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Abstract

Advanced Real Time Power Management
Strategy using Actor-Critic Algorithm
Considering Degradation of Fuel Cell

Stack in Electric Vehicles

As vehicle emission regulations are becoming more and more stringent, vehicle
manufacturers are making efforts to develop hybrid electric vehicle (HEV) as an
alternative to increase fuel efficiency. The HEV is defined as vehicle with two or
more power sources. Due to the advantage that individual power source can be
operated at an efficient operating point, HEVs exhibit higher efficiency compared to
internal combustion engine vehicles. However, the high efficiency of the HEV can
only be guaranteed only if a valid power distribution strategy is in place.

Due to the importance of the power distribution strategy on the efficiency of the
HEVs, many studies have been conducted on the development of the power
management strategy. The related studies have been developing the energy
management strategies for the HEVs based on rule-based control, optimal control
theory, and reinforcement learning theory. The power distribution strategy based on
the optimal control theory has the advantage of achieving high fuel efficiency, but
the power distribution strategy has the disadvantage of low applicability and
generalization performance in that future driving information must be considered.
On the other hand, since rule-based control and reinforcement learning do not require
future driving information, the wvehicle applicability and the generalization
performance are high, but the fuel efficiency is relatively low. Currently, the related
research is focusing on developing the energy management strategy that is excellent

in both the generalization performance and the efficiency.



Most power distribution strategies for the hybrid electric vehicles have been
developed for general HEVs whose powers sources consist of an internal
combination engine and a battery. However, along with the popularization of fuel
cell hybrid electric vehicles (FCHEV), research on the development of the power
management strategies for the fuel cell hybrid electric vehicles is increasing in recent
years. The power source of the FCHEV is usually composed of a combination of a
fuel cell stack and a battery, and compared with a general hybrid vehicle, it does not
emit exhaust gas at all, have simplified power train configuration, and achieves high
efficiency. However, since the fuel cell stack for of the FCHEV is vulnerable to
durability problems, it is necessary to develop the energy management strategy in
consideration of the deterioration of the fuel cell stack. The power distribution
problem for the FCHEV belongs to a multi-objective problem that needs to be solved
by considering both the degradation of the fuel cell stack and the fuel consumption.
Due to these characteristics, the power distribution strategy for the FCHEV is more
complicated than the power distribution strategy for the HEV that optimizes only in
terms of the fuel consumption. Nevertheless, the development of the power
management strategy for the FCHEV has not been much researched compared to the
development of the energy management strategy for the general HEV that have
already been popularized.

In this study, the power distribution strategy for the FCHEV was developed
using the reinforcement learning. The reinforcement learning has recently made
great progress through convergence with deep neural networks and deep
reinforcement learning which combines the reinforcement learning and the deep
neural networks has been proven through many studies. We developed the power
distribution strategy that optimizes the degradation of the fuel cell stack and fuel
consumption by utilizing the deep reinforcement learning (DRL) based on the Actor-

Critic algorithm. Since the DRL derives the control strategy based on the current



state, it has the advantage of high generalization performance and is also very
excellent in terms of scalability. By utilizing the high scalability of the deep
reinforcement learning, the power distribution strategies for various hybrid systems
can be developed through the same learning framework. In addition, the DRL has
the advantage of being able to respond to the degradation of the fuel cell stack that
occurs in real time through self-learning and online-learning. In this study, we
developed the energy management strategy for the FCHEV that secure both the
generalization performance and the scalability by utilizing all the advantages of the
deep reinforcement learning. In addition, we developed a methodology that

efficiently updates the existing DRL model based on the online learning,.

Keyword : fuel cell hybrid electric vehicle (FCHEV), power distribution
strategy, reinforcement learning, Markov decision process, equivalent
consumption minimization strategy (ECMS), dynamic programming (DP),
deep neural network
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Chapter 1. Introduction

1.1. Hybrid Electric Vehicles

The electrification and hybridization of vehicles are accelerating due to
increasingly strengthened regulations for exhaust gas. Figure 1 shows the emission
regulation trend for the vehicles in Europe [1]. The emission regulations have
demanded a sharp reduction in vehicle emissions whenever the regulation is changed
from Euro I to Euro VI. Hybrid electric vehicles (HEVs) are one of the most effective
alternatives to tightening emissions regulations in the current situation, where this

trend towards emissions regulation is expected to continue.

European Emission Standards for
NOx (g/kWh) Large Goods Vehicles

Euro Il

0.02 01 015 0.4
Y PM (g/kWh)
Figure 1. European Emission standards trend [1]
A (=1 ”
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In a general hybrid electric vehicle, the power source is composed of an internal
combustion engine and a battery, and the power by the two power sources is
controlled by the vehicle's power management controller. As such, the HEV is a
system having two or more power sources, so there is a large difference in efficiency
according to the method of the distributing the driver's required power to the power
sources. For this reason, many studies on the development of the power distribution
strategies for HEVs have been conducted.

The development of power distribution strategies is largely being studied based
on three theories including rule-based control, optimal control theory, and
reinforcement learning. In a study based on rule-based control theory, a driving mode
according to driving conditions is designed based on human experience and
knowledge [2-5]. Rule-based theory has a low computational amount and does not
consider future driving conditions for control, so its applicability to actual vehicles
is high, but the effect of improving fuel economy is small. In addition, there is a
disadvantage in that the scalability is small in that the control strategy is constructed
based on human experience and knowledge. In addition, it has the disadvantage of
small scalability in that the control strategy is constructed based on human
experience and knowledge. The power distribution strategy based on the optimal
theory can be divided into the control strategy based on dynamic programming (DP)
that guarantees a global optimum and the control strategy based on real-time
optimization theory. The DP-based power distribution strategy can guarantee global
optimality because it derives optimal control by considering all the control cases
based on the bellman equation [6-10]. However, the applicability of the actual
vehicle is low, since the DP-based control strategy requires a large amount of
computation and the future driving information must be reflected in the control. And
the power distribution strategy based on real-time optimization theory is being

studied mainly using Pontryagin's minimum principle (PMP) and equivalent

12 o



consumption minimization strategy (ECMS) [11-16]. The essential pursuit of both
studies is to derive a control value which minimizes the cost function that integrates
the electrical energy and fuel consumption. Therefore, it is important to derive an
appropriate value for co-state, a kind of equivalent factor that converts electrical
energy into fuel consumption in the cost function. Kim et al. has been proven through
previous studies that when the co-state is properly set, results corresponding to the
global optimum can be obtained [17]. The control strategy based on real-time
optimization theory has a small amount of computation, but the strategy has a
disadvantage of poor generalization performance because the co-state is a variable
dependent on the driving cycle. The strategy based on reinforcement learning is
formulated in the Markov decision process (MDP) as shown in Figure [2]. The action
corresponding to the control value is derived only through the current state and does
not require a future state. Therefore, the reinforcement learning-based control
strategy can secure high generalization performance and real vehicle applicability in
that it derives the control value only through the current state, but it is generally less

efficient than the strategy based on the optimal control theory [18-24].

action
pr—

Figure 2. Schematic of the Markov decision process
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Recently, reinforcement learning has made great progress through the fusion of
deep artificial neural networks [25]. Deep reinforcement learning (DRL), which
combines the theory of reinforcement learning with a deep artificial neural network,
has proven that it can effectively solve complex problems through many studies [26,
27]. Recently, some studies to develop control strategies for the HEVs using the DRL
algorithm have been conducted and the DRL algorithm has been proven to be

effective in developing the energy management strategy for the HEV [28-36].
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1.2. Fuel Cell Hybrid Electric Vehicles

As the fuel cell hybrid electric vehicles (FCHEV) are beginning to be released
on the market, research on the power distribution problem for the FCHEYV is also
actively progressing. The power source of the FCHEV is usually composed of a
combination of fuel cell stack and battery. Like the HEV, the power management
controller performs energy management between the two power sources. The
FCHEYV is attracting attention as an eco-friendly vehicle of the future because it can
eliminate or simplify the transmission system and does not emit exhaust gas.

However, FCHEV's fuel cell stack has the disadvantage of being vulnerable to
durability. The deterioration of the fuel cell stack is caused by a combination of
various causes, such as reduction of the surface area of catalysts, mechanical stress,
and contamination [37]. The degradation of the fuel cell stack is considered one of
the biggest obstacles to the popularization of the FCHEV. US department of energy
(DOE) estimates that the operation time required for the popularization of the
FCHEYV is 5000 hours, but most of the FCHEVs currently fail to achieve this goal.

Since the degradation of the fuel cell stack has a large effect on the FCHEYV,
research to investigate the deterioration of the fuel cell stack is also ongoing. One of
them is a study to analyze the degradation of the fuel cell through a physical
deterioration model [38]. The physical model does not require experimental data and
has the advantage of high generalization performance, but the physical model that
can sufficiently represent the degradation has not been developed due to the
complexity of the degradation phenomenon. To overcome the limitations of this
physical model, some studies was conducted to construct a degradation model for
the fuel cell stack of the FCHEV based on the actual driving data [39, 40]. In the
representative study (H. Chen, 2015), the degradation model according to the
operating mode of the fuel cell stack was developed and verified through actual

vehicle driving data [39].
15 M 2-H



As such, the FCHEVs is more sensitive to the durability than general HEVs, so
it is necessary to develop the power distribution strategy in consideration of both the
fuel consumption and the degradation. Therefore, the problem of the energy
management for the FCHEV should be extended to the multi-objective problem as
shown in Eq (1). my. and L represent the fuel consumption and the voltage drop
of the fuel cell stack due to the deterioration, respectively, and x and u represent
state and control, respectively. The boundary condition for Eq (1) is represented in
Eq (2), where SOC (tf) and SOC(t,) mean the final state of charge and the initial
state of charge, respectively. And the secondary condition for the problem is as Eq
(3). P, w, and T represent power, rotational speed, and torque, respectively, and
the notation (s, (Dpar, and ()imor represent fuel cell system, battery, and

motor, respectively.

min " e (x(0),u)) + L(x (), u()) (1)
S0C(tr) = SOC(ty) 2)

Presmin < Pres(6) < Presmax
Poatmin < Poat (6) < Phatmax 5

Wmot,min < WOmot (t) < Wmot,max

Tmot,min < Tmot (t) < Tmot,max

In other words, FCHEV's power distribution strategy should ensure SOC
sustain-ability in the system's operable area, while minimizing fuel consumption and
the deterioration of the fuel cell stack. Studies on the development of strategies to
minimize the degradation of the fuel cell stack and the fuel consumption are
continuously being carried out, and among them, many studies are being conducted

based on the optimal control theory [41-45].
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Chapter 2. Research Background

2.1. Deep Reinforcement Learning

Q-learning, a type of reinforcement learning, is a representative model-free
algorithm. The purpose of Q-learning is to learn the optimal policy in which the agent
derives the optimal action corresponding to an arbitrary state in the Markov decision

process as shown in Figure 2. “Q” in Q-learning symbolizes the quality of the

action taken in the current state, and the quality is quantified through Q-value. Q-
value is defined by Eq (4) as follows, where 7, s, a, and R represent policy, state,
action, and reward, respectively, and p represents a discount factor. The discount
factor, which has a value between 0 and 1, is a value designed in terms of
mathematical convenience and the present value is greater than the future value. The
Q-value is optimized through recursive execution of the bellman optimality equation

such as Eq (5), and an optimal policy such as Eq (6) is derived.

Qn(s,a) = Ex[Rey1 + pRey2 + p*Reys + 1S =5, Ay = a] “4)
Q(se,ap) « Q(spar) + a- (Tt +p max Q(st+1,a) — Q(sg, at)) (5)

m*(s) = argmax Q*(s,a) 6)

The biggest weakness of Q-learning optimized by value-evaluation is that it is
difficult to apply to complex problems with large size of the states and actions.
However, through the deep Q-network (DQN) algorithm (V. Mnih, 2015), a
groundbreaking study that applied a deep neural network to the framework of Q-
learning, the field of reinforcement learning was able to achieve rapid development

[25]. In this study, the state was defined as four 84x84 gray scale stack images, so
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the state has a very large size of 25684844 (~ 10°7970). However, in this study, the
problem was effectively solved by using an agent based on a convolutional neural
network that acts as a function approximator on the framework of the Q-learning. In
the DQN algorithm, the weights 69 of the deep neural network are optimized

through a backpropagation algorithm to minimize loss such as Eq (7).

Loss(69) = [y — Q(s, al6D)]?
(7)

!
VY =T P gltax Q(St+1,ar41109)
+1

The DQN introduces two methods to stabilize the learning algorithm. One was
to solve the temporal dependency problem of mini-batch by developing a replay

memory that stores experiences used for the training of the agent. And the other one

was to stabilize learning by creating a separate target Q-network with weights 6?’
to derive the target Q-value. Through this, it was proved that the DQN algorithm can
achieve successful results in many game environments of Atari emulator.

However, DQN has the disadvantage that it cannot derive continuous action
values. To compensate for the shortcomings of the DQN algorithm, a DRL model
using a policy gradient algorithm was developed. A representative study among them
is the deep deterministic policy gradient method based on the actor-critic (A2C)
architecture (T. P. Lilliccrap, 2016). The architecture of the actor-critic based DRL
is shown in Figure [3]. Both actor and critic are composed of the deep neural network.
The actor derives action for the state, and the critic performs value approximation of
the actor's action for the state. The training for the actor is progressed based on the
policy gradient method as in Eq (8), and 84,6¢ means the weights of the actor

network and the critical network. And the learning for the critic proceeds in the same

way as the training of the DQN like Eq (9), where 04", 6¢ represents the weights

of the target actor network and the target critic network. : _
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It has been demonstrated in several papers that the DRL can secure scalability,
the ability to solve various kinds of problems through the similar training framework
[25, 27]. In addition, the DRL is easy to apply online-learning algorithm because it
has the characteristic that the training of the agent proceeds based on one's own
experience. This study develops the effective power management strategy for the

FCHEYV by utilizing the advantages of the DRL algorithm.

