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Abstract  
 

Advanced Real Time Power Management 

Strategy using Actor-Critic Algorithm 

Considering Degradation of Fuel Cell 

Stack in Electric Vehicles  
 

 
As vehicle emission regulations are becoming more and more stringent, vehicle 

manufacturers are making efforts to develop hybrid electric vehicle (HEV) as an 

alternative to increase fuel efficiency. The HEV is defined as vehicle with two or 

more power sources. Due to the advantage that individual power source can be 

operated at an efficient operating point, HEVs exhibit higher efficiency compared to 

internal combustion engine vehicles. However, the high efficiency of the HEV can 

only be guaranteed only if a valid power distribution strategy is in place.  

Due to the importance of the power distribution strategy on the efficiency of the 

HEVs, many studies have been conducted on the development of the power 

management strategy. The related studies have been developing the energy 

management strategies for the HEVs based on rule-based control, optimal control 

theory, and reinforcement learning theory. The power distribution strategy based on 

the optimal control theory has the advantage of achieving high fuel efficiency, but 

the power distribution strategy has the disadvantage of low applicability and 

generalization performance in that future driving information must be considered. 

On the other hand, since rule-based control and reinforcement learning do not require 

future driving information, the vehicle applicability and the generalization 

performance are high, but the fuel efficiency is relatively low. Currently, the related 

research is focusing on developing the energy management strategy that is excellent 

in both the generalization performance and the efficiency.  
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Most power distribution strategies for the hybrid electric vehicles have been 

developed for general HEVs whose powers sources consist of an internal 

combination engine and a battery. However, along with the popularization of fuel 

cell hybrid electric vehicles (FCHEV), research on the development of the power 

management strategies for the fuel cell hybrid electric vehicles is increasing in recent 

years. The power source of the FCHEV is usually composed of a combination of a 

fuel cell stack and a battery, and compared with a general hybrid vehicle, it does not 

emit exhaust gas at all, have simplified power train configuration, and achieves high 

efficiency. However, since the fuel cell stack for of the FCHEV is vulnerable to 

durability problems, it is necessary to develop the energy management strategy in 

consideration of the deterioration of the fuel cell stack. The power distribution 

problem for the FCHEV belongs to a multi-objective problem that needs to be solved 

by considering both the degradation of the fuel cell stack and the fuel consumption. 

Due to these characteristics, the power distribution strategy for the FCHEV is more 

complicated than the power distribution strategy for the HEV that optimizes only in 

terms of the fuel consumption. Nevertheless, the development of the power 

management strategy for the FCHEV has not been much researched compared to the 

development of the energy management strategy for the general HEV that have 

already been popularized.  

In this study, the power distribution strategy for the FCHEV was developed 

using the reinforcement learning. The reinforcement learning has recently made 

great progress through convergence with deep neural networks and deep 

reinforcement learning which combines the reinforcement learning and the deep 

neural networks has been proven through many studies. We developed the power 

distribution strategy that optimizes the degradation of the fuel cell stack and fuel 

consumption by utilizing the deep reinforcement learning (DRL) based on the Actor-

Critic algorithm. Since the DRL derives the control strategy based on the current 
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state, it has the advantage of high generalization performance and is also very 

excellent in terms of scalability. By utilizing the high scalability of the deep 

reinforcement learning, the power distribution strategies for various hybrid systems 

can be developed through the same learning framework. In addition, the DRL has 

the advantage of being able to respond to the degradation of the fuel cell stack that 

occurs in real time through self-learning and online-learning. In this study, we 

developed the energy management strategy for the FCHEV that secure both the 

generalization performance and the scalability by utilizing all the advantages of the 

deep reinforcement learning. In addition, we developed a methodology that 

efficiently updates the existing DRL model based on the online learning. 

  

Keyword : fuel cell hybrid electric vehicle (FCHEV), power distribution 

strategy, reinforcement learning, Markov decision process, equivalent 

consumption minimization strategy (ECMS), dynamic programming (DP), 

deep neural network 
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Chapter 1. Introduction  

 

1.1. Hybrid Electric Vehicles  
 

The electrification and hybridization of vehicles are accelerating due to 

increasingly strengthened regulations for exhaust gas. Figure 1 shows the emission 

regulation trend for the vehicles in Europe [1]. The emission regulations have 

demanded a sharp reduction in vehicle emissions whenever the regulation is changed 

from Euro I to Euro VI. Hybrid electric vehicles (HEVs) are one of the most effective 

alternatives to tightening emissions regulations in the current situation, where this 

trend towards emissions regulation is expected to continue.  

 

 

Figure 1. European Emission standards trend [1]  
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In a general hybrid electric vehicle, the power source is composed of an internal 

combustion engine and a battery, and the power by the two power sources is 

controlled by the vehicle's power management controller. As such, the HEV is a 

system having two or more power sources, so there is a large difference in efficiency 

according to the method of the distributing the driver's required power to the power 

sources. For this reason, many studies on the development of the power distribution 

strategies for HEVs have been conducted.  

The development of power distribution strategies is largely being studied based 

on three theories including rule-based control, optimal control theory, and 

reinforcement learning. In a study based on rule-based control theory, a driving mode 

according to driving conditions is designed based on human experience and 

knowledge [2-5].  Rule-based theory has a low computational amount and does not 

consider future driving conditions for control, so its applicability to actual vehicles 

is high, but the effect of improving fuel economy is small. In addition, there is a 

disadvantage in that the scalability is small in that the control strategy is constructed 

based on human experience and knowledge. In addition, it has the disadvantage of 

small scalability in that the control strategy is constructed based on human 

experience and knowledge. The power distribution strategy based on the optimal 

theory can be divided into the control strategy based on dynamic programming (DP) 

that guarantees a global optimum and the control strategy based on real-time 

optimization theory. The DP-based power distribution strategy can guarantee global 

optimality because it derives optimal control by considering all the control cases 

based on the bellman equation [6-10]. However, the applicability of the actual 

vehicle is low, since the DP-based control strategy requires a large amount of 

computation and the future driving information must be reflected in the control. And 

the power distribution strategy based on real-time optimization theory is being 

studied mainly using Pontryagin's minimum principle (PMP) and equivalent 
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consumption minimization strategy (ECMS) [11-16]. The essential pursuit of both 

studies is to derive a control value which minimizes the cost function that integrates 

the electrical energy and fuel consumption. Therefore, it is important to derive an 

appropriate value for co-state, a kind of equivalent factor that converts electrical 

energy into fuel consumption in the cost function. Kim et al. has been proven through 

previous studies that when the co-state is properly set, results corresponding to the 

global optimum can be obtained [17]. The control strategy based on real-time 

optimization theory has a small amount of computation, but the strategy has a 

disadvantage of poor generalization performance because the co-state is a variable 

dependent on the driving cycle. The strategy based on reinforcement learning is 

formulated in the Markov decision process (MDP) as shown in Figure [2]. The action 

corresponding to the control value is derived only through the current state and does 

not require a future state. Therefore, the reinforcement learning-based control 

strategy can secure high generalization performance and real vehicle applicability in 

that it derives the control value only through the current state, but it is generally less 

efficient than the strategy based on the optimal control theory [18-24]. 

 

 

Figure 2. Schematic of the Markov decision process 
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Recently, reinforcement learning has made great progress through the fusion of 

deep artificial neural networks [25]. Deep reinforcement learning (DRL), which 

combines the theory of reinforcement learning with a deep artificial neural network, 

has proven that it can effectively solve complex problems through many studies [26, 

27]. Recently, some studies to develop control strategies for the HEVs using the DRL 

algorithm have been conducted and the DRL algorithm has been proven to be 

effective in developing the energy management strategy for the HEV [28-36]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 15 

1.2. Fuel Cell Hybrid Electric Vehicles  

 
As the fuel cell hybrid electric vehicles (FCHEV) are beginning to be released 

on the market, research on the power distribution problem for the FCHEV is also 

actively progressing. The power source of the FCHEV is usually composed of a 

combination of fuel cell stack and battery. Like the HEV, the power management 

controller performs energy management between the two power sources. The 

FCHEV is attracting attention as an eco-friendly vehicle of the future because it can 

eliminate or simplify the transmission system and does not emit exhaust gas.  

However, FCHEV's fuel cell stack has the disadvantage of being vulnerable to 

durability. The deterioration of the fuel cell stack is caused by a combination of 

various causes, such as reduction of the surface area of catalysts, mechanical stress, 

and contamination [37]. The degradation of the fuel cell stack is considered one of 

the biggest obstacles to the popularization of the FCHEV. US department of energy 

(DOE) estimates that the operation time required for the popularization of the 

FCHEV is 5000 hours, but most of the FCHEVs currently fail to achieve this goal.  

Since the degradation of the fuel cell stack has a large effect on the FCHEV, 

research to investigate the deterioration of the fuel cell stack is also ongoing. One of 

them is a study to analyze the degradation of the fuel cell through a physical 

deterioration model [38]. The physical model does not require experimental data and 

has the advantage of high generalization performance, but the physical model that 

can sufficiently represent the degradation has not been developed due to the 

complexity of the degradation phenomenon. To overcome the limitations of this 

physical model, some studies was conducted to construct a degradation model for 

the fuel cell stack of the FCHEV based on the actual driving data [39, 40]. In the 

representative study (H. Chen, 2015), the degradation model according to the 

operating mode of the fuel cell stack was developed and verified through actual 

vehicle driving data [39].  
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As such, the FCHEVs is more sensitive to the durability than general HEVs, so 

it is necessary to develop the power distribution strategy in consideration of both the 

fuel consumption and the degradation. Therefore, the problem of the energy 

management for the FCHEV should be extended to the multi-objective problem as 

shown in Eq (1). 𝑚̇𝑓𝑐 and 𝐿 represent the fuel consumption and the voltage drop 

of the fuel cell stack due to the deterioration, respectively, and 𝑥 and 𝑢 represent 

state and control, respectively. The boundary condition for Eq (1) is represented in 

Eq (2), where 𝑆𝑂𝐶(𝑡𝑓) and 𝑆𝑂𝐶(𝑡𝑜) mean the final state of charge and the initial 

state of charge, respectively. And the secondary condition for the problem is as Eq 

(3). 𝑃, 𝜔, and 𝑇 represent power, rotational speed, and torque, respectively, and 

the notation (∙)𝑓𝑐𝑠 , (∙)𝑏𝑎𝑡 , 𝑎𝑛𝑑  (∙)𝑚𝑜𝑡  represent fuel cell system, battery, and 

motor, respectively.  

 

min∑𝑚̇𝑓𝑐(𝑥(𝑘), 𝑢(𝑘)) + 𝐿(𝑥(𝑘), 𝑢(𝑘)) (1) 

𝑆𝑂𝐶(𝑡𝑓) = 𝑆𝑂𝐶(𝑡0)  (2) 

𝑃𝑓𝑐𝑠,𝑚𝑖𝑛 ≤ 𝑃𝑓𝑐𝑠(𝑡) ≤ 𝑃𝑓𝑐𝑠,𝑚𝑎𝑥 

𝑃𝑏𝑎𝑡,𝑚𝑖𝑛 ≤ 𝑃𝑏𝑎𝑡(𝑡) ≤ 𝑃𝑏𝑎𝑡,𝑚𝑎𝑥 

𝜔𝑚𝑜𝑡,𝑚𝑖𝑛 ≤ 𝜔𝑚𝑜𝑡(𝑡) ≤ 𝜔𝑚𝑜𝑡,𝑚𝑎𝑥 

𝑇𝑚𝑜𝑡,𝑚𝑖𝑛 ≤ 𝑇𝑚𝑜𝑡(𝑡) ≤ 𝑇𝑚𝑜𝑡,𝑚𝑎𝑥  

(3) 

 

In other words, FCHEV's power distribution strategy should ensure SOC 

sustain-ability in the system's operable area, while minimizing fuel consumption and 

the deterioration of the fuel cell stack. Studies on the development of strategies to 

minimize the degradation of the fuel cell stack and the fuel consumption are 

continuously being carried out, and among them, many studies are being conducted 

based on the optimal control theory [41-45].  
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Chapter 2. Research Background  

 

2.1. Deep Reinforcement Learning  

 
Q-learning, a type of reinforcement learning, is a representative model-free 

algorithm. The purpose of Q-learning is to learn the optimal policy in which the agent 

derives the optimal action corresponding to an arbitrary state in the Markov decision 

process as shown in Figure 2. “Q” in Q-learning symbolizes the quality of the 

action taken in the current state, and the quality is quantified through Q-value.  Q-

value is defined by Eq (4) as follows, where π, s, a, and R represent policy, state, 

action, and reward, respectively, and ρ represents a discount factor. The discount 

factor, which has a value between 0 and 1, is a value designed in terms of 

mathematical convenience and the present value is greater than the future value. The 

Q-value is optimized through recursive execution of the bellman optimality equation 

such as Eq (5), and an optimal policy such as Eq (6) is derived.  

 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡+1 + 𝜌𝑅𝑡+2 + 𝜌2𝑅𝑡+3 + ⋯| 𝑆𝑡 = 𝑠,  𝐴𝑡 = 𝑎] (4) 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) +  𝛼 ∙ (𝑟𝑡 + 𝜌 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)) (5) 

𝜋∗(𝑠) =  argmax
𝑎

𝑄∗(𝑠, 𝑎) (6) 

 

The biggest weakness of Q-learning optimized by value-evaluation is that it is 

difficult to apply to complex problems with large size of the states and actions. 

However, through the deep Q-network (DQN) algorithm (V. Mnih, 2015), a 

groundbreaking study that applied a deep neural network to the framework of Q-

learning, the field of reinforcement learning was able to achieve rapid development 

[25]. In this study, the state was defined as four 84×84 gray scale stack images, so 
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the state has a very large size of 25684∙84∙4(≈ 1067970). However, in this study, the 

problem was effectively solved by using an agent based on a convolutional neural 

network that acts as a function approximator on the framework of the Q-learning. In 

the DQN algorithm, the weights 𝜃𝑄  of the deep neural network are optimized 

through a backpropagation algorithm to minimize loss such as Eq (7).  

 

𝐿𝑜𝑠𝑠(𝜃𝑄) = [𝑦𝑡 − 𝑄(𝑠, 𝑎|𝜃𝑄)]2 

∵ 𝑦𝑡 = 𝑟𝑡+1 + 𝜌 max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1|𝜃
𝑄′

) 
(7) 

 

The DQN introduces two methods to stabilize the learning algorithm. One was 

to solve the temporal dependency problem of mini-batch by developing a replay 

memory that stores experiences used for the training of the agent. And the other one 

was to stabilize learning by creating a separate target Q-network with weights 𝜃𝑄′
 

to derive the target Q-value. Through this, it was proved that the DQN algorithm can 

achieve successful results in many game environments of Atari emulator.  

However, DQN has the disadvantage that it cannot derive continuous action 

values. To compensate for the shortcomings of the DQN algorithm, a DRL model 

using a policy gradient algorithm was developed. A representative study among them 

is the deep deterministic policy gradient method based on the actor-critic (A2C) 

architecture (T. P. Lilliccrap, 2016). The architecture of the actor-critic based DRL 

is shown in Figure [3]. Both actor and critic are composed of the deep neural network.  

The actor derives action for the state, and the critic performs value approximation of 

the actor's action for the state. The training for the actor is progressed based on the 

policy gradient method as in Eq (8), and 𝜃𝐴 , 𝜃𝐶  means the weights of the actor 

network and the critical network. And the learning for the critic proceeds in the same 

way as the training of the DQN like Eq (9), where 𝜃𝐴′
, 𝜃𝐶′

 represents the weights 

of the target actor network and the target critic network.  
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It has been demonstrated in several papers that the DRL can secure scalability, 

the ability to solve various kinds of problems through the similar training framework 

[25, 27]. In addition, the DRL is easy to apply online-learning algorithm because it 

has the characteristic that the training of the agent proceeds based on one's own 

experience. This study develops the effective power management strategy for the 

FCHEV by utilizing the advantages of the DRL algorithm.   

 

𝛻𝜃𝐴𝐽 =
1

𝑁
∑∇𝜃𝜇𝑄(𝑠, 𝜇(𝑠|𝜃𝐴)|𝜃𝐶) 

        =
1

𝑁
∑𝛻𝑎𝑄(𝑠, 𝑎|𝜃𝐶)𝛻𝜃𝐴𝜇(𝑠|𝜃𝐴) 

 

(8) 

𝐿𝑜𝑠𝑠(𝜃𝐶) = [𝑦𝑡 − 𝑄(𝑠, 𝑎|𝜃𝐶)]2 

∵ 𝑦𝑡 = 𝑟𝑡+1 + 𝜌𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1|𝜃
𝐴′

)|𝜃𝐶′
) 

(9) 

 

 

Figure 3. Schematic of the actor-critic model architecture  
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2.2. Existing studies  
 

We investigated research related to the power management strategy of the 

hybrid electric vehicle. Related studies were investigated in four aspects including 

“stack degradation”, “online-learning”, “generalization performance” and 

“scalability”. Since the power system in the FCHEV is highly affected by the stack 

degradation, it is important to consider the stack degradation in developing the power 

distribution strategies. Since the power system of the FCHEV continuously changes 

due to the stack degradation, it is important to develop a methodology that can adapt 

to system changes. Therefore, it is necessary to apply the online-learning 

methodology in developing the power management strategy for the FCHEV. In 

addition, it is very important that the control strategy guarantees the generalization 

performance, as the control strategy must be effective for all driving profiles. Now 

that the structure and types of the HEVs are diversifying, the development of the 

power management strategy that guarantees the scalability has great significance in 

the industrial aspect. Therefore, the recent related studies were analyzed focusing on 

the four factors that become issues in the development of the control strategies.  

The power distribution strategies for the fuel cell hybrid electric vehicles have 

been mainly studied based on the optimal control theory. W. Zou et. al. conducted a 

study to optimize the durability and fuel efficiency of the FCHEV through the 

dynamic programming, but the aspects of the generalization, the scalability, and the 

online-learning were not considered in the development of the power distribution 

strategy [7]. H. Li et. al. developed a power distribution strategy considering the 

degradation of power sources using the ECMS [12]. In addition, an online learning 

methodology was developed that updates the equivalent factor based on the 

deterioration of the power sources in the study. However, the research did not 

develop the control strategy that considers the scalability, and since the update of the 

equivalent factor is based on the degradation model of the power sources, the 
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effectiveness of the online-learning algorithm is decreased if the accuracy of the 

degradation model for the power sources is not guaranteed. C. Geng et. al. developed 

a rule-base control strategy for the FCHEV using fuzzy logic algorithm [3]. The 

study did not consider the degradation of the fuel cell stack and did not consider the 

scalability and the online-learning algorithm in developing the power distribution 

strategy.  

