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Abstract 

 
Data that are complete and accurate are the most important premises of 

providing reliable traffic information because they are required by most 

statistical analyses. However, the problem of missing data is unavoidable 

since the data collection system is not free of errors. Recently, deep learning 

approaches, which are capable of capturing the inherent features and 

interactions in the data, have been proposed to deal with the problem of 

missing data. Spatio-temporal dependencies are key for the imputation of 

traffic data, and color-coded traffic speed images in time-space diagrams can 

represent them. In this paper, we propose a multi-input deep-convolutional 

generative adversarial imputation network (MI-DC GAIN) to impute the 

network-wide traffic speed on an urban expressway in the form of speed 

images. The proposed method uses a convolutional neural network (CNN) to 

deal with spatio-temporal patterns in the speed images and GAIN to focus on 

the data imputation. To facilitate the training DC-GAIN, speed images 

reconstructed by the traffic adaptive smoothing method (TASM) were used in 

the multi-input structure as additional information. Findings from the 

experiment showed that applying CNN to the structure of GAIN can enhance 

the model capability of learning traffic speed images, which are enhanced 

further by the multi-input structure with the additional reconstructed speed 

images. The MI-DC GAIN achieved much better performance than benchmark 

models in terms of accuracy and robustness to the level-of-congestion and 

the missing rate.  
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Chapter 1. Introduction 
 

Providing information on traffic state is the most important task in 

the application of many traffic management approaches, such as 

vehicle routing and travel time prediction. Such applications are 

particularly important in congested traffic conditions, which are 

induced by recurrent bottlenecks or traffic incidents. The benefits of 

traffic information are determined by its completeness and its 

accuracy (Li et al. 2013). However, missing data are practically 

unavoidable due to failures in communication or the malfunctions of 

detectors. Since most of the methods that provide traffic information 

require complete datasets, the missing data should be considered first. 

Several methods for imputing data have been proposed to deal 

with the problem of missing information, and these methods include 

prediction, interpolation, and statistical learning (Li et al. 2014). The 

prediction methods impute the missing values by modeling the 

historical pattern of the data collected from target sites, and the 

methods that are used extensively in this approach are the support 

vector machine (Wu et al. 2004, Kim et al. 2019a) and the k-nearest 

neighbors (Myung et al. 2011). However, these approaches have 

difficulty dealing with continuous missing values or transitions in the 

traffic state since they fail to capture the spatial correlation of the data. 

The interpolation methods found the optimal imputation value based 

on the traffic information of spatiotemporal neighborhoods or the 

similarity of patterns in the historical data (Treiber et al. 2011, Yin et 

al. 2012). Such approaches depend on the assumption of a repetitive 

traffic pattern at the target sites, but sometimes non-recurrent 

patterns occur in practice (Li et al. 2013). Statistical learning methods 

take advantage of the statistical characteristics of traffic flow to 

capture its meaningful variations based on assumed probability 

distribution (Li et al. 2013, Bae et al. 2018). However, such 

assumptions sometimes fail when dealing with real data, and they do 

not work well in most cases of missing data (Huang et al. 2020) 

Recently, deep learning methods that achieve great success in 
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various fields of transportation research (Kim et al. 2019b, Polson and 

Sokolov 2017, Liang et al. 2018) have been proposed to deal with the 

traffic data imputation problem. The deep learning method efficiently 

represents the inherent features and interactions in the data (Duan et 

al. 2016). Therefore, complex spatial and temporal information 

collected from multiple data points can be considered in the structure 

of the model without the statistical assumptions or the domain 

knowledge of the researcher (Duan et al. 2016, Asadi et al. 2019). 

Deep learning methods outperform the conventional prediction method, 

and the improvement in performance was achieved by the advanced 

structure of the model, e.g., convolutional neural networks (CNNs) and 

long short-term memory (LSTM) (Liang et al. 2018, Duan et al. 2016, 

Asadi et al. 2019). 

The generative adversarial network (GAN) is a generative deep-

learning method that learns the conditional probability distribution of 

the input and output data and generates data that have the 

approximated distribution of the training data (Goodfellow et al. 2014). 

Modeling the conditional probability distribution, rather than predicting 

the expected value with given inputs, allows the user to address abrupt 

changes caused by spatio-temporal attributes in the congested traffic, 

such as phase transition, and oscillation marking deceleration and 

acceleration. However, learning the conditional distribution rather than 

predicting the expected value is considered to be a much more difficult 

task in deep learning. Specifically, GAN has a non-convergence issue 

since it is trained by finding an equilibrium of two competing networks 

at the same time rather than by finding a minimum of the loss function 

(Goodfellow et al. 2014). Although several advanced processes for 

training GAN have been proposed (Arjovsky et al. 2017, Chen et al. 

