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Mast cells are crucial for induction of group 2 innate lymphoid cells and

clearance of helminth infections

Hiroshi Ohno
RIKEN, Japan

Mast cells are important for eradication of intestinal nematodes; however, the precise
mechanisms of action have remained elusive, especially in the early phase of infection.
We found that Spi—-B-deficient mice (Spi-B-KO) had an increased number of mast
cells and rapidly expelled the Heligmosomoides polygyrus (Hp) nematode. This was
accompanied by the induction of IL—13~producing group 2 innate lymphoid cells (ILC2)
and goblet cell hyperplasia. Immediately after Hp infection, mast cells were rapidly
activated to produce IL-33 in response to ATP, which was released from apoptotic
intestinal epithelial cells. /n vivo inhibition of the P2X7 ATP receptor on mast cells
rendered the Spi—-B-KO mice more susceptible to Hp, concomitant with elimination of
mast—cell activation and IL-13-producing ILC2 induction. These results uncover a
previously unknown role for mast cells in innate immunity in that activation of mast
cells by ATP orchestrates the development of protective type 2 immune responses by

producing IL—33 crucial for ILC2 activation.
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Mast cell-group 2 innate lymphoid cell
interaction is important for clearance of
helmm'l'h infection

Chikak Shimckawa
Hiroshi Ohno

Laboratory for Intestinal Ecosystem
RIKEN Center for Integrative Medical Sciences (IMS)
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Laboratory for Intestinal Ecosystem
IgA is important for containing gut microbiota

Fagarasan et al, Science 298: 1424-1427, 2002

AID (activation-induced cytidine deaminase) KO mice
=> no class switch — no IgA
— no somatic hypermutation — no high affinity Ab

B-cell Hyperplasia of 6ALT in AID-KO mice

Drastic increase of gut bt.lcteria in AID-KO mice

Reversal of lymphatic hyperplasia in ALD-KO mice by antibiotics

P RIBEN Center for Iategrative Medial Scicoces (M9 WS

Laboracory for fnt e;nn.u' Ecosystern

M cells in Follmleassoc:ated epithelium (FAE) is
responsible for mucosal antigen-uptake

I name it M Cells.

FAE

M cells

Bockman, D.E. and Cooper, M.D.; Am. JAngar. 1973
Owen, R.L.and jones A.L, Gastroenteralogy 1974

R RIKEN Center for Inzegrative Medical Scicnces MO WAIMS
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Cell-intrinsic regulation for the differentiation
of intestinal epithelial lineages
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Labomm:ybrlz:'lmafnl Ecosystern
RANKL promotes M-cell differentiation

Control

RANKL i.p: injection
Untreated

rRANKL Treated
Ditfuse vM cells

Diffuse vM cells

R RIKEN Center for Integrative Medical Sciences (IM3) Y¥3IMS




Laboratory for fntesanal Ecosystern

Spi-B is highly induced in villi after RANKL treatment

Spi-B

ic cells and play a
pment and function of the

Non—treatment 1 day 2 day _ 3_day 4 day 4 day + 2 day

Kanaya et al., Nat. Immunol, 2012
R RIKEN Center tor Integrzive Medical Sciences (IMS) ¥alMS

Laboratory for fntesonal Ecosystern

Spi-B is specifically expressed in FAE M cells
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Kanaya et al., Nat. Immunol, 2012

R RIKEN Center for Integrative Medica! Sciences (IMS) $alMS




Laboratory or Intestinal Ecosysterm

Whole mount staining reveals no GP2
expression in Spi-B KO mice

_f_

Kanaya et al., Nat. Immunol, 2012
R RIKEN Center for Integrative Medical Scieoces (IM35) S2IMS

Laboratory for intestinal Ecosystemnm
Bacterial translocation to PP is impaired in Spi-B

KO mice
S. Typhimurium Y. enterocolitica
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Kanaya et al., Nat. immunol, 2012

R RIKEN Center for Integrative Medical Sciences (349 $8IMS
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T Laborarory for Intestinal Ecosysterm

RANK-RANKL dependent Spi-B expression
induces M-cell differentiation

M cell

. epithelial stem cell

P RIKEN Center for Integrative Medi-al Sciences (IMS) $2IMS

Laboratory for intesanal Fcosyvstem

Spi-B-KO mice efficiently eradicate Hp

Heligmosomoides
s
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Shimokawa et al., Immunity, 2017
R RIKEN Center for Integrative Medical Sciences (M) YalMS
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o T Laboratary for fntestanal Ecosysterm
Mast cells are increased in Spi-B-KO mice

Erythrocytes
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Laboratory for intestunal Ecosystern
sis and altered hematopoiesis
in Spi-B-KO mice
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Laborartory for Intesunal FEcosystem

Spi-B-KO mice depleted of mast cells
were susceptible to Hp infection
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Shimokawa et af., Immunity , 2017
R RIKEN Center for Intesmative Medical Sciences (TAMS) ¥aIMS

Laboratory for Int=stanal Ecosystern .

