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Abstract 

 

Computational challenges arise for the immersed boundary method (IBM) when 

dealing with compressible flow, where discontinuous and smoothly varying flow 

regions appear near the immersed boundary. In this study, a new ghost-cell approach, 

nonlinear-weighted IBM (NWIBM), is developed to address the issues that the 

conventional ghost-cell IBM provides inaccurate results for smoothly varying 

regions when a low-order interpolation is used, or it suffers from a numerical 

instability for the discontinuous flow when a high-order interpolation is used. 

Inspired by a variety of weighted nonoscillatory interpolation methods, this work 

combines the high- and low-order polynomials during ghost-cell value estimation to 

enforce proper boundary conditions in the immersed boundary. A multidimensional 

smoothness indicator is designed to evaluate flow discontinuities. The nonlinear 

weighting obtained from the smoothness indicator makes the high-order polynomial 

dominant and the low-order polynomial negligible in the smoothly varying region, 

and vice versa in the discontinuous region. In addition, flow field reconstruction 

method is also addressed for the nearest the ghost cell with smoothness condition 

satisfied in order to reduce the jump-discontinuity that causes spurious oscillations 

in the conventional IBM. The enhanced performance and applicability of the 

proposed method were validated through various numerical tests in compressible 
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flow. It was demonstrated that the NWIBM provides more stable and accurate 

numerical solutions compared with conventional ghost-cell approaches. 
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Chapter 1. Introduction 

1.1 Background 

Conventional boundary conforming grid approaches such as body-fitted and 

unstructured grid methods need complex grid generation and demanding re-meshing 

process in deforming bodies, which results in computational cost increment. As the 

demand for efficient calculation in computational analysis gradually increases, the 

immersed boundary method (IBM) has attracted much attention because of its 

flexibility in treating complex geometries.  

The IBM, also known as the “immersed interface method,” “embedded boundary 

method,” and “level-set method,” has evolved and been modified to solve grid-based 

computational fluid dynamics problems since it was introduced by Peskin [1], and it 

has two key advantages. One is the flexibility to treat geometries in a stationary 

Cartesian coordinate system, regardless of geometrical complexity and deformation, 

which overcomes the complex grid generation process. The other one is the use of 

straightforward governing equations without transformations with respect to the 

geometry, which makes the algorithm simple and enhances code efficiency. 

In general, IBMs are classified into diffuse or sharp interface methods in terms of 

their realization of the fluid–solid interface [2]. The diffuse interface methods 

function by smearing the geometry into the surrounding grids by disturbing singular 

forces. Although the diffuse interface type [3–7] has the advantage of easy 

implementation because it does not adhere to spatial discretization, it cannot 

accurately track the interface but is rather “diffused” within the localized area. The 

sharp interface method [8–30] can precisely describe the complex or thin interface, 

strongly coupled with the boundary interface. Cut-cell [8–11], ghost-cell [12–28], 

and many other versions [28,29] of sharp interface methods are being developed. 

Similar to the other numerical schemes, each type of sharp interface IBM also has 

its advantages and disadvantages. The cut-cell method, which is known for its good 

accuracy and conservation property, produces unstructured cells that make the 

algorithm cumbersome and high-order extension problematic [2]. However, the 

ghost-cell method is straightforward in implementation and high-order extension. 

Although it does not necessarily ensure the conservation property by its finite-
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difference characteristics, the ghost-cell approach has been used widely because of 

its suitability and efficiency to analyze moving complex geometry. This is because 

it requires no cell-reshaping procedure for the newly emerged cells. Flow-

reconstructed [28,29], immersed-interface [16,30], and hybrid Cartesian [15–17] 

IBMs can be regarded as a subset of the ghost-cell-based approach. 

One of the main challenges in IBM may lie with the proper enforcement of 

boundary conditions on the body interface because it directly influences the accuracy 

and stability of the numerical solution. Generally, direct linear (bilinear in two 

dimensions and trilinear in three dimensions) interpolation [22] is utilized for the 

second-order reconstruction of the ghost-cell values. However, it causes critical 

stability issues when the immersed boundary is close to the neighboring fluid cell or 

the required number of interpolation stencils is not satisfied. The inverse distance 

weighting (IDW) interpolation method is another option that reproduces the values 

of the mirror-image point in the ghost cell without new local extrema. Mirror-image 

interpolation [13] provides up to formally second-order accuracy with good stability. 

However, it produces dispersive solutions when the flow velocity approaches the 

incompressible limit, or the flow field is smoothly varying where the numerical 

dissipation becomes small and jump discontinuity [31] across the interface occurs. 

More recently, high-order IBMs [14,16,17,25] have been developed. They result 

in less dispersive and dissipative solutions in the vicinity of the body interface.  

The need to address aeroacoustics problems [14], which require high resolution, 

along with high-order spatial schemes and fluid–structure interaction problems, 

which require correct information about surface traction forces at the immersed 

boundary, is increasing. Hence, high-order sharp interface methods are attracting 

more attention. However, interpolation based on high-order polynomials is often 

numerically unstable when there are discontinuities in the large interpolating region, 

especially in compressible flow simulations. 

Many researchers have addressed accuracy and stability [17,32], but few studies 

have considered the robustness and versatility for various types of flow field. Thus, 

it is necessary to choose between a stable low-order approach that provides 

inaccurate solutions and an accurate high-order approach that provides unstable 

solutions, which makes sharp interface IBMs highly problem dependent. Moreover, 
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in real-world problems in aerodynamics, structure, and propulsion systems, the 

intrinsic phenomenon of shock interaction with obstacles leads to complex flow 

patterns involving a large variation in flow properties with the generation of large 

aerodynamic force for a short duration. This phenomenon has attracted significant 

interest because of the drastic changes in flow at the boundaries of smooth and 

discontinuous regions. Because of the complex flow physics, the proper 

implementation of the IBM would be far more effective. Hence, there is a clear need 

to overcome the limitations of conventional ghost-cell reconstruction techniques. 

 

1.2 Novelty and Scope of Present Study  

In this work, a new ghost-cell approach, nonlinear-weighted IBM (NWIBM), is 

suggested. Inspired by various weighted essentially nonoscillatory (WENO) 

interpolation methods [33–36] and multidimensional limiting processes [37–39] that 

handle both smooth and discontinuous flow by using nonlinear stencil coefficients 

in flux calculation, this study combines high- and low-order reconstruction to 

achieve stable and accurate solutions in an immersed boundary formulation. The 

main algorithm is composed of three steps. In the first step, high- and low-order 

polynomials are calculated with respect to a given geometry, and the corresponding 

ghost-cell values are obtained using boundary conditions, which is basically the 

same as the conventional version of ghost-cell IBM. Direct sharp interface method 

[21,40] is adopted for high-order interpolation, and mirror-image approaches [13,20] 

are considered for low-order interpolation. From each polynomial, spatial 

derivatives at the body-intercept point can be evaluated simultaneously. In the 

second step, previously obtained spatial derivatives for each interpolant at the body-

intercept point are utilized to obtain the smoothness indicator. The smoothness 

indicator is designed multi-dimensionally to evaluate nonlinear weightings. These 

nonlinear weightings combine the interpolation stencil coefficients of each 

polynomial, resulting in a new corrected polynomial that has new interpolation 

stencil coefficients. When the high-order stencils are spread in the smoothly varying 

region, weightings from the high-order polynomials become dominant, while the 

weightings from the low-order polynomials become negligible; vice versa in the 
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discontinuous region. Thus, the stencils are constructed from polynomials with a 

different order of accuracy, which are combined by nonlinear weightings. In the 

third step, flow field nearest to the ghost-cell is reconstructed based on the stencil 

coefficients obtained from the previous step using Lagrange multiplier method. 

Through this step, jump-discontinuity across the immersed boundary is minimized. 

It should be noted that the last step is only performed when smoothly varying 

condition by nonlinear weighting process is satisfied where the errors due to jump-

discontinuity becomes significant.     

Because the proposed algorithm maintains a fully high order of accuracy in the 

smooth region and transits to a low order of accuracy in the discontinuous region, 

the NWIBM represents an improved alternative to the conventional high-order sharp 

interface IBMs that can fail, depending on the flow field, because they only consider 

linear stencil coefficients from one polynomial. 

