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Abstract

Data that are complete and accurate are the most important premises of
providing reliable traffic information because they are required by most
statistical analyses. However, the problem of missing data is unavoidable
since the data collection system is not free of errors. Recently, deep learning
approaches, which are capable of capturing the inherent features and
interactions in the data, have been proposed to deal with the problem of
missing data. Spatio—temporal dependencies are key for the imputation of
traffic data, and color—coded traffic speed images in time-space diagrams can
represent them. In this paper, we propose a multi—-input deep-convolutional
generative adversarial imputation network (MI-DC GAIN) to impute the
network—-wide traffic speed on an urban expressway in the form of speed
images. The proposed method uses a convolutional neural network (CNN) to
deal with spatio—temporal patterns in the speed images and GAIN to focus on
the data imputation. To facilitate the training DC-GAIN, speed images
reconstructed by the traffic adaptive smoothing method (TASM) were used in
the multi-input structure as additional information. Findings from the
experiment showed that applying CNN to the structure of GAIN can enhance
the model capability of learning traffic speed images, which are enhanced
further by the multi—-input structure with the additional reconstructed speed
images. The MI-DC GAIN achieved much better performance than benchmark
models in terms of accuracy and robustness to the level-of-congestion and
the missing rate.

Keyword : Traffic Data Imputation, Generative Adversarial Network,
Deep Convolutional Network, Adaptive Smoothing Method, Spatio-
temporal Dependency
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Chapter 1. Introduction

Providing information on traffic state is the most important task in
the application of many traffic management approaches, such as
vehicle routing and travel time prediction. Such applications are
particularly important in congested traffic conditions, which are
induced by recurrent bottlenecks or traffic incidents. The benefits of
traffic information are determined by its completeness and its
accuracy (Li et al. 2013). However, missing data are practically
unavoidable due to failures in communication or the malfunctions of
detectors. Since most of the methods that provide traffic information
require complete datasets, the missing data should be considered first.

Several methods for imputing data have been proposed to deal
with the problem of missing information, and these methods include
prediction, interpolation, and statistical learning (Li et al. 2014). The
prediction methods impute the missing values by modeling the
historical pattern of the data collected from target sites, and the
methods that are used extensively in this approach are the support
vector machine (Wu et al. 2004, Kim et al. 2019a) and the k—nearest
neighbors (Myung et al. 2011). However, these approaches have
difficulty dealing with continuous missing values or transitions in the
traffic state since they fail to capture the spatial correlation of the data.
The interpolation methods found the optimal imputation value based
on the traffic information of spatiotemporal neighborhoods or the
similarity of patterns in the historical data (Treiber et al. 2011, Yin et
al. 2012). Such approaches depend on the assumption of a repetitive
traffic pattern at the target sites, but sometimes non-recurrent
patterns occur in practice (Li et al. 2013). Statistical learning methods
take advantage of the statistical characteristics of traffic flow to
capture its meaningful wvariations based on assumed probability
distribution (Li et al. 2013, Bae et al. 2018). However, such
assumptions sometimes fail when dealing with real data, and they do
not work well in most cases of missing data (Huang et al. 2020)

Recently, deep learning methods that achieve great success in



various fields of transportation research (Kim et al. 2019b, Polson and
Sokolov 2017, Liang et al. 2018) have been proposed to deal with the
traffic data imputation problem. The deep learning method efficiently
represents the inherent features and interactions in the data (Duan et
al. 2016). Therefore, complex spatial and temporal information
collected from multiple data points can be considered in the structure
of the model without the statistical assumptions or the domain
knowledge of the researcher (Duan et al. 2016, Asadi et al. 2019).
Deep learning methods outperform the conventional prediction method,
and the improvement in performance was achieved by the advanced
structure of the model, e.g., convolutional neural networks (CNNs) and
long short—-term memory (LSTM) (Liang et al. 2018, Duan et al. 2016,
Asadi et al. 2019).