ILC2 is important for expulsion of helminths

Goblet cells

R RIKEN Center for Integrative Medial Sciences (IMS5) Y%l MS
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Laboratory for fntesonal Ecosystern
ILC2 is likely responsible for Hp eradication
in Spi-B-KO mice
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Shimokawa et al., Immunity , 2017
R RIKEN Cepter for integratve Madical Sciences (IMS) B2l MS

Laboratory for intestnal Ecosystem

Mast cells may activate ILC2 in Spi-B-KO mice
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Laboratorsy for Intestinal Ecosystern

~ Mast cells produce IL-33 upon Hp infection

Wi 1133 measured by
Spi-BKO Real-time PCR and FACS
£
2
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£
]
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o . ? 102 10t et

IL-33

Post infection ( days )

Shimokawa et al., Immunity , 2017
R RIKEN Ceneer for Integrasive Medical Sciences (IMS) YalMS

"Laboratory for Int=stinal Ecosystem

How lmsf cells are activated during
~—, Hp infection?

expulsion

Goblet cells

B RIKEN Center for Integrative Medical Scicoces UM RIAMS
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Laboratorn for Intesonal Ecosystem

Mast cells are activated by ATP

ARTICLE
uacmud 2&‘! .."" lc tpﬁad?’)w ’:_d-.... el 2 Sep 2012

Extracellular ATP mediates mast
cell-dependent intestinal inflammation
through P2X7 purinoceptors

Yosuke Kurashima' 22, T akeaki Amiya' 32 Tomenoet Nochy', Kursko Fujisawa's. Takesh Haraguchi®,
Hedes 1ha¥ Hiroka Tectew?®, Stuntars Satol3, Sachrko Nakaiima’, Hidek; lijsma’, Masato Kubo® 2.
sum Kunssawa' 3 & Hiroshi Kiyong! 234 &

P RIKEN Cepter for Integrasve Medical Sciences (IMS) %2l MS

Laboratary for fntesanal Ecosystern

ATP activates mast cells in a P2XR-dependent
manner /i vitro

_— cb63
Sorted mast cell

% 80 ~ 2000

E 80 g 1502

o 40 & om0

gzu . G o

S g - g =

* 8T 30
ATP(10uM) = = ATP(10pM) - -

Syramin -~ - - - SUIBSIII-‘I = = =z

hed St

P RIKEN Center for Inegrasve Medical Scicaces (IMS) !»ZIM_S

16




Lalboracory fo ne=sonal Foosystem

What is The source of ex'l'r'acellular' ATP?

.. | | ::-_. '| qu ?'] ;”5 | --I-l]-- ]
e iglg @@g mgggg e
:
|
|

|

> ol ? |

o %o o '

oou |

g% o =
P2X7R o

Mast cell

P RIFFERY Coneor for fnpegracte Madiea! Soences (IS %l MS

gl Eoozystern

ATP is released from intestinal epd‘hellum
in association with cell death
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Laboracory Yor Snsesenal Ecosystern:

Differential IL-33 secretion by mast cells
but not by epithelium in Spi-B-KO mice
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Shimokawa et al., Immunity , 2017
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Taboratory for fpsasenal Ecosvstern

Mast cell-derived IL-33 contribute to
protect mice from Hp infection

g
8

E
i
=
]

4 w
g h
- Rl £ i
t o g ‘o-.v A 41
e o
W o |-°I'
S ES Foa
L
& ¢
Small intestinal tissue
g = 133 o1 13 0
= - =
L] (311 - G 6 5
2 - 24 %
(3 o [ [
€ s 82 =
£ £ .
SESES T PSS F
G e N gFe
&g A

Shimokawa et al., Immunity , 2017
R RIKEN Center for Integrative Medical Scences (IMS) $2MS

18




Labo: 3 o Anisesizeal FCosyvistern

Is mast céil-acﬂvahon by ATP essen‘l'ml
féc Hp eradication?
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Laborateny 5o fnvostial Ecoasysern

BBG-treated Spi-BKO mice were less
resistant to Hp infection
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Shimokawa et al., Immunity , 2017
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Laboracors for fntestnal Ecosyvstern:

Summary

expulsion

mucin
q A
Cb63 Goblet cells

Shimokawa et al., Immunity , 2017

et A AN A £ A

R RIKEN Center for Integrative Madical Sciences (IMS) S2lMS

20




Laboratory for intestinal Ecosystem .
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NFATS is Essential to Rheumatoid Inflammation