The remainder of this paper is organized as follows. A brief introduction of 

governing equations and numerical methods is presented in Chapter 2. In Chapter 3, 

the detailed mathematical derivation of the nonlinear weighting process is discussed, 

including the conventional low-order and high-order reconstruction methods for 

IBM. A concept for reducing the jump discontinuity, which can occur in smoothly 

varying regions, by a flow-extension approach is presented as well. In Chapter 4, the 

numerical accuracy and stability of the present algorithm are discussed and 

compared with those of the conventional approaches. In addition, various numerical 

test problems in compressible flow, used to validate the present method, are 

described. In Chapter 5, Two engineering application problems were introduced as 

an application of NWIBM with FSI which have rarely been dealt with previously. 

The conclusions are summarized in the last chapter.  
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Chapter 2. Numerical Methods 

2.1 Fluid Dynamics 

The compressible Navier–Stokes equations that include models for compressible 

flow convection and diffusion can be written as 
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, (1) 

 

where   is the density, u  is the velocity component, p  is the thermodynamic 

static pressure,   is the thermal conductivity and e  is the specific total energy. 

The equation of state for an ideal gas is used as a closure, which is given by  

 
2 2 21

( 1) ( )
2

p e u v w    
 

  
 

, (2) 

where  is the specific heat ratio and T
= (2 / 3( ) )   u I u+ u is the 

stress tensor.  

If one considers a semi-discretized form of the convective flux derivative at a node 

i  in one direction, it becomes 

  1/2 1/2

1
i

i i
x x

 


 

 
, (3) 

where 
1/2i

 is the numerical flux at the interface between the nodes or cells. To 

ensure the upwinding property of the numerical flux, the fifth-order WENO method 

is used. The procedure to implement WENO [36] is as follows. 

First, at each cell interface, right 
1 2i

R and left 
1 2i

L eigenvectors of the flux 

Jacobian matrix are computed using the Roe-averaged primitive variable 
1 2i

q


. 

Then, solution and flux vectors are readily projected into the characteristic space at 

every cell center: 

 1 2
ˆ
i i i
 L  and 1 2

ˆ
i i i
 L .   (4) 

From local characteristic flux splitting, decomposed positive and negative flux 

vectors in the characteristic space are expressed as 
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2
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

  .  (5) 

According to Lax–Friedrich splitting,   becomes the maximal real eigenvalues of 

each component of the flux Jacobian matrix. Then, a fifth-order WENO method is 

implemented to reconstruct the cell interface characteristic flux through the convex 

combination of three approximations using Eq. (4). To obtain the numerical flux 

1 2i  by the WENO procedure, one can start with the positive characteristic flux at 

the cell interface. 
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1 2 0 1 2
ˆ
i
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


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in which three third-order accurate approximations are 
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(7) 

and the nonlinear weights are defined as 
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2
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j
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 (8) 

where the coefficients 
j

d  are taken as 1, 6, and 3. The smoothness indicators, 
j

 , 

that automatically distinguish the discontinuity are defined as 
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. (9) 

In the same way that 
1 2

ˆ
i




 is obtained from Eqs. (6)–(9), 

1 2

ˆ
i




 can be obtained 

by an index shift from i  to 1i   and a sign-change from   to  for both the 

subscript and the superscript of each variable. Then, the flux vector in the 

characteristic space is completed: 

 1 2 1 21 2
ˆ ˆ ˆ

i ii

 

 
  . (10) 
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Finally,
1 2

ˆ
i

 is projected back to the numerical flux 
1 2i

 by multiplying the right 

eigenvectors: 

 1 2 1 2 1 2

ˆ
i i i  

 R . (11) 

After the spatial discretization is finished, in this study, the time integration of Eq. 

(1) is performed by a third-order total variation diminishing Runge–Kutta scheme 

[40] as 

 

(1)

(2) (1) (1)

1 (2) (2)

( )

1
3 ( )

4

1
2 2 ( )

3

n n

n
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(12) 

where U  is the solution variables. Since the solver developed in this study is 

explicit, the stability of the overall integration is dominated by Courant-Friedrichs-

Lewy (CFL) restriction,  

 / max[( ) / ( ) / ( ) / ]t CFL u c x v c y w c z           (13) 

where c  is the local speed of sound, and the CFL number is fixed to 0.5 in the 

whole calculation of the current study.  

 

2.2 Structure Dynamics 

For structural analysis, the CR (Co-Rotational) formulation [41–43] was adopted 

to consider the nonlinear behavior of the flexible structure. The nonlinear time-

transient analyses of structures are established by employing the Hilbert Hughes 

Taylor (HHT) method, which is a variant of the Newmark algorithm [42,44]. 

Newmark time-integration formulas enforce displacements and velocities such that 

they are updated according to the following relationships. 

 
1 2 11

2

n n n n n

G G G G G
h h  

 
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q q q q q , (14) 

   1 1
1

n n n n

G G G G
h  

 
   q q q q  (15) 
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where 
G

q ,
G

q , and
Gq denote the structural displacement, velocity, and acceleration 

vectors, respectively. Moreover, h  denotes the size of the time step, and the 

superscript n indicates an index of the time step.  ,  , and   represent 

coefficients in the HHT method. The displacements, velocities, and accelerations 

must be obtained at each time step in an iterative manner, that is, through the 

Newton–Raphson method.  

Algorithm 1 Fluid-structure coupling procedure 

1:  Generate the immersed boundary information from given geometry 

2:   for i := 1 to ntime                                           

  Time marching loop 

3:     Update HHT α scheme parameter Eqs. (12) and (13) 

4:     for j := 1 to itermax                                            

Pseudo time loop 

5:       Call Fluid (i) : CFD solver based on explicit time marching 

6:       Transfer NWIBM boundary pressure to structure 

7:      Call Structure (j) 

8:      Transfer New geometry (NWIBM) 

9:       Check convergence  

10:    end 

11:    Update time-varying quantities 

12:  end 

 

The nonlinear governing equation of motion can be expressed as 

 ,e K G G
  f f f 0 , (16) 

where 
e

f denotes the external load vector, and 
,K G

f and 
G

f denote the inertial force 

vector and the internal force vector with respect to CR kinematics [44]. In the HHT 

method, the time-transient equilibrium equation is rewritten as  

      1 1 1

,
1 1 0

n n n n n

e G K G G e
  

  
      f f f f f . (17) 

To obtain the tangent stiffness matrix, the linearization of the inertial load vector 

is expressed as 
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h h
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 
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 
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f K q M C K q , (18) 

where, GM , 
,K GC , and 

,K GK  denote mass, gyroscopic, and centrifugal matrices, 

respectively, referring to the global frame [44].  

An implicit coupling approach was used to couple the structural analysis with fluid 

dynamics analysis. Thus, updated coupled solutions were obtained for the same time-

step at the end of the subiteration routine. The numerical coupling between the fluid 

flow and the structural dynamics models is performed through boundary conditions 

imposed by NWIBM, which imposes a pressure distribution on the structure 

boundary. This pressure distribution on the structure boundary is given by NWIBM, 

and it is transferred to the structural element as an external force. The present FSI 

framework is described in Algorithm 1. 

 

 

Chapter 3. Development of Nonlinear Weighted 

Immersed Boundary Methods 

3.1 Ghost-Cell Immersed Boundary Formulation 

Before introduction of the nonlinear-weighted IBM, a brief description of two 

conventional low-order methods and a high-order method for ghost-cell 

reconstruction are presented.  

Let us consider a two-dimensional body within the discretized fluid system with 

a grid size of   where fluid values are defined as 
k
  within a local support 

( , )
k k k fluid

x y x  ( 1,2,...,k N ) by N  data points.  

In the case of the low-order method, as illustrated in Fig. 1 (a), the mirror-image 

value is first defined by executing the piecewise linear reconstruction of fluid cells 

surrounding the mirror-image point as 

  1
1

, 1
N

N

IP k k k

k

   


   . (19) 

where 
k

  is chosen by inverse-distance weighting (IDW) interpolation [13] as 
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Once the interpolation stencil coefficients and mirror-image values are properly 

calculated, values at the BI point read 

 
2

0

1
( ) ( )

2
BI IP GC

O       and 
0

0

( )IP GCBI O
n

  
  

 
 (21) 

Here, 
0

  is the length of the normal line segment extending from the ghost cell 

to the mirror-image point. From Eq. (20), the above equations become 
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Applying the Dirichlet and Neumann boundary conditions to Eq. (22) as zero, one 

can finally achieve the ghost cell values as 

 
1

N

GC k k

k

  


  . (23) 

The minus–plus sign is expressed in the order of Dirichlet and Neumann boundary 

conditions, respectively.  

