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Dear Colleagues,

It is my great pleasure and honor to invite all of you to the 3™ International Symposium
of Wide River Institute of Immunology hosted by Seoul National University College of
Medicine on October 7, 2016, in Hongcheon. I specially appreciated all speakers and

audiences attending the conference.

Our institute has been studying on the mechanisms of cancer and immune disease
progression and therapeutic targeting of those diseases. We set up the “Lab on a Cloud”
providing the essential technology for biomedical research and have been collaborated
more than 40 research teams for last two years. We'll continue further collaboration for

conlributing to make healthy society in future..

In this conference, we will provide special lectures by six world class leaders in the field
of immunology studying on the cause and progression of inflammatory diseases
including cancer and roles of various immune cells regulating those diseases. I wish this
meeting will be an excellent opportunity to exchange scientific ideas on current and
emerging discoveries and share research findings through active participation and

discussions.

I sincerely hope that this conference will be productive for the establishment of new

collaborations among scientists and develop a new vision for the future of immunology.

Seong-Yong Seong, M.D., Ph.D.
Director of Wide River Institute of Inmunology,

Seoul National University College of Medicine, Korea
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Curriculum Vitae

Dmitry I. Gabrilovich

Position/Address The Wistar Institute
3601 Spruce Str. Philadelphia, PA, 19104-4265

USA

E-mail: dgabrilovich@wistar.org

Education:
1984 MD, Kabardino-Balkarian State University Medical School, Nalchik, Russia

1989  PhD, Immunology, Central Institute for Epidemiology, Moscow, Russia.

Professional Backgroud:

08/2005 — 04/2013 Professor, Department of Molecular Medicine, University of South
Florida, Tampa, FL

03/2007 — 04/2013 Senior Member and Head, Section of Dendritic Cell Biology, H.

Lee Moffitt Cancer Center and Research Institute

01/2008 — 04/2013 Robert Rothman Endowed Chair in Cancer Research, H. Lee

Moffitt Cancer Center and Research Institute, Tampa, FL

05/2013-present  Christopher M. Davis Professor in Cancer Research, Program
Leader, Translational Tumor Immunology, The Wistar Institute,
Philadelphia, PA

04/2014-present  Professor, Department of Pathology and Laboratory Medicine,
Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA



Recent publications:

1. Gabrilovich D, Nefedova Y. ROR1C Regulates Differentiation of Myeloid-Derived
Suppressor Cells. Cancer Cell. 2015 Aug 10;28(2):147-9.

2. Condamine T, Mastio J, Gabrilovich DL Transcriptional regulation of myeloid-derived
suppressor cells. J Leukoc Biol. 2015 Dec;98(6):913-22.

3. Ramachandran IR, Condamine T, Lin C, Herlihy SE, Garfall A, Vogl DT, Gabrilovich DI,
Nefedova Y. Bone marrow PMN-MDSCs and neutrophils are functionally similar in
protection of multiple myeloma from chemotherapy. Cancer Lett. 2016 Feb
1;371(1):117-4. Kumar V, Patel S, Tcyganov E, Gabrilovich DI The Nature of Myeloid-
Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016 Feb
5.

5. Kumar V., Cheng P., Condamine T, Mony S., Languino, LR, McCaffrey JC., Hockstein
N. Guarino, M., Masters G., Penman E., Denstman F., Xu X, Altieri DC, Du H., Yan C,
Gabrilovich DI CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in
Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation. Immunity,
44, 303-315, 2016

6. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S,
Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V,
Vonderheide RH, Gabrilovich DI. Recommendations for myeloid-derived suppressor
cell nomenclature and characterization standards. Nat Commun. 2016 Jul 6;7:12150

7. Sayeed A, Lu H, Liu Q, Deming Ii D, Duffy A, McCue P, Dicker AP, Davis RJ,Gabrilovich
D, Rodeck U, Altieri DC, Languino LR. B1 integrin- and JNK-dependent tumor growth
upon hypofractionated radiation. Oncotarget. 2016 Jul 11.

