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In recent years, there is increasing practical interest in construction site

monitoring using closed circuit television (CCTV) camera installed on site.

Various image analysis technologies have also been developed for image

monitoring of construction sites, such as activity classification and

productivity analysis of construction equipment using CCTV image data, and

detection of access to dangerous areas. However, previous studies mainly

focused on identifying and tracking construction equipment or classifying

activity in CCTV image data, but did not deal with detailed pose information

of construction equipment.



Pose estimation of construction equipment is the acquisition of two-

dimensional (2D) or three-dimensional (3D) coordinate information (i.e., its

location and orientation) for each keypoint of the equipment, providing basic

mechanical information for identifying construction equipment posture,

remote control, productivity analysis of construction projects, and safety

analysis of construction sites. Knowing construction equipment's pose

information, it is possible to understand the operation of the equipment in

more detail and detect hazardous conditions.

This research proposes a method to 3D pose estimation and localization

of construction equipment using a single camera image data and 3D virtual

model. The research process consists of four main steps as follows. First, the

construction site monitoring using the existing image analysis technology and

construction equipment pose estimation were defined from literature research.

Second, 3D virtual model's keypoints were stored in the 2D image data of the

construction site through 2D - 3D annotation process. Third, a construction

equipment pose estimation method was developed that detects and extracts

construction equipment from the construction site image data, derives similar

images through image matching, and estimates the equipment pose. Finally,

the performance of the construction equipment pose estimation result was

evaluated using image data collected at three construction sites.

As a result, the pose of construction equipment can be estimated from a

single camera image data through the method proposed in this research, and it

was confirmed that pose estimation is possible even for the part where the

equipment is obscured. In addition, it is expected to be helpful in analyzing

interactions between the equipment by using pose estimation results.
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Construction Equipment
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Chapter 1. Introduction

1.1 Research Background

In recent years, with the rapid development of image analysis technology,

there is increasing practical interest in construction site monitoring using

closed circuit television (CCTV) camera installed on site. Many researchers

have also developed various image analysis technologies for construction site

monitoring, such as activity recognition, productivity analysis of construction

equipment, and detection of access to hazardous areas using CCTV image

data (Chen et al. 2020, Kim et al. 2020, Li et al. 2015). However, previous

studies have mainly focused on identifying, tracking, and classifying activitiy

of construction equipment at construction sites using image analysis

technology. There have been some limited studies to estimate the pose

information of construction equipment to understand the dynamic state of the

equipment and the posture change of construction equipment.

Pose estimation of construction equipment is the acquisition of two-

dimensional (2D) or three-dimensional (3D) coordinate information (i.e., its

location and orientation) for each keypoint of the equipment, providing basic

mechanical information for identifying construction equipment posture,

remote control, productivity analysis of construction projects, and safety

analysis of construction sites (Tang et al. 2020). Knowing the pose
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information of construction equipment, it is possible to understand the

operation of the equipment in more detail and detect hazardous conditions

(Vahdatikhaki et al. 2015, Luo et al. 2020). For example, collision accidents

are often caused by movement of the body as well as the boom and arm of an

excavator. However, the equipment's pose information can explain the

dynamic state of the entire equipment based on the movement of equipment's

keypoints. Thus it is possible to prevent potential collisions (Luo et al. 2020,

Yuan et al. 2017). In addition to monitoring techniques that recognize

equipment work, studies have recently been conducted to estimate the 3D

pose of equipment, but there are limitations in actual field applications such as

the difficulty of setting up numerous cameras at the site to take pictures of one

equipment at the same time, or the difficulty of estimating poses when parts of

the equipment are obscured (Soltani et al. 2018, Liang et al. 2019, Lundeen et

al. 2016).
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1.2 Problem Statement

Previous studies on construction site monitoring using image analysis

technology mainly focused on identifying, tracking equipment, and

classifying work. Therefore, there is a lack of understanding of the dynamic

state of the entire equipment. Knowing the pose information of construction

equipment provides a more detailed view of the dynamic state and posture

changes of the equipment, and it is possible to prevent potential collisions

with nearby workers or equipment.

To this end, many researches have been conducted to estimate the 3D

pose of construction equipment using internet of things (IoT) sensors or vision,

but there are limitations to actual field application such as the need to install

sensors for all driving parts of the equipment or the need for numerous camera

layouts that do not match the real site situation (Figure 1.1).

Figure 1.1 Camera layouts (previous apporaches vs in real).
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1.3 Research Objectives and Scope

This research aims to estimate and localize the 3D pose of construction

equipment from a single camera image using virtual models. By expressing

the equipment in 3D virtual space, it is possible to check the situation of the

entire site, the movement of the equipment, and the interaction with each

other. And among the construction equipment used in the construction project,

excavator and dump truck were selected as anlaysis targets because they have

a significant impact on productivity and safety of construction project, and

interact with each other.

A research methodology (Figure 1.2) and the specific objectives to achieve the

primary objective are as follows:

1) Objective 1: Set the keypoints required to understand the dynamic

state of the entire equipment and to identify posture changes. And annotate 2D

image (construction site image data) with 3D virtual model of construction

equipment.

2) Objective 2: Train the object detection model to detect analysis targets

(i.e., excavator, dump truck) from construction site image data. Next, extract

analysis targets and build a crop image database (DB) for image matching.

3) Objective 3: Detect and extract analysis targets from the construction

site image data using the trained object detection model, and derive the most

similar image from the crop image database through image matching.



5

4) Objective 4: Estimation and localization of 3D pose of analysis targets

in construction site image data using 3D pose infromation for virtual models

annotated to image matching derived result.

1. Object Detection 3. 3D Pose Estimation

& Localization

2. Image Matching

2D – 3D Annotation

Figure 1.2 Overview of research methodology.
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1.4 Dissertation Outline

This dissertation is composed of five chapters and the details for each

chapters are as below.

Chapter 1. Introduction: This chapter covers the background and

problems of the research, the goals and scopes of the research.

Chapter 2. Theoretical Background and Related Work: This chapter

deals with how image analysis technology is applied for construction site

monitoring, what it is intended to provide through it, and how studies are

being conducted to estimate the pose of construction equipment.

Chapter 3. Construction Equipment's 3D Pose Estimation and

Localization: This chapter describes the process performed for the 3D pose

estimation and localization of construction equipment in the construction site

image data. It consists of two parts: 2D - 3D annotation and development of

pose estimation method.

Chapter 4. Experimental Results and Discussions: This chapter covers

the result of applying the trained object detection model to test datasets, image

matching results for extracted images, and the results of pose estimation and

visualization. In addition, validation of the estimated pose information is

performed by applying the root mean square error (RMSE), which is widely

used as an evaluation index in pose estimation researches.
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Chapter 5. Conclusions: This chapter summarizes achievements,

contributions and limitations of this research, and describe the contents of

future study.
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Chapter 2. Theoritical Background and

RelatedWork

This chapter describe the basic concepts of what is and why do

construction site monitoring, and the various changes that the development of

image analysis technology has brought to the research about construction site

monitoring. It also investigates how the majority of existing studies on

construction site monitoring carried out the identification, tracking, and

classification of construction equipment. After that, describe how the previous

studies to estimate the 3D pose of the equipment based on the image have

been conducted.
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2.1 Vision-based Construction Site Monitoring

Construction site monitoring is not only a necessary task to track ongoing

construction work and provide up-to-date information, but also a critical

component of construction project stakeholders (i.e., owners, contractors, etc.).

In the past, a person in charge visited the site to determine the working status

and time of the equipment, conduct a survey with the equipment operator, or

monitor CCTV footage installed on the site in the control room. However,

research on automatic site monitoring of vision-based is carried out along

with the development of image analysis technology.

Dimitrov and Golparvar-Fard (2014) developed an vision-based material

recognition algorithm using a support vector machine (SVM) that can classify

materials in a single image for automatic construction progress monitoring

and 3D modeling. Choi et al. (2008) uses stereo vision system and 3D CAD

data to present a 3D object recognition framework and preliminary

experimental results for automatic project progress monitoring. Wang et al.

