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ABSTRACT

Robot Grasping from Partial Point Cloud Data:

Merging Deformable Models with Deep Learning

by

Taegyun Ahn

Department of Mechanical Engineering

Seoul National University

Grasping novel and complex objects with partial observation is a challenging task

for robots. One solution for this problem is through full shape estimation. Pre-

vious works estimated the full geometry by optimization of fitting loss between

observed partial point cloud to a set of shape primitive surfaces. However, these

optimization-based fitting cannot constrain the shape of the unobserved region,

where points do not exist. Thus, they show disappointing performance of full shape

estimation.
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In order to solve such issue, we propose a novel supervised learning frame-

work for full geometry estimation of partially observed objects. Also, we propose

deformable-superquadrics, which can represent various shapes in continuous pa-

rameter space, as shape primitives to estimate the full geometry of complex ob-

jects. We show that our new learning framework well estimates the full geometry

of complex household objects. By sampling antipodal points on the estimated sur-

face, we could successfully find grasp poses of the robot gripper.

Keywords: grasp pose generation, partially observed point cloud, full shape es-

timation, supervised learning, deformable-superquadrics

Student Number: 2019-23899
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1
Introduction

Robot grasping problem is a grasp pose g ∈ SE(3) generation problem given ob-

servations of an object such as RGB or depth images. Robot grasping is impor-

tant in the manufacturing and logistics industries for automation. Especially in

logistics, the robot has to quickly grasp a variety of unseen objects with limited

observations. Thus, grasping unseen objects from partial observation is a key task.

Due to the limitation of classical analytic methods on grasping novel objects,

deep learning-based grasping methods have recently been widely studied [1]. One

popular approach is end-to-end grasping approach, where a grasp pose is directly

learned from an object image, uses millions of grasp data to generalize grasp strat-

egy from experience. However, acquiring grasp label data (pair of a grasp image

with success/fail labeled grasp pose) is very expensive. Also, end-to-end grasping

approach requires totally new data and re-training for the different gripper.

Another method to grasp a partially observed object is two-step approach [2,

3, 4, 5]: 1) given a partially observed point cloud, estimate the full geometry of an

object, then 2) find a grasp pose of a gripper. This method relatively suffers less

1
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from data collection than the end-to-end approach, since the collection of visual

data is usually easier compared to the grasp data. Also, since the estimation of

the full geometry does not involve grasping, the estimation is gripper independent.

When the full geometry is estimated, the grasp pose generation problem becomes

much easier because grasp points can be sampled from the full surface and analytic

grasp pose evaluations are possible.

However, existing two-step grasping approaches have 3 major issues. 1) Prim-

itives used in existing approaches are too simple and simply replacing with more

complex primitives doesn’t work because algorithms are designed in a primitive-

dependent way. 2) Previous methods require optimization as an intermediate step,

which is slow. 3) These optimization-based methods don’t work well for partial

point cloud data: specifically, reconstructed objects in many cases don’t look at

all like the actual object. The majority of existing approaches used bounding box,

cylinder, and sphere to approximate the geometry of the object, thus they cannot

express complex objects such as bottles or mugs. Also, most used optimization

algorithms such as RANSAC or Iterative Closest Points (ICP) to match shape

primitive surfaces with observed point clouds. However, such optimization algo-

rithms require a lot of computation time and are also prone to find sub-optimal

solutions. Also, even if a globally minimum solution is found (as in Figure 1.1),

the estimated geometry in the unobserved region can be far from the true shape.

This is due to the ill-posed nature of the original problem; partial point cloud can

be part of several different geometries. For example, a rectangle plane can be fitted

to a thin box or a thick box and both can have a small fitting loss.

In this paper, we propose a two-step grasping method designed for partial

point cloud data. Specifically, 1) we propose a richer set of primitives: deformable-

superquadrics that achieves a good balance between computational simplicity and
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Figure 1.1: Optimization solution of partial point cloud fitting can have several

solutions.

expressiveness, using 7 continuous parameters. Also, an analytical closed-form equa-

tion of deformable-superquadrics gives advantages for loss function evaluation in

network training. 2) We propose a Supervised Deformable-Superquadric Fitting

Network (SDSFN) for fast full shape estimation. 3) We created synthetic data to

augment data: our data consists of partially observed point clouds and the full

point clouds of synthetic objects. This novel data is required to train SDSFN since

it uses the full geometry of objects as supervision to estimate the unobserved re-

gions of objects. 4) In practice, actual implementation requires several methods

and choices of parameters, which are not trivial. We show in detail how to inte-

grate these methods and choose parameters in a compatible way. 5) Finally, we

demonstrate that our method enables robots to grasp household objects only with

partial observation.
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Figure 1.2: End-to-end grasping approach vs shape primitive based two-step ap-

proach.

1.1 Related Works

Classical analytic grasping methods calculate grasp quality measures such as force

closure to evaluate grasp poses [6, 7, 8]. However, these methods require full knowl-

edge on geometric and physical models of the objects [1], thus cannot grasp par-

tially observed, novel objects. Recently, deep learning-based methods are studied

to generalize grasping skills for novel objects. Many, including Dex-net 2.0 [9] and

6dof-graspnet [10] used end-to-end approach, where a grasp pose is learned directly

from raw input such as an image of the object. Dex-net learns robust epsilon qual-

ity of the grasp poses directly from a depth image. 6dof-graspnet uses Variational
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Auto Encoder to learn the latent space of successful grasp poses. However, these

methods require a huge amount of labeled data, which is not trivial to obtain.

Levine used 14 robots and spent two months collecting 800,000 grasp data [11].

Dex-net and 6dof-graspnet increased the data scale to 6.7 million and 7 million

grasp data, and recently [12] published 1 billion grasp data for grasp learning.