There has been little research on the development of the DRL-based control 

strategies for the FCHEVs, and the power distribution strategy using the DRL 

algorithm has been applied to general HEVs composed of the internal combustion 

engine and the battery. X. Han et. al. developed a power distribution strategy based 

on double deep Q-network (DDQN) that derives discrete actions for the hybrid 

electric tracked vehicles [33]. In the study, the power management strategy was 

developed focusing on securing the generalization performance. H. Tan et. al. 

developed a power distribution strategy for the HEV that can derive continuous 

action through the deep deterministic policy gradient (DDPG) algorithm [34]. In the 

study, the power distribution strategy was developed focusing on the generalization 

aspect, and the remaining three items were not considered. Y. Hu developed a control 

strategy based on DDQN for the HEV, and they considered the generalization aspect 

and application of the online-learning algorithm in developing the control strategy 

[36]. However, the control strategy was developed without considering the 

degradation and the scalability.  
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2.3. Research Motivation  
 

The general power distribution strategy for the actual HEV is produced as a 

map in a simple look-up table format due to the vehicle's limited computing power. 

This map-based strategy is made based on the results of the optimal control theory 

and the experience and knowledge of experts. Since the power distribution strategy 

is developed based on human experience and subjectivity, it has the disadvantage of 

low generalization performance and scalability.  

However, considering the reality that the computation power of vehicles is 

rapidly increasing due to the advent of autonomous vehicles, electrification of 

vehicles, and development of cloud computing technology, it is necessary to develop 

advanced power distribution strategies for the hybrid electric vehicles. In this study, 

DRL model was used to develop the advanced energy management strategies for the 

FCHEVs.  

DRL has proven its high scalability through several studies, and the DRL has 

the characteristic of self-learning in which the training is performed based on one's 

own experience, so the performance of existing models can be improved through the 

online-learning. In particular, the DRL-based control strategy can cope with to 

system changes caused by the degradation of the fuel cell stack through the 

characteristics that online-learning for the DRL is easy. As such, DRL is a very 

effective theory in relation to the development of the control strategies for FCHEVs, 

but the DRL-based energy management for FCHEVs has not yet been developed. 

Also, there is hardly any research that has developed the power management 

controller in consideration of the scalability aspect.  

In this study, a comprehensive and systematic study was conducted in 

developing the power management strategy based on the DRL algorithm. Through 

this research, we developed the power distribution strategy that not only excels in 

generalization performance, but also secures high scalability and online-learning.   
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Chapter 3. Research and Results  

3.1. Overview of Research Framework  

 
Figure [4] shows the overall research framework of this study. In this study, the 

power distribution strategy was developed using the actor-critic structure DRL 

model that can derive continuous action. The environment of MDP is composed by 

vehicle model and driver's driving pattern. Agent is composed of deep neural 

network of actor-critic architecture. The environment of the MDP is composed by 

vehicle model and driver model (driving cycles). And the agent is composed of the 

deep neural network with the actor-critic architecture. The actor of the agent derives 

the action for the state, and the environment derives the reward and the next state 

corresponding to the action. In the DRL, tuple composed of (state [s], action [a], 

reward [r], next state [s']) is defined as experience. These experiences are stored in 

the replay memory and used for the training process of the agent. The specific DRL 

algorithm is described in Algorithm [1].  

Regarding the method of selecting an action during the training, we used the ε-

greedy method, which is a representative exploration strategy. The agent conducts 

the exploration that randomly selects an action without depending on the policy 

according to the exploration probability ε in the ε-greedy method. Through this 

method of the agent exploration, it is possible to prevent the policy having the local 

maximum performance from being trained. The training algorithm is designed such 

that the exploration probability decreases as the learning progresses. Therefore, the 

agent actively performs exploration at the beginning of the training but hardly 

conducts exploration at the end of the training. This chapter consists of three parts. 

In 3.1.1, we introduce the definition of the state, the action, and the reward. In 3.1.2, 

the structure of the neural network used in the actor-critic model is explained, and in 

3.1.3, the target FCHEV model is introduced.  
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Figure 4. Schematic diagram of the research framework 

 

Algorithm 1. 

Randomly Initialize critic network 𝑄(𝑠, 𝑎|𝜃𝐶) and actor 𝜇(𝑠|𝜃𝐴) with 𝜃𝐶  and 𝜃𝐴 

Initialize target network Q’ and 𝜇’ with 𝜃𝐶′ ← 𝜃𝐶 and 𝜃𝐴′ ← 𝜃𝐴 

For episode =1 to M do:  

 Receive initial observation state 𝑠0 

 For t=1 to T do:  

  Select action 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃
𝐴) according to 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 algorithm  

  Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and new state 𝑠𝑡+1 

  Store experience (𝑠𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in the replay memory  

  Calculate target Q-value, 𝑦 = 𝑟𝑡 +  𝜌𝑄′(𝑠𝑡+1 , 𝜇
′(𝑠𝑡+1|𝜃

𝐴′
)|𝜃𝐶′) 

  Update critic by minimizing the loss, 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑖  

  Update the actor using the policy gradient:  

   ∇𝜃𝐴𝐽 =
1

𝑁
∑𝛻𝑎𝑄(𝑠, 𝑎|𝜃𝐶)𝛻𝜃𝐴𝜇(𝑠|𝜃𝐴) 

  Update the target networks:  

    𝜃𝐴′ ← 𝜏𝜃𝐴 + (1 − 𝜏)𝜃𝐴′
 

    𝜃𝐶′ ← 𝜏𝜃𝐶 + (1 − 𝜏)𝜃𝐶′
 

 End for  

End for  
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3.1.1. Definition of the state, action, and reward  

 
The state, the action, and the reward are the main elements of the MDP and 

need to be defined appropriately for the problem situation. This part explains how 

the state, the action, and the reward are defined.  

The power of the fuel cell stack according to the current density is expressed in 

Eq (10), where 𝑗, 𝐴, 𝑛, 𝑉(∙) denote the current density, area of cells, number of cells, 

and cell voltage, respectively. And like Eq (11), the battery power 𝑃𝑏𝑎𝑡 is calculated 

as the difference between the demanding power 𝑃𝑑𝑚𝑑 and the fuel cell stack power 

when the power of the fuel cell stack is determined. Therefore, in this study, the 

current density of the fuel cell stack is defined as the agent's action.  

 

𝑃𝑓𝑐 = (𝑗𝐴) ∙ (𝑛𝑉(𝑗)) (10) 

𝑃𝑏𝑎𝑡 = 𝑃𝑑𝑚𝑑 − 𝑃𝑓𝑐 (11) 

 

State is information representing the current situation and is an input necessary 

for the agent to derive the action. In this study, the state was constructed based on 

four factors such as Eq (12). The 𝑃𝑑𝑚𝑑 means the required power of the vehicle, 

and ∆𝑆𝑂𝐶 represents the SOC deviation between the initial SOC, 𝑆𝑂𝐶𝑖𝑛𝑖𝑡  and the 

current SOC as in Eq (13).  𝑗𝑚𝑖𝑛 and 𝑗𝑚𝑎𝑥 are the minimum current density and the 

maximum current density of the fuel cell stack according to the demanding power. 

The 𝑗𝑚𝑖𝑛 and the 𝑗𝑚𝑎𝑥 are expressed as Eq (14). 

 

s = [𝑃𝑑𝑚𝑑 , ∆𝑆𝑂𝐶,  𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥] (12) 

∆𝑆𝑂𝐶 = 𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑖𝑛𝑖𝑡  (13) 

𝑗𝑚𝑖𝑛 = 𝑚𝑖𝑛
𝑗

𝑓(𝑃𝑑𝑚𝑑 , 𝑗) (14) 
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𝑗𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝑗

𝑓(𝑃𝑑𝑚𝑑 , 𝑗) 

The reward is a mathematical expression that is transmitted to the agent so that 

the training of the agent can be made appropriate to the defined problem. Therefore, 

it is important to define the appropriate type of reward in order to derive the 

appropriate agent. In this study, as Eq (15), the reward was designed by considering 

the fuel consumption rate and the battery SOC. The γ in Eq (15) serves as a kind of 

equivalent factor that equalizes the absolute value of the battery SOC deviation and 

the fuel consumption rate. The reward is divided into a part related to fuel 

consumption and a part related to SOC deviation. We tried to create the agent that 

secures the SOC sustain-ability while minimizing the fuel consumption through this 

reward composition. 

 

R = −(𝑚̇fc + γ|∆𝑆𝑂𝐶|) (15) 

 

3.1.2. Neural network structure in the actor-critic model  
 

The neural network structure for the actor and the critic is shown in Figure [5]. 

The actor network is responsible for mapping the action from the state. The actor 

network has two hidden layers, both of which are made up of 512 neurons and the 

activation function is defined as a rectified linear unit (ReLU) such as Eq (16). In Eq 

(16), z denotes a value derived by a linear combination of layer weights and input 

values. The activation function of the actor's output layer is designed as the sigmoid 

function, and the mathematical expression for the sigmoid function is as Eq (17). 

  

ℎ(𝑧) = 𝑚𝑎𝑥 (0, 𝑧) (16) 

h(z) =
1

1 + 𝑒−𝑧
 (17) 

 



 

 27 

The output layer of the actor has a value between 0 and 1 by the sigmoid 

activation function, and we designed the agent's action as Eq (18) by utilizing the 

characteristics of this activation function. That is, the physical meaning of the output 

of the actor network, ℎ𝑜𝑢𝑡(𝑧) can be viewed as a ratio of the current density of the 

action and the maximum current density value.  

 

𝑎 = 𝑗𝑚𝑎𝑥 ∙ ℎ𝑜𝑢𝑡(𝑧) (18) 

 

Critic network receives the state and the action information and calculates the 

value for the action corresponding to the state. In the critic network, the 

representation feature for the state and for the action are individually derived and 

then integrated into one layer through a concatenate layer. And the activation 

function of the output layer is composed of a linear function. Therefore, the output 

value is derived through the linear combination of the weights of the layer and the 

input values.  

 

Figure 5. Architecture for the actor network and the critic network 
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3.1.3. FCHEV model  

 
In this study, the FCHEV consisting of a combination of the fuel cell stack and 

the battery as the power source was set as the target vehicle. The structure of the 

vehicle to be studied is shown in Figure [6], and the main specifications of the target 

vehicle are specified in Table 1. The maximum power of the fuel cell stack and the 

maximum power of the battery are 67kW and 39kW, respectively, and the mass of 

the vehicle is set to 1200 kg.  

The fuel cell model was developed by referring to 1-D proton exchange 

membrane fuel cell (PEMFC) flux balance modeling (F. Prinz, Cha, 2014) [46]. The 

fuel cell stack system includes components such as stack and compressor, and the 

area and number of cells in the stack are 200cm2, 400, respectively. And in this study, 

considering the stability of the stack, the maximum value of the current density was 

set to 1.0A/cm2 and the idling current density was set to 0.001 A/cm2. The detailed 

PEMFC and fuel cell stack system model are described in Appendix 1.  

The battery model was developed based on the equivalent open-circuit voltage 

model and internal resistance model expressed as a function of SOC. The required 

power of the battery is the same as Eq (19), where ηmot  represents the motor 

efficiency. Given the battery power, the time derivative of SOC, 𝑆𝑂𝐶̇  is expressed 

as Eq (20), where 𝑄𝑏𝑎𝑡 , 𝑅𝑏𝑎𝑡  , and 𝑉𝑂𝐶  represent battery capacity, internal 

resistance of the battery, and battery open-circuit voltage, respectively.  

 

𝑃𝑏𝑎𝑡 = 𝑃𝑑𝑚𝑑 − 𝑃𝑓𝑐 

               = 𝜂𝑚𝑜𝑡
−𝑠𝑔𝑛(𝑇𝑚𝑜𝑡) ∙ 𝑇𝑚𝑜𝑡 ∙ 𝜔𝑚𝑜𝑡  

(19) 

𝑆𝑂𝐶̇ = −
1

𝑄𝑏𝑎𝑡

𝑉𝑂𝐶(𝑆𝑂𝐶) − √𝑉𝑂𝐶(𝑆𝑂𝐶) − 4𝑃𝑏𝑎𝑡𝑅𝑏𝑎𝑡(𝑆𝑂𝐶)

2𝑅𝑏𝑎𝑡(𝑆𝑂𝐶)
 (20) 
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Figure 6. Configuration for the research target vehicle  

 
Table I. Target FCHEV model specification  

Properties  Values  

Maximum stack power [kW] 67 

Maximum battery power [kW] 39 

Vehicle mass [kg] 1200 

Tire radius [m] 0.337 

Final gear ratio 3.648  

Initial SOC 0.6 

Efficiency of the final drive [%] 96 

Efficiency of the converter [%] 97 

 
Figure [7] shows the stack system modeled in this study. On the anode side 

where hydrogen is supplied, pressure, temperature, and humidity are controlled to a 

constant state through valve, humidifier, and heater. And on the cathode side, the 

pressure, temperature and humidity of the air are controlled in a certain state through 

the compressor, the value, the humidifier, and the heater.  
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The power generated from the fuel cell stack system is expressed as Eq (21), 

𝑃𝐹𝐶  represents the output power from the stack, and 𝑃𝐴𝑈𝑋  represents the power 

consumed by auxiliary equipment belonging to the mechanical balance of plant 

(MBOP).  

 
𝑃𝑠𝑦𝑠 = 𝑃𝐹𝐶 − 𝑃𝐴𝑈𝑋 (21) 

 
The power generated from the stack is expressed as Eq (22), and the stack 

voltage, 𝑉𝑠𝑡𝑎𝑐𝑘 and stack current, and 𝑖𝑠𝑡𝑎𝑐𝑘 can be expressed as 𝑁𝑉𝑐𝑒𝑙𝑙 and 𝑗𝐴, 

respectively. N, 𝑉𝑐𝑒𝑙𝑙, and A denote the number of cells, cell voltage, and effective 

cell area in the stack, respectively.  

 
𝑃𝐹𝐶 = 𝑉𝑠𝑡𝑎𝑐𝑘 ∙ 𝑖𝑠𝑡𝑎𝑐𝑘= ( 𝑁𝑉𝑐𝑒𝑙𝑙) ∙ (𝑗𝐴) (22) 

 
The compressor that compresses the air supplied to the cathode side belongs to 

the main auxiliary equipment in the stack system. The power supplied to the 

compressor is represented as Eq (23), where 𝜂𝑐𝑜𝑚𝑝 means compressor efficiency, 

𝐶𝑝 means heat capacity of air, γ means ratio of the specific heat of air, and 𝑚̇𝑐𝑜𝑚𝑝 

means air flow rate. In addition, the air flow rate is expressed as a function of the 

current density as in Eq (24), where 𝑀𝑎𝑖𝑟 is molecular weights of the air.  

 

𝑃𝑐𝑜𝑚𝑝 =
𝐶𝑝𝑇𝑎𝑖𝑟

𝜂𝑐𝑜𝑚𝑝
((

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
)

𝛾−1
𝛾

− 1) ∙ 𝑚̇𝑐𝑜𝑚𝑝 (23) 

 

𝑚̇𝑐𝑜𝑚𝑝 = 𝑀𝑎𝑖𝑟

𝑁 ∙ 𝑖𝑠𝑡𝑎𝑐𝑘

4𝑥𝑜2
𝐹

 (24) 
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Also, we constructed the stack system by assuming that the power consumed 

by the auxiliary equipment except the compressor is constant at 3kW.  

 

 
Figure 7. Schematic diagram of the stack system 
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3.2. Study for the Stability and the Scalability    

 
The reinforcement learning differs from supervised learning in which a target 

value is given in advance in that training of model is performed based on one's own 

experience. Due to these characteristics, DRL is classified as semi-supervised 

learning, and since the training of the DRL is very difficult compared to general 

supervised learning, it is important to derive training conditions for stable learning.  

 

 

Figure 8. Trend of episodic reward according to the difference in units of demanding 

power  

 

Figure [8] shows episodic rewards according to the episode. The episodic 

reward refers to the total reward which the agent has earned in one episode. In this 

study, the start and end of the driving for the FCHEV model are defined as one 

episode, and episodic reward refers to the sum of the rewards the agent gets in one 

episode. Figure [8] clearly shows the difficulty of learning process of the DRL. In 

the defined state, SOC and current density constraints are normalized values for 

battery capacity and cell area, respectively, and mainly have values between 0 and 1. 

On the other hand, demanding power is not a normalized value, and it has a value 
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within about five order of magnitude in the case of the required power represented 

in unit of W. And if the required power is expressed in units of kW, it has a value 

within about 2 order of magnitude. In Figure [8], when the demanding power of the 

state is expressed in units of W, it can be confirmed that the learning of the agent is 

unstable, which is caused by a large deviation between the state features.  

As such, it is important to properly process the state because the learning 

stability of the DRL is determined according to the processing method for the state. 

The method of converting the unit to reduce the deviation between the features of 

the state has low scalability because the size of the demanding power is different for 

each problem situation. In order to ensure scalability and increase the stability of the 

learning, it is necessary to normalize the required power. We approached the above 

problem through two methodologies.  

The first normalization method is shown in Figure [9]. Whenever a new 

experience is stored in the replay memory, the running mean and standard deviation 

of the demanding power are updated as Eq (25) and Eq (26), where 𝜇, 𝜎, and 𝑁 

represent running mean, running standard deviation, and the number of experiences 

respectively. And the mini-batch used for the network training is normalized based 

on the running mean and the standard deviation like Eq (27).  

 

𝜇 ← 𝜇 +
𝑃𝑑𝑚𝑑,𝑖

𝑁
 (25) 

𝜎 ← 𝜎 + √(𝑃𝑑𝑚𝑑,𝑖 − 𝜇)
2

𝑁 − 1
 (26) 

 

𝑃𝑛𝑜𝑟𝑚 =
𝑃𝑑𝑚𝑑 − 𝜇

𝜎
 (27) 
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Figure 9. Normalization process by calculating the running mean and the running 

standard deviation for the demanding power in the state    

 

The other normalization method is to use a batch normalization layer. The batch 

normalization layer normalizes the mini-batch by deriving the mean and standard 

deviation of the mini-batch and has weights for the scale and shift of the mini-batch 

[47]. Batch normalization layer has the advantage of being able to speed up the 

learning speed of the deep neural networks as well as normalization between features. 