8. Condamine, T, Dominguez, GA. Youn, JI, Kossenkov, AV., Mony, S., Alicea-Torres, K.,
Tcyganov, E, Hashimoto, A, Nefedova, Y., Lin, C. Partlova, S., Garfall, A, Vogl, DT., Xu,
X., Knight, SC, Malietzis, G., Lee, GH., Eruslanov, E., Albelda, SM., Wang, X, Mehta, JL.,
Bewtra, M., Rustgi, A. Hockstein, N. Witt, R, Masters, G, Nam, B. Smirnov, D,
Sepulveda, MA, Gabrilovich, DI. Lectin-type oxidized LDL receptor 1 distinguishes
population of human polymorphonuclear myeloid-derived suppressor cells in cancer
patients. 2016. Science Immunol. 1, aaf8943.



Myeloid-derived cells are coming to age

Dmitry I. Gabrilovich

The Wistar Institute, USA

Myeloid-derived suppressor cells (MDSC) are one of the major components of the tumor
microenvironment. The main feature of these cells is their potent immune suppressive
activity. They are directly implicated in the promotion of tumor metastases by
participating in the formation of pre-metastatic niche, promoting angiogenesis and
tumor cell invasion. MDSC are generated in the bone marrow, and in tumor-bearing
hosts, migrate to peripheral lymphoid organs and the tumor to contribute to the
formation of the tumor microenvironment. Accumulation of MDSC is governed by a
network of transcriptional regulators that could be combined into two partially
overlapping groups: factors promoting myelopoiesis and preventing differentiation of
mature myeloid cells, and factors promoting pathological activation of MDSC. There is
now sufficient information demonstrating that the function and fate of MDSC in the
tumor and peripheral lymphoid organs are different. Therapeutic targeting of MDSC has

emerged as attractive option to enhance clinical response to immunotherapy.



Myeloid-derived suppressor cells coming to age

Dmitry Gabrilovich
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Morphology of MDSC subsets in mice
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Phenotype, morphology, and function of MDSC subsets in humans
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Interaction of MDSC with CD4* T cell subsets
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Curriculum Vitae

Position/Address

E-mail:

Education:

1410 Laney Walker Blvd., CN4121, Augusta,
GA 30912, USA

ecelis@augusta.edu

Esteban Celis

Medical College of Georgia, Augusta University

1976 M.D, Medicine, National University of Mexico, Mexico

1977 M.Sc, Basic Biomedical Research, National University of Mexico, Mexico

1980 Ph.D, Basic Biomedical Research, National University of Mexico, Mexico

Professional Backgroud:

1992-1997

1997-2004

2/2005-11/2013

12/2013-present

Director, Tumor Immunology,
Project Leader, Tumor Vaccine and Ex Vivo CTL Therapy Programs
Cytel Corporation/Epimmune, San Diego, CA

Professor, Department of Immunology, Mayo Clinic, Rochester
MN

Professor, Department of Immunology, Moffitt Cancer Center and
Research Institute, Tampa FL.

Professor, Department of Molecular Medicine, University of
South Florida College of Medicine

Professor of Medicine, Medical College of Georgia, Augusta
University

Director (Interim), Cancer Immunology Inflammation and
Tolerance Program (CIT), Georgia Cancer Center
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Recent publications:

1.

Kumai, T, Matsuda, Y., Ohkuri, T. Oikawa, K, Ishibashi, K, Aoki, N, Kimura, S.,
Harabuchi, Y., Celis, E, and Kobayashi, H. (2015). C-Met is a novel tumor associated
antigen for T-cell based immunotherapy against NK/T cell lymphoma.
Oncommunology Mar 6;4(2):e976077. eCollection 2015 Feb. PMID: 25949874.

. Wang, Z, Celis, E. (2015). STING activator c-di-GMP enhances the anti-tumor effects of

peptide vaccines in melanoma-bearing mice. Cancer Immunol. Immunother. 64:1057-
1066. PMID: 25986168.

Cho, HIL, Jung, SH., Sohn, HJ. Celis, E,, and Kim, T.G. (2015). An optimized peptide
vaccine strategy capable of inducing multivalent CD8+ T cell responses with potent
antitumor effects. Oncoimmunology. 4(11), 1043504, doi:
10.1080/2162402X.2015.1043504. PMID: 26451316.

Kumai, T., Ohkuri ,T., Nagato, T., Matsuda, Y., Oikawa, K., Aoki, N., Kimura, S., Celis, E,
Harabuchi, Y., and Kobayashi, H. (2015). Targeting HER-3 to elicit antitumor helper T
cells against head and neck squamous cell carcinoma. Scientific Reports. 5:16280-
16292. PMID: 26538233.