Another drawback of end-to-end approach is that the learned grasp policy is only

compatible with a single gripper. When the gripper is changed, the success/fail la-

bels of the original data needs to be changed. Thus, the recollection of the grasp

data with the new gripper and retraining of the network is required to apply this

method to another gripper. However, the two-step grasp learning approach, where

full geometry of the object is learned first and a grasp pose is generated from the

knowledge of full geometry, does not suffer from these issues.

Shape primitives fitting has a long history in various fields due to their compu-

tational simplicity and memory efficiency [13]. In robotics, [2, 3] used minimum

volume bounding box to approximate fully observed point clouds with a set of

boxes and grasped objects by grasping one of the boxes. Efficient RANSAC [14]

algorithms is another popular method to detect shape primitives. Few points are

randomly sampling from the point cloud and the primitive surface that passes

them is determined. A primitive surface with most point inliers that fit the sur-

face is selected. [4] used this algorithm to detect cylinders and spheres in the

partially observed point clouds of objects and grasped them. [5] extended shape

primitives to cylinder, ring, cuboid, stick, semi-sphere, sphere to express household

objects. They used Mask R-CNN to segment objects into shape primitives and

used ICP algorithm to register segmented point clouds to one of the primitives

in the primitive shape DB. However, the performance of ICP algorithm degrades

when registering partial point clouds. Also, in order to estimate the parameters of
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their shape primitives, they matched with multiple primitive shapes with discrete

parameter values. Not only this brute-force method is inefficient, but also their ex-

pressive power of shape primitives. On the contrary, our method uses deep learning

to avoid local minima of shape primitive fitting and can generalize the shapes of

the unobserved region. In addition, we can find shape parameters in continuous

space with single network inference. Also, our deformable-superquadric primitives

can represent more variety of geometries than previous works.

[15, 16, 17] used superquadrics to estimate the full geometry and proposed

grasping pipelines for grasping superquadrics. However, they used optimization al-

gorithms that are slow and have limitations when estimating the geometry of the

unobserved region. Unlike their work, our network can estimate the full geome-

try faster with higher accuracy. Also, we expanded superquadrics to deformable-

superquadrics to increase the expressive power.

1.2 Contributions of Our Work

The main contribution of our work can be summarized into four. 1) We propose

deformable-superquadrics as a new shape primitive to reconstruct complex objects

that include cones and rings. 2) We propose a new learning framework for estimat-

ing the full geometries of partially observed point clouds. 3) We created a novel

synthetic data set that can give our network supervision of full geometry. 4) Lastly,

we incorporated the above to create a full grasping algorithm that can grasp un-

seen objects, even with partial observation.

Through experiments, we show that our method out-performs at estimating the

full geometry of partially observed objects compared to the classical optimization-

based methods. Also, we show that the computation time of SDSFN required for
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the full shape estimation is much shorter than previous works. We demonstrate

that our method can effectively generate grasp poses for partial point clouds by

showing grasping success rate similar to the previous works.

1.3 Organization

In chapter 2, we review the concept of deformable-superquadrics. Here we explain

superquadrics that can represent various geometries with a single equation. We ex-

tend superquadrics to deformable-superquadrics by tapering and bending original

superquadrics to express cones and rings that cannot be expressed by original su-

perquadrics. The radial distance used for fitting superquadrics with point clouds

is also introduced. We also, review deep learning network architectures that are

specified for point cloud inputs. We explain the concept of permutation invariance

and graph convolution that are required for point cloud network.

In chapter 3, we introduce our two-step grasping approach. We use deep learn-

ing to segment partially observed object point cloud to shape primitives and fit

them to deformable-superquadrics. We used antipodal sampling method to select

a grasp pose from the estimated full 3d shape of the object.

In chapter 4, we validate our claim that optimization-based shape primitive

fitting algorithms cannot estimate the unobserved region of the objects, thus a

learning-based primitive fitting method should be used. Then, we evaluate our per-

formance of segmentation and fitting networks that are used for estimating full

geometry from partial observation. We also evaluated the grasping performance of

our entire framework and shows that our methods achieve a similar performance

of grasping compared to the state-of-the-art methods.

We conclude our thesis by summarizing our methods and results in chapter 5.



2
Preliminaries

In this chapter, we review the concept of superquadrics and deep learning networks

specified for point cloud inputs. In section 2.1 we explain the definition of su-

perquadrics. Also, we explain the radial distance between a point and superquadric

surface that is used in our loss function of the fitting network. In section 2.2 We

repeat these explanations on deformable-superquadrics that are obtained by ta-

pering and bending superquadrics. In section 2.3 we introduce operations required

for a point cloud-specific network. We explain the concept of point permutation

invariance a deep learning network should satisfy. Also, we explain how a convo-

lution operation can be done on point cloud data.

8
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Figure 2.1: Various shapes of superquadrics when a1 = a2 = a3 = 1.

2.1 Superquadrics

2.1.1 Definition of Superquadrics

Superquardrics are generalized quadrics that can represent various shape. It in-

cludes superellipsoids, supertoroids, superhyperboloids but in many works, superel-

lipsoids commonly referred as superquadrics, thus we also use term superquadrics

as superellipsoid from now on. Superquadrics are expressed using following equa-

tion,

F (x, y, z) =
(∣∣∣ x
a1

∣∣∣ 2
ε2 +

∣∣∣ y
a2

∣∣∣ 2
ε2

) ε2
ε1 +

∣∣∣ z
a3

∣∣∣ 2
ε1 = 1. (2.1.1)

ε1, ε2 ∈ R in the exponent term of the equation are called shape parameters. Vary-

ing these parameters, superquadrics can become box, sphere, cylinder and octa-

hedrons. a1, a2, a3 ∈ R at the denominator terms of the equations accounts for

the size of the superquadrics, thus are called size parameters. Thus, superquadrics

can express varierty shape and size of objects with single equation in continuous

parameter space. Figure 2.1 shows variety of shapes superquadrics can represent

when a1 = a2 = a3 = 1. Note that shape parameters ε1, ε2 are outside (0, 2),
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the equation 2.1.1 and its gradient becomes numerically unstable. Thus, shape pa-

rameters of superquadrics are bounded within 0 and 2 in most practical applica-

tions [18].