Wan-Uk Kim

The Catholic University of Korea, Korea

Apoptotic death of activated macrophages is important for controlling chronic
inflammation and its defect in these cells has been implicated in the pathogenesis of
rheumatoid arthritis (RA). However, the molecular signatures defining apoptotic
resistance of RA macrophages have not been fully understood. Here, global
transcriptome profiling of RA macrophages revealed that nuclear factor of activated T-
cells 5 (NFAT5), an osmoprotective transcription factor, is one of the critical regulators
for a wide range of pathologic processes of synovial macrophages, including cell cycle,
apoptosis, and proliferation. Analysis of transcriptomes in NFAT5-deficient
macrophages demonstrated the molecular networks defining cell survival and
proliferation. Proinflammatory M1 polarizing stimuli and hypoxic conditions were
responsible for enhanced NFAT5S expression in RA macrophages. An /n vitro functional
study demonstrated that NFAT5-deficient macrophages were more susceptible to
apoptotic death. Specifically, chemokine ligand 2 (CCL2) was secreted in an NFAT5-
dependent fashion and it bestowed RA macrophages apoptotic resistance. In mice,
NFAT5-deficient macrophages were more susceptible to apoptosis and were less
efficient in promoting joint destruction than NFAT5-sufficient macrophages when
injected intra—articularly. Moreover, when recombinant CCL2 was administered into one
of the affected joints of NFAT5 (+/-) mice, joint destruction as well as macrophage
infiltration was significantly increased, demonstrating the essential role of NFAT5-
CCL2 axis in arthritis progression in vivo. Conclusively, NFAT5 regulates macrophage
survival by inducing CCL2 secretion. Our results provide the first evidence that NFAT5
expression in macrophages enhances chronic arthritis by conferring apoptotic
resistance to activated macrophages.
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o Global gene expression
Rheumatoid Arthritis
WA
\ \'\.,’,
:’\._
= Octeoctast 1. Molecular signature?
e_&;*_{‘f"m — 2. Biologic network?
{ L o
—— Dendrtic cel (3] o :
- 11 o Cytokine i
e - ° e 0 ' Profiferation Q
"‘_-;...:;‘-Q;—'—ﬁ-_-.;-r:ctﬂ - 0 © production . - .
= 9 “Ta 53— = Plasma : ————
— gl o Zhom oo cylnsnes % e
b L ] © o o o survival
~I1' :t'_-_ "-ll | Extenaive © o° Anihcation
] a5 .’ J angogeness Apoptotic defect
S et oot of Macrophage
i _J"' Macrophage
g‘._-_—,-. & synovial king
‘:\/‘.
S |
r T .
| ! Sa
\‘\,_ Synovium
{41 eanEsios GEAOUTT=221 0 1'?.‘..:.”' =1.lap2ipg
o e~ ® y .
NFATSs5 is a Key TF in RA macrophages
A B :
Normal RA-SF M® E“;""T’"'Z“Z’“ ot
SP1 4
Up SPI1
(1015) , Kkeytr [NEED ‘
- " RELE
0.5 NFKE2
PPARG s
Down RELA e
Laadl 2 ggi et
-1
c D ‘*96)6!.
RA-SF NFATS
M$  signature Bl [ e nre

_- 302
1611 | (178, | 1191

PIY

29

—_—

ﬁ"
41 o TIRA
i [ o
24 % « |
| = * x
c._4|-.-- ¢ b

j & SAD-NFATS-FITC




Induction of NFAT5 by
Mt polarizing stimuli and hypoxia
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3. Cancer invasion & meta

4. Rheumatoid inflammation ?

Macrophage survival?

Nat Struet Biol 9: 90 (2002)
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NFATS regulates macrophage survival
and proliferation (2)
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NFATS expression in CCL2(+) versus CCL2(-)
subpopulations of RA-SF macrophages
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NFATs5 promotes survival of primary mouse
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CCL2 restores survival of NFAT5-deficient

RA macrophages
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Direct in vivo effect of NFAT5 in macrophages
on the progression of arthritis.
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Development of a new NFATS5 inhibitor
for RA treatment : small molecules

- HTS » NFATS specificity

+ Chemical modification » Drug Mechanism

» Early ADME/T + NFATS target genes
- Chemical Library + RA animal model

+ Synthesis » RA clinical tnals
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The discovery of NFAT5 inhibitor using HTS
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KRN2 suppresses CFA-induced arthritis and
macrophage infiltration in arthritic joints
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summary

= Global transcriptome profiling of RA macrophages revealed that
NFATs5, an osmo-protective transcription factor, is one of the critical
regulators for a wide range of synovial macrophages, including cell cycle,
apoptosis, and proliferation.

= Functional studies demonstrated that NFATs prevents apoptotic death
of both human and murine macrophages, promoting macrophage-
induced arthritis in mice.

= Specifically, CCL2, a chemokine, is critically involved in macrophage
survival as a representative downstream target of NFATSs in vitro and in
Vivo.

= We discovered novel NFAT5 suppressors, KRN2 and KRNg, to
selectively inhibit NFAT5 expression.
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Critical Role of Commensal Microbiota in Shaping Antiviral Immunity

Heung Kyu Lee

KAIST, Korea

Commensal microbiota are well known to play an important role in antiviral immunity by
providing immune inductive signals; however, the consequence of dysbiosis on
antiviral immunity remains unclear. We demonstrate that dysbiosis caused by oral
antibiotic treatment directly impairs antiviral immunity following viral infection of the
vaginal mucosa. Antibiotic—treated mice succumbed to mucosal herpes simplex virus
type 2 infection more rapidly than water—fed mice, and also showed delayed viral
clearance at the site of infection. However, innate immune responses including type |
interferon and proinflammatory cytokine production at infection sites, as well as
induction of virus—specific CD4 and CD8 T cell responses in draining lymph nodes,
were not impaired in antibiotic—treated mice. By screening the factors controlling
antiviral immunity, we found that interleukin—33, an alarmin released in response to
tissue damage, was secreted from vaginal epithelium after the depletion of commensal
microbiota. This cytokine suppresses local antiviral immunity by blocking the migration
of effector T cells to the vaginal tissue, thereby inhibiting the production of interferon—
¥, a critical cytokine for antiviral defense, at local infection sites. These findings
provide insight into the mechanisms of homeostasis maintained by commensal
bacteria, and reveal a deleterious consequence of dysbiosis in antiviral immune
defense.
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Critical roles of commensal
microbiota in shaping antiviral
immunity

Heung Kyu Lee, Ph.D.

Graduate School of Medical Science and Engineering

Korea Advanced Institute of Science and Technology

What are the commensal microbiota?