The generative adversarial network (GAN) is a generative deep—
learning method that learns the conditional probability distribution of
the input and output data and generates data that have the
approximated distribution of the training data (Goodfellow et al. 2014).
Modeling the conditional probability distribution, rather than predicting
the expected value with given inputs, allows the user to address abrupt
changes caused by spatio—temporal attributes in the congested traffic,
such as phase transition, and oscillation marking deceleration and
acceleration. However, learning the conditional distribution rather than
predicting the expected value is considered to be a much more difficult
task in deep learning. Specifically, GAN has a non—-convergence issue
since it is trained by finding an equilibrium of two competing networks
at the same time rather than by finding a minimum of the loss function
(Goodfellow et al. 2014). Although several advanced processes for
training GAN have been proposed (Arjovsky et al. 2017, Chen et al.
2016), heuristics empirically demonstrated by domain knowledge
worked well in practice (Salimans et al. 2016). In the transportation
research field, previous studies have reported the use of GAN models
to predict traffic flow (Liang et al. 2018, Lv et al. 2018, Lin et al. 2018)
and to impute missing traffic data (Huang et al. 2020, Chen et al. 2016).
Lv et al. introduced the potential of GAN for traffic data generation by

learning conditional probability distribution (Lv et al. 2018). _Liar;g et
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al. proposed GAN to predict traffic flow, which consisted of two
modifications, i.e., LSTM and the custom loss function based on the
relation of traffic flow and density (Liang et al. 2018). Huang et al.
proposed time-dependent encoding to represent the time dependency
of the traffic data as images, and those images are trained using CNN
(Huang et al. 2020). The above studies showed strong promise of GAN
in modeling traffic flow, and the models that tailored to the problem of
traffic data outperformed the conventional prediction model and the
original GAN with a fully connected network (FCN).

In this study, we propose a multi-input deep convolutional
generative adversarial imputation network (MI-DC GAIN) that focuses
on the imputation of missing spatio—temporal traffic data. We use the
image-based approach that allows a structure of deep learning model
to automatically recognize spatio—temporal patterns represented in the
images (Ma et al. 2017, Jo et al. 2018). The images of speed contour
in the urban expressway that represent spatio—temporal patterns of
traffic state are used as the input and output data of the model, and
those traffic speed images are trained using a convolutional structure.
To facilitate the training of the model, we used the speed contour
reconstructed by the traffic adaptive smoothing method (TASM)
(Treiber et al. 2011) as an additional input (i.e., multi-input). The
performance of the proposed model was evaluated based on different
missing rates and the level of congestion. The key contributions of this
study are as follows:

An image-based approach using GAIN and CNN were applied to

traffic data imputation, which requires capturing the spatio-

temporal patterns of traffic data.

Multi—-input structures that use traffic speed images reconstructed

by TASM were proposed to enhance the applicability of DC GAIN

to the traffic data.

MI-DC GAIN achieved a much higher and robust performance for

all cases of the missing data ratio and level of congestion than the

benchmark models, including temporal moving average, TASM,
single-input deep-convolutional GAIN (SI-DC GAIN), and multi—

input fully-connected GAIN (MI-FC GAIN). .
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The rest of this paper is organized as follows. First, we describe
the study site and the MI-DC GAIN and the TASM in detail. Then, we
discuss the specific implementation of the model and provide the
experimental results to validate the proposed method. Last,

conclusions and potential future research are presented.

Chapter 2. Study Site and Data

2.1. Study Site

The loop detector data are collected by the inductive double—-loop
detectors, which are commonly used to allow for direct speed
measurements (Kessler et al. 2018). This research focuses on the
detectors located in the urban expressway of the Seoul metropolitan
area in Korea. The study site is a 9.36 km section from Pangyo JC to
Songpa IC in the counterclockwise direction in the Seoul Outer Circular

Expressway (Figure 2.1).

y

. Songpa.lC
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. T X/ A ) Seongnam TG

( Seongnam IC
o

N

<O pPiigyo JC }
Figure 2.1 The study site from Pangyo JC to Songpa IC on the

Seoul Outer Circular Expressway



2.2. Data Descriptions

From Pangyo JC to Songpa IC, there are nine loop detectors with
kilometer posts of 1.6, 2.5, 3.5, 4.3, 5.5, 6.5, 7.2, 8.0, and 9.0,
respectively. The average distance between the loop detectors is
0.925 km, with a standard deviation of 0.148 km. We used 5-minute
aggregated traffic speed data collected from the loop detectors for 245
days, i.e., from March 2019 through October 2019. The speed limit on
this route is 100 km/h, and the average traffic speed and standard
deviation of the traffic speed for each detector are shown in Table 2.1.
The low average speed of the detectors at the 3.5 and 5.5 kilometer

posts suggest the occurrences of recurrent traffic congestion.