(2020) presents a vision-based framework incorporating computer vision

methods such as mask region-based convolutional neural netwok (Mask R-

CNN) and DeepSORT for automatic monitoring of precast wall construction

progress. Deng et al. (2019) uses SVM to identify tiles in the image and

combines camera location and tile boundary coordinate information with

building information modeling (BIM) model to provide a method for

automatic monitoring of interior tile work. Azar and McCabe (2012) present

an object recognition framework using Haar-histogram of orientated gradient



10

(HOG) and Blob-HOG, which combine images and video processing methods

to automatically recognize dump trucks in images and distinguish them from

other earthwork machines. Kim et al. (2017) presents a construction

equipment detection method to distinguish loader, excavator, dump truck,

concerete mixer truck, and road roller using the region-based fullly

convolutional network (R-FCN) model.

Furthermore, vision-based construction site monitoring provides basic

information for successful construction projects by continuously analyzing the

progress of current construction projects and analyzing site safety. Azar et al.

(2013) presents a server-customer interaction tracker framework that

recognizes excavators and dump trucks, and tracks loading cycles using

computer vision algorithms such as HOG and mean-shift. Bugler et al. (2016)

presents a method for estimating the productivity of earthmoving operations

by combining two vision-based technologies (i.e., photogrammetry and video

analysis) to measure the volume of soil and track the process of excavation

and transport equipment. Kim et al. (2018) proposes an automatic productivity

evaluation method for earthwork processes in tunnels by integrating vision-

based situation reasoning and construction process simulation using

convolutional neural network (CNN) model. Kim et al. (2018) developed a

vision-based activity identification framework that focuses on the interaction

between excavators and dump trucks that can identify earthwork operations

and measure work cycles. Luo et al. (2018) presents a method for

distinguishing the various activities (e.g., placing concrete, leveling land,

transporting goods, etc.) performed by different objects (i.e., equipment,

workers) using the faster region-based convolutional neural network (Faster
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R-CNN) and the ResNet-50 model.

Regarding the safety management, safety is a top priority in the

construction process, and many researchers focus on the application of

computer vision technology for site safety management (Jiang et al. 2020). In

construction site safety monitoring, the application of computer vision

technology mainly analyzes collision risk monitoring, prevention of falls from

height risk, wearing personal protective equipment, etc. Seo et al. (2015)

presents future research directions in the field of computer vision-based safety

and health monitoring from a technical and practical use perspective. Kim et

al. (2016) provides a field safety assessment system for extracting spatial

information about objects (i.e., workers, equipment) with gaussian miniature

model (GMM) and evaluating the safety level of each object using fuzzy set

theory to monitor crashes with moving objects. Fang et al. (2018) uses a CNN

model to detect workers in the process of filing complaints and to develop

algorithms to identify workers without harness to solve the falls from height

problem, the main cause of construction injury and death. Guo et al. (2018)

proposes a deep learning-based computer vision technology method to

identify workers without safety helmet in image sequences taken with

unmaanned aerial vehicle (UAV).
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2.2 Pose Estimation in Construction

2.2.1 Internet of Things-based Approach

Estimating the pose of construction equipment is divided into two

categories: internet of things (IoT)-based method and vision-based method. In

the case of IoT-based construction equipment pose estimation, the operating

part of the equipment is obtained using sensors such as the inertial

measurement unit (IMU), the ultra-wide band (UWB), the wireless local area

network (WLAN), the global positioning system (GPS), and the global

navigation satellite system (GNSS). Pose information of equipment obtained

through IoT sensors is used to estimate the posture of current equipment,

remote control of construction equipment, and productivity analysis of

equipment. Zhang et al. (2012) estimated the position of the crane boom using

UWB to prevent potential collisions and help carry out the work in crane

operations. Sun et al. (2017) suggests a method for estimating the posture of

dozer blades using real time kinematic (RTK) GPS and IMU sensors. Kang et

al. (2018) uses accelerometers and GPS sensors to estimate the position of the

excavator bucket, thereby presenting a precision measuring technique for

excavators that can automatically measure the level error between the planned

and work surfaces. Lee et al. (2019) developed the excavator remote control

system based on the pose information for each driving part of the excavator

acquired using GPS sensor and IMU sensor. Rashid and Louis (2019) uses the

supervised learning method (i.e., decision tree, k-nearest neighbor, artificial

neural network) to identify the possibility of equipment acitivity (i.e., engine
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off, idle, loading, moving) recognition using the pose information acquired

using IoT sensors. Pradhananga and Teaser (2012) categorizes the load time,

haul time, unload time, and turn time of the excavator using 10 GPS sensors

and analyzes the work productivity of the excavator.

Furthermore, studies have been conducted to predict the trajectory of

equipment and future changes in posture using the pose information of

acquired construction equipment to avoid potential collision risks. Luo et al.

(2020) predicts the future posture of the equipment by integrating the

construction equipment's pose information and recognized work information

obtained through GPS, IMU sensors and using recurrent neural network

(RNN) and gated recurrent unit (GRU) models. Fand et al. (2016) developed a

real time pro-active safety assessment framework that uses IMU sensors to

reconstruct the crane's site specific pose information in real time to identify

movement and alert workers in advance of potential crash accidents. In

addition, Vahdatikhaki and Hammad (2015) create a real time working space

for equipment to prevent potential collision by taking into account the pose of

equipment, state geometry and the speed characteristics of the equipment

based on real time location system (RTLS) data acquired through IoT sensors.

However, in the case of IoT-based pose estimation, there are limitations

such as IMU sensor error problems caused by sensor installation location or

magnetic disturbance, and GPS sensor error caused by signal blockage and

multipath, so studies are underway to correct this error. Tang et al. (2020)

investigates the effect of pose estimation by the various installation position

of IMU sensors to solve the error problem caused by the IMU sensor

installation position. Pentek et al. (2017) developed an algorithm that corrects
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the pose information of the estimated excavator arm regardless of the sensor

installation location using IMU sensor with 3D gyroscopes and

accelerometers. Vahdatikhaki et al. (2015) proposes an optimization-based

method that uses the shape and operating characteristics of the excavator to

set constraints on changes in the pose of the equipment and minimize the

required amount of correction to improve the quality of pose estimation to

improve the accuracy of the pose information generated by RTLS.
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2.2.2 Vision-based Approach

Along with the development of image analysis technology, vision-based

construction equipment pose estimation which estimates the pose of

equipment by image alone without have to attach IoT sensors (e.g., GPS,

IMU sensors, etc.) to each driving part of each equipment, has recieved

substantial attention from many researchers. Azar et al. (2015) presents a

computer vision-based framework using markers for real time pose estimating

the boom and arm of excavator. Lundeen et al. (2016) attaches a 57cm (22.5

in.) marker to the joint of the excavator and simultaneously recognizes the

marker and the landmark point in the image to estimate the position of the

excavator. Yuan et al. (2017) uses stereo cameras to detect and track

excavators, and uses fast directional chamfer matching algorithm to connect

excavator key nodes and estimate poses through triangulation.

Furthermore, based on estimated pose information, real-time field

monitoring, equipment work analysis, productivity and safety analysis were

performed. Liang et al. (2018) uses scale-invariant feature transform (SIFT)

and viewpoint feature histogram (VFH) method to estimate the location and

direction of the equipment and to update the site layout in real time by

synchronizing it in the BIM database. Roberts and Golparvar-Fard (2019)

recognizes the behavior of the equipment and analyzes productivity by

analyzing the interaction between the excavator and dump truck based on

CNN. Souma-Gyimah et al. (2019) uses the single shot multi-box detector

algorithm to estimate bucket's pose and combine CNN models to develop a
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multipurpose vision model that prevents collisions in excavation work by

recognizing large rocks.

In addition, research on estimating 3D pose of equipment was conducted

using deep learning techniques without separate markers or IoT sensors.

Liang et al. (2019) proposes a markerless 2D and 3D pose estimation method

for articulated construction robots using state-of-the-art human pose

estimation deep convolutional network (i.e., stacked hourglass network). Luo

et al. (2020) developed a methodology framework to automatically estimate

the 2D poses of construction equipment keypoints using three deep learning

networks (i.e., stacked hourglass network, cascaded pyramid network, stacked

hourglass network + cascaded pyramid network). Soltani et al. (2017) part-

based detection of the excavator into three parts of the dipper, boom, and

body, and extraction of skeleton to derive 2D bone of the excavator and 2D

pose information of the key points.
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Chapter 3. Construction Equipment's

3D Pose Estimation and Localization

This chapter describes the data annotation and method development for

estimating and localizing the 3D pose of construction equipment in single

camera's image data. In this research, the 3D pose estimation and localization

of construction equipment consists of two parts: 2D - 3D anntation and

development of pose estimation method.