Sharma, M.D., Shinde, R, McGaha, T.L, Huang, L, Holmgaard, R.B.,, Wolchok, J.D,
Mautino, M.R,, Celis, E., Sharpe, A.H., Francisco, L.M., Powell, J.D., Yagita, H., Mellor, AL,
Bruce R. Blazar, B.R, and Munn, D.H. (2015). The PTEN pathway in Tregs is a critical
driver of the suppressive tumor microenvironment. Science Advances. 1(10), e1500845.
doi: 10.1126/sciadv.1500845. PMID: 26601142.

. Raber, M.D,, Sierra, R.A., Thevenot, P.T., Shuzhong, Z, Wyczechowska, D.D., Kumai, T.,

Celis, E., and Rodriguez, P.C. (2016). T cells conditioned with MDSC show an increased
anti-tumor activity after adoptive T cell based immunotherapy. Oncotarget. doi:
10.18632/oncotarget.8197. [Epub ahead of print] PMID: 27007050.

Sultan, H., Fesenkova, V1, Addis, D., Fan, A.E., Kumai, T, Wu, J., Salazar, AM., and Celis,
E. (2016). Designing therapeutic cancer vaccines by mimicking viral infections. Cancer
Immunol. Immunother.
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Designing effective cancer vaccines by mimicking viral infections

Esteban Celis, M.D., Ph.D.

Augusta University, USA

Numerous CD8 cytotoxic T lymphocyte (CTL) epitopes have been identified allowing the
development of epitope-based cancer immunotherapies such as the use of synthetic
peptide-based vaccines. However, peptide vaccines have been notoriously weakly
immunogenic, providing suboptimal therapeutic effects. In contrast, as a response to viral
and bacterial infections, the immune system can produce massive numbers of antigen-
specific CTLs eliminating disease and providing memory responses to prevent future
infections. Our strategy to optimize peptide vaccines is to design immunization strategies
that mimic infections by providing the necessary immune activation signals together with
the appropriate immunogenic peptides.  Furthermore, it has been proposed that
minimal peptide epitopes are poorly immunogenic because they are presented to T cells
by non-professional APCs. Therefore, it is suggested that using long peptides vaccines
will improve immunogenicity by forcing antigen presentation by professional APCs. Using
several mouse tumor models, we observe that peptide composition (hydrophobicity,
amphipathicity), adjuvant and route of administration are more critical than peptide size
for generating strong CTL responses that limit tumor growth. Two separate events are
required for peptides to generate huge CTL responses, similar to those observed during
acute infections: 1) Peptide priming mediated professional APCs, where CD40 activation
and TLR signals are critical; 2) T cell expansion, which can be mediated by either
professional and non-professional APCs and where type-I interferon induced by retinoic
acid-inducible (RIG-I)-like receptor stimulation by poly-IC plays a critical role. Effective
anti-tumor CTL responses were accomplished by 2 systemic injections (i.v. or im. 5-7
days apart) of peptide/poly-IC. Lastly, in some instances even in the presence of huge
numbers of tumor-reactive CTLs anti-tumor effects remained suboptimal, but could be
significantly enhanced by implementing PD1 blockade. Resulting in complete tumor
eradication. After 15 years we are learning how to motivate the immune system to reject

tumors.
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Designing Effective Cancer Vaccines
by Mimicking Viral Infections

Esteban Celis, M.D., Ph.D.
Cancer Immunology Program

GEORGIA

CANCER CENTER

AUGUSTA UNIVERSITY

In vitro immunization with predicted
CD8 T cell epitopes from TAAs

Proc. Nadl. Acad. Sci. USA
Vol. %1, pp. 2105-2109, March 1954
Immunclogy

Induction of anti-tumor cytotoxic T lymphocytes in normal humans
using primary cultures and synthetic peptide epitopes
(mafor histocompatibility complex antiges-binding peptides /tumor-specific cytotaxic T cells/MAGE antigrns /meiasema immunity)
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Human Immunology 59, 1-14 (1998) “?’.“

EISFVITR

The Multi-epitope Approach for

Immunotherapy for Cancer: Identification
From the Cytel Corpovation, San Dicgo, California 92121USA (LK.,

of Several CTL Epltope-s from Various SJH. V.T. 55, AS. EC.), Takma Shuze Co. 11d., Biotachnology

Tumor-Associated Antigens Expressed on Resaardh Laboratories, Otsu, Shiga, Jupan (1.K., K.T) and Laboratory of Cell
1i ithelial Tumor: Biology. National Carmcer lnstitute, Babesda, MD 20892, USA (E.A.).
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Now that we had CD8 T cell
epitopes for TAA, what did we do?

