1]:

v
(j)
α,kΛ(j)

α (k, iωn, iωn + iνm) = v
(j)
α,k +

nimp

V
∑
α′,k′

|Vα′,k′;α,k|2Gα′(k′, iωn) (3.7)

× v(j)
α′,k′Λ

(j)
α′ (k

′, iωn, iωn + iνm)Gα′(k′, iωn + iνm).

As the form of the self-consistent equation in Eq. (3.7) is analogous to Eq. (2.8), Λ(j)

can be related to the transport relaxation time. Here, we derive this relation rigorously.

Figure 3.1: Diagrams for the ladder vertex corrections for elastic scattering

Let us first compute the current-current correlation function in Eq. (3.4):

Πij(iνm) ≡ 1

β

∑
iωn

P (iωn, iωn + iνm)

= −
∮
C

dz

2πi

P (z, z + iνm)

eβz + 1
, (3.8)

11



where we introduce a complex function P (iωn, iωn + iνm), whose summation can be

performed via integration along the contour C shown in Fig. 3.2. Note that the contour

integral in Eq. (3.8) has poles at z = iωn.

Figure 3.2: Contour integral along C, which has two branch cuts along the axes z = 0

and z = −iνm

Following chapter 8 of Mahan [7], we compute the contour integral in Eq. (3.8):

Πij(iνm) = −
∮
C

dz

2πi
f0(z)P (z, z + iνm) (3.9)

=

∫
dξ

2πi
f0(ξ)

[
−P (ξ + i0+, ξ + iνm) + P (ξ − i0+, ξ + iνm)

−P (ξ − iνm, ξ + i0+) + P (ξ − iνm, ξ − i0+)
]
.

After performing the analytic continuation (iνm → ν + i0+), we have

ΠR
ij(ν) =

∫
dξ

2πi
{[f0(ξ)− f0(ξ + ν)]PAR(ξ, ξ + ν) (3.10)

− f0(ξ)PRR(ξ, ξ + ν) + f0(ξ + ν)PAA(ξ, ξ + ν)},

12



where the superscripts A and R represent advanced and retarded functions, respec-

tively. Thus, in the ν → 0 limit, the dc conductivity can be rewritten as

σij =
ge2

2π

∫
dξS0(ξ)[PAR(ξ, ξ)− RePRR(ξ, ξ)], (3.11)

which includes the PAR(ξ, ξ) and PRR(ξ, ξ) terms in the integrand.

Here, we show that only the PAR(ξ, ξ) term contributes to the dc conductivity in

the limit of small impurity density. Before computing each term, we note several useful

formulas pertaining to the spectral function Aα(k, ξ) = −2ImGR
α (k, ξ):

lim
∆α,k→0

Aα(k, ξ) = 2πδ(ξ − ξα,k), (3.12a)

lim
∆α,k→0

A2
α(k, ξ) =

2πδ(ξ − ξα,k)

∆α,k
, (3.12b)

where ∆α,k ≡ 1
2τqpα,k

. Note that, in the ∆α,k → 0 limit, or equivalently in the nimp → 0

limit, the spectral function reduces to a delta function.

First, let us evaluate the contribution of the PRR(ξ, ξ) term:

PRR(ξ, ξ) =
ge2

V
∑
α,k

v
(i)
α,kG

R
α (k, ξ)v

(j)
α,kΛ(j)RR

α (k, ξ, ξ)GR
α (k, ξ). (3.13)

In the nimp → 0 limit, the product of the two Green’s functions vanishes and the

contribution of PRR(ξ, ξ) to the dc conductivity becomes negligible [7].

Subsequently, let us compute the PAR(ξ, ξ) term as follows:

PAR(ξ, ξ) =
ge2

V
∑
α,k

v
(i)
α,kG

A
α (k, ξ)v

(j)
α,kΛ(j)AR

α (k, ξ, ξ)GR
α (k, ξ)

=
2πge2

V
∑
α,k

v
(i)
α,kv

(j)
α,kτ

qp
α,kδ(ξ − ξα,k)Λ(j)AR

α (k, ξ, ξ). (3.14)

Therefore, the dc conductivity can be simplified as

σij =
1

2π

∫
dξS0(ξ)PAR(ξ, ξ)

=
ge2

V
∑
α,k

S0(ξα,k)v
(i)
α,kv

(j)
α,kτ

qp
α,kΛ(j)AR

α (k, ξα,k, ξα,k). (3.15)

13



Comparing Eq. (3.15) with Eq. (2.10), it is natural to relate Λ(j) to the transport

relaxation time along the jth direction. After analytic continuation, Eq. (3.7) reduces

to

Λ(j)AR
α (k, ξ, ξ) = 1 +

∑
α′

∫
ddk′

(2π)d
Wα′,k′;α,k

v
(j)
α′,k′

v
(j)
α,k

τqp
α′,k′Λ

(j)AR
α′ (k′, ξ, ξ). (3.16)

Defining the transport relaxation time along the jth direction as

τ
(j)
α,k ≡ τ

qp
α,kΛ(j)AR

α (k, ξα,k, ξα,k). (3.17)

we can rewrite Eq. (3.16) as

τ
(j)
α,k

τqp
α,k

= 1 +
∑
α′

∫
ddk′

(2π)d
Wα′,k′;α,k

v
(j)
α′,k′

v
(j)
α,k

τ
(j)
α′,k′ . (3.18)

Using the definition of the quasiparticle lifetime in Eq. (3.6), we obtain an integral

equation for the transport relaxation time for elastic scattering in anisotropic multiband

systems as

1 =
∑
α′

∫
ddk′

(2π)d
Wα′,k′;α,k

τ (j)
α,k −

v
(j)
α′,k′

v
(j)
α,k

τ
(j)
α′,k′

 , (3.19)

which is the same as the semiclassical result in Eq. (2.8). Furthermore, using the defi-

nition of the transport relaxation time, we can easily verify that Eq. (3.15) is consistent

with Eq. (2.10) obtained from the semiclassical approach.

3.2 Phonon scattering

As in the case of elastic scattering, we develop a theory for the vertex corrections for

inelastic scattering. Here, we specifically consider phonon-mediated scattering, which

yields intrinsic resistivity in a metal.

The self-consistent equation of the vertex part for phonon scattering is given by
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[Fig. 3.3]

v
(j)
α,kΛ(j)

α (k, iωn, iωn + iνm) = v
(j)
α,k −

1

βV
∑

α′,q,iql,λ

|
〈
α′,k + q

∣∣Mλ

∣∣α,k〉 |2Dλ(q, iql)

× Gα′(k + q, iωn + iql)Gα′(k + q, iωn + iql + iνm)

× v(j)
α′,k+qΛ

(j)
α′ (k + q, iωn + iql, iωn + iql + iνm),

(3.20)

where ql is a bosonic Matsubara frequency and Dλ(q, iql) =
2Ωλ,q

(iql)2−Ω2
λ,q

is the non-

interacting phonon Green’s function with the renormalized phonon frequency Ωλ,q.

Eq. (3.20) can be rewritten as

Λ(j)
α (k, iωn, iωn + iνm) = 1−

∑
α′,λ

∫
ddq

(2π)d
|
〈
α′,k + q

∣∣Mλ

∣∣α,k〉 |2 v(j)
α′,k+q

v
(j)
α,k

× 1

β

∑
iql

Q(iql + iωn, iql + iωn + iνm), (3.21)

where

Q(iql + iωn, iql + iωn + iνm) ≡ Gα′(k + q, iql + iωn)Gα′(k + q, iql + iωn + iνm)

×Dλ(q, iql)Λ
(j)
α′ (k + q, iql + iωn, iql + iωn + iνm).