2D - 3D annotation is the process of storing 3D pose information of

construction equipment in the image data by performing the annotation

between virtual models of the construction equipment (i.e., excavator, dump

truck) and construction site image data (2D image).

Development of pose estimation method is divided into three steps:

object detection, image matching, pose estimation. Step 1 object detection

develops an object detection model that detects construction equipment (i.e.,

excavator, dump trucks) within the image by utilizing the construction site

image data. And establish a crop image database for step 2, image matching.

Step 2 image matching is a stage in which equipment is detected and extracted

from construction site image data using trained object detection model (step 1)

and image matching algorithm is used to derive the most similar image from

the crop image database in step 1. Step 3 pose estimation is a stage in which

3D pose of construction equipment in input image data are estimated and
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loacalized using 3D pose information of construction equipment stored in the

image derived through image matching in step 2.
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3.1 2D - 3DAnnotation

2D - 3D annotation is the process of storing 3D pose information of

construction equipment in the image data by performing the annotation

between the 3D virtual model of the construction equipment and construction

site image data.

In this research, a total of 90,000 construction site image data were

collected, each of 30,000 for three construction sites, and annotation is

performed between colletecd image and 3D virtual models of excavator and

dump truck. The 3D virtual models for annotation are as shown below in

Figure 3.1.

Figure 3.1 3D virtual models of excavator and dump truck.
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Keypoints were specified in the 3D virtual models of the excavator and

dump truck for estimation and visualization of the poses, as shown in Figures

Figure 3.2 and Figure 3.3. And 3D pose information (x, y, z coordinate) for

each keypoint was stored through annotation process.

Figure 3.2 Keypoints of excavator 3D model.

Figure 3.3 Keypoints of dump truck 3D model.
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Unity game engine was used as a tool to perform annotation between 2D

images and virtual models. Unity is a cross-platform game engine and is a tool

used for 3D, virtual reality, and simulation in architecture, engineering and

construction as well as game production. In this tool, the user can obtain a 2D

image that is output through the camera on which the 3D object is placed by

placing the camera and 3D object as shown in Figure 3.4. In addition, it is

possible to manipulate a 3D object by writing and mounting a C# script so

that the object shows the movement desired by the user, and obtain an image

(i.e., 2D image of 3D objcet) when viewed with a camera.

In this research, a camera and an image plane are placed on the Unity

game space to output the same as the construction site image as shown in

Figure 3.4, and a 3D virtual model is placed on it. After that, a C# script was

created to link with the kinematic parameters of each material, and the 3D

model was overlaid on the 2D image by controlling the 3D model of the

excavator and the dump truck.

Figure 3.4 Unity game engine screen.
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Using the Unity game engine, 3D virtual models of excavator and dump

truck were annotated with construction image data collected at three

construction sites. Examples are shown in Figure 3.5.

(a)

(b)

(c)

Figure 3.5 2D - 3D annotation examples. (a) Site 1, (b) Site 2, (c) Site 3.
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In addition, an example of pose information for each keypoint of

construction equipment stored through annotation is shown in Table 3.1 below.

Table 3.1 Stored pose information example by 2D - 3D annotaiton (cm).

.

.

.

6 -52.93 194.84 1056.78 -28.18

5 -52.89 194.08 1055.93 -28.07

4 -52.84 193.33 1055.08 -27.95

3 -52.82 192.86 1054.48 -27.91

2 -52.80 192.40 1053.89 -27.87

1 -52.77 191.93 1053.29 -27.83

Image No. Boom_z Boom_Arm_x Boom_Arm_y Boom_Arm_z

6 879.86 -153.74 330.76 942.79

5 879.71 -153.72 330.45 942.44

4 879.57 -153.70 330.14 942.09

3 879.47 -153.69 329.95 941.85

2 879.37 -153.67 329.75 941.60

1 879.27 -153.66 329.55 941.36

Image No. Center_y Center_z Boom_x Boom_y

6 518.85 778.67 -133.48 391.00

5 519.15 779.00 -133.52 390.88

4 519.45 779.32 -133.57 390.76

3 519.63 779.56 -133.60 390.69

2 519.81 779.80 -133.64 390.62

1 519.99 780.03 -133.67 390.55

Image No. Body_x Body_y Body_z Center_x
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3.2 Development of Pose Estimation Method

3.2.1 Object Detection

In this step, an object detection model is developed that uses construction

site image data to detect construction equipment (i.e. excavator, dump truck)

within the image. And establish a crop image database for next step, image

matching.

Object detection is a widely used technique in computer vision, which

classifies and localizes the types of objects that exist within image data. In this

research, the faster region-based convolutional neural network (Faster R-CNN)

model was used as an object detection model.

The Faster R-CNN model is a structure that adds a region professional

network (RPN) that generates region of interest (ROI) between the

convolutional feature map and the ROI pooling layer in the Fast R-CNN

model, which is widely used in the computer vision field. In other words, to

solve the computational load problem that occurs in the ROI generation stage

of the Fast R-CNN model, the concept of the region proposal network is

added and the GPU is used. The structure is shown in Figure 3.6.
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Figure 3.6 Faster region-based convolutional neural network model.

The object detection model was trained separately for each of the three

sites, and two objects (i.e., excavator, dump truck) were trained. For model

training, 30,000 images were collected for each site and 21,000 images were

used as train dataset and 9,000 images (30%) as test dataset. Examples of train

image and test image sets for each site are as shown in Figure 3.7.
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(a)

(b)

(c)

Figure 3.7 Examples of train image and test image sets for each site.

(a) Site 1, (b) Site 2, (c) Site 3.
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The crop image database for each construction equipment is constructed

using the bounding box coordinates of each construction equipment (i.e.,

excavator, dump truck) that was labeled in the train images used for training

the object detection model. When constructing the crop image database for

each equipment, data was collected except for images in which no

construction equipment was observed from 21,000 train images for each site.

The number of extracted image data for each construction site and examples

(Figure 3.8, 3.9, 3.10) are as follows.

1. Site 1: excavator - 21,000 images, dump truck - 21,000 images

2. Site 2: excavator - 21,000 images, dump truck - 20,791 images

3. Site 3: excavator - 21,000 images, dump truck - 9,128 images

Figure 3.8 Crop image database example (Site 1).
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Figure 3.9 Crop image database example (Site 2).

Figure 3.10 Crop image database example (Site 3).
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3.2.2 Image Matching

Image matching is a stage in which equipment is detected and extracted

from construction site image data using trained object detection model (step 1)

and image matching algorithm is used to derive the most similar image from

the crop image database (step 1).

Image matching used template matching algorithm provided by open

source computer vision library (OpenCV). Template matching is an algorithm

that finds the location of a specific image in an input image, and is a function

that compares pixel values while sliding a specific image (i.e., template image)

in a smaller area than the input image as shown in Figure 3.11.

Figure 3.11 Template matching algorithm.
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The equation used to compare pixel values between images in the

template matching algorithm is as in Eq 1.

�(x, y) = x', y'
(�(x', y') ∙ �(x + x', y + y'))

x', y'
�(x', y')2∙

x', y'
�(x + x', y + y')2

Eq.1

Input image (I) : Image that is expected to match the template image

Template image (T) : Image which will be compared to the input image

Result matrix (R) : Template matching result value in input image pixel

position at (x, y)

(x, y) means pixel location in input image and (x', y') means pixel

location in template image. To identify the matching area, the template image

is slid and compared to the input image such as Figure 3.11. Sliding means

moving template image one pixel at a time (left to right, top to bottom). While

sliding the template image on the input image, the pixel values of the image

are calculated as a matrix for each pixel position, and this is stored in the

result matrix. After sliding for all pixels in the input image to obtain values,

the location of the pixel with the highest result value is found, and this is

derived as the result value of the template matching.