In this study, the batch normalization layer was added to the existing actor-critic 

network as shown in figure [10]. We place the batch normalization layer right after 

the state input layer of the actor network and the critical network for state 

normalization.  

 



 

 35 

We compared the learning results according to the four state representations, 

and Figure [11] shows the learning results according to the state representation. In 

terms of learning speed and convergence of episodic rewards, it can be seen from 

Figure [11] that the state representation that has normalized required power shows 

superior results compared to the other cases. In this study, state normalization was 

performed by using the batch normalization layer with the best reward convergence 

among the two normalization techniques.  

 

Figure 10. Actor-critic network architecture adding the batch normalization layer  

 

Figure 11. Simulation results with the state representation  
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In order to ensure the stability of the agent's learning, it is important to derive 

the hyper parameters. We determined the appropriate replay memory size and 

network size based on the simulation result according to the replay memory size and 

the simulation result according to the network size.  

The number of experiences stored is determined depending on the replay 

memory, and the old experience is deleted as new experience is input. We compared 

the simulation results by setting the replay memory size to 500, 1000, 10000, and 

100000. Figure [12] shows the simulation results according to the replay memory 

size. Figure [12] represents that when the replay memory size is low, such as 500 

and 1000, stability of the training is not secured. In this study, the replay memory 

size was set to 100000 for stable training for the agent.   

We derived the appropriate network size by adjusting the size of the last two 

hidden layers of the actor-critic network. The sizes of the last two hidden layers for 

the actor-critic agent were set to 16, 128, and 512, and the simulation results were 

compared. Figure [13] shows the simulation results according to the hidden layer 

size of the last two layers for the actor-critic agent. As shown in Figure [13], when 

the size of the hidden layer is set to 16, it can be confirmed that there is a part in 

which training of the agent becomes unstable. On the other hand, when the hidden 

layer size is set to 128 and 512, it can be confirmed that the training of the agent 

secures the learning stability. We set the hidden layer size to 128 so that the agent 

secures the learning stability while the agent does not require a lot of the computation 

power during the training and the inference process.  

Therefore, the actor-critic agent used in this study has the structure as shown in 

Figure [14].  

 



 

 37 

 
Figure 12. Simulation results with replay memory size  

 
Figure 13. Simulation results with the last two hidden layer size  

 
Figure 14. Actor-critic network architecture after the comparison experiment with 

hidden layer size  



 

 38 

3.3. Learning Process for the DRL Agent  

 
In order to derive a suitable agent, it is necessary to understand the training 

process of the agent. This chapter examines the training process of the agent and 

explains the development of a methodology to make the scalable power distribution 

strategy through such consideration.  

 

3.3.1. Understanding of the learning process  

 
The reward of this study is divided into two parts as shown in Figure [15] below. 

One is related to the fuel consumption and the other is related to the SOC deviation. 

We tried to analyze how the influence of the two terms changes with the learning 

process. Figure [16] shows the ratio of terms related to fuel consumption in the 

reward and the ratio of terms related to SOC deviation in the rewards according to 

episodes. The result shown in Figure [16] is the result derived by setting the reward 

factor, γ to 10. In Figure [16], the blue solid line indicates the proportion of the term 

related to fuel consumption to reward, and the orange solid line indicates the 

proportion of the SOC deviation related term to the reward. At the beginning of the 

training, the SOC deviation related terms occupy a dominant proportion of the total 

reward, but after about 40 episodes, it can be seen that the shares of the two terms in 

the reward become similar. In this study, the section in which the SOC deviation 

related terms exert the dominant influence was named “SOC dominant region”, and 

the section in which the two terms of the reward had similar weights was named 

“Training equilibrium region”.  
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Figure 15. Configuration of the reward with two terms  

 

 

Figure 16. Changes in the share of the rewards of two terms according to the training  

 

The SOC trajectories according to the episode are visualized in Figure [17] and 

the fuel consumption and the shares of the two terms to the reward are shown as 

Figure [18]. In Figure [17], (a), (b), (c), and (d) show SOC trajectory according to 

episode 1, episode 40, episode 80, and episode 120. And in Figure [18], (a) represents 

the fuel consumption according to the episode, and (b) shows the ratio of two terms 

of the reward according to the episode. From Figure [17]-(b), it can be seen that the 

fuel consumption is decreasing as shown in Figure [18]-(a) because the agent learns 

in a way that actively utilizes the battery at the beginning of learning. Figure [17]-

(b) shows that the agent is trained in a way that actively utilizes the battery at the 
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beginning of the training. Due to this, it can be confirmed that the fuel consumption 

on the SOC dominant region is decreasing as shown in Figure [18]-(a). Therefore, 

the decrease in the fuel consumption on the SOC dominant region is a phenomenon 

that occurs in the process of the agent regulating the SOC trajectory. After about 50 

episodes, as shown in Figure [17]-(c) and Figure [17]-(d), the agent reaches the 

training equilibrium region by limiting the SOC trajectory. Figure [18]-(a) shows 

that the fuel consumption in the training equilibrium region continuously decreases 

with the episodes. This is because the agent is trained in a way that maximizes the 

reward by regulating the SOC-trajectory and reducing the fuel consumption at the 

same time.  

 

  

(a) (b) 

  

(c) (d) 

Figure 17. SOC trajectory according to the episode: (a) SOC trajectory at initial 

episode, (b) SOC trajectory at episode 40 (c) SOC trajectory at episode 80 (d) SOC 

trajectory at episode 120  
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Figure 18. Simulation results with training process: (a) fuel consumption with episode, 

(b) shares of the reward with episode  

 

3.3.2. Methodology development for the scalability  

 
We confirmed that the agent is trained in a way that restricts the SOC trajectory 

in the early training of the agent. In addition, we can see that in the training 

equilibrium region, the agent is trained to minimize fuel consumption while limiting 

SOC trajectory. In this study, we analyzed whether this learning process proceeds in 

the same way according to the reward factor.  

(a) 

(b) 
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Figure 19. Training characteristics when the reward factor is set to 2: (a) The shares of 

two reward components to reward with the episode, (b) The fuel consumption with the 

episode, (c) SOC trajectories derived from the last 5 episodes  

(a) 

(b) 

(c) 
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Figure 20. Training characteristics when the reward factor is set to 3: (a) The shares of 

two reward components to reward with the episode, (b) The fuel consumption with the 

episode, (c) SOC trajectories derived from the last 5 episodes  

 

(c) 

(b) 

(a) 
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Figure 21. Training characteristics when the reward factor is set to 10: (a) The shares 

of two reward components to reward with the episode, (b) The fuel consumption with 

the episode, (c) SOC trajectories derived from the last 5 episodes  

 

(a) 

(b) 

(c) 
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We analyzed the change in characteristics of the training process while setting 

the reward factor to 2, 3, 10. Figures [19], [20], and [21] show the results when the 

reward factor is set to 2, 3, and 10 respectively. In the figures, the (a) shows the 

shares of the two components to the total reward according to the episode, and the 

(b) shows the agent's fuel consumption according to the episode, the (c) represents 

the SOC trajectory derived from the last 5 training episodes.  

From the results in Figures [19] to [21], it can be seen that a reward factor that 

is too low causes instability in the training process. Figure [19] and Figure [20] show 

the results when the reward factor is set to 2 and 3. It can be seen that the training 

equilibrium region is not formed at the reward factor low like 2 and 3, and as a result, 

the learning of the agent is not conducted efficiently. Since the reward factor is an 

equivalent factor that means the importance of SOC deviation to the fuel 

consumption rate, we can see that the training equilibrium region is not formed due 

to insufficient regulation of the SOC trajectory at the low reward factor, resulting in 

instability of the training. On the other hand, the simulation results with the reward 

factor designed as 10 show that the training equilibrium region exists and the 

learning of the DRL is done effectively. From these results, we can see that it is 

necessary to select an appropriate reward factor for the successful learning of the 

agent.  

In order to examine the effect of the reward factor on the training more closely, 

we conducted an analysis of the training process of the agent. The DRL agent collects 

various types of experiences by taking random actions with high probability in the 

initial episode. And as the training progresses, the DRL agent takes an action 

according to the trained policy while reducing the probability of taking a random 

action. Figure [22] shows the change in the episodic reward and the exploration 

probability, ε according to the training episodes when the reward factor is set to 10.  
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Figure 22. The episodic reward and the exploration probability with the training 

episodes when the reward factor is set as 10: (a) The episodic reward, (b) exploration 

probability   

 

The typical episodic reward according to the episodes is expressed in Figure 

[23]. The training process for the agent can be divided into four phases, as shown in 

Figure [23]. In the “phase 1”, the episodic reward increases with the training, and the 

episodic reward decreases as the training progresses in the “phase 2”. Also, the 

episodic reward increases rapidly in the “phase 3”, and the episodic reward converge 

in the “phase 4”. We analyzed each phase and tried to understand the learning process 

of the DRL agent. 

 

(a) 

(b) 
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Figure 23. Illustration of the typical episodic reward according to the training episode  

 

In the phase 1, the action of the agent is mainly selected in a random manner. 

The action profile and SOC trajectory in the first episode where the action is selected 

randomly are illustrated in Figure [24]. When the actions are selected randomly, the 

SOC is maintained close to 1.0 because the agent uses excessive power of the fuel 

cell stack. This operation results in high fuel consumption and large SOC deviations.  

Therefore, the agent is trained in the direction of minimizing the use of the 

power for the fuel cell stack in order to increase the episodic reward. That is, the 

agent mainly selects the idling current density as an action. Figure [25] shows how 

the trained agent takes an action in the phase 1. We classified the action selected in 

a random manner and the action selected by the policy of the agent, and the results 

is visualized through Figure [25]. Figure [25] shows that most of the actions derived 

by the policy are the same as the idling current density.  
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Figure 24. (a) The action profile and (b) the SOC trajectory in the initial episode     

 

 

Figure 25. The action selected by the policy and the action selected randomly in the 

phase 1  

(a) 

(b) 
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Figure 26. The SOC trajectories according to the episode in the phase 1 

 

In the phase 1, if the agent selects the idling current density continuously, the 

SOC trajectory moves near the initial SOC of 0.6. Figure [26] shows the SOC 

trajectory change according to the episode in the phase 1. As a result, the agent can 

reduce the SOC deviation and reduce the amount of fuel consumed of the fuel cell 

stack by selecting the idling current density. Therefore, the agent can increase in 

episodic reward by choosing the idling current density.  

It can be seen from Figure [27] that the agent still selects the idling current 

density as an action even in the phase 2. However, in the phase 2, when only the 

idling current density is selected, the SOC-deviation no longer decreases, but rather 

increases, so the episodic reward increases as a result.  

Figure [28] shows SOC trajectories according to episodes in the phase 2. As the 

episode progresses, the agent selects more idling current density as an action, the 

SOC is distributed more frequently in a region which is lower than the initial SOC. 

Therefore, the episodic reward for the agent decreases as the episode progresses in 

the phase 2.  
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Figure 27. The action selected by the policy and the action selected randomly in the 

phase 2  

 

 

Figure 28. The SOC trajectories according to the episode in the phase 2 

 

In Phase 3, the episodic reward increases dramatically. This rapid increase in 

the episodic reward is because the agent is trained in a way that can regulate the 

SOC-trajectory sufficiently. Figure [29] shows the SOC trajectory and distribution 
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of action in one episode belonging to the phase 3. Through the figure, it can be 

confirmed that the SOC is distributed around the initial SOC.  

And we can see from Figure [30] that the SOC regulation occurring in the phase 

3 is closely related to the “training equilibrium region”. That is, the training 

equilibrium region is developed through the SOC regulation.  

 

  

Figure 29. (a) The SOC trajectory and (b) the action distributions in the phase 3  

 

(a) 

(b) 
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Figure 30. Relationship between the start of the training equilibrium region and the 

phase 3   

 

And the in the phase 4, the episodic reward either converges or rises gently. The 

agent is trained to minimize the fuel consumption while regulating the SOC in the 

phase 4. We classified the fuel consumption in the phase 4 and the fuel consumption 

in the rest of areas and visualized the fuel consumption in both areas. Figure [31] 

shows the result for the visualization. In the figure, the blue solid line represents the 

fuel consumption according to the episode in the phase 4. We can see from the figure 

that the fuel consumption decreases as the learning of the agent progresses in the 

phase 4.  
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Figure 31. The fuel consumption according to the training episodes 

 

However, the SOC regulation is not sufficiently implemented at a relatively low 

reward factor. As a result, the phase 3 in the episodic reward and the training 

equilibrium region are not developed. Figure [32] shows the training results of the 

DRL agent when the reward factor is set to 2. Figure [32]–(a) shows the episodic 

rewards according to the episodes, and Figure [32]–(b) shows the shares of two 

reward components according to the episodes. When the reward factor is set to 2, it 

can be seen from the figure that the phase 3 in the episodic reward and the training 

equilibrium region are not formed, and the training of the agent is also unstable 

because the agent does not regulate the SOC sufficiently.  

Reward factor has the meaning of the weight about the SOC deviation to fuel 

consumption. Therefore, if the reward factor is set low for the training of the DRL 

agent, the agent does not regulate the SOC sufficiently, and as a result, the agent's 

learning does not proceed effectively. Therefore, it is important to derive an effective 

reward factor according to the problem definition and the FCHEV system.  
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Figure 32. The training results when the reward factor is set as 2: (a) The episodic 

reward and (b) the shares of two reward components according to the episode  

 

Since the effective reward factor is different depending on the FCHEV system 

and the problem definition, it is necessary to develop a methodology that can derive 

the reward factor automatically without the experience and the knowledge of the 

experts for the scalability of the power distribution strategy. In this study, we 

developed a methodology that can derive the reward factor through the process 

shown in Figure [33].  

(a) 

(b) 
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Figure 33. Schematic diagram of the process of finding the reward factor 

 

The process to find the reward factor is as follows. We checked whether the 

valid training was performed or not through the final SOC distribution of the SOC 

trajectories in the episodes at the end of the training and the existence of the training 

equilibrium region. The deviation between the final SOC of the SOC trajectories at 

the end of the training and the initial SOC, δ is equal to Eq (28), and the δ acts as a 

variable that determines whether the reward factor is updated or not. In Eq (28), 𝑁 

is the number of episodes corresponding to the convergence region, and 𝑆𝑂𝐶𝑓,𝑖  is 

the final SOC of the SOC trajectory for each episode.  

 

𝛿 = 𝜇𝑆𝑂𝐶𝑓
− 𝑆𝑂𝐶𝑖𝑛𝑖𝑡  

∵ 𝜇𝑆𝑂𝐶𝑓
=

1

𝑁
∑ 𝑆𝑂𝐶𝑓,𝑖

𝑖
 

(28) 

 

In this study, when the absolute value of the δ is within 0.015 and the training 

equilibrium region is formed, the corresponding reward factor is determined as a 

reward factor suitable for the training. And we designed the algorithm to execute the 

training process again by adjusting the reward factor as shown in Equation (29) if an 

arbitrary reward factor does not satisfy the above two conditions. That is, as the 
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difference between the initial SOC and the final SOC increases, the range of 

adjustment of the reward factor is increased so that the effective SOC regulation is 

made.  

 

𝛾 ← 𝛾 + 𝐾|𝛿| (29) 

 

 

 We derive the reward factor suitable for this study through the search method 

of the reward factor. The initial reward factor was designed as 3, after that, the reward 

factor was 4.45, and finally 5.80 was selected as the suitable reward factor. The 

results are expressed in Figures [34]-[36]. (a) and (b) in figures show the weight of 

the two components of the reward for each episode and the SOC paths for episodes 

at the end of the learning. When the reward factors are 3, we can see that the training 

equilibrium region does not exist and the constraint for the SOC paths are not 

properly regulated. Figure [35]-(a) shows that when the reward factor is 4.45, the 

training equilibrium region does not exists during the training process of the agent. 

As shown in Figure-(b), when the reward factor is 4.45, the regulation on SOC 

trajectory is not implemented, and the power distribution strategy does not guarantee 

SOC-sustainability. Figure [36] shows the result when the reward factor is set to 5.80. 

Through Figure [36], when the reward factor is set to 5.80, it can be seen that the 

training equilibrium region is formed and the SOC trajectories are limited around the 

initial SOC.  
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Figure 34. Simulation results when the reward factor is 3.00: (a) The shares of two 

terms to reward with the episode, (b) SOC trajectories at the end of the training 

episode  

 
Figure 35. Simulation results when the reward factor is 4.45: (a) The shares of two 

terms to reward with the episode, (b) SOC trajectories at the end of the episode  

 

(a) 

(b) 

(a) 

(b) 
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Figure 36. Simulation results when the reward factor is 5.80: (a) The shares of two 

terms to reward with the episode, (b) SOC trajectories at the end of the episode  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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3.4. Generalization Performance of the Trained Agent  

 
One of the most important goals in the field of the machine learning and the 

artificial intelligence (AI) is to construct a model with generalization performance. 

The generalization performance is defined as the ability of a model trained with 

arbitrary training data to derive valid results even for the data not used for the training. 

The DRL-based power distribution strategy is trained by specific driving patterns or 

driving cycles. Therefore, the DRL-based control strategy that secures generalization 

power must perform effective energy management even for the driving cycles that 

are not used for the learning of the agent.  

This chapter consists of three parts. In 3.4.1, the training framework in which 

the agent is trained to secure the generalization power of the DRL model is explained. 

And the driver model based on the Markov decision process developed to verify the 

DRL model is described in 3.4.2. Finally, in 3.4.3, the process and results of the 

validation test for the DRL model are described.  

 

3.4.1. Training framework for the generalization 

performance  
 

Since the generalization performance increases in proportion to the quantity of 

the data used to develop the algorithm, using many driving cycles in the development 

of the DRL model for the FCHEV helps to increase the generalization performance 

of the agent. In this study, the DRL model was trained based on more than 20 

reference driving cycles representing general driving situations, such as FTP-75 and 

UDDS cycle for the training of the DRL model.  