The summation of Q(iql + iωn, iql + iωn + iνm) over the bosonic Matsubara

frequency ql can be performed with the aid of a contour integral along the contour C ′

shown in Fig. 3.4: ∮
C′

dz

2πi

Q(z + iωn, z + iωn + iνm)

eβz − 1
. (3.22)

Note that the contour integral in Eq. (3.22) has poles at z = iql as well as z = ±Ωλ,q.

Therefore, the summation S(iωn, iωn+ iνm) ≡ 1
β

∑
iql
Q(iql + iωn, iql + iωn+ iνm)
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Figure 3.3: Dyson’s equation for the ladder vertex corrections for inelastic scattering

can be rewritten as follows:

S(iωn, iωn + iνm) =

∮
C′

dz

2πi
nB(z)Q(z + iωn, z + iωn + iνm)

− nB(Ωλ,q)Gα′(k + q, iωn + Ωλ,q + iνm)Gα′(k + q, iωn + Ωλ,q)

× Λ
(j)
α′ (k + q, iωn + Ωλ,q, iωn + Ωλ,q + iνm)

− [nB(Ωλ,q) + 1]Gα′(k + q, iωn − Ωλ,q + iνm)Gα′(k + q, iωn − Ωλ,q)

× Λ
(j)
α′ (k + q, iωn − Ωλ,q, iωn − Ωλ,q + iνm), (3.23)
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where the contour integral can be decomposed as∮
C′

dz

2πi
nB(z)Q(z + iωn, z + iωn + iνm)

= −
∫

dξ′

2πi
f0(ξ′)

2Ωλ,q

(ξ′ − iωn)2 − Ω2
λ,q

{Gα′(k + q, ξ′ + i0+)Gα′(k + q, ξ′ + iνm)

× Λ
(j)
α′ (k + q, ξ′ + i0+, ξ′ + iνm)

− Gα′(k + q, ξ′ − i0+)Gα′(k + q, ξ′ + iνm)Λ
(j)
α′ (k + q, ξ′ − i0+, ξ′ + iνm)}

−
∫

dξ′

2πi
f0(ξ′)

2Ωλ,q

(ξ′ − iωn − iνm)2 − Ω2
λ,q

{Gα′(k + q, ξ′ − iνm)Gα′(k + q, ξ′ + i0+)

× Λ
(j)
α′ (k + q, ξ′ − iνm, ξ′ + i0+)

− Gα′(k + q, ξ′ − iνm)Gα′(k + q, ξ′ − i0+)Λ
(j)
α′ (k + q, ξ′ − iνm, ξ′ − i0+)}.

(3.24)

To compute Λ(j)AR(k, ξ, ξ), let us perform the analytic continuation iωn → ξ − i0+

and iωn + iνm → ξ + ν + i0+. Thus, Eq. (3.23) at ν = 0 reduces to

SAR(ξ, ξ) = −nB(Ωλ,q)|GR
α′(k + q, ξ + Ωλ,q)|2Λ

(j)AR
α′ (k + q, ξ + Ωλ,q, ξ + Ωλ,q)

− [1 + nB(Ωλ,q)]|GRα′(k + q, ξ − Ωλ,q)|2Λ
(j)AR
α′ (k + q, ξ − Ωλ,q, ξ − Ωλ,q)

−
∫

dξ′

2πi
f0(ξ′)|GR

α′(k + q, ξ′)|2Λ
(j)AR
α′ (k + q, ξ′, ξ′)

×

[
2Ωλ,q

(ξ′ − ξ − i0+)2 − Ω2
λ,q

−
2Ωλ,q

(ξ′ − ξ + i0+)2 − Ω2
λ,q

]
. (3.25)

The last integration over ξ′ can be performed with the aid of the Cauchy principal

value

2Ωλ,q

(ξ′ − ξ − i0+)2 − Ω2
λ,q

−
2Ωλ,q

(ξ′ − ξ + i0+)2 − Ω2
λ,q

(3.26)

= 2πi
[
δ(ξ′ − ξ − Ωλ,q)− δ(ξ′ − ξ + Ωλ,q)

]
.

Therefore, in the weak-scattering limit, the self-consistent Dyson’s equation for inelas-
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tic scattering [Eq. (3.20)] can be rewritten as

Λ(j)AR
α (k, ξ, ξ) = 1−

∑
α′,λ

∫
ddq

(2π)d
|
〈
α′,k + q

∣∣Mλ

∣∣α,k〉 |2 v(j)
α′,k+q

v
(j)
α,k

SAR(ξ, ξ)

= 1 + 2π
∑
α′,λ

∫
ddq

(2π)d
|
〈
α′,k + q

∣∣Mλ

∣∣α,k〉 |2 v(j)
α′,k+q

v
(j)
α,k

τqp
α′,k+q

× Λ
(j)AR
α′ (k + q, ξα′,k+q, ξα′,k+q)

× {
[
nB(Ωλ,q) + f0(ξ + Ωλ,q)

]
δ(ξ + Ωλ,q − ξα′,k+q)

+
[
nB(Ωλ,q) + 1− f0(ξ − Ωλ,q)

]
δ(ξ − Ωλ,q − ξα′,k+q)}. (3.27)

Figure 3.4: Contour integral along C ′, which has two branch cuts along the axes

z = −iωn and z = −iωn − iνm

Finally, let us replace Λ(j) by the transport relaxation time defined in Eq. (3.17).
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The quasiparticle lifetime in the presence of phonon scattering is given by [25]

1

τqp
α,k

= 2π
∑
α′,λ

∫
ddq

(2π)d
|
〈
α′,k + q

∣∣Mλ

∣∣α,k〉 |2 (3.28)

× {
[
1 + nB(Ωλ,q)− f0

α′,k+q

]
δ(ξα,k − ξα,k+q − Ωλ,q)

+
[
nB(Ωλ,q) + f0

α′,k+q

]
δ(ξα,k − ξα′,k+q + Ωλ,q)}.

Here, we replaced f0(ξα′,k+q) by f0
α′,k+q.

Notably, for phonon emission process (ξα,k = ξα′,k+q + Ωλ,q),

1 + nB(Ωλ,q)− f0
α′,k+q = [1 + nB(Ωλ,q)]

(
1− f0

α′,k+q

1− f0
α,k

)
,

(3.29)

whereas for phonon absorption process (ξα,k = ξα′,k+q − Ωλ,q),

nB(Ωλ,q) + f0
α′,k+q = nB(Ωλ,q)

(
1− f0

α′,k+q

1− f0
α,k

)
. (3.30)

Thus, Eq. (3.28) can be rewritten as

1

τqp
α,k

=
∑
α′

∫
ddq

(2π)d
Wα′,k+q;α,k

(
1− f0

α′,k+q

1− f0
α,k

)
, (3.31)

where Wα′,k+q;α,k is the transition rate defined in Eq. (2.14).

Replacing Λ(j) by the transport relaxation time and using the definition of quasi-

particle lifetime in Eq. (3.31), we can rewrite Eq. (3.27) as

τ
(j)
α,k

τqp
α,k

= 1 +
∑
α′

∫
ddq

(2π)d
Wα′,k+q;α,k

v
(j)
α′,k+q

v
(j)
α,k

τ
(j)
α′,k+q

(
1− f0

α′,k+q

1− f0
α,k

)
, (3.32)

which is consistent with the semiclassical result in Eq. (2.13).