1
VQA] = Nz Vqu(S,ﬂ(sleA)lec)

1
= =) %uQ(s5,al6pan(s|o™) ®

Loss(0°) = [y, — Q(s,al0)]?
, , )
v Ve = Teer + PQ(Ser1, H(Se41104)16¢)

Evaluation
1 A
Vo] % 1. V205,010 Tpap(s16*)

> Critic

o, <action

Reward
Observe State .
L Environment

Figure 3. Schematic of the actor-critic model architecture
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2.2. Existing studies

We investigated research related to the power management strategy of the
hybrid electric vehicle. Related studies were investigated in four aspects including
“stack degradation”, “online-learning”, “generalization performance” and
“scalability”. Since the power system in the FCHEV is highly affected by the stack
degradation, it is important to consider the stack degradation in developing the power
distribution strategies. Since the power system of the FCHEV continuously changes
due to the stack degradation, it is important to develop a methodology that can adapt
to system changes. Therefore, it is necessary to apply the online-learning
methodology in developing the power management strategy for the FCHEV. In
addition, it is very important that the control strategy guarantees the generalization
performance, as the control strategy must be effective for all driving profiles. Now
that the structure and types of the HEVs are diversifying, the development of the
power management strategy that guarantees the scalability has great significance in
the industrial aspect. Therefore, the recent related studies were analyzed focusing on
the four factors that become issues in the development of the control strategies.

The power distribution strategies for the fuel cell hybrid electric vehicles have
been mainly studied based on the optimal control theory. W. Zou et. al. conducted a
study to optimize the durability and fuel efficiency of the FCHEV through the
dynamic programming, but the aspects of the generalization, the scalability, and the
online-learning were not considered in the development of the power distribution
strategy [7]. H. Li et. al. developed a power distribution strategy considering the
degradation of power sources using the ECMS [12]. In addition, an online learning
methodology was developed that updates the equivalent factor based on the
deterioration of the power sources in the study. However, the research did not

develop the control strategy that considers the scalability, and since the update of the

equivalent factor is based on the degradation model of the power sources, the
i 11 &1
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effectiveness of the online-learning algorithm is decreased if the accuracy of the
degradation model for the power sources is not guaranteed. C. Geng et. al. developed
a rule-base control strategy for the FCHEV using fuzzy logic algorithm [3]. The
study did not consider the degradation of the fuel cell stack and did not consider the
scalability and the online-learning algorithm in developing the power distribution
strategy.

There has been little research on the development of the DRL-based control
strategies for the FCHEVs, and the power distribution strategy using the DRL
algorithm has been applied to general HEVs composed of the internal combustion
engine and the battery. X. Han et. al. developed a power distribution strategy based
on double deep Q-network (DDQN) that derives discrete actions for the hybrid
electric tracked vehicles [33]. In the study, the power management strategy was
developed focusing on securing the generalization performance. H. Tan et. al.
developed a power distribution strategy for the HEV that can derive continuous
action through the deep deterministic policy gradient (DDPG) algorithm [34]. In the
study, the power distribution strategy was developed focusing on the generalization
aspect, and the remaining three items were not considered. Y. Hu developed a control
strategy based on DDQN for the HEV, and they considered the generalization aspect
and application of the online-learning algorithm in developing the control strategy
[36]. However, the control strategy was developed without considering the

degradation and the scalability.
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2.3. Research Motivation

The general power distribution strategy for the actual HEV is produced as a
map in a simple look-up table format due to the vehicle's limited computing power.
This map-based strategy is made based on the results of the optimal control theory
and the experience and knowledge of experts. Since the power distribution strategy
is developed based on human experience and subjectivity, it has the disadvantage of
low generalization performance and scalability.

However, considering the reality that the computation power of vehicles is
rapidly increasing due to the advent of autonomous vehicles, electrification of
vehicles, and development of cloud computing technology, it is necessary to develop
advanced power distribution strategies for the hybrid electric vehicles. In this study,
DRL model was used to develop the advanced energy management strategies for the
FCHEVs.

DRL has proven its high scalability through several studies, and the DRL has
the characteristic of self-learning in which the training is performed based on one's
own experience, so the performance of existing models can be improved through the
online-learning. In particular, the DRL-based control strategy can cope with to
system changes caused by the degradation of the fuel cell stack through the
characteristics that online-learning for the DRL is easy. As such, DRL is a very
effective theory in relation to the development of the control strategies for FCHE Vs,
but the DRL-based energy management for FCHEVs has not yet been developed.
Also, there is hardly any research that has developed the power management
controller in consideration of the scalability aspect.

In this study, a comprehensive and systematic study was conducted in
developing the power management strategy based on the DRL algorithm. Through
this research, we developed the power distribution strategy that not only excels in

generalization performance, but also secures high scalability and online-learning.
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Chapter 3. Research and Results
3.1. Overview of Research Framework

Figure [4] shows the overall research framework of this study. In this study, the
power distribution strategy was developed using the actor-critic structure DRL
model that can derive continuous action. The environment of MDP is composed by
vehicle model and driver's driving pattern. Agent is composed of deep neural
network of actor-critic architecture. The environment of the MDP is composed by
vehicle model and driver model (driving cycles). And the agent is composed of the
deep neural network with the actor-critic architecture. The actor of the agent derives
the action for the state, and the environment derives the reward and the next state
corresponding to the action. In the DRL, tuple composed of (state [s], action [a],
reward [r], next state [s']) is defined as experience. These experiences are stored in
the replay memory and used for the training process of the agent. The specific DRL
algorithm is described in Algorithm [1].

Regarding the method of selecting an action during the training, we used the &-
greedy method, which is a representative exploration strategy. The agent conducts
the exploration that randomly selects an action without depending on the policy
according to the exploration probability € in the e-greedy method. Through this
method of the agent exploration, it is possible to prevent the policy having the local
maximum performance from being trained. The training algorithm is designed such
that the exploration probability decreases as the learning progresses. Therefore, the
agent actively performs exploration at the beginning of the training but hardly
conducts exploration at the end of the training. This chapter consists of three parts.
In 3.1.1, we introduce the definition of the state, the action, and the reward. In 3.1.2,
the structure of the neural network used in the actor-critic model is explained, and in

3.1.3, the target FCHEV model is introduced.
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Figure 4. Schematic diagram of the research framework
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Algorithm 1.

Randomly Initialize critic network Q(s,a|8¢) and actor u(s|64) with 8¢ and 94
Initialize target network O’ and g’ with 8¢ « 6€ and 64~ « 64
For episode =1 to M do:
Receive initial observation state s,
For t=1to T do:
Select action a, = u(s;|64) according to & — greedy algorithm
Execute action a; and observe reward 73 and new state S;,;
Store experience (S¢, A, 1%, Sg41) in the replay memory
Calculate target Q-value, y =7, + pQ " (Sex1, i (Se41164)16€7)
Update critic by minimizing the loss, L = %Zi(yi —Q(s;, a,-lHQ))2
Update the actor using the policy gradient:
Voa) =~ 0V, Q(s, al0€)Vgap(s|64)
Update the target networks:
04" « 104+ (1-1)6%
0¢ <10+ (1-1)6¢
End for

End for
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3.1.1. Definition of the state, action, and reward

The state, the action, and the reward are the main elements of the MDP and
need to be defined appropriately for the problem situation. This part explains how
the state, the action, and the reward are defined.

The power of the fuel cell stack according to the current density is expressed in
Eq (10), where j,A,n,V(-) denote the current density, area of cells, number of cells,
and cell voltage, respectively. And like Eq (11), the battery power Pp,; is calculated
as the difference between the demanding power Pg,,4 and the fuel cell stack power
when the power of the fuel cell stack is determined. Therefore, in this study, the

current density of the fuel cell stack is defined as the agent's action.

Pre = (A) - (nV())) (10)

Ppar = Pama — Prc (11)

State is information representing the current situation and is an input necessary
for the agent to derive the action. In this study, the state was constructed based on
four factors such as Eq (12). The Pg,q means the required power of the vehicle,
and ASOC represents the SOC deviation between the initial SOC, SOCj,;; and the
current SOC as in Eq (13). jmnin and jj,q, are the minimum current density and the
maximum current density of the fuel cell stack according to the demanding power.

The j,in and the j,, ., are expressed as Eq (14).

S = [Pama, ASOC, jmin, Jmax] (12)
ASOC = S0C — SOCipit (13)
Jmin = Tnjinf(Pdmdrj) (14)
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Jmax = m]axf(Pdmdlj)

The reward is a mathematical expression that is transmitted to the agent so that
the training of the agent can be made appropriate to the defined problem. Therefore,
it is important to define the appropriate type of reward in order to derive the
appropriate agent. In this study, as Eq (15), the reward was designed by considering
the fuel consumption rate and the battery SOC. The y in Eq (15) serves as a kind of
equivalent factor that equalizes the absolute value of the battery SOC deviation and
the fuel consumption rate. The reward is divided into a part related to fuel
consumption and a part related to SOC deviation. We tried to create the agent that
secures the SOC sustain-ability while minimizing the fuel consumption through this

reward composition.
R = — (. + y|ASOC)) (15)

3.1.2. Neural network structure in the actor-critic model

The neural network structure for the actor and the critic is shown in Figure [5].
The actor network is responsible for mapping the action from the state. The actor
network has two hidden layers, both of which are made up of 512 neurons and the
activation function is defined as a rectified linear unit (ReLU) such as Eq (16). In Eq
(16), z denotes a value derived by a linear combination of layer weights and input
values. The activation function of the actor's output layer is designed as the sigmoid

function, and the mathematical expression for the sigmoid function is as Eq (17).

h(z) = max (0, z) (16)
1
h(z) = 1oz (17)
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The output layer of the actor has a value between 0 and 1 by the sigmoid
activation function, and we designed the agent's action as Eq (18) by utilizing the
characteristics of this activation function. That is, the physical meaning of the output
of the actor network, h,,;(z) can be viewed as a ratio of the current density of the

action and the maximum current density value.

a = jmax " hout(z) (18)

Critic network receives the state and the action information and calculates the
value for the action corresponding to the state. In the critic network, the
representation feature for the state and for the action are individually derived and
then integrated into one layer through a concatenate layer. And the activation
function of the output layer is composed of a linear function. Therefore, the output

value is derived through the linear combination of the weights of the layer and the

input values.
Critic
Actor Architecture
Architecture
J = Jmax * @t Linear

FC (1)
Sigmoid
FC (512) Concatenate Layer
RelLU

FC (512) FC (512)
RelLU RelLU

state layer (4) action layer (1)

FC (512)
ReLU

Input layer (4)

Figure 5. Architecture for the actor network and the critic network
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3.1.3. FCHEY model

In this study, the FCHEV consisting of a combination of the fuel cell stack and
the battery as the power source was set as the target vehicle. The structure of the
vehicle to be studied is shown in Figure [6], and the main specifications of the target
vehicle are specified in Table 1. The maximum power of the fuel cell stack and the
maximum power of the battery are 67kW and 39kW, respectively, and the mass of
the vehicle is set to 1200 kg.

The fuel cell model was developed by referring to 1-D proton exchange
membrane fuel cell (PEMFC) flux balance modeling (F. Prinz, Cha, 2014) [46]. The
fuel cell stack system includes components such as stack and compressor, and the
area and number of cells in the stack are 200cm?, 400, respectively. And in this study,
considering the stability of the stack, the maximum value of the current density was
setto 1.0A/cm? and the idling current density was set to 0.001 A/cm?. The detailed
PEMFC and fuel cell stack system model are described in Appendix 1.

The battery model was developed based on the equivalent open-circuit voltage
model and internal resistance model expressed as a function of SOC. The required
power of the battery is the same as Eq (19), where nyot represents the motor
efficiency. Given the battery power, the time derivative of SOC, SOC is expressed
as Eq (20), where Qpq:, Rpqar, and Vo represent battery capacity, internal

resistance of the battery, and battery open-circuit voltage, respectively.

Ppat :Pdmd_Pfc
(19)

_Sgn(Tmot)_ .
= hmot Tnot * Wmot

1 Voc(SOC) = /Voc(SOC) = 4Pyt Ryat (SOC)

SOC = —
Qbat 2Rbat (SOC)

(20)




] -.—.-

Battery Motor Final
| _ves00)- W Drive
Figure 6. Configuration for the research target vehicle
Table 1. Target FCHEV model specification
Properties Values
Maximum stack power [kW] 67
Maximum battery power [kKW] 39
Vehicle mass [kg] 1200
Tire radius [m] 0.337
Final gear ratio 3.648
Initial SOC 0.6
Efficiency of the final drive [%] 96
Efficiency of the converter [%] 97

Figure [7] shows the stack system modeled in this study. On the anode side

where hydrogen is supplied, pressure, temperature, and humidity are controlled to a

constant state through valve, humidifier, and heater. And on the cathode side, the

pressure, temperature and humidity of the air are controlled in a certain state through

the compressor, the value, the humidifier, and the heater.
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The power generated from the fuel cell stack system is expressed as Eq (21),
Prc represents the output power from the stack, and P,yy represents the power
consumed by auxiliary equipment belonging to the mechanical balance of plant

(MBOP).

Psys = Pr¢ — Payx (21)

The power generated from the stack is expressed as Eq (22), and the stack
voltage, Vsiqcr and stack current, and igqqr can be expressed as NV .; and jA,
respectively. N, V.., and A denote the number of cells, cell voltage, and effective

cell area in the stack, respectively.

Prc = Vstack * Istack= (NVeenr) (]A) (22)

The compressor that compresses the air supplied to the cathode side belongs to
the main auxiliary equipment in the stack system. The power supplied to the
compressor is represented as Eq (23), where 7¢omp means compressor efficiency,
C, means heat capacity of air, y means ratio of the specific heat of air, and 1.4y
means air flow rate. In addition, the air flow rate is expressed as a function of the

current density as in Eq (24), where M,;, is molecular weights of the air.

y-1
C,Ty; P v
Peomp = — ( out) —1 | Meomp (23)
77comp Pin
. N - istack
Meomp = Mairﬁ (24)
o

2
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Also, we constructed the stack system by assuming that the power consumed

by the auxiliary equipment except the compressor is constant at 3kW.

Stack — H, outlet

Valve Humidifier Heater

—D—Dm LacAter - Air outlet

Compressor Valve Humidifier Heater

Figure 7. Schematic diagram of the stack system
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3.2. Study for the Stability and the Scalability

The reinforcement learning differs from supervised learning in which a target
value is given in advance in that training of model is performed based on one's own
experience. Due to these characteristics, DRL is classified as semi-supervised
learning, and since the training of the DRL is very difficult compared to general

supervised learning, it is important to derive training conditions for stable learning.