2016), heuristics empirically demonstrated by domain knowledge 

worked well in practice (Salimans et al. 2016). In the transportation 

research field, previous studies have reported the use of GAN models 

to predict traffic flow (Liang et al. 2018, Lv et al. 2018, Lin et al. 2018) 

and to impute missing traffic data (Huang et al. 2020, Chen et al. 2016). 

Lv et al. introduced the potential of GAN for traffic data generation by 

learning conditional probability distribution (Lv et al. 2018). Liang et 
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al. proposed GAN to predict traffic flow, which consisted of two 

modifications, i.e., LSTM and the custom loss function based on the 

relation of traffic flow and density (Liang et al. 2018). Huang et al. 

proposed time-dependent encoding to represent the time dependency 

of the traffic data as images, and those images are trained using CNN 

(Huang et al. 2020). The above studies showed strong promise of GAN 

in modeling traffic flow, and the models that tailored to the problem of 

traffic data outperformed the conventional prediction model and the 

original GAN with a fully connected network (FCN). 

In this study, we propose a multi-input deep convolutional 

generative adversarial imputation network (MI-DC GAIN) that focuses 

on the imputation of missing spatio-temporal traffic data. We use the 

image-based approach that allows a structure of deep learning model 

to automatically recognize spatio-temporal patterns represented in the 

images (Ma et al. 2017, Jo et al. 2018). The images of speed contour 

in the urban expressway that represent spatio-temporal patterns of 

traffic state are used as the input and output data of the model, and 

those traffic speed images are trained using a convolutional structure. 

To facilitate the training of the model, we used the speed contour 

reconstructed by the traffic adaptive smoothing method (TASM) 

(Treiber et al. 2011) as an additional input (i.e., multi-input). The 

performance of the proposed model was evaluated based on different 

missing rates and the level of congestion. The key contributions of this 

study are as follows: 

  An image-based approach using GAIN and CNN were applied to 

traffic data imputation, which requires capturing the spatio-

temporal patterns of traffic data. 

  Multi-input structures that use traffic speed images reconstructed 

by TASM were proposed to enhance the applicability of DC GAIN 

to the traffic data. 

  MI-DC GAIN achieved a much higher and robust performance for 

all cases of the missing data ratio and level of congestion than the 

benchmark models, including temporal moving average, TASM, 

single-input deep-convolutional GAIN (SI-DC GAIN), and multi-

input fully-connected GAIN (MI-FC GAIN).  
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The rest of this paper is organized as follows. First, we describe 

the study site and the MI-DC GAIN and the TASM in detail. Then, we 

discuss the specific implementation of the model and provide the 

experimental results to validate the proposed method. Last, 

conclusions and potential future research are presented. 

 

 

Chapter 2. Study Site and Data 
 

2.1. Study Site 
 

The loop detector data are collected by the inductive double-loop 

detectors, which are commonly used to allow for direct speed 

measurements (Kessler et al. 2018). This research focuses on the 

detectors located in the urban expressway of the Seoul metropolitan 

area in Korea. The study site is a 9.36 km section from Pangyo JC to 

Songpa IC in the counterclockwise direction in the Seoul Outer Circular 

Expressway (Figure 2.1).  

 

 
Figure 2.1 The study site from Pangyo JC to Songpa IC on the 

Seoul Outer Circular Expressway 
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2.2. Data Descriptions 
 
 

From Pangyo JC to Songpa IC, there are nine loop detectors with 

kilometer posts of 1.6, 2.5, 3.5, 4.3, 5.5, 6.5, 7.2, 8.0, and 9.0, 

respectively. The average distance between the loop detectors is 

0.925 km, with a standard deviation of 0.148 km. We used 5-minute 

aggregated traffic speed data collected from the loop detectors for 245 

days, i.e., from March 2019 through October 2019. The speed limit on 

this route is 100 km/h, and the average traffic speed and standard 

deviation of the traffic speed for each detector are shown in Table 2.1. 

The low average speed of the detectors at the 3.5 and 5.5 kilometer 

posts suggest the occurrences of recurrent traffic congestion.  

 

Table 2.1 Descriptive statistics of traffic speed data at the study site 

 

 Pangyo JC ~ Seongnam IC 
Seongnam IC ~ 

Seongnam TG 

Kilometer Post of 

Detector 
1.6 2.5 3.5 4.3 

Average Speed (km/h) 84.5 85.8 81.2 96.9 

Standard Deviation of 

Average Speed (km/h) 
17.9 19.4 19.2 15.1 

Seongnam TG ~ Songpa IC 

Kilometer Post of 

Detector 
5.5 6.5 7.2 8.0 9.0 

Average Speed (km/h) 76.5 86.5 83.6 94.8 84.2 

Standard Deviation of 

Average Speed (km/h) 
14.7 17.0 20.1 19.9 18.4 

 

Figure 2.2 shows the average speed measured in each detector 

over time with the kilometer post. The average traffic speed shows 

that the peak traffic hours in the study site were approximately 11 A.M. 