Ao (maraiuma e gie
FDNAT L DA gt Wil & Wiken b B Lkl

A Phase 1 Trial of an HLA-AI Restricted MAGE-3 Epilope
Peplide with Incomplete Freund's Adjuvant in Patients with
Resected High-Risk Melanoma
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Now that we had CD8 T cell epitopes
for TAAs, what did we do?

Peptide Vaccination of Patients With Metastatic Melanoma
Improved Clinical Qutcome in Patients Demonstrating
Effective Immunization

Swetomir N Murkovic, MD, P, Vera £ Suman, PRD. Jumex N. Ingle, MU, Judith 8. Kuwr, M) Oyer!applng !'uman L_eUKocyle Anhgen CIass Il" .
Henry: €. Pitor, M0 Charles 1. Loprinzi. MD. Ravi D, Ran, MBBS, Elnard T Creacon M0, Binding Peptide Vaccine for the Treatment of Patients
Mark R Pitrcthow, MD. Jakob B Allred, Wendy K. Nevalo, und Estebun Celis, MD With S‘la e IV Melanoma
American journal of Chnxal Oncology » Volure 29, Number 4, Augusl 2006 . ? ) o
of Sy

MART-lzy, gp100209 & Tyl'gﬁg in Montanide ISA 51 i GM-CSF Sholanoma Study Group of the CANCER July 1, 2007 / Volume 110 / Number 1

Mayo Clinic Cancer Center’
Esleban Cels, uo. m®

! Mayo Clinic Cancor Centrx. Rochastes, Mirmety.

7M. lea Mot Cancar Conier ard Remssch
Intuty, Tamn, Florkta.

gp100175.155 (GRAMLGTHTMEVTV)
in Montanide ISA 51 + GM-CSF

GRAMLGTHTMEVTY = DR53, DQ6

MLGTHTMEV = HLA-A2
AMLGTHTMEVY = HLA-A2
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So is there any future for peptide vaccines
to treat cancer?

W Vaccines that induce T cell responses
W Promising results but no homeruns
W Suboptimal immune responses (quantity and quality of T cells)

W Tumor-generated immunosuppression (PDL1, MD5Cs, Tregs)

W Adoptive cell therapy (ACT)
W Some homeruns and many good hits
W Achieves huge numbers of tumor-reactive T cells
W Technically challenging, not very cost effective

W Toxic adjunct therapies (lymphodepletion, high dose IL-2)

GEORGIA
CANCER CENTER

AUGUSTA UNIVERSITY

Working Hypothesis

It may be possible to design a
simple, cost-effective vaccine that
achieves what ACT does, w/o so
much toxicity by mimicking a
systemic acute infection

W Magnitude of response : > 10% of all T cells

W Duration of response: until disease is eradicated
and more (memory CD8 T cells)

W Capable of overcoming immune suppressive activities
(tolerance and tumor-related immunosuppression)
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 Peptides are in general poor immunogens

Peptides . Peptides
in sterile %
saline

good adjuvants,

=

Dendritic Cell (DC)

@ CANCER CENTER

ALUGUSTA UNIVERSITY

Some soluble (minimal epitope) peptides can be highly
immunogenic in mice when given with the right adjuvants

<> Ovay+anti-CD40 - Trivaw/LPS

[%)
§ 20 - Trivax/Poly|C ¥ TAVaxwGDQ
s @ TiVax/CpG & TriVax/FSL1
é 15 % 80+
o 4 O
g =
8 8 60
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@ 1 'E 4
£ 2 40
= o o
® S O o
P Y GO g 201
a7 o0 R & *ﬁ \\@5 %
o # 8 A &&F =
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A

* One single Lv.injection of Ova,s; (SIINFEKL) in PBS Days Post Vaccine

* TriVax: peptide + TLR-L + aCD40 mAb

Q: So what's so special about poly-IC that
allows a substantial boost?