0. F

-1000
n |
T —2000
=
o | —— Power in [W]
% -3000 ‘ —— Power in [kW]
o
w
& —4000

J‘A
_5000 vﬂ-‘f LW%
0 20 40 60 80 100 120 140
Episodes

Figure 8. Trend of episodic reward according to the difference in units of demanding
power

Figure [8] shows episodic rewards according to the episode. The episodic
reward refers to the total reward which the agent has earned in one episode. In this
study, the start and end of the driving for the FCHEV model are defined as one
episode, and episodic reward refers to the sum of the rewards the agent gets in one
episode. Figure [8] clearly shows the difficulty of learning process of the DRL. In
the defined state, SOC and current density constraints are normalized values for
battery capacity and cell area, respectively, and mainly have values between 0 and 1.

On the other hand, demanding power is not a normalized value, and it has a value

I'\.
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within about five order of magnitude in the case of the required power represented
in unit of W. And if the required power is expressed in units of kW, it has a value
within about 2 order of magnitude. In Figure [8], when the demanding power of the
state is expressed in units of W, it can be confirmed that the learning of the agent is
unstable, which is caused by a large deviation between the state features.

As such, it is important to properly process the state because the learning
stability of the DRL is determined according to the processing method for the state.
The method of converting the unit to reduce the deviation between the features of
the state has low scalability because the size of the demanding power is different for
each problem situation. In order to ensure scalability and increase the stability of the
learning, it is necessary to normalize the required power. We approached the above
problem through two methodologies.

The first normalization method is shown in Figure [9]. Whenever a new
experience is stored in the replay memory, the running mean and standard deviation
of the demanding power are updated as Eq (25) and Eq (26), where u,o,and N
represent running mean, running standard deviation, and the number of experiences
respectively. And the mini-batch used for the network training is normalized based

on the running mean and the standard deviation like Eq (27).

P
U u+ dde (25)
(PdmdL /") (26)
+
O <0 N_1
Pima — U
Biorm = % (27)

33 2] 2 1



(S, AR S

e — B

! i Update u, o

; BHep+—

i : Save new

i (Pi—p)? | | Experience
i g <0+ N—1 E

] ]

Experience DB

/

Sampling
experiences

Normalization

Training
networks

Figure 9. Normalization process by calculating the running mean and the running
standard deviation for the demanding power in the state

The other normalization method is to use a batch normalization layer. The batch
normalization layer normalizes the mini-batch by deriving the mean and standard
deviation of the mini-batch and has weights for the scale and shift of the mini-batch
[47]. Batch normalization layer has the advantage of being able to speed up the
learning speed of the deep neural networks as well as normalization between features.
In this study, the batch normalization layer was added to the existing actor-critic
network as shown in figure [10]. We place the batch normalization layer right after
the state input layer of the actor network and the critical network for state

normalization.
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We compared the learning results according to the four state representations,
and Figure [11] shows the learning results according to the state representation. In
terms of learning speed and convergence of episodic rewards, it can be seen from
Figure [11] that the state representation that has normalized required power shows
superior results compared to the other cases. In this study, state normalization was
performed by using the batch normalization layer with the best reward convergence

among the two normalization techniques.

Critic
Actor Architecture

Architecture

J = Jmax * Az,
a, € [0,1]

Concatenate Layer

FC (16), RelLU

State Input Action Input
layer (4 1 1

—-1000
5
§ 2000 —— Power in [W]
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% -3000 —— normalized power
Q batch-normalization layer
& ~4000

-5000
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Episodes

Figure 11. Simulation results with the state representation
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In order to ensure the stability of the agent's learning, it is important to derive
the hyper parameters. We determined the appropriate replay memory size and
network size based on the simulation result according to the replay memory size and
the simulation result according to the network size.

The number of experiences stored is determined depending on the replay
memory, and the old experience is deleted as new experience is input. We compared
the simulation results by setting the replay memory size to 500, 1000, 10000, and
100000. Figure [12] shows the simulation results according to the replay memory
size. Figure [12] represents that when the replay memory size is low, such as 500
and 1000, stability of the training is not secured. In this study, the replay memory
size was set to 100000 for stable training for the agent.

We derived the appropriate network size by adjusting the size of the last two
hidden layers of the actor-critic network. The sizes of the last two hidden layers for
the actor-critic agent were set to 16, 128, and 512, and the simulation results were
compared. Figure [13] shows the simulation results according to the hidden layer
size of the last two layers for the actor-critic agent. As shown in Figure [13], when
the size of the hidden layer is set to 16, it can be confirmed that there is a part in
which training of the agent becomes unstable. On the other hand, when the hidden
layer size is set to 128 and 512, it can be confirmed that the training of the agent
secures the learning stability. We set the hidden layer size to 128 so that the agent
secures the learning stability while the agent does not require a lot of the computation
power during the training and the inference process.

Therefore, the actor-critic agent used in this study has the structure as shown in

Figure [14].
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Figure 13. Simulation results with the last two hidden layer size
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Figure 14. Actor-critic network architecture after the comparison experiment with

hidden layer size
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3.3. Learning Process for the DRL Agent

In order to derive a suitable agent, it is necessary to understand the training
process of the agent. This chapter examines the training process of the agent and
explains the development of a methodology to make the scalable power distribution

strategy through such consideration.

3.3.1. Understanding of the learning process

The reward of this study is divided into two parts as shown in Figure [15] below.
One is related to the fuel consumption and the other is related to the SOC deviation.
We tried to analyze how the influence of the two terms changes with the learning
process. Figure [16] shows the ratio of terms related to fuel consumption in the
reward and the ratio of terms related to SOC deviation in the rewards according to
episodes. The result shown in Figure [16] is the result derived by setting the reward
factor, y to 10. In Figure [16], the blue solid line indicates the proportion of the term
related to fuel consumption to reward, and the orange solid line indicates the
proportion of the SOC deviation related term to the reward. At the beginning of the
training, the SOC deviation related terms occupy a dominant proportion of the total
reward, but after about 40 episodes, it can be seen that the shares of the two terms in
the reward become similar. In this study, the section in which the SOC deviation
related terms exert the dominant influence was named “SOC dominant region”, and
the section in which the two terms of the reward had similar weights was named

“Training equilibrium region”.
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Figure 16. Changes in the share of the rewards of two terms according to the training

The SOC trajectories according to the episode are visualized in Figure [17] and
the fuel consumption and the shares of the two terms to the reward are shown as
Figure [18]. In Figure [17], (a), (b), (c), and (d) show SOC trajectory according to
episode 1, episode 40, episode 80, and episode 120. And in Figure [18], (a) represents
the fuel consumption according to the episode, and (b) shows the ratio of two terms
of the reward according to the episode. From Figure [17]-(b), it can be seen that the
fuel consumption is decreasing as shown in Figure [18]-(a) because the agent learns
in a way that actively utilizes the battery at the beginning of learning. Figure [17]-

(b) shows that the agent is trained in a way that actively utilizes the battery at the
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beginning of the training. Due to this, it can be confirmed that the fuel consumption

on the SOC dominant region is decreasing as shown in Figure [18]-(a). Therefore,

the decrease in the fuel consumption on the SOC dominant region is a phenomenon

that occurs in the process of the agent regulating the SOC trajectory. After about 50

episodes, as shown in Figure [17]-(c) and Figure [17]-(d), the agent reaches the

training equilibrium region by limiting the SOC trajectory. Figure [18]-(a) shows

that the fuel consumption in the training equilibrium region continuously decreases

with the episodes. This is because the agent is trained in a way that maximizes the

reward by regulating the SOC-trajectory and reducing the fuel consumption at the

same time.
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Figure 17. SOC trajectory according to the episode: (a) SOC trajectory at initial
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Figure 18. Simulation results with training process: (a) fuel consumption with episode,
(b) shares of the reward with episode

3.3.2. Methodology development for the scalability

We confirmed that the agent is trained in a way that restricts the SOC trajectory
in the early training of the agent. In addition, we can see that in the training
equilibrium region, the agent is trained to minimize fuel consumption while limiting
SOC trajectory. In this study, we analyzed whether this learning process proceeds in
the same way according to the reward factor.

1 - A& gk

—



104

0.8 -

0.6 -

Ratio

(a)

0.4 4

0.2z 4

0.0 4

(b)

Fuel consumption [g]
=
=1

k]

0.7 4

06 1

(©)

50C

0.2 4

0l

e

—— Share of reward related FC

= Share of reward related SOC deviation Il

0 = 5 100 125 150 s 200
Episode

0 = 50 100 125 150 7S 200
Episode

0 0 00 500 800 1000 1200 1400
Time [s]
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Figure 21. Training characteristics when the reward factor is set to 10: (a) The shares
of two reward components to reward with the episode, (b) The fuel consumption with

the episode, (c) SOC trajectories derived from the last S episodes
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We analyzed the change in characteristics of the training process while setting
the reward factor to 2, 3, 10. Figures [19], [20], and [21] show the results when the
reward factor is set to 2, 3, and 10 respectively. In the figures, the (a) shows the
shares of the two components to the total reward according to the episode, and the
(b) shows the agent's fuel consumption according to the episode, the (¢) represents
the SOC trajectory derived from the last 5 training episodes.

From the results in Figures [19] to [21], it can be seen that a reward factor that
is too low causes instability in the training process. Figure [19] and Figure [20] show
the results when the reward factor is set to 2 and 3. It can be seen that the training
equilibrium region is not formed at the reward factor low like 2 and 3, and as a result,
the learning of the agent is not conducted efficiently. Since the reward factor is an
equivalent factor that means the importance of SOC deviation to the fuel
consumption rate, we can see that the training equilibrium region is not formed due
to insufficient regulation of the SOC trajectory at the low reward factor, resulting in
instability of the training. On the other hand, the simulation results with the reward
factor designed as 10 show that the training equilibrium region exists and the
learning of the DRL is done effectively. From these results, we can see that it is
necessary to select an appropriate reward factor for the successful learning of the
agent.

In order to examine the effect of the reward factor on the training more closely,
we conducted an analysis of the training process of the agent. The DRL agent collects
various types of experiences by taking random actions with high probability in the
initial episode. And as the training progresses, the DRL agent takes an action
according to the trained policy while reducing the probability of taking a random
action. Figure [22] shows the change in the episodic reward and the exploration

probability, € according to the training episodes when the reward factor is set to 10.
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Figure 22. The episodic reward and the exploration probability with the training
episodes when the reward factor is set as 10: (a) The episodic reward, (b) exploration
probability

The typical episodic reward according to the episodes is expressed in Figure
[23]. The training process for the agent can be divided into four phases, as shown in
Figure [23]. In the “phase 17, the episodic reward increases with the training, and the
episodic reward decreases as the training progresses in the “phase 2”. Also, the
episodic reward increases rapidly in the “phase 3”, and the episodic reward converge
in the “phase 4”. We analyzed each phase and tried to understand the learning process

of the DRL agent.
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Figure 23. Illustration of the typical episodic reward according to the training episode

In the phase 1, the action of the agent is mainly selected in a random manner.
The action profile and SOC trajectory in the first episode where the action is selected
randomly are illustrated in Figure [24]. When the actions are selected randomly, the
SOC is maintained close to 1.0 because the agent uses excessive power of the fuel
cell stack. This operation results in high fuel consumption and large SOC deviations.

Therefore, the agent is trained in the direction of minimizing the use of the
power for the fuel cell stack in order to increase the episodic reward. That is, the
agent mainly selects the idling current density as an action. Figure [25] shows how
the trained agent takes an action in the phase 1. We classified the action selected in
a random manner and the action selected by the policy of the agent, and the results
is visualized through Figure [25]. Figure [25] shows that most of the actions derived

by the policy are the same as the idling current density.
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Figure 24. (a) The action profile and (b) the SOC trajectory in the initial episode
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Figure 26. The SOC trajectories according to the episode in the phase 1

In the phase 1, if the agent selects the idling current density continuously, the
SOC trajectory moves near the initial SOC of 0.6. Figure [26] shows the SOC
trajectory change according to the episode in the phase 1. As a result, the agent can
reduce the SOC deviation and reduce the amount of fuel consumed of the fuel cell
stack by selecting the idling current density. Therefore, the agent can increase in
episodic reward by choosing the idling current density.

It can be seen from Figure [27] that the agent still selects the idling current
density as an action even in the phase 2. However, in the phase 2, when only the
idling current density is selected, the SOC-deviation no longer decreases, but rather
increases, so the episodic reward increases as a result.

Figure [28] shows SOC trajectories according to episodes in the phase 2. As the
episode progresses, the agent selects more idling current density as an action, the
SOC is distributed more frequently in a region which is lower than the initial SOC.
Therefore, the episodic reward for the agent decreases as the episode progresses in

the phase 2.
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Figure 28. The SOC trajectories according to the episode in the phase 2

In Phase 3, the episodic reward increases dramatically. This rapid increase in
the episodic reward is because the agent is trained in a way that can regulate the
SOC-trajectory sufficiently. Figure [29] shows the SOC trajectory and distribution
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of action in one episode belonging to the phase 3. Through the figure, it can be
confirmed that the SOC is distributed around the initial SOC.

And we can see from Figure [30] that the SOC regulation occurring in the phase
3 is closely related to the “training equilibrium region”. That is, the training

equilibrium region is developed through the SOC regulation.
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Figure 29. (a) The SOC trajectory and (b) the action distributions in the phase 3
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Figure 30. Relationship between the start of the training equilibrium region and the
phase 3

And the in the phase 4, the episodic reward either converges or rises gently. The
agent is trained to minimize the fuel consumption while regulating the SOC in the
phase 4. We classified the fuel consumption in the phase 4 and the fuel consumption
in the rest of areas and visualized the fuel consumption in both areas. Figure [31]
shows the result for the visualization. In the figure, the blue solid line represents the
fuel consumption according to the episode in the phase 4. We can see from the figure
that the fuel consumption decreases as the learning of the agent progresses in the
phase 4.
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Figure 31. The fuel consumption according to the training episodes

However, the SOC regulation is not sufficiently implemented at a relatively low
reward factor. As a result, the phase 3 in the episodic reward and the training
equilibrium region are not developed. Figure [32] shows the training results of the
DRL agent when the reward factor is set to 2. Figure [32]—(a) shows the episodic
rewards according to the episodes, and Figure [32]—(b) shows the shares of two
reward components according to the episodes. When the reward factor is set to 2, it
can be seen from the figure that the phase 3 in the episodic reward and the training
equilibrium region are not formed, and the training of the agent is also unstable
because the agent does not regulate the SOC sufficiently.