Similar to parametric representation of a sphere, superquadrics can also be ex-

pressed in explicit form,

r(η, ω) =


a1 cosε1 η cosε2 ω

a2 cosε1 η sinε2 ω

a3 sinε1 η

 , −
π
2 ≤ η ≤

π
2

−π ≤ ω < π.
(2.1.2)

Note that exponential ε of f(x) is a signed power function

f ε(x) = sign(f(x))|f(x)|ε. (2.1.3)

Normal vector of superquadric surface at a point r(η, ω) can be calculated with a

cross product of the tangent vectors along η and ω,

n =


nx

ny

nz

 =
∂r

∂η
× ∂r

∂ω
=


1
a1

cos2−ε1(η) cos2−ε2(ω)

1
a2

cos2−ε1(η) sin2−ε2(ω)

1
a3

sin2−ε1(η)

 . (2.1.4)

2.1.2 Radial Distance of Superquadrics

It is hard to calculate Euclidean distance between a point and the surface of a

superquadric due to the lack of closed-form solution. Instead, radial distance δ

between a point x0 ∈ R3 and the superquadrics surface F (x) = 1 can be easily

computed. The radial distance between a point and the superquardic surface is

the distance between the point and the intersection point of superquadric surface

and the line that connects the point and the center of the superquadric. The inter-

section point between the superquadric surface and the line connecting its center
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Figure 2.2: Euclidean distance and radial distance.

and point x0 = (x0, y0, z0) will be x1 = βx0. Then, the radial distance can is,

‖(1− β)x0‖. (2.1.5)

Since point x1 lies on the surface of the superquadrics, it has to satisfy F (x1) = 1.

F (x1) =
{{

(
βx0

a1
)

2
ε2 + (

βy0

a2
)

2
ε2

} ε2
ε1 + (

βz0

a3
)

2
ε1

}
= β

2
ε 2F (x0). (2.1.6)

Thus, radial distance δ between point x0 and the superquadric F (x) = 1 can be

calculated with a close form solution,

δ = ‖x0‖|1− F−
ε1
2 (x0)|. (2.1.7)

2.1.3 Error Metric for Superquadric Fitting

Given a point cloud, superquadric fitting is the process of finding a superquadric

parameter set {a1, a2, a3, ε1, ε2} that best fits it. Two error metrics are commonly

used for superquadric fitting. [19] directly applied the surface function F (x, y, z) =

1 to a data point x0 = (x0, y0, z0) ∈ R3 to calculate surface fitting loss,

L =
√
a1a2a3|1− F ε1(x0)|. (2.1.8)

√
a1a2a3 is multiplied to prevent local minimum by fitting superquadrics with

larger volumes, and F is powered to ε1 to avoid numerical instability and remove
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bias towards fitting superquadrics with larger values of ε1. This error metric has

several issues [20]. The equation is equal to

L =
√
a1a2a3

∣∣∣∣2 δ

‖x1‖
+

δ2

‖x1‖2

∣∣∣∣, (2.1.9)

where δ in this equation omit absolute operation in |1−F−
ε1
2 (x0)|. Thus, points in-

side the superquadric surface has lower error than points outside the surface with

same |δ|, ‖x1‖. Also, the error term δ
‖x1‖ decreases as ‖x1‖ increases, which gives

the error metric tendency to grow the volume of the superquadrics. The multipli-

cation of
√
a1a2a3 to prevent this issue is only empirically proven to work.

[21] used the radial distance δ of equation 2.1.7 for superquadric fitting. We

tested both error metric for the fitting loss in our training network and found that

radial distance based fitting loss showed better performance.
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2.2 Deformable-Superquadrics

Although superquadrics can express a variety of shapes, it cannot express shapes

such as cones and rings. The range of shapes expressed by superquadrics is ex-

panded by applying global deformations to it. Here we, introduce two popular de-

formations, tapering and bending. We use the term deformable-superquadrics to

represent superquadrics and their deformed forms by these two deformations.

2.2.1 Tapering Deformation

where points (x, y, z) on the surface of original superquadrics, (X,Y, Z) are the

deformed points, and tk(z) is the tapering function. For linear tapering,

X = tk(z)x

Y = tk(z)y

Z = z,

(2.2.10)

tk(z) =
k

a3
z + 1, (2.2.11)

is used, where −1 ≤ k ≤ 1 is a tapering parameter. When k = 0, deformation

is not applied, thus the deformable-superquadrics and superquadrics are identical.

This tapering can make pointy shapes from original superquadrics. For example,

when tapering is applied to a cylinder with k = 1, the deformed superquadric

becomes a cone. For fitting deformable-superquadrics to point clouds, a surface

equation expressed in X,Y, Z is required. Thus we need an inverse transformation

of tapering D−1
t , which is given by the following,

x = a3
kZ+a3

X

y = a3
kZ+a3

Y

z = Z,

(2.2.12)
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2.2.2 Bending Deformation

Figure 2.3: Bending plane of bending deformation.

Bending deformation bends the z-axis of the superquadric to a circular section

while preserving its length. The direction of the bending is described the bending

plane. The bending plane includes the original z-axis and the bent circular section,

and the angle between the bending plane and the x-z plane is α.

The points of the bent superquadrics can be calculated by first projecting orig-

inal points to the bending plane, performing bending on projected points and pro-

jecting bent points back to the original plane. The projection of original points to

the bending plane can be calculated as follows,

r =
√
x2 + y2 cos (α− β),

β = arctan y
x .

(2.2.13)

The projected points r are bent to

R =
1

b
− (

1

b
− r) cos γ (2.2.14)
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where γ = zb. By re-projecting bent points to original planes, superquadrics with

bending deformation can be obtained,

X = x+ (R− r) cosα

Y = y + (R− r) sinα

Z = (1
b − r) sin γ.