* Responses measured in blood 6 days post-vaccination

A: Poly-IC can stimulate TLR3 (endosomes) &
MDAbD, a RIG-I-like receptor (cytoplasmic)
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Role of TLR3 and MDAS5 in T cell
priming and expansion
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Prime/boost 5 days apart using Pam,-Ova
peptide + poly-IC w/0 aCD40mAD
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To stimulate RIG-I-like receptors,
poly-IC must go to the cytoplasm
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\\Second Hypothesis

pathogen

dsDNA 000K \

To mimic a systemic acute infection, nméj’i 3:3:15559
non-professional APCs can present S
antigen and danger signals derived ‘“.Nd': el
from cytoplasmic PRRs (e.g., RNA €
helicases, STING) ®

EX5 . ire

Can a STING agonist enhance immune responses to peptide vaccines?
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Can concurrent TLR3/MDAS and
STING enhance peptide vaccines?

Model system:

Peptides: hgp100 (KVPRNQDWL) or Pam-hgp100 {[Pam],-KMFVKVPRNQDWL)
Adjuvants: Anti-CD40 mAb, poly-IC * c-di-GMP
Tumor: Mouse B16 melanoma, expressing mgp100 (EGSRNQDWL)
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Heterologous Pam-hgp100 prime, hgp100
boost is superior to homologous vaccines
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c-di-GMP increases immune
responses to hgp100 TriVax
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c-di-GMP increases immune
responses to Ova TriVax

1004 mm Trvax
TriVax + c-di-GMP
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Tumor recognition
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Type-l IFN requirements
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Synergism between poly-IC and c-di-GMP
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Anti-tumor effects of vaccination
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Reassessing the use o.CD40 mAb

aCD40 mAbs may generate severe lethal toxic effects
. Enhance cytokine cascade

 Activation on M@s

- Increase production of IFNy (which may decrease vaccine efficacy)

Clinical development of agonistic human aCD40 mAbs was
suspended by Pfizer (now being developed by Roche)

Will peptide plus poly-IC (BiVax) provide sufficient
immune responses to control fumor growth?
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HPV mouse tumor model
Experiments using HPV16-E7 45 (RAHYNIVTF) H-2D" epitope

Post-Prime Post-Boost

> o Tumor FREE
e S
Peptide 2 1p0-
g ! 3 o - Peptide
Lot § 80- 3 = Bivax
o I,f i S —& Pep +aCD40
Peptide + Poly-IC £ 80y / -+ Trivax
(BiVax) = /
=y o 40 ..
a / .
e 5 f = < & ~8
Peplide + «CD40 g 281 / ! :
K] :/L PR |
[ 0 = T L b T
W F 06 > N2l <]
Trivax S & & &
Days after prime
EL4 EL4 + pep TC1 TCANFNy
R b A AR a3
w 0000000
- < ‘_‘ '. / ’r'- L ".‘-l.;'; k "':'-::'I,: ,"l': _'.-.
(@) GEORGIA A A A XL

sV CANCER CENTER

AUGUSTA UNIVERSITY

Ova,:, BiVax fails to induce
substantial T cell responses
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T cell responses to Trp1,55.463/0m

Post Prime Post Boost

TAPDNLGYM
- ]

TriVax
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Post Prime Post Boost
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T cell responses to Trp2 444 1gs
with BiVax immunization
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Peptide composition may affect
iImmunogenicity in BiVax

Amino Add Hydrophobicity

[Residue Type kattydrophobicity®:

Sequence kd Hydrophobicity
RAHYNIIVTE] .1
STINFEKRL

TAPDNLGYM
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Simply elongating peptides does not
increase immunogenicity

GQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIR

O =
6 323 16 231

¥
L. -
AEPDRAHYNIVTE
286
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478 447 : 463
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Increasing amphipathicity
enhances BiVax efficacy

60| @ Pam2KKFVTAPDNLGYM TAFDNLGYTA
O TAPDNLGYM
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451 % Pam2KTAPDHLGYM
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30
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% Tetramer positive CD8 T cells
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Increasing amphipathicity enhances
TriVax efficacy

Post prime Post boost
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Murine Gammaherpesvirus (MHV)-68 H-2K? T cell epitope
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Peptides amphiphiles can assemble into
tubular micelle structures (VLPs?)

Adv. Mater. 2012, =25
DOLI: 10.1002/adma.201200209 &

1 Self-assembly
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PS-CD8  Viral specific CD8

AR-CD8 Autoreactive CD8
:'{?-",.' . ';< Pathogen and pathogen antigens
»WY  Self Antigens
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Expansion of immune suppressive myeloid cells in Cancer

Je-In Youn, Ph.D.