Table 2.1 Descriptive statistics of traffic speed data at the study site

Seongnam IC ~
Pangyo JC ~ Seongnam IC
Seongnam TG
Kilometer Post of
1.6 2.5 3.5 4.3
Detector
Average Speed (km/h) 84.5 85.8 81.2 96.9
Standard Deviation of
17.9 19.4 19.2 15.1
Average Speed (km/h)
Seongnam TG ~ Songpa IC
Kilometer Post of
5.5 6.5 7.2 8.0 9.0
Detector
Average Speed (km/h) 76.5 86.5 83.6 94.8 84.2
Standard Deviation of
14.7 17.0 20.1 19.9 18.4
Average Speed (km/h)

Figure 2.2 shows the average speed measured in each detector
over time with the kilometer post. The average traffic speed shows
that the peak traffic hours in the study site were approximately 11 A.M.
and 5 P.M., and those patterns commonly were observed at all of the

detectors.
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Figure 2.2 Average speed recorded by each detector over time

Figure 2.3(a) shows an example of the image of speed contour on
the time—space diagram. Each pixel of the images expresses the traffic
speed, 1.e., the lower the speed, the redder the color, and the higher
the speed, the bluer the color. Figure 2.3(b) shows an image that
transformed Figure 2.3(a) into an image matrix that was used as input
data for training the models. This traffic speed image naturally
represents the spatio—temporal correlations (e.g., propagation of
traffic congestion) of the daily traffic. The dimensions of the input
image matrix were 75 x 108, of which the section length of 7.5 km was
divided into 0.1-km units (i.e., from the 1.6 kilometer post to the 9.0
kilometer post). The 9 hours of data, which were from 10:00 A.M. to
7:00 P.M., were divided into 5—minute intervals. To represent the
discrete loop detector data at the 9 locations as a filled image, we
defined "influence areas" as those areas that are bounded by the
midpoints between nearby detectors (Zheng et al. 2010) based on the
assumption that the traffic state within the influence area remains the
same. This assumption can be reasonable since the purpose of this
study is to impute the missing data in certain locations where detectors

are equipped.
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Figure 2.3 Speed images: (a) spatio—temporal image of traffic speed
in the time-space diagram; (b) transformed speed images which are

input for the training model

There is no consistent method to measure the level-of-congestion
of daily traffic speed. Several studies have identified that the traffic
congestion exists where the duration time of speed under the
threshold is sufficiently long (Kim et al. 2019a, Lorenz and Elefteriadou
2001, Kim et al. 2010). Based on that concept, we measured the level-
of-congestion using the mean and standard deviation of daily speed.
Figure 4 shows the scatter plot of the mean and standard deviation of
the daily traffic speed obtained from 9 detectors in the study site. The
mean and standard deviation of the traffic speed were calculated using
the speed of all the vehicles that passed through the target section
during a single day (i.e., the speed value of the image matrix
constructed with the nine detectors as shown in Figure 2.3(a)). The
detector data showed that there was a tendency of inverse linear
relationship between the mean and the standard deviation of daily
traffic speed (Figure 2.4). We defined high level-of-congestion as
being related to the lower the mean of daily traffic speed and the

greater standard deviation of daily traffic speed.
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Figure 2.4 Distribution of the mean and standard deviation of the

daily speed at the study site

Chapter 3. Methods

3.1. Generative Adversarial Imputation Network (GAIN)

The structure of GAIN has the same basic architecture as the
widely—known GAN, which consisted of two neural networks, i.e., a
generator and a discriminator (Yoon et al. 2018). The generator aims
to generate realistic samples so that the discriminator classifies those
generated samples as a real sample. In contrast, the discriminator has
the adversarial role of distinguishing the real samples from the
generated samples. That adversarial competition converges to an
equilibrium where the discriminator cannot distinguish between the
generated samples and the real data. In other words, at equilibrium,
the generator can approximate the distribution of the training data
(Goodfellow et al. 2014, Lin et al. 2018). The global optimality of the
training process in equilibrium was proven by Goodfellow et al.

The main difference between GAN and GAIN in the structure of
the model is the existence of the mask vector and the hint vector as
inputs for the generator and the discriminator each. The mask vector,
M= (M,,..,M;), takes a value in {0,1}¢ that indicates whether the

-
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components of the data vector, X = (Xy, ..., X;), are missed or observed.