 

 

Figure 1. Schematic for (a) low- and (b) high-order immersed boundary 

reconstruction: ■ ghost-cell, □ fluid cell, ○ body-intercept point, and ● mirror-

image point 

 

 



 11 

The IDW interpolation constrains all absolute values of the stencil coefficients to 

be less than unity and their summation to be unity, which results in the generation of 

new local extrema that does not satisfy 
maxIP k

  . However, this does not 

necessarily imply that the boundary can be well described by the interpolated image-

point value when its distance from the boundary is 
0

  , because the accuracy 

cannot exceed 2

0
( )O  . This implies that the order of accuracy can degenerate, 

especially in the smoothly varying region. This inherent issue can be addressed by a 

direct ghost-cell interpolation method with an overconstrained system such as high-

order interpolation, which is illustrated in Fig. 1 (b).  

When it comes to high-order interpolation, the ghost-cell value is determined 

based on the weighted least squares (WLS) interpolation. If N -stencil data, 

including fluid cell and ghost point defined as 
k
 , are approximated from the BI 

point in terms of an thm -order polynomial form, it reads  

 
       

1 2 3

2 2

4 5 6
,

k k k k

p q

k k k k M k k

c c x c y

c x c x y c y c x y p q m

      

           
  , (24) 

where 
k k BI

x x x   , 
k k BI

y y y    and 
j

c  is the stencil coefficient, the number of 

which is determined by the order of the polynomial as 

 
( 1)( 2)

2!

m m
M

 
  and 

( 1)( 2)( 3)

3!

m m m
M

  
  (25) 

for two and three dimensions, respectively. Finally, the unknown coefficient 
j

c  is 

cast in the WLS problem by the error defined as 

  
2

2

0

N

k k k

k

w  


  , (26) 

where 
k

w  refers to the weight function  

  0.5 1 cos( )
k k

w r r   for 
k

r r , (27) 

where r  is the radius of the local support, and 
k

r  is the distance from the BI point 

to the stencil data points. Because the condition for   to be a minimum is 

 
0

j
c





, 

(28) 

the solution of Eq. (21) is given by 
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  


c w w , (29) 

where c  and   contain the components of M  unknown coefficients and N  

stencil data, respectively, w  is an N N  diagonal weight matrix, and  is an 

N M  Vandermonde matrix. The pseudo-inverse of the matrix denoted by ( )  

can be computed by singular value decomposition. If one expresses c   with 

a M N  matrix of ( , )j k  as 

 
1

( , ) , ( 1, 2,..., )
N

j k

k

c j k j M


  .  (30) 

Considering that the Taylor expansion of 
k
  in terms of 

BI
x  is 

    
2 2 2

2 2

2 2

1 1

2 2

BI BI BI BI BI

k k BI k k k k k k
x y x x y y

x y x x y y

    
  

    
            

     
, (31) 

j
c  in Eq. (30) can be mapped to the values and derivatives of 

BI
 . 

Thus, Eq. (30) for each j  becomes 

 
1 1 1

2 2

2
1 1

(1, ) , (2, ) , (3, ) ,

2 (4, ) , (5, ) ,

N N N

BI BI

BI k k k

k k k

N N

BI BI

k k

k k

k k k
x y

k k
x xy

 
   

 
 

  

 

 
  

 

 
 

 

  

 

. (32) 

Because the interpolation stencil coefficients with respect to 
BI

x  are given, the 

Dirichlet and Neumann boundary conditions can be expressed in terms of 
1GC

  , 

where 

 11

(1, )

( )
(1,1)

N

BI k
mk

GC

k

O

 

 



  


  (33) 

for the Dirichlet boundary condition and 

 12 2

(2, ) (3, )

( )
(2,1) (3,1)

N N

BI

x k y k
mk k

GC

x y

n k n k
n

O
n n


 

  


 


  



 
 (34) 

for the Neumann boundary condition. As a result, an 1( )mO   order of accuracy is 

ensured for the thm -order polynomial least-squares interpolation. Thus, ghost-cell 
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values with high-order accuracy can be achieved using WLS compared with the low-

order approach. 

The local support area should contain sufficient data points such that N M  to 

preserve stability and avoid the ill-conditioned least-squares problem. However, 

preserving a sufficient number of data points and formulating a well-conditioned 

matrix does not necessarily satisfy the numerical stability requirements. When the 

data values contain severe discontinuities, the reconstructed ghost-cell value can be 

adversely and unpredictably affected because the order constraints by Taylor series 

expansion in Eq. (31) do not hold true anymore. There is a need to use the high-order 

interpolation by WLS conditionally to address the numerical instability issue.  

 

3.2 Nonlinear Weighting Process 

The use of high- and low-order polynomials to reconstruct the ghost-cell values 

that satisfy the boundary conditions has been addressed in the previous chapter. In a 

numerical analysis with IBM for compressible flow, a low-order mirror-image 

immersed boundary formulation by IDW is commonly used, which helps avoid the 

possible local extrema that hampers stability. However, there are accuracy issues 

when the flow field contains smoothly varying regions with a relatively low gradient, 

where low-order interpolation can fail. Hence, an algorithm is proposed that 

implicitly applies high-order interpolation to low-order interpolation by introducing 

nonlinear weighting coefficients. The proposed algorithm can be classified into three 

steps. Following is the procedures of nonlinear weighting process containing the first 

and the second steps, and the third step will be discussed in the chapter 3.3, separately.  

Remark 1. For the first step, the high- and low-order polynomials for IBMs are first 

constructed. It was shown in Eqs. (21), (22), and (32) that the values (or derivatives) 

in terms of the boundary-intercept point are in the form  

 1

2

( )
j

j

N

j j j

BI GC k k

k

f O


   


    , (35) 

where j

k
  is the polynomial coefficient, j  is a type of interpolation method, and 

j
  refers to the order of accuracy. If an appropriate proper boundary condition is 
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applied to j

BI
f , the ghost-cell values can be obtained. Subsequently, the derivatives 

at the BI point can be calculated, and this is used in the following correction step.  

Remark 2. As the second step, suppose there is another polynomial corrected by the 

sum of two different sets of polynomials from Eq. (35) as 

 C H H L L

BI BI BI
f f f   , (36) 

where   is the weighting coefficients for combining two different approximations 

to the final corrected one, and the superscripts H , L , and C  denote high-order, 

low-order, and corrected polynomials, respectively.  

If the corrected new polynomial can be expressed in the same form as Eq. (35), Eq. 

(36) is rearranged as  

 
0 0 0 1 1 1 1 2 2 2 2

1 1 1 1 1 1 1

( ) ( ) ( )

( ) ( ) ( ) 0
H H H H H H H H H

C H H L L C H H L L C H H L L

GC

C H H C H C H H

N N N N N N N N N

                 

          
     

        

       
 (37) 

where it has been assumed that the number of stencils of the high-order polynomial 

always outnumbers that of the low-order polynomial ( H LN N ), and the stencils of 

the low-order polynomial are a subset of the high-order polynomial ( C HN N ). 

To satisfy the interpolation property, 

 

, ,

, ,

, ,

1 , ,

0

1

H
C H LN

BI BIC H L

k C H L

k BI x y z BI

for f

for f






 
 

 
  (38) 

should hold true. Thus, the stencil coefficients of the corrected polynomial C  can 

be obtained as 

 
1

H H L L L

C k k

k H L H

k

for k N

for N k N

   


 

  
 

 
. 

 
(39) 

The corrected polynomial at the BI point can be written as 

 1

2

( )
H

C

N

C C C C

BI GC k k

k

f O
   



    . (40) 

Thus, the coefficient is composed of the values at the ghost cell and flow fields in 

Eq. (28), and the order of accuracy of the corrected interpolant reads  

 ( ) ( ) ( )C H LH LO O O
        . (41) 
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Remark 3. The corrected polynomial C

BI
 , which is the convex combination of H

BI
  

and L

BI
 , does not guarantee a high-order approximation unless the number of 

polynomials is equal to the number of stencils. Hence, a modified nonlinear 

weighting inspired by a previous study [33] is suggested to eliminate the effects of 

the low-order approximation when the smoothness within the polynomial stencils of 

the high-order approximation is ensured. The nonlinear weighting is defined as  

 

1

j

j j

H

for j H

for j L



 






 
  

 (42) 

where j  and j  are the sub-nonlinear and linear weighting coefficients, 

respectively. 