and 5 P.M., and those patterns commonly were observed at all of the 

detectors.   
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Figure 2.2 Average speed recorded by each detector over time 

 

 

Figure 2.3(a) shows an example of the image of speed contour on 

the time-space diagram. Each pixel of the images expresses the traffic 

speed, i.e., the lower the speed, the redder the color, and the higher 

the speed, the bluer the color. Figure 2.3(b) shows an image that 

transformed Figure 2.3(a) into an image matrix that was used as input 

data for training the models. This traffic speed image naturally 

represents the spatio-temporal correlations (e.g., propagation of 

traffic congestion) of the daily traffic. The dimensions of the input 

image matrix were 75 x 108, of which the section length of 7.5 km was 

divided into 0.1-km units (i.e., from the 1.6 kilometer post to the 9.0 

kilometer post). The 9 hours of data, which were from 10:00 A.M. to 

7:00 P.M., were divided into 5-minute intervals. To represent the 

discrete loop detector data at the 9 locations as a filled image, we 

defined "influence areas" as those areas that are bounded by the 

midpoints between nearby detectors (Zheng et al. 2010) based on the 

assumption that the traffic state within the influence area remains the 

same. This assumption can be reasonable since the purpose of this 

study is to impute the missing data in certain locations where detectors 

are equipped.   
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Figure 2.3 Speed images: (a) spatio-temporal image of traffic speed 

in the time-space diagram; (b) transformed speed images which are 

input for the training model 

 

There is no consistent method to measure the level-of-congestion 

of daily traffic speed. Several studies have identified that the traffic 

congestion exists where the duration time of speed under the 

threshold is sufficiently long (Kim et al. 2019a, Lorenz and Eleſteriadou 

2001, Kim et al. 2010). Based on that concept, we measured the level-

of-congestion using the mean and standard deviation of daily speed. 

Figure 4 shows the scatter plot of the mean and standard deviation of 

the daily traffic speed obtained from 9 detectors in the study site. The 

mean and standard deviation of the traffic speed were calculated using 

the speed of all the vehicles that passed through the target section 

during a single day (i.e., the speed value of the image matrix 

constructed with the nine detectors as shown in Figure 2.3(a)). The 

detector data showed that there was a tendency of inverse linear 

relationship between the mean and the standard deviation of daily 

traffic speed (Figure 2.4). We defined high level-of-congestion as 

being related to the lower the mean of daily traffic speed and the 

greater standard deviation of daily traffic speed.  
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Figure 2.4 Distribution of the mean and standard deviation of the 

daily speed at the study site 

 

 

 

Chapter 3. Methods 
 

3.1. Generative Adversarial Imputation Network (GAIN) 
 

The structure of GAIN has the same basic architecture as the 

widely-known GAN, which consisted of two neural networks, i.e., a 

generator and a discriminator (Yoon et al. 2018). The generator aims 

to generate realistic samples so that the discriminator classifies those 

generated samples as a real sample. In contrast, the discriminator has 

the adversarial role of distinguishing the real samples from the 

generated samples. That adversarial competition converges to an 

equilibrium where the discriminator cannot distinguish between the 

generated samples and the real data. In other words, at equilibrium, 

the generator can approximate the distribution of the training data 

(Goodfellow et al. 2014, Lin et al. 2018). The global optimality of the 

training process in equilibrium was proven by Goodfellow et al. 

The main difference between GAN and GAIN in the structure of 

the model is the existence of the mask vector and the hint vector as 

inputs for the generator and the discriminator each. The mask vector, 

! = ($!, … ,$") , takes a value in {0,1}"  that indicates whether the 
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components of the data vector, , = (-!, … , -"), are missed or observed. 

In the problem setup purposed at imputation, the input data are 

formulated as follows. A random variable, ,. = /-0!, ⋯ , -0"2 ∈ 45	 , is 

defined in a 7 -dimensional space 4 = 4! ×⋯× 4" . For each 9 ∈

{1, … , 7},  -0# has the value of -$ where the value of $# is 1, otherwise 

NaN. If the copy of -0 is denoted as :5!,	:5%, …,	:5&, the goal of the GAIN 

is to impute the missing value in each :5# by estimating the conditional 

distribution of X given -0 = :5#. A random variable, H, takes a value 

that depends on M in a space ℋ, and it is used as an additional input 

to the discriminator, called the hint vector (Yoon et al. 2018). The hint 

vector provides the discriminator some partial information about the 

probability that the vector components were observed (i.e., the vector 

components were missing). Let ℋ = {0, 0.5, 1}"  and given M, hint 

vector is defined as > = ?	⨀!+ 0.5(1 − ?)  where the random 

variable ? = (C!, … , C") ∈ {0,1}
"  is defined by sampling D  from 

{1, … , 7}	 uniformly at random in each batch and C'  is 1  if E ≠ D , 

otherwise 0. An appropriate proportion of hints can make the 

discriminator reasonably smart, thereby making the generator and the 

discriminator learn effectively (Yoon et al. 2018).  