In the problem setup purposed at imputation, the input data are
formulated as follows. A random variable, X=(X;,,X;) €%, is
defined in a d —dimensional space y=y; X:-Xy,;. For each i€
{1,..,d}, X; has the value of X; where the value of M; is 1, otherwise
NaN. If the copy of X is denoted as &1, ¥2, ..., ", the goal of the GAIN
is to impute the missing value in each %' by estimating the conditional
distribution of X given X = %!. A random variable, H, takes a value
that depends on M in a space H, and it is used as an additional input
to the discriminator, called the hint vector (Yoon et al. 2018). The hint
vector provides the discriminator some partial information about the
probability that the vector components were observed (i.e., the vector
components were missing). Let H ={0,0.5,1}¢ and given M, hint
vector is defined as H=B @M+ 0.5(1 —-B) where the random
variable B = (By,..,By) € {0,1}¢ is defined by sampling k from
{1,..,d} uniformly at random in each batch and B; is 1 if j#k,
otherwise 0. An appropriate proportion of hints can make the
discriminator reasonably smart, thereby making the generator and the
discriminator learn effectively (Yoon et al. 2018).

The input process of the generator is described in Equation 1 and
Equation 2. The Generator, G: ¥ x {0,1}¢ x [0,1]¢ - y, emits output of
imputed vector, X, with the input taking with X, M, and Z. The random
noise variable, Z = (Z4,...,Z4), is independent of all other variables.

The imputed vector X is used to make the completed data vector X.

X=6XM(1-M)OZ) (3.1)
X=MOX+(1-MeX (3.2)

where @ is an element—-wise multiplication.

Another structural difference between GAN and GAIN is the
dimension of the discriminator's output. Whereas GAN's discriminator
classifies whether the data vector is the real vector or the generated
vector, GAIN's discriminator classifies whether each component of the

data vector is a real value or an imputed value. The discriminator, D,
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takes both the completed data vector X and the hint matrix H as input.
The discriminator, D, emits estimated mask matrix, M = D(X,H), as
output in which every component of the matrix is the probability that
the value is observed. When the discriminator is a function of D : y —
[0,1]¢ with the i—th component of D(®) is the probability that the ith
component of ¥ is observed.

The two fully-connected neural networks (or the other structure
such as CNN), D and G, are trained by optimizing the following minimax
problem for the quantity V(D,G) in Equation 3. The D is trained to
maximize the probability of correctly predicting M, while the G is
trained to minimize the probability of D correctly predicting M (Yoon
et al. 2018). The objective function of the problem can be expressed
in Equation 4 and Equation 5, according to the goals of the generator
and the discriminator, respectively. As G is trained to minimize the
weighted sum of the losses, the generator loss is affected significantly
by the value of the hyperparameter, a. D and G are updated iteratively

by the stochastic gradient descent method by incorporating each other.

minmaxV (D, G) = Egyp [MTlogD(X,H) + (1 —MDlog (1 - D(X, H)]  (3.3)

min —[$72, Ly (m(), @(), b())] (3.4)
min [27%, Le(m(), (), b()) + alu XD, R())]
Lp(m,m, b) =¥, o[m; log(®;) + (1 —m;) log(1 — ;)] (3.5)

LG (ml lfll b) = - Zi:biZO(l - mi) 10g(1 - ml)

Ly(XX) = Z?ﬂ m; (%, — 971)2

where log is an element—-wise logarithm; kp and k; are the sizes
of mini—batch of discriminator and generator; X;, X;, b;, m; and m;
are i—th sample of the corresponding X,X,B,M, and M; m(j),b(j) and
x(j) are j—-th sample of the mini-batch. Lp : {0,1}¢ x [0,1]¢ x {0,1}¢ —
Ris the loss function of the discriminator, Lg:{0,1}¢ x [0,1]¢ x {0,1}¢ —
R is the loss function of the generator, and Ly : R x R* - R is the
loss function of the mask vector. More details about the theoretical
background of GAIN are discussed in Yoon et al. (Yoon et al. 2O1.8)'

% = i
10 AME-TH



3.2. Traffic Adaptive Smoothing Method (TASM)

The adaptive smoothing method (ASM) is an interpolation
method that applies the nonlinear spatio—temporal low-pass filter to
the data (Treiber et al. 2011). Treiber et al. proposed the traffic—
specific ASM (TASM) that considers the propagation patterns of the
traffic flow according to the traffic state (i.e., congested state and
free—flow state) (Treiber et al. 2011). The parameters for TASM are
determined based on the general attributes of traffic flow propagation,
such as propagation speed and critical speed dividing congested and
free-flow state. TASM can filter out random fluctuations by
considering the spatio—temporal characteristics of the traffic pattern.