Seoul National University, Korea

Myeloid-derived suppressor cells (MDSC) are a group of myeloid cells comprised of
precursors of macrophages, granulocytes, dendritic cells (DC) and myeloid cells at earlier
stages of differentiation with potent immune suppressive activity. These cells accumulate
at many pathologic conditions especially in cancer and play a major role in regulation of
immune responses. These cells were reported to exert a profound inhibitory activity on
both tumor-specific and nonspecific T lymphocytes but also aid tumor development by
providing molecules and factors essential for tumor growth and neovascularization.
MDSC consists of two distinct populations: monocytic MDSC (M-MDSC) and
polymorphonuclear MDSC (PMN-MDSC). A large proportion of M-MDSC, in tumor-
bearing mice, acquired phenotypic, morphological and functional features of PMN-MDSC.
This effect was caused by soluble tumor-derived factors and mediated by transcriptional
silencing of the retinoblastoma (Rb) gene. Through the proteomic analysis, we selected
candidate proteins which are detected at the high levels in the group of tumor bearing
mice compared to tumor free mice in the plasma and tumor explant supernatant.
Treatment of stress induced protein promoted the differentiation of MDSC from bone
marrow progenitor cells in vitro. The results suggest that the stress induced protein has a

crucial role in MDSC expansion in cancer.
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Expansion of immune suppressive
myeloid cells in Cancer
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Four Targets for inducing anti-tumor
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Expansion of MDSC
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Immune suppression mechanisms of

MDSC
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MDSC promote metastasis
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Regulatnon of MDSC differentiation
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Molecular control of T cell function in immunity

Chen Dong, Ph.D.

Tsinghua University, China

CD4+ T lymphocytes play important regulatory roles in the adaptive immunity. Upon
activation, naive CD4+ helper T (TH) cells differentiate into effector subsets with different
cytokine expression profiles and immune regulatory function. Effector TH cells have been
classified into TH1 and TH2 lineages: TH1 cells express IFNg, and TH2 cells produce IL-4,
-5 and -13. More recently, several other subsets of TH cells, including TH17 and Tfh cells
have been identified and may play important roles in autoimmune diseases. I will discuss
our recent work on the molecular regulation of TH17 and Tfh cell development and
function. The knowledge from our work may benefit targeting these cells in autoimmune

diseases.
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Immune regulation via immune checkpoint PD-1 expressed on

regulatory T cells during cancer progression

Sang-Jun Ha, Ph.D.

Yonsei University, Korea

For more than 100 years, cancer immunotherapy has played an ever-increasing role in
the understanding and treatment of cancer even though there are not many approved
drugs and regimens. Activating the immune system for therapeutic benefit in cancer has
long been a goal in immunology and oncology. After repetitive failures, the tide has
finally changed due to the success of recent proof-of-concept clinical trials using
antibodies to blockade immune checkpoint molecules such as CTLA-4 and PD-1. These
successes suggest that tolerance raised by tumor microenvironment is a major obstacle
for immunotherapy and therefore, blocking the tolerance is the first step to rejuvenate
tumor-specific T cell immune responses. Herein, we show that PD-1 is upregulated in
tumor-infiltrating regulatory T (Treg) cells as well as CD8+ T cells in tumor
microenvironment. Tumor-infiltrating Treg cells displayed greater suppressive capacity for
inhibiting CD8+ T cells proliferation and subsequent cytokine production than Treg cells
isolated outside tumor microenvironment. A contact between Treg cells and CD8+ T cells
was necessary for the potent suppression of CD8+ T cell immune response. More
importantly, the suppression required cell-specific expression and interaction of PD-1 on
Treg cells and PD-1 ligand on CD8+ T cells. Our study defines PD-1 upregulated on Treg
cells and its interaction with PD-1 ligand on effector T cells as one cause for the potent T
cell suppression and proposes the role of PD-1 on Treg cells, in addition to that on

exhausted T cells, in tumor microenvironment.
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Immune regulation via immune checkpoint
PD-1 expressed regulatory T cells
during cancer progression

Sang-Jun Ha

Department of Biochemistry

College of Life Science and Biotechnology

‘%? Yonsei University

Question

Why cannot our immune system treat
efficiently chronic infection and cancer ?
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T cell exhaustion under cancer microenvironment
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Cancer-immunity cycle
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Why do we need more checkpoint blockers?