Reward factor has the meaning of the weight about the SOC deviation to fuel
consumption. Therefore, if the reward factor is set low for the training of the DRL
agent, the agent does not regulate the SOC sufficiently, and as a result, the agent's
learning does not proceed effectively. Therefore, it is important to derive an effective

reward factor according to the problem definition and the FCHEV system.
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Figure 32. The training results when the reward factor is set as 2: (a) The episodic
reward and (b) the shares of two reward components according to the episode

Since the effective reward factor is different depending on the FCHEV system
and the problem definition, it is necessary to develop a methodology that can derive
the reward factor automatically without the experience and the knowledge of the
experts for the scalability of the power distribution strategy. In this study, we
developed a methodology that can derive the reward factor through the process
shown in Figure [33].
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Figure 33. Schematic diagram of the process of finding the reward factor

The process to find the reward factor is as follows. We checked whether the
valid training was performed or not through the final SOC distribution of the SOC
trajectories in the episodes at the end of the training and the existence of the training
equilibrium region. The deviation between the final SOC of the SOC trajectories at
the end of the training and the initial SOC, 0 is equal to Eq (28), and the o acts as a
variable that determines whether the reward factor is updated or not. In Eq (28), N
is the number of episodes corresponding to the convergence region, and SOCy; is

the final SOC of the SOC trajectory for each episode.

8 = usoc; — SOCinit
1 (28)
“ Usoc; = NZ_SOCf,i
L

In this study, when the absolute value of the 6 is within 0.015 and the training
equilibrium region is formed, the corresponding reward factor is determined as a
reward factor suitable for the training. And we designed the algorithm to execute the
training process again by adjusting the reward factor as shown in Equation (29) if an

arbitrary reward factor does not satisfy the above two conditions. That is, as the
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difference between the initial SOC and the final SOC increases, the range of
adjustment of the reward factor is increased so that the effective SOC regulation is

made.

Yy < v+ KISl (29)

We derive the reward factor suitable for this study through the search method
of the reward factor. The initial reward factor was designed as 3, after that, the reward
factor was 4.45, and finally 5.80 was selected as the suitable reward factor. The
results are expressed in Figures [34]-[36]. (a) and (b) in figures show the weight of
the two components of the reward for each episode and the SOC paths for episodes
at the end of the learning. When the reward factors are 3, we can see that the training
equilibrium region does not exist and the constraint for the SOC paths are not
properly regulated. Figure [35]-(a) shows that when the reward factor is 4.45, the
training equilibrium region does not exists during the training process of the agent.
As shown in Figure-(b), when the reward factor is 4.45, the regulation on SOC
trajectory is not implemented, and the power distribution strategy does not guarantee
SOC-sustainability. Figure [36] shows the result when the reward factor is set to 5.80.
Through Figure [36], when the reward factor is set to 5.80, it can be seen that the
training equilibrium region is formed and the SOC trajectories are limited around the

initial SOC.
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3.4. Generalization Performance of the Trained Agent

One of the most important goals in the field of the machine learning and the
artificial intelligence (Al) is to construct a model with generalization performance.
The generalization performance is defined as the ability of a model trained with
arbitrary training data to derive valid results even for the data not used for the training.
The DRL-based power distribution strategy is trained by specific driving patterns or
driving cycles. Therefore, the DRL-based control strategy that secures generalization
power must perform effective energy management even for the driving cycles that
are not used for the learning of the agent.

This chapter consists of three parts. In 3.4.1, the training framework in which
the agent is trained to secure the generalization power of the DRL model is explained.
And the driver model based on the Markov decision process developed to verify the
DRL model is described in 3.4.2. Finally, in 3.4.3, the process and results of the

validation test for the DRL model are described.

3.4.1. Training framework for the generalization
performance

Since the generalization performance increases in proportion to the quantity of
the data used to develop the algorithm, using many driving cycles in the development
of the DRL model for the FCHEV helps to increase the generalization performance
of the agent. In this study, the DRL model was trained based on more than 20
reference driving cycles representing general driving situations, such as FTP-75 and
UDDS cycle for the training of the DRL model.

Figure [37] shows the process of developing the DRL-based power distribution
strategy. First, we find the effective reward factor based on one driving cycle through

the methodology that derives the reward factor described above. In this study, the
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effective reward factor was derived based on the FTP-72 reference driving cycle
shown in Figure [38]. After that, we improved the generalization performance of the
DRL model by re-training the DRL agent through various standard cycles and the
derived reward factor. In order to improve the learning speed, when training the DRL
model through multiple reference cycles, we used a transfer learning method that
initializes the weights of the model to the weights of the model previously trained in

one cycle.

/ Pre-training on one cycle \

4\
<
L
b’b State,
K

) Reward

_ Y

Derived
reward factor, y*

A= = -

/ Training on the multiple cycles \

State,
Reward

. J

Figure 37. Training framework to secure the generalization power of the agent
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Figure 38. FTP-72 reference driving cycle

3.4.2. Development of driver model based on the Markov
decision process

Since the DRL model was trained through most of the reference driving cycles,
it was necessary to generate additional driving patterns and driving cycles to verify
the DRL model. We developed the driver model based on the Markov decision
process to verify the DRL model for various driving patterns.

The MDP-driver model was developed based on the statistical characteristics
of the reference driving cycles. As in Eq (30), the MDP-driver model derives the
vehicle speed of the next step based on the vehicle speed at the current step. In Eq
(30), v,a,and P mean velocity, acceleration, and transition probability, respectively.
The transition probability represents the probability that an arbitrary acceleration

will be derived under a specific velocity condition.

Vepr = Ve + aiAt,  ap ~ P(ac|V = vy) (30)
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And the transition probability, P is expressed as Eq (31) below, where N
means the number of transitions to acceleration, a under the condition of a specific
velocity, v. The number of transitions, N, is expressed by Eq (32). In Eq (32), € is
an arbitrary constant value and plays a role of suppressing the occurrence of a dead
zone where the transition probability becomes 0. Also, it makes the transition

probability different from the average transition distribution of the reference cycles.

a
. (31)
Y XaNg
N3=Z1(-|V=U,A=a)+s (32)
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Figure 39. Visualization of the transition probability matrix
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Figure [39] shows the visualization result for the transition probability matrix.

Y-axis stands for the velocity and X-axis stands for the acceleration. And the color

of the grid corresponding to each velocity and acceleration represents the transition

probability. The closer to yellow, the closer to 1, and the closer to purple, the closer

to 0.

When the verification experiments are conducted with only the reference cycles,

the number of developed reference driving cycles is limited, so only limited

verification experiments are possible. In order to overcome these limitations, we

developed the MDP-based driver model and carried out extensive DRL model

verification experiments through a number of the validation driving cycles.
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3.4.3. Experiments for the validity and the results

Figure [40] shows examples of the driving cycles for verification created

through the MDP-driver model described above. It can be seen from the figure that

the generated driving cycles have different driving characteristics from each other.

In this study, the generalization power of the trained DRL model was evaluated with

a number of driving cycles generated through the MDP-driver model.
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Figure 41. Simulation results for the generalization power of the DRL model in terms
of the SOC sustainability: (a) SOC trajectories of the trained DRL model on the test
driving cycles, (b) final SOCs of the trained DRL model on the test driving cycles
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We first generated 100 driving-cycles through the MDP-driver model in order
to evaluate the generalization power of the trained DRL model in terms of the SOC-
sustainability. In these 100 driving-cycles, we evaluated the SOC-sustainability of
the agent, and the evaluation results are shown in Figure [41]. (A) of Figure [41] is
the result showing some of the SOC trajectories derived while the trained agent runs
the 100 test cycles. And (b) of Figure [41] refers to the final SOC, which is the SOC
at the end of the 100 test cycles.

Figure [41] — (b) shows that the final SOCs for the trained DRL model are very
similar to the initial SOC value set to 0.6 even when the agent is tested on the 100
validation driving cycles generated by the MDP-driver model. The difference
between the final SOC and the initial SOC shows a difference of less than about 0.01,
and through this, it can be confirmed that the trained agent guarantees the
generalization power in terms of SOC-sustainability.

We confirmed that the derived DRL model secures the generalization
performance in terms of the SOC-sustainability. However, the DRL agent must be
able to guarantee the generalization performance in terms of the fuel efficiency. In
order to verify the fuel efficiency of the DRL agent, we conducted a study using
Equivalent consumption minimization strategy (ECMS) as a reference model.
ECMS is a theory derived based on the PMP (Pontryagin's minimum principle)
theory, and is controlled by deriving a control value, u#, which minimizes an
instantaneous cost function such as Eq (33). A is defined as a Lagrange multiplier or
co-state, and physically has the meaning of an equivalent factor that equalizes the

amount of SOC change to instantaneous fuel consumption in Eq (33).

H =1z +1-SOC (33)

u* = argmin H (34)
u
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ECMS is a simple theory, but a solution derived by the ECMS close to the
optimum if the co-state is derived appropriately. N. Kim, S. W. Cha, et. al proved
that if the co-state that satisfies the SOC-constraint can be derived, it can show a
result comparable to the dynamic programming (DP) guaranteeing a global optimal
solution.

DP provides a methodology that can derive an optimal solution without
searching all paths by repeatedly storing the optimal solution of the divided problem.
The process of deriving the optimal cost, Jj , which is consumed from the N"step
to the k™ step, can be expressed through Eq (35), where L is the cost consumed from
the k+1" step to the k™ step. Figure [42] is illustration showing the mathematical

expression of DP.

Jien (x () = mgn(L(x(k),u(k)) + Jiern (x(k + 1)) (35)

! U Jrean(x1)
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Figure 42. Schematic diagram of the calculation process of the dynamic programming
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Figure 43. SOC trajectory created by shooting method

We used the shooting method to derive the optimal co-state for the ECMS. That
is, we derive the optimal co-state that can satisfy the SOC constraint by repeatedly
updating the co-state value for an arbitrary driving cycle. Figure [43] shows the
SOC-trajectories generated by updating the co-state until the optimal co-state value
for the ECMS is derived on an arbitrary driving cycle. When the co-state is about -
71.3, the SOC-constraint can be satisfied.

In order to confirm the effectiveness of the ECMS used as the reference model,
we conducted the comparison experiment between the ECMS and the DP which can
guarantee an optimal solution. 50 driving cycles corresponding to 1500 seconds were
created from the MDP-driver model, and the fuel economy comparison experiment
between the two optimal control algorithms was conducted. Figure [44] shows the
scatter plot of the equivalent fuel consumption between DP and ECMS. The

equivalent fuel consumption refers to the fuel consumption consumed when the final
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SOC value is replaced with the initial SOC when the final SOC is different from the

initial SOC. The x-axis of the scatter plot shows the fuel consumption for the ECMS

and the y-axis shows the fuel consumption for the DP. The blue dotted line represents

the decision boundary in Figure [44]. If there is a point at the bottom of the decision

boundary, it means that the DP recorded less fuel consumption than the ECMS, and

if the point is above based on the decision boundary, it means that the ECMS

recorded less fuel consumption than the DP. All points exist below the decision

boundary, but points are distributed at points very close to the decision boundary,

which means that the two optimization algorithms show similar efficiencies.
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Figure 44. Scatter plot for the fuel consumption of the ECMS and the fuel

consumption of the DP

Table II. Comparison of simulation results between DP and ECMS

Maximum AFC [%]

Minimum AFC [%]

Average AFC [%]

1.19

0.0014

0.47
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Table 2 shows information on the difference in the equivalent fuel consumption
between the ECMS and the DP. The difference about the equivalent fuel
consumption between the optimal control theory algorithms for the 50 driving cycles
is about 1.19% at the maximum, and about 0.001% at the minimum. On average, the
two optimal control algorithms show a difference of about 0.47%, which means that
if the co-state value of the ECMS is well set based on the future driving information,
there is no significant difference from the DP result.

As such, we confirmed the validity of the AC model developed in this study by
comparing the ECMS algorithm belonging to the real-time optimal control which
can derive control close to the optimal.

Figure [45] shows the simulation results of the ECMS algorithm and AC agent
for the cycle corresponding to 1500 seconds generated through the MDP-driver
model. (a), (b), and (c) of Figure [45] show the driving cycle, the action profiles of
the two algorithms, and the SOC trajectories for the two algorithms, respectively. In
Figures [45]-(b) and Figure [45]-(c), the solid blue line shows the action profile and
SOC trajectory for the DRL-based AC model, and the orange dotted line shows the
action profile and SOC trajectory of the ECMS. The figure shows that the action
profiles for the ECMS and the AC models are similar.

And Table 3 shows the comparison simulation results between the ECMS and
the AC agent. In Table 3, FC stands for the fuel consumption and FCgyes stands for
the equivalent fuel consumption. It can be seen that the difference between the
equivalent fuel consumption for the AC model and the equivalent fuel consumption

for the ECMS is 0.3%, which is very similar.
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Table ITI. Comparison simulation results for the two models on a driving cycle
generated from MDP-driver model

ECMS AC
Final SOC 0.596 0.586
FC [g] 66.3 65.7
FCarer 12l 66.5 66.7
AFC [%] - 0.3%

And Figure [46] is the scatter plot showing the equivalent fuel consumption of
the ECMS and the AC model in 100 simulations based on the driving cycles
generated from the MDP-driver model. The x-axis represents the equivalent fuel
consumption for the ECMS algorithm, and the y-axis represents the equivalent fuel
consumption for the AC model. The blue dotted line is the decision boundary that
classifies the efficiency advantages of the two models. If the points are distributed
above the decision boundary, it means that the efficiency of the ECMS is better than
the DRL-based AC agent, and if the points are distributed below the decision
boundary, it means that the efficiency of the AC model is better than the ECMS.
Although most of the points are distributed above the decision boundary, it can be
seen that they exist near the decision boundary, which means that the difference for
the efficiency between the two algorithms is small.

Then, the experimental results for the 100 validation simulations between the
ECMS and the AC agent are shown in Table 4. In simulations, the ECMS showed
better efficiency than the DRL model in the general point of the view, but the
difference in fuel efficiency between the two models is less than 0.84%. Considering
the fact that the AC agent performs control by reflecting only the current state, it can

be said that the AC agent guarantees a high level of the generalization performance.
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Table IV. Comparison results between the AC model and the ECMS on the 100 driving

cycles generated from the MDP-driver model

ECMS AC
Number of wins 98 /100 2 /100
Biggest difference with ECMS (%) - + 0.84
Lowest difference with ECMS (%) - -0.79
Average difference with ECMS (%) - +0.25
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3.5. Development of the Agent considering the
Degradation of the Fuel Cell Stack

Research so far has focused on deriving power distribution strategies that
minimize the fuel consumption and ensure the SOC sustainability. Through the
previous research, we developed the methodology to train the DRL model that can
guarantee the scalability and the generalization. However, since the fuel cell stack is
vulnerable to the deterioration, it is necessary to develop the power distribution
strategy that considers the degradation of the fuel cell.