(2.2.15)

In our case, we use bending deformation when α = 0. Thus, the bending de-

formation Db along x-axis is

X = 1
b − cos(γ)(1

b − x)

Y = y

Z = sin(γ)(1
b − x),

(2.2.16)

where b > 0 is a bending parameter and γ is the corresponding bending angle. As

in the case of tapering, deformable-superquadrics becomes superquadrics when b is

close to 0. Using bending deformations, ring shapes can be obtained from cylinders

and boxes. The inverse of bending deformation D−1
b can be obtained with,

x = 1
b −

√
Z2 + (1

b −X)2

y = Y

z = γ′

b ,

(2.2.17)

where γ′ = atan2(Z, 1
b −X). Examples of deformable-superquadrics can be seen in

Figure 2.4
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Figure 2.4: Examples of deformed superquadrics.

2.2.3 Combined Deformation

When combining tapering and bending deformation, the order of deformation should

be carefully selected. The commutation of deformations results in different final

shape i.e.,Db ◦Dt 6= Dt ◦Db. In this work, we deform our superquadrics by taper-

ing first and bending. Thus the deformation and inverse of Deformation is obtained

by,

(X,Y, Z) = Db ◦Dt(x, y, z), (2.2.18)

(x, y, z) = D−1
t ◦D

−1
b (X,Y, Z). (2.2.19)

Our deformable-superquadrics have total 7 parameters; a1, a2, a3, ε1, ε2, k, b. In such

case, normal vectors of deformed superquadrics can be obtained from following,

Jt(x) =


k
a3
z + 1 0 k

a3
x

0 k
a3
z + 1 k

a3
y

0 0 1

 , (2.2.20)
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Jb(x) =


cos(γ) 0 sin(γ)(1− bx)

0 1 0

− sin(γ) 0 cos(γ)(1− bx)

 , (2.2.21)

ñ = det JJ−Tn. (2.2.22)

n is the normal vector of original superquadric surface from equation 2.1.4 and

J = Jt(x) for tapering deformation and J = Jb(Dt(x))Jt(x) for combined defor-

mation .

In the case of bending deformation, radial distance can be calculated with the

same equation 2.1.7 of superquadrics. However, this is not true for tapering, but

nevertheless, the error is marginal and can be approximated as true value [22].
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2.3 Deep Learning Networks for Point Cloud

Throughout the past decade, deep learning showed remarkable achievements in

computer vision, with their powerful convolution operations on image data. How-

ever, the same architectures cannot be directly applied to deep learning on point

cloud data, due to the data difference. A major difference between an image and a

point cloud is regularity. An image has a regular grid structure, where pixel indices

of the x, y-axis indicate the location of the pixel. Also, each pixel in the images

(except for the ones on the edges and corners of images) has exactly 8 neighbor

pixels, which makes the implementation of convolution operation easier. However,

point clouds have irregular and unordered form. A point cloud is represented by a

set of points. Thus the order of the points in the set does not change the geometry

of the point cloud. Also, explicit neighbor points of a point are not defined as in

the case of an image, thus original convolution operation on the regular grid can-

not be directly used. Thus we review specialized network architectures for point

cloud data to solve such issues.

2.3.1 Permutation Invariance

A point cloud is represented with a set of points P = {p1, . . . , pn}, pi ∈ R3, but in

practice matrix P ∈ Rn×3 is commonly used instead. Instead, for arbitrary permu-

tation matrix π ∈ Rn×n, πP represents same point cloud. However, for arbitrary

function f whose inputs are point clouds P, the outputs of permuted inputs are

different i.e.,f(P) 6= f(πP). However, since P and πP originally represent same

geometry, we wish the function to output same value. This property of function f

is called permutation invariant,

f(P) = f(πP). (2.3.23)
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For networks whose inputs are n points of point clouds, they have to satisfy this

permutation invariance for n! permutation of point orders. PointNet [23] used max

pooling at the end of the network to extract a permutation invariant global fea-

ture. Other symmetric aggregation operation such as mean pooling can be also

used.

2.3.2 Convolution on Point Cloud Data

Wang et al. introduced Edge Convolution to implement convolution-like operation

on point cloud data [24]. For finding neighbor points, k-nearest neighbor graph

G = (V, E) is constructed. Edge features are defined as eij = hΘ(xi,xj), where hΘ :

RF ×RF → RF ′
is a learnable edge function with parameters Θ. Edge convolution

is applied to the graph by applying symmetric aggregation operation � on all edge

features connected to xi.

x′i = �
j:(i,j)∈E

hΘ(xi,xj). (2.3.24)

Compared to convolution operation on image, xi and {xj |(i, j) ∈ E} can be thought

as central pixel and patch around it in 2d convolution. In fact, when � =
∑

and

hΘ = θ · xj, the equation 2.3.24 becomes identical to the standard convolution

on images. Wang presented several choice of edge function and aggregation oper-

ation. Among them, they used following MLP as edge function with max pooling

operator.

x′i = max
j:(i,j)∈E

ReLU(θm · (xj − xi) + φm · x). (2.3.25)



3
Grasping Pipeline

Our grasping pipeline is divided into two stages. First, the recognition module

estimates the full 3d shape of an object from a partially observed point cloud.

Then, the grasping module generates a grasp pose for the gripper. Figure 3.4 shows

the entire process of our grasping algorithm.

3.1 Recognition Module

The recognition module approximates the full 3d shape of the object using a set

of deformable-superquardics. The partially observed point cloud of an object first

passes through a segmentation network and decomposed into shape primitives.

Then, the primitive fitting network (SDSFN) estimates the full geometry of each

segmented point cloud by finding the parameters and SE(3) of the deformable-

superquardics that best fits it. Assembling all deformable-superquadrics, we can

get a full shape estimation of the partially observed object.