The input process of the generator is described in Equation 1 and 

Equation 2. The Generator, G:	45 	× {0,1}" × [0,1]" → 	4, emits output of 

imputed vector, ,L, with the input taking with ,., !, and M. The random 

noise variable, M = (N!, … , N"), is independent of all other variables. 

The imputed vector ,. is used to make the completed data vector ,O. 

 

,L = G/,.,!, (1 −!)⨀M2                 (3.1) 

,O = !	⨀,. + (1 −!)⨀ 	,L               (3.2) 

 

where ⊙ is an element-wise multiplication.  

 

Another structural difference between GAN and GAIN is the 

dimension of the discriminator's output. Whereas GAN's discriminator 

classifies whether the data vector is the real vector or the generated 

vector, GAIN's discriminator classifies whether each component of the 

data vector is a real value or an imputed value. The discriminator, Q, 
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takes both the completed data vector ,O	and the hint matrix > as input. 

The discriminator, Q, emits estimated mask matrix, !O = Q(,O,>), as 

output in which every component of the matrix is the probability that 

the value is observed. When the discriminator is a function of Q ∶ 	4 →

	[0,1]" with the i-th component of Q(:S) is the probability that the ith 

component of :S is observed. 

The two fully-connected neural networks (or the other structure 

such as CNN), D and G, are trained by optimizing the following minimax 

problem for the quantity T(Q, G) in Equation 3. The D is trained to 

maximize the probability of correctly predicting !, while the G is 

trained to minimize the probability of D correctly predicting ! (Yoon 

et al. 2018). The objective function of the problem can be expressed 

in Equation 4 and Equation 5, according to the goals of the generator 

and the discriminator, respectively. As G is trained to minimize the 

weighted sum of the losses, the generator loss is affected significantly 

by the value of the hyperparameter, U. D and G are updated iteratively 

by the stochastic gradient descent method by incorporating each other. 

  

min
(
max
)

T(Q, G) = [*+,-,.[!
/logQ/,O,>2 + (1 −!/)log	(1 − Q/,O,>2]   (3.3) 

min
)
−[∑ `)/a(E),ab(E), c(E)2

0!
'1! ]                                   (3.4) 

min	
(
[∑ `(/a(E),ab(E), c(E)2 + U`2(d5(E), dS(E))]	

0"
'1!     	

`)(a,ab, c) = ∑ [e# log(eb #) + (1 −e#) log(1 −eb #)]#:4#15        (3.5) 

`((a,ab, c) = −∑ (1 −e#) log(1 −eb #)#:4#15    

`2(d5, dS) = ∑ e#(:6b − :6f)
%"

#1! 	      

    

 

where log is an element-wise logarithm; D) and D( are the sizes 

of mini-batch of discriminator and generator; :5# , :S# , g# , eb #  and e# 

are i-th sample of the corresponding	,., ,O, ?,!O ,	and !; a(E), c(E)	and 

d(E) are j-th sample of the mini-batch. `) ∶ 	 {0,1}
" × [0,1]" × {0,1}" →

ℝ	is the loss function of the discriminator, `(	:	{0,1}
" × [0,1]" × {0,1}" →

ℝ	 is the loss function of the generator, and `2 ∶ 	ℝ" × ℝ" → ℝ	 is the 

loss function of the mask vector. More details about the theoretical 

background of GAIN are discussed in Yoon et al. (Yoon et al. 2018). 
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3.2. Traffic Adaptive Smoothing Method (TASM) 
 

The adaptive smoothing method (ASM) is an interpolation 

method that applies the nonlinear spatio-temporal low-pass filter to 

the data (Treiber et al. 2011). Treiber et al. proposed the traffic-

specific ASM (TASM) that considers the propagation patterns of the 

traffic flow according to the traffic state (i.e., congested state and 

free-flow state) (Treiber et al. 2011). The parameters for TASM are 

determined based on the general attributes of traffic flow propagation, 

such as propagation speed and critical speed dividing congested and 

free-flow state. TASM can filter out random fluctuations by 

considering the spatio-temporal characteristics of the traffic pattern. 

The nonlinear filter transforms the discrete input detector 

speed data, i# , into smooth spatio-temporal functions T(:, j) . The 

filter is expressed in Equation 3.6 as the weighted sum of the 

congested state function T89&:(:, j) and the free-flow state function 

T;<==(:, j). Each function is defined as the sum of the multiplications of 

the smoothing kernel	k(:, j) and discrete speed data i#  divided by 

normalization factor l(:, j)  (Equation 3.8 and Equation 3.10). The 

smoothing kernel k(:, j) is a localized function that decreases when 

the distance between the points increases (Equation 3.7). The 

normalization factor l(:, j) is defined as the sum of the smoothing 

kernels k(:, j) (Equation 3.9 and Equation 3.11). 