Figure [37] shows the process of developing the DRL-based power distribution 

strategy. First, we find the effective reward factor based on one driving cycle through 

the methodology that derives the reward factor described above. In this study, the 
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effective reward factor was derived based on the FTP-72 reference driving cycle 

shown in Figure [38]. After that, we improved the generalization performance of the 

DRL model by re-training the DRL agent through various standard cycles and the 

derived reward factor. In order to improve the learning speed, when training the DRL 

model through multiple reference cycles, we used a transfer learning method that 

initializes the weights of the model to the weights of the model previously trained in 

one cycle.  

 

 

 

Figure 37. Training framework to secure the generalization power of the agent  
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Figure 38. FTP-72 reference driving cycle 

 

 3.4.2. Development of driver model based on the Markov 

decision process  
 

Since the DRL model was trained through most of the reference driving cycles, 

it was necessary to generate additional driving patterns and driving cycles to verify 

the DRL model. We developed the driver model based on the Markov decision 

process to verify the DRL model for various driving patterns.  

The MDP-driver model was developed based on the statistical characteristics 

of the reference driving cycles. As in Eq (30), the MDP-driver model derives the 

vehicle speed of the next step based on the vehicle speed at the current step. In Eq 

(30), 𝑣, 𝑎, 𝑎𝑛𝑑 𝑃 mean velocity, acceleration, and transition probability, respectively. 

The transition probability represents the probability that an arbitrary acceleration 

will be derived under a specific velocity condition.  

 

𝑣𝑡+1 = 𝑣𝑡 + 𝑎𝑡∆𝑡,  𝑎𝑡  ~ 𝑃(𝑎𝑡|𝑉 = 𝑣𝑡) (30) 
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And the transition probability, 𝑃𝑣
𝑎 is expressed as Eq (31) below, where 𝑁𝑣

𝑎 

means the number of transitions to acceleration, 𝑎 under the condition of a specific 

velocity, v. The number of transitions, 𝑁𝑣
𝑎 is expressed by Eq (32). In Eq (32), ε is 

an arbitrary constant value and plays a role of suppressing the occurrence of a dead 

zone where the transition probability becomes 0. Also, it makes the transition 

probability different from the average transition distribution of the reference cycles.  

 

𝑃𝑣
𝑎 =

𝑁𝑣
𝑎

∑ 𝑁𝑣
𝑎

𝑎
 (31) 

𝑁𝑣
𝑎 = ∑𝟏(∙ |𝑉 = 𝑣, 𝐴 = 𝑎) +  𝜀 (32) 

 

Figure 39. Visualization of the transition probability matrix 
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Figure [39] shows the visualization result for the transition probability matrix. 

Y-axis stands for the velocity and X-axis stands for the acceleration. And the color 

of the grid corresponding to each velocity and acceleration represents the transition 

probability. The closer to yellow, the closer to 1, and the closer to purple, the closer 

to 0.  

When the verification experiments are conducted with only the reference cycles, 

the number of developed reference driving cycles is limited, so only limited 

verification experiments are possible. In order to overcome these limitations, we 

developed the MDP-based driver model and carried out extensive DRL model 

verification experiments through a number of the validation driving cycles.  

 

Figure 40. Driving cycles generated from the MDP driver model 
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3.4.3. Experiments for the validity and the results 
 

Figure [40] shows examples of the driving cycles for verification created 

through the MDP-driver model described above. It can be seen from the figure that 

the generated driving cycles have different driving characteristics from each other. 

In this study, the generalization power of the trained DRL model was evaluated with 

a number of driving cycles generated through the MDP-driver model.  

 

 

 

Figure 41. Simulation results for the generalization power of the DRL model in terms 

of the SOC sustainability: (a) SOC trajectories of the trained DRL model on the test 

driving cycles, (b) final SOCs of the trained DRL model on the test driving cycles  

(a) 

(b) 
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We first generated 100 driving-cycles through the MDP-driver model in order 

to evaluate the generalization power of the trained DRL model in terms of the SOC-

sustainability. In these 100 driving-cycles, we evaluated the SOC-sustainability of 

the agent, and the evaluation results are shown in Figure [41]. (A) of Figure [41] is 

the result showing some of the SOC trajectories derived while the trained agent runs 

the 100 test cycles. And (b) of Figure [41] refers to the final SOC, which is the SOC 

at the end of the 100 test cycles.  

Figure [41] – (b) shows that the final SOCs for the trained DRL model are very 

similar to the initial SOC value set to 0.6 even when the agent is tested on the 100 

validation driving cycles generated by the MDP-driver model. The difference 

between the final SOC and the initial SOC shows a difference of less than about 0.01, 

and through this, it can be confirmed that the trained agent guarantees the 

generalization power in terms of SOC-sustainability. 

We confirmed that the derived DRL model secures the generalization 

performance in terms of the SOC-sustainability. However, the DRL agent must be 

able to guarantee the generalization performance in terms of the fuel efficiency. In 

order to verify the fuel efficiency of the DRL agent, we conducted a study using 

Equivalent consumption minimization strategy (ECMS) as a reference model. 

ECMS is a theory derived based on the PMP (Pontryagin's minimum principle) 

theory, and is controlled by deriving a control value, u, which minimizes an 

instantaneous cost function such as Eq (33). λ is defined as a Lagrange multiplier or 

co-state, and physically has the meaning of an equivalent factor that equalizes the 

amount of SOC change to instantaneous fuel consumption in Eq (33).  

 

𝐻 = 𝑚̇𝑓𝑐 + 𝜆 ∙ 𝑆𝑂𝐶̇  (33) 

𝑢∗ = 𝑎𝑟𝑔min
𝑢

𝐻  (34) 
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ECMS is a simple theory, but a solution derived by the ECMS close to the 

optimum if the co-state is derived appropriately. N. Kim, S. W. Cha, et. al proved 

that if the co-state that satisfies the SOC-constraint can be derived, it can show a 

result comparable to the dynamic programming (DP) guaranteeing a global optimal 

solution.  

DP provides a methodology that can derive an optimal solution without 

searching all paths by repeatedly storing the optimal solution of the divided problem. 

The process of deriving the optimal cost, 𝐽𝑘,𝑁
∗ , which is consumed from the Nth step 

to the kth step, can be expressed through Eq (35), where L is the cost consumed from 

the k+1th step to the kth step. Figure [42] is illustration showing the mathematical 

expression of DP.  

 

𝐽𝑘,𝑁
∗ (𝑥(𝑘)) = min

𝑢
(𝐿(𝑥(𝑘), 𝑢(𝑘)) + 𝐽𝑘+1,𝑁

∗ (𝑥(𝑘 + 1)))   (35) 

 

 

 

 

Figure 42. Schematic diagram of the calculation process of the dynamic programming  
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Figure 43. SOC trajectory created by shooting method 

 

We used the shooting method to derive the optimal co-state for the ECMS. That 

is, we derive the optimal co-state that can satisfy the SOC constraint by repeatedly 

updating the co-state value for an arbitrary driving cycle. Figure [43] shows the 

SOC-trajectories generated by updating the co-state until the optimal co-state value 

for the ECMS is derived on an arbitrary driving cycle. When the co-state is about -

71.3, the SOC-constraint can be satisfied.  

In order to confirm the effectiveness of the ECMS used as the reference model, 

we conducted the comparison experiment between the ECMS and the DP which can 

guarantee an optimal solution. 50 driving cycles corresponding to 1500 seconds were 

created from the MDP-driver model, and the fuel economy comparison experiment 

between the two optimal control algorithms was conducted. Figure [44] shows the 

scatter plot of the equivalent fuel consumption between DP and ECMS. The 

equivalent fuel consumption refers to the fuel consumption consumed when the final 
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SOC value is replaced with the initial SOC when the final SOC is different from the 

initial SOC. The x-axis of the scatter plot shows the fuel consumption for the ECMS 

and the y-axis shows the fuel consumption for the DP. The blue dotted line represents 

the decision boundary in Figure [44]. If there is a point at the bottom of the decision 

boundary, it means that the DP recorded less fuel consumption than the ECMS, and 

if the point is above based on the decision boundary, it means that the ECMS 

recorded less fuel consumption than the DP. All points exist below the decision 

boundary, but points are distributed at points very close to the decision boundary, 

which means that the two optimization algorithms show similar efficiencies.  

 

 

Figure 44. Scatter plot for the fuel consumption of the ECMS and the fuel 

consumption of the DP  

 
Table II. Comparison of simulation results between DP and ECMS 

Maximum ∆FC [%] Minimum ∆FC [%] Average ∆FC [%] 

 1.19 0.0014  0.47 
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Table 2 shows information on the difference in the equivalent fuel consumption 

between the ECMS and the DP. The difference about the equivalent fuel 

consumption between the optimal control theory algorithms for the 50 driving cycles 

is about 1.19% at the maximum, and about 0.001% at the minimum. On average, the 

two optimal control algorithms show a difference of about 0.47%, which means that 

if the co-state value of the ECMS is well set based on the future driving information, 

there is no significant difference from the DP result. 

As such, we confirmed the validity of the AC model developed in this study by 

comparing the ECMS algorithm belonging to the real-time optimal control which 

can derive control close to the optimal.  

Figure [45] shows the simulation results of the ECMS algorithm and AC agent 

for the cycle corresponding to 1500 seconds generated through the MDP-driver 

model. (a), (b), and (c) of Figure [45] show the driving cycle, the action profiles of 

the two algorithms, and the SOC trajectories for the two algorithms, respectively. In 

Figures [45]-(b) and Figure [45]-(c), the solid blue line shows the action profile and 

SOC trajectory for the DRL-based AC model, and the orange dotted line shows the 

action profile and SOC trajectory of the ECMS. The figure shows that the action 

profiles for the ECMS and the AC models are similar.  

And Table 3 shows the comparison simulation results between the ECMS and 

the AC agent. In Table 3, FC stands for the fuel consumption and FC@ref stands for 

the equivalent fuel consumption. It can be seen that the difference between the 

equivalent fuel consumption for the AC model and the equivalent fuel consumption 

for the ECMS is 0.3%, which is very similar.  
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Figure 45. Generalization performance test for the DRL model: (a) driving cycle from 

the MDP-driver model, (b) action profiles from the two models, (c) SOC trajectories 

for the two models  

(a) 

(b) 

(c) 
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Table III. Comparison simulation results for the two models on a driving cycle 

generated from MDP-driver model 

 ECMS AC 

Final SOC 0.596 0.586 

FC [g] 66.3 65.7 

𝐅𝐂@𝐫𝐞𝐟 [g] 66.5 66.7 

∆𝑭𝑪 [%] - 0.3%  

 

And Figure [46] is the scatter plot showing the equivalent fuel consumption of 

the ECMS and the AC model in 100 simulations based on the driving cycles 

generated from the MDP-driver model. The x-axis represents the equivalent fuel 

consumption for the ECMS algorithm, and the y-axis represents the equivalent fuel 

consumption for the AC model. The blue dotted line is the decision boundary that 

classifies the efficiency advantages of the two models. If the points are distributed 

above the decision boundary, it means that the efficiency of the ECMS is better than 

the DRL-based AC agent, and if the points are distributed below the decision 

boundary, it means that the efficiency of the AC model is better than the ECMS. 

Although most of the points are distributed above the decision boundary, it can be 

seen that they exist near the decision boundary, which means that the difference for 

the efficiency between the two algorithms is small.  

Then, the experimental results for the 100 validation simulations between the 

ECMS and the AC agent are shown in Table 4. In simulations, the ECMS showed 

better efficiency than the DRL model in the general point of the view, but the 

difference in fuel efficiency between the two models is less than 0.84%. Considering 

the fact that the AC agent performs control by reflecting only the current state, it can 

be said that the AC agent guarantees a high level of the generalization performance.  
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Figure 46. Scatter plot between the AC agent and the ECMS for equivalent fuel 

consumption  

 

 
Table IV. Comparison results between the AC model and the ECMS on the 100 driving 

cycles generated from the MDP-driver model  

 ECMS AC  

Number of wins  98 / 100 2 / 100 

Biggest difference with ECMS (%) - + 0.84 

Lowest difference with ECMS (%) - - 0.79 

Average difference with ECMS (%) - + 0.25   
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3.5. Development of the Agent considering the 

Degradation of the Fuel Cell Stack  

 
Research so far has focused on deriving power distribution strategies that 

minimize the fuel consumption and ensure the SOC sustainability. Through the 

previous research, we developed the methodology to train the DRL model that can 

guarantee the scalability and the generalization. However, since the fuel cell stack is 

vulnerable to the deterioration, it is necessary to develop the power distribution 

strategy that considers the degradation of the fuel cell.  

The degradation of the fuel cell stack is caused by a wide variety of causes such 

as mechanical stress, reduction of the surface area of the catalyst, contamination, etc. 

[37]. The deterioration of the fuel cell stack for the FCHEV is caused by mechanical 

shock as well as by electrochemical reaction. In addition, since one degradation 

factor affects other degradation factors, the deterioration of the fuel cell stack is very 

complex. As such, since the degradation process of the fuel cell stack of the FCHEV 

involves a lot of complexity, many studies have been conducted to model the 

deterioration of the fuel cell through a data-driven approach [39].  

In a representative study to diagnose the FCHEV's fuel cell degradation based 

on using a data driven approach, the stack operation mode was divided into four and 

the deterioration of the fuel cell according to each operation mode was quantified (H. 

Chen, 2015). “Idling operation”, “high power condition”, “load change operation”, 

and “start & stop operation” were defined as four operation modes that cause 

degradation in the fuel cell stack in the study. Table 5 shows the degree of 

deterioration of the fuel cell stack according to each operating mode. In this study, 

the fuel cell degradation model was developed with reference to the relevant research, 

and the energy management strategy of the FCHEV that that reflects the deterioration 

of the fuel cell stack was developed based on this degradation model. 
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Table V. Fuel cell stack degradation model according to the operation mode  

Operation conditions Voltage degradation  

Load change operation 0.4185 𝜇𝑉/𝑐𝑦𝑐 

Idling operation  8.662 𝜇𝑉/ℎ 

High power condition  10.00 𝜇𝑉/ℎ 

Start & Stop operation  13.4 𝜇𝑉/𝑐𝑦𝑐 

 

 

3.5.1. Reformulation of the reward considering the 

degradation   
 

Since there is no degradation-related term in the reward designed in the 

previous study, it is necessary to modify the existing reward to develop the DRL-

based control strategy that reflects the degradation of the fuel cell stack. We designed 

a new reward as Eq (36) to develop the DRL model that considers the degradation 

of the fuel cell stack. In Eq (36), ∆𝑉̇ and 𝜎 mean the instantaneous voltage drop of 

the fuel cell due to the degradation and the equivalent factor that equalize the 

instantaneous voltage drop to fuel consumption rate.  

  

𝑅 = −(𝑚̇𝑓𝑐 + 𝜎∆𝑉̇) − 𝛾|𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟𝑒𝑓| (36) 

 

We wanted the reward considering the degradation of Eq (36) to maintain the 

same format as the reward that does not reflect the degradation of Eq (19), which 

consists of two components: the fuel consumption and the SOC deviation. Therefore, 

we introduced the equivalent factor of the stack degradation for the fuel consumption 

rate of σ in Eq (36), and it has a unit of [𝑔/𝜇𝑉 ]. We carried out an economic 

evaluation such as Eq (37)-(39) to derive an appropriate value for 𝜎. In Eq (37), 
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𝐶𝑜𝑠𝑡𝑠𝑡𝑎𝑐𝑘 and 𝐶𝑜𝑠𝑡𝑘𝑤 represent stack price and stack price per kW power. In Eq 

(37), 𝐶𝑜𝑠𝑡𝑑𝑟𝑑  means the economic cost due to the stack degradation, ∆𝑉𝑙𝑖𝑚𝑖𝑡 

represents limiting voltage-drop, and the lifespan of the stack is considered until the 

deterioration exceeding the limiting voltage-drop occurs. And 𝐶𝑜𝑠𝑡𝐻2
 of Eq (39) 

represents hydrogen price. In this study, 𝐶𝑜𝑠𝑡𝑘𝑤 , ∆𝑉𝑙𝑖𝑚𝑖𝑡 , and 𝐶𝑜𝑠𝑡𝐻2
  were 

defined as 40[$/kW], 0.12V, and 8[$/kg], respectively, based on related research and 

current market conditions [48, 49]. As a result, we derive the value of σ as 2.79 

[𝑔/𝜇𝑉]. In other words, the voltage drop corresponding to 1 𝜇𝑉 is equivalent to 

additional consumption of 2.79 g of hydrogen.  

 

𝐶𝑜𝑠𝑡𝑠𝑡𝑎𝑐𝑘 = 𝑃𝑓𝑐,𝑚𝑎𝑥 ∙ 𝐶𝑜𝑠𝑡𝑘𝑤  (37) 

𝐶𝑜𝑠𝑡𝑑𝑟𝑑 =
𝐶𝑜𝑠𝑡𝑠𝑡𝑎𝑐𝑘

∆𝑉𝑙𝑖𝑚𝑖𝑡
 (38) 

𝜎 =
𝐶𝑜𝑠𝑡𝑑𝑟𝑑  

𝐶𝑜𝑠𝑡𝐻2

 (39) 

 

And we added a term related to the additional fuel consumption due to the 

voltage-drop to the reward. As shown in Eq (40), the power that the fuel cell should 

be responsible for an arbitrary demanding power is the same when deterioration 

occurs and when no deterioration occurs. In Eq (40), 𝛿𝑉 refers to the voltage-drop 

due to the stack degradation, and 𝛿𝑗 refers to the current density to be increased due 

to the stack degradation.  

 

𝑉𝑐𝑒𝑙𝑙 ∙ 𝑗 = (𝑉𝑐𝑒𝑙𝑙 − 𝛿𝑉)(𝑗 + 𝛿𝑗) (40) 

 

If we ignore the term for 𝛿𝑉 ∙ 𝛿𝑗, Eq (40) can be expressed as Eq (41).  
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𝛿𝑗 =
𝑗

𝑉𝑐𝑒𝑙𝑙
𝛿𝑉 (41) 

 

Then, the fuel consumption rate, 𝑚̇𝑓𝑐,𝑎𝑑𝑑 additionally consumed by δj is equal 

to Eq (42). In Eq (42), M, N, A, and F denote the molecular mass for hydrogen, the 

number of cells, the cell area, and Faraday number, respectively.  