It is assumed that j  can be varied from 0 to j  with respect to the relative 

smoothness of the interpolation polynomials. If the interpolant H

BI
  is reconstructed 

within the smoothly varying flow region, a high order of accuracy can be ensured by 

making the contribution of H  dominant over those of the other nonlinear 

weightings. The sufficient condition for high-order reconstruction is H H   

because the stencils of the lower-order polynomials are always the subset of the 

stencils of the high-order polynomials. However, if H

BI
  is not sufficient to ensure 

smoothness and cover discontinuities, 
1

  becomes negligible, while the lower-

order polynomials become active. The necessary condition for low-order 

reconstruction is H H  . The above statements indicate that j  should transit 

from the high order to low order or vice versa when j  is deliberately designed. 

Although there are other possible approaches to design j , in this study, j  was 

designed using a multidimensional smoothness indicator [45,46]. 

The sub-nonlinear weighting coefficient j  should be designed such that 

maximum accuracy is achieved for the given data, while information coming from 

nonsmooth data should be switched off to prevent the onset of spurious oscillations 

in nonsmooth regions. Similar to the WENO-type schemes, the sub-nonlinear 

weighting coefficient is 
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2

2

( )
, 1

( )

j H L

j j j

H L j

  
  

   

 
   

  
, (43) 

where j  is a smoothness indicator for a polynomial j , and   is a small positive 

number to avoid the denominator from being zero. 

 

 

Figure 2. Illustration of the virtual cell zone   in normal ( ) and tangential 

( ) coordinates with respect to the BI point. 

 

Remark 4. To find a suitable value of the smoothness indicator for each polynomial, 

consider a Lipschitz-continuous virtual cell zone   centered at the mirror-image 

point with a size  , as shown in Fig. 2. For each  , a local set of coordinates is 

given by ( , )   [ 2, 2]   [ 2, 2]  , where 2  is defined as the distance 

between BI  and IP . The Legendre polynomial basis, suitably modified for the 

present domain, is given by 

 
2 3

0 1 2 3

1 3
1, ( ) , ( ) , ( )

12 20
a a a a a a a      , (44) 

which has a diagonal mass matrix and an orthogonal property. One can arbitrarily 

express the cell-averaged value with respect to 
IP
  as 

 

0 1 1

2 2 1 1

3 3 2 1 2 1

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

IP BI
second order

third order

P fourth order

 

  

   

     

      

         

   

   

    

 (45) 
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where subscripts   and   refer to the partial derivatives of 
BI
 . The arrows 

denote the subset to achieve the order of accuracy of a polynomial. 

One can now calculate the smoothness indicator based on the polynomial in Eq. 

(45). The smoothness indicator that measures the smoothness of a polynomial 
IP
  

is defined as 

 
3

2( 1) 2

1

( )j j

IP
D d






 





   , (46) 

where D  is a multidimensional differential operator and ( , , )
x y z

     is a 

multi-index denoting derivatives. 

For the mirror-image method case, 
IP
  is given by a piecewise constant, which 

results in 0L  . However, for the high-order interpolation method, Eq. (46) must 

be directly computed as 

  

     

2 2 2

4 2 2 4 2

6 2 2 6 6 2 2

( )

13 7

3 6

1953 1 47

50 5 10

j h second order

h h third order

h h h fourth order

 

  

       

  

  

       

  

   

      

 
(47) 

for two dimensions. 

The three-dimensional smoothness indicator can be obtained straightforwardly.  

 

   

   

 

2 2 2 2

4 2 2 2 4 2 2 2

6 2 2 2 6

6 2 2 2 2 2 2 6 2

( )

13 7

3 6

1953 1

50 5

47 144

10 157

j h second order

h h third order

h h

h h fourth order

  

     

        

      

   

     

        

      

   

      

     

       

 
(48) 

Finding partial derivatives of H

BI
  requires a ghost-cell value that is not known 

before achieving L . Such implicitly coupled characteristics are handled using the 

predicted ghost-cell value, which is given by H

GC
  in Eqs. (40) and (41). Because 

0L   when using the mirror-image method in low-order interpolation, this 

predicted ghost-cell value does not affect the weightings of L . 
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After all nonlinear weightings from Eq. (42) and the stencil coefficients from Eq. 

(39) are found, the values and derivatives at the BI point can be readily given as Eq. 

(40). By applying a boundary condition that is zero for the Dirichlet and Neumann 

boundary conditions, the corrected ghost-cell value that is ultimately needed is 

formulated as 

 1

2

1/
HN

C C C

GC k k

k

   


   . (49) 

Depending on C , which is affected by nonlinear weightings, the above equation 

results in an optimal ghost-cell value based on the smooth transition between high-

order and low-order reconstruction, and it can be reduced to exactly one of them. 

 

 Algorithm 2. Nonlinear-weighted IBM procedure 

1: Generate the immersed boundary information from a given geometry 

for j = 1 to number of BI do 

2: Construct polynomial coefficients: H  and L  for each BI values and 

derivatives 

3: Calculate the predicted values: 
GC

H
  

4: Estimate smoothness indicator: H
                  ► prediction step 

finished 

5: Obtain nonlinear weighting coefficients: H  and H  

7: Construct corrected polynomial coefficients: C  for each BI value and 

derivative 

8: Calculate the corrected values: 
GC

C
                ► correction step 

finished 

end for   

9: Repeat 2–8 for all physical properties 
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3.3 Jump-Discontinuity Minimization Process 

Let us define a one-dimensional grid distribution  2 4
i

x i     where the 

immersed boundary is located in between 
0

x  and 
1

x . In Fig. 3, a schematic of 

solution ( )
j j

x  is expressed as an example in both analytic space by solid lines and 

discretized space by dashed lines with a particular boundary condition ( )n  b  at 

x x


 . The superscript stands for the thn  derivative. Even if the ghost-cell values 

based on nonlinear weighting process are properly calculated, there is a high chance 

that the jump-discontinuity occurs in between the boundary because the ghost-cell 

values are only designed to match the boundary conditions. Unless an artificial 

damping or upwind characteristics are applied in a non-smooth solution, it is known 

that the standard central spatial scheme fails, resulting in oscillations because they 

are basically constituted by the Taylor expansions. Wiegmann [31] and Linnick [16] 

mathematically managed this jump-discontinuity problem, using corrected finite 

differences by manipulating the Taylor series. If the generic solution variable   is 

assumed to be analytic 
0

[ , ]x x x   and 
1

[ , ]x x x  , then the corrected Taylor 

series of an infinitely differentiable function with respect to 
0

x  can be expressed as 

a power series  

    ( ) 1

0 0

0

( ) ( ) ,   
!

nm
n n

n

x x x x
n

  




         (50) 

where the jump-correction term  is added so that the jump across the interface 

at x   could be considered. At 
1

x x , 

    ( ) ( ) 1

1 0 1

0 0

( )
( ) ,

! ! ( 1)!

n nm m
n n m

n n

x x x x
n n m


  



 

 

 
         

   (51) 

where  

    
0 1

( 1) ( 1)

[ , ] [ , ]
max max ( ) , max ( )

m m

x x x x x x
x x

 

 
 

 

 

   
 

 (52) 

holds true from lemma.  

Superscript   stands for the direction of limit values. Thus, the jump-correction 

term is readily found to be 
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  ( )

1

0

( )
,

!

nm
n

n

x x
n











       (53) 

where the limit value is ( ) ( ) ( )lim ( ) lim ( )n n n

x x x x

x x
 


  

  

    
. 

 

Figure 3. A schematic diagram of solution ( )x  with the boundary condition 

at x x


 . (a) A solution with discontinuity; (b) a solution with reduced 

discontinuity. 

 

This corrected Taylor series is utilized to reformulate the numerical flux 

derivatives. To calculate the jump-correction term defined in Eq. (53), the limit 

values should be found in an appropriate manner. In incompressible flow, limit 

values approaching from the fluid domain is obtained by proper interpolations, and 

the limit values inside the solid domain were not considered because the no-slip 

boundary condition makes all the velocity components zero at the solid boundary. 