Template matching algorithm is an algorithm that finds the position of a

specific image in the input image as described above. However, the purpose

of performing image matching in this research is not to find where the

detected construction equipment is located within the input image data, but to
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find the most similar to detected construction equipment image in the crop

image database. That is, comparing different images to derive similarity. To

this end, in this research, the detected comsturction equipment image was set

as input image and the crop image database was set as template image in the

template matching algorithm. An algorithm for image matching was created

by adding two processes: selecting comparative image group and resizing the

comparative image.

In the comparative image group selection phase, only images in the crop

image database that have an aspect ratio similar (e.g., within ±0.2) to the

aspect ratio of the detected construction equipment image are selected as the

image matching comparison target group in order to improve the performance

of image matching.

In the comparison image resize phase, image matching was performed by

resizing the size of the comparison target group images to match the size of

the detected construction equipment image.

The developed image matching algorithm is shown in Figure 3.12.



32

Figure 3.12 Image matching algorithm.
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3.2.3 Pose Estimation and Localization

Pose estimation is a stage in which 3D pose of construction equipment in

input image data are estimated and localized using 3D pose information of

construction equipment stored in the image derived through image matching.

In this research, construction site image data were collected to train the

object detection model, and a crop image database was built for image

matching. After that, 3D virtual models and annotations were performed on

construction equipment (i.e., excavator, dump truck) in the image data

collected in Chapter 3.1 2D - 3D Annotation. Therefore, 3D pose (x, y, z)

information for each keypoint of construction equipment is stored in the

image derived from the crop image database through Chapter 3.2.2 image

matching, as shown in Figure 3.13.

Figure 3.13 Example of pose information stored in the image matching result.
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However, the image matching algorithm suggested in chapter 3.2.2

performs comparison between extracted images of the part of construction

equipment detected through the object detection model in the construction site

image data. In other words, when image matching is performed, the location

of the detected construction equipment (i.e., coordinates of the detected

construction equipment's bounding box) cannot be considered. If the images

of the detected construction equipment are identical such as FIgure 3.14, then

the same pose will be taken regardless of where the construction equipment is

located in the whole image.

Figure 3.14 Same pose will be taken regardless of crop image's location.
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In addition, before applying the template matching algorithm in the

image matching algorithm, the process of matching the size of the comparison

target image and the detected construction equipment image (i.e., input image)

was performed. For this reason, if the comparison target image and the

detected construction equipment image have the same shape, the pose

information stored in the comparison target image (i.e., in crop image DB) is

taken as it is, even if the size is different. That is, the pose information stored

in the image derived through the image matching algorithm does not reflect

the location information and the size information that the input image has in

the detected original image. Therefore, additional post-processing processes

are required to estimate the 3D pose of the equipment in the input image data

using the 3D pose information of the construction equipment stored in the

image derived through image matching.

In this research, post-processing was performed by using the camera

arrangement in the Unity game engine used for annotation process, the

distance to the plane, the coordinates of the construction equipment 3D model

and the bounding box coordinates of detected object, and the similarity

theorem of the triangle. Similarity in a figure means that when two figures are

given, one side is reduced or enlarged at a reduction ratio to become

congruent with the other.
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The conditions for satisfying this similarity in a triangle are as follows:

1) If two triangles have two of their angles equal, the triangles are similar

(AA similarity).

2) If two triangles have two pairs of sides in the same ratio and the

included angles are also equal, then the triangles are similar (SAS similarity).

3) If two triangles have three pairs of sides in the same ratio, then the

triangles are similar (SSS similarity).

In this research, post-processing was performed using the concept of “If

two triangles have two of their angles equal, the triangles are similar (AA

Similarity)”, which is one of the similarity conditions of triangles as shown in

Figure 3.15.

Figure 3.15 Triangle AA similarity.

The details of post-processing performed to estimate the 3D pose of

construction equipment in the input image using this condition are as follows.
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Figure 3.16 Layout in Unity game engine space.

As shown in Figure 3.16, when annotation between the 2D image and the

3D virtual model was performed, the coordinate of the camera in the Unity

space was set to (0, 0, 0) and the distance to the camera background plane was
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fixed to 2,000cm. In addition, in order to keep the image output from Unity

camera at the same scale (i.e., width: height = 16:9) as the original 2D image,

the width of the plane was set to 7,111cm and the height of the plane was

4,000cm considering the distance between the plane and the camera and the

angle of view of the camera. In Figure 3.16, the y1 value of (x1, y1, z1) is

the y-coordinate value of the Boom_Body, which is the rotation axis of the

excavator body, among the keypoints of the excavator 3D virtual model saved

in the annotation process (in the case of dump truck, it is the y coordinate

value of the center point of the object). A is a projection of an annotated 3D

virtual model across the y1 coordinates and parallel to the plane. Also, x1

and z1 denote the midpoint coordinates of A. B is a projection of the y-

coordinate value of the Boom_Body (in case of dump truck, it is the y

coordinate value of the center point of the object) in the input image and

parallel to the plane so that it has the same size as A. That is, A denotes 3D

information of the construction equipment 3D model stored in the output

image of image matching. B denotes 3D information of the construction

equipment in the input image in image matching. Therefore, by adding the

center point's coordinate difference of B and A (x2−x1, y2−y1, z2−z1) from

the 3D pose value of each keypoint of the construction equipment stored in

the image derived through image matching, 3D information estimation is

performed that reflects the location information of the construction equipment

in input image and its size.
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The value of y1 is data stored through the annotation process in the y-

coordinate of the Boom_Body (the y coordinate of the center in the case of a

dump truck), and the remaining 5 unknowns (x1, x2, y2, z1, z2). A detailed

description of the process is as follow.

Figure 3.17 AA similarity condition to calculate (x1, y1, z1).
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First of all, as shown in Figure 3.17, ∆ ��� and ∆ ��� are ∠��� =

∠��� and ∠��� = ∠��� , so it satisfies one of the triangular similarity

conditions, “If two triangles have two of their angles equal, the triangles are

similar (AA Similarity).”. Therefore, ��:��=��:��. It is also already known

that the length of �� is 2,000cm, and the length of �� can be obtained at

�1'
2+�1'

2.

�1' and �1' are replaced by the coordinate value of the construction

equipment's bounding box, which has a value of 0 left bottom and 1 right top,

and multiplied by the size of the plane (7,111cm x 4,000cm) set by the Unity

game engine.

For example, when the coordinates of the center of the labeled bounding

box are (-0.3, -0.1), the values of �1' and �1' are respectively

�1' = − 0.3 × 7,111cm ≅ −2,133cm, and

�1' = − 0.1 × 4,000cm = −400cm.

Also, (x1, y1, z1) and (x1', 2000, z1') are two points located on a single

straight line with the same slope. Therefore, the values of x1 and z1 can be

obtained by multiplying the values of �1' and �1' by the ratio of �� and ��,

respectively.

For example, if �1' = − 2,133cm , �1' = − 400cm and let

�1 = 1,300cm,

�1 = −2,133cm ×
��

��
= − 2,133cm ×

1,300cm

2,000cm
≅ −1,386cm,

and
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�1 = −400cm ×
��

��
= − 400cm ×

1,300cm

2,000cm
= −260cm.

In this way, the value of (x1, y1, z1) can be obtained using the similarity

of the triangle, and the value of (x2, y2, z2) can be obtained in the same way

by using the similarity of the triangle in Figure 3.18.
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Figure 3.18 AA similarity condition to calculate (x2, y2, z2).

As show in Figure 3.18, since ∆ ��� and ∆ ��ℎ are ∠��� = ∠��ℎ

and ∠��� = ∠��ℎ, it can be seen that AA similarity is satisfied among the

similarity conditions of a triangle. And A and B have the same width.
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Therefore, the value of (x2, y2, z2) can be obtained by using the similarity of

the triangle and the width of B as the process used to obtain the value of

(x1, y1, z1). For example, width of B : width of input image=��:��. The rest

of the process is the same.

Lastly, estimate the 3D pose of construction equipment in input image by

adding the previously obtained the center point's coordinate difference of B

and A (x2−x1, y2−y1, z2−z1) from the 3D pose value of each keypoint of

construction equipment stored in the image derived through image matching.

After that, outliers among the 3D pose values of construction equipment

in the input image estimated through image matching and post-processing are

removed. The flowchart of the entire process of correcting by removing

outliers from the estimated 3D pose value is shown in Figure 3.19.
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Figure 3.19 Flowchart of the entire process of correcting by removing outliers.
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Before detailed description of each stage of the flowchart, assume two

things:

1) The input image (i.e., test dataset) for pose estimation consists of a

series of images.