The nonlinear filter transforms the discrete input detector
speed data, v;, into smooth spatio—temporal functions V(x,t). The
filter 1s expressed in Equation 3.6 as the weighted sum of the
congested state function Veong(x,t) and the free-flow state function
Veree(x,t). Each function is defined as the sum of the multiplications of
the smoothing kernel ¢(x,t) and discrete speed data v; divided by
normalization factor N(x,t) (Equation 3.8 and Equation 3.10). The
smoothing kernel ¢(x,t) is a localized function that decreases when
the distance between the points increases (Equation 3.7). The
normalization factor N(x,t) is defined as the sum of the smoothing
kernels ¢(x,t) (Equation 3.9 and Equation 3.11).

V(x,6) = W, t)  Veong(x,£) + [1 = WX, )] * Veree (%, 1) (3.6)
¢(x,t) = exp (—Ii—l—lfﬂ) (3.7
1 X—Xi
Vcong (x: t) = m 1 ¢ ( —x;,t tj - Cwﬂg) v; (38)
Ncong (X, t) = 1 ()b ( xu t] - :_Xi> (39)
cong
1 X—Xj
Viree (6,6 = 5= Wiy @ (x =it = = 22 ), (3.10)
Nfree(x' t) = 1¢< —x;,t tj - :f_xl> (3.11)
W(x,t) = [1 + tanh< mm(v“’"“’gt) Viree t))>] (3.12)

11 "':l"\-_s _'\-I:-'_]'I:



where o 1s a unit range of spatial smoothing, and 7 is a unit range of
temporal smoothing, which is recommended to use half the value of
the aggregation interval; ccong is a propagation speed of perturbations
in congested traffic; cfr 1S a propagation speed of perturbations in
free traffic; V, is crossover speed from free to congested traffic; AV
1s the width of the transition region. Based on the observation and
recommended values in Treiber et al., this study set ccong, Crreer Ve
and AV as — 15km/h, 80km/h, 60km/h, and 20km/h, respectively
(Treiber et al. 2011).

Figure 3.1 shows an example of traffic speed images reconstructed by
TASM. Figure 3.1(a) shows the loop detector data without filling the
influence areas, and Figure 3.1(b) is the 75 x 108 image that
reconstructed Figure 3.1(a) with TASM. More details about TASM are
discussed in Treiber et al. (Treiber et al. 2011).

12 A “._, ‘_]l
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Figure 3.1 Speed images: (a) Traffic speed data collected from 9 loop
detectors; (b) traffic speed image reconstructed by TASM
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3.3. Multi—input GAIN

In machine learning, multiple inputs from different aspects
often are used to improve learning performance, and those also can be
used to improve the imputation performance of GAIN. The appropriate
combination of data to process multi—-input will determine whether the
performance improves or not. Providing data which are completely
irrelevant to each other as multi—input would only confuse a model to
be learned. Based on the original GAIN architecture, a multi-input
approach is applied to use the data from different aspects. Figure 3.2
shows the full model of the architecture. The input to the network
consists of two different aspects, 1.e., the loop detector data filled with
influence areas and the data reconstructed by TASM. The logic behind

this design is to train GAIN more efficiently with the aid of imputation

results of TASM that consider general spatio—temporal traffic patterns.

3.4. Deep Convolutional GAIN

The original GAIN structure consists only of fully—connected
layers. The original generator and discriminator pass through two
hidden layers in a fully-connected form. As a fully—connected neural
network cannot exploit local connectivity of the input data, we should
introduce CNN to impute data taking into consideration spatio—
temporal correlation in the data. CNN is effective for handling image
format of which adjacent pixels of the input are correlated to each
other (Jarrett et al. 2009). We followed the DCGAN architecture
(Radford et al. 2015) for the convolutional generator and discriminator
of GAIN. Pooling layers are replaced with strided convolutions in the
discriminator and fractional-strided convolutions in the generator.
Batch normalizations are used in both the generator and the
discriminator after the convolutional layers. In the generator, all layers
except the output layer used the RelU activation function, and the
output layer used the Tanh function. LeakyReLLU was used in all layers

in the activation function of the discriminator.