In order to recognize the full shape of the object from arbitrary angles, we

20
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trained our segmentation and fitting networks with data that contains 16 view

directions of the same objects.

A point cloud of an object can be represented with coordinates of different

frames. However, learning segmentation and fitting of point clouds with arbitrary

frame is difficult and requires lots of data. Thus, we pre-processed our point cloud

data to have a consistent point cloud frame. We transformed point cloud to the

point cloud frame, whose center is the center of the point cloud and axes are prin-

cipal axes calculated from principal component analysis (PCA). Eigenvectors with

largest and smallest eigenvalues are chosen as z-axis and y-axis respectively. How-

ever, eigenvector found by PCA can be one of two directions ei,−ei. Thus to re-

duce this stochasticity, we further rotated point cloud frame with respect to x and

z axes so that the thicker part of the point cloud always lies on the -z coordinate.

The thickness of the point cloud is measured by calculating the mean of x, y norm

of points. If the mean norm of the points with positive z values is greater than

the value of the points with negative z values, the point cloud frame is rotated π

around the x-axis. The same procedure was done for the x-axis of the point cloud

frame.

3.1.1 Shape Primitives Segmentation

The segmentation network split partially observed point cloud input into shape

primitives. In order to train the segmentation network, we created a synthetic

data set that has a ground-truth segmentation label. Our data set is consisted

of partially observed point clouds of synthetic household objects which are made

using box, cylinder, sphere, cone, truncated cone, and sliced torus. The network is

trained using cross-entropy loss. A Point-wise one-hot vector of segmentation la-

bel is given to the network as ground-truth. Thus the network predicts confidence
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of m segment label (membership) of each point. Since permutation of segmenta-

tion label is unimportant, we used Hungarian matching [25] to reorder prediction

segmentation label that has a maximum match with the ground-truth label.

3.1.2 Deformable-Superquadric Fitting

After the object point cloud is segmented into shape primitives via the segmenta-

tion network, the primitive fitting network(SDSFN) fits deformable-superquadrics

to the segmented partial point clouds. The SDSFN predicts 7 parameters (2 shape,

3 size, 2 deformation parameters) of deformable-superquadrics and their poses T ∈

SE(3).

To estimate the full 3d shape of the partial point cloud, we gave our network

supervision of the full 3d shape with full point clouds of objects. We minimize

radial distance δ of equation 2.1.7 between the predicted deformable-superquadric

surface F and the full points G = {g1, . . . , gng} ∈ Rng×3 uniformly sampled from

the ground-truth primitives.

In order to estimate the pose of the deformable-superquadric, the ground-truth

points gk are transformed to superquadric frame by multiplying the inverse of its

pose T to gk.

We trained our SDSFN network with 6 shape primitives where each primitive

is defined in a canonical frame. However, pre-processing of point cloud with the

transformation to PCA frame, makes the distribution of the z-axis of those primi-

tives very discrete. For example, point clouds of elongated cylinders, whose heights

are greater than diameters, have the z-axis of the PCA frame in the height direc-

tion. On the contrary, flat cylinders have z-axis of point cloud frame in radius

directions. This hinders point cloud fitting to the superqudric surface since x and

y in superquadric equation 2.1.1 are commutative but not with z. When the z-axis
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of the superquadric is mismatched, the performance of the superquadric fitting de-

grades. This is especially true for our case since the training data set has a biased

distribution of z-axis, thus tries to fit superquadrics with certain z-axis. Therefore,

we added supervision of the z-axis of shape primitives. Thus, the loss function of

the primitive fitting network becomes as follow,

Lsuperquadrics =
1

ng

ng∑
k=1

δ2(T−1gk) + w‖z × zg‖2, (3.1.1)

where w is a hyperparameter that regulates two loss terms.

By giving supervision of the full geometry, our network can well generalize the

shapes of the unobserved objects. Note that we give point cloud, not parameters of

deformable-superquadrics as supervision data. Thus we do not need to know the

exact parameters of the object to learn the full geometry. Instead, our network

figures them out for us.
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3.2 Grasping Module

Figure 3.3: Grasping module.

Once a partially observed point cloud of an object is fitted to a set of deformable-

superquadrics, the grasping module generates a grasp pose using antipodal sampling-

based algorithm. Antipodal points are two points on the surface that are located

on the opposite parts of an object, and frequently used as candidate points for

grasping points of parallel two-finger grippers [26, 9, 17],. The entire grasping mod-

ule consists of 3 parts; 1) grasp pose sampling via antipodal sampling, 2) collision

and kinematic feasibility check, and 3) grasp pose selection.

3.2.1 Antipodal Grasp Pose Sampling

First, we sampled points uniformly on the surface of the predicted full 3d mesh

of an object. Then, antipodal point of each sampled point was obtained by find-

ing intersection points between the object mesh and a line that passes the sampled

point and is normal to the surface at that point. Normals are calculated with equa-

tion 2.1.4. We chose the farthest two intersection points as two antipodal points.

Finding intersection point with line l(t) = p+d · t, t ∈ R superquadrics are not

easy, since we cannot get closed-form solution. Thus, the intersection point should
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be found using an iterative solver. We used Newton-Raphson based method used in

[27] for finding line intersection points. Newton-Raphson method finds the solution

of f(t) = 0 in iterative manner,

tnew = told −
f(told)

f ′(told)
. (3.2.2)

For initial guess of t, we used intersection points of bounding sphere whose radius

is r = max(a1, a2, a3). The intersection point of the bounding sphere can be easily

found by solving quadratic equation at2 + bt + c = 0, where a = d · d, b = d · p,

and c = p · p − r2. Since p of the line l(t) is the point on the superquadric, we

know that t = 0 is a solution. For antipodal searching problem, solution t 6= 0 is

our interest. Thus we choose solution t with greater absolute value as our initial

guess tinit of the Newton-Raphson method. For line-superquadric intersection the

f(t) of equation 3.2.2 becomes,

f(t) = S(l(t)), (3.2.3)

f ′(t) = d · ∇S(l(t)), (3.2.4)

where S(x) = F (x)− 1, x ∈ R3.