2) Construction equipment moves similar speed in the same direction

within 0.5 sec (i.e., 30 frames) without significant fluctuations.

To elaborate on each step, the "① Calculate pose change by 30 frames in

train dataset" calculates the change during 0.5 sec (i.e., 30 frames) for the

construction equipment pose values that were annotated to 21,000 train

images for each site. Calculate the change in poses by 30 frames of the joint

of the bucket and arm with the most variation in the pose (in the case of the

dump truck, calculate the change in poses by 30 frames of the center of the

object). The largest of the calculated pose change values for each 30 frames of

the train dataset is set as the limit value that the pose change within 30 frames

of construction equipment in the test dataset estimated using the pose

estimation method.

In the step of “② Perform image matching with test dataset”, a test

dataset is composed of continuous images collected from image data of a

construction site, and image matching is performed.

In the step of “③ Set a firset reference point (p1) for interpolation”, set

the first reference point to correct the estimated pose information. The first

reference point is the image with the highest similarity value as a result of
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template matching among test datasets entered as input images in the pose

estimation model, from the first image to the 20th image (i.e., from test no.1

to test no.20).

In the step of “④ Interpolate the value between start point and p1” , the

value between test no.1 and the first reference point p1 is obtained in step ③

is interpolated according to the second assumption “Construction equipment

moves at a similar speed in the same direction within 0.5 sec (i.e., 30 frames)

without significant fluctuations”. That is, the pose value of test no.n between

test no.p1 and test no.1 is calculated according to the equation below.

(pose of) no.n = no.1 + (no.p1 − no.1) ×
n

p1−1
Eq.2

In the step of “⑤ Set a next reference point (p2)”, find p1+30 that moves

in a similar direction and at a similar speed from p1 according to the second

assumption. And add ±10 frames to based on p1+30. That is, among p1+20

to p1+40, the image with the highest similarity value as a result of template

matching is set to p2. Since the test dataset is a continuous image (assumption

1), it is judged as an outlier when the pose information changes too large

when comparing the pose information of the previous and subsequent frames.

Use the limit of the change in pose for 30 frames of construction equipment

obtained from "① Calculate pose change by 30 frames in train dataset" as the

reference value for determining the ideal value. The equation for this is as

follows. Let maximum pose change for 30 frames in train dataset as L.
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if (pose of ) no.p2 − no.p1 > L ×
p2 − p1

30
, then p2 is an outlier Eq.3

If the value of p2 is higher than the limit value (that is, if it is

determined as an outlier), the image with the second-order similarity value

among the template macthing results from p1+20 to p1+40 is set as p2. And

outlier determination is performed again through Eq.3. This process proceeds

until p2 that satisfies Eq.3 is found from p1 +20 to p1+40. If all images

between p1+20 and p1+40 are determined to be outlier, the image with the

highest similarity among the template macthing results from p1+20 to p1+40

is set to p2.

In the step of “⑥ Interpolate the value between p1 and p2”, the values

of reference points p1 and p2 obtained earlier are interpolated with equal

difference. And the same way as in step ④, interpolate the pose value of the

equipment in the image between using Eq.2.

In the step of “⑦ Repeat the process ⑤ - ⑥ with next reference points”,

the previous ⑤ - ⑥ process up to the last image of the test dataset, that is, the

process of obtaining a reference point for interpolation and interpolating

between them is repeatedly performed.
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Chapter 4. Experimental Results and Discussions

This chapter covers the result of applying the trained object detection

model (construction equipment detection and extraction) to 9,000 test datasets

for each site collected at three construction sites, image matching results for

extracted images, and the results of pose estimation and visualization. In

addition, for validation of the construction equipment pose information

estimated from test data set, the root means square error (RMSE) value which

is widely used as an evaluation index in the pose estimation field is calculated.
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4.1 Object Detection and Image Matching

In this research, image data was collected from three construction sites,

and 30,000 images were extracted for each site. And 21,000 images (70%)

were used as train dataset and 9,000 images (30%) were used as test dataset to

train object detection models that detect 2 objects (i.e., excavator, dump truck).

The performance (i.e., average precision, AP) and examples of trained object

detection models are shown below (Table 4.1 and Figure 4.1, 4.2, 4.3).

Table 4.1 Performance of trained object detection model (AP).

Dump truck 92.01% 97.58% 95.38%

Excavator 97.60% 98.32% 98.49%

Site 1 Site 2 Site 3

Detection Results Crop Image

Figure 4.1 Examples of experimental results (Site 1).
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Detection Results Crop Image

Figure 4.2 Examples of experimental results (Site 2).

Detection Results Crop Image

Figure 4.3 Examples of experimental results (Site 3).
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In addition, using the bounding box coordinates of train dataset used for

training object detection models, the crop image database for each

construction equipment was established for image matching in 21,000 train

images. The object detection model was used to detect and extract

construction equipment from 9,000 test images and use it as a test dataset for

image matching. Examples of performing image matching by site and

construction equipment are shown in Figure 4.4 and 4.5.
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Image matching similarity = 0.9725

Test no.7227 Crop image DB no.16667
(a)

Image matching similarity = 0.9917

Test no.8947 Crop image DB no.5583
(b)

Image matching similarity = 0.9883

Test no.6667 Crop image DB no.3507
(c)

Figure 4.4 Examples of image matching results (excavator).
(a) Site 1, (b) Site 2, (c) Site 3.
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Image matching similarity = 0.9849

Test no.8544 Crop image DB no.3736
(a)

Image matching similarity = 0.9927

Test no.8704 Crop image DB no.701
(b)

Image matching similarity = 0.9813

Test no.5639 Crop image DB no.1026
(c)

Figure 4.5 Examples of image matching results (dump truck).
(a) Site 1, (b) Site 2, (c) Site 3.

As shown in Figures 4.4 and 4.5, it was confirmed that the result of

image matching on the test dataset for each site and construction equipment

showed quite good performance.
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4.2 Pose Estimation and Localization

The 3D pose of the construction equipment in the test dataset is estimated

and localized using the 3D pose information of the construction equipment

stored in the image derived through image matching according to chapter

3.2.2 and chapter 3.2.3. The overall process of performing pose estimation

and localization after image matching is shown in Figure 4.6.

Figure 4.6 Process of performing pose estimation and localization.

First, before proceeding with the post-processing process (②) for pose

estimation and localization, an example of pose information (①) of

construction equipment in the test dataset derived by image matching is

shown in Table 4.2.
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Table 4.2 Example of pose estimation in the test dataset (Site 1, excavator).

20 0.9396 344.16 1161.09 -142.57

19 0.9395 344.16 1161.09 -142.57

18 0.9364 344.16 1161.09 -142.57

17 0.9351 344.16 1161.09 -142.57

16 0.9372 344.16 1161.09 -142.57

15 0.9357 344.16 1161.09 -142.57

14 0.9390 344.16 1161.09 -142.57

13 0.9350 263.77 411.73 217.13

12 0.9326 283.22 495.09 170.12

11 0.9315 309.15 606.23 107.45

10 0.9365 357.46 1162.39 -144.47

9 0.9353 296.18 550.66 138.79

8 0.9365 360.79 1162.71 -144.95

7 0.9346 302.67 578.45 123.12

6 0.9304 296.18 550.66 138.79

5 0.9302 296.18 550.66 138.79

4 0.9298 296.18 550.66 138.79

3 0.9285 315.63 634.02 91.78

2 0.9317 322.12 661.81 76.11

1 0.9288 315.63 634.02 91.78

Image No. Similarity Arm_Bucket_x Arm_Bucket_y Arm_Bucket_z

As a result of image matching, the image with the highest similarity (test

image no.20 in this example) is set to p1, and interpolate values between no.1

and p1. The results are shown in Table 4.3.
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Table 4.3 Pose interpolation results from no.1 to p1.