 

𝑚̇𝑓𝑐,𝑎𝑑𝑑 = 𝑀
𝑁𝐴𝛿𝑗

2𝐹
= 𝑀

𝑁𝐴𝑗

2𝐹𝑉𝑐𝑒𝑙𝑙
𝛿𝑉 (42) 

 

Finally, the designed reward is represented to Eq (43). It should be noted that 

there is a difference in that ∆𝑉̇ represents the instantaneous voltage-drop caused by 

the stack degradation, and 𝛿𝑉 represents the voltage-drop accumulated by the stack 

degradation during the simulation in Eq (43).  

 

𝑅 = −(𝑚̇𝑓𝑐 + 𝜎∆𝑉̇ + 𝑀
𝑁𝐴𝑗

2𝐹𝑉𝑐𝑒𝑙𝑙
𝛿𝑉) − 𝛾|𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟𝑒𝑓| (43) 

 

Therefore, the structure of the reward considering the stack degradation can be 

considered to be divided into a term related to the fuel consumption rate and a term 

related to the SOC deviation, similar to the structure of the reward which is not reflect 

the degradation. Figure [47] clearly shows the reward structure. In Figure [47], 

(𝑚̇𝑓𝑐 + 𝜎∆𝑉̇ + 𝑀
𝑁𝐴𝑗

2𝐹𝑉𝑐𝑒𝑙𝑙
𝛿𝑉)  is a term related to the fuel consumption which 

contains actual fuel consumption and converted fuel consumption due to the 

deterioration. Therefore, the term related to the fuel consumption is called the 

effective fuel consumption rate and is expressed as Eq (44) in this study.  
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𝑚̇𝑒𝑓𝑓 =  𝑚̇𝑓𝑐 + 𝜎∆𝑉̇ + 𝑀
𝑁𝐴𝑗

2𝐹𝑉𝑐𝑒𝑙𝑙
𝛿𝑉 (44) 

 

 

 

Figure 47. Configuration of the reward with two terms  

 

 

3.5.2. Development of the power distribution strategy 

considering the stack degradation  
 

Based on the reward reconstructed in the previous study, the DRL agent that 

considers stack degradation was trained. When training the agent through the reward 

that reflects the stack deterioration, the reward factor was selected as 28.25.  

We compared the simulation results of the agent trained based on the new 

reward and the agent in the previous study derived through the reward that does not 

include the degradation factor. Table 6 shows the main characteristics of the agent 

without considering the stack deterioration and the main characteristics of the agent 

considering the stack deterioration. In the table, “Agent 1” refers to the agent trained 

without considering the degradation factor, and “Agent 2” refers to the agent trained 

by considering the degradation factor. Compared to the agent 1, the agent 2 not only 
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has the different reward, but also has the different state. The action of the previous 

step, 𝑎𝑝𝑟𝑒𝑣  is added to the existing state in the state for the agent 2.  

Since one of the main deterioration factors of the stack is the load change, if the 

current density by action is different from the current density in the previous step, 

the stack degradation occurs. Therefore, the state of size 5, such as Eq (45), was 

constructed so that the agent2, which make policy in consideration of the 

deterioration, can cope with the degradation of the stack due to load change.  

 

𝑠 = [𝑃𝑑𝑚𝑑, ∆𝑆𝑂𝐶, 𝑗
𝑚𝑖𝑛

, 𝑗
𝑚𝑎𝑥

, 𝑎𝑝𝑟𝑒𝑣] (45) 

 

Table VI. Main features of the trained agents  

 Agent 1 Agent 2 

Algorithm  Actor-Critic  Actor-Critic  

State configuration  
[𝑃𝑑𝑚𝑑 , ∆𝑆𝑂𝐶, 𝑗𝑚𝑖𝑛 , 𝑗𝑚𝑎𝑥] 

Size of the state = 4  

[𝑃𝑑𝑚𝑑 , ∆𝑆𝑂𝐶, 𝑗𝑚𝑖𝑛 , 𝑗𝑚𝑎𝑥 , 𝑎𝑝𝑟𝑒𝑣] 

Size of the state =5 

Action configuration  𝑎 = ℎ
𝑜𝑢𝑡

(𝑧) ∙ 𝑗𝑚𝑎𝑥  𝑎 = ℎ
𝑜𝑢𝑡

(𝑧) ∙ 𝑗𝑚𝑎𝑥  

Reward configuration  𝑅 = −(𝑚̇𝑓𝑐 + 𝛾|∆𝑆𝑂𝐶|) 𝑅 = −(𝑚̇𝑒𝑓𝑓 + 𝛾|∆𝑆𝑂𝐶|) 

Reward factor  5.80 28.25 

 

Figure [48] shows the test cycle derived through the MDP-driver model, and 

Figure [49] shows the results of the comparative experiment of the two agents. The 

(a) of Figure [49] refers to the cumulative fuel consumption according to the time of 

the two agents, and the (b) refers to the cumulative voltage-drop according to the 

time of the two agents. In Figure [49], the blue solid line represents the simulation 

result for the agent 1, and the orange solid line represents the simulation result for 

the agent 2. Figure [49] shows that agent 1 is somewhat more efficient than agent 2 

in terms of the fuel consumption, but agent 2 shows a great advantage over agent 1 
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in terms of the degradation of fuel cell stack. Figure [49] shows that the agent 1 is 

somewhat more efficient than the agent 2 in terms of the fuel consumption, but the 

agent 2 shows a great advantage over the agent 1 in terms of the degradation of the 

fuel cell stacks. The results of the comparative experiment are specified in Table 7. 

In Table 7, ∆FC and ∆Degradation are the relative difference of the agent 2 to the 

agent 1 in terms of the equivalent fuel consumption and the relative difference of the 

agent 2 to agent 1 in terms of the degradation. In terms of the equivalent fuel 

consumption, the agent 2 consumes about 19% more fuel than the agent 1, but in 

terms of the fuel cell degradation, the voltage-drop from the agent 2 is reduced by 

about 80% compared to the voltage-drop from the agent 1. 

 

 

 

Figure 48. Test cycle from MDP-driver model  
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Figure 49. Comparative experiment between the agent1 and the agent2: (a) 

comparison results regarding the fuel consumption (b) comparison results regarding 

the voltage-drop due to the degradation  

 
Table VII. Simulation results with the agent 1 and the agent 2  

 Agent 1  Agent 2  

𝑭𝑪@𝑺𝑶𝑪𝒓𝒆𝒇
 [𝒈] 

67.7 

(𝑆𝑂𝐶𝑓 = 0.586) 

84.0 

(𝑆𝑂𝐶𝑓 = 0.597) 

Degradation [𝝁𝑽] 655.0 126.7 

∆FC [%] - +19.4% 

∆Degradation [%] - -80.7% 

(a) 

(b) 
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We carried out the comparison experiment on 100 test-cycles generated through 

the MDP-driver model for a robust comparison experiment. Figure [50] and Table 8 

show the comparison experiment results in terms of the fuel consumption. Figure 

[50] shows the scatter plot of the fuel consumption consumed by the agent 1 and the 

agent 2 through the 100 driving cycles. The blue dotted line is the decision boundary. 

If the red dot is on the left based on the decision boundary, it means that the agent 1 

is more efficient than the agent 2, and if the red dot is on the right based on the 

decision boundary, the agent 2 is more efficient than the agent 1. It can be seen that 

all points of the scatter plot are formed on the left based on the decision boundary, 

and the related results are clearly seen in Table 8. The agent 1 shows superior 

performance in terms of the fuel consumption compared to the agent 2 in all 100 test 

drives, and the agent 1 shows excellent fuel efficiency performance of about 24% on 

average compared to the agent 2.  

On the other hand, Figure [51] and Table 9 show the comparison experiment 

results in terms of the stack degradation. Figure [51] shows the scatter plot of the 

voltage-drop caused by the stack degradation for the agent 1 and the agent 2 

according to the 100 test cycles. Based on the decision boundary of the scatter plot, 

all red dots are on the right, which means that the control strategy of the agent 2 is 

superior to the control strategy of the agent 1 in terms of the stack degradation. And 

the dots of the scatter plot are concentrated in the lower right region, which means 

that the deterioration of the stack has low dependency on the driving-cycles. Table 9 

shows the comparison results for the control strategy of the agent 2 and the control 

strategy of the agent 1 regarding the voltage-drop. It can be seen that the agent 2 

shows superior performance in terms of the degradation compared to the agent 1 for 

all comparison experiments. On average, the agent 2 can reduce the voltage-drop 

caused by the degradation by about -78% compared to the agent 1.  
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Figure 50. Scatter plot of agent1's fuel consumption and agent2's fuel consumption on 

100 driving cycles  

 
Table VIII. Comparison experiment results in terms of the fuel consumption with 100 

driving cycles  

Fuel Consumption Agent 1  Agent 2  

Number of wins  100 / 100 0 / 100 

Maximum ∆ (%) - +25.5 

Minimum ∆ (%) - +20.0 

Average ∆ (%) - +23.9 
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Figure 51. Scatter plot of agent1's stack degradation and agent2's stack degradation 

on 100 driving cycles  

 

Table IX. Comparison experiment results in terms of the voltage-drop with 100 

driving cycles  

Degradation  Agent 1  Agent 2  

Number of wins  0 / 100 100 / 100 

Maximum ∆ (%) - -75.0 

Minimum ∆ (%) - -79.8 

Average ∆ (%) - -78.1 
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As such, it can be seen that the agent 2 shows very superior performance with 

regard to the stack degradation compared to the agent 1. In order to find out the cause 

of the large difference in the voltage-drop between the agent 2 and the agent 1, we 

created a validation cycle through the MDP-driver model and derived the action 

profiles of the two agents. Figure [52] shows the action profiles of two agents for the 

validation cycle. The (a) and (b) of Figure [52] show the action profiles of the agent 

1 and the agent 2, respectively. We can confirm that agent 2 relatively reduces the 

load change operation by actively using the idling operation through (b) of Figure 

[52].  

Table 10 represents the voltage-drop for each operation mode that occurred 

while the agent 1 and the agent 2 drive the same validation cycle. It is noteworthy 

that the load change operation exerts a dominant influence on the overall stack 

degradation for both the agent 1 and the agent 2. The phenomenon that the load 

change operation has a great influence on the fuel cell degradation has been proven 

through past studies [42].  

From the results of Figure [52] and Table 10, we can see that the agent 2 

suppresses the load change operation that dominates the stack deterioration by 

actively utilizing the idling operation, which has relatively little influence on the 

degradation. The control strategy of the agent 2 shows about 80% superior 

performance than the control strategy derived by the agent 1 in terms of the total 

degradation.  

And Figure [53] visualizes the total amount of effective fuel consumption 

generated by driving of two agents on the validation cycle. The agent 1 and agent 2 

consume 1920g and 464g of the effective fuel consumption, respectively. As a result, 

the agent 2 shows improved performance of 75.8% compared to the agent 1 with 

regard to the effective fuel consumption through the reduction of the fuel cell 

degradation.  
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Figure 52. Action profiles of two agents on the validation cycle generated from MDP-

driver model: (a) action profile of the agent 1, (b) action profile of the agent 2  

 
Table X. Voltage-drop by the operation conditions for two agents  

Degradation Factors  Agent 1  Agent 2  

Idling (𝝁𝑽) 0.007 3.15  

High load (𝝁𝑽) 0.0 0.06 

Load change (𝝁𝑽) 628.2 96.7  

Start & Stop (𝝁𝑽) 26.8 26.8 

Total (𝝁𝑽) 655.0 126.7  

(a) 

(b) 
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Figure 53. Effective fuel consumption of the two agents  

 

3.5.3. Developing an improved DRL model  
 

We developed a DRL agent that can reduce the stack degradation and the 

effective fuel consumption by modifying the reward and the state. However, since 

the DRL agent derives a continuous action value, it is difficult to effectively reduce 

the deterioration caused by the load change operation that dominates the 

deterioration. In the previous study, it was also confirmed that the agent performing 

energy management considering deterioration took a strategy of actively utilizing the 

idling operation to reduce the load change operation. In the previous study, it was 

also confirmed that the agent that performs energy management in consideration of 

the stack degradation actively utilizes the idling operation to reduce the load change 

operation.  
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We modified the configuration of the action to develop a DRL model that can 

more effectively cope with the stack degradation caused by the load change operation. 

To this end, we added a new action to the action configuration of the DRL model 

that determines whether to take the action of the current step the same as the action 

of the previous step. Figure [54] shows the structure of the actor network for the 

newly constructed DRL model. The newly configured DRL model differs from other 

DRL models in that the number of units of the output layer is two. In this study, the 

DRL model with the structure shown in Figure [54] was defined as “agent 3”. The 

action of agent 3 is derived as Eq (46) based on the two output-values 𝑎1 and 𝑎2 

derived from the output layer. In Eq (46), ℎ
𝑠𝑡𝑒𝑝

(𝑥) is defined as a binarized step 

function that becomes 1 when 𝑥 is greater than or equal to 0.5, and 0 when 𝑥 is 

less than 0.5, as in Eq (47).  

 

𝑎 = ℎ
𝑠𝑡𝑒𝑝

(𝑎1) ∙ 𝑎𝑝𝑟𝑒𝑣 + [1 − ℎ
𝑠𝑡𝑒𝑝

(𝑎1)] ∙ (𝑎2 ∙ 𝑗𝑚𝑎𝑥) 

 

(46) 

ℎ
𝑠𝑡𝑒𝑝

(𝑥) = {
1,    𝑥 ≥ 0.5
0,   𝑥 < 0.5

 (47) 

 

Therefore, 𝑎1 can be viewed as an output value that determines whether to use 

the action of the previous step as the current action value. If 𝑎1 is greater than 0.5, 

the current action is selected as the action value of the previous step, and if 𝑎1 is 

less than 0.5, a new action value calculated based on 𝑎2 is taken.  

As another model, we used the Deep Q-Network (DQN) model to derive the 

discrete action [25]. Since the load change operation has a profound effect on the 

stack degradation and the effective fuel consumption, we judged that an effective 

power distribution strategy could be derived through the DQN model that derives 

the discrete actions.  
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Figure 54. Architecture of the DRL model with two actions  

 

 

 

Figure 55. Structure of the DQN model that derives discretized action   

 

Figure [55] shows the architecture of the DQN model. In this study, the discrete 

action size was set to 20. Therefore, the number of units of the output layer in the 

DQN model is 20, and each output value is an estimated value of the Q-value 

corresponding to each action. And the DQN model selects the action that expects the 
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largest Q-value among the estimated Q-values as in Eq (48) as an action. Another 

point to note in the DQN model is that the size of the input layer is 24. Since we 

express the discretized action of the previous step in one-hot encoding format, the 

action of the previous step is expressed in the form of a vector of size 20. Therefore, 

the state input to the DQN model has a total size of 24 by adding the action of the 

previous step in a vector format of size 20 to the basic state of size 4. In this study, 

the DQN model that derives these discrete actions was named “agent 4”.  

 

𝑎 = argmax
𝑎

𝑄(𝑠, 𝑎; 𝜃) (48) 

 

 

Table11 shows the main features of the agent 3, which has an actor-critic 

structure that derives two actions, and the agent 4, which is based on a DQN model 

with 20 action sizes. The reward factors of the agent 3 and the agent 4 derived 

through the training were selected as 25.4 and 20.49, respectively.  

As a result, the agent 1, which establishes power distribution strategy without 

considering the stack deterioration, and the agent 2, the agent 3, and the agent 4, 

which establish power distribution strategy considering the stack degradation were 

developed through this study. Similar to the previous study, we made 100 validation 

cycles using the MDP-driver model for the systematic comparison of the 4 agents 

and we conducted the performance comparison experiments of the 4 agents on 100 

validation cycles. The performance of the agent was evaluated in three aspects 

including the fuel consumption, the voltage-drop due to degradation, and the SOC-

sustainability.  
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Table XI. Main features of the agent 3 and the agent 4  

 Agent 3 Agent 4 

Algorithm  Actor-Critic  DQN   

State 

configuration  

[𝑃𝑑𝑚𝑑 , ∆𝑆𝑂𝐶, 𝑗𝑚𝑖𝑛 , 𝑗𝑚𝑎𝑥 , 𝑎𝑝𝑟𝑒𝑣] 

Size of the state = 5  

[𝑃𝑑𝑚𝑑 , ∆𝑆𝑂𝐶, 𝑗𝑚𝑖𝑛 , 𝑗𝑚𝑎𝑥 , 𝑎𝑝𝑟𝑒𝑣] 

Size of the state =24 

Action 

configuration  
𝑎 = ℎ𝑠𝑡(𝑎1) ∙ 𝑎𝑝𝑟𝑒𝑣 + (1 − ℎ𝑠𝑡(𝑎1)) ∙ 𝑎2 𝑎 =  𝑎𝑟𝑔𝑚𝑎𝑥

𝑎
𝑄(𝑠, 𝑎) 

Reward 

configuration  
𝑅 = −(𝑚̇𝑒𝑓𝑓 + 𝛾|∆𝑆𝑂𝐶|) 𝑅 = −(𝑚̇𝑒𝑓𝑓 + 𝛾|∆𝑆𝑂𝐶|) 

Reward factor  25.4 20.49 

  

Figure [56] is a matrix-type scatter plot comparing four agents in terms of the 

fuel consumption. The matrix has a size of 4×4, and the 1st, 2nd, 3rd, and 4th 

columns of the matrix correspond to agent 1, agent 2, agent 3, and agent 4 

respectively. And, the 1st, 2nd, 3rd, and 4th rows of the matrix corresponds to agent 

4, agent 3, agent 2, agent 1 respectively. For example, the comparison result of the 

fuel consumption with the agent 2 and the agent 3 is shown in the scatter plot 

corresponding to (2, 2) or the scatter plot corresponding to (3, 3) in the matrix. In the 

scatter plot corresponding to the (2, 2) element in the matrix, the x-axis represents 

the fuel consumption for the agent 2 and the y-axis represents the fuel consumption 

for the agent 3. It can be seen that the points are clustered on the right based on the 

decision boundary of the scatter plot, which means that the agent 3 has superior 

performance in terms of the fuel consumption compared to the agent 2. On the 

contrary, the x-axis of the scatter plot corresponding to the (3, 3) element in the 

matrix represents the fuel consumption for the agent 3, and the y-axis represents the 

fuel consumption for the agent 2. Since the points are distributed on the left based 

on the decision boundary, the agent 3 is more efficient than the agent 2. In this study, 
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a matrix-type scatter plot is named “scatter plot matrix”. In this study, this matrix 

type scatter plot is named “scatter plot matrix”.  