* Microbial cells > 10x human cells

* Generally not harmful, in fact essential for maintaining health
Roles of commensal microbiota

v" Produce some vitamins

v' Break down our food to extract nutrients
v' Teach our immune systems

Changes in the composition correlate with numerous disease states

Health

Discase
Angiogenosis Allergy
Digestion Asthma
Enteric nur ve function Cancer
Epsthelial homeostaus Disbetes

Fat metabolizm 18D
Immune cell homeostass Obesrty
Resistance to infection
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Commensal bacteria supply signals for inflammasome activation

Microbiota regulates immune defense against Commensal bacteria
respiratory tract influenza A virus infection i p
Tokoshi Ichinohe® ™, i K Pang™", Yasuke Kumamoto®, David R. Peaper, John M. H”, Thomas S. Muriay, * J

and Akiko Maahi*?

Ichinohe et al. PNAS (2011} Vel 108

* Immune responses to respiratory influenza
virus infection are diminished by antibiotic

treatment.
* Neomycin-sensitive commensal bacteria are
required. S /& Migration of
= dendritic cells
* Local or distal TLR stimulation restores BC == from the lung
immune response to influenza virus :;)nt::;?::gng
infection in antibiotic-treated mice.
* Commensal bacteria supply signal 1 for IL-18
and IL-18 secretion. ﬁ@
* Antibiotic treatment impairs DC homeostasis '
and migration by reducing priming signals LU=

for inflammasome-dependent cytokines.
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Commensal-derived signals provide tonic immune stimulation

Commensal Bacteria Calibrate the Activation
Threshold of Innate Antiviral Immunity
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¢ Commensal-depleted mice
exhibit impaired innate and
adaptive antiviral immunity.
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Purpose

To examine the role of commensal microbiota
on antiviral immunity against genital mucosal
herpes simplex virus type 2 (HSV-2) infection

KAIST

Genital herpes is a common, life-long viral infection

15.5 % of persons aged 14-49 years
Caused by HSV-2 > HSV-1
Vesicles or painful ulcers

Significant risk factor for other sexually
transmitted infections such as HiV-1

Neurotrophic and neurcinvasive viruses

Persist in the body by becoming latent and
hiding from the immune system in the cell
bodies of neurons
Treatment
— Cannot currently be eradicated from the
body
— Limited to interfering with viral replication
— No vaccine treatment yet

KAIST
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Mechanisms of innate and adaptive immunity against HSV-2 infection
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Question I

Perforin & fas

IFN-y

KAIST

Does commensal microbiota influence on antiviral
protection against genital mucosal HSV-2 infection?
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ABX-treated mice are more susceptible to mucosal HSV-2 infection
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Question 11

How can commensal microbiota support immune
protection against genital mucosal HSV-2 infection?

KAIST

Production of innate cytokines except IL-1 family cytokines in ABX-

treated mice is comparable to control mice after HSV-2 infection
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IL-1PB treatment does not restore immune protection against
mucosal HSV-2 infection in ABX-treated mice
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Caspase-1 deficiency does not affect the susceptibility to mucosal
HSV-2 infection
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Eosinophils are markedly increased in vaginal tissue in
ABX-treated mice
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cell population
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IFN-y—producmg capamty of T cells in draining LN and
vaginal tissue is not impaired in ABX-treated mice
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IFN-y production at the local infection site is impaired in ABX-treated
mice after mucosal HSV-2 infection due to defective T cell migration

\ Coltect vaginal wash
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Question III
Which factors do modulate the defects in local
immune defense against genital mucosal HSV-2
infection after antibiotic treatment?
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IL-33 secretion is induced in vaginal mucosa during antibiotic

treatment

Collect vaginal wash
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The role of IL-33 in Th2 immune response
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Modified from Licona-Limon et al. Nat Immunol. 2013;14:536-542
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IL-33 (or IL-25, TSLP) activates
type 2 innate lymphoid cells
(ILC2), which directly secrete
type 2 cytokines.

IL-33 (or IL-25, TSLP) activates
DCs, which induce Th2
response.

Type 2 cytokines feed back on
the epithelium to induce mucus
secretion (IL-13) and tissue
repair (amphiregulin).

IL-9 and IL-5 induced by ILC2
cells lead to the recruitment
and activation of mast cells and
eosinophils.

KAIST




Antibiotic treatment induces ILC2 recruitment and IL-5
production in the vagina

Collect vaginal tissue
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IL-33 treatment induces eosinophil recruitment and IL-4 production
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Systemic rIL-33 treatment impairs antiviral
immunity to mucosal HSV-2 infection
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Exogenous, but not endogenous, IL-33 modulates
antiviral immunity to mucosal HSV-2 infection
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IL-33-deficient mice treated with antibiotics show comparable
survival rates with water treated mice

IL-33*/ vs. IL-337
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IL-33-deficient mice treated with antibiotics show comparable
survival rates with water treated mice

1L-33* vs. L-337
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Question 1V
What does trigger IL-33 secretion in the vagina
after antibiotic treatment?
KAIST
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Decreased bacterial colonization after antibiotic treatment
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Increased bacterial diversity after antibiotic treatment
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Relative abundance of pathogenic bacteria is increased
in ABX-treated mice
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a major factor of pathogenesis of these bacteria