20 0.9396 344.16 1161.09 -142.57

19 0.9395 342.66 1133.35 -130.24

18 0.9364 341.16 1105.61 -117.90

17 0.9351 339.66 1077.87 -105.57

16 0.9372 338.15 1050.13 -93.23

15 0.9357 336.65 1022.39 -80.90

14 0.939 335.15 994.65 -68.56

13 0.935 333.65 966.91 -56.23

12 0.9326 332.15 939.17 -43.90

11 0.9315 330.65 911.43 -31.56

10 0.9365 329.14 883.68 -19.23

9 0.9353 327.64 855.94 -6.89

8 0.9365 326.14 828.20 5.44

7 0.9346 324.64 800.46 17.77

6 0.9304 323.14 772.72 30.11

5 0.9302 321.64 744.98 42.44

4 0.9298 320.13 717.24 54.78

3 0.9285 318.63 689.50 67.11

2 0.9317 317.13 661.76 79.45

1 0.9288 315.63 634.02 91.78

Image No. Similarity Arm_Bucket_x Arm_Bucket_y Arm_Bucket_z

Then, set the next reference point (p2) among p1+20 to p1+40 (test

image no.40 to no.60 in this example). Table 4.4 shows the pose estimation

results between no.40 and no.60.
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Table 4.4 Pose estimation results from no.40 to no.60 (Site 1, excavator).

60 0.9373 259.60 1141.60 -127.31

59 0.9376 259.60 1141.60 -127.31

58 0.9380 259.60 1141.60 -127.31

57 0.9390 262.78 1142.78 -128.01

56 0.9384 278.68 1148.65 -131.50

55 0.9397 269.14 1145.12 -129.41

54 0.9396 288.22 1152.17 -133.60

53 0.9386 269.14 1145.12 -129.41

52 0.9385 269.14 1145.12 -129.41

51 0.9396 269.14 1145.12 -129.41

50 0.9393 269.14 1145.12 -129.41

49 0.9399 269.14 1145.12 -129.41

48 0.9417 272.32 1146.30 -130.10

47 0.9417 269.14 1145.12 -129.41

46 0.9427 275.50 1147.47 -130.80

45 0.9413 272.32 1146.30 -130.10

44 0.9436 272.32 1146.30 -130.10

43 0.9446 272.32 1146.30 -130.10

42 0.9439 272.32 1146.30 -130.10

41 0.9429 272.32 1146.30 -130.10

40 0.9441 281.86 1149.82 -132.20

Image No. Similarity Arm_Bucket_x Arm_Bucket_y Arm_Bucket_z

As a result of image matching, the image with the highest similarity (test

image no.43 in this example) is set to p2 , and whether it is outlier is

determined. According to Chapter 3.2.3, the limit value of the pose change
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during 30 frames of each site construction equipment is calculated as Table

4.5.

Table 4.5 Limits of pose change during 30 frames in train dataset (cm).

Center
(Dump Truck) 174.47 186.46 54.40

Arm_Bucket
(Excavator)

234.65 259.96 316.00

Site 1 Site 2 Site 3

Since the value of Table 4.5 is the maximum value of the pose change

during 30 frames, it is substituted based on the p2 - p1 frames according to

Eq 3.

(pose of ) no.43 − no.20 =

(272.32− 344.16)2+(1146.30− 1161.09)2+(− 130.1 + 142.57)2

= 74.40 < 234.65 ×
43 − 20

30
= 179.90= 179.90

Since p2 is smaller than the limit value, it is not an outlier. Therefore, it

is possible to interpolate the pose information between no.20 and no.43 using

the values of p1 and p2, and the interpolation result is shown in Table 4.6.

Post-processing was performed in the same process for the pose estimation

results of the remaining test datasets.
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Table 4.6 Pose interpolation results from no.20 to no.43.

43 0.9446 272.32 1146.30 -130.10

42 - 275.44 1146.94 -130.64

41 - 278.57 1147.59 -131.18

40 - 281.69 1148.23 -131.73

39 - 284.81 1148.87 -132.27

38 - 287.94 1149.52 -132.81

37 - 291.06 1150.16 -133.35

36 - 294.18 1150.80 -133.90

35 - 297.31 1151.44 -134.44

34 - 300.43 1152.09 -134.98

33 - 303.55 1152.73 -135.52

32 - 306.68 1153.37 -136.06

31 - 309.80 1154.02 -136.61

30 - 312.93 1154.65 -137.15

29 - 316.05 1155.30 -137.69

28 - 319.17 1155.95 -138.23

27 - 322.30 1156.59 -138.77

26 - 325.42 1157.23 -139.32

25 - 328.54 1157.87 -139.86

24 - 331.67 1158.52 -140.40

23 - 334.79 1159.16 -140.94

22 - 337.91 1159.80 -141.49

21 - 341.04 1160.45 -142.03

20 0.9396 344.16 1161.09 -142.57

Image No. Similarity Arm_Bucket_x Arm_Bucket_y Arm_Bucket_z
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4.3 Visualization

Visualization was performed for 2D and 3D, and 2D is a top-view

representation of main keypoint's movement for construction equipment (e.g.,

excavator: arm_bucket, dump truck: center). However, excavator and dump

truck are working in almost fixed positions in the collected data. Therefore,

2D visualization is described an example of dump truck leaving after the

loading operation is finished. Figure 4.7 shows the movement of the dump

truck from frame (a) to frame (b) as viewed from the top.

(a) (b)

Figure 4.7 Example of 2D visualization (Site 1, dump truck).
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3D visualization represents the 3D movement of the entire construction

equipment by connecting keypoints of the equipment stored during annotation.

The results of 3D visualizing the pose information calculated in Chapter 4.2

are as belows (Figure 4.8, 4.9, 4.10).

Dump truck Excavator

Figure 4.8 Example of 3D visualization (Site 1).
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Dump truck Excavator

Figure 4.9 Example of 3D visualization (Site 2).

Dump truck Excavator

Figure 4.10 Example of 3D visualization (Site 3).
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4.4 Evaluation of Validity

To evaluate validity of the experimental results, the root means square

error (RMSE) equation was used. RMSE is a frequently used measure for

validation in pose estimation. The RMSE equation is as below.

RMSE   =
1

n
i=1

n

(Pi−Pi)
2 Eq.4

n : number of keypoints

Pi  : 3D (x, y, z) coordinates by keypoints in test images

Pi  : 3D (x, y, z) coordinates by keypoints in crop image data

n is the number of keypoints per construction equipment, in the case of

an excavator, it has a value of 6 as Body, Center, Boom, Boom_Arm,

Arm_Bucket, and Bucket, and in the case of a dump truck, it has a value of 8

as D_1 to D_8 (The center coordinates of the dump truck can be obtained by

D_1 and D_8). P i and P i  are coordinates for each keypoint of the

construction equipment 3D model saved in 30,000 images for each site

through annotation using the Unity game engine in Chapter 3.1. Pi is the

pose information of construction equipment for 9,000 test images that have

performed pose estimation using an image matching algorithm, and P i  is the

pose information of construction equipment stored in 21,000 images used to

build the crop image DB.
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The value obtained by calculating the RMSE for each keypoint of

construction equipment using the above equation Eq.4 for each site is shown

in Table 4.7 and 4.8 below.

Table 4.7 RMSE for each keypoint (excavator).

Average 47.31 66.14 87.84

Bucket 74.36 112.45 154.82

Arm_Bucket 77.21 132.67 175.15

Boom_Arm 43.28 47.54 68.15

Boom 33.44 41.73 52.15

Center 31.23 37.35 35.49

Body 24.31 25.12 41.27

Site 1 Site 2 Site 3

Table 4.8 RMSE for each keypoint (dump truck).