 

T(:, j) = m(:, j) ∙ T89&:(:, j) + [1 −m(:, j)] ∙ T;<==(:, j)   (3.6) 

k(:, j) = exp q−
|?|

@
−

|A|

B
r      (3.7) 

T89&:(:, j) = 	
!

C$%&'(?,A)
∑ ks: − :# , j − j' −	

?F?#
8$%&'

ti#
&
#1!    (3.8) 

l89&:(:, j) = ∑ k s: − :# , j − j' −	
?F?#
8$%&'

t&
#1! 	    (3.9) 

T;<==(:, j) = 	
!

C()**(?,A)
∑ ks: − :# , j − j' −	

?F?#
8()**

ti#
&
#1!    (3.10) 

l;<==(:, j) = ∑ k s: − :# , j − j' −	
?F?#
8()**

t&
#1! 	    (3.11) 

m(:, j) = 	
!

%
u1 + tanhx

G$	F	HIJKG$%&'(?,A),			G()**(?,A)L

∆G
yz   (3.12) 



 

 １２ 

 

where { is a unit range of spatial smoothing, and | is a unit range of 

temporal smoothing, which is recommended to use half the value of 

the aggregation interval; }89&: is a propagation speed of perturbations 

in congested traffic; };<== is a propagation speed of perturbations in 

free traffic; T8 is crossover speed from free to congested traffic; ∆T 

is the width of the transition region. Based on the observation and 

recommended values in Treiber et al., this study set }89&:, };<==, T8, 

and ∆T  as − 15km/h, 80km/h, 60km/h, and 20km/h, respectively 

(Treiber et al. 2011). 

 

Figure 3.1 shows an example of traffic speed images reconstructed by 

TASM. Figure 3.1(a) shows the loop detector data without filling the 

influence areas, and Figure 3.1(b) is the 75 x 108 image that 

reconstructed Figure 3.1(a) with TASM. More details about TASM are 

discussed in Treiber et al. (Treiber et al. 2011). 
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Figure 3.1 Speed images: (a) Traffic speed data collected from 9 loop 

detectors; (b) traffic speed image reconstructed by TASM 
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3.3. Multi-input GAIN 
 

In machine learning, multiple inputs from different aspects 

often are used to improve learning performance, and those also can be 

used to improve the imputation performance of GAIN. The appropriate 

combination of data to process multi-input will determine whether the 

performance improves or not. Providing data which are completely 

irrelevant to each other as multi-input would only confuse a model to 

be learned. Based on the original GAIN architecture, a multi-input 

approach is applied to use the data from different aspects. Figure 3.2 

shows the full model of the architecture. The input to the network 

consists of two different aspects, i.e., the loop detector data filled with 

influence areas and the data reconstructed by TASM. The logic behind 

this design is to train GAIN more efficiently with the aid of imputation 

results of TASM that consider general spatio-temporal traffic patterns.  

 

3.4. Deep Convolutional GAIN 
 

The original GAIN structure consists only of fully-connected 

layers. The original generator and discriminator pass through two 

hidden layers in a fully-connected form. As a fully-connected neural 

network cannot exploit local connectivity of the input data, we should 

introduce CNN to impute data taking into consideration spatio-

temporal correlation in the data. CNN is effective for handling image 

format of which adjacent pixels of the input are correlated to each 

other (Jarrett et al. 2009). We followed the DCGAN architecture 

(Radford et al. 2015) for the convolutional generator and discriminator 

of GAIN. Pooling layers are replaced with strided convolutions in the 

discriminator and fractional-strided convolutions in the generator. 

Batch normalizations are used in both the generator and the 

discriminator after the convolutional layers. In the generator, all layers 

except the output layer used the ReLU activation function, and the 

output layer used the Tanh function. LeakyReLU was used in all layers 

in the activation function of the discriminator.  

 



 

 １５ 

 

  

 

Figure 3.2 Structure of Multi-Input GAIN 
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3.5. MI-DC GAIN Framework 
 

This section specifies the architecture of the proposed model 

using convolutional layers and multi-input. 1) The loop detector data, 

2) its mask matrix, and 3) the reconstructed data with TASM were set 

to the identical dimensions of 75 x 108. These data were normalized 

with min-max normalization and then concatenated as the multi-input 

of the generator. The input was stretched to a fully-connected layer 

and passed through the ReLU activation function and batch 

normalization. After it had passed through another fully-connected 

layer with ReLU and batch normalization, then the reshaped input goes 

through the transposed convolutional layer and the max-pooling 

process. The final layer also is a transposed convolutional layer that 

uses the Tanh activation function. The generator finally emits the 

imputed matrix. Receiving the imputed matrix as an input of 

discriminator, the hint matrix and reconstructed data with TASM also 

are used as multi-inputs to the discriminator. The concatenated multi-

input follows the convolutional layer and the max-pooling process 

twice each. After the last max pooling, the reshaped input is flattened 

to a fully-connected layer and reformed as an estimated mask matrix 

with dimensions of 75 x 108. The activation functions of all layers are 

set as leaky ReLU. Figure 3.3 shows the overall process explained 

above.  