Then, normals at the two antipodal points are compared and antipodal points

are kept, if the angle between the two vectors is smaller than 15 degrees.

After the antipodal points are sampled, 6-dof grasp poses are generated heuris-

tically. The Z-axis of the gripper that directs the center of the object is selected

as an initial candidate. The Y-axis of the gripper is aligned with a line that con-

nects two antipodal points. Grasp pose is rotated 30 degrees along the y-axis to

generate 12 6-dof grasp poses for each antipodal points pair.
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Figure 3.4: Antipodal points of deformable-superquadrics.

3.2.2 Collision and Kinematic Feasability Check

Collisions of the gripper with surroundings are checked using Flexible Collision

Library [28]. Candidate grasp pose that does not collide with both object and

table is rejected.

Kinematic feasibility of the grasp pose is checked by finding the inverse kine-

matics solution of the robot. Given a grasp pose Tg ∈ SE(3)Solution of the inverse

kinematics of a candidate grasp pose was found using Newton-Raphson iterative

algorithm [29],

θi+1 = θi + J†b ((θi)Vb. (3.2.5)

J†b ∈ R6×n is pseudo body Jacobian of the robot, Vb ∈ R6 is the body twist calcu-

lated from,

[Vb] = log(T−1
sb (θi)Tg). (3.2.6)

If the candidate grasp pose is found to be unreachable, the grasp pose is excluded

from the candidate.
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3.2.3 Grasp Pose Selection

A final grasp pose is selected among grasp pose candidates that passed collision

and kinematic feasibility check, by favoring a top-down grasping.



4
Experiments

4.1 Evaluation Metric

The main contribution of our work is the recognition module, where we estimate

the full 3d geometry of the partially observed point cloud. To evaluate our recog-

nition module, we used the intersection over union(IoU) metric which is defined

by,

IoU =
|A ∩B|
|A ∪B|

. (4.1.1)

Our recognition module outputs a full 3d mesh of an observed object. To mea-

sure how much our predicted mesh resembles the ground-truth object mesh, we

used volume IoU which is the volume of intersection of two meshes divided by the

volume of the union of two meshes. However, figuring out intersection mesh and

union mesh of two 3d meshes is not easy. Thus we voxelized meshes, which makes

intersection and union calculation and volume calculation easier. However, the vox-

elized mesh has only surface voxels since mesh has only surface information. To

obtain voxelized mesh with voxels inside the mesh, voxel carving method [30] was

30
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used. The voxel can be represented with V ∈ Rnx×ny×nz where Vi,j,k = 1 if voxel

at (i, j, k) index exists and 0 if not. Thus using voxel, IoU of two voxels V1 and

V2 be calculated as,

IoU =
V1 · V2

V1 + V2
, (4.1.2)

where · and + are logical and logical or operation. The IoU score becomes 1 as

two meshes becomes similar.

4.2 Optimization vs Learning

Unlike our approach, most of the previous works of fitting shape primitives to par-

tially observed point clouds were done using optimization algorithms. Thus, we

compared the performance of deformable-superquadric fitting using optimization

and network learning. Specifically, gradient descent optimization and our SDSFN

were compared. Similar to the superquadric fitting loss 3.1.1 used in SDSFN, the

sum of radial distance δ between points and the superquadric surface is mini-

mized in optimization. The matching loss of the z-axis is the original SDSFN loss

was omitted, since the supervision of the z-axis cannot be given in the optimiza-

tion scheme. For learning, SDSFN trained in section 4.3.3 was used. We fitted

deformable-superquadrics to 6 partially observed primitive shapes. Each primitive

shape in the test data has a total of 30 different data; 10 different shapes are seen

from randomly selected 3 different viewpoints.

Figure 4.1 shows the full shapes of primitive shapes estimated by the two meth-

ods. Both results shows closely fitted point clouds to the estimated surfaces. How-

ever, cone, cylinder, and truncated cone estimated by the optimization method are

larger than the ground-truth meshes.

Table 4.1 shows the IoU of predicted and ground truth meshes. Although the
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Table 4.1: Fitting of Partially Observed Point Cloud

box sphere cylinder cone truncated cone truncated torus

SDSFN 0.8187 0.9763 0.8417 0.8899 0.7273 0.8695

optim 0.4161 0.9642 0.5219 0.3350 0.4344 0.2977

loss optimized by gradient descent method was much smaller than the lowest val-

idation loss of our SDSFN, SDSFN showed greater performance in predicting the

full 3d shape. The optimization method fitted every observed point close to the

surface, thus the globally optimum solution was found. However IoU score was low

since most of the predicted full shape was bigger than the ground-truth shape. A

partially observed point cloud does not have enough information to bound the pre-

dicted shape in the unobserved region. Thus predicted shape of the region outside

the observed point cloud can have any shapes, and yet the predicted shape can

have a globally minimum fitting loss.

For optimization, fitting points with a smaller volume of the superquadric can

increase the risk of higher fitting loss, while fitting points with bigger superquadrics

does not have such risk. Thus fitting results obtained from optimization have pre-

dicted volume outside the ground-truth shape. This is undesirable for robot grasp-

ing, since the grasp planner may attempt to grasp a region that actually does not

exists.

On the other hand, our learning framework shows that we can estimate the

full 3d shape of an object even with a partially observed point cloud. Our network

uses past experience to generalize the mapping from partial observation to full 3d

shape and well estimate the geometry of the unobserved region. Also, our SDSFN
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outperformed the optimization method in terms of computation speed. The com-

putation time for estimating the full geometry took average of 0.023 seconds, while

the optimization method took 21.43 seconds. Thus, when estimating the full geom-

etry of a partially observed point cloud, learning-based methods are advantageous

than classical optimization-based methods.