3.3 Ward identities

The validity of the diagrammatic approach in this chapter can be verified by testing the

Ward identity [27,28], which is the exact relationship between the self-energy and the
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vertex correction arising from the continuity equation. It must hold if the correspond-

ing diagrams are properly included both in the self-energy and the vertex correction.

For both elastic and inelastic scatterings, we demonstrate that the Ward identity is

satisfied in anisotropic multiband systems as follows:

v
(j)
α,kΛ(j)

α (k, iωn, iωn) = v
(j)
α,k +

∂Σα(k, iωn)

∂k(j)
, (3.33)

which indicates that we have employed the proper vertex part Λ
(j)
α (k, iωn, iωn + iνm)

corresponding to the ladder self-energy diagrams. This can be obtained straightfor-

wardly by subtracting Σα(k, iωn) from Σα(k + p) and taking the limit p→ 0 [7].

3.4 Alternative derivations for the vertex corrections

In this section, following chapter 10 of Coleman [8], we derive the vertex corrections

to the dc conductivity for impurity scattering by performing the momentum integral

first. Let us start from Eq. (3.7). The electrons on the Fermi surface mainly contribute

to the dc conductivity, and thus we focus on the vertex corrections for electrons at the

Fermi energy. As the two Green’s functions on the right-hand side of Eq. (3.7) become

appreciable near the Fermi energy at low frequencies, we separate the two terms from

the rest. Thus, Eq. (3.7) reduces to

Λ(j)
α (k, iωn, iωn + iνm) ≈ 1 + nimp

∑
α′

∫
ddk′

(2π)d
|Vα′,k′;α,k|2

v
(j)
α′,k′

v
(j)
α,k

× Λ
(j)
α′ (k

′, iωn, iωn + iνm)δ(ξα′,k′)

×
∫
dξG(ξ, iωn)G(ξ, iωn + iνm), (3.34)

where

G(ξ, iωn) =
1

iωn − ξ + isgn(ωn) 1
2τqpα,k

(3.35)

is the disorder-averaged Green’s function up to the first-order Born approximation.

Note that impurity scattering of electrons at the Fermi energy provides a constant con-
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tribution to the real part of the self-energy, which can be absorbed in the chemical

potential.

First, let us calculate the energy integral. We can compute the energy integral in

Eq. (3.34) with the aid of a contour integral method as follows:∫
dξG(ξ, iωn)G(ξ, iωn + iνm) =

2πΘ(νm, ωn)

νm + 1
τqp
α′,k′

, (3.36)

where

Θ(νm, ωn) =

 1 for −νm < ωn < 0,

0 otherwise.
(3.37)

Here, we assumed νm > 0. Thus, Eq. (3.34) reduces to

Λ(j)
α (k, iωn, iωn + iνm) ≈ 1 + nimp

∑
α′

∫
ddk′

(2π)d
δ(ξα′,k′)|Vα′,k′;α,k|2

v
(j)
α′,k′

v
(j)
α,k

× Λ
(j)
α′ (k

′, iωn, iωn + iνm)
2πΘ(νm, ωn)

νm + 1
τqp
α′,k′

. (3.38)

Here, the integral provides a non-zero value only if the poles of the two Green’s func-

tions are on the opposite sides with respect to the real axis in frequency space.

Note that, because of the Θ(νm, ωn) term, Λ
(j)
α (k, iωn, iωn+iνm) has a value inde-

pendent of ωn within the range−νm < ωn < 0, and otherwise 1. Thus, Λ
(j)
α (k, iωn, iωn+

iνm) can be expressed as

Λ(j)
α (k, iωn, iωn + iνm) =

 Λ
(j)
α (k, iνm) for −νm < ωn < 0,

1 otherwise.
(3.39)

Here, we assumed Λ
(j)
α (k, iωn, iωn + iνm) = Λ

(j)
α (k, iνm) for −νm < ωn < 0.

An alternative expression of the dc conductivity in the imaginary time formalism

is given by

σij(iνm) =
1

νm
[Πij(iνm)−Πij(0)] . (3.40)
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Note that electrons near the Fermi surface mostly contribute to the difference between

the current-current response functions at νm and νm = 0 [8]. Therefore, the dc con-

ductivity can be obtained as

σij(iνm) =
ge2

βνmV
∑

α,k,iωn

[
v

(i)
α,kv

(j)
α,kΛ(j)

α (k, iωn, iωn + iνm)

×Gα(k, iωn)Gα(k, iωn + iνm)− (iνm → 0)]

≈ ge2

βνm

∑
α,iωn

∫
ddk

(2π)d
δ(ξα,k)v

(i)
α,kv

(j)
α,k

[
Λ(j)
α (iωn, iωn + iνm)

×
∫
dξG(ξ, iωn)G(ξ, iωn + iνm)− (iνm → 0)

]
= ge2

∑
α

∫
ddk

(2π)d
δ(ξα,k)v

(i)
α,kv

(j)
α,k

Λ
(j)
α (k, iνm)

νm + 1
τqpα,k

. (3.41)

Here, we used 1
β

∑
ωn

Θ(νm, ωn) = νm
2π . Therefore, by defining the transport relax-

ation time along the jth direction as

τ
(j)
α,k ≡ lim

νm→0
Λ(j)
α (k, iνm)τqp

α,k, (3.42)

we obtain a result consistent with the dc conductivity obtained through the semiclassi-

cal approach in Eq. (2.10).

Performing limνm→0
1
β

∑
ωn

Θ(νm, ωn) on both sides of Eq. (3.38), followed by

multiplication by 2π
νm

, we have

τ
(j)
α,k

τqp
α,k

= 1 + 2πnimp

∑
α′

∫
ddk′

(2π)d
|Vα′,k′;α,k|2δ(ξα,k − ξα′,k′)

v
(j)
α′,k′

v
(j)
α,k

τ
(j)
α′,k′ . (3.43)

Here, we assumed ξα,k = ξα′,k′ ≈ 0. Therefore, we have an integral equation relating

the transport relaxation times as follows:

1 = 2πnimp

∑
α′

∫
ddk′

(2π)d
|Vα′,k′;α,k|2δ(ξα,k − ξα′,k′)

τ (j)
α,k −

v
(j)
α′,k′

v
(j)
α,k

τ
(j)
α′,k′

 ,(3.44)

which is consistent with the semiclassical result in Eq. (2.8).

22



3.5 Discussion

In summary, using a diagrammatic approach, we studied the vertex corrections to the

dc conductivity in anisotropic multiband systems We demonstrated that the diagram-

matic approach provides an equivalent result to that obtained from the semiclassical

Boltzmann approach for both elastic and inelastic scatterings. This result provides a

many-body justification for the generalized Boltzmann transport theory given by cou-

pled integral equations for anisotropic multiband systems, which is essential to capture

the effects of the anisotropy and multiple energy bands on transport correctly.
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Chapter 4

Quantum interference corrections

In this chapter, we construct a diagrammatic formalism for estimating a quantum in-

terference effect on transport, considering lattice anisotropy and Berry phase effect.

4.1 Bethe-Salpeter equation

In the previous chapter, we focused on the ladder vertex corrections combined with the

first-order Born approximation, which give the leading impurity correction to the cur-

rent vertex [Fig. 4.1(a)], satisfying a self-consistent equation [Fig. 4.1(b)]. We demon-

strated that this ladder approximation is consistent with the semiclassical Boltzmann

transport theory.