Characterization of 73 kDa Thiol Protease from Serratia marcescens
and Its Effect on Plasma Proteins’
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Proteases induce IL-33 secretion and contributes to
impaired antiviral immunity to mucosal HSV-2 infection

IL-33
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2_“ ELSIA i \i
2 1 2 3 2 5 6(d = =
200 pg papain i.vag. 2 s 3
3 consecutive days l\’/
S r a1 5t
T atar @ pation (Says)
200 pg papain i.vag.
\ 3 consecutive days \
% 3%
e 1 2z & (d} 22 fd)
HSV-2 WT Lvag.
Survival Pathology
ol § s ey ] « & Hpapas
—_ @i < Aste cxam
g ;
39 5"
>
2 ' £ H
= gt
3
[} -- ‘ =g
] s 19 2 0 G12343567 33 WInnanng
Time after nfecim (dzys] Time atter infection (days) KA' ST

Summary

* Antibiotic-treated mice rapidly succumb to mucosal HSV-2
infection.

* |IFN-y production is severely impaired at local infection site in
antibiotic-treated mice due to defective migration of effector
T cells.

» IL-33 is secreted from the vagina after depletion of
commensal bacteria.

* |[L-33 contributes to impaired antiviral immunity against
mucosal HSV-2 infection.

» Antibiotic treatment results in an imbalance in the microbial
composition of the vagina.

* Proteases, such as those induced by dysbiosis, induce IL-33
secretion and impair antiviral immunity to mucosal HSV-2
infection.
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Summary
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A Role of STAT3 in Barrier Integrity and Microbiota Composition of the Skin

Masato Kubo

RIKEN, Japan

Atopic dermatitis (AD) is the most common inflammatory skin disease. Stat3 mutation
is a major cause of hyper IgE syndrome (HIES), which consistently represent AD like
eczematous dermatitis. However, how Stat3 deficiency contributes to the dermatitis
symptom remains unclear. We found that Staf3 deficiency in the skin caused
spontaneous development of eczematous dermatitis dependent on T cells and IL-4
receptor. Based on multi-dimensional transcriptome analysis in pre— and post—flares
skin, dermatitis phenotype was controlled by sequential two steps of Stat3 deficiency
and environmental pathogenic stimuli. The Stat3 deficiency determined the barrier
integrity that increased threshold of inflammation, but this step was not sufficient to
form pathogenicity. Transcriptome data indicated that emergence of dermatitis
phenotype need to trigger robust activation of NF kB pathway and Tn2 cells.
Continuous colonization of Staphylococcus aureus was an environmental stimulus to
increase the activation threshold of T2 inflammation in the skin. Therefore, STAT3 was
a homeostasis switch in the skin controlling barrier integrity and microbiota
composition. The STAT3 mouse model provides coherent biomarkers to explain how
synergistic regulation with the genetic factor and environmental stimuli were necessary
for onset of dermatitis in Ty2 mediated AD patients.
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Atopic dermatitis (AD)

Skin is a complex system to maintain the homeostasis between the inner and outer environments in the body

AD is a popular chronic skin disease. This disease has been thought
to be a severe skin inflammation as a consequence of allergic
immune reaction. The disease usually associate with scratching.

Loss-of-function variants of the epidermal barrier protein
filaggrin become a major risk factor for AD. Nat Genet 2006

Genetlc factor Environmental risk factor
tnitial i
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filaggrin
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The dynamic interplay between the skin barrier and environmental risk factors
may critical process to compose of AD symptom.

What is a role of STAT3 in skin homeostasis?

IL-6, 1L-23, R-10......... STAT3 is a transcriptional activator

>
Stat3flox/fiox K5-cre
*» Keratinocyte-specific ablation of Stat3 impaired skin

{IX! 11 J‘:"‘.."H

-'?.ecec'oa ‘ SHZ gomain

Y sw remodeling, but does not affect skin morphogenesis.
STATB B EMBO J. 18, 46574668, 1999
Tymm * Enhanced Apoptosis by Disruption of the STAT3-1kB-{
phospmmatx Signaling Pathway in Epithelial Cells Induces Sjoaren’s
on reaction Syndrome-like Autoimmune Disease, Immunity 38, 1-11,
2013
(é = Stat3foxfiex K5-cre mice also develop Sjogren’s syndrome-like
T l=l! scription symptom, including periocular dermatitis.
target gene
GAAOX-TTC

Hyper-IgE Syndrome (HIES or Job's syndrome)

a rare primary immunodeficiency disease characterized by eczema, recurrent
staphylococcal skin abscesses, recurrent lung infections, eosinophilia and high
serum titer of IgE.

Autosomal dominant (AD) a heterozygous mutation in the STAT3 gene
Autosomal recessive (AR) mutations and deletions in the DOCK8 gene
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Stat3 deficiency in keratinocyte caused dermatitis incident
followed by high titer of IgE production and scratching
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How dose the Stat3 defect link to the dermatitis phenotype
in keratinocyte specific Stat3 deficient mice?
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Estrogen-related Receptor « and Innate Immune Regulation