The scatter plot for the first column of the matrix, that is, the elements (1, 1), 

(2, 1), and (3, 1), shows that the points are distributed on the left side based on the 

decision boundary. In other words, the agent 1 shows superior performance in terms 

of the fuel consumption compared to the other three agents. The specific results of 

the comparative experiments of the four agents related to the fuel consumption are 

represented through Table 12 and Table 13.  

Table 12 shows the rankings recorded by each agent during 100 experiments in 

terms of the fuel efficiency. Table 12 shows that for all experiments, agent 1 exhibits 

superior performance in terms of the fuel consumption compared to the other agents. 

And except for the agent 1, the agent 3, the agent 2, and the agent 4 have good fuel 

efficiency in the order.  

Table 13 shows the relative difference of the average fuel consumption between 

the four agents. The relative difference between the i-th row and the j-th column of 

Table 13 is calculated as Eq (49), where 𝐹𝑎𝑔𝑒𝑛𝑡𝑗
 represents the performance value 

for the “agent j”, and 𝐹𝑎𝑔𝑒𝑛𝑡𝑖
 represents the performance value of the “agent i”. In 

the case of Table 13, the performance value is the fuel consumption. Column 1 of 

Table 13 shows the relative difference of the fuel consumption between agent 1 and 

the remaining agents. It can be seen that the agent 1 uses about 20% less fuel than 

the agent 4 and the agent 1 uses about 6% less fuel than the agent 3. Considering that 

the agent 1 is trained regarding the fuel consumption and the SOC-sustainability 

without including the degradation, it is reasonable that it shows higher performance 

in terms of the fuel consumption compared to other agents.  

 

∆=
𝐹𝑎𝑔𝑒𝑛𝑡𝑗

− 𝐹𝑎𝑔𝑒𝑛𝑡𝑖 

max (𝐹𝑎𝑔𝑒𝑛𝑡𝑗
, 𝐹𝑎𝑔𝑒𝑛𝑡𝑖

)
        (𝑖 ≠ 𝑗) (49) 
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Figure 56.Matrix of the scatter plots comparing four agents for the fuel consumption  

Table XII. Ranking for the fuel consumption 

 Agent 1  Agent 2  Agent 3  Agent 4  

# of 1st 100 / 100  0 / 100  0 / 100  0 / 100  

# of 2nd 0 / 100  0 / 100  100 / 100  0 / 100  

# of 3rd 0 / 100  97 / 100  0 / 100  3 / 100  

# of 4th 0 / 100  3 / 100  0 / 100  97 / 100  

 

Table XIII. Relative difference for the average fuel consumption  

 Agent 1  Agent 2  Agent 3  Agent 4  

Agent 1  - + 19.4 + 6.00 + 20.3 

Agent 2  - 19.4 - - 14.31 + 1.16 

Agent 3  - 6.00 + 14.31 - + 15.30  

Agent 4  - 20.3 - 1.16 - 15.30 - 
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And we compared the performance of the four agents in terms of the stack 

degradation. As when comparing the fuel consumption, the results of the 

comparative experiment were shown through the scatter plot matrix, the table related 

to the ranking, and the table for the relative difference. Figure [57], Table 14, and 

Table 15 show the results of voltage-drop due to the stack degradation.  

Figure [57] shows the scatter plot matrix for voltage-drop. The scatter plot 

corresponding to the elements (1, 1), (2, 1), and (3, 1) related to the 1st column shows 

that the points exist on the right side of the decision boundary. This means that the 

agent 1 is inferior to the other three agents in terms of the stack degradation. On the 

other hand, the scatter plot for the 3rd column related to the agent 3 shows that the 

points are distributed on the left side based on the decision boundary, which means 

that the agent 3 shows superior performance in terms of the degradation compared 

to other agents.  

Table 14 shows the rankings recorded by four agents during 100 test cycles for 

the voltage-drop. Through Table 14, we can confirm that the ranking of the agents 

for the stack degradation is clearly classified. In other words, the agent 1, the agent 

2, the agent 3, and the agent 4 ranked 4th, 2nd, 1st and 3rd respectively in all 100 

validation cycles. Table 15 shows the relative difference between the agents for the 

degradation. Through column 3 related to the agent 3 of Table 15, we can confirm 

that the agent 3 has an overwhelming advantage over other agents in terms of the 

degradation. When compared with the agent 1, the agent 3 shows the result of 

reduction for the degradation by about 91%, and the agent 3 shows the result of the 

degradation is reduced by about 52% compared with the agent 2. On the other hand, 

if you look at the 1st column related to the agent 1 in Table 15, it is apparent that the 

agent 1 does not cope well with the deterioration. Compared to the agent 2, the agent 

1 shows 81.4% more degradation of the stack, and the agent 1 shows 80.5% more 

degradation compared to the agent 4, as shown in 1st column of Table 15.  
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Figure 57. Matrix of the scatter plots comparing four agents for the voltage-drop due 

to the stack degradation  

Table XIV. Ranking for the stack degradation  

 Agent 1  Agent 2  Agent 3  Agent 4  

# of 1st 0 / 100  0 / 100  100 / 100  0 / 100  

# of 2nd 0 / 100  91 / 100  0 / 100  9 / 100  

# of 3rd 0 / 100  9 / 100  0 / 100  91 / 100  

# of 4th 100 / 100  0 / 100  0 / 100  0 / 100  

 
Table XV. Relative difference for the average voltage-drop due to the stack 

degradation  

 Agent 1  Agent 2  Agent 3  Agent 4  

Agent 1  - - 81.4 - 91.1 - 80.5 

Agent 2  + 81.4 - -52.3 + 4.74 

Agent 3  + 91.1 + 52.3 - + 54.6  

Agent 4  + 80.5 - 4.74 - 54.6 - 
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Finally, we compared the performance of the four agents regarding the charge-

sustainability. The charge-sustainability is defined as the absolute value of the 

difference between the final SOC and the initial SOC as in Eq (50).  

 

∆𝑆𝑂𝐶 = |𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙 − 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙| (50) 

 

The experiment on the charge-sustainability was analyzed in a similar manner 

to the previous two performance experiments. Figure [58] shows the scatter plot 

matrix for the SOC-sustainability. The scatter plot in the 4th column related to the 

SOC-sustainability of the agent 2 shows that the points are generally distributed on 

the left side based on the decision boundary. Through this, it can be seen that agent 

2 secures higher SOC-sustainability than other agents. Based on this fact, we can see 

that the agent 2 secures high SOC-sustainability compared to other agents.  

From Table 16 and Table 17, it is confirmed that from the viewpoint of the SOC-

sustainability, the agent 2, the agent 3, the agent 4, and the agent 1 show excellent 

performance in order.  

And Figure [59] is the scatter plot showing the SOC-sustainability for the agent 

1. Therefore, both x-axis and y-axis for Figure [59] correspond to the SOC-deviation 

for the agent 1, and all points exist on the decision boundary. Figure [59] shows that 

most of the deviation values between the initial SOC and the final SOC are 

distributed within approximately 0.025 in 100 experiments for the agent 1, which 

has the lowest performance for the SOC-sustainability. Therefore, the SOC-

sustainability is somewhat different between the agents, but all four agents have 

excellent performance regarding the SOC-sustainability.  

 



 

 96 

 

Figure 58. Matrix of the scatter plots comparing four agents for the SOC-

sustainability  

Table XVI. Ranking for the SOC-sustainability  

 Agent 1  Agent 2  Agent 3  Agent 4  

# of 1st 0 / 100  51 / 100  48 / 100  1 / 100  

# of 2nd 1 / 100  43 / 100  45 / 100  11 / 100  

# of 3rd 16 / 100  5 / 100  7 / 100  72 / 100  

# of 4th 83 / 100  1 / 100  0 / 100  16 / 100  

 

Table XVII. Relative difference for the average voltage-drop due to the stack 

degradation  

 Agent 1  Agent 2  Agent 3  Agent 4  

Agent 1  -   - 70.7  - 69.8  - 25.2   

Agent 2  + 70.7 -  + 2.97  + 60.8  

Agent 3  + 69.8 - 2.97 -  + 59.6 

Agent 4  + 25.2 - 60.8 - 59.6 -  
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Figure 59. Scatter plot for the SOC-sustainability of the agent 1  

 

We created a random cycle and checked the action profile of each agent for that 

cycle. Figure [60] shows the generated validation cycle, and Figure [61] shows the 

action profiles of the agents for the validation cycle. In Figure [61], (a), (b), (c), and 

(d) represent the action profiles corresponding to the agent 1, the agent 2, the agent 

3, and the agent 4.  

Figure [61] shows the secret that the agent 3 was able to significantly reduce 

the degradation compared to other agents. We can see from Figure [61] that the agent 

3 minimizes the load change operation while maintaining the previous action.  

The average effective fuel consumption for 100-drivings of the four agents is 

shown in Figure [62]. Figure [62] shows that the control strategy that minimizes the 

load change operation of the agent 3 has higher efficiency than other agents in terms 

of the effective fuel consumption. These findings suggest that the effective power 

distribution strategies for the FCHEV can be developed based on the DRL model 

with the same structure as the agent 3.  
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Figure 60. Driving cycle generated from MDP-driver model  

 

 
 
Figure 61. Action profiles with the agents: (a) action profile for the agent 1, (b) action 

profiles for the agent 2, (c) action profiles for the agent 3, (d) action profiles for the 

agent 4  

(a) (b) 

(d) (c) 
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Figure 62. Comparison of the effective fuel consumption for the four agents on the 

validation cycle  
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3.6. Development of the Methodology for the Online-

Learning on the DRL Model   

 
In the previous study, the trained network was not updated according to the 

multiple driving cycles, and the fixed network was continuously used. However, the 

DRL algorithm has the advantage of optimizing the network and easily responding 

to system changes through the online-learning framework based on the recent 

experiences. In this study, we developed an online-learning methodology for the 

power distribution strategy of the FCHEV by taking advantage of the DRL algorithm, 

which is easy to apply online-learning.  

Considering that the FCHEV's stack degradation occurs at the start of driving 

and has a great influence on the entire system, it is important to develop the online-

learning methodology for the control strategies. In this study, we developed the 

online-learning methodology for the DRL model. And we compared the performance 

of the DRL agent that is applied the online-learning algorithm and the reference 

model that is not applied the online-learning algorithm in the FCHEV’s stack 

degradation simulations.  

This chapter consists of three parts. 3.6.1 describes the online-learning 

methodology for the DRL agent. And the process and results of the two FCHEV 

degradation simulations are described in 3.6.2 and 3.6.3. In 3.6.2, the DRL model to 

which the online-learning algorithm is applied and the DRL model to which the 

online-learning algorithm is not applied are compared under the FCHEV simulation 

with the fuel cell stack in which the fixed voltage-drop occurs. And in 3.6.3, the DRL 

model to which online-learning is applied and the DRL model to which online-

learning is not applied are compared under the simulation conditions in which real-

time deterioration occurs due to the stack operations.  
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3.6.1. Online-learning framework for the DRL model  
 

We developed the online-learning methodology for the DRL agent considering 

the limited computation power of the FCHEV. In order to develop the online-learning 

algorithm that considers limited computational power, we do not train the agent 

while the FCHEV is driving, and when the driving is finished, we extract a small 

number of mini-batch from the replay memory so that the online-learning for the 

DRL agent. Figure [63] schematically shows the online-learning process of the DRL 

model in this study. The online-learning process developed in this study is divided 

into three parts: “Driving”, “Training” and “Validation”.  

In the “Driving” phase in which the FCHEV is driven, the power distribution 

of the FCHEV is performed based on the policy of the existing trained DRL model, 

and experiences according to the driving are newly stored in the replay memory and 

at the same time, the old experiences disappear from the replay memory. And after 

the driving-phase is finished, the training-phase begins. Considering the low 

computation power for the vehicle, it is important to secure enough time for the 

training of the agent. Therefore, we defined the time when the driving-phase ends 

and the training-phase starts as the time when the vehicle is completely turned off 

and the vehicle is parked. 

In the training-phase, the existing DRL model is trained by a small amount of 

the experiences from the replay memory in consideration of the limiting computation 

power of the vehicle. In this study, the existing agent is trained through 100 mini-

batches consisting of 64 experiences.  

Finally, in the validation phase, it is decided whether to replace the existing 

DRL agent with the newly trained DRL agent by comparing the performance of the 

newly trained DRL agent to the existing DRL agent. Since the DRL model 

constructed based on the deep neural network has a catastrophic forgetting problem 

in which previously trained information disappears during training, it is necessary to 
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check whether the training of the DRL model is conducted correctly in the online-

learning process. We coped with the catastrophic forgetting problem of the DRL 

agent by confirming the effectiveness of the newly trained agent through the 

validation-phase. The agent derived through the online-learning algorithm is 

compared with the existing agent based on the driving cycle that the FCHEV drove 

in the driving-phase immediately before in the validation-phase. In the validation-

phase, the effectiveness of the newly derived DRL model is judged in terms of the 

SOC-sustainability and the effective fuel consumption. If the DRL agent derived by 

the online-learning algorithm guarantees the SOC-sustainability on the driving cycle 

driven in the previous driving-phase and at the same time shows superior 

performance in terms of the effective fuel-consumption than the existing agent, the 

existing agent is replaced with the agent derived by online-learning method. On the 

other hand, if the DRL agent trained by online-learning algorithm does not guarantee 

SOC-sustainability or does not show superior performance in terms of the effective 

fuel-consumption than the existing agent, the energy management strategy based on 

the existing DRL agent will be maintained.  

 

3.6.2. Comparative experiment 1: Static degradation 

simulation  
 

In the first comparative experiment, the performance of the online-learning 

model and the DRL model without the online-learning were compared under a 

simulation condition where a certain amount of the voltage-drop occurred initially 

and the real-time voltage-drop according to the driving was not considered. In this 

study, the experiment was performed assuming that the voltage-drop of the cell 

occurs as much as 0.03V.  

Figure [64] shows the process of the first comparative experiment. The 

reference model in Figure [64] represents the DRL model with the structure of the 
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agent 3 derived from the previous study. In addition, the DRL model applying online-

learning algorithm also initializes the network weights with the weights of the 

reference model. The online-learning model and the reference model run the same 

driving cycle derived from the MDP-driver model, and the initial SOC of the next 

driving is not initialized to 0.6, but to the final SOC value of the previous driving. 

Through this simulation design, we tried to check whether the SOC-sustainability of 

the online-learning model and the reference model is guaranteed even in a situation 

similar to the actual driving.  

 

 
Figure 63. Schematic diagram for the online-learning process of the DRL model  
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The biggest difference between the online-learning model and the reference 

model is in the rest-phase that exists between the driving-phases. In the case of the 

online-learning model, training and validation process is progressed in the rest-phase 

based on the driving cycle derived in the previous driving-phase. On the other hand, 

in the case of the reference model, training is not performed in the rest-phase and the 

power distribution strategy based on the reference model is maintained.  

 

 
Figure 64. Schematic diagram of the comparative experiment process between the 

online-learning model and the reference model  
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We compared the online-learning model and the reference model based on the 

driving-cycle created through the MDP-driver model. The experiment was 

conducted through a total of 100 generated driving cycles in this study. And the 

analysis of the comparative experiment between the two models was performed 

based on the effective fuel consumption, which includes information on the amount 

of fuel consumption and the voltage-drop due to deterioration, similar to the previous 

studies.   

Figure [65] shows the final SOC distribution of the online-learning model and 

reference model on 100-driving cycles under the condition that the initial stack 

degradation of the FCHEV occurred as much as 0.03V. It can be seen that the 

difference between the reference SOC set to 0.6 and the final SOC is mostly 

distributed below 0.02, which shows that both models guarantee the SOC-

sustainability.  

And Figure [66] shows the difference in performance between the online-

learning model and the reference model according to the 100-driving cycles. That is, 

Figure [66] shows the effective fuel consumption of both models according to the 

number of driving. Figure [66] shows that the online-learning model can perform 

more efficient control strategy than the reference model through the continuous 

learning. It can be seen that the online-learning model can reduce the effective fuel 

consumption by about 3950g compared to the reference model. From these facts, it 

can be confirmed that the online-learning methodology developed in this study can 

help the DRL agent optimize performance and adapt to the system changes. 
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Figure 65. Final SOC distribution in 100-drivings of both models  

 

 
Figure 66. Cumulative effective fuel consumption in 100-drvings of both models  

 

 

Figure 67. Components of the effective fuel consumption 
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The effective fuel consumption is divided into the fuel consumption related 

term and the voltage-drop related term as shown in Figure [67]. We compare the 

online-learning model and the reference model in terms of the fuel consumption and 

the voltage-drop. Figure [68] shows the results of comparing the online-learning 

model and the reference model in terms of fuel consumption, voltage-drop, and 

effective fuel consumption. The (a) of Figure [68] shows the difference between the 

two agents for the fuel consumption on the 100 driving cycles, and the difference 

between the two agents for the fuel consumption of the two agents is defined as Eq 

(51). In Eq (51), 𝐹𝐶𝑜𝑛𝑙𝑖𝑛𝑒  means the fuel consumption of the online-learning model, 

and 𝐹𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 means the fuel consumption of the reference model.  

 

∆𝐹𝐶 = 𝐹𝐶𝑜𝑛𝑙𝑖𝑛𝑒 − 𝐹𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  (51) 

 

 

Therefore, the red dotted line in Figure [68] means the decision boundary. If 

points are distributed below the red dotted line, it means that the performance of the 

online-learning model is superior to that of the reference model. If the points are 

distributed above the red dotted line, it means that the performance of the reference 

model is better than that of the online-learning model. Figure [68]-(a) shows that 

points are evenly distributed up and down around the decision boundary, which 

means that there is not much difference in the performance between the two models 

in terms of the fuel consumption. However, it can be seen that the reference model 

generally shows higher efficiency than the online learning model.  

Figure [68]-(b) shows the difference in the voltage-drop due to the stack 

deterioration between the two models. The difference in the voltage-drop is 

expressed as Eq (52), where ∆𝑉𝑜𝑛𝑙𝑖𝑛𝑒  represents the voltage-drop of the online-

learning model, and ∆𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  represents the voltage-drop of the reference model. 