The degradation of the fuel cell stack is caused by a wide variety of causes such
as mechanical stress, reduction of the surface area of the catalyst, contamination, etc.
[37]. The deterioration of the fuel cell stack for the FCHEV is caused by mechanical
shock as well as by electrochemical reaction. In addition, since one degradation
factor affects other degradation factors, the deterioration of the fuel cell stack is very
complex. As such, since the degradation process of the fuel cell stack of the FCHEV
involves a lot of complexity, many studies have been conducted to model the
deterioration of the fuel cell through a data-driven approach [39].

In a representative study to diagnose the FCHEV's fuel cell degradation based
on using a data driven approach, the stack operation mode was divided into four and
the deterioration of the fuel cell according to each operation mode was quantified (H.
Chen, 2015). “Idling operation”, “high power condition”, “load change operation”,
and “start & stop operation” were defined as four operation modes that cause
degradation in the fuel cell stack in the study. Table 5 shows the degree of
deterioration of the fuel cell stack according to each operating mode. In this study,
the fuel cell degradation model was developed with reference to the relevant research,
and the energy management strategy of the FCHEYV that that reflects the deterioration

of the fuel cell stack was developed based on this degradation model.
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Table V. Fuel cell stack degradation model according to the operation mode

Operation conditions Voltage degradation
Load change operation 0.4185 uV/cyc
Idling operation 8.662 uV/h
High power condition 10.00 puV/h
Start & Stop operation 13.4 uV/cyc

3.5.1. Reformulation of the reward -considering the
degradation

Since there is no degradation-related term in the reward designed in the
previous study, it is necessary to modify the existing reward to develop the DRL-
based control strategy that reflects the degradation of the fuel cell stack. We designed
a new reward as Eq (36) to develop the DRL model that considers the degradation
of the fuel cell stack. In Eq (36), AV and ¢ mean the instantaneous voltage drop of
the fuel cell due to the degradation and the equivalent factor that equalize the

instantaneous voltage drop to fuel consumption rate.
R = — (s + 0AV) — ¥|SOC — SOC,of| (36)

We wanted the reward considering the degradation of Eq (36) to maintain the
same format as the reward that does not reflect the degradation of Eq (19), which
consists of two components: the fuel consumption and the SOC deviation. Therefore,
we introduced the equivalent factor of the stack degradation for the fuel consumption
rate of o in Eq (36), and it has a unit of [g/uV]. We carried out an economic

evaluation such as Eq (37)-(39) to derive an appropriate value for ¢. In Eq (37),
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Costsiqcr and Costy,, represent stack price and stack price per kW power. In Eq
(37), Costgrq means the economic cost due to the stack degradation, AV,
represents limiting voltage-drop, and the lifespan of the stack is considered until the
deterioration exceeding the limiting voltage-drop occurs. And Costy, of Eq (39)
represents hydrogen price. In this study, Costy, , AVjimi, and Costy, were
defined as 40[$/kW], 0.12V, and 8[$/kg], respectively, based on related research and
current market conditions [48, 49]. As a result, we derive the value of ¢ as 2.79
[g/uV]. In other words, the voltage drop corresponding to 1 uV is equivalent to

additional consumption of 2.79 g of hydrogen.

Costseqer = Pfc,max - Costyy (37)
COStstack
Cost = —— (38)
ard AViimit
Cost
Costy,

And we added a term related to the additional fuel consumption due to the
voltage-drop to the reward. As shown in Eq (40), the power that the fuel cell should
be responsible for an arbitrary demanding power is the same when deterioration
occurs and when no deterioration occurs. In Eq (40), 8V refers to the voltage-drop
due to the stack degradation, and §j refers to the current density to be increased due

to the stack degradation.
Veeu ' j = Weew = 6VI(j + 8§) (40)

If we ignore the term for 6V - §j, Eq (40) can be expressed as Eq (41).
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.
6j = oV 41
/ Vcell ( )

Then, the fuel consumption rate, "¢ qqq additionally consumed by 9j is equal
to Eq (42). In Eq (42), M, N, A, and F denote the molecular mass for hydrogen, the

number of cells, the cell area, and Faraday number, respectively.

. _yNAsi A
Mfcada =M= Mopy

Y% (42)

Finally, the designed reward is represented to Eq (43). It should be noted that
there is a difference in that AV represents the instantaneous voltage-drop caused by
the stack degradation, and 8V represents the voltage-drop accumulated by the stack

degradation during the simulation in Eq (43).

NAj
2FVcell

R=- (mfc + oAV + M 5v) —y|S0C — S0C,| (43)

Therefore, the structure of the reward considering the stack degradation can be
considered to be divided into a term related to the fuel consumption rate and a term
related to the SOC deviation, similar to the structure of the reward which is not reflect

the degradation. Figure [47] clearly shows the reward structure. In Figure [47],

NAj
2FVcen

(Mmge + oAV + M 6V) is a term related to the fuel consumption which

contains actual fuel consumption and converted fuel consumption due to the
deterioration. Therefore, the term related to the fuel consumption is called the

effective fuel consumption rate and is expressed as Eq (44) in this study.
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oy = g + oAV + M6V (44)

NAj

——— V)
ZFVcell

R=—(ms +0AV+M

Effective Fuel Consumption

—y|SOC — SOC,|

SOC deviation

Figure 47. Configuration of the reward with two terms

3.5.2. Development of the power distribution strategy
considering the stack degradation

Based on the reward reconstructed in the previous study, the DRL agent that
considers stack degradation was trained. When training the agent through the reward
that reflects the stack deterioration, the reward factor was selected as 28.25.

We compared the simulation results of the agent trained based on the new
reward and the agent in the previous study derived through the reward that does not
include the degradation factor. Table 6 shows the main characteristics of the agent
without considering the stack deterioration and the main characteristics of the agent
considering the stack deterioration. In the table, “Agent 1” refers to the agent trained
without considering the degradation factor, and “Agent 2” refers to the agent trained

by considering the degradation factor. Compared to the agent 1, the agent 2 not only
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has the different reward, but also has the different state. The action of the previous
step, Aprey 1s added to the existing state in the state for the agent 2.

Since one of the main deterioration factors of the stack is the load change, if the
current density by action is different from the current density in the previous step,
the stack degradation occurs. Therefore, the state of size 5, such as Eq (45), was
constructed so that the agent2, which make policy in consideration of the

deterioration, can cope with the degradation of the stack due to load change.

S = [Pdmd'ASOC'jmin'jmax' apm,] (45)

Table VI. Main features of the trained agents

Agent 1 Agent 2

Algorithm Actor-Critic Actor-Critic

[Pdmd: ASOC:jmin:jmax] [Pdmd’ ASOC’jmin'jmax' aprev]
State configuration

Size of the state =4 Size of the state =5
Action configuration a= ﬁout (2) * jmax a= /Zou . (2) * Jmax
Reward configuration R = — (s, +y|ASOC)) R = —(mpr +y|ASOC))
Reward factor 5.80 28.25

Figure [48] shows the test cycle derived through the MDP-driver model, and
Figure [49] shows the results of the comparative experiment of the two agents. The
(a) of Figure [49] refers to the cumulative fuel consumption according to the time of
the two agents, and the (b) refers to the cumulative voltage-drop according to the
time of the two agents. In Figure [49], the blue solid line represents the simulation
result for the agent 1, and the orange solid line represents the simulation result for
the agent 2. Figure [49] shows that agent 1 is somewhat more efficient than agent 2

in terms of the fuel consumption, but agent 2 shows a great advantage over agent 1

1] O 1
1
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in terms of the degradation of fuel cell stack. Figure [49] shows that the agent 1 is
somewhat more efficient than the agent 2 in terms of the fuel consumption, but the
agent 2 shows a great advantage over the agent 1 in terms of the degradation of the
fuel cell stacks. The results of the comparative experiment are specified in Table 7.
In Table 7, AFC and ADegradation are the relative difference of the agent 2 to the
agent 1 in terms of the equivalent fuel consumption and the relative difference of the
agent 2 to agent 1 in terms of the degradation. In terms of the equivalent fuel
consumption, the agent 2 consumes about 19% more fuel than the agent 1, but in
terms of the fuel cell degradation, the voltage-drop from the agent 2 is reduced by

about 80% compared to the voltage-drop from the agent 1.
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Figure 48. Test cycle from MDP-driver model
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Table VII. Simulation results with the agent 1 and the agent 2

Agent 1

Agent 2

FC@socref 9]

67.7

(S0C; = 0.586)

84.0

(S0C; = 0.597)

Degradation [uV] 655.0 126.7
AFC [%] - +19.4%
ADegradation [%] - -80.7%
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We carried out the comparison experiment on 100 test-cycles generated through
the MDP-driver model for a robust comparison experiment. Figure [S0] and Table 8
show the comparison experiment results in terms of the fuel consumption. Figure
[50] shows the scatter plot of the fuel consumption consumed by the agent 1 and the
agent 2 through the 100 driving cycles. The blue dotted line is the decision boundary.
If the red dot is on the left based on the decision boundary, it means that the agent 1
is more efficient than the agent 2, and if the red dot is on the right based on the
decision boundary, the agent 2 is more efficient than the agent 1. It can be seen that
all points of the scatter plot are formed on the left based on the decision boundary,
and the related results are clearly seen in Table 8. The agent 1 shows superior
performance in terms of the fuel consumption compared to the agent 2 in all 100 test
drives, and the agent 1 shows excellent fuel efficiency performance of about 24% on
average compared to the agent 2.

On the other hand, Figure [51] and Table 9 show the comparison experiment
results in terms of the stack degradation. Figure [51] shows the scatter plot of the
voltage-drop caused by the stack degradation for the agent 1 and the agent 2
according to the 100 test cycles. Based on the decision boundary of the scatter plot,
all red dots are on the right, which means that the control strategy of the agent 2 is
superior to the control strategy of the agent 1 in terms of the stack degradation. And
the dots of the scatter plot are concentrated in the lower right region, which means
that the deterioration of the stack has low dependency on the driving-cycles. Table 9
shows the comparison results for the control strategy of the agent 2 and the control
strategy of the agent 1 regarding the voltage-drop. It can be seen that the agent 2
shows superior performance in terms of the degradation compared to the agent 1 for
all comparison experiments. On average, the agent 2 can reduce the voltage-drop

caused by the degradation by about -78% compared to the agent 1.
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Figure 50. Scatter plot of agent1's fuel consumption and agent2's fuel consumption on

100 driving cycles

Table VIII. Comparison experiment results in terms of the fuel consumption with 100

driving cycles

Fuel Consumption Agent 1 Agent 2
Number of wins 100/ 100 0/100
Maximum A (%) - +25.5
Minimum A (%) - +20.0
Average A (%) - +23.9
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Figure 51. Scatter plot of agent1's stack degradation and agent2's stack degradation

on 100 driving cycles

Table IX. Comparison experiment results in terms of the voltage-drop with 100

driving cycles

Degradation Agent 1 Agent 2
Number of wins 0/100 100/ 100
Maximum A (%) - -75.0
Minimum A (%) - -79.8
Average A (%) - -78.1
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As such, it can be seen that the agent 2 shows very superior performance with
regard to the stack degradation compared to the agent 1. In order to find out the cause
of the large difference in the voltage-drop between the agent 2 and the agent 1, we
created a validation cycle through the MDP-driver model and derived the action
profiles of the two agents. Figure [52] shows the action profiles of two agents for the
validation cycle. The (a) and (b) of Figure [52] show the action profiles of the agent
1 and the agent 2, respectively. We can confirm that agent 2 relatively reduces the
load change operation by actively using the idling operation through (b) of Figure
[52].

Table 10 represents the voltage-drop for each operation mode that occurred
while the agent 1 and the agent 2 drive the same validation cycle. It is noteworthy
that the load change operation exerts a dominant influence on the overall stack
degradation for both the agent 1 and the agent 2. The phenomenon that the load
change operation has a great influence on the fuel cell degradation has been proven
through past studies [42].

From the results of Figure [52] and Table 10, we can see that the agent 2
suppresses the load change operation that dominates the stack deterioration by
actively utilizing the idling operation, which has relatively little influence on the
degradation. The control strategy of the agent 2 shows about 80% superior
performance than the control strategy derived by the agent 1 in terms of the total
degradation.

And Figure [53] visualizes the total amount of effective fuel consumption
generated by driving of two agents on the validation cycle. The agent 1 and agent 2
consume 1920g and 464g of the effective fuel consumption, respectively. As a result,
the agent 2 shows improved performance of 75.8% compared to the agent 1 with
regard to the effective fuel consumption through the reduction of the fuel cell

degradation.
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Figure 52. Action profiles of two agents on the validation cycle generated from MDP-

driver model: (a) action profile of the agent 1, (b) action profile of the agent 2

Table X. Voltage-drop by the operation conditions for two agents

Degradation Factors Agent 1 Agent 2
Idling (uV) 0.007 3.15
High load (uV) 0.0 0.06
Load change (uV) 628.2 96.7
Start & Stop (uV) 26.8 26.8
Total (uV) 655.0 126.7
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3.5.3. Developing an improved DRL model

We developed a DRL agent that can reduce the stack degradation and the
effective fuel consumption by modifying the reward and the state. However, since
the DRL agent derives a continuous action value, it is difficult to effectively reduce
the deterioration caused by the load change operation that dominates the
deterioration. In the previous study, it was also confirmed that the agent performing
energy management considering deterioration took a strategy of actively utilizing the
idling operation to reduce the load change operation. In the previous study, it was
also confirmed that the agent that performs energy management in consideration of
the stack degradation actively utilizes the idling operation to reduce the load change

operation.
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We modified the configuration of the action to develop a DRL model that can
more effectively cope with the stack degradation caused by the load change operation.
To this end, we added a new action to the action configuration of the DRL model
that determines whether to take the action of the current step the same as the action
of the previous step. Figure [54] shows the structure of the actor network for the
newly constructed DRL model. The newly configured DRL model differs from other
DRL models in that the number of units of the output layer is two. In this study, the
DRL model with the structure shown in Figure [54] was defined as “agent 3”. The

action of agent 3 is derived as Eq (46) based on the two output-values a; and a,

derived from the output layer. In Eq (46), /25 tep (x) is defined as a binarized step

function that becomes 1 when x is greater than or equal to 0.5, and 0 when x is

less than 0.5, as in Eq (47).

a= ﬁstep(al) "Aprey t+ [1- /istep(al)] (a2 * Jmax) (46)

1, x=0.5

s ® =15, 2 <05

step (47)

Therefore, a, can be viewed as an output value that determines whether to use
the action of the previous step as the current action value. If a, is greater than 0.5,
the current action is selected as the action value of the previous step, and if a; is
less than 0.5, a new action value calculated based on a, is taken.