4.3 Recognition Module

Since we cannot know the ground-truth segmentation label and ground-truth full

3d mesh for real object data, we tested the performance of our recognition on

synthetic data. Both segmentation network and primitive fitting network (SDSFN)

are trained using DGCNN [24].

4.3.1 Dataset

In order to train our network, we created a novel data set that fits our require-

ments. For the segmentation network, we need ground-truth labels of objects’ prim-

itive segmentation. For the fitting network, we require full point clouds of shape

primitives. Thus we created a dataset consisted of synthetic objects that resemble

household objects.

The synthetic objects are made with combinations of shape primitives. Al-

though our framework can fit superquadrics to arbitrary shapes, we selected and

used 6 shape primitives to generate complex household objects for convenience.

We choose box, cylinder, sphere, cone, truncated cone, and truncated torus as our

shape primitives, as they are simple yet variety enough to generate household ob-

jects. Note that cone, truncated cone, and truncated torus cannot be represented

with simple primitives used in the previous works. Also, these shapes cannot be



4.3. Recognition Module 35

Figure 4.2: Dataset used for training our networks and grasping experiment.

expressed using superquadrics, thus deformable-superquadrics are needed to esti-

mate their shapes.

Our household objects include objects with each of 6 primitives and 6 more ob-

jects with several shape primitives put together; bottle, cup, screwdriver, padlock,

hammer, dumbbell. Using these shape primitives and synthetic household objects,

we created two separate data sets for segmentation training and fitting training.

The segmentation data set has a total of 19 thousand data with each 12 ob-

ject class has 100 objects with different shapes. A single data consists of partially
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observed point clouds with 3000 points and their point-wise label. The partially

observed point cloud is obtained by rendering depth images of objects from one

of 16 pre-defined viewpoints.

The fitting data set has total 9 thousand data with each 6 shape primitives

has 100 different shapes. Data in this data set has partially observed point cloud

seen from one of 16 viewpoints and full point cloud and mesh of the object. For

fitting data, the partially observed point cloud has 1500 points.

All point clouds and ground-truth meshes in the data set are transformed to

the point cloud frame of partially observed point cloud described in section 3.1.

4.3.2 Segmentation

When training, noises sampled from a standard normal distribution are added to

the synthetically generated input point clouds to increase the robustness of the

segmentation performance on real data. For evaluation, an average of point-wise

segmentation accuracy was used.

4.3.3 Fitting

As the training data of the segmentation network, noises are added to the training

data of the fitting network. Also, input point clouds are normalized to efficiently

learn surface fitting of point cloud that has various scales.

We learned two separate SDSFN; one that fits box, cylinder, sphere, cone and

truncated cone (superquadrics and tapered superquadrics) and the other that fits

truncated torus (bent superquadrics). The reason why we trained the networks

separately is SDSFN could not fit truncated torus when trained with all 6 prim-

itives. We believe this is due to the data imbalance, since bent primitive data
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occupy small portion of the entire data. We are planing to solve this issue in the

future work. For now, we used the results from both networks and compared the

radial-distance based fitting score. We chose the deformable-superquadrics param-

eters with smaller fitting loss.

We compared our result with our implementation of [5]. We used our segmen-

tation network, instead of the Mask-RCNN they used, thus the difference between

their work and ours is the ICP algorithm and SDSFN used for primitive fitting.

For ICP based primitive fitting, 6 shape primitives that were used for our SDSFN

training were used. Shape primitives were created with 5 discrete values of each

shape primitives, thus a total 5(number of parameters) shape primitives were fitted to

the point cloud. To avoid local minima, we used multi-start ICP as in the original

paper. Shape primitive parameters with the highest fitting score was chosen as the

final primitive shape.

Table 4.2 shows mean IoU values of two methods evaluated on synthetic data.

SDSFN shows higher fitting performance than the ICP algorithm in all cases, ex-

cept dumbbell where the difference is very small. The average inference time of

our SDSFN was 0.036 seconds, while ICP algorithm took 11.51 seconds. Thus, our

method outperforms the ICP based fitting algorithm both in terms of estimation

performance and computation speed.

The result of our recognition module can be seen in Figure 4.3. Compared

to the ICP algorithm, our SDSFFN well estimate the full geometry, close to the

ground-truth shape. Even with multi-start ICP, the ICP algorithm fell to local

minima and showed poor fitting performance of complex objects. Due to the dis-

crete parameter space, the ICP algorithm could not estimate shape parameters

precisely. In order to estimate precise parameters with the ICP algorithm, one
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Table 4.2: Full Shape Estimation of Objects

box cone
truncated

cone
sphere cylinder

truncated

torus

ICP 0.7768 0.7686 0.7270 0.8082 0.7941 0.2426

SDSFN 0.8080 0.8765 0.8927 0.9021 0.9400 0.8052

hammer mug screwdriver padlock dumbbell bottle

ICP 0.5937 0.7918 0.4568 0.7192 0.7268 0.7962

SDSFN 0.8278 0.8792 0.7104 0.8295 0.7264 0.8506

should increase the resolution of parameter space in the compensation of the com-

putation time.

4.4 Grasping Results

For the grasping experiment, we used 7-dof Franka-Emika-Panda robot with its

parallel two-finger gripper. Kinect Azure camera was mounted on the end-effector

of the robot to get point clouds of objects.

Partially observed point clouds of objects were obtained from raw point cloud

through the following procedure. First, we transformed coordinates of raw point

clouds represented in the camera frame to world frame (base frame of the robot)

using forward kinematics. Then, we only excluded points that are not above the

table. Points on the table surface are removed by detecting a plane using RANSAC

algorithm. We further removed statistical outliers by removing points that are fur-

ther away than the average distance of neighborhood points to obtain a segmented

object point cloud.
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Segmentation and fitting networks are trained with 1500 points and 3000 points

of point cloud. Thus we up-sampled or down-sampled obtained object point cloud

to 1500 and 3000 points. For up-sampling, points are randomly sampled and noises

are added. For down-sampling, an optimization algorithm based on voxelization

was used.