To study the quantum interference correction, one should consider further dia-

grams, called maximally crossed diagrams. The quantum correction can be boiled

down to three leading terms referred to as a bare Hikami box and two dressed Hikami

boxes [29], as shown in Fig. 4.1(c). The Hikami boxes can be computed by the Cooperon

operator, which obeys the following Bethe-Salpeter equation [Fig. 4.1(d)] (in the fol-
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Figure 4.1: Feynman diagrams describing the corrections to the dc conductivity. (a)

The current-current correlation function supplemented with the ladder vertex correc-

tion gives results equivalent to the Boltzmann transport theory. (b) The ladder vertex

correction satisfies the self-consistent Dyson’s equation. (c) The quantum correction

to the dc conductivity is mostly contributed by a bare Hikami box and two dressed

Hikami boxes. (d) The Cooperon operator obeys the self-consistent Bethe-Salpeter

equation.

lowing, we omit ~ for simplicity):

CAR
Q (k,k′) = nimpVk′,kV−k′,−k (4.1)

+
nimp

V
∑
p

Vp,kV−p,−kC
AR
Q (p,k′)GA(p, 0)GR(Q− p, 0),

whereCAR
Q (k,k′) is the Cooperon with the momentumQ = k+k′, Vk′,k = 〈k′|V |k〉

is the matrix element of the scattering potential V , and the superscripts A and R

represent the advanced and retarded functions, respectively. Here, we assume that

VQ−k′,Q−k ≈ V−k′,−k since the Cooperon diverges as Q → 0 and the dominant
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contribution comes from smallQ. We note that frequencies in the Cooperon are set to

zero as we focus on the dc conductivity. The retarded and advanced Green’s functions

are given by GR,A(p, ξ) = [ξ − ξp ± i/2τqp
p ]−1. As the Green’s functions near the

Fermi surface contribute mostly to the momentum summation in the right-hand side

of Eq. (4.1), we can perform the ξp−integral separately as
∫
dξpG

A(p, 0)GR(Q −

p, 0) = 2πi

[
Q · vp + i

2

(
1
τqpp

+ 1
τqpp−Q

)]−1

[8]. Here, we used ξQ−p = ξp−Q ≈

ξp −Q · ∂ξp∂p = ξp −Q · vp.

We deal with the denominator of Eq. (4.1) using the relation between the self-

energy and quasiparticle lifetime, Σ(p) = limω→0 Σ(p, iωn → ω + i0+) = −i
2τqpp

.

Then

i

2τqp
p−Q

=
i

2τqp
p

+
i

2

∂

∂p

(
1

τqp
p

)
· (−Q) =

i

2τqp
p

+Q · ∂Σ(p)

∂p
. (4.2)

Using the Ward identity in Eq. (3.33), we have

Q · vp +
i

2

(
1

τqp
p

+
1

τqp
p−Q

)
=

1

τqp
p

(
i+
∑
j

Q(j)v
(j)
p τ

(j)
p

)
. (4.3)

Accordingly, the Bethe-Salpeter equation can be rewritten as

CAR
Q (k,k′) ≈ nimpVk′,kV−k′,−k (4.4)

+
2πnimp

V
∑
p

δ(ξp)Vp,kV−p,−kC
AR
Q (p,k′)τqp

p

[
1 + ifQ(p)− f2

Q(p)
]
,

where fQ(p) ≡
∑

j Q
(j)v

(j)
p τ

(j)
p . Note that terms of order higher than Q2 are ignored.

Importantly, we capture the full anisotropy of the system by introducing fQ(p), which

is determined by the anisotropic velocities and transport relaxation times on the Fermi

surface.

4.2 Cooperon ansatz

Now, we are in a position to derive an ansatz of the Bethe-Salpeter equation. We

note that there appears Vk′,kV−k′,−k in Eq. (4.4). Let us assume that V−k′,−k ≡
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V ∗k′,kF (k,k′), where the phase factor F (k,k′) depends on the electronic structure of

the system. Here, we consider systems where F (k1,k3) = F (k1,k2)F (k2,k3) holds,

such as in few-layer black phosphorus. Introducing C̃AR
Q (k,k′) ≡ CAR

Q (k,k′)F (k′,k),

the Bethe-Salpeter equation reduces to

C̃AR
Q (k,k′) = nimp|Vk′,k|2 (4.5)

+
2πnimp

V
∑
p

δ(ξp)|Vp,k|2C̃AR
Q (p,k′)τqp

p

[
1 + ifQ(p)− f2

Q(p)
]
.

Performing 1
V
∑
k δ(ξk) on both sides of Eq. (4.5), we have

(2πτqp
k′ )−1 =

1

V
∑
p

δ(ξp)C̃AR
Q (p,k′)

[
−ifQ(p) + f2

Q(p)
]
, (4.6)

where we use the definition of the quasiparticle lifetime 1
τqpp

=
2πnimp

V
∑
k |Vp,k|2δ(ξk).

Let us consider the following ansatz of Eq. (4.6):

C̃AR
Q (k,k′) =

(2πN0τ
qp
k τqp

k′ )−1∑
i,j DijQiQj

, (4.7)

where Dij denotes the diffusion coefficients. Plugging this ansatz into Eq. (4.6), we

have

Dij =
1

N0V
∑
p

δ(ξp)v
(i)
p v

(j)
p τ

(i)
p τ

(j)
p (τqp

p )−1

=
1

N0V
∑
p

δ(ξp)(v
(i)
p )2(τ

(i)
p )2(τqp

p )−1δij . (4.8)

Since the most divergent terms in the left and right-hand sides are identical as we plug

this ansatz into Eq. (4.5), it is consistent with the ansatz obtained from the iterative

method in previous works [30–32]. Finally, we obtain the general ansatz of the Bethe-

Salpeter equation as

CAR
Q (k,k′) =

(2πN0τ
qp
k τqp

k′ )−1∑
i,j DijQiQj

F (k,k′). (4.9)
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Chapter 5

Quantum interference effects in few-layer black phos-

phorus

In this chapter, using the results of the previous chapter, we study quantum interference

effects in few-layer black phosphorus (BP). Few-layer BP is a two-dimensional (2D)

van der Waals material, which has been studied intensely both theoretically [14,33–44]

and experimentally [45–53]. It is expected to show nontrivial quantum interference

effects due to strong anisotropy and tunable electronic structure. Few-layer BP has

a direct band gap [Fig. 5.1(a)], which can be tuned by external perturbations, such

as strain [33], pressure [49], electric gating [35, 41], and chemical doping [37, 39].

Such modulations can close the band gap, resulting in the semi-Dirac transition point

(SDTP) with a combination of linear and quadratic dispersions [Fig. 5.1(b)]. These

modulations can even induce a band inversion, leading to the Dirac semimetal (DSM)

phase with linear dispersions around nodes [Fig. 5.1(c)]. Although there have been a

few experimental studies on the quantum interference effects in few-layer BP [50–53],

a theoretical approach on each phase has been elusive due to its nontrivial anisotropy,

which cannot be described by a simple model with different effective masses in each

direction. Thus, a further systematic formalism of the quantum interference theory is

called for.
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Figure 5.1: Electronic structure of few-layer BP in the (a) insulator phase, (b) semi-

Dirac transition point (SDTP), and (c) Dirac semimetal (DSM) phase. (d) The Fermi

surfaces of the DSM phase. At a sufficiently low Fermi energy (lower panel), the quan-

tum interference effect is contributed by both of intranode and internode scatterings.