After the series of experiments to specify the model 

framework was completed, the hint rate was set as 40%, the training 

rate was set as 90%, the hyper-parameter,	U, was set as 500, and the 

size of the mini-batch was set as 200. During the iterations, the model 

calculates the training loss and the test loss. The training loss is 

computed as an error between the generated values and the observed 

values, and the test loss is computed as an error between the imputed 

values and the missing values. The final objective of this model is to 

minimize the test loss that indicates the imputation performance for 

missing data.  

  



 

 １７ 

 

 

 

 

 



 

 １８ 

 

 

 

Figure 3.3 The proposed MIDC-GAIN framework: (a) Generator; (b) 

Discriminator 
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Chapter 4. Results of Application and 

Discussion 
 

4.1. Imputation Performance Comparison 
 

The imputation performance of the proposed MI-DC GAIN was 

compared with those of the four benchmark models. First, single-input 

DC GAIN (SI-DC GAIN) was constructed to evaluate whether multi-

input approach can improve the imputation performance of DC GAIN. 

Second, we constructed another multi-input GAIN with only fully-

connected layers (MI-FC GAIN) to evaluate the contribution of 

considering local connectivity to the performance of MI-DC GAIN. 

Third, we also compared MI-DC GAIN to a baseline model that imputes 

missing data by interpolating via a spatio-temporal nonlinear low-pass 

filter, i.e., TASM. Fourth, another baseline interpolation method, 

moving-average (MA) considering temporal continuity, is applied to 

impute missing data. The imputation performance was evaluated by 

the root mean squared error (RMSE), given by the following Equation 

4.1. 

 

�$ÄÅ =	Ç
∑ (?F?O)
&+#,,
#-.

/
	

&+#,,
        (4.1) 

  

where : is the observed traffic speed data, :S is the imputed traffic 

speed data, and ÉP#QQ is the number of missing components.  

Table 4.1 shows the RMSE statistics of each model by the missing rate. 

We randomly generated missings with a ratio of 5%, 10%, 20%, and 

30% on ground-truth data and evaluated imputation performance. The 

missings include spatial and temporal continuous missing data which 

are located continuously in time and space. The robustness of the 

models according to level-of-congestion is discussed in Figure 4.1. 

The mean and standard deviation of the daily traffic speed are proxy 

measures for the level-of-congestion on that day (i.e., the number of 

congestion occurrences, durations of the occurrences, and changes in 
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traffic speed due to the congestion). The lower mean of daily traffic 

speed and higher standard deviation of daily traffic speed indicate 

higher level-of-congestion. As we identified a linear inverse 

relationship between the mean and the standard deviation of daily 

traffic speed in the study site (See Figure 2.4), a low mean of daily 

traffic speed can represent the high level-of-congestion itself. Figure 

4.1(a) shows examples of spatio-temporal traffic speed images by the 

mean of daily traffic speed. The red-colored areas indicating the 

congested traffic state occur more at the lower mean of daily traffic 

speed. Figure 4.1(b) shows the RMSE distribution of five models by 

the mean of daily traffic speed. 

  MI-DC GAIN showed the best performance compared to the 

four benchmark models, followed by SI-DC GAIN, moving-average, 

TASM, and MI-FC GAIN. The GAIN-based models showed robust 

performance in general against the missing rate, while TASM and MA 

showed a slightly lower performance as the missing rate increased. 

This result indicates the capability of GAIN that learn the distribution 

of the data rather than the expected value of the data, allowing the 

model to deal with multiple and continuous missing data by capturing 

the uncertainty of the imputed values (Yoon et al. 2018).   
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Table 4.1 Comparison of Imputation Performance between the Models 

 

RMSE 

(km/h) 
MI-DC GAIN SI-DC GAIN MI-FC GAIN 

Missing 

rate 
mean min s.d mean min s.d mean min s.d 

5% 2.42 0.71 0.54 2.94 0.98 0.67 11.83 4.47 2.09 

10% 2.36 0.75 0.50 2.95 1.06 0.65 11.26 4.24 2.03 

20% 2.32 0.74 0.50 3.00 1.01 0.62 10.40 3.73 2.03 

30% 2.35 0.75 0.56 3.00 0.96 0.64 10.36 3.88 2.02 

Overall 2.35 0.71 0.52 2.97 0.96 0.64 10.96 3.73 2.12 

 

RMSE 

(km/h) 
TASM MA 

Missing rate mean min s.d. mean min s.d. 