Pembrolizumab antitumor activity (Merck)
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Immune checkpoints between APC, T cell, cancer, & normal cell

Cancer cell

Normal cell

|
Modified from Shin DS & Ribas A. Curr Opin Immunal 2015 33:23

Immune suppression by Treg

Natural killer cell

Suppression of

Tumour cell @‘:‘::]

Taeg Cell

&0
g,

Naive T cell Tumour-assochited T,,, cells

e Tumour-associated
lo) T
{
j il Induction of a tolerogenic

mﬁén phenotype In myelo-monacytes

Dendritic cell

ﬁ

55



Characteristics of thymic Trez and peripheral Treg

€ Model depicting the generation and function of tTrez and pTreg
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Basic mechanisms used by T cells

a Inhibitory cytokines b Cytolysis
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Regulation of innate immune response in the intestine during colitis

Sang-Uk Seo, Ph.D.

Seoul National University, Korea

The intestinal immune system is comprised of both innate and acquired defense
mechanisms and they are interacting with most complex ecosystem in the body. Because
various luminal contents can stimulate immune system, the host has evolved several
mechanisms to prevent inappropriate activation of inflammatory response in the intestine.
For instance, the intestinal epithelium and resident macrophages are hyporesponsive to
bacterial Toll-like receptor ligands such as lipopolysaccharides. In addition, several
barriers including the mucus layer and antimicrobial peptides limit the contact between
microbes and the host immune system and contribute to gut homeostasis. Once these
barriers are breached, innate immune cells play immediate role to react disease condition.
However, when innate immune system is overactive, immune cells may enhance
pathology associated with inflammation. As a key regulator of innate immune response,
major function of innate immune cells includes interaction with its environment and
production of immune mediator called ‘cytokine’. Recruited innate immune cells,
including monocyte and neutrophil, amplify the degree of innate immune response and
these cell types are reported to be involved various diseases when uncontrolled.
Therefore, study of immune pathways involved in interaction between cells and

inflammatory milieu are crucial to understand intestinal disease pathogenesis.
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Regulation of innate immune response
in the intestine during colitis

Seoul National University
Wide River Institute of Immunology

Host-Microorganisms (Microbes) interaction

- Microbes; Microscopic & living organism
- Immunity; Host defense mechanism against infection
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Innate & Adaptive Immunity
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Inflammatory anergy of intestinal macrophage
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Inflammasome; 2-step regulation of IL-1f secretion
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Inflammatory Bowel Disease (IBD)

IL-1B is highly up-regulated in IBD patients.
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Dextran sodium sulfate (DSS)-induced colitis

Most frequently used mouse IBD model

Epithelial cell damage
Colon inflammation
Diarrhea

Rectal bleeding
Weight loss

Commensal bacteria induce IL-1p production and contri
bute to enhance colitis
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Commensal bacteria-derived IL-1p promotes DSS-induced colitis
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Commensal bacteria induce IL-18 production via NLRP3
-ASC-Caspase-1 pathway.

Ex vivo culture of intestinal LP cells
DSS (2.5%), 7 days
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Inflammatory monocyte recruitment triggers NLRP3 inflammaso
me response in intestine
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Inflammatory monocyte recruitment triggers NLRP3 infl
ammasome response in intestine

DSS (2.5%), 5 days
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Inflammatory monocyte recruitment triggers NLRP3 infl
ammasome response in intestine

DSS (2.5%), 5 days

\8 —»? — Isolate cell populatio — Culture (3 hours)

i ns
Lamina propria cell

e —————— 800 = | eee 6 7] YY)
v 24.4% 50 - . 5 - —
! Y@ ? 0 1 %: 4 1
: 2 =
, & 400 - R
v 49.8% 22.7% a- 'Bi 2 4
% N ) i { =" 200 i e § 1 =
| 9 w" 10 " "9 S= -
LyeC 0 - ;_. 1 J 0 ! 4 l PR
CD1lb + + - CD11b + + -
LyéC  hi int/- - LyeC  hi int/- -

69



M Cell Host & Microbe

Inflammatory Monocytes Facilitate
Adaptive CD4 T Cell Responses
during Respiratory Fungal Infection
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Summary

Steady-state i Colitis
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