As the Fermi energy increases (upper panel), the Fermi surface is distorted and the

time-reversal symmetry around a node is broken, and the quantum interference effect

via intranode scattering is suppressed.

5.1 Model

The low-energy effective Hamiltonian of few-layer BP is given by [14, 39, 42, 44]

H =

(
~2k2

x

2m∗
+
Eg

2

)
σx + ~vykyσy, (5.1)

wherem∗ is the effective mass along the zigzag (x) direction, Eg is the band gap, vy is

the velocity along the armchair (y) direction, and σx,y are the Pauli matrices. The corre-

sponding energy eigenvalues are given byE = ±
√(

~2k2x
2m∗ +

Eg

2

)2
+ ~2v2

yk
2
y . Without

band gap tuning, the Hamiltonian has a direct band gap (Eg > 0) and few-layer BP
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is in the gapped insulator phase [Fig. 5.1(a)]. At Eg = 0, the Hamiltonian has a band

touching point at (kx, ky) = (0, 0) and few-layer BP is in the SDTP [Fig. 5.1(b)]. At

this point, the energy dispersion is linear in the armchair direction and quadratic in the

zigzag direction. As the band gap decreases further to a negative value (Eg < 0),

few-layer BP becomes the DSM phase with two nodes at K± = (±
√

m∗|Eg|
~2 , 0)

[Fig. 5.1(c)]. At a sufficiently low Fermi energy satisfying EF � |Eg|, the Hamil-

tonian near each node can be linearized as

H = ±~vx
(
kx −K±x

)
σx + ~vykyσy

≡ ~v0κ(± cosφκσx + sinφκσy), (5.2)

where vx =

√
|Eg|
m∗ is the velocity along the zigzag direction. For later convenience,

we adopt the parametrization v0κ cosφκ = vx (kx −K±x ) and v0κ sinφκ = vyky,

where κ is an effective momentum measured from the nodes. In this thesis, we neglect

the effects of spin-orbit coupling due to its negligible size in few-layer BP.

5.2 Weak localization and antilocalization

The quantum correction is determined not only by the electronic structure, but also

by the type of impurity. The quantum interference effect is only induced by static and

non-magnetic impurities as it is destroyed by non-static or magnetic impurities [4].

Another aspect we should consider is the range of scattering. At low Fermi energies,

regardless of the range of scattering, an electron in the insulator phase and SDTP has

a single time-reversed counterpart on the whole Fermi surface. In contrast, for the

DSM phase we consider two types of scatterings: intranode and internode scatterings

[Fig. 5.1(d)]. In the EF � Eg limit, intranode scattering may occur by long-range

impurities, whereas internode scattering may arise from short-range impurities, such as

lattice vacancies. The relative strengths of intranode and internode scatterings lead to

competition between the WAL and WL effects in the DSM phase, as will be discussed

later.
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5.2.1 Insulator phase and SDTP

The quantum correction to the dc conductivity is contributed by a bare Hikami box and

two dressed Hikami boxes as illustrated in Fig. 4.1(c). Noting the following identities,

∫
dξk|GR(k, 0)|4 = 4π(τqp

k )3, (5.3a)∫
dξk|GR(k, 0)|2GR(k, 0) = −2πi(τqp

k )2, (5.3b)

we compute the bare Hikami box contribution:

∆σbare
ii ≈ gse

2

2πV2

∑
k,Q

|GR(k, 0)|4CAR
Q (k,−k)ṽ

(i)
k ṽ

(i)
−k

= −gse
2

2π

∫
ddk

(2π)d

(
v

(i)
k

τ
(i)
k

τqp
k

)2

δ(ξk)

∫
dξk|GR(k, 0)|4

∫
ddQ

(2π)d
CAR
Q (k,−k)

= −gse
2

πN0

∫
ddk

(2π)d

(
v

(i)
k τ

(i)
k

)2

τqp
k

δ(ξk)

∫
ddQ

(2π)d
1∑

j DjjQ2
j

, (5.4)

where gs = 2 is the spin degeneracy factor.

Next, let us compute two dressed Hikami boxes, which contribute equally. One of

them can be computed as follows:

∆σdressed
ii ≈ gse

2

2πV3

∑
k,p,Q

nimp|Vp,k|2|GR(k, 0)|2GR(k, 0)|GR(p, 0)|2

×GR(p, 0)CAR
Q (p,−k)ṽ

(i)
k ṽ

(i)
−p

=
gse

2

N0

∫ ∫
ddk

(2π)d
ddp

(2π)d
nimp|Vp,k|2v

(i)
k τ

(i)
k v

(i)
p τ

(i)
p δ(ξk)δ(ξp)

∫
ddQ

(2π)d
1∑

j DjjQ2
j

=
gse

2

2πN0

∫
ddp

(2π)d

(
v

(i)
p
τ

(i)
p

τqp
p
− v(i)

p

)
v

(i)
p τ

(i)
p δ(ξp)

∫
ddQ

(2π)d
1∑

j DjjQ2
j

= −1

2
∆σbare

ii − gse
2

2πN0

∫
ddp

(2π)d
(v

(i)
p )2τ

(i)
p δ(ξp)

∫
ddQ

(2π)d
1∑

j DjjQ2
j

.

(5.5)
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Therefore, the total quantum correction to the dc conductivity is

∆σii = ∆σbare
ii + 2∆σdressed

ii

= −gse
2

πN0

∫
ddp

(2π)d
(v

(i)
p )2τ

(i)
p δ(ξp)

∫
ddQ

(2π)d
1∑

j DjjQ2
j

, (5.6)

which indicates that the insulator phase and SDTP exhibit the WL effect. To com-

pute the Q−integral, let us parametrize the momentum as Q̃x =
√

Dxx
D Qx, Q̃y =√

Dyy
D Qy, and Q̃2 = Q̃2

x + Q̃2
y with D ≡

√
DxxDyy. Accordingly, the Q−integral

can be rewritten as∫
dQ̃xdQ̃y

(2π)2

1

D(Q̃2
x + Q̃2

y)
=

∫ `−1
e

`−1
φ

dQ̃

(2π)

1

DQ̃
=

1

2πD
ln

(
`φ
`e

)
, (5.7)

where `φ is the phase coherence length and `e is the mean-free path. Here, we assume

that the lower and upper cutoffs of the integral are given by `−1
φ and `−1

e , respectively.

Restoring ~, we finally obtain the WL correction as

∆σii = − 1

2π2N0D~
ln

(
`φ
`e

)
σB
ii , (5.8)

where the superscript B denotes the Boltzmann conductivity. This result applies not

only to few-layer BP but also to a general 2D anisotropic system. Importantly, the

quantum correction is proportional to the Boltzmann conductivity, and thus the ratio of

the quantum correction to the Boltzmann conductivity does not depend on the direction

regardless of the anisotropy of the system. Rewriting Eq. (5.6) as

∆σii

σB
ii

= − 1

πN0

∫
ddQ

(2π)d
1∑

j DjjQ2
j

, (5.9)

we note that this direction-independent ratio generally holds even in 3D systems.