The points in Figure [68]-(b) are distributed below the decision boundary, which 
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means that the online-learning model shows superior performance regarding the 

voltage-drop caused by the stack degradation compared to the reference model.  

 

∆(∆𝑉) = ∆𝑉𝑜𝑛𝑙𝑖𝑛𝑒 − ∆𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  (52) 

 

Figure [68]-(c) shows the difference between the two agents for the effective 

fuel consumption. In a similar manner to the previous case, the effective fuel 

consumption is expressed as Eq (53), where 𝐹𝐶𝑒𝑓𝑓,𝑜𝑛𝑙𝑖𝑛𝑒  represents the effective 

fuel consumption for the online-learning agent, and 𝐹𝐶𝑒𝑓𝑓,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 represents the 

effective fuel consumption for the reference agent.  

 

∆𝐹𝐶𝑒𝑓𝑓 = 𝐹𝐶𝑒𝑓𝑓,𝑜𝑛𝑙𝑖𝑛𝑒 − 𝐹𝐶𝑒𝑓𝑓,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  (53) 

 

 

Figure [68]-(c) shows that most of the points are distributed below based on the 

decision boundary. From this fact, it is confirmed that the performance of the existing 

agent can be improved through the online-learning algorithm.  

Table 18 shows detailed information on the total amount of the fuel 

consumption, the total amount of the voltage-drop occurs during the simulation, and 

the total amount of the effective fuel consumption consumed by the two models on 

the 100-driving cycles.  As shown in Figure [68], it can be seen that the online-

learning algorithm is effective in reducing the voltage-drop caused by the stack 

degradation and the effective fuel consumption.  
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Figure 68. Difference between the online-learning model and the reference model 

according to driving: (a) Difference for the fuel consumption, (b) Difference for the 

voltage-drop, (c) Difference for the effective fuel consumption  

(a) 

(b) 

(c) 
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Figure [69] shows the action profile of the online-learning model and the 

reference model for 5 driving cycles. Figure [69]-(a) shows five different generated 

driving profiles, and Figure [69]-(b) shows the action profile for the online-learning 

model and the action profile for the reference model on the five driving profiles. We 

can see from Figure [69] that the action profile of the online-learning model has a 

stronger tendency to maintain the previous action than the tendency of the reference 

model. In other words, the fact that the online-learning model shows better 

performance in terms of the degradation than the reference model can be seen as a 

difference that appears because the online-learning model has a stronger tendency to 

maintain the previous action.  

 

 

Table XVIII. Simulation results for the two models on the 100-driving cycles  

 
Reference 

Agent  

Online-learning  

Model  
Difference  

Total  

Fuel consumption [g]  
7087 7175 +1.2 % 

Total 

Voltage-drop [𝝁𝑽] 
3115 1666 -46.5 % 

Total  

Effective FC [g] 
15980 12030 -24.7 % 
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Figure 69. Action profiles of both models on 5-driving cycles: (a) driving cycles 

generated from the MDP-driver model, (b) action profiles of both models  

 

 

3.6.3. Comparative experiment 2: Dynamic degradation 

simulation  
 

In the second experiment, we conducted the comparative experiment between 

the online-learning model and the reference model on the simulation where the initial 

degradation and the real-time degradation from the stack operation occurs. We 

assumed that the initial voltage-drop due to the degradation of 0.015V occurred in 

this comparative experiment, and the experiment was designed to stop the simulation 

when the voltage-drop of 0.03V occurs due to the stack deterioration in any of the 

two models due to stack operation.  

 

(a) 

(b) 
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Figure [70] shows information on the cumulative voltage-drop according to the 

number of driving cycles of the online-learning model and the reference model. The 

fuel cell stack for the reference model deteriorates faster than the stack for the online-

learning model, and as a result, the stack voltage-drop of 0.03V occurs in the 

reference model due to the driving for 468 driving-cycles. In this experiment, it is 

also confirmed that the online-learning model effectively reduces the voltage-drop 

compared to the reference model. Figure [70] shows that when the voltage-drop for 

the reference model occurs as much as 0.03V, the voltage-drop in the online-learning 

model occurs as much as about 0.023V.  

Figure [71] shows the distribution of the final SOC of the two models for the 

driving about 500 driving-cycles. Figure [71] shows that in both models, the 

deviations between the initial SOC set to 0.6 and the final SOC are distributed within 

0.03 in about 500-drivings. In other words, we can confirm that both the online-

learning model and the reference model guarantee the SOC-sustainability from 

Figure [71].  

 

 
Figure 70. Cumulative voltage-drop for the two agents  
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Figure 71. Final SOC distribution in 989-drivings of both models  

 

Figure [72] shows the difference in performance between the online-learning 

model and the reference model according to the driving-cycle. (a) shows the 

difference regarding the fuel consumption, (b) shows the difference in terms of the 

voltage-drop, and (c) shows the difference in terms of the effective fuel consumption. 

Like Figure [68], the red dotted line in Figure [72] means the decision boundary. If 

points are distributed under the decision boundary, it means that the performance of 

the online-learning model is superior to that of the reference model and if the points 

are distributed above the decision boundary, it means that the performance of the 

reference model is superior to that of the online-learning model. In terms of the fuel 

consumption, the reference model generally shows excellent performance, while the 

online-learning model shows generally excellent performance in terms of the 

voltage-drop and the effective fuel consumption. In the early driving cycles, the 

online-learning model shows poorer performance than the reference model in terms 

of the effective fuel consumption. It means that the DRL agent is trained in the 

direction of the poor performance through the online-learning algorithm. This 

phenomenon occurs because the result verified through one driving cycle in the 
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validation-phase cannot be said to be valid for all other driving. However, if too 

many driving cycles are used in the validation-phase, it may cause the computational 

problems and memory problems in the validation-phase. Therefore, in the validation-

phase, the principle of judging the training effectiveness of the DRL agent based on 

the driving cycle which is recorded through the previous driving-phase was 

maintained.  

Although there is a section where the online-learning model is less efficient than 

the reference model, the online-learning model generally shows superior 

performance compared to the reference model regarding the effective fuel 

consumption. Table 19 shows the fuel consumption, the cumulative voltage-drop 

occurs during the simulation, and the effective fuel consumption consumed in about 

500-drivings of the online-learning model and the reference model. Although the 

online-learning model recorded about 2% more fuel consumption than the reference 

model, it reduced the voltage-drop as much as 48% compared to the reference model. 

As a result, the online-learning model shows a high efficiency of about 26% 

compared to the reference model in terms of the effective fuel consumption.  

Figure [73] shows the trend of the accumulative effective fuel consumption of 

the online-learning model and the reference model for about 500 driving-cycles. 

Figure [73] shows that the power distribution strategy based on the DRL model for 

the actual FCHEV where real-time stack degradation occurs can improve the 

performance and respond effectively to the changes in the FCHEV system through 

the online-learning algorithm.  
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Figure 72. Difference between the online-learning model and the reference model 

according to driving: (a) Difference for the fuel consumption, (b) Difference for the 

voltage-drop, (c) Difference for the effective fuel consumption 

(a) 

(b) 

(c) 
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Table XIX. Simulation results for the two models on the 486-driving cycles 

 
Reference 

Agent  

Online-learning  

Model  
Difference  

Total  

Fuel consumption [g]  
33440 34060 + 1.82 % 

Total  

Voltage-drop [𝝁𝑽] 
15000 7800  -48.0 % 

Total  

Effective FC [g] 
75350 55820 -25.9 % 

 

 

 

 
Figure 73. Cumulative effective fuel consumption with the driving for the two models  
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4. Conclusion and Achievement   

 
We developed the DRL-based power distribution strategy for the FCHEV 

through this study. In developing the DRL-based power distribution strategy, we 

considered four aspects: “generalization”, “stack degradation”, “scalability” and 

“online-learning application”.  

One of the most important factors in developing the energy management 

strategy is that the developed energy management strategy ensures the generalization 

performance. In other words, any power distribution strategy must be effective in all 

driving conditions, not only in specific driving conditions. The DRL-based power 

distribution strategy has a great advantage in ensuring the generalization 

performance in that the energy management control is made based only on the 

current driving information without future driving information. In this study, the 

MDP-driver model that can generate countless validation cycles was developed. And 

it was confirmed that the DRL-based control strategy can achieve high performance 

while guaranteeing generalization performance through comparison of the optimal 

control theory-based control strategy and the DRL-based control strategy.  

Studies to develop control strategies in terms of the scalability are hardly in 

progress in the field of research related to the energy management of the HEV. 

However, considering the fact that many types of structures and systems for the HEV 

are being developed continuously, the development of the power distribution strategy 

that can guarantee scalability is very important from an industrial perspective. We 

developed the methodology related to the state normalization and the reward factor 

selection for the development of the control strategy for the FCHEV that can 

guarantee the scalability. It was confirmed that the DRL model-based power 

distribution strategy could be developed on the same training framework in the 

problem of considering only the fuel consumption, even if it is extended to the 

problem that requires additional consideration of the stack degradation.  
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One of the biggest issues of the FCHEV is the durability of the fuel cell stack. 

In this study, a study was conducted by developing a deterioration model of the fuel 

cell stack with reference to previous studies. In this study, the fuel cell stack 

degradation model was developed with reference to the previous studies in order to 

develop the control strategy considering the stack degradation. In addition, the 

equivalent factor that equalizes the voltage-drop due to the degradation to the fuel 

consumption rate was derived based on the economic analysis, and the reward factor 

was reconstructed based on the concept called effective fuel consumption. Since the 

load change operation has a great influence on the degradation of the fuel cell stack, 

we have effectively coped with the deterioration due to the load change operation by 

changing the action and the state configuration for the DRL model.  

DRL is basically composed so that the agent is trained through own experiences, 

so it is easy to optimize the existing model by applying the online-learning concept. 

Also, since the FCHEV is sensitive to the stack degradation, it is necessary to cope 

with the changed system through the development of the online-learning 

methodology. In this study, the online-learning algorithm was developed in 

consideration of the limited computing power and memory of the FCHEV. We 

conducted the experiments comparing the online-learning model and the existing 

reference model under the two stack degradation conditions of the FCHEV. We 

confirmed that the developed online-learning algorithm can help the existing DRL 

model improve and adapt to system changes through the two experiments.  

The DRL algorithm can play a big role in developing the power distribution 

strategy for the HEV that ensures the generalization performance and the scalability. 

In particular, power system for the FCHEV changes over time due to the stack 

degradation that occurs in real time. Therefore, the DRL algorithm that is easy to 

apply the online-learning concepts is effective in developing the power distribution 

strategy for the FCHEV. However, few studies to develop the energy management 
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strategy for the FCHEV using the DRL algorithm have been carried out yet. We hope 

that this study will be helpful in research related to the development of the DRL-

based power distribution strategy for the FCHEV in the future.  
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5. Future works  

 
So far, we have conducted research on the assumption that there is no 

disturbance in the state that the agent receives. However, the state that the agent is 

entered may be different from the actual vehicle behavior since there are many 

disturbing factors in the actual vehicle. We applied the disturbance to the required 

power, one component of the state, to find out the effect of the noise on the trained 

agent. We have assumed that the disturbance is applied only when the demanding 

power is positive. Figure [74] shows the required power in the ideal environment 

without the disturbance and the required power with the disturbance on an arbitrary 

driving cycle.  

Required power with the noise is expressed as Eq (54), where 𝑃𝑟𝑒𝑞 represents 

the ideal required power, and 𝑃𝑛𝑜𝑖𝑠𝑒  represents the noise for the required power.  

 

𝑃𝑟𝑒𝑞,𝑛𝑜𝑖𝑠𝑒 = 𝑃𝑟𝑒𝑞 + 𝑃𝑛𝑜𝑖𝑠𝑒   (54) 

 

 

Figure 74. Comparison between the required power with the disturbance and the 

required power without the disturbance  
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And the value for the noise is expressed as Equation (55), where τ is a real 

number between the lower limit, 𝛼 and the upper limit, 𝛽, which is extracted by 

uniform distribution. We fixed the lower limit of τ at 10% and adjusted the size of 

the disturbance by changing the upper limit of τ to 20%, 30%, 40%, and 50%.  

 

𝑃𝑛𝑜𝑖𝑠𝑒 = 𝜏 ∙ 𝑃𝑟𝑒𝑞  

∵ 𝜏~𝑈(𝛼, 𝛽)   𝑤ℎ𝑒𝑟𝑒  𝛼 < 𝜏 < 𝛽 

(55) 

 

We compared the effective fuel consumption of the trained agent by varying the 

upper limit of the disturbance on the multiple driving cycles. The comparison 

experiment was conducted according to the magnitude of the noise based on the 35 

generated cycles. Figure [75] shows the trend of the effective fuel consumption 

according to the magnitude of the disturbance. 

 

 

Figure 75. The effective fuel consumption according to the amplitude of the noise  
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As expected, it can be seen from Figure [75] that the effective fuel consumption 

tends to increase as the amplitude of the disturbance increases. Table 20 shows the 

average effective fuel consumption according to the amplitude of the disturbance. 

From the Table 20, it can be clearly seen that as the upper limit of τ increases, the 

average effective fuel consumption increases. When the upper limit is 50%, the 

average effective fuel consumption increases by 6.8% compared to the case without 

the disturbance.  

It can be seen from the experimental results that the trained agent controls the 

FCHEV properly even when a considerable amount of the disturbance occurs. 

However, considering that the performance of the agent is reduced by the noise and 

the fact that there are many disturbance factors in the actual vehicles, it is very 

important to develop a methodology that can cope with the disturbance. If a DRL 

agent that can cope with the disturbances is developed through additional research, 

we expect that the applicability of the DRL agent to actual vehicles will be greatly 

improved.  

 

Table XX. comparison results with the disturbance for the demanding power 

 
Noise (𝜏) 

Interval  

Average effective  

fuel consumption [g]  

Difference 

[%]  

Reference case   -  242.3 - 

Disturbance case 1 [0.1, 0.2) 247.1 + 1.98 

Disturbance case 2 [0.1, 0.3) 250.4 + 3.34 

Disturbance case 3 [0.1, 0.4) 255.2 + 5.32 

Disturbance case 4 [0.1, 0.5) 260.0 + 6.80 
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We conducted the study to normalize the state and to find the optimal reward 

factor by understanding the learning pattern of the DRL model in order to create the 

scalable DRL-based power distribution strategy.  

However, the DRL model developed in this study cannot automatically derive 

hyper parameters and optimal network structure. Since the knowledge and the 

experience of the model developer is required to derive the hyper parameters or the 

optimal network structure, it is necessary to develop a methodology that can 

automatically find the hyper parameters and the network architecture. We think that 

autoML (machine learning) technology can be of great help in implementing 

automation for the hyper parameters and model structure retrieval. Therefore, we 

plan to develop a methodology for automatically deriving the hyper parameters and 

the network architecture through the autoML technology in the future research.  

We developed the MDP-driver model and created the virtual driving cycles to 

confirm the generalization performance of the DRL model. Since the MDP-driver 

model is derived through the stochastic characteristics of the reference driving 

profiles representing the general driving situations, there is a limit to generating 

driving information about unexpected situations that occur in the actual driving. In a 

future study, the effectiveness of the DRL-based power distribution strategy derived 

in this study will be tested through actual driving data of the vehicle. In the future 

study, the effectiveness of the DRL-based power distribution strategy will be tested 

through the actual driving data of the FCHEV.   
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Appendix 1-1 

 

Proton Exchange Membrane Fuel Cell 

(PEMFC) Modeling  
 

 
In this study, the PEMFC model was developed by referring to flux balance fuel 

cell modeling from S. W. Cha, F. B. Prinz et al. [46]. Figure [A-1] shows the 1-D 

PEMFC model, and Table A-1 shows the notation of variables and values of the 

variables related to the PEMFC modeling. The voltage of the fuel cell is affected by 

three losses like Eq (A-1), where 𝜂𝑎𝑐𝑡, 𝜂𝑜ℎ𝑚𝑖𝑐 , and 𝜂𝑐𝑜𝑛𝑐  means activation loss, 

ohmic loss, and concentration loss respectively.  

(∙)|𝑎 , (∙)|𝑏 , (∙)|𝑐 , and (∙)|𝑑 represent the parameters in the fuel cell interface. 

“a”, “b”, “c”, and “d” represent anode-inlet interface, anode-membrane interface, 

cathode-membrane interface and cathode-inlet interface respectively.  

 

V = E𝑡ℎ𝑒𝑟𝑚𝑜 − 𝜂𝑎𝑐𝑡 − 𝜂𝑜ℎ𝑚𝑖𝑐 − 𝜂𝑐𝑜𝑛𝑐  A-1 

 

Figure A- 1. Schematic for the 1-D PEMFC model [46] 
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Table A- I. Values and Notation for properties in PEMFC model  

Physical Properties Notation Values 

Temperature (k) T  343 

Hydrogen mole fraction at anode  𝑥𝐻2
|𝑎    0.9 

Oxygen mole fraction at cathode  𝑥𝑂2
|𝑑 0.19 

Water mole fraction   𝑥𝐻2𝑂 0.1 

Cathode pressure (atm) 𝑃𝐶 3 

Anode pressure (atm) 𝑃𝐴 3 

Water diffusivity in Nafion (cm2/𝑠) D𝜆 3.18 × 10−6 

Transfer coefficient  𝛼 0.5 

Exchange current density (A/cm2) j0 0.0001 

Electrolyte thickness (μm) t𝑀 125 

Anode thickness (μm) t𝐴 350 

Cathode thickness (μm) t𝐶 350 

Electro-osmotic drag coefficient  𝑛𝑑𝑟𝑎𝑔
𝑆𝐴𝑇  2.5 

Nafion equivalent weight (kg/mol) 𝑀𝑚 1.0  

Limiting current density (A/cm2) 𝑗𝐿,𝑐𝑎𝑡ℎ𝑜𝑑𝑒 3.0 

 

Therefore, it is necessary to develop a mathematical model that derives the 

ohmic loss, the activation loss, and the concentration loss for the PEMFC modeling. 