Eun—Kyeong Jo

Chungnam National University, Korea

Nuclear receptors (NRs) are critically involved in various physiological responses
through the regulation of numerous target genes. Orphan NRs are a subset of NR
superfamily which ligands and functions have not been fully characterized. Emerging
evidence has accumulated that several orphan NRs play critical roles in regulation of
innate immunity to prevent harmful inflammatory responses in the host. The orphan NR
estrogen—related receptor a (ERRa; NR3B1) is the first identified orphan NR that plays
an important role in regulation of energy metabolism and mitochondrial biogenesis. We
found that ERRa was a novel regulator of the toll-like receptor—induced inflammatory
response, with the unique capacity to modulate Tnfaip3 transcriptional induction and
p65 acetylation through metabolic reprogramming via enhancement of mitochondrial
function. In addition, | will discuss our recent findings showing that ERRa, operating in
a feed—forward loop with sirtuin 1, in activation of autophagy and anti-mycobacterial
responses, via both transcriptional and post—translational control of autophagy genes.
Unveiling the new functions of ERRa could accelerate develop and improve novel
strategies against human inflammatory and infectious diseases.
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Distribution of ERR mRNA expression

according to a functional grouping of tissues
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~ Roles of Estrogen-related Receptbr a (NR3B1)
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Bone marrow-derived ERRa contributes to LPS-induced septic

shock and inflammation
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LPS stimulation results in increased acetylation of NF-kB p65

in Esrra’” macrophages

Posttranslational modtfication of NF-kB is crucial for enhancement of DNA-binding activity of NF-x3
p65 and gene activation cf pro-inflammatory mediators (Huang et al., 2010; Perkins, 2006).
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ERRa is involved in the transcriptional
"~ activation of several genes encoding
w2 TLR-negative regulators
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ERRa enhances A20 promoter activity and recruits to the A20

promoter region (-520/-513) in response to LPS
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ERRa inhibits TRAF6 ubiquitination in response to LPS
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Metabolic changes in innate immune responses

EARLY LATE
e GLUT ;‘GLUT
(adaptor protein) G6P
Aerobic l’
Glycolysis Fatty acids
PPP v/j phosphorylation Pyruvate |
O-AKK \ Acyl-CoA
nucieotidvis. f ) |
HIF.:\ IKK-Py kk-P
Lactate'ﬁ‘ \\f;KB MAPK
Pyruvate NF-x l
l nucleus

——— ———  (Gene expression

Metabolic reprogramming in innate immune responses

@ In response to pathogenic or dangerous stimuli, immune cells undergo
metabolic reprogramming that shapes the innate immune responses to
invading pathogens or tissue damage (xeiiy snd o'weill, coll Res 2015 35720 2841 Anny Rev Imeunol.

1014, 33:609-614; Call Matab. 2013, 17:855-900)

@ During inflammation, the early phase responses require glycolysis,
whereas fatty acid oxidation, via NAD+*-dependent processes, plays a more

dominant l'Ole in the Iater phaSeS (Nat imemunol. 2004, 15333-332¢ J Biol Chem. 1012, 387i5758-257648; Liu et
al, J Blol Chem. zom. 286:0856-5864)

@ In M1 macrophages, the metabolic shift increases glycolytic flux, and
production of key M1 products such as acetyl CoA, succinate, and nitric oxide.
M2 polarization activates glutamine catabolism and UDP-GIcNAc-associated
modules; M1 macrophages have TCA cycle fragmentation, through a
metabolic break at 1dh (1aati et o, Mature., 30m3; foa ot sl immesnity, 2015)

@ In early phase, rapid, short-term bursts of activation by glycolytic switch
are required at sites of infection or inflammation, whereas FAO in M2
macrophages may be better able to energetically support cell survival (oneii
and Prarce., | Exp Mad, 206 %
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Immunometabolism governs innate immune function
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ERRa regulates TLR4-mediated glycolytic metabolism

and enhances mitochondrial respiration

Extracellular acidification rate (ECAR), an indirect
indicator of lactate production and enhanced
glycolytic metabolism

c O Esra*™: U FEsma™t LPS

@ Esrah:y AEsma’ - LPS

48 Olige  CCCP  Rot
i ! : LPS (8h)
T Aerobic 361 '
Glycolysis

-
N
i

1 : LPS (18h

ECAR (MmpH/min)
&o

10 30 S0 70 80 M3 :mu

Sirtuin 1 (SIRT1), an NAD*-dependent deacetylase

Targets:
Histones
P53 |
FOXO _- NAMPT |~_

PGCialpha '," s
LKB1 4
Others

2-0-Acetyl
-ADP Ribose

7N

Senescence V DNA repair k Proliferation |

Survival J Metabolism J

Sirtuin 1 (SIRT1) is critically involved in the reguiation of NF-xB-mediated

inflammatory responses via the deacetylation of p65/RelA on tysine 310 (Chen et al,
2005; Yang et al., 2012; Yang et al., 2005; Yeung et al., 2004)
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ERRa Regulates TLR4-Mediated NF-kB p65 Acetylation and

Sirtuin 1 Expression in Macrophages
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ERRa Deficiency Impairs Mitochondrial _OEsra™"
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Standard ChIP of promoter and enhancer elements confirms direct regulation
of metabolic genes by ERRa in macrophages
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Summary

¢ ERRa-deficient (ERRa~") mice showed increased susceptibility to
endotoxin-induced septic shock, leading to more severe pro-
inflammatory responses than control mice.