5.2.2 DSM phase with intranode scattering

For the DSM phase, we compute the quantum corrections due to intranode and in-

ternode scatterings, respectively. In this thesis, for simplicity we consider constant

intranode and internode scattering potentials given by Vintra and Vinter, respectively.
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Before studying the quantum interference effect in the DSM phase due to intranode

scattering, we note several identities: N0 = gsEF
πvxvy

, (τqp)−1 =
nimpV

2
intraEF

2vxvy
, (τ tr)−1 =

nimpV
2
intraEF

4vxvy
, Dxx = 2EFτ

qp

N0π

(
vx
vy

)
, and Dyy = 2EFτ

qp

N0π

(
vy
vx

)
. Note that the transport

relaxation time τ tr is isotropic and equals 2τqp. Using these identities, we obtain the

explicit form of the Cooperon as

CAR
Q (κ,κ′) =

1

4(τqp)2

nimpV
2

intrae
i(φ−φ′)

v2
xQ

2
x + v2

yQ
2
y

. (5.10)

We note that for backscattering, the phase factor becomes ei(φ−φ
′) = −1, and thus

the Cooperon has a negative value. Therefore, intranode scattering in the DSM phase

induces the WAL effect in the EF � |Eg| limit, as will be demonstrated in the follow-

ing.

We are now in a position to compute the quantum correction of the DSM phase in

the presence of intranode scattering. First, let us compute ∆σbare
xx :

∆σbare
xx =

gse
2

πN0

∫
ddk

(2π)d

(
v

(x)
k τ

(x)
k

)2

τqp
k

δ(ξk)

∫
ddQ

(2π)d
1∑

j DjjQ2
j

=
2gse

2

π2N0

(
vx
vy

)
EFτ

qp

∫
ddQ

(2π)d
1∑

j DjjQ2
j

. (5.11)

Next, one of the dressed Hikami boxes reads

∆σdressed
xx = −gse

2

2π

∫ ∫
ddk

(2π)d
ddk′

(2π)d
nimp|Vk′,k|2F (k,k′)

(
v

(x)
k

τ
(x)
k

τqp
k

)(
v

(x)
k′
τ

(x)
k′

τqp
k′

)
δ(ξk)δ(ξk′)

×
∫
dξk|GR(k, 0)|2GR(k, 0)

∫
dξk′ |GR(k′, 0)|2GR(k′, 0)

∫
ddQ

(2π)d
CAR
Q (k′,−k)

= − gse
2

2π2N0

(
vx
vy

)
EFτ

qp

∫
ddQ

(2π)d
1∑

j DjjQ2
j

= −1

4
∆σbare

xx . (5.12)

Accordingly, the total quantum correction to the dc conductivity is

∆σxx = ∆σbare
xx + 2∆σdressed

xx =
1

2
∆σbare

xx

=
gse

2

π2N0

(
vx
vy

)
EFτ

qp

∫
ddQ

(2π)d
1∑

j DjjQ2
j

. (5.13)
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TheQ−integral can be computed by introducing Q̃x =
√

Dxx
D Qx and Q̃y =

√
Dyy
D Qy

with D =
√
DxxDyy, similarly as we did for the insulator phase and SDTP:∫ `−1

intra

`−1
φ

dQ̃

(2π)

1

dQ̃
=

1

2πD
ln

(
`φ
`intra

)
=

N0

4EFτqp
ln

(
`φ
`intra

)
, (5.14)

where `intra is the mean-free path corresponding to intranode scattering. Restoring ~,

we obtain the total quantum correction to the dc conductivity as

∆σxx =
gse

2

4π2~

(
vx
vy

)
ln

(
`φ
`intra

)
, (5.15a)

∆σyy =
gse

2

4π2~

(
vy
vx

)
ln

(
`φ
`intra

)
, (5.15b)

or equivalently

∆σii =
nimpV

2
intra

8π~2vxvy
ln

(
`φ
`intra

)
σB
ii , (5.16)

where σB
ii =

2gse2v2i ~
πnimpV

2
intra

is the Boltzmann conductivity along the ith direction. Note

that the ratio ∆σii/σ
B
ii is the same irrespective of the direction.

5.2.3 DSM phase with internode scattering

Using the eigenstates in the DSM phase, we can obtain the matrix elements for intern-

ode scattering as

V +,−
κ′,κ =

Vinter

2
[1− e−i(φ+φ′)], (5.17a)

V −,+−κ′,−κ =
Vinter

2
[1− ei(φ+φ′)], (5.17b)

where Vinter is internode scattering amplitude, and the superscripts + and − denote

the positive and negative nodes, respectively. Thus, V +,−
κ′,κ V

−,+
−κ′,−κ = |V +,−

κ′,κ |
2 and we

have the Cooperon ansatz as

CAR
Q (κ,κ′) =

(2πN0τ
qp
κ τqp

κ′ )−1∑
i,j DijQiQj

. (5.18)
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Repeating the steps in the previous section, we obtain the quantum correction due

to internode scattering as

∆σxx = − gse
2

4π2~

(
vx
vy

)
ln

(
`φ
`inter

)
, (5.19a)

∆σyy = − gse
2

4π2~

(
vy
vx

)
ln

(
`φ
`inter

)
, (5.19b)

or equivalently

∆σii = −nimpV
2

inter

8π~2vxvy
ln

(
`φ
`inter

)
σB
ii , (5.20)

which differs only by the sign from the quantum correction for intranode scattering in

Eq. (5.16) with `intra (Vintra) replaced by `inter (Vinter). Note that as for the intranode

scattering, the ratio ∆σii/σ
B
ii is the same irrespective of the direction.

In the presence of both intranode and internode scatterings, the quantum interfer-

ence effect in the DSM phase is determined by the dominant scattering process. Thus,

we expect that the WAL (WL) effect will occur when intranode (internode) scattering

is dominant.

5.3 Magnetoconductivity

Applying an external magnetic field gives an additional phase to each backscattering

path, and thus destroys the quantum interference effect [3,4]. In experiments, the phase

coherence length can be obtained through the measurement of magnetoconductivity.

In the following, we compute the magnetoconductivity of each phase using the quan-

tization of Landau levels [4, 32].

5.3.1 Insulator phase

In the following, we restore ~ for clarity. According to J. M. Pereira, Jr et al. [38],

the Landau levels in small B have a linear dependence on magnetic field, as in the

case of a free electron gas. Thus, for the insulator phase, we adopt the Hamiltonian of

an anisotropic free electron gas as H = p2x
2mx

+
p2y

2my
with effective masses mx,y along
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each direction. The corresponding Landau levels are given byEn = ~eB√
mxmyc

(
n+ 1

2

)
.

Since the ratio between the diffusion coefficients are given by Dxx
Dyy

=
my
mx

, the Landau

quantization of momentum reads

DxxQ
2
n,x +DyyQ

2
n,y =

D

`2B

(
n+

1

2

)
. (5.21)

Here, we define the magnetic length `B =
√

~c
4eB . Following the above quantization

condition, we modify the Q−integral in Eq. (5.6) by∑
n

∫
d2Q

(2π)2

1

DxxQ2
x +DyyQ2

y

δ

[
n+

1

2
−
`2B
D

(DxxQ
2
x +DyyQ

2
y)

]

=
∑
n

∫
dQ̃xdQ̃y

(2π)2DQ̃2
δ

(
n+

1

2
− `2BQ̃2

)
=

1

4πD

nmax∑
nmin

1

n+ 1
2

, (5.22)

where nmin = (`B`
−1
φ )2 and nmax = (`B`

−1
e )2. Thus, theQ−integral can be rewritten

in terms of the digamma function Ψ(x) as

1

4πD

[
Ψ

(
1

2
+
`2B
`2e

)
−Ψ

(
1

2
+
`2B
`2φ

)]
, (5.23)

where we used Ψ(x+N)−Ψ(x) =
∑N−1

k=0
1

x+k . Accordingly, we obtain the magne-

toconductivity of the insulator phase as

∆σii(B) = − gse
2

4π2N0D~

[
Ψ

(
1

2
+
`2B
`2e

)
−Ψ

(
1

2
+
`2B
`2φ

)]∫
ddp

(2π)d
[v

(i)
p ]2τ

(i)
p δ(ξp).