Average 30.54 36.22 14.28

D_8 29.51 40.49 10.29

D_7 32.45 51.20 15.32

D_6 36.32 30.51 10.23

D_5 37.71 40.23 21.83

D_4 20.80 24.51 14.60

D_3 21.98 32.13 10.48

D_2 35.41 29.45 18.25

D_1 30.13 41.21 13.23

Site 1 Site 2 Site 3
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4.5 Discussion

As a result of the experiment, it was confirmed that construction

equipment (excavator, dump truck) was detected with fine performance in the

test image and image matching. And visualizing the results of image matching

can help identify where the current construction equipment is located at the

construction site (i.e., 2D visualization), and the movement of the construction

equipment at that location (i.e., 3D visualization). Furthermore the possibility

of analyzing the interaction between an excavator and a dump truck in one

virtual space was confirmed. Also, it showed good performance in the RMSE

calculated for the evaluation of validty (Table 4.7 and 4.8). However,

excavator's Arm_Bucket and Bucket parts showed relatively large RMSE

values. It is judged that there is no image of the construction equipment

having a similar posture to the test image in the crop image DB, or an error

occurred due to an accuracy problem of annotation. In addition, not being

completely overlaid because the model of the equipment used in the image

and the model of the equipment used for the annotation are different, would

have affected the accuracy of the annotation. Also, the model of the

construction site image data and the 3D virtual model were not completely

overlaid because they were different model and this would have affected the

annotation accuracy.
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Chapter 5. Conclusions

5.1 Summary and Contributions

In recent years, there is increasing practical interest in construction site

monitoring using closed circuit television (CCTV) camera installed on site. So

many researchers have developed various image analysis technologies for

construction site monitoring. However, most of the previous studies did not

cover the pose estimation of construction equipment. Knowing the pose

information of construction equipment provides a more detailed view of the

dynamic state and posture changes of the entire equipment, and it is possible

to prevent potential collisions with nearby workers or equipment. There are

limited studies to estimate the pose information of construction equipment,

but these also have limitations (e.g., difficult to apply to the actual site). To

overcome these problems, this research proposes a method of estimating and

localizing the 3D pose of construction equipment using a 3D virtual model

based on a single camera installed in the construction site.

This research has the following contributions. First, it proposed a method

applicable to actual construction sites that solved the limitations of previous

studies (e.g., many cameras need to be installed, IoT sensors should be

installed for each driving part of construction equipment, etc.). Second, 3D

pose information can be obtained without IoT sensors and for obscuring parts
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of construction equipment. In previous studies that estimate the 3D poses of

construction equipment through vision-based without IoT sensors, there is a

problem that it is impossible to estimate the poses if the keypoints of

obtaining the pose information are obscured or invisible. However, since the

method proposed in this research uses a 3D virtual model to obtain a pose

information using the shape of the entire equipment even if the corresponding

keypoints are invisible, 3D pose estimation is possible. Finally, the dynamic

state of the entire equipment can be understood by understanding the pose

changes of the equipment, and pro-active action can be taken against potential

safety accidents with the surrounding personnel and equipment.
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5.2 Limitation and Future Study

In this research, a total of three sites were experimented, but each of

them detected construction equipment using object detection models trained at

the same site, and images were collected from one camera arrangement for

each site. Image matching was performed within the crop image database built

at the same site. if the trained model and the crop image database are

experimented on a new site, the performance will be degraded. Also, if the

resolution ratio of the camera used for annotation is different, the performance

of pose estimation will be degraded.

In addition, there is a limitation that the 3D virtual model of construction

equipment used in 2D - 3D annotation was different from the model of

construction equipment in the collected construction site image data. The

model of the excavator in the construction site image data used for the

annotation was Volvo EC 300DL, and the 3D virtual model was the 3D Volvo

EC 650 model. As a result, the 3D model was not fully matched to the

construction equipment in the image data during the annotation (the same

goes for dump trucks). When there is no image with a posture similar to the

test image in the crop image database, there is a limitation that an error in

image matching may occur. In addition, if there are multiple images having

the same posture during annotation, the 3D model should be annotated so that

all of the 3D models have the same pose information, but there is a limitation

that a slight error occurs during annotation process.

As a future study, it could be to develop a methodology that can be
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applied to a new site for an already established database. And it is possible to

apply a deep learning method other than the template matching algorithm

applied in this research. In addition, a method of constructing a crop image

database by moving a 3D virtual model at various angles and projecting it as a

2D image, and performing image matching with the corresponding image and

actual image data may be studied in the future.



70

Bibliography

Azar, E., and McCabe, B. (2012). “Automated Visual Recognition of Dump

Trucks in Construction Viedeos.” Journal of Computing in Civil

Engineering, 26(6), pp. 769-781.

Azar, E., Dickinson, S., and McCabe, B. (2013). “Server-Customer

Interaction Tracker: Computer Vision-Based System to Estimate Dirt-

Loading Cycles.” Journal of Construction Engineering and

Management, 139(7), pp. 785-794.

Azar, E., Feng, C., and Kamat, V. (2015). “Feasibility of in-plane articulation

monitoring of excavator arm using planar marker tracking” Journal of

Information Technology in Construction, 20, pp. 213-229.

Bugler, M., Borrmann, A., Ogunmakin, G., Vela, P., and Teizer, J. (2016).

“Fusion of Photogrammetry and Video Analysis for Productivity

Assessment of Earthwork Processes.” Computer-Aided Civil and

Infrastructure Engineering, 32, pp. 107-123.

Chen, C., Zhu, Z., and Hammad, A. (2020). “Automated excavators activity

recognition and productivity analysis from construction site

surveillance videos.” Automation in Construction, 110, 103045.

Choi, N., Son, H., Kim, C., Kim, C., and Kim, H. (2008). “Rapid 3D object

recognition for automatic project progress monitoring using a stereo

vision system.” The 25th International Symposium on Automation and



71

Robotics in Construction, pp. 58-63.

Deng, H., Hong, H., Luo, D., Deng, Y., and Su, C. (2019) “Automatic Indoor

Construction Progress Monitoring for Tiles Based on BIM and

Computer Vision.” Journal of Construction Engineering and

Management, 146(1), 04019095.

Dimitrov, A., and Golparvar-Fard, M. (2014). “Vision-based material

recognition for automated monitoring of construction progress and

generating building information modeling from unordered site image

collections.” Advanced Engineering Informatics, 28, pp. 38-49.

Fang, W., Ding, L., Luo, H., and Love, P. (2018). “Falls from heights: A

computer vision-based approach for safety harness detection.”

Automation in Construction, 91, pp. 53-61.

Fang, Y., Cho, Y., and Chen, J. (2016). “A fremawork for real-time pro-active

safety assistance for mobile crane lifting operations.” Automation in

Construction, 72(3), pp. 367-379.

Guo, Y., Niu,H., and Li, S. (2018). “Safety Monitoring in Construction Site

based on Unmanned Aerial Vehicle Platform with Computer Vision

using Transfer Learning Techniques.” 7th Asia-Pacific Workshop on

Structural Health Monitoring, pp. 1052-1060.

Jiang, Z., and Messner, J. (2020). “Computer Vision-Based Methods Applied

to Construction Processes: A Literature Review” Construction

Research Congress 2020, pp. 1233-1241.



72

Kang, J., Choi, P., and Eom, D. (2018). “Precise Bucket Pin-point Estimation

of Excavator in 3-dimensional by Integration of Accelerometers with

RTK GPSs.” Institute of Control, Robotics and Systems, 24(10, pp.

930-938.

Kim, H., Bang, S., Jeong, H., Ham, Y., and Kim, H. (2018). “Analyzing

context and productivity of tunnel earthmoving processes using

imaging and simulation.” Automation in Construction, 92, pp. 188-198.

Kim, H., Kim, H., Hong, Y., and Byun, H. (2017). “Detecting Construction

Equipment Using a Region-Based Fully Conected Network and

Transfer Learning.” Journal of Computer in Civil Engineering, 32(2),

04017082.

Kim, H., Kim, K., and Kim, H. (2016). “Vision-Based Object-Centric Safety

Assessment Using Fuzzy Interfrenece: Monitoring Stuck-By Accidents

with Moving Objects.” Journal of Computer in Civil Engineering,

30(4), 04015075.

Kim, J., and Chi, S. (2020). “Multi-camera vision-based productivity

monitoring of earthmoving operations.” Automation in Construction,

112, 103121.

Kim, J., Chi, S., and Seo, J. (2018). “Interaction analysis for vision-based

activity identification of earthmoving excavators and dump trucks.”

Automation in Construction, 87, pp. 297-308.

Lee, J., Kim, B., Sun, D., Han, C., and Ahn, Y. (2019) “Development of



73

Unmanned Excavator Vehicle System for Performing Dangerous

Construction Work” Sensors, 19(22), 4853.

Li, H., Lu, M., Hsu, S., Gray, M., and Huang, T. (2015). “Proactivebehaviour-

based safety management for construction safety improvement.”

Safety Science, 75, pp. 107-117.