However, it seems quite tricky to directly find the jump-correction for compressible 

flow of our interest where the limit values approaching from solid domain should be 

defined because of Neumann boundary condition, which also makes high-order 

extension problematic near the boundary. This jump-discontinuity seldom induces 

spurious oscillations in the immersed boundary method, especially when an 

undefined cell (fresh-cell) emerges. When it comes to the fluid–structure interaction 

problem where transient deformation occurs, it is more important to evade such 

spurious waves that degrade the accuracy of the solution.  
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To overcome this problem, the flow field reconstruction combined with a 

nonlinear weighting process is introduced in this study.  

If jump-discontinuity with 0n   is written as  

 BI BI
   , (54) 

where 
BI
   is the limit value approaching from the fluid zone, the reconstructed fluid 

cell nearest to the ghost cell becomes 

 1

2

FN

F

F BI k k

k

a a  



  , (55) 

where 
k

a  is the interpolation coefficient to reconstruct the flow field value, 
F

  

using near fluid cells, F

k
  and BI value at the fluid side, 

BI
  . Since this 

reconstruction is performed in the analytic fluid zone, it can be assumed that there is 

no jump discontinuity.  

To minimize  upon including the boundary condition of Eq. (33) as an 

additional constraint, the Lagrangian multiplier reads 

  
2

C

BI BI BI
f     , (56) 

where 
BI
  is already obtained by the nonlinear weighting process in Eq. (33). 

Expanding Eq. (56) yields three unknowns 
F

 , 
G

  and  . The conditions for 

minimization are  

 0, 0, 0
F G
  

  
  

  
. (57) 

After simple mathematical calculation, the fluid and ghost cell values can be 

readily found. The above field-reconstruction procedure successfully couples the 

ghost and fluid-cell values in addition to the nonlinear weighting process. It is 

effective in damping out the spurious oscillation induced by jump discontinuity. 

Moreover, the additional computational cost is negligible because field 

reconstruction is performed only when fresh cells occur. 
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Figure 4. Schematic of three step procedure for NWIBM 

 

 

3.4 Stability Analysis 

The linear stability analysis was carried out based on the well-known Lax–

Richtmyer equivalence theorem. Because it is known that the stability of a complex 

system can be sufficiently modeled by a scalar equation [47], the semidiscretized 

form of the one-dimensional linear convection equation was used to investigate the 

Lax stability of Euler equations. If 
N N  is the discrete representation of 

analytic domain  by a bounded linear operator  for a spatial discretization, 

the linear operator yields 

 
i

ij j
t t


 


  

 
  ( , 1, 2, ,i j N ). (58) 

Its exact solution is written as 
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 ( , ) ( )tx t e x  . (59) 

To investigate the stability, a transformation to the spectral domain can be applied 

by diagonalization of matrix  with the eigenvalue matrix   and invertible 

eigenvector matrix  as 1  . 

By defining 1  , Eq. (59) is readily transformed to 

 i
ij j

t


 





. (60) 

Thus, the transformed exact solution can be written as 

 ( , ) ( )tx t e x  . (61) 

It can be found that the stability is dependent on the properties of the complex 

eigenvalues of matrix  by obtaining the temporal divergence with the positive 

real part of the eigenvalues. 

 

 

Figure 5. One-dimensional grid system with immersed boundary 

 

When a generic solution variable i  is given in the analytic fluid zone at the thi  

cell as in Fig. 5, a semidiscretized form of the explicit finite-difference scheme is 

written as 

 
k

i
i i j

j k

c
a

t x


 






 
  (62) 

where c  and x  are the advection speed and the grid-spacing with 1c x   . 

Moreover, ia  represents the linear coefficients for flux derivatives. Because the 

focus is on the relative stability of the proposed immersed boundary approach 

compared with conventional ones, simple standard finite-difference stencils of ia  

are used for the flux derivative, such as 1 0 10.5, 0, 0.5a a a     . 
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The immersed boundary is located on the left border, and it is not updated with time. 

It was defined that the ghost-cell value could be expressed by a linear combination 

of fluid cells as 

 
1

GC

n

j j
j

b 


  (63) 

where 
jb  is the interpolation coefficients with respect to the IBMs. In this study, 

the Dirichlet wall boundary condition was utilized with respect to different values of 

nonlinear weightings, H . 

Eq. (62) is changed into the form of the system matrix 

 

0 1 1 1 1 2

1 0 1

1 0 1

1 0 1

10

0

n

i
ij j j

N

a a b a a b b

a a a

a a a

a a a

c

t x




 



 







   
  
  
   
  
  
     



 
 (64) 

where the number of cells 50N  , and the artificial boundary condition [32] is 

introduced at the right border so that the instability of left border is not inhibited. 

Complex eigenvalues of matrix  were computed at three immersed boundary 

positions moving away from the first ghost cell with a distance {0.1 x  

, 0.5 , 0.9 }x x  . In Figs. 6(a)–(c), the eigenvalue distributions with a central 

difference scheme are plotted in the complex domain. Here, all the complex 

eigenvalues are shown to be located within the left half-plane.  

When 0
H   

It can be found that least stability has been shown when only high-order IBM is used 

( 1.0
H  ). The stability region gets increased as low-order IBM is combined with 

decreased H . When the location of the boundary intersection point is close to the 

ghost cell ( 0.1 x   ), degeneracy of stability for low-order IBM ( 0.0
H  ) is 

shown compared to the other cases. It can be attributed to the fact that the low-order 

IBM, which is equivalent to mirror-image method, cannot but use fewer stencil 

points when 0.5 x   . It should be noted that the combined interpolation with 

nonlinear weighting shows stable results.  
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Figure 6. Eigenvalues of matrix  with respect to nonlinear weightings at three 

different immersed boundary positions. 

 

Additionally, the stability results when field reconstruction is used. In this case, 

linear stability is also calculated based on the 4th order standard finite-difference 

scheme since field reconstruction is used for smoothly varying flow region. In Fig. 

7, comparisons between filed reconstructed and no reconstructed high-order IBM are 

plotted. Even if all the complex eigenvalues are shown to be located within the left 

half-plane, it can be found that flow reconstruction brings about enhanced stability. 

 
Figure 7. Eigenvalues of matrix  for no-weighted interpolation for flow 

reconstruction and no reconstruction are used at three different immersed 

boundary positions. 
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3.5 Accuracy Study 

The method of manufactured solutions (MMS) [17] is utilized to verify the code 

by constructing analytical solutions to the differential equations that form the basis 

of a simulation code. This method differs from a conventional verification approach, 

such as the method of exact solutions, in that the analytical solution of the governing 

equations is given a priori, and code mistakes or bugs can be readily identified. 

In the MMS, a manufactured analytic solution is built that considers the boundary 

conditions of the immersed boundary. The selected, manufactured solution does not 

necessarily need to be physically relevant. It can be chosen as long as the derivatives 

up to the order required by the governing equations are continuous. Then, the 

differential operator for the governing equations is applied to this chosen analytical 

solution, and the analytical source terms are added to the right-hand side of the 

governing equations to balance the system. These source terms are implemented 

within the code, and the modified governing equations (including the source terms) 

are then discretized, solved numerically, and compared with the exact solution. A 

steady-state divergence-free flow problem [17] was considered to evaluate the 

formal order of accuracy of the spatial scheme incorporated with the imposed IBM.  

The accuracy study is performed within the computational domain of 

[ 1,1] [ 1,1]      with a full period for the velocity and pressure fields. The 

manufactured solutions for the divergence free velocity fields that satisfy the 

continuity equation in the incompressible limit are chosen to consider the Dirichlet 

condition at the immersed boundary as 

 cos(2 )sin(2 ), sin(2 )cos(2 )u x y v x y       (65) 

and the pressure field is set to consider the Neumann condition as 

 
2

0
0.5 2p r rr    (66) 

where r  is the distance from the center to grid point ( , )x y , and 
0

r is the radius of 

the circular cylinder located at (0,0) , which is set to 0.5. The density field is set to 

constant unity. The boundary conditions at the immersed boundary,   can be 

imposed as 

, , 0
dp

u u v v
dn 



    (67) 
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The analytical source terms, which are mathematically calculated by the 

manufactured solution, are given in Fig. 8 (a).  