(5.24)

Since the digamma function follows the asymptotic form Ψ
(

1
2 + x

)
≈ lnx+ 1

24x2
+

· · · for x → ∞, the magnetoconductivity reduces to Eq. (5.8) in the B → 0 limit.

Thus, the ratio between the magnetoconductivity [Eq. (5.24)] and the dc conductivity

[Eq. (3.15)] reads

∆σii(B)−∆σii(0)

σB
ii

= − 1

4π2N0D~

[
Ψ

(
1

2
+
`2B
`2e

)
−Ψ

(
1

2
+
`2B
`2φ

)
− 2 ln

(
`φ
`e

)]
.

(5.25)

Again, the ratio is irrespective of the direction.
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5.3.2 DSM phase

Now, let us consider the DSM phase. Applying an external magnetic field perpen-

dicular to the xy plane, say B = (0, 0, B), the crystal momentum is transformed as

~k = p+ e
cAwhere p is the canonical momentum andA is the vector potential. Thus,

the Hamiltonian becomes

H = vxpxσx + vy

(
py +

eBx

c

)
σy, (5.26)

where we chose the Landau gauge A = (0, Bx, 0) for the vector potential. Then we

have the nth Landau level as

E2
n = v2

xp
2
x + v2

y

(
py +

eBx

c

)2

− ~eBvxvy
c

=
2~eBvxvyn

c
. (5.27)

Note that the momentum along the y axis is a good quantum number. Thus, the crystal

momentum follows the quantization ~2v2
xk

2
x + ~2v2

yk
2
y = v2

xp
2
x + v2

y

(
py + eBx

c

)2
=

2~eBvxvy
c

(
n+ 1

2

)
. The quantization forQ = k+ k′ is obtained by doubling the mag-

netic field:

v2
xQ

2
n,x + v2

yQ
2
n,y =

4eB

~c
vxvy

(
n+

1

2

)
, (5.28)

which is equivalent to Eq. (5.21) in the insulator phase. Therefore, we compute the

magnetoconductivity in the DSM phase in a similar manner as in the insulator phase:

∆σxx(B) =
gse

2

8π2~

(
vx
vy

)[
Ψ

(
1

2
+

`2B
`2intra

)
−Ψ

(
1

2
+
`2B
`2φ

)]
, (5.29a)

∆σyy(B) =
gse

2

8π2~

(
vy
vx

)[
Ψ

(
1

2
+

`2B
`2intra

)
−Ψ

(
1

2
+
`2B
`2φ

)]
, (5.29b)

or equivalently

∆σii(B)−∆σii(0)

σB
ii

=
nimpV

2
intra

16π~2vxvy

[
Ψ

(
1

2
+

`2B
`2intra

)
−Ψ

(
1

2
+
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)
− 2 ln

(
`φ
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)]

=
~

8πEFτ
qp
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[
Ψ

(
1

2
+

`2B
`2intra

)
−Ψ

(
1

2
+
`2B
`2φ

)
− 2 ln

(
`φ
`intra

)]
.

(5.30)
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We note that in the B → 0 limit, Eqs. (5.29a) and (5.29b) reduce to Eq. (5.15a)

and (5.15b), respectively. Similarly, we can compute the magnetoconductivity for

internode scattering, which only differs from the result in Eq. (5.30) by the sign, with

`intra (τqp
intra) replaced by `inter (τqp

inter).

5.3.3 SDTP

Following Petra Dietl et al. [54], we have the Landau quantization for the momentum

Q at the SDTP as follows:

~4Q4
x

4m∗2
+ ~2v2

yQ
2
y = A2

(
~

2`2B

) 4
3

(
v2
y

m∗

) 2
3 (

n+
1

2

) 4
3

, (5.31)

where A ≈ 1.17325. Considering the Landau quantization, we rewrite the Q−integral

in Eq. (5.6) for the quantum correction as

∑
n

∫
dQxdQy

(2π)2

1

DxxQ2
x +DyyQ2

y

δ

[
n+

1

2
−
(
~4Q4

x

4m∗2
+ ~2v2

yQ
2
y

) 3
4

×
√
m∗

vy

2`2B

~2A
3
2

]
.(5.32)

The momentum Q̃ =
√
Q̃2
x + Q̃2

y is bounded as `−1
φ ≤ Q̃ ≤ `−1

e . We rewrite the

Q−integral as

∑
n

∫
dQ̃xdQ̃y
(2π)2D

1

Q̃2
x + Q̃2

y

δ

n+
1

2
−

(
~4Q̃4

x
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(
D
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)2
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2
y

(
D
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)) 3
4

 ,(5.33)

where α ≡
√
m∗

vy

2`2B

~2A
3
2

. Note that we consider the region where Q̃x and Q̃y are positive.

To calculate the Qy−integral first, we transform the delta function in Eq. (5.33) into

δ

[
Q̃y − 1

~vy

√
Dyy
D

√
1
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4
3

(
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) 4
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(
D
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y
D
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× 2Q̃y

. (5.34)

We deal with the above integral differently based on the region Q̃x lies in: 1)

`−1
φ ≤ |Q̃x| ≤ `

−1
e : 0 ≤ |Q̃y| ≤

√
`−2
e − Q̃2

x, 2) |Q̃x| ≤ `−1
φ :

√
`−2
φ − Q̃2

x ≤ |Q̃y| ≤
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√
`−2
e − Q̃2

x. Ignoring terms of order higher than Q̃2
x, we rewrite Eq. (5.33) as
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(5.35)

Note that 1) n(1)
min = 0, n(1)

max = α
[
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We replace the n−sum by the n−integral as follows:
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+

∫ `−1
φ

0
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∫ n
(2)
max+ 1

2

n
(2)
min+ 1

2

dn
1

n
5
3 +

(
α

4
3 Q̃2

x
D
Dyy

~2v2
y

)
n

1
3

 .
One can check the validity of this replacement by applying it to Eq. (5.22), giving the

consistent result. Now, let us introduce γ = α
4
3 Q̃2

x
D
Dyy

~2v2
y . The n−integral can be

computed by the following indefinite integral:∫
dn

1

n
5
3 + γn

1
3

=
3

2
√
γ

tan−1

(
n

2
3

√
γ

)
+ C. (5.37)

Accordingly, Eq. (5.36) can be rewritten as

1
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. (5.38)

Since the first and second terms in Eq. (5.38) are B−independent, the magnetocon-

ductivity is only contributed by the third term. Finally, we obtain the ratio between the
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magnetoconductivity and the Boltzmann conductivity at the SDTP as

∆σii(B)−∆σii(0)

σB
ii

=
1

π3DN0~

∫ `−1
e

`−1
φ

dQ̃x
1

Q̃x
tan−1

(
α−

2
3

2
2
3 Q̃x~vy

√
Dyy

D

)
.(5.39)