The ohmic loss is the most difficult to derive among the three losses. From the flux 

balance relation, the mole fraction for H2O on the anode side can be derived as Eq 

(A-2), and the mole fraction for H2O in the anode-membrane interface is expressed 

as Eq (A-3). R is the gas constant, F is the Faraday number, and 𝐷𝐻2,𝐻2𝑂
𝑒𝑓𝑓

 is the 

effective diffusivity between 𝐻2 and 𝐻2𝑂.  
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𝑥𝐻2𝑂(𝑧) = 𝑥𝐻2𝑂|𝑎 − 𝑧
𝛼∗𝑗𝑅𝑇

2𝐹𝑃𝐴𝐷𝐻2,𝐻2𝑂
𝑒𝑓𝑓

 A-2 

𝑥𝐻2𝑂|𝑏 = 𝑥𝐻2𝑂|𝑎 − 𝑡𝐴
𝛼∗𝑗𝑅𝑇

2𝐹𝑃𝐴𝐷𝐻2,𝐻2𝑂
𝑒𝑓𝑓

 A-3 

 

The diffusivity between two substances, i and j, is expressed as Eq (A-4), 𝑇𝑐, 

𝑃𝑐 , and M denote critical temperature, critical pressure, and molecular weight 

respectively. (∙)𝑖  and  (∙)𝑗 mean parameters for substance i and j. In addition, a was 

set to 3.64 × 10−4 and b was set to 2.334 [50].  

 

𝑃 ∙ 𝐷𝑖,𝑗 = 𝑎 (
𝑇

√𝑇𝑐𝑖𝑇𝑐𝑗

)

𝑏

(𝑃𝑐𝑖𝑃𝑐𝑗)
1
3(𝑇𝑐𝑖𝑇𝑐𝑗)

5
12 (

1

𝑀𝑖
+

1

𝑀𝑗
)

1
2

 A-4 

 

Effective diffusivity is expressed as Eq (A-5), where ε means porosity, and the 

porosity of the fuel cell electrode has a value of around 0.4.  

 

𝐷𝑖,𝑗
𝑒𝑓𝑓 = 𝜀1.5𝐷𝑖,𝑗  A-5 

 

The mole fraction for H2O at the cathode side is equal to Eq (A-6), and the mole 

fraction for H2O at the cathode-membrane interface is equal to Eq (A-7).  

 

𝑥𝐻2𝑂(𝑧) = 𝑥𝐻2𝑂|𝑑 + 𝑧
(1 + 𝛼∗)𝑗𝑅𝑇

2𝐹𝑃𝑐𝐷𝑂2,𝐻2𝑂
𝑒𝑓𝑓

 A-6 

𝑥𝐻2𝑂|𝑐 = 𝑥𝐻2𝑂|𝑑 + 𝑡𝑐
(1 + 𝛼∗)𝑗𝑅𝑇

2𝐹𝑃𝐶𝐷𝑂2,𝐻2𝑂
𝑒𝑓𝑓

 A-7 
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And Nafion's water content, λ, is expressed as Eq (A-8) through the analytic 

solution.  

 

𝜆(𝑧) =
11𝛼∗

𝑛𝑑𝑟𝑎𝑔
𝑆𝐴𝑇 + 𝐶 ∙ 𝑒𝑥𝑝(

𝑗𝑀𝑚𝑛𝑑𝑟𝑦
𝑆𝐴𝑇

22𝐹𝜌𝑑𝑟𝑦𝐷𝜆
𝑧) A-8 

 

Therefore, the water content on the anode-membrane interface and the cathode-

membrane interface are expressed as Eq (A-9) and Eq (A-10). 

 

𝜆|𝑏 = 𝜆(0) =
11𝛼∗

𝑛𝑑𝑟𝑎𝑔
𝑆𝐴𝑇 + 𝐶 A-9 

𝜆|𝑐 = 𝜆(𝑡𝑀) =
11𝛼∗

𝑛𝑑𝑟𝑎𝑔
𝑆𝐴𝑇 + 𝐶 ∙ 𝑒𝑥𝑝(

𝑗𝑀𝑚𝑛𝑑𝑟𝑦
𝑆𝐴𝑇

22𝐹𝜌𝑑𝑟𝑦𝐷𝜆
𝑡𝑀) A-10 

 

Water content on the Nafion can also be expressed as Eq (A-11) through 

experimental data, and 𝑎𝑤 represents water activity. The water activity is expressed 

as Eq (A-12) and the water activity is a function of the partial pressure of the water 

vapor, 𝑃𝑤 and the vapor saturation pressure, 𝑃𝑆𝐴𝑇 expressed as Eq (A-13).  

 

𝜆 = {
14𝑎𝑤              𝑓𝑜𝑟    0 < 𝑎𝑤 ≤ 1
10 + 4𝑎𝑤      𝑓𝑜𝑟    1 < 𝑎𝑤 ≤ 3

 A-11 

𝑎𝑤 =
𝑃𝑤

𝑃𝑆𝐴𝑇
 A-12 

log10 𝑃𝑆𝐴𝑇  = −2.18 + 0.03𝑇 − 9.18 × 10−5𝑇2 + 1.45 × 10−7𝑇3 A-13 

 

Therefore, the water content on the anode-membrane interface with low water 

activity and the cathode-membrane interface with high water activity are expressed 

as Eq (A-14) and Eq (A-15).  
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𝜆|𝑏 = 14𝑎𝑤|𝑏 = 14
𝑃𝐴

𝑃𝑠𝑎𝑡
(𝑥𝐻2𝑂|𝑎 − 𝑡𝐴

𝛼∗𝑗𝑅𝑇

2𝐹𝑃𝐶𝐷𝐻2,𝐻2𝑂
𝑒𝑓𝑓

) A-14 

𝜆|𝑐 = 10 + 4𝑎𝑤|𝑐 = 10 + 4
𝑃𝐶

𝑃𝑠𝑎𝑡
(𝑥𝐻2𝑂|𝑑 + 𝑡𝐶

(1 + 𝛼∗)𝑗𝑅𝑇

2𝐹𝑃𝐶𝐷𝑂2,𝐻2𝑂
𝑒𝑓𝑓

) A-15 

 

Through the system of equations of Eq (A-9), Eq (A-10), Eq (A-14), and Eq 

(A-15), we can derive the unknown parameters 𝛼∗ and C as Eq (A-16).  

 

[
𝛼∗

𝐶
] = 𝑨−𝟏𝑏 

A-16 

∵ 𝐴 =

[
 
 
 
 
 

11

𝑛𝑑𝑟𝑎𝑔
𝑆𝐴𝑇 + 14

𝑃𝐴

𝑃𝑠𝑎𝑡

𝑡𝐴𝑗𝑅𝑇

2𝐹𝑃𝐴𝐷𝐻2,𝐻2𝑂
𝑒𝑓𝑓

1

11

𝑛𝑑𝑟𝑎𝑔
𝑆𝐴𝑇 − 4

𝑃𝐶

𝑃𝑠𝑎𝑡

𝑡𝐶 𝑗𝑅𝑇

2𝐹𝑃𝐶𝐷𝑂2,𝐻2𝑂
𝑒𝑓𝑓

exp(
𝑗𝑀𝑚𝑛𝑑𝑟𝑎𝑔

𝑆𝐴𝑇

22𝐹𝜌𝑑𝑟𝑦𝐷𝜆
𝑡𝑀)

]
 
 
 
 
 

 

 

∵ 𝑏 =

[
 
 
 
 14

𝑃𝐴

𝑃𝑠𝑎𝑡
𝑥𝐻2𝑂|𝑎

10 + 4
𝑃𝐶

𝑃𝑠𝑎𝑡
𝑥𝐻2𝑂|𝑑 + 4

𝑃𝐶

𝑃𝑠𝑎𝑡

𝑡𝐶𝑗𝑅𝑇

2𝐹𝑃𝐶𝐷𝑂2 ,𝐻2𝑂
𝑒𝑓𝑓

]
 
 
 
 

 

 
The conductivity of the Nafion has a lot of correlation with the temperature and 

the water content, and the conductivity of the Nafion is mathematically expressed as 

Eq (A-17) through the experimental data.  

 

𝜎(𝑧) = 𝜎303𝑘(𝜆) 𝑒𝑥𝑝 [1268 (
1

303
−

1

𝑇
)] 

∵ 𝜎303𝑘(𝜆) = 0.005193𝜆 − 0.00326 

A-17 
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By substituting Eq (A-8) into Eq (A-17), the conductivity of the Nafion can be 

expressed as in Eq (A-18).  

 

𝜎(𝑧) = (0.005193 (
11𝛼

𝑛𝑑𝑟𝑎𝑔
𝑆𝐴𝑇 + 𝐶𝑒𝑥𝑝 (

𝑗𝑀𝑚𝑛𝑑𝑟𝑎𝑔
𝑆𝐴𝑇

22𝐹𝜌𝑑𝑟𝑦𝐷𝜆
𝑧)) − 0.00326)

× 𝑒𝑥𝑝 (1268 (
1

303
−

1

𝑇
) 

A-18 

 

Therefore, the area specific resistance in the membrane and the ohmic loss for 

the fuel cell are derived through Eq (A-19) and Eq (A-20).  

 

𝐴𝑆𝑅𝑚 = ∫
𝑑𝑧

𝜎(𝑧)

𝑡𝑀

0

 A-19 

𝜂𝑜ℎ𝑚𝑖𝑐 = 𝑗𝐴𝑆𝑅𝑚 A-20 

 

The second loss to be considered is the activation loss. The activation loss is 

represented as Eq (A-21) because most of the activation loss is caused on the cathode 

side, and 𝑃0 is the reference pressure, which corresponds to 1atm.  

 

𝜂𝑎𝑐𝑡, 𝑐𝑎𝑡ℎ𝑜𝑑𝑒 =
𝑅𝑇

4𝛼𝐹
𝑙𝑛

𝑗𝑃0

𝑗0𝑃𝐶𝑥𝑂2
|𝑐

 A-21 

 

Through the flux balance relation, the mole fraction for 𝑂2 at the cathode side 

is equal to Eq (A-22), and the mole fraction for 𝑂2  at the cathode-membrane 

interface is expressed as Eq (A-23).   
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𝑥𝑂2
(𝑧) = 𝑥𝑂2

|𝑑 − 𝑧
𝑗𝑅𝑇

4𝐹𝑃𝑐𝐷𝑂2,𝐻2𝑂
𝑒𝑓𝑓

 A-22 

𝑥𝑂2
|𝑐 = 𝑥𝑂2

|𝑑 − 𝑡𝑐
𝑗𝑅𝑇

4𝐹𝑃𝑐𝐷𝑂2,𝐻2𝑂
𝑒𝑓𝑓

 A-23 

 

 That is, the activation loss is represented as Eq (A-24). 

  

𝜂𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =
𝑅𝑇

4𝛼𝐹
ln [

𝑗𝑃𝑜

𝑗0𝑃𝐶{𝑥𝑂2 |𝑑 − 𝑡𝑐𝑗𝑅𝑇/4𝐹𝑃𝐶𝐷𝑂2,𝐻20
𝑒𝑓𝑓 }

] A-24 

 

The last loss to be calculated is the concentration loss. Concentration loss, like 

activation loss, is mostly caused by the cathode side. The concentration loss can be 

expressed as Eq (A-25).  

 

𝜂𝑐𝑜𝑛𝑐 = 
𝑅𝑇

4𝐹
∙ 𝑙𝑛(1 −

𝑗

𝑗𝐿,𝑐𝑎𝑡ℎ𝑜𝑑𝑒
) A-25 
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Abstract in Korean   
 

연료전지 스택의 열화를 고려한 

연료전지 하이브리드 차량 대상의 

Actor-critic 알고리즘을 활용한 

진보한 실시간 동력분배전략의 개발 
 

 
갈수록 강화되는 차량의 배출가스 규제가 심화됨에 따라서 차량 

제조사는 연비효율을 높이기 위한 대안으로 하이브리드 차량의 개발 및 

생산에 대한 노력을 기울이고 있다. 하이브리드 차량은 두 가지 이상의 

동력원을 지니는 차량으로 정의된다. 개별 동력원을 효율적인 

작동점에서 운용할 수 있다는 장점을 통해서 하이브리드 차량은 일반 

내연기관 차량에 비해서 높은 효율성을 보이게 된다. 하지만 하이브리드 

차량의 높은 효율성은 오직 유효한 동력분배전략이 확보될 때에만 

보장할 수 있다.  

하이브리드 차량의 효율성에 미치는 동력분배전략의 중요성으로 

인하여 그 동안 동력분배전략 개발과 관련하여 많은 연구가 진행되어 

왔다. 많은 관련 연구들에서는 규칙기반제어, 최적제어이론, 강화학습 

이론 등을 통해서 하이브리드 차량의 동력분배전략을 개발해오고 있다. 

최적제어이론 기반의 동력분배전략은 높은 연비효율을 달성할 수 있다는 

장점을 지니지만 미래의 주행정보를 고려해야 한다는 점에서 

실차적용성과 일반화 성능이 낮다는 단점이 있으며 규칙기반제어과 

강화학습 미래의 주행정보를 필요로 하지 않는다는 점에서 실차적용성과 

일반화 성능이 높지만 연비 효율이 상대적으로 낮다는 단점이 있다. 
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현재 관련 연구에서는 각각의 동력분배전략이 지닌 단점을 보완하여 

일반화 성능과 효율성 모두 우수한 동력분배전략을 개발하는 데 초점이 

모아지고 있다.  

대다수의 하이브리드 차량의 동력분배전략은 내연기관과 배터리 

조합의 구조로 구성된 일반적인 하이브리드 차량을 대상으로 개발되어 

왔으나 최근에는 연료전지 차량의 대중화와 맞물려 연료전지 차량을 

대상으로한 동력분배전략 개발에 대한 연구가 증가하는 추세이다. 

연료전지 차량은 보통 연료전지 스택과 배터리의 조합으로 동력원이 

구성되며 일반 하이브리드 차량과 비교하여 전혀 배기가스를 배출하지 

않고 파워트레인의 구조를 간소화할 수 있으며 높은 효율성을 달성할 수 

있다는 장점을 가진다. 하지만 연료전지 차량의 연료전지 스택은 내구성 

문제에 취약하다는 문제점 때문에 연료전지 스택의 열화를 고려하여 

동력분배전략을 개발할 필요가 있다. 따라서 연료전지 하이브리드차량은 

연료전지 스택의 열화와 연료소모율을 모두 고려하여 최적화 문제를 

해결해야하는 다중 목적 문제 (multi-objective problem)에 속하기 때문에 

연료소모율만을 고려하는 일반적인 하이브리드 차량에 대한 

동력분배전략의 개발에 비해 문제의 복잡도가 높다. 그럼에도 불구하고 

연료전지 하이브리드차량 대상의 동력분배전략의 개발은 이미 대중화가 

이루어진 내연기관과 배터리의 조합으로 이루어진 일반 하이브리드 

차량에 비해 많은 연구가 이루어지고 있지 않은 실정이다.  

본 연구에서는 강화학습을 활용하여 연료전지차량 대상의 

동력분배전략을 개발하였다. 강화학습은 최근에 심층인공신경망과의 

융합을 통해서 큰 발전을 이루었다. 우리는 Actor-Critic 알고리즘 기반의 

심층강화학습을 활용하여 연료전지차량의 열화와 연료소모율을 고려한 
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동력분배전략을 개발하였다. 심층강화학습은 현재의 state를 기반으로 

제어전략을 도출하므로 일반화 성능이 높다는 장점이 있으며 확장성 

측면에서도 매우 우수하다. 심층강화학습의 높은 확장성을 활용한다면 

동일한 학습 프레임워크를 통해 하이브리드 차량의 시스템 변화나 

최적화 문제의 복잡도의 변화에도 쉽게 대응이 가능하다. 그리고 

심층강화학습은 온라인 학습을 통해서 실시간으로 발생하는 연료전지 

스택의 열화에 대해 대응할 수 있다는 장점을 지닌다. 본 연구에서는 

위와 같은 심층강화학습의 장점을 최대한 활용할 뿐 아니라 온라인 

학습을 통해 연료전지 스택의 열화에 대응하면서 동시에 일반화 성능과 

확장성을 확보한 연료전지 하이브리드차량 대상의 동력분배전략을 

개발하였다.  
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마음을 드립니다. 또, 저에게 많은 가르침을 주셨던 호원이형과 기영이형, 

종대형 그리고 희윤이형에게 감사함을 드립니다. 그리고, 김남욱 선배님, 

이대흥 선배님, 정춘화 선배님께도 깊은 감사함을 전합니다. 선배님들의 

노력과 시간 덕분에 저의 지금의 연구가 가능할 수 있었습니다. 팀은 

다르지만 전공 외의 지식과 경험을 공유해주신 익황이형, 윤호형, 
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구영이형, 태현이형, 준호형, 상훈이형에게 감사함을 전달드립니다. 

그리고 저의 업무를 많이 도와주었던 후배님들께도 감사함을 표합니다. 

부족한 방장 때문에 때때로 혼란과 동요가 있긴 했었지만.. 묵묵히 맡은 

바를 다해준 동환이, 상훈이, 상봉이, 유성이, 경현이, 원엽이, 인원이, 

명석이, 성현이, 재원이에게 모두 감사함을 표현합니다. 그리고 앞으로 

새로운 출발을 하는 양재와 현준이도 휼륭하신 교수님과 좋은 동료들과 

함께 알찬 대학원 생활을 보내길 바랍니다.  

항상 저를 믿어 주시고 묵묵이 응원해주시는 부모님과 저희 

가족에게도 감사를 드립니다. 항상 제 멋대로인 아들을 30년이 넘게 

지원해주시고 계시는 부모님께 표현은 하진 않지만 언제나 감사한 

마음을 가지고 있습니다. 부모님의 투자가 헛되지 않도록 노력하고 

있으니 믿어 주시기 바랍니다. 조만간 자랑스러운 아들이 될 거라고 

생각합니다.       

덤벙대는 성격이라 저에게 많은 도움과 호의를 주셨음에도 미처 

적지 못한 많은 분들이 있을 것이라고 생각합니다. 누락되신 분이 

있으시다면 양해 부탁드립니다.  

저 혼자라면 이루지 못했을 일을 여러분들께서 도와주신 덕분에 

지금의 제가 있을 수 있었습니다. 이제는 제가 받은 이러한 큰 도움과 

호의를 되돌려줄 수 있는 존재가 되도록 언제나 끊임없이 발전하고 

노력하겠습니다.  

모든 분들께 감사합니다.  
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