5% 8.51 3.64 2.67 5.05 1.36 1.73 

10% 8.53 3.39 2.40 5.08 1.26 1.77 

20% 8.77 4.17 2.42 5.52 1.68 1.73 

30% 8.96 4.21 2.45 5.70 1.42 1.54 

Overall 8.69 3.39 2.46 5.32 1.26 1.72 

Note: s.d. means standard deviation.  
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Figure 4.1 (a) spatio-temporal images according to the mean of daily 

travel speed; (b) The imputation performance of models according to 

the mean of daily travel speed 

 

4.2. Discussions 
 

4.2.1. Advantages of Multi-Input (MI-DC GAIN vs. SI-DC GAIN) 
 

In this application, we aim to evaluate the contribution of traffic images 

reconstructed by TASM to missing data imputation. Although MI-DC 

GAIN and SI-DC GAIN showed consistent performance regardless of 

the level-of-congestion (Figure 4.1), MI-DC GAIN had better overall 

performance than SI-DC GAIN. Although the SI-DC GAIN was well-

performed, it has been confirmed that the multi-input approach using 

a reconstructed image can further improve the imputation performance. 

In other words, the reconstructed image representing different aspects 

of the data can contribute to identifying the distribution of target data. 

Therefore, beyond the scope of this study, the other data sources such 

as floating car and automatic vehicle identification could also be used 

as multi-input to enhance the proposed method. 
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Figure 4.2 The imputation performance of models according to the 

mean of daily travel speed: MI-DC GAIN and SI-DC GAIN 

 

4.2.2. Advantages of CNN (MI-DC GAIN vs. MI-FC GAIN) 
 

According to Table 4.1 and Figure 4.1, GAIN with CNN structure 

showed much better imputation performance than that with FCN, and 

the performance difference was even more prominent when the level-

of-congestion is higher. This result suggests that the CNN aid in 

identifying spatio-temporal dependency represented in traffic speed 

images, which is more pronounced in the congested traffic state. In 

other words, FCN failed to consider the locality of spatiotemporal data 

since it flattens an image to a one-dimensional array (Chen et al. 2017, 

Shamsolmoali et al. 2018, Shabbeer Basha et al. 2020). As RMSE of 

MI-FC GAIN is 4.66 times larger than that of MI-DC GAIN, it is 

apparent that considering the spatio-temporal correlation is very 

important in traffic information imputation. 
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Figure 4.3 The imputation performance of models according to the 

mean of daily travel speed: MI-DC GAIN and MI-FC GAIN 

 

4.2.3. Advantages of the Deep-learning Model (MI-DC GAIN vs. 

TASM and MA) 
 

As mentioned in the Introduction, imputation methods can 

categorize into three different methods, i.e., the prediction, 

interpolation, and statistical learning methods. According to the results, 

the performance of MI-DC GAIN was better than the two baseline 

methods: TASM and MA. According to Figure 4.1, TASM and MA 

showed a high variation of RMSE by the mean of daily traffic speed. It 

may indicate that those imputation methods, which only consider 

general traffic patterns or temporal continuity, cannot respond well to 

highly congested traffic that has prominent uncertainty. Therefore, 

these two methods have less robustness on level-of-congestion. 

MA is a simple interpolation method commonly used with time-series 

data to capture short-term transitions. It imputes missing data by 

calculating the average of temporal nearest values. MA is a very 
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simple method to impute missing values, but it is sometimes more 

effective for missing data imputation than complex methods when the 

temporal continuity is critical. The imputation results showed that MA 

was better than TASM in our case (i.e., imputing random continuous 

missings). Although MA performed quite well in general, the large 

variation depending on the test data suggests that it is sensitive to the 

traffic dynamics of each detector data and the distribution of random 

missings. 

 

Figure 4.4 The imputation performance of models according to the 

mean of daily travel speed: MI-DC GAIN, TASM, and MA 

 

TASM imputes traffic information considering spatio-temporal 

correlations. TASM is an effective imputation method in revealing 

propagation patterns, and its robustness has been proven irrespective 

of parameter changes in freeways (Treiber et al. 2011). However, 

depending on the traffic situation, the performance of this method has 

been found to be highly sensitive. As a result of imputing partially-

missed loop detector data, TASM was found to be less accurate and 
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less robust than MI-DC GAIN. TASM uses the calibrated parameter 

that expresses the general propagation property }89&:  and };<== . 

However, compared with freeways, traffic speed in urban expressway 

is more complicated due to intrinsic uncertainty associated with short-

distance on-/off-ramps and frequent merging and diverging (4). 

Therefore, the TASM's parameters representing the propagation of 

traffic state would not be perfectly suitable for every traffic condition 

in the urban expressway (Chen et al. 2019).  