1 4 "':l"\-_s _'\-\.::-'_.I.
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3.5. MI-DC GAIN Framework

This section specifies the architecture of the proposed model
using convolutional layers and multi-input. 1) The loop detector data,
2) its mask matrix, and 3) the reconstructed data with TASM were set
to the identical dimensions of 75 x 108. These data were normalized
with min—max normalization and then concatenated as the multi-input
of the generator. The input was stretched to a fully—connected layer
and passed through the ReLU activation function and batch
normalization. After it had passed through another fully—connected
layer with ReLU and batch normalization, then the reshaped input goes
through the transposed convolutional layer and the max-pooling
process. The final layer also is a transposed convolutional layer that
uses the Tanh activation function. The generator finally emits the
imputed matrix. Receiving the imputed matrix as an input of
discriminator, the hint matrix and reconstructed data with TASM also
are used as multi—inputs to the discriminator. The concatenated multi—
input follows the convolutional layer and the max-pooling process
twice each. After the last max pooling, the reshaped input is flattened
to a fully—connected layer and reformed as an estimated mask matrix
with dimensions of 75 x 108. The activation functions of all layers are
set as leaky ReLU. Figure 3.3 shows the overall process explained
above.

After the series of experiments to specify the model
framework was completed, the hint rate was set as 40%, the training
rate was set as 90%, the hyper—parameter, @, was set as 500, and the
size of the mini—batch was set as 200. During the iterations, the model
calculates the training loss and the test loss. The training loss is
computed as an error between the generated values and the observed
values, and the test loss is computed as an error between the imputed
values and the missing values. The final objective of this model is to
minimize the test loss that indicates the imputation performance for

missing data.

16 "':l"\-_s _'k.::-'_ T
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(b) Discriminator
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Figure 3.3 The proposed MIDC-GAIN framework: (a) Generator; (b)
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Chapter 4. Results of Application and
Discussion

4.1. Imputation Performance Comparison

The imputation performance of the proposed MI-DC GAIN was
compared with those of the four benchmark models. First, single-input
DC GAIN (SI-DC GAIN) was constructed to evaluate whether multi-
input approach can improve the imputation performance of DC GAIN.
Second, we constructed another multi-input GAIN with only fully—
connected layers (MI-FC GAIN) to evaluate the contribution of
considering local connectivity to the performance of MI-DC GAIN.
Third, we also compared MI-DC GAIN to a baseline model that imputes
missing data by interpolating via a spatio—temporal nonlinear low—pass
filter, i1.e., TASM. Fourth, another baseline interpolation method,
moving—average (MA) considering temporal continuity, is applied to
impute missing data. The imputation performance was evaluated by
the root mean squared error (RMSE), given by the following Equation
4.1.

Mmiss =2
Yilq > (x=%)

RMSE = (4.1)

Nmiss

where x 1s the observed traffic speed data, ¥ is the imputed traffic
speed data, and n,,;ss 1S the number of missing components.

Table 4.1 shows the RMSE statistics of each model by the missing rate.
We randomly generated missings with a ratio of 5%, 10%, 20%, and
30% on ground-truth data and evaluated imputation performance. The
missings include spatial and temporal continuous missing data which
are located continuously in time and space. The robustness of the
models according to level-of-congestion is discussed in Figure 4.1.
The mean and standard deviation of the daily traffic speed are proxy
measures for the level-of-congestion on that day (i.e., the number of

congestion occurrences, durations of the occurrences, and changes in
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traffic speed due to the congestion). The lower mean of daily traffic
speed and higher standard deviation of daily traffic speed indicate
higher level-of-congestion. As we identified a linear inverse
relationship between the mean and the standard deviation of daily
traffic speed in the study site (See Figure 2.4), a low mean of daily
traffic speed can represent the high level-of-congestion itself. Figure
4.1(a) shows examples of spatio—temporal traffic speed images by the
mean of daily traffic speed. The red-colored areas indicating the
congested traffic state occur more at the lower mean of daily traffic
speed. Figure 4.1(b) shows the RMSE distribution of five models by
the mean of daily traffic speed.