As another model, we used the Deep Q-Network (DQN) model to derive the
discrete action [25]. Since the load change operation has a profound effect on the
stack degradation and the effective fuel consumption, we judged that an effective
power distribution strategy could be derived through the DQN model that derives

the discrete actions.
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Figure 54. Architecture of the DRL model with two actions

a=argmaxQ(s,a)
a
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Figure 55. Structure of the DQN model that derives discretized action

Figure [55] shows the architecture of the DQN model. In this study, the discrete
action size was set to 20. Therefore, the number of units of the output layer in the
DQN model is 20, and each output value is an estimated value of the Q-value
corresponding to each action. And the DQN model selects the action that expects the
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largest Q-value among the estimated Q-values as in Eq (48) as an action. Another
point to note in the DQN model is that the size of the input layer is 24. Since we
express the discretized action of the previous step in one-hot encoding format, the
action of the previous step is expressed in the form of a vector of size 20. Therefore,
the state input to the DQN model has a total size of 24 by adding the action of the
previous step in a vector format of size 20 to the basic state of size 4. In this study,

the DQN model that derives these discrete actions was named “agent 4”.

a = argmax Q(s,a; 9) (48)
a

Tablel1 shows the main features of the agent 3, which has an actor-critic
structure that derives two actions, and the agent 4, which is based on a DQN model
with 20 action sizes. The reward factors of the agent 3 and the agent 4 derived
through the training were selected as 25.4 and 20.49, respectively.

As a result, the agent 1, which establishes power distribution strategy without
considering the stack deterioration, and the agent 2, the agent 3, and the agent 4,
which establish power distribution strategy considering the stack degradation were
developed through this study. Similar to the previous study, we made 100 validation
cycles using the MDP-driver model for the systematic comparison of the 4 agents
and we conducted the performance comparison experiments of the 4 agents on 100
validation cycles. The performance of the agent was evaluated in three aspects
including the fuel consumption, the voltage-drop due to degradation, and the SOC-

sustainability.
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Table XI. Main features of the agent 3 and the agent 4

Agent 3 Agent 4
Algorithm Actor-Critic DQN
State [Pdmd' ASOC'jmin'jmax' aprev] [Pdmdt ASOC, jmin'jmax' aprev]

configuration Size of the state = 5 Size of the state =24

Action

a = hy(a) ey + (1 = hg(ay)) - ay a= arg;nax Q(s,a)

configuration

Reward )

R = —(meff+]/|A50C|) R = —(meff+]/|ASOC|)

configuration
Reward factor 25.4 20.49

Figure [56] is a matrix-type scatter plot comparing four agents in terms of the
fuel consumption. The matrix has a size of 4x4, and the Ist, 2nd, 3rd, and 4th
columns of the matrix correspond to agent 1, agent 2, agent 3, and agent 4
respectively. And, the 1st, 2nd, 3rd, and 4th rows of the matrix corresponds to agent
4, agent 3, agent 2, agent 1 respectively. For example, the comparison result of the
fuel consumption with the agent 2 and the agent 3 is shown in the scatter plot
corresponding to (2, 2) or the scatter plot corresponding to (3, 3) in the matrix. In the
scatter plot corresponding to the (2, 2) element in the matrix, the x-axis represents
the fuel consumption for the agent 2 and the y-axis represents the fuel consumption
for the agent 3. It can be seen that the points are clustered on the right based on the
decision boundary of the scatter plot, which means that the agent 3 has superior
performance in terms of the fuel consumption compared to the agent 2. On the
contrary, the x-axis of the scatter plot corresponding to the (3, 3) element in the
matrix represents the fuel consumption for the agent 3, and the y-axis represents the
fuel consumption for the agent 2. Since the points are distributed on the left based

on the decision boundary, the agent 3 is more efficient than the agent 2. In this study,

90 A



a matrix-type scatter plot is named “scatter plot matrix”. In this study, this matrix
type scatter plot is named “scatter plot matrix”.

The scatter plot for the first column of the matrix, that is, the elements (1, 1),
(2, 1), and (3, 1), shows that the points are distributed on the left side based on the
decision boundary. In other words, the agent 1 shows superior performance in terms
of the fuel consumption compared to the other three agents. The specific results of
the comparative experiments of the four agents related to the fuel consumption are
represented through Table 12 and Table 13.

Table 12 shows the rankings recorded by each agent during 100 experiments in
terms of the fuel efficiency. Table 12 shows that for all experiments, agent 1 exhibits
superior performance in terms of the fuel consumption compared to the other agents.
And except for the agent 1, the agent 3, the agent 2, and the agent 4 have good fuel
efficiency in the order.

Table 13 shows the relative difference of the average fuel consumption between
the four agents. The relative difference between the i-th row and the j-th column of

Table 13 is calculated as Eq (49), where Fagent}. represents the performance value

for the “agent j”, and Fggene; represents the performance value of the “agent i”. In
the case of Table 13, the performance value is the fuel consumption. Column 1 of
Table 13 shows the relative difference of the fuel consumption between agent 1 and
the remaining agents. It can be seen that the agent 1 uses about 20% less fuel than
the agent 4 and the agent 1 uses about 6% less fuel than the agent 3. Considering that
the agent 1 is trained regarding the fuel consumption and the SOC-sustainability
without including the degradation, it is reasonable that it shows higher performance

in terms of the fuel consumption compared to other agents.

N Fagentj - Fagenti ( + ) (49)
= L #]
max (Fagent;» Fagent,)
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Figure 56.Matrix of the scatter plots comparing four agents for the fuel consumption

Table XII. Ranking for the fuel consumption

Agent 1

Agent 2

Agent 3

Agent 4

# of 1st

100 /100

0/100

0/100

0/100

# of 2nd

0/100

0/100

100 /100

0/100

# of 3rd

0/100

97/100

0/100

3/100

# of 4th

0/100

3/100

0/100

97 /100

Table XIII. Relative difference for the average fuel consumption

Agent 1

Agent 2

Agent 3

Agent 4

Agent 1

+19.4

+6.00

+20.3

Agent 2

-194

- 14.31

+1.16

Agent 3

- 6.00

+14.31

+15.30

Agent 4

-20.3

-1.16

-15.30
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And we compared the performance of the four agents in terms of the stack
degradation. As when comparing the fuel consumption, the results of the
comparative experiment were shown through the scatter plot matrix, the table related
to the ranking, and the table for the relative difference. Figure [57], Table 14, and
Table 15 show the results of voltage-drop due to the stack degradation.

Figure [57] shows the scatter plot matrix for voltage-drop. The scatter plot
corresponding to the elements (1, 1), (2, 1), and (3, 1) related to the 1st column shows
that the points exist on the right side of the decision boundary. This means that the
agent 1 is inferior to the other three agents in terms of the stack degradation. On the
other hand, the scatter plot for the 3rd column related to the agent 3 shows that the
points are distributed on the left side based on the decision boundary, which means
that the agent 3 shows superior performance in terms of the degradation compared
to other agents.

Table 14 shows the rankings recorded by four agents during 100 test cycles for
the voltage-drop. Through Table 14, we can confirm that the ranking of the agents
for the stack degradation is clearly classified. In other words, the agent 1, the agent
2, the agent 3, and the agent 4 ranked 4th, 2nd, 1st and 3rd respectively in all 100
validation cycles. Table 15 shows the relative difference between the agents for the
degradation. Through column 3 related to the agent 3 of Table 15, we can confirm
that the agent 3 has an overwhelming advantage over other agents in terms of the
degradation. When compared with the agent 1, the agent 3 shows the result of
reduction for the degradation by about 91%, and the agent 3 shows the result of the
degradation is reduced by about 52% compared with the agent 2. On the other hand,
if you look at the 1st column related to the agent 1 in Table 15, it is apparent that the
agent 1 does not cope well with the deterioration. Compared to the agent 2, the agent
1 shows 81.4% more degradation of the stack, and the agent 1 shows 80.5% more

degradation compared to the agent 4, as shown in 1st column of Table 15.
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Figure 57. Matrix of the scatter plots comparing four agents for the voltage-drop due
to the stack degradation

Table XIV. Ranking for the stack degradation

Agent 1

Agent 2

Agent 3

Agent 4

# of 1st

0/100

0/100

100 /100

0/100

# of 2nd

0/100

91/100

0/100

9/100

# of 3rd

0/100

9/100

0/100

91/100

# of 4th

100/ 100

0/100

0/100

0/100

Table XV. Relative difference for the average voltage-drop due to the stack

degradation

Agent 1

Agent 2

Agent 3

Agent 4

Agent 1

-81.4

-91.1

- 80.5

Agent 2

+81.4

-52.3

+4.74

Agent 3

+91.1

+52.3

+54.6

Agent 4

+ 80.5

-4.74

-54.6
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Finally, we compared the performance of the four agents regarding the charge-
sustainability. The charge-sustainability is defined as the absolute value of the

difference between the final SOC and the initial SOC as in Eq (50).
ASOC = |SOCrinar — SOCinitiai] (50)

The experiment on the charge-sustainability was analyzed in a similar manner
to the previous two performance experiments. Figure [58] shows the scatter plot
matrix for the SOC-sustainability. The scatter plot in the 4th column related to the
SOC-sustainability of the agent 2 shows that the points are generally distributed on
the left side based on the decision boundary. Through this, it can be seen that agent
2 secures higher SOC-sustainability than other agents. Based on this fact, we can see
that the agent 2 secures high SOC-sustainability compared to other agents.

From Table 16 and Table 17, it is confirmed that from the viewpoint of the SOC-
sustainability, the agent 2, the agent 3, the agent 4, and the agent 1 show excellent
performance in order.

And Figure [59] is the scatter plot showing the SOC-sustainability for the agent
1. Therefore, both x-axis and y-axis for Figure [59] correspond to the SOC-deviation
for the agent 1, and all points exist on the decision boundary. Figure [59] shows that
most of the deviation values between the initial SOC and the final SOC are
distributed within approximately 0.025 in 100 experiments for the agent 1, which
has the lowest performance for the SOC-sustainability. Therefore, the SOC-
sustainability is somewhat different between the agents, but all four agents have

excellent performance regarding the SOC-sustainability.
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Figure 58. Matrix of the scatter plots comparing four agents for the SOC-
sustainability

Table XVI. Ranking for the SOC-sustainability

Agent 1

Agent 2

Agent 3

Agent 4

# of 1st

0/100

51/100

48 /100

1/100

# of 2nd

1/100

43/100

45/100

11/100

# of 3rd

16 /100

5/100

7/100

72 /100

# of 4th

83 /100

1/100

0/100

16 /100

Table XVII. Relative difference for the average voltage-drop due to the stack

degradation

Agent 1

Agent 2

Agent 3

Agent 4

Agent 1 -

-70.7

-69.8

-25.2

Agent 2

+70.7

+2.97

+ 60.8

Agent 3

+69.8

-2.97

+59.6

Agent 4

+252

- 60.8

-59.6
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Figure 59. Scatter plot for the SOC-sustainability of the agent 1

We created a random cycle and checked the action profile of each agent for that
cycle. Figure [60] shows the generated validation cycle, and Figure [61] shows the
action profiles of the agents for the validation cycle. In Figure [61], (a), (b), (c), and
(d) represent the action profiles corresponding to the agent 1, the agent 2, the agent
3, and the agent 4.

Figure [61] shows the secret that the agent 3 was able to significantly reduce
the degradation compared to other agents. We can see from Figure [61] that the agent
3 minimizes the load change operation while maintaining the previous action.

The average effective fuel consumption for 100-drivings of the four agents is
shown in Figure [62]. Figure [62] shows that the control strategy that minimizes the
load change operation of the agent 3 has higher efficiency than other agents in terms
of the effective fuel consumption. These findings suggest that the effective power
distribution strategies for the FCHEV can be developed based on the DRL model

with the same structure as the agent 3.

97 . H kl 1_'_” i



Test cycle

(=2}
o

Velocity[km/h]
8

N
o

0 200 400 600 800 1000 1200 1400
Time[s]

Figure 60. Driving cycle generated from MDP-driver model

10 Actions for agentl 10 Actions for agent2
08 . 0.8 |
o N
§ § _
E 0.6 E 0.6 it ‘
&= &
w w
i< i =4 |
< ]
.E 0.4 .E o.d 1 14 | H 1
o o
= " 13
] ]
0.2 L I 0.2 18 BRI ! HiH 1 |
0.0 dad 0.0 | | I ‘ ‘
' 0 200 400 600 800 1000 1200 1400 Y0 200 400 600 B0O0 1000 1200 1400
Tirme [5] Tirme [5]
(a) (b
10 Actions for agent3 10 Actions for agentd
_ 08 _ 08
S S
= 0.6 = 0.6
b b
= =
= 3
= 04 = 04
L o
E E
& 3
0.2 0.2
0.0 0.0
0 200 400 600 8O0 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Time [s] Time(s]
(c) (d)

Figure 61. Action profiles with the agents: (a) action profile for the agent 1, (b) action
profiles for the agent 2, (c) action profiles for the agent 3, (d) action profiles for the
agent 4

TlA

=

o8 2 A=d g

Ll



Average Effective fuel consumption with the agents

2000 4 19689

1750

&
S

Ix]
2

1000

Effective fuel consumption [g]
o

2z
=

250 4

Agentl

497g

Agent2

307g

Agent3

515¢g

Agent4

Figure 62. Comparison of the effective fuel consumption for the four agents on the

validation cycle

99




3.6. Development of the Methodology for the Online-
Learning on the DRL Model

In the previous study, the trained network was not updated according to the
multiple driving cycles, and the fixed network was continuously used. However, the
DRL algorithm has the advantage of optimizing the network and easily responding
to system changes through the online-learning framework based on the recent
experiences. In this study, we developed an online-learning methodology for the
power distribution strategy of the FCHEV by taking advantage of the DRL algorithm,
which is easy to apply online-learning.