Figure 4.4 shows an example of grasping experiment done on real data. At

first, point cloud of a hammer was acquired using a depth image seen from a single

viewpoint. Notice that only top part of the hammer exists in the point cloud at

this stage. After passing this point cloud to the segmentation network, the point

cloud is split into two; head and handle, which both have a cylinder shape. The

primitive fitting network uses these segmented point clouds to predict the full 3d

shape of each point cloud as cylinders. It can be seen that our primitive fitting

networks predicted the full shape of the hammer just using the partially observed

point cloud. Notice that the predicted full 3d shape and the observed point cloud

overlaps, which indicates the high performance of our fitting network. Using our

grasping algorithm based on antipodal sampling, we were able to successfully grasp

the hammer.

Further experiments of grasping were conducted with the following objects.

These objects are selected from YCB object dataset [31], which are widely used

for the benchmark of robot grasping. The dataset includes 77 household objects

from 5 different categories; food item, kitchen item, shape item, task item. We se-

lected 14 among the dataset that best resembles the original dataset, which can

be seen in Figure 4.2. We evaluated grasp success rate on all objects. Each ob-

ject was randomly placed on a table and the 5 tests were done for each object. In

the experiment, the robot grasped the objects with the grasp pose generated by

our method, and lifted it up, moved and placed in an empty bin. The grasp was
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Table 4.3: Grasping Performance

snack box cube spam pringles baseball tennis ball apple

5/5 5/5 4/5 4/5 5/5 5/5 3/5

bottle screwdriver hammer dumbbell banana mug padlock

5/5 5/5 3/5 1/5 4/5 5/5 5/5

evaluated as successful if the object is successfully placed in the bin.

Table 4.3 shows the overall grasping performance. For simple shapes that con-

sists of single primitive such as box, cube, ball, the success rate was 100 %. Apple

is not a perfect sphere thus full shape estimation result was relatively poor com-

pared to the balls, but still was successfully grasped at 60 %. The result shows that

our method well reconstructs and successfully grasp objects with multiple primi-

tives such as bottle and screwdriver. In every case of hammer and dumbbell, shape

estimation result was good to the tester’s eye, and the gripper successfully reached

antipodal grasp poses generated by our method. However, the robot failed to lift

them up due to their heavy weight. We were able to successfully grasp objects

with bent shapes such as banana, mug, and padlock. Among three, the grasping

result on banana was lowest due to the irregular shape.



5
Conclusion

We developed a grasping method that can grasp an unseen object from partial

observation. We proposed a new learning framework called SDSFN (Supervised

Deformable-Superquadric Fitting Network) to estimate the full geometry of par-

tially observed point clouds with deformable-superquadric primitives. Previous works

used optimization algorithms to fit partially observed point cloud to shape prim-

itives. However, optimization algorithms cannot inform or constrain the geometry

where points do not exists. Thus, although they show a low fitting error of par-

tially observed point clouds, the estimated full shapes are often far from the true

geometry. Thus we used supervised learning whereas supervision of ground-truth

full geometries of objects are given to the network. To represent complex objects

with shape primitives, we proposed deformable-superquadrics as our shape prim-

itives. We showed that using our supervision learning framework with radial dis-

tance loss, we could successfully learn the full geometry of partially observed box,

cylinder, sphere, cone, truncated cone, and sliced torus.
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Through experiment, we validated our claim that the learning framework is su-

perior compared to the optimization-based methods, when estimating the full ge-

ometries of partially observed objects. Also, we showed that our recognition frame-

work well estimates the full geometry of both synthetic objects and real-world

objects, and even works well when estimating complex objects. The computation

time for shape estimation took about 0.04 seconds which was much faster than the

previous work. Using our recognition framework with antipodal grasping method,

the robot could grasp a variety of household objects.

Our method could learn to grasp with much fewer data than the end-to-end

learning-based approaches. Also, compared to their methods, our grasping pipeline

can be easily implemented to various grippers with different shapes. However, our

simple sampling-based grasp pose planner requires a quiet amount of computation

time to evaluate all sampled grasp poses. We believe that this could be improved

through an implementation of other advanced grasping algorithms.
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국문초록

로봇 파지에서 새로 본 복잡한 물체를 부분 관측만으로 파지하는 것은 어려운 문제이

다. 이 문제를 해결하는 하나의 방법은 전체 형상을 먼저 예측한 후 파지하는 것이다.

이전의 연구들은 부분 관측된 점 구름과 단위 형상의 표면 사이의 거리를 최소화하는

최적화하는 문제를 풀어 부분 관측된 물체의 전체 형상을 예측하였다. 하지만, 이러한

최적화 기반의 방법들은 점 구름이 존재하지 않는 부분에 대해 맞춰질 단위 형상의

모양에 대해 정보를 주지 못한다. 이로 인해 기존의 방법들은 부분 관측된 물체의 전

체 형상 예측 성능이 떨어진다. 이러한 문제를 해결하기 위해, 우리는 부분 관측된

전체 형상을 예측할 수 있는 새로운 지도 학습 방법을 제안한다. 또한, 우리는 다양한

형상을 연속적인 변수 공간에서 표현할 수 있는, 변형 가능한 슈퍼 쿼드릭을 복잡한

물체를 근사하기 위한 단위 형상으로 제안을 한다. 이를 이용하면 이전의 연구와 비

교하여 부분 관측된 물체의 전체 형상을 잘 예측하는 것을 실험적으로 확인하였다.

우리의 방법으로 예측한 전체 형상에서 정반대의 두 점을 찾아 물체를 성공적으로

파지할 수 있는 자세를 찾았다.

주요어: 파지 자세 생성, 부분 관측된 점 구름, 전체 형상 예측, 지도 학습, 변형 가능

한 슈퍼 쿼드릭

학번: 2019-23899
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