The accuracy and robustness of TASM is disrupted in two 

situations, i.e., 1) when congestion occurs often and 2) when the 

transition occurs often. The results of high imputation errors imply 

that TASM could be a good reconstruction method but not that good 

imputation method. The more frequent the occurrence and dissipation 

of congestion, the greater the probability that the distributed traffic 

information will be uncertain, so there is a limit to generating missing 

traffic information using a parametric approach like TASM. Figure 4.5 

shows a comparison of the traffic speed of ground-truth, TASM, and 

MI-DC GAIN. Several types of errors that are harder to be correctly 

imputed by TASM than by MI-DC GAIN are observed in this partial 

speed contour, as shown in Figure 4.5(c). The gray boxes on upstream 

show that TASM cannot capture the onset of traffic congestion, and 

the boxes on the midstream and downstream show that the failure to 

capture the dissipation of congestion. In addition, since the 

propagation property of traffic state set by TASM does not exactly fit 

those of the study site, the high speed of the downstream excessively 

influence the imputed speed of TASM in the midstream, causing higher 

imputed speed than the ground-truth speed. Likewise, the missing part 

of the downstream is excessively affected by the low speed of the 

midstream. Compared to TASM, MI-DC GAIN well performed for the 

missings occurred in transition and congested states as shown in 

Figure 4.5(d).  
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Figure 4.5 Comparison with an example of speed contour: (a) 

Missing; (b) Ground-truth; (c) TASM; (d) MI-DC GAIN 

 

 

Chapter 5. Conclusion 
 

In this study, we proposed an MI-DC GAIN for missing data 

imputation of traffic speed collected from the loop detector equipped 

in the Seoul outer circular expressway. To overcome the limitations 

reported in previous studies (i.e., prior assumptions for data 

distribution, low performance capturing spatio-temporal correlation, 

not well addressing transition of traffic state, and non-convergence of 

training), we used deep learning, convolutional neural network, 

generative modeling, and multi-input structure, respectively. Random 

missings, including spatial and temporal continuous missings, were 

generated from the data in various traffic conditions. By evaluating the 

performances, we found that the proposed MI-DC GAIN outperformed 

the benchmark models such as SI-DC GAIN, MI-FC GAIN, TASM, and 

upstream

downstream

midstream

MI-DC GAINTASM

(d)(c)

Missing Ground-truth

(a) (b)

upstream

downstream

midstream
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MA in terms of accuracy and robustness. The findings from the 

experiments are summarized as follows: 1) Learning traffic images by 

applying convolutional network to GAIN can improve the accuracy and 

robustness of missing data imputation even in congested and transition 

traffic states; 2) the multi-input structure with the reconstructed 

images can lead to further improvement of DC GAIN. 

 

Despite the promising results obtained from this study, there 

are still several ways the study can be improved. First, considering 

that the missings of the loop detector and other sensors sometimes 

does not occur randomly, the performance for those non-random 

missings should be validated. Second, although we applied the multi-

input structure to reconstructed images, it can be used for the other 

sources of data such as GPS trajectory data from probe car and travel 

time data from automatic vehicle identification. Since the proposed 

method uses the traffic speed images on the time-space diagram as 

input, it is easy to unify these multi-source data into a single image 

format. Third, predicting traffic speed on urban roads including signal 

intersections is a valuable task in traffic management, but challenging 

subject due to its uncertainty stemming from traffic signals, geometric 

conditions, and other exogenous factors (Kim et al. 2019a). Therefore, 

it is necessary to ensure that the outstanding performance of the MI-

DC GAIN in urban freeway is also valid in those urban roads. Lastly, a 

breakthrough could result from high-resolution data since the spatial 

and temporal data aggregation blur the significant features of the 

traffic dynamics. The microscopic traffic data generated from 

connected vehicles in the future are promising candidates for those 

data.    
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Abstract 

 

 신뢰성 있는 교통정보를 제공하기 위한 전제는 데이터의 완전무결성이

다. 하지만 교통 정보 수집 시스템은 오류로부터 자유롭지 않기 때문에 

결측이 필연적으로 발생한다. 최근에는 교통정보의 결측을 대체하기 위

한 방법론으로 데이터의 내재적 특징과 상호작용을 포착할 수 있는 딥러

닝 접근법이 활용되고 있다. 교통정보 결측의 핵심은 시공간적 상관성을 

고려하는 것인데, 이는 통행속도를 시공도의 2차원 형태로 표현한 이미

지를 활용함으로써 고려할 수 있다. 이 연구에서는 변형된 생성적 적대

신경망을 활용하여 지점검지기로부터 수집되는 도시부 고속도로의 통행

속도 결측을 대체한다. 제안된 방법론은 신경망 구조에서 교통정보의 시

공간적 패턴을 통행속도 이미지의 형태로 고려하기 위해 합성곱 신경망

을 차용한다. 또한 학습을 용이하게 하기 위해 교통류 적합 스무딩 기법

으로 교통정보를 재구축한 이미지를 멀티 입력자료로 활용한다. 합성곱 

신경망 구조와 멀티 입력자료의 활용을 통해 생성적 적대 신경망의 통행

속도 이미지 학습 성능을 향상시킬 수 있다. 

 

주요어: 교통 데이터 결측대체, 생성적 적대 신경망, 합성곱신경망, 교통

류적합 스무딩 기법, 시공간적 상관성 

학번: 2019-21695 
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