Liang, C., Lundeen, K., McGee, W., Menassa, C., Lee, S., and Kamat, V.

(2019). “A vision-based marker-less pose estimation system for

articulated construction robots.” Automation in Construction, 104, pp.

80-94.

Liang, C., Kamat, V., and Menassa, C. (2018) “Real-Time Coonstruction Site

Layout and Equipment Monitoring” Construction Research Congress

2018, pp. 64-74.

Lundeen, K., Dong, S., Fredricks, N., Akula, M., Seo, J., and Kamat, V.

(2016). “Optical marker-based end effector pose estimation for

articulated excavators.” Automation in Construction, 65, pp. 51-64

Luo, H., Li, H., Cao, D., Dai, F., Seo, J., and Lee, S. (2018). “Recognizing

Diverese Construction Activities in Site Images via Relevance

Networks of Construction-Related Objects Detected by Convolutional

Neural Networks.” Journal of Computer in Civil Engineering, 32(3),

04018012.

Luo, H., Wang, M., Wong, P., and Cheng, J. (2020). “Full body pose

estimation of construction equipment using computer vision and deep



74

learning techniques.” Automation in Construction, 110, 103016.

Luo, H., Wang, M., Wong, P., Tang, J., and Cheng, J. (2020). “Construction

machine pose prediction considering historical motions and activity

attributes using gated recurrent unit (GRU)” Automation in

Construction, 121, 103444.

Pentek, Z., Hiller, T., Liewald, T., Kuhlmann, B., and Czmerk, A. (2017).

“IMU-based mounting parameter estimation on construction vehicles.”

2017 DGON Inertial Sensors and Systems(ISS), pp. 1-14.

Pradhananga, N., and Teizer, J. (2012) “GPS-based framework towards more

realistic and real-time construction equipment operation simulation.”

In Proceedings of the 2012 Winter Simulation Conference, 64.

Rashid, K., and Louis, J. (2019) “Construction Equipment Activity

Recognition from IMUs Mounted on Articulated Implements and

Supervised Classification.” International Conference in Computing in

Civil Engineering 2019

Roberts, D., and Golparvar-Fard, M. (2019) “End-to-end vision-based

detection, tracking and activity analysis of earthmoving equipment

filmed at ground level” Automation in Construction, 105, 102811.

Seo, J., Han, S., Lee, S., and Kim, H. (2015). “Computer vision techniques for

construction safety and health monitoring.” Advanced Engineering

Informatics, 29, pp. 239-251.



75

Soltani, M., Zhu, Z., and Hammad, A. (2016). “Towards Part-Based

Construction Equipment Pose Estimation Using Synthetic Images.”

Construction Research Congress 2016, pp. 980-989.

Soltani, M., Zhu, Z., and Hammad, A. (2017). “Skeleton estimation of

excavator by detecting its parts” Automation in Construction, 82, pp.

1-15.

Soltani, M., Zhu, Z., and Hammad, A. (2018). “Framework for location data

fusion and pose estimation of excavators using stereo vision.” Journal

of Computing in Civil Engineering, 32(6), 04018045.

Souma-Gyimah, G., Frimpong, S., Nyaaba, W., and Gbadam, E. (2019) “A

computer vision system for terrain recognition and object detection

tasks in mining and construction environments” SME Annual

Conference.

Sun, D., Kim, S., Lee, Y., Lee, S., and Han, C. (2017) “Pose and Position

Estimation of Dozer Blade in 3-dimensional by Integration of IMU

with Two RTK GPSs” 34th International Symposium on Automation

and Robotics in Construction (ISARC 2017).

Tang, J., Luo, H., Wong, P., and Cheng, J. (2020). “Study of IMU Installation

Position for Posture Estimation of Excavators.” International

Conference on Computing in Civil and Building Engineering, 98, pp.

980-991.

Teizer, J., Lao, D., and Sofer, M. (2007) “Rapid automated monitoring of



76

construction site activities using ultra-wideband” 24th International

Symposium on Automation & Robotics in Construction (ISARC 2007),

pp. 23-28.

Tuttas, S., Braun, A., Borrmann, A., and Stilla, U. (2016) “Evaluation of

acquisition strategies for image-based construction site monitoring”

The International Archives of Photogrammetry, Remote Sensing and

Spatial Information Sciences, 40(3), 321.

Vahdatikhaki, F., and Hammad, A. (2015). “Dynamic equipment workspace

generation for improving earthwork safety using real-time location

system” Advanced Engineering Informatics 29, pp. 459-471.

Vahdatikhaki, F., Hammad, A., and Siddiqui, H. (2015). “Optimization-based

excavator pose estimation using real-time location systems.”

Automation in Construction, 56, pp. 76-92.

Wang, Z., Zhang, Q., Yang, B., Wu, T., Lei, K., Zhang, B., and Fang, T.

(2020). “Vision-Based Framework for Automatic Progress Monitoring

of Precast Walls by Using Surveillance Videos during the Cosntruction

Phase.” Journal of Computing in Civil Engineering, 35(1), 04020056.

Yuan, C., Li, S., and Cai, H. (2017). “Vision-based excavator detection and

tracking using hybrid kinematic shapes and key nodes.” Journal of

Computing in Civil Engineering, 31(1), 04016038.

Zhang, C., Hammad, A., and Rodriguez, S. (2012). “Crane Pose Estimation

Using UWB Real-Time Location System.” Journal of Computing in



77

Civil Engineering, 21(6), pp. 625-637.



78

초 록

최근 영상분석기술의 빠른 발전과 함께 현장에 설치된 closed

circuit television (CCTV) 카메라를 활용하는 건설현장 영상 모니터링

기술에 대한 실무적 관심이 높아지고 있다. CCTV 영상 데이터를

활용한 건설장비의 작업 분류 및 생산성 분석, 위험구역 접근 감지

등 건설현장 영상 모니터링을 위한 다양한 영상분석기술들도

개발되었다. 하지만 이전의 연구들은 주로 영상 데이터 속에서

건설장비를 식별하고 추적하거나, 작업을 분류하는 데 초점을

맞추었을 뿐 건설장비의 포즈 추정에 대해서는 자세히 다루지

않았다.

건설장비의 포즈 추정은 장비의 각 키포인트별 2차원 혹은

3차원 좌표 정보 (i.e., its location and orientation)를 획득하는 것으로,

건설장비 자세 파악 및 원격 제어, 건설 현장의 안전성 분석 및

건설 프로젝트의 생산성 분석을 위한 기본적인 기계 정보를

제공한다. 건설장비의 포즈 정보를 알면 장비 전체의 동적 상태 및

자세 변화를 보다 자세하게 파악할 수 있으며, 주변 작업자나

장비와의 잠재적 충돌 사고를 방지하는 것이 가능하다.

본 연구는 단일 카메라 영상을 기반으로 3차원 가상 모델을

이용하여 건설장비의 3차원 포즈와 위치를 추정하는 방법을

제안한다. 연구는 크게 네 가지 단계로 구성되어 있다. 첫째로,
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문헌조사를 통해 기존 영상분석기술을 활용한 건설현장 모니터링

기술과 건설장비 포즈 추정 기술을 정의하였다. 둘째로, 단일

카메라 영상에서 건설장비의 포즈를 추정하기 위해 건설현장 2차원

이미지 데이터에 3차원 가상 모델 데이터를 저장하였다. 셋째로,

건설현장 영상 데이터로부터 건설장비를 탐지 및 추출하고, 이미지

매칭을 통하여 유사 이미지를 도출하는 건설장비 포즈 추정 방법을

개발하였다. 마지막으로, 3곳의 건설현장에서 수집한 영상 데이터를

이용하여 건설장비 포즈 추정 결과의 성능을 검증하였다.

그 결과 본 연구에서 제안한 방법을 통해 단일 영상 데이터에서

건설장비의 포즈 추정할 수 있음을 보였으며, 건설장비가 가려지는

부분에 대해서도 포즈 추정이 가능함을 확인하였다. 뿐만 아니라,

여러 장비들의 포즈 추정값을 이용하여 장비들 간의 상호작용

분석에도 도움이 될 것으로 기대된다.

주요어:단일 카메라 기반,3차원 가상 모델,3차원 포즈 추정,

건설장비

학 번:2019-27248
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