MI-DC GAIN showed the best performance compared to the
four benchmark models, followed by SI-DC GAIN, moving—average,
TASM, and MI-FC GAIN. The GAIN-based models showed robust
performance in general against the missing rate, while TASM and MA
showed a slightly lower performance as the missing rate increased.
This result indicates the capability of GAIN that learn the distribution
of the data rather than the expected value of the data, allowing the
model to deal with multiple and continuous missing data by capturing

the uncertainty of the imputed values (Yoon et al. 2018).
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Table 4.1 Comparison of Imputation Performance between the Models

RMSE

MI-DC GAIN SI-DC GAIN MI-FC GAIN
(km/h)
Missing ) ) )

mean |min |s.d |mean |min |s.d |mean |min |s.d
rate
5% 2.42 10.71 |10.54 [2.94 10.98 [0.67 |11.83 [4.47 |2.09

10% 2.36 |0.75 10.50 |2.95 |1.06 [0.65 |11.26 |4.24 |2.03
20% 2.32 |0.74 10.50 |3.00 |1.01 [0.62 |10.40 |3.73 |2.03
30% 2.35 |0.75 10.56 |3.00 [0.96 [0.64 |10.36 |3.88 |2.02
Overall |2.35 |0.71 [0.52 |2.97 ]0.96 |0.64 |10.96 |3.73 |2.12

RMSE

(km/h) TASM VA

Missing rate |mean min s.d. mean min s.d.
5% 8.51 3.64 2.67 5.05 1.36 1.73
10% 8.53 3.39 2.40 5.08 1.26 1.77
20% 8.77 4.17 2.42 5.52 1.68 1.73
30% 8.96 4.21 2.45 5.70 1.42 1.54
Overall 8.69 3.39 2.46 5.32 1.26 1.72

Note: s.d. means standard deviation.
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Figure 4.1 (a) spatio—temporal images according to the mean of daily
travel speed; (b) The imputation performance of models according to

the mean of daily travel speed

4.2. Discussions

4.2.1. Advantages of Multi-Input (MI-DC GAIN vs. SI-DC GAIN)

In this application, we aim to evaluate the contribution of traffic images
reconstructed by TASM to missing data imputation. Although MI-DC
GAIN and SI-DC GAIN showed consistent performance regardless of
the level-of-congestion (Figure 4.1), MI-DC GAIN had better overall
performance than SI-DC GAIN. Although the SI-DC GAIN was well-

performed, it has been confirmed that the multi—input approach using

areconstructed image can further improve the imputation performance.

In other words, the reconstructed image representing different aspects
of the data can contribute to identifying the distribution of target data.
Therefore, beyond the scope of this study, the other data sources such
as floating car and automatic vehicle identification could also be used

as multi—input to enhance the proposed method.
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Figure 4.2 The imputation performance of models according to the
mean of daily travel speed: MI-DC GAIN and SI-DC GAIN

4.2.2. Advantages of CNN (MI-DC GAIN vs. MI-FC GAIN)

According to Table 4.1 and Figure 4.1, GAIN with CNN structure
showed much better imputation performance than that with FCN, and
the performance difference was even more prominent when the level-
of-congestion is higher. This result suggests that the CNN aid in
identifying spatio—temporal dependency represented in traffic speed
images, which is more pronounced in the congested traffic state. In
other words, FCN failed to consider the locality of spatiotemporal data
since it flattens an image to a one—dimensional array (Chen et al. 2017,
Shamsolmoali et al. 2018, Shabbeer Basha et al. 2020). As RMSE of
MI-FC GAIN is 4.66 times larger than that of MI-DC GAIN, it is
apparent that considering the spatio—temporal correlation 1s very

important in traffic information imputation.
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Figure 4.3 The imputation performance of models according to the
mean of daily travel speed: MI-DC GAIN and MI-FC GAIN

4.2.3. Advantages of the Deep—-learning Model (MI-DC GAIN vs.
TASM and MA)

As mentioned in the Introduction, imputation methods can
categorize into three different methods, i.e., the prediction,
interpolation, and statistical learning methods. According to the results,
the performance of MI-DC GAIN was better than the two baseline
methods: TASM and MA. According to Figure 4.1, TASM and MA
showed a high variation of RMSE by the mean of daily traffic speed. It
may indicate that those imputation methods, which only consider
general traffic patterns or temporal continuity, cannot respond well to
highly congested traffic that has prominent uncertainty. Therefore,
these two methods have less robustness on level-of-congestion.