 

 

Figure 8. (a) Manufactured solutions, and its global error convergence when (b) 

1.0H   and (c) 1.0H  . 
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Firstly, the ghost-cell is calculated when only high-order interpolation is used 

( 1.0H  ) so that the field reconstruction algorithm is activated. In Fig. 8 (b), the 

global convergence results from high-order interpolation with 1 to 4-degree 

polynomial interpolations are shown. The slope behavior of 
2

L  norm follows the 

order of polynomial and the order of accuracy has been shown to degenerate as the 

interpolation order decreases. It is found that the thn -degree polynomial 

interpolation by WLS preserves the global order of accuracy within the 5th-order 

WENO scheme.   

Secondly, the ghost-cell is calculated using both high-order and low-order 

interpolation in order to verify the convergence by nonlinear weighting process. In 

this case, field reconstruction is not included since it has been shown in Fig. 8 (b). 

In Fig. 8 (c), the global convergence results using 4-degree polynomial for high-

order interpolation, and IDW for low order interpolation. The constant nonlinear 

weighting values are enforced to compare the convergence as the high-order and 

low-order IBMs are combined. As H
  decreases by taking the low-order 

polynomial into account in the corrected polynomial, the convergence is switched to 

second order, and the error increases. In addition to showing good stability 

performance, as discussed in the previous subchapter, it has been verified that WLS 

and IDW can be used as a high-order and low-order polynomial in the NWIBM, 

respectively. 

 

Chapter 4. Numerical Results 

4.1 Subsonic flow problems 

4.1.1 Low-Mach-number study 

To investigate the NWIBM, a low-Mach-number flow study with a uniform flow 

is performed. The use of low Mach number studies to examine the performance of 

the compressible flow solver should not be dismissed [48], because in the proposed 

method, along with the nonlinear weighting process, the focus is on the reduction of 

the jump-discontinuity in the smooth flow region. Therefore, the Low-Mach-number 

study seems to be favorable for showing the performance of the suggested NWIBM 
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via flow reconstruction concept, compared to conventional high-order IBM without 

field reconstruction. As a demonstration of the present simulation, a two-

dimensional circular cylinder of diameter 1D   is analyzed within the mean flow 

of Mach number 0.05M  . Two set of 60 60  domains are considered with a 

uniform grid size 80D   and 160D   [49]. The Euler equations are used 

with slip-boundary conditions to consider the convectional effects only. The 

enhanced performance of the current method has been evaluated by the jump-

correction term. Rewriting the jump-correction term in Eq. (53) in the x

direction, 

    (1) (2) 2 (3) 31 1
( ) ( ) ,

2! 3!
j

x x
   

                           (68) 

where ( ) ( ) ( )lim ( ) lim ( )n n n

x x x x

x x
 


  

  

     , and x
  denotes the boundary point. 

Since three ghost cells and one boundary points are given, all the terms up to the 

5th-order jump-correction term can be approximated.  

The one-sided finite-difference approximation for the limit values can be 

expressed as 

 
( )

1 1 2 2

n

j j j j j j         
   

     (69) 

where 

 

1

0

1 2 1

2 3 3

1 1 2 2

3 3 3

2 1 2 3

1 1 1 1

0

0 2!

0 3!

n

j j j j n

j j j j n

j j j j n


 

 

 

 



 

  

  

     
       
     
       
     

          

,   j j
x x


   ,     (70) 

and
ij
  is the Kronecker delta function. 

Mass conservation has also been evaluated in order to verify whether the proposed 

method satisfies the conservation. For two-dimensional compressible flow, mass 

conservation inside the computational domain including the immersed boundary can 

be written as 

 
0

f f

f f
d d dS

t
 



   
 


    

  U n U n  (71) 
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where U  and   is the velocity vector and density, and n is the surface normal 

unit vector. The first term in Eq. (71) represents the conservation by moving solid 

body which is not considered here. When the solution is sufficiently converged, the 

jump-correction term is calculated at each intersection point around the immersed 

boundary. In Figs. 9 (a) and (b), Mach contours over the three-dimensional pressure 

surface for the fine grid 160D   are shown for the reconstructed and non-

reconstructed case.  

 

 

 

 

Figure 9. The Mach number contours on the three-dimensional pressure surface 

plot when flow reconstruction is used (a) and no reconstruction is used (b). 

 
Figure 10. Residuals of mass conservation of stationary cylinders for flow 

reconstructed (red line) and non-reconstructed (blue line) cases. 
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From the enlarged figure, the field reconstruction seems to dramatically diminish 

the spurious oscillations near the cylinder compared to the non-flow field 

reconstruction result. Moreover, when the flow reconstruction is used, the Mach 

contour seems continuously distributed at the rear part where the cancellation error 

occurs. This could be attributed to the reduced jump-discontinuity by minimizing the 

jump-correction term. In Fig. 10, the residuals of mass conservation are plotted. It 

proves that there is no distinct difference in conservation due to the flow 

reconstruction which results in smooth solution near the immersed boundary. The 

results of the reduced jump-discontinuity and the pressure coefficient are depicted in  

 
Figure 11. Jump-discontinuity magnitude and pressure coefficient distribution 

plots with respect to the circumferential position at the wall for the grid size 

80D  (a-b) and 160D  (c-d).  
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Fig. 11 for coarse, 80D  (a-b) and fine, 160D  (c-d) grids. The x axis 

refers to the circumferential position from the rear ( o0  ) to front ( o180  ) part. 

Here, body-fitted grid simulations that have the equivalent grid sizes to each case are 

taken as reference solutions. From Fig. 9 (a) and (c), it can be found that the jump-

discontinuity increases as the angle between the normal vector of the geometry and 

the flow direction increases, which implies the jump-discontinuity increases as the 

conformity of the immersed boundary to the grid line direction decreases. Although 

the jump-discontinuity is not completely eliminated, a distinct decrease could be 

found when the flow reconstruction is applied for both coarse and fine grids. 

When it comes to the pressure coefficient plots in Fig. 11 (b) and (d), it can be 

found that the positions of oscillations are well matched to those of the jump-

discontinuity plots, which confirms the effects of the jump-discontinuity to the 

oscillations near the immersed boundary. For the coarse grid in Fig. 11 (b), both flow 

reconstructed and the non-reconstructed results show discrepancies in comparison 

with the body-fitted result, but relatively smaller error was found when flow 

reconstruction is applied, which reduced the overshoot near o90  . For the finer 

grid sizes case in Fig. 11 (d), the error between body-fitted and immersed boundary 

grid solutions more reduced than coarse grid. However, it can be found that the 

oscillatory behavior still persists in the original IBM case where the flow 

reconstruction is not applied while the current solution shows good agreement with 

the body-fitted solution. These results imply that non-physical oscillatory behavior 

does not readily reduce by conventional ghost-point IBM which has no constraint 

except for the boundary condition. Without flow reconstruction, the ghost values 

inside the solid wall behave arbitrarily and this behavior becomes severe where the 

conformity of the immersed boundary to the grid line direction decreases. On the 

other hand, when the flow reconstruction is applied, ghost cell values become 

smoothly correlated with the flow field because the interpolations are performed with 

the ghost cell values and flow values in a coupled manner.  
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4.1.2 Subsonic viscous flow over a circular cylinder 

The flow field around a circular cylinder is a well-established test case for the 

analysis of incompressible flows or low-Mach-number compressible flows. In this 

chapter, a two-dimensional viscous compressible flow with 0.2M   is computed 

to validate the developed IBM. The two-dimensional circular cylinder is considered 

in a range of Reynolds numbers, from Re 20  to Re 200 . This Reynolds 

number range covers both steady and unsteady states, and it is experimentally known 

that vortex shedding appears around Re 45 . The non-reflective radiation and the 

outflow boundary conditions are imposed [50].  

Along with the high-resolution numerical method, a sufficient grid is required for 

computing the lift and drag coefficients, as unphysical wave reflections from the 

boundaries could lead to a non-negligible error. For this reason, a multi-block 

method is utilized, which maintains uniform structured grids for the entire domain 

as Fig. 12 (a). It could capture the aeroacoustics phenomenon as well as avoid 

domain confinement effects. Multi-grids with seven levels are used in this case study 

and grid sizes are doubled as the multi-grid level progresses. For the diameter of the 

cylinder, D, the first level grid size is set to D/80 to capture the nonlinear phenomena 

near the immersed boundary with high resolution.  