Note that the ratio is also independent of the direction. Eq. (5.39) indicates the B2/3

dependence of the magnetoconductivity in the weak field limit (`φ � `B). As for the

intermediate field regime (`e ≤ `B � `φ), we predict that the magnetoconductivity

will follow the power-law dependence on B with the exponent ν, which may vary

depending on the system parameter.
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5.4 Discussion
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Figure 5.2: Ratio of the field-induced change in the magnetoconductivity to the Boltz-

mann conductivity for various phase coherence lengths with `e = 10nm. The ratio

for the WL correction in (a) the insulator phase and (b) SDTP are plotted in units

of α1 = nimpV
2

imp/~2v2
y . As for the DSM phase, intranode and internode scatter-

ings induce (c) WAL and (d) WL, respectively. Both corrections are plotted in units

of α2 = nimpV
2

imp/~2vxvy. The black dashed lines denote the ± lnB dependence,

while the red dashed line and blue dashed line in (b) represent the Bν dependence

with ν ≈ 0.31 and B2/3 dependence, respectively.
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In summary, we obtain the ratio P (i)(B) ≡ [∆σii(B) −∆σii(0)]/σB
ii for each phase

as follows:

P
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ins(B) = − 1

4π2N0D~

[
Ψ

(
1

2
+
`2B
`2e

)
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(
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, (5.40a)
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− 2 ln
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(5.40c)

where Ψ(x) is the digamma function, α ≡
√
m∗

vy

2`2B

~2A
3
2

with A ≈ 1.17325 [54] and

`B =
√

~c
4eB is the magnetic length. Eq. (5.40c) is obtained for intranode scattering,

and the field-dependence for internode scattering only differs by the sign, with `intra

(τqp
intra) replaced by `inter (τqp

inter).

For the insulator phase [Fig. 5.2(a)] and DSM phase [Figs. 5.2(c) and 5.2(d)],

we find that the field-dependence of the magnetoconductivity is well approximated by

P (i)(B) ∝ ± lnB, which is in good agreement with the conventional prediction for

2D systems [2]. However, we predict that the magnetoconductivity of the SDTP will

not follow the conventional prediction, but rather will show P (i)(B) ∝ B
2
3 depen-

dence in the weak field limit ( `φ � `B), whereas P (i)(B) ∝ Bν dependence in the

intermediate field regime (`e ≤ `B � `φ) with the exponent ν, which depends on

the system parameter and can be found numerically. This nontrivial field-dependence

may be attributed to strong anisotropy in the band dispersion [5], leading to a quantum

diffusion which deviates from the 2D behavior. We note that P (i)(B), the ratio of the

field-induced change in the magnetoconductivity to the Boltzmann conductivity, is the

same irrespective of the direction i for each phase.

Our analysis shows that the sign of the quantum correction is determined by the

electronic structure-dependent phase factor F (k,k′), which reflects the symmetry

class of the system [30, 55, 56]. The unity phase factor of the insulator phase and

SDTP indicates that the system has spinless time-reversal symmetry, belonging to the
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orthogonal class. Backscattering induced by a time-reversal operator of this kind leads

to WL. As for the DSM phase, in the absence of internode scattering, the phase factor

F (κ,κ′) = ei(φκ−φκ′ ) indicates that the system has time-reversal symmetry around

a node without spin-rotational symmetry, belonging to the symplectic class. A system

possessing a time-reversal operator of this kind exhibits WAL. In contrast, the pres-

ence of internode scattering can induce a crossover from the symplectic to orthogonal

class, leading to the corresponding crossover from WAL to WL [30]. Thus, the overall

quantum correction in the DSM phase is determined by the dominant scattering mech-

anism, which depends on the separation between the two nodes. In the EF � |Eg|

limit, a large separation between the nodes will suppress the internode scattering rates,

and thus the WAL effect might be dominant over the WL effect. In addition, increasing

the Fermi energy leads to the distortion of the Fermi surface, suppressing WAL.

In summary, we developed a quantum interference theory for anisotropic systems

by solving the Bethe-Salpeter equation for the Cooperon operator, fully considering

the anisotropy and Berry phase of the system. We elaborated the Cooperon ansatz

and diffusion coefficients in a compact and physically intuitive form with transport

relaxation times in anisotropic systems, generalizing the previous work by P. Wölfle

et al. [57]. Furthermore, we considered systems with nontrivial Berry phase, provid-

ing a systematic quantum interference theory for both WL and WAL effects, and the

crossover between them.
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Chapter 6

Conclusion

The work in this thesis focuses on the development of rigorous frameworks for com-

puting dc conductivity in disordered systems with an anisotropic Fermi surface. To

this end, we used various theoretical approaches: the semiclassical Boltzmann trans-

port theory and a many-body diagrammatic method. Feynman diagrams giving a major

correction to dc conductivity depend on the relative strengths of characteristic length

scales. Thus, we developed the two distinct diagrammatic formalisms for the semiclas-

sical and quantum regimes, respectively.

First, we constructed a diagrammatic formalism for computing the dc conductiv-

ity of anisotropic multiband systems in the semiclassical regime. Using Feynman dia-

grams, we derived coupled integral equations satisfied by transport relaxation times for

impurity scattering and phonon-mediated scattering, respectively. We concluded that

the Boltzmann transport equation generally corresponds to the Kubo formula supple-

mented with the ladder vertex corrections. We believe our results are essential for the

correct computation of the Boltzmann conductivity of strongly anisotropic systems,

which defy a simple description based on a model with different effective masses in

each direction.

Next, we studied quantum interference effects on the dc conductivity of anisotropic

systems, applying the main results of the semiclassical regime. Using a Green’s func-
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tion method, we obtained a general Cooperon ansatz of the Bethe-Salpeter equation in

anisotropic systems. We numerically calculated magnetoconductivity for each phase

of few-layer black phosphorus, and found that the ratio of the magnetoconductivity to

the Boltzmann conductivity is independent of direction. We believe our work is vital

for estimating the effects of lattice anisotropy and band topology on weak localization

and antilocalizatioin.
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초록

불순물이 있는 계에서의 전하 수송은 응집 물질 물리의 중요한 연구 주제 중

하나이다. 등방성 에너지 분산을 가지는 계에서는 볼츠만 수송 이론과 다이어그램

접근법 (diagrammatic approach)등을통해전기전도도를계산하는방법이잘구축

되어 있다. 이와 달리 비등방성 에너지 분산을 가지는 계의 전기 전도도를 정확히

계산하는 것은 까다로운 문제이다. 이에 본 논문에서는 다이어그램 접근법을 이용

해비등방성계의수송성질을연구하기위한엄밀한계산체계를고안하였다.

첫째로비등방성다층띠를가지는계에서의고전적인수송이론을구축하였다.

먼저 볼츠만 수송 이론을 일반화하였고, 그 다음 사다리 다이어그램이 전기 전도

도에 주는 보정을 계산하여 수송 풀림 시간 (transport relaxation time) 이 만족하는

관계식을얻었다.이를통해두이론이일반적으로같은결과를준다는것을보였다.

또한양자영역에서의독특한수송현상인약한국소화에대해연구하였다.먼저

비등방성계에서베테-샐피터 (Bethe-Salpeter)방정식의쿠페론 (Cooperon)해를유

도하였고,이를이용해다층흑린의여러상 (phase)에서약한국소화를연구하였다.

그결과,다른상들과달리반-디락준금속전이점 (semi-Dirac transition point)에서

자기전도도의자기장의존성이독특한멱법칙을따름을확인하였다.또한자기전

도도와볼츠만전도도의비율이방향의존성을가지지않음을증명하였다.

주요어: 직류 전도도, 불순물, 비등방성, 볼츠만 수송 이론, 꼭지점 보정, 약한

국소화,흑린

학번: 2018-26410
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