= ERRa regulated macrophage inflammatory responses by directly
binding the promoterregion of Tnizip3, a deubiquitinating enzyme
in TLR signaling

¢ In addition, ERRa~-macrophages showed an increased glycolysis,
but impaired mitochondrial respiratory function and biogenesis

= Further, ERRa was required for the regulation of NF-kB signaling
by controtiing j acetylation via maintenance of NAD® levels and

regulator of TL ‘ MMatony responses
through mducmg Tnfa|p3 transmptlon and Lontrollmg the
metabolic reprogramming.
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ERRa negatively regulates Tolllike receptor (TLRHnduced inflammation by promoting
Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages

TLR1E
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Probing contributions of macrophages to organismal homeostasis

Steffen Jung

Weizmann Institute of Science, Israel
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Macrophages are myeloid immune cells that are strategically positioned throughout the
organism. As professional phagocytes, they ingest and degrade debris and foreign
material, including pathogens, and orchestrate inflammatory processes. Macrophages
can be generated from two sources: an early transient hematogenic wave commencing
in the yolk sac and a pathway involving hematopoietic stem cells, that persists

throughout adult life. Most tissue macrophage compartments are established prenatally,

and develop independent from each other in their respective host tissue under the
influence of the local microenvironment (Amit et al., 2016; Lavin et al., 2014; Varol et
al., 2015). Recent studies revealed critical contributions of tissue macrophages to
organ development and homeostasis. Organismal homeostasis is critical for health,
establishing the dynamic equilibrium that preserves life by resisting outside forces.
Specific contributions of macrophages to homeostasis maintenance remain for most
tissues however incompletely defined.

Here | will report on our recent efforts to employ conditional macrophage mutagenesis
(Yona et al., 2013) to investigate contributions of these cells to health and disease.
Here we used constitutive and inducible mutagenesis to delete the nuclear
transcription regulator methyl-CpG binding protein 2 (Mecp2) in defined tissue
macrophages. Animals lacking the Rett syndrome—associated gene in macrophages
did not show signs of a neurodevelopmental disorder, but displayed spontaneous
obesity, which we could link to impaired brown adipose tissue (BAT) function.
Specifically, mutagenesis of a BAT-resident Cxscri® macrophage subpopulation
compromised homeostatic, though not acute cold-induced thermogenesis.
Mechanistically, BAT malfunction of pre—obese mice harboring mutant macrophages
was associated with decreased sympathetic innervation and local norepinephrine titers,
resulting in reduced adipocyte expression of two key thermogenic factors Ucp1 and
Dio2. Using a 'ribotag approach' to retrieve translatomes, we show that MecpZ—-mutant
BAT macrophages over—expressed PlexinA4, a receptor known to respond to axon
guidance cues and serve as ligand repelling Sema6A—expressing sympathetic axons.
Collectively, we provide evidence for a unique role of macrophages in maintaining the
sympathetic innervation of brown adipose fat tissue that is critical for balanced
homeostatic energy expenditure in the adult (Wolf et al., 2017).
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Personal Statement

| was born in Homburg/ Saar, Germany. After undergraduate studies at the University of Bonn, |

moved to the Institute of Genetics in Cologne. In the Department of Immunology headed by
Prof.

Klaus Rajewsky, | performed my PhD under the guidance of Prof. Andreas Radbruch.
Specifically,

| used the then newly developed gene targeting approach to define cis—acting control elements

driving non—coding 'sterile' transcripts in immunoglobulin class switch recombination. In 1993, |

moved for post—doctoral training to Israel and joined the laboratory of Prof. Yinon Ben—Neriah
at

the Lautenberg Center (Hebrew University, Jerusalem) studying transcription factors and
kinases

in T cell signaling. In 1997, | went to New York for a post—doc in the laboratory of Prof. Dan

Littman at the Skirball Institute for Molecular Pathogenesis, NYU Medical Center. My studies
there

focused on the then newly discovered chemokine receptor CX3CR1 and its membrane—tethered

ligand CX3CL1/ fractalkine. | generated CX3CR1gfp mice that became as reporter strain

instrumental to define murine monocyte subsets and study brain microglia. Furthermore, |

developed in collaboration with Prof. Richard Lang at the Skirball Institute a novel diphtheria
toxin

receptor—based cell ablation strategy and a mouse model that allowed the study of dendritic
cells

(DC) in their in vivo context by their conditional ablation (CD11¢c-DTR mice). In 2002, ! returned

to Israel and joined the faculty of the Department of Immunology at the Weizmann Institute,
where

| received tenure in 2009 and full professorship in 2015. Current work of the Jung lab aims at

98




elucidating in vivo aspects of mononuclear phagocytes, including the definition of
developmental pathways and differential functions of monocytes, DC and macrophages.
Specifically, the team applies intra—vital imaging, conditional cell and gene ablation and

precursor

graft-mediated reconstitution, combined with advanced genomic analysis to investigate the
biology of these cells in physiological context in health and disease. Recent work of the Jung
laboratory focuses on the study of monocyte—derived intestinal macrophages,
embryonic—derived brain microglia and lymph node DC, as well as the rble of macrophages in

metabolic disorders.

Academic Appointments

2002-09 Senior Scientist, Weizmann Institute of Science, Dpt. of Immunology
2009-15 Associate Professor, Weizmann Institute of Science, Dpt. of immunclogy
2015—present Full Professor, Weizmann Institute of Science Korea,

2017—-present Head, Department of Immunology

Awards and Honors

1993- Post—doctoral Fellowship of European Molecular Biology Organization
1995- Post-doctoral Fellowship of MINERVA Society

1997- Associate of Howard Hughes Medical Institute

1999- Special Fellow Award of Leukemia & Lymphoma Society

2002- The Yigal Alon Scholarship ("Milgat Alon")

2002- Scholar of the Benoziyo Center for Molecular Medicine.