For the grid level 1st to 6th, the domain size is doubled at each level from 4D × 4D 

to 128D × 128D and for the 7th level, domain size is 200D × 200D. As shown in Fig. 

12 (b), the length of the separation region ( l ), the positions of the vortex center ( a  

and b ), and the flow separation angle (
s

 ) are compared from the results of the 

steady flow. In the case of unsteady flow, periodic vortex shedding with a frequency 

of 
0f  is captured along with the Kármán vortex street. Thus, the Strouhal number, 

0
St Df M , is calculated to quantify the results. For both steady and unsteady cases, 

lift and drag coefficients are also measured, which is known as  

 2 2
,

yx

D L

FF
C C

U D U D 
 

   (72) 

where the total boundary force, F , by pressure and viscous effects is 

 
F p ds ds

 

     n n  
(73) 



 34 

In Tables 1 and 2, the results of the flow shape parameters (for steady flow only), 

lift and drag coefficients, amplitude of their changes, and Strouhal number of this 

study are compared. The results confirm that all results of the present simulation 

agree very well with those reported in previous studies for both steady and unsteady 

flows. 

 

Figure 12. (a) Schematic of multigrid configuration around immersed boundary; 

(b) nomenclature used to capture the steady cylinder flow characteristics. 

 

In addition, the tonal sound generation of the circular cylinder is investigated to 

validate the acoustic wave propagation by IBM for the Re 200  case. Fig. 13 (a) 

shows that sound pressure waves generated by vortex shedding are radiated in a 

dipolar nature. Alternate vortex shedding from the upper and lower sides of the 

cylinder produces negative and positive sound pressure waves. Because there is a 

free-stream with a finite Mach number, Doppler Effect can be found as well. The 

vorticity seems to be smeared in the downstream since the grids become coarse in 

the far field, but the grid size is sufficiently small enough to resolve the radiating 

sound waves. In Fig. 13 (b), the instantaneous fluctuation ( p p p   ) normalized by 

2.5M  along the line at 2   and 3 2   is shown where the mean pressure p  

is defined as 

 
2

1
2 1

1
( , , )

t

t
p p x y t dt

t t


   (74) 

According to Curle’s acoustic analogy, the scaling law 2.5 1 2p M r   holds true 

in two-dimensional wave propagation. In this case, the normalized amplitudes in log 
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scale shows the slope of 1 2 , which may confirm that the current IBM is suitable 

to analyze aeroacoustics problems. 

 
Table 1. Comparison of flow characteristics for steady flow around two-dimensional circular 

cylinder. 

 Re 20  Re 40  

 l  a  b  s  
D

C  l  a  b  s  
D

C  

Coutanceau and Bouard 0.93 0.33 0.46 45.0 - 2.13 0.76 0.59 55.8 - 

Linnick and Fasel 0.93 0.36 0.43 43.5 2.06 2.28 0.72 0.60 53.6 1.52 

Taira and Colonius 0.94 0.37 0.43 43.3 2.06 2.30 0.73 0.60 53.7 1.54 

Daniel Canuto and Taira 0.92 0.36 0.42 43.7 2.07 2.24 0.72 0.59 53.7 1.54 

Brehm 0.96 0.36 0.42 44.0 2.02 2.26 0.72 0.58 52.9 1.51 

Present 0.92 0.36 0.43 43.8 2.01 2.28 0.72 0.59 53.7 1.50 

 

Table 2. Comparison of flow characteristics for unsteady flow around two-dimensional 

circular cylinder. 

 Re 100  Re 200  

 
D

C  
L

C  St  D
C  

L
C  St  

Liu 1.35 0.012  0.339 0.165 1.31 0.049  0.690 0.192 

Mimeau 1.40 0.010  0.320 0.165 1.44 0.050  0.750 0.200 

Linnick 1.34 0.009  0.333 0.166 1.34 0.044  0.690 0.197 

Brehm 1.32 0.010  0.320 0.165 1.30 0.040  0.660 0.192 

Present 1.36 0.011  0.320 0.166 1.33 0.040  0.680 0.194 

 

 

 

Figure 13. (a) Gray contour of non-dimensional instantaneous fluctuation 

pressure propagation; (b) amplitude of scaled non-dimensional instantaneous 

fluctuation pressure (inset is non-dimensional instantaneous fluctuation pressure 

at 2   and 3 2  ) 
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Figure 14. (a) Drag and lift coefficients as functions of non-dimensional time for 

transversely oscillating cylinder with various excitation frequencies; (b) 

instantaneous streamlines and vorticity contours at 
0 0.8ef f  . 

 

To verify the proposed IBM working in a moving situation, a transversely 

oscillating cylinder in a free stream is also demonstrated. The equation of motion, 

( )y t  cos(2 )eA f t , is determined by the oscillation amplitude A  and the excitation 

frequency
ef . All of the computational methods and domains remain the same as the 

previous case, and the grid size near the cylinder is D/40. The computation is 

performed at Re 185D  with the motion parameters of 0.2A D and 
0ef f ,

0.8,  0.9,  1.0 ,1.1,  1.12,  1.2 where the natural shedding frequency in this case is found 

to be  
0 0.189f U D  at the free stream velocity 0.2M  . 

Fig. 14 (a) presents the drag and lift coefficients in the inertial reference frame for 

various excitation frequencies. The drag and lift behaviors are fairly regular once 

vortex shedding is established, but the flow pattern changes evidently with respect 

to 
0ef f . The force variations shows stable vortex shedding up to 

0 1.0ef f  , 

showing a classical Kármán vortex phenomenon. This regularity of force variations 
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is lost at some point near 
0 1.0ef f  , and the drag and lift exhibit regular signs of 

the influence of a higher harmonic. One can refer to previous studies to find good 

consistency of the present results of force variations with the incompressible results 

[51]. Quantitative comparison by the average and root-mean-square values of the 

force coefficients are drawn in Fig. 15 (a). It can be seen that at 
0 1.1ef f  , the time-

averaged drag force 
dC  peaks and decreases as the excitation frequency increases, 

indicating that the point of resonant synchronization occurs at 
0 1.0ef f  . The lift 

force  
rmsC   grows monotonically with increased excitation frequency. The pressure 

coefficient distribution along the cylinder surface is shown in Fig. 15 (b) and (c) for 

0 0.8ef f  and  
0 1.1ef f   at the instant of the positive peak.  

 

 
Figure 15. (a) Comparison of the mean drag coefficient, root-mean-squared drag 

coefficient and lift coefficient of a transversely oscillating cylinder; pressure 

coefficient distribution along the cylinder surface at (b)
0

0.8
e

f f   and (c) 

0
1.1

e
f f  . 
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Figure 16. Residuals of mass conservation of oscillating cylinders for flow 

reconstructed (red line) and non-reconstructed (black dotted) cases. 

 

The present results do not seem to be distinguished from those in the original 

research by Guilmineau et al. [51] in terms of the accuracy compared to the results 

of the incompressible body-fitted method. This implies the flow reconstruction 

method does not hamper the overall accuracy.  

Throughout the application of the moving body problem, it can be verified that 

the validity of present compressible IBM, which is meaningful considering that it is 

quite challenging to accurately predict the vortex shedding dynamics as well as it 

can be further applied to fluid-structure interaction problems. In order to verify the 

conservation property in moving case, mass conservation for 
0

0.8
e

f f   case is 

calculated. 

In Fig. 16, time dependent residuals show similar conservation property for both 

flow reconstructed and non-reconstructed results, which proves there is no distinct 

difference in conservation due to the flow reconstruction in moving case as well. 

From the enlarged inset figure, flow reconstructed case shows even better 

conservation property compared to non-reconstructed case. It can be attributed to 
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reduced jump-discontinuity which results in less oscillations that hampered the 

conservation in original IBM. 

 

4.1.3 Blade Vortex Interaction 

The present method is applied to Blade-Vortex Interaction (BVI) in order to 

demonstrate the effects of NWIBM with field reconstruction. Since BVI is highly 

related to discrete frequency noise generation in practical engineering problem, 

uniform grid system where IBM can readily be used is recommended in order to 

capture the acoustic wave propagation by minimizing dispersion and dissipation.  