MA is a simple interpolation method commonly used with time-series
data to capture short—term transitions. It imputes missing data by
calculating the average of temporal nearest values. MA is a very
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simple method to impute missing values, but it is sometimes more
effective for missing data imputation than complex methods when the
temporal continuity is critical. The imputation results showed that MA
was better than TASM in our case (i.e., imputing random continuous
missings). Although MA performed quite well in general, the large
variation depending on the test data suggests that it is sensitive to the

traffic dynamics of each detector data and the distribution of random

missings.
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Figure 4.4 The imputation performance of models according to the
mean of daily travel speed: MI-DC GAIN, TASM, and MA

TASM imputes traffic information considering spatio—temporal
correlations. TASM is an effective imputation method in revealing
propagation patterns, and its robustness has been proven irrespective
of parameter changes in freeways (Treiber et al. 2011). However,
depending on the traffic situation, the performance of this method has
been found to be highly sensitive. As a result of imputing partially—
missed loop detector data, TASM was found to be less accurate and
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less robust than MI-DC GAIN. TASM uses the calibrated parameter
that expresses the general propagation property Ceong and Cgree -
However, compared with freeways, traffic speed in urban expressway
1s more complicated due to intrinsic uncertainty associated with short—
distance on-/off-ramps and frequent merging and diverging (4).
Therefore, the TASM's parameters representing the propagation of
traffic state would not be perfectly suitable for every traffic condition
in the urban expressway (Chen et al. 2019).

The accuracy and robustness of TASM is disrupted in two
situations, i.e., 1) when congestion occurs often and 2) when the
transition occurs often. The results of high imputation errors imply
that TASM could be a good reconstruction method but not that good
imputation method. The more frequent the occurrence and dissipation
of congestion, the greater the probability that the distributed traffic
information will be uncertain, so there is a limit to generating missing
traffic information using a parametric approach like TASM. Figure 4.5
shows a comparison of the traffic speed of ground-truth, TASM, and
MI-DC GAIN. Several types of errors that are harder to be correctly
imputed by TASM than by MI-DC GAIN are observed in this partial
speed contour, as shown in Figure 4.5(c). The gray boxes on upstream
show that TASM cannot capture the onset of traffic congestion, and
the boxes on the midstream and downstream show that the failure to
capture the dissipation of congestion. In addition, since the
propagation property of traffic state set by TASM does not exactly fit
those of the study site, the high speed of the downstream excessively
influence the imputed speed of TASM in the midstream, causing higher
imputed speed than the ground-truth speed. Likewise, the missing part
of the downstream is excessively affected by the low speed of the
midstream. Compared to TASM, MI-DC GAIN well performed for the
missings occurred in transition and congested states as shown in
Figure 4.5(d).
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Chapter 5. Conclusion

In this study, we proposed an MI-DC GAIN for missing data
imputation of traffic speed collected from the loop detector equipped
in the Seoul outer circular expressway. To overcome the limitations
reported in previous studies (i.e., prior assumptions for data
distribution, low performance capturing spatio—temporal correlation,
not well addressing transition of traffic state, and non—convergence of
training), we used deep learning, convolutional neural network,
generative modeling, and multi—input structure, respectively. Random
missings, including spatial and temporal continuous missings, were
generated from the data in various traffic conditions. By evaluating the
performances, we found that the proposed MI-DC GAIN outperformed

the benchmark models such as SI-DC GAIN, MI-FC GAIN, TﬁSM,‘ and
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MA in terms of accuracy and robustness. The findings from the
experiments are summarized as follows: 1) Learning traffic images by
applying convolutional network to GAIN can improve the accuracy and
robustness of missing data imputation even in congested and transition
traffic states; 2) the multi-input structure with the reconstructed

images can lead to further improvement of DC GAIN.

Despite the promising results obtained from this study, there
are still several ways the study can be improved. First, considering
that the missings of the loop detector and other sensors sometimes
does not occur randomly, the performance for those non-random
missings should be validated. Second, although we applied the multi-
input structure to reconstructed images, it can be used for the other
sources of data such as GPS trajectory data from probe car and travel
time data from automatic vehicle identification. Since the proposed
method uses the traffic speed images on the time—space diagram as
input, it is easy to unify these multi—source data into a single image
format. Third, predicting traffic speed on urban roads including signal
intersections is a valuable task in traffic management, but challenging
subject due to its uncertainty stemming from traffic signals, geometric
conditions, and other exogenous factors (Kim et al. 2019a). Therefore,
it 1s necessary to ensure that the outstanding performance of the MI-
DC GAIN in urban freeway is also valid in those urban roads. Lastly, a
breakthrough could result from high-resolution data since the spatial
and temporal data aggregation blur the significant features of the
traffic dynamics. The microscopic traffic data generated from
connected vehicles in the future are promising candidates for those
data.
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