2002- Incumbent of the Pauline Recanati Career Development Chair

Contribution to Science

(1) During my PhD at the University of Cologne, Germany, | showed | was the first to provide
direct evidence for the need of so—called 'sterile' transcripts to allow for the recombination of
switch regions located upstream of Cy genes. Specifically, | used a Flp/FRT-based strategy to
delete the promoter element driving transcription through the murine S 1 switch region and
showed that the resulting mice had a deficiency in IgG1 production (M&ann et al., 1993).

During my post—-doctoral studies at the Skirball Institute for Molecular Pathogenesis, NYU
medical Center, New York, US, | generated two novel mouse models that became critical tools
for subsequent studies by myself and many other researchers.

(2) To study the physiological role of the CXsCR1 chemokine receptor | generated CX;CR19™
mice carrying a targeted insertion of a gene encoding green fluorescent protein in the CX3CR1
locus (Jung et al., 2000). These mice were instrumental for our identification of murine Ly6C+
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and Ly6— monocyte subsets (Geissmann et al., 2003), a seminal report that triggered
subsequent efforts by many colleagues to investigate these intriguing blood cells and their
contributions to inflammation and pathologies in the mouse. Mareover, through collaborative
work we established the value of CXsCR1°® mice for the back then emerging intra-vital imaging
community, by demonstrating dynamics of intestinal macrophages (Njess et al., 2005) and
brain microglia (Davalos et al., 2005).

(3) To probe for the role of dendritic cells in the initiation of in vivo T cell responses | employed,
together with the group of Richard Lang, a novel conditional cell ablation strategy, that is based
on rendering murine cells sensitive to diphtheria toxin (DT) by cell type—restricted expression of
a primate DT receptor (DTR). These animals allowed me to corroborate the unrivaled potential
of DC for the priming of naive T cells in intact animals, extending the seminal /n vitro studies by
Steinman and colleagues (Jung et al., 2002). CO11c-DTR mice and the DTR approach have
become standard tools in modern immunological research.

Major contributions, since the establishment of my independent laboratory at the Weizmann
Institute include

(4) Using a combination of cell ablation and adoptive monocyte transfers, we established that
splenic classical DC derive from non—-monocytic origin (Varo/ et al., 2007). Moreover, in the
same study and a follow up (Varo/ et al., 2009), we showed that LyBC™ monocytes are
precursors of intestinal macrophages residing in the lamina propria. Combined with the
concomitant identification of precursor cells, such as MDOPs (Fogg et al., 2006), our studies
critically contributed to the realization that our current understanding of mononuclear phagocyte
development.

(5) Taking advantage of the prominent expression of CX3CR1 in monocytes and specific
macrophage populations, we generated animals that harbor transgenes encoding conditional
and inducible Cre recombinases under the CX3CR1 promoter (Yona et al., 2013). CX;CR1°*® and
CXSCFH‘"EER mice allow us and others to study functions of specific tissue macrophages,
including intestinal, heart, adipose tissue and brain (Goldmann et al., 2016, Molawi et al.,
2014; Zigmond et al., 2014, Wolf et al., 2017) Moreover, the animals enabled us to show, that
most tissue macrophage compartments are established before birth and in the healthy adult
organism largely maintained independent from monocyte input (Yona et al., 2013). Together
with the work of others and our own recent transcriptome and epigenome profiling efforts
(Lavin et al, 2074), this study contributed to a paradigm shift and a focus on differential
functions of monocyte and embryo—derived tissue macrophages in health and pathology (Amit
et al., 2016, Ginhoux and Jung, 2014).

Steffen Jung is an author on 159 peer-reviewed publications, consisting of 5 first—author, 29
senior—author and 90 co—author papers, and 32 reviews, book chapters and invited editorials,
consisting of 7 first—author, 20 senior—author and 5 co—author publications. His citation scores
are: H-index: 66 and total citations (excluding self—citations): 14,768.
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Tissue Macrophages - Development and Specialization

L -

NE»QE n

Tissue macrophage compartments

+ are established prenatally

+ develop locally, independent from each other

Ginhoux 2010, Hoeffel et al. 2012, Schulz et al. 2012, i o5
Yona et al 2013, Perdiguero et al. 2014, Hoeffel et al 2015 %

Tissue Macrophage heterogeneity - franscriptomes

L4 TIYSE Lr1e)

; : -ty
e e o > all _,-I'I
V : s bl Sl Sk o
wor WOl DCR O SiaeT
‘ Fﬂ. m. ol il =% .
T
. » T
.‘_1 A » & e P
) w e i =
TR e e
% sl i [resepa— Ana
f’ - 3 Opsa Crumie iAo
f [FORPSPR
collaboration of Amit. Merad and Jung laboratories
Bl = R
: 3348 gones dmeremmlty expr&sseﬂ !
among < 2 popuiations
see also Gautier et &l. 2012, Immgen consortium Lavinetal 2014 %

104




Tissue Macrophage heterogeneity - enhancer landscapes
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Tissue Macrophage heterogeneity = enhancer landscapes
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Tissue Macrophage heterogeneity
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Probing tissue macrophage functions
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Probing tissue macrophage functions
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