Considering that the FCHEV's stack degradation occurs at the start of driving
and has a great influence on the entire system, it is important to develop the online-
learning methodology for the control strategies. In this study, we developed the
online-learning methodology for the DRL model. And we compared the performance
of the DRL agent that is applied the online-learning algorithm and the reference
model that is not applied the online-learning algorithm in the FCHEV’s stack
degradation simulations.

This chapter consists of three parts. 3.6.1 describes the online-learning
methodology for the DRL agent. And the process and results of the two FCHEV
degradation simulations are described in 3.6.2 and 3.6.3. In 3.6.2, the DRL model to
which the online-learning algorithm is applied and the DRL model to which the
online-learning algorithm is not applied are compared under the FCHEV simulation
with the fuel cell stack in which the fixed voltage-drop occurs. And in 3.6.3, the DRL
model to which online-learning is applied and the DRL model to which online-
learning is not applied are compared under the simulation conditions in which real-

time deterioration occurs due to the stack operations.
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3.6.1. Online-learning framework for the DRL model

We developed the online-learning methodology for the DRL agent considering
the limited computation power of the FCHEV. In order to develop the online-learning
algorithm that considers limited computational power, we do not train the agent
while the FCHEV is driving, and when the driving is finished, we extract a small
number of mini-batch from the replay memory so that the online-learning for the
DRL agent. Figure [63] schematically shows the online-learning process of the DRL
model in this study. The online-learning process developed in this study is divided
into three parts: “Driving”, “Training” and “Validation”.

In the “Driving” phase in which the FCHEYV is driven, the power distribution
of the FCHEYV is performed based on the policy of the existing trained DRL model,
and experiences according to the driving are newly stored in the replay memory and
at the same time, the old experiences disappear from the replay memory. And after
the driving-phase is finished, the training-phase begins. Considering the low
computation power for the vehicle, it is important to secure enough time for the
training of the agent. Therefore, we defined the time when the driving-phase ends
and the training-phase starts as the time when the vehicle is completely turned off
and the vehicle is parked.

In the training-phase, the existing DRL model is trained by a small amount of
the experiences from the replay memory in consideration of the limiting computation
power of the vehicle. In this study, the existing agent is trained through 100 mini-
batches consisting of 64 experiences.

Finally, in the validation phase, it is decided whether to replace the existing
DRL agent with the newly trained DRL agent by comparing the performance of the
newly trained DRL agent to the existing DRL agent. Since the DRL model
constructed based on the deep neural network has a catastrophic forgetting problem

in which previously trained information disappears during training, it is necessary to
At
7
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check whether the training of the DRL model is conducted correctly in the online-
learning process. We coped with the catastrophic forgetting problem of the DRL
agent by confirming the effectiveness of the newly trained agent through the
validation-phase. The agent derived through the online-learning algorithm is
compared with the existing agent based on the driving cycle that the FCHEV drove
in the driving-phase immediately before in the validation-phase. In the validation-
phase, the effectiveness of the newly derived DRL model is judged in terms of the
SOC-sustainability and the effective fuel consumption. If the DRL agent derived by
the online-learning algorithm guarantees the SOC-sustainability on the driving cycle
driven in the previous driving-phase and at the same time shows superior
performance in terms of the effective fuel-consumption than the existing agent, the
existing agent is replaced with the agent derived by online-learning method. On the
other hand, if the DRL agent trained by online-learning algorithm does not guarantee
SOC-sustainability or does not show superior performance in terms of the effective
fuel-consumption than the existing agent, the energy management strategy based on

the existing DRL agent will be maintained.

3.6.2. Comparative experiment 1: Static degradation
simulation

In the first comparative experiment, the performance of the online-learning
model and the DRL model without the online-learning were compared under a
simulation condition where a certain amount of the voltage-drop occurred initially
and the real-time voltage-drop according to the driving was not considered. In this
study, the experiment was performed assuming that the voltage-drop of the cell
occurs as much as 0.03V.

Figure [64] shows the process of the first comparative experiment. The

reference model in Figure [64] represents the DRL model with the structure of the
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agent 3 derived from the previous study. In addition, the DRL model applying online-
learning algorithm also initializes the network weights with the weights of the
reference model. The online-learning model and the reference model run the same
driving cycle derived from the MDP-driver model, and the initial SOC of the next
driving is not initialized to 0.6, but to the final SOC value of the previous driving.
Through this simulation design, we tried to check whether the SOC-sustainability of
the online-learning model and the reference model is guaranteed even in a situation

similar to the actual driving.
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Figure 63. Schematic diagram for the online-learning process of the DRL model
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The biggest difference between the online-learning model and the reference
model is in the rest-phase that exists between the driving-phases. In the case of the
online-learning model, training and validation process is progressed in the rest-phase
based on the driving cycle derived in the previous driving-phase. On the other hand,
in the case of the reference model, training is not performed in the rest-phase and the

power distribution strategy based on the reference model is maintained.
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Figure 64. Schematic diagram of the comparative experiment process between the
online-learning model and the reference model
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We compared the online-learning model and the reference model based on the
driving-cycle created through the MDP-driver model. The experiment was
conducted through a total of 100 generated driving cycles in this study. And the
analysis of the comparative experiment between the two models was performed
based on the effective fuel consumption, which includes information on the amount
of fuel consumption and the voltage-drop due to deterioration, similar to the previous
studies.

Figure [65] shows the final SOC distribution of the online-learning model and
reference model on 100-driving cycles under the condition that the initial stack
degradation of the FCHEV occurred as much as 0.03V. It can be seen that the
difference between the reference SOC set to 0.6 and the final SOC is mostly
distributed below 0.02, which shows that both models guarantee the SOC-
sustainability.

And Figure [66] shows the difference in performance between the online-
learning model and the reference model according to the 100-driving cycles. That is,
Figure [66] shows the effective fuel consumption of both models according to the
number of driving. Figure [66] shows that the online-learning model can perform
more efficient control strategy than the reference model through the continuous
learning. It can be seen that the online-learning model can reduce the effective fuel
consumption by about 3950g compared to the reference model. From these facts, it
can be confirmed that the online-learning methodology developed in this study can

help the DRL agent optimize performance and adapt to the system changes.
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The effective fuel consumption is divided into the fuel consumption related
term and the voltage-drop related term as shown in Figure [67]. We compare the
online-learning model and the reference model in terms of the fuel consumption and
the voltage-drop. Figure [68] shows the results of comparing the online-learning
model and the reference model in terms of fuel consumption, voltage-drop, and
effective fuel consumption. The (a) of Figure [68] shows the difference between the
two agents for the fuel consumption on the 100 driving cycles, and the difference
between the two agents for the fuel consumption of the two agents is defined as Eq
(51). InEq(51), FCypiine means the fuel consumption of the online-learning model,

and FCreference means the fuel consumption of the reference model.

AFC = FContine — FCreference G

Therefore, the red dotted line in Figure [68] means the decision boundary. If
points are distributed below the red dotted line, it means that the performance of the
online-learning model is superior to that of the reference model. If the points are
distributed above the red dotted line, it means that the performance of the reference
model is better than that of the online-learning model. Figure [68]-(a) shows that
points are evenly distributed up and down around the decision boundary, which
means that there is not much difference in the performance between the two models
in terms of the fuel consumption. However, it can be seen that the reference model
generally shows higher efficiency than the online learning model.

Figure [68]-(b) shows the difference in the voltage-drop due to the stack
deterioration between the two models. The difference in the voltage-drop is
expressed as Eq (52), where AV,,ine represents the voltage-drop of the online-

learning model, and AVyeference represents the voltage-drop of the reference model.

The points in Figure [68]-(b) are distributed below the decision boundary, which

b Fa I:
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means that the online-learning model shows superior performance regarding the

voltage-drop caused by the stack degradation compared to the reference model.
A(AV) = AVoniine — AVreference (52)

Figure [68]-(c) shows the difference between the two agents for the effective
fuel consumption. In a similar manner to the previous case, the effective fuel
consumption is expressed as Eq (53), where FCeff oniine represents the effective
fuel consumption for the online-learning agent, and FCeff reference represents the

effective fuel consumption for the reference agent.

AFCeff = FCeff,online - FCeff,reference (53)

Figure [68]-(c) shows that most of the points are distributed below based on the
decision boundary. From this fact, it is confirmed that the performance of the existing
agent can be improved through the online-learning algorithm.

Table 18 shows detailed information on the total amount of the fuel
consumption, the total amount of the voltage-drop occurs during the simulation, and
the total amount of the effective fuel consumption consumed by the two models on
the 100-driving cycles. As shown in Figure [68], it can be seen that the online-
learning algorithm is effective in reducing the voltage-drop caused by the stack

degradation and the effective fuel consumption.
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Difference between the two agents with driving about fuel consumption
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Figure 68. Difference between the online-learning model and the reference model
according to driving: (a) Difference for the fuel consumption, (b) Difference for the
voltage-drop, (c) Difference for the effective fuel consumption
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Figure [69] shows the action profile of the online-learning model and the
reference model for 5 driving cycles. Figure [69]-(a) shows five different generated
driving profiles, and Figure [69]-(b) shows the action profile for the online-learning
model and the action profile for the reference model on the five driving profiles. We
can see from Figure [69] that the action profile of the online-learning model has a
stronger tendency to maintain the previous action than the tendency of the reference
model. In other words, the fact that the online-learning model shows better
performance in terms of the degradation than the reference model can be seen as a
difference that appears because the online-learning model has a stronger tendency to

maintain the previous action.

Table XVIII. Simulation results for the two models on the 100-driving cycles

Reference | Online-learning
Difference
Agent Model
Total
7087 7175 +1.2 %
Fuel consumption [g]
Total
3115 1666 -46.5 %
Voltage-drop [uV]
Total
15980 12030 -24.7 %
Effective FC [g]
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Figure 69. Action profiles of both models on 5-driving cycles: (a) driving cycles
generated from the MDP-driver model, (b) action profiles of both models

3.6.3. Comparative experiment 2: Dynamic degradation
simulation

In the second experiment, we conducted the comparative experiment between
the online-learning model and the reference model on the simulation where the initial
degradation and the real-time degradation from the stack operation occurs. We
assumed that the initial voltage-drop due to the degradation of 0.015V occurred in
this comparative experiment, and the experiment was designed to stop the simulation
when the voltage-drop of 0.03V occurs due to the stack deterioration in any of the

two models due to stack operation.
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Figure [70] shows information on the cumulative voltage-drop according to the
number of driving cycles of the online-learning model and the reference model. The
fuel cell stack for the reference model deteriorates faster than the stack for the online-
learning model, and as a result, the stack voltage-drop of 0.03V occurs in the
reference model due to the driving for 468 driving-cycles. In this experiment, it is
also confirmed that the online-learning model effectively reduces the voltage-drop
compared to the reference model. Figure [70] shows that when the voltage-drop for
the reference model occurs as much as 0.03V, the voltage-drop in the online-learning
model occurs as much as about 0.023V.

Figure [71] shows the distribution of the final SOC of the two models for the
driving about 500 driving-cycles. Figure [71] shows that in both models, the
deviations between the initial SOC set to 0.6 and the final SOC are distributed within
0.03 in about 500-drivings. In other words, we can confirm that both the online-
learning model and the reference model guarantee the SOC-sustainability from

Figure [71].
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Figure 70. Cumulative voltage-drop for the two agents
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Figure [72] shows the difference in performance between the online-learning
model and the reference model according to the driving-cycle. (a) shows the
difference regarding the fuel consumption, (b) shows the difference in terms of the
voltage-drop, and (c) shows the difference in terms of the effective fuel consumption.
Like Figure [68], the red dotted line in Figure [72] means the decision boundary. If
points are distributed under the decision boundary, it means that the performance of
the online-learning model is superior to that of the reference model and if the points
are distributed above the decision boundary, it means that the performance of the
reference model is superior to that of the online-learning model. In terms of the fuel
consumption, the reference model generally shows excellent performance, while the
online-learning model shows generally excellent performance in terms of the
voltage-drop and the effective fuel consumption. In the early driving cycles, the
online-learning model shows poorer performance than the reference model in terms
of the effective fuel consumption. It means that the DRL agent is trained in the
direction of the poor performance through the online-learning algorithm. This

phenomenon occurs because the result verified through one driving cycle in the
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Figure 71. Final SOC distribution in 989-drivings of both models




validation-phase cannot be said to be valid for all other driving. However, if too
many driving cycles are used in the validation-phase, it may cause the computational
problems and memory problems in the validation-phase. Therefore, in the validation-
phase, the principle of judging the training effectiveness of the DRL agent based on
the driving cycle which is recorded through the previous driving-phase was
maintained.

Although there is a section where the online-learning model is less efficient than
the reference model, the online-learning model generally shows superior
performance compared to the reference model regarding the effective fuel
consumption. Table 19 shows the fuel consumption, the cumulative voltage-drop
occurs during the simulation, and the effective fuel consumption consumed in about
500-drivings of the online-learning model and the reference model. Although the
online-learning model recorded about 2% more fuel consumption than the reference
model, it reduced the voltage-drop as much as 48% compared to the reference model.
As a result, the online-learning model shows a high efficiency of about 26%
compared to the reference model in terms of the effective fuel consumption.

Figure [73] shows the trend of the accumulative effective fuel consumption of
the online-learning model and the reference model for about 500 driving-cycles.
Figure [73] shows that the power distribution strategy based on the DRL model for
the actual FCHEV where real-time stack degradation occurs can improve the
performance and respond effectively to the changes in the FCHEV system through

the online-learning algorithm.
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Table XIX. Simulation results for the two models on the 486-driving cycles

Reference | Online-learning
Difference
Agent Model
Total
33440 34060 +1.82 %
Fuel consumption [g]
Total
15000 7800 -48.0 %
Voltage-drop [uV]
Total
75350 55820 -25.9 %
Effective FC [g]
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Figure 73. Cumulative effective fuel consumption with the driving for the two models
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4. Conclusion and Achievement

We developed the DRL-based power distribution strategy for the FCHEV
through this study. In developing the DRL-based power distribution strategy, we
considered four aspects: “generalization”, “stack degradation”, “scalability” and
“online-learning application”.

One of the most important factors in developing the energy management
strategy is that the developed energy management strategy ensures the generalization
performance. In other words, any power distribution strategy must be effective in all
driving conditions, not only in specific driving conditions. The DRL-based power
distribution strategy has a great advantage in ensuring the generalization
performance in that the energy management control is made based only on the
current driving information without future driving information. In this study, the
MDP-driver model that can generate countless validation cycles was developed. And
it was confirmed that the DRL-based control strategy can achieve high performance
while guaranteeing generalization performance through comparison of the optimal
control theory-based control strategy and the DRL-based control strategy.

Studies to develop control strategies in terms of the scalability are hardly in
progress in the field of research related to the energy management of the HEV.
However, considering the fact that many types of structures and systems for the HEV
are being developed continuously, the development of the power distribution strategy
that can guarantee scalability is very important from an industrial perspective. We
developed the methodology related to the state normalization and the reward factor
selection for the development of the control strategy for the FCHEV that can
guarantee the scalability. It was confirmed that the DRL model-based power
distribution strategy could be developed on the same training framework in the
problem of considering only the fuel consumption, even if it is extended to the

problem that requires additional consideration of the stack degradation.
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One of the biggest issues of the FCHEV is the durability of the fuel cell stack.
In this study, a study was conducted by developing a deterioration model of the fuel
cell stack with reference to previous studies. In this study, the fuel cell stack
degradation model was developed with reference to the previous studies in order to
develop the control strategy considering the stack degradation. In addition, the
equivalent factor that equalizes the voltage-drop due to the degradation to the fuel
consumption rate was derived based on the economic analysis, and the reward factor
was reconstructed based on the concept called effective fuel consumption. Since the
load change operation has a great influence on the degradation of the fuel cell stack,
we have effectively coped with the deterioration due to the load change operation by
changing the action and the state configuration for the DRL model.

DRL is basically composed so that the agent is trained through own experiences,
so it is easy to optimize the existing model by applying the online-learning concept.
Also, since the FCHEYV is sensitive to the stack degradation, it is necessary to cope
with the changed system through the development of the online-learning
methodology. In this study, the online-learning algorithm was developed in
consideration of the limited computing power and memory of the FCHEV. We
conducted the experiments comparing the online-learning model and the existing
reference model under the two stack degradation conditions of the FCHEV. We
confirmed that the developed online-learning algorithm can help the existing DRL
model improve and adapt to system changes through the two experiments.

The DRL algorithm can play a big role in developing the power distribution
strategy for the HEV that ensures the generalization performance and the scalability.
In particular, power system for the FCHEV changes over time due to the stack
degradation that occurs in real time. Therefore, the DRL algorithm that is easy to
apply the online-learning concepts is effective in developing the power distribution

strategy for the FCHEV. However, few studies to develop the energy management
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strategy for the FCHEV using the DRL algorithm have been carried out yet. We hope
that this study will be helpful in research related to the development of the DRL-

based power distribution strategy for the FCHEV in the future.
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5. Future works

So far, we have conducted research on the assumption that there is no
disturbance in the state that the agent receives. However, the state that the agent is
entered may be different from the actual vehicle behavior since there are many
disturbing factors in the actual vehicle. We applied the disturbance to the required
power, one component of the state, to find out the effect of the noise on the trained
agent. We have assumed that the disturbance is applied only when the demanding
power is positive. Figure [74] shows the required power in the ideal environment
without the disturbance and the required power with the disturbance on an arbitrary
driving cycle.

Required power with the noise is expressed as Eq (54), where P, represents

the ideal required power, and P,,;s. represents the noise for the required power.

Preq,noise = Preq + Pnoise (54)
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Figure 74. Comparison between the required power with the disturbance and the
required power without the disturbance
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And the value for the noise is expressed as Equation (55), where 7 is a real

number between the lower limit, ¢ and the upper limit, B, which is extracted by

uniform distribution. We fixed the lower limit of t at 10% and adjusted the size of

the disturbance by changing the upper limit of t to 20%, 30%, 40%, and 50%.

(55)

=T'Preq

P, noise

v 1~U(a,B) where a <1 <p

We compared the effective fuel consumption of the trained agent by varying the

upper limit of the disturbance on the multiple driving cycles. The comparison

experiment was conducted according to the magnitude of the noise based on the 35

generated cycles. Figure [75] shows the trend of the effective fuel consumption

according to the magnitude of the disturbance.
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As expected, it can be seen from Figure [75] that the effective fuel consumption
tends to increase as the amplitude of the disturbance increases. Table 20 shows the
average effective fuel consumption according to the amplitude of the disturbance.
From the Table 20, it can be clearly seen that as the upper limit of t increases, the
average effective fuel consumption increases. When the upper limit is 50%, the
average effective fuel consumption increases by 6.8% compared to the case without
the disturbance.

It can be seen from the experimental results that the trained agent controls the
FCHEV properly even when a considerable amount of the disturbance occurs.
However, considering that the performance of the agent is reduced by the noise and
the fact that there are many disturbance factors in the actual vehicles, it is very
important to develop a methodology that can cope with the disturbance. If a DRL
agent that can cope with the disturbances is developed through additional research,
we expect that the applicability of the DRL agent to actual vehicles will be greatly

improved.

Table XX. comparison results with the disturbance for the demanding power

Noise (7) Average effective Difference
Interval fuel consumption [g] [%o]
Reference case - 242.3 -
Disturbance case 1 [0.1,0.2) 247.1 +1.98
Disturbance case 2 [0.1,0.3) 250.4 +3.34
Disturbance case 3 [0.1,0.4) 255.2 +5.32
Disturbance case 4 [0.1,0.5) 260.0 +6.80
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We conducted the study to normalize the state and to find the optimal reward
factor by understanding the learning pattern of the DRL model in order to create the
scalable DRL-based power distribution strategy.

However, the DRL model developed in this study cannot automatically derive
hyper parameters and optimal network structure. Since the knowledge and the
experience of the model developer is required to derive the hyper parameters or the
optimal network structure, it is necessary to develop a methodology that can
automatically find the hyper parameters and the network architecture. We think that
autoML (machine learning) technology can be of great help in implementing
automation for the hyper parameters and model structure retrieval. Therefore, we
plan to develop a methodology for automatically deriving the hyper parameters and
the network architecture through the autoML technology in the future research.

We developed the MDP-driver model and created the virtual driving cycles to
confirm the generalization performance of the DRL model. Since the MDP-driver
model is derived through the stochastic characteristics of the reference driving
profiles representing the general driving situations, there is a limit to generating
driving information about unexpected situations that occur in the actual driving. In a
future study, the effectiveness of the DRL-based power distribution strategy derived
in this study will be tested through actual driving data of the vehicle. In the future
study, the effectiveness of the DRL-based power distribution strategy will be tested

through the actual driving data of the FCHEV.
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Appendix 1-1

Proton Exchange Membrane Fuel Cell
(PEMFC) Modeling

In this study, the PEMFC model was developed by referring to flux balance fuel
cell modeling from S. W. Cha, F. B. Prinz et al. [46]. Figure [A-1] shows the 1-D
PEMFC model, and Table A-1 shows the notation of variables and values of the
variables related to the PEMFC modeling. The voltage of the fuel cell is affected by

three losses like Eq (A-1), where ngct» Nohmics and Neone Means activation loss,

ohmic loss, and concentration loss respectively.
Na Olpr e, and ()|4 represent the parameters in the fuel cell interface.
“a”, “b”, “c”, and “d” represent anode-inlet interface, anode-membrane interface,

cathode-membrane interface and cathode-inlet interface respectively.

V= Ethermo ~ Nact — Nonmic — Neonc A-1

convection

diffusion
electroosmotic
drag

electronic
conduction

ionic
conduction
Hy*2H'+ 2e

2H'%+ 2e +1/20;
~H,0

Anode Electrolyte Cathode

Figure A- 1. Schematic for the 1-D PEMFC model [46]
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Table A- I. Values and Notation for properties in PEMFC model

Physical Properties Notation Values
Temperature (k) T 343
Hydrogen mole fraction at anode X, la 0.9
Oxygen mole fraction at cathode Xo, la 0.19
Water mole fraction XH,0 0.1
Cathode pressure (atm) p¢ 3
Anode pressure (atm) pA 3
Water diffusivity in Nafion (cm?/s) D, 3.18 x 107°
Transfer coefficient a 0.5
Exchange current density (A/cm?) jo 0.0001
Electrolyte thickness (1um) tM 125
Anode thickness (um) t4 350
Cathode thickness (um) t¢ 350
Electro-osmotic drag coefficient ng‘ﬁg g 2.5
Nafion equivalent weight (kg/mol) M, 1.0
Limiting current density (A/cm?) JLcathode 3.0

Therefore, it is necessary to develop a mathematical model that derives the
ohmic loss, the activation loss, and the concentration loss for the PEMFC modeling.
The ohmic loss is the most difficult to derive among the three losses. From the flux
balance relation, the mole fraction for H.O on the anode side can be derived as Eq
(A-2), and the mole fraction for H>O in the anode-membrane interface is expressed

as Eq (A-3). R is the gas constant, F is the Faraday number, and fo; '];12 o 1s the

effective diffusivity between H, and H,0.
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@ | a*jRT
XH0\2) = Xpy0la — 2 rr
2FPADH2’H20

A-2

4 QJRT

XH,0lp = xH20|a U
aneff
2FP DHZ’HZO

The diffusivity between two substances, i and j, is expressed as Eq (A-4), T,
P., and M denote critical temperature, critical pressure, and molecular weight

respectively. (+); and (-); mean parameters for substance i and j. In addition, a was

setto 3.64 X 10™* and b was set to 2.334 [50].

1
T\ 1 501 1\2 A
PD;ii=a|l——=)| (P.P;)3(TsTs;) 2| —+— -
¥ a<\/7Tch> ( “ C]) ( “ CJ) <Mi+Mj>
Effective diffusivity is expressed as Eq (A-5), where € means porosity, and the

porosity of the fuel cell electrode has a value of around 0.4.

Df{f — gl'sDi,j A-5

The mole fraction for H>O at the cathode side is equal to Eq (A-6), and the mole

fraction for H,O at the cathode-membrane interface is equal to Eq (A-7).

(1+ a*)jRT

Xp,0(2) = xp,0la + 2 o F A-6
ZFPCDOZ,HZO
_ (1 +a")jRT

T eff A-7

Xu,0le = Xmyola +t 7
2FPEDET,
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And Nafion's water content, A, is expressed as Eq (A-8) through the analytic

solution.
la* JMpney
A(2) = C- —_— A-
(2) sat T exp(22F oy D Z) 8

Therefore, the water content on the anode-membrane interface and the cathode-

membrane interface are expressed as Eq (A-9) and Eq (A-10).

11a”
Ap=20) = —57+C A-9
ndrag
la* JMpnSaT
Ay =AM = ——+ C - exp(=———2—tM A-10

Water content on the Nafion can also be expressed as Eq (A-11) through
experimental data, and a,, represents water activity. The water activity is expressed

as Eq (A-12) and the water activity is a function of the partial pressure of the water

vapor, P, and the vapor saturation pressure, Pssr expressed as Eq (A-13).

_ (14a,, for 0<aqa,<1
A_{10+4aw for 1<a, <3 A-l
Py
a, =—— A-12
Y Psar
A-13

10810 Psar = —2.18 + 0.03T —9.18 X 1075T2 + 1.45 x 10~7T3

Therefore, the water content on the anode-membrane interface with low water

activity and the cathode-membrane interface with high water activity are expressed
as Eq (A-14) and Eq (A-15).
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pA a*jRT

Ap =14a,l, = 14— (xyolqg — tA———— A-14
b wlb Psat H;0la ZFPCD;I;I;IZO
Al =10 + 4a,,| 10+4PC( | +tc(1+a*)jRT
= ay,|,. = —(x — A-15
‘ e Poae 27" "7 2ppeDT

Through the system of equations of Eq (A-9), Eq (A-10), Eq (A-14), and Eq

(A-15), we can derive the unknown parameters a* and C as Eq (A-16).

a* _ a-1
[C] =A"1p
11 14 PA  t4RT "
Natag  Psar2FPADL
vA= c C: : SAT
11 P t“jRT <]andmg tM>
_ xp | = drag
| narag  Psat 2FPEDYLY, 22FparyD; )| Al
A
o 14axH20|a
o 10+4PC | +4PC tjRT
—X
| Poae 27" " Psac2FPCDYY,

The conductivity of the Nafion has a lot of correlation with the temperature and
the water content, and the conductivity of the Nafion is mathematically expressed as

Eq (A-17) through the experimental data.

1 1
0(2) = 03031(2) exp [1268 (ﬁ - ?)] A-17

2 03031 (1) = 0.0051931 — 0.00326
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By substituting Eq (A-8) into Eq (A-17), the conductivity of the Nafion can be

expressed as in Eq (A-18).

11« ijng;*gg
o(z) = 0.005193 | —=— + Cexp <—z —0.00326
ngi, 22F paryDy

A-18

X 1268( 1 1)
exp ( 303 T

Therefore, the area specific resistance in the membrane and the ohmic loss for

the fuel cell are derived through Eq (A-19) and Eq (A-20).

M
dz
ASR,,, = —_ A-19
" fo o(2)
Nohmic = JASRpy A-20

The second loss to be considered is the activation loss. The activation loss is
represented as Eq (A-21) because most of the activation loss is caused on the cathode

side, and P, is the reference pressure, which corresponds to latm.

_RT JPo
nact, cathode — 4aF njOPCxOZ |c

A-21

Through the flux balance relation, the mole fraction for O, at the cathode side
is equal to Eq (A-22), and the mole fraction for O, at the cathode-membrane

interface is expressed as Eq (A-23).
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JRT

x0,(2) = x0,la R A"y
4FPCD02’H20

Lt JRT
Xo,lc = Xo,la =" ————7—
4FPCD02’H20

That is, the activation loss is represented as Eq (A-24).

RT JjP,

A-22

A-23

77 . . = 1]’1 [
activation = - joPC{xoz Iy — thRT/4FPCDeff

05,H,0

] A-24

The last loss to be calculated is the concentration loss. Concentration loss, like

activation loss, is mostly caused by the cathode side. The concentration loss can be

expressed as Eq (A-25).

LA

RT (1
Meone = 77 n(1 -+
cone 4F JL,cathode
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