In this study, a counter rotating vortex located five times of chord length ( c ) from 

the leading edge of NACA0012 airfoil with zero angle of attack within the uniform 

flow of 0.5M  is calculated. For the analytical structure of the vortex to closely 

resemble the one measured in the experiments [52], a vortex model by Sculley [53] 

is used that is expressed as 
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where   is the maximum circulation divided by the freestream velocity and the 

chord length ( c ), 
v
r  is the core radius vortex and r  is the distance from the center 

of the vortex. Following Lee’s experiments [52], the initial vortex parameters are set 

as 0.283    and 0.018
v
r c . The pressure and density for the vortex convecting 

in the freestream are related by  

 

2vdp

dr r


  (76) 

where the density is obtained from 
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(77) 

The domain size is  10 10  with grid sizes of / 200c   and initial vortex 

propagates after steady solution by uniform flow is calculated. The steady static 

pressure solution of present method is compared with when only low-order (IDW) 

or high-order IBM (WLSQ) is used in Fig. 17. The overall numerical results in the 

left of Fig. 17 seem almost identical to each other, but spurious oscillations near 

leading edge are observed for both IDW and WLSQ cases in the enlarged figure 
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(right). In addition, the solution by NWIBM shows more attached pressure 

distribution around leading edge while the other solutions show discrete pressure 

distributions. 

 

 

Figure 17. Pressure distribution of steady solutions by (a) NWIBM, (b) IDW and 

(c) WLS 

 

Figure 18. Pressure coefficients of steady solutions 
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This discrepancy is more clearly observed in the pressure coefficient (
pC ) plot in 

Fig. 18. As a reference, body-fitted grid solution [54] is also plotted. It can be found 

that the effects of the field reconstruction seem to enhance the accuracy in the leading 

edge where the grid non-conformity is more severe. 

As vortex approach, precursor wave which is negligible to the secondary acoustic 

waves is generated. Fig. 19 shows pressure perturbation by 
steady

p p p    after 

vortex collides to the airfoil. At the leading edge, the initial vortex is split into two 

each of which propagates to pressure side and suction side of the airfoil, respectively. 

This vortex splitting induces three dipole type acoustic waves which seem to be 

bended by steady flow that propagates in downstream as shown in Fig. 19 (a). As 

vortices move forward along with the upper and lower walls of the airfoil, third 

acoustic waves are observed when these vortices pass the trailing edge of the airfoil 

in Fig. 19 (b). However, the magnitude of this 3rd acoustic waves are much smaller 

than the 2nd acoustic waves that are created by vortex head-on the airfoil.   

 

Figure 19. Instantaneous acoustic pressure at (a) t=5.4 and (b) t=6.8 

 

In Fig. 20, quantitative comparison by pressure coefficient at the lower wall 

position of 0.02c  and 0.1c  from the leading edge. It has been found that NWIBM 

shows better agreement with the experiment. Moreover, the oscillations after vortex 

passes by were not observed in the present method. Similar to the steady solution, it 

can also be attributed to field reconstruction that reduces oscillations near the 

immersed wall boundary. Hence, the current algorithm has advantages over 

conventional IBMs even in the numerical analysis for the aeroacoustics. 
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Figure 20. Time history of pressure coefficient at lower wall positions of (a) 0.02c 

and (b) 0.1c 

 

4.2 Supersonic flow problems 

4.2.1 Flow over a circular cylinder 

Inviscid flow past a two-dimensional circular cylinder was considered as a suitable 

verification problem to show enhanced performance for general inflow condition 

within the incompressible and compressible ranges. The viscous effect was not 

considered, because physical damping by viscous flux can eliminate the spurious 

oscillations stemming from the ill-conditioned immersed boundary or jump 

discontinuity. Numerical analysis was conducted within a rectangular domain with 

dimensions 100 100D D  for the subsonic inflow case and 18 10D D  for the 

supersonic inflow case, with D  being the diameter of the circular cylinder located 

at the center of the domain. In the subsonic inflow case, Mach number 0.2M   

was chosen as the initial inflow condition, which can approximate the 

incompressible flow. Because the incompressible potential flow solution is known, 

the numerical results of the subsonic inflow cases were compared with the analytical 

solution based on the assumption that the pressure deviation error between the low 

Mach number and incompressible flow is proportional to 4( )M  [55]. On the 

surface of the cylinder, the potential theory solution was used to calculate the 
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pressure coefficient. Fig. 21 (a) shows that the conventional high-order direct (WLS) 

and low-order mirror-image (IDW) IBMs fail to reproduce the pressure coefficient 

of the potential theory solution in the subsonic flow.  

 

Figure 21. Pressure coefficient distributions with respect to the circumferential 

position of subsonic ( 0.2M  ) flow over two-dimensional circular cylinder 
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Even if the high-order reconstruction shows better results than the low-order one, 

the discrepancy still persists as the gradient near the wall becomes smoother where 

the jump discontinuity by the immersed boundary becomes dominant. However, the 

NWIBM shows good agreement with the potential theoretical solution with smooth 

variation of the pressure coefficient. Such enhanced smoothness near the wall can be 

attributed to the reduction of the jump discontinuity by field extension. NWIBM was 

designed to include the field-extension process where the high-order weighted 

reconstruction is dominant to obviate the jump discontinuity.  

 

Figure 22. Comparison of IBMs with respect to (a) Dependence of maximum 

velocity on freestream Mach number and (b) Mach number plot along the flow 

directional position  

 

In addition, quantitative comparison with respect to Mach number is calculated. 

Figure 22 (a) shows the maximum velocity on the circle as a function of the 

freestream Mach number. The value of this maximum increases with freestream 

Mach number, and it reaches critical Mach number theoretically [56] when Mach 

number is 0.3982. The results are compared with those found from Van Dyke's series 

expansion [57]. It can be found that NWIBM shows good agreement with the 

theoretical solutions, while the conventional high-order (WLS) and low-order (IDW) 

methods show large errors especially in the low Mach numbers. In case of IDW 

method which uses low-order reconstructions for ghost-cell, the errors become more 

severe as Mach approaches to the incompressible limit, while errors of WLS which 
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uses high-order reconstructions show larger error as Mach approaches to the 

compressible regime that slightly includes the discontinuity. Such discrepancy is due 

to oscillations near the immersed boundary as shown in Fig. 22 (b).   

 

Figure 23. Pressure coefficient distributions with respect to the circumferential 

position of supersonic ( 1.7M  ) flow over two-dimensional circular cylinder 

 

In the case of supersonic inflow, the inflow condition of 1.7M   was chosen. 

Because there is no analytical solution, the computational results was compared with 

experimental results [58]. In Fig. 23, the supersonic flow result of the pressure 

coefficients obtained by the present method was compared with that of the IDW 
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method. In this case, immersed boundary reconstruction by WLS was found to 

diverge because it accommodates high-order interpolation. The accuracy also 

increased in the supersonic flow, but not as much as in the subsonic case. Because 

the upwind characteristics of the WENO scheme removed the spurious oscillations, 

the overall pressure coefficients obtained by both methods agree reasonably well 

with the experimental data. However, the conventional mirror-image method still 

shows inferior oscillatory behavior along with the geometry because of low-order 

interpolation, which results in an inaccurate solution. Meanwhile, the NWIBM 

shows a more accurate solution because of its introduction of high-order 

interpolation. 

 

4.2.2 Supersonic flow over a wedge 

The supersonic flow over a solid body is tested to confirm the numerical validity 

of the current method where the flow discontinuity occurs. A well-known test case 

motivated by Chaudhuri [13] is adopted, as illustrated in Fig. 24(a). A wedge with 

deflection angle   in supersonic flow with Mach number M  produces an oblique 

shock wave with angle   over the wedge, and their theoretical relation M     

is known to have the following form: 
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In this example, the inviscid flow field initialized with 3.5M   is considered on a 

computational domain size of 12 3 , normalized by the horizontal length with

2000 501  grids, which have been found to be suitable for convergence in this 

problem. The supersonic inflow and outflow boundary conditions are applied to the 

inlet and outlet boundaries. In the case of the wall boundary, the adiabatic slip-wall 

condition with zero-normal velocity is imposed on the immersed boundary and both 

upper and lower boundaries. For comparison, a simulation in the body-fit grid 

simulation with around 1.1 million cells is also carried out as in Fig. 24(b), where 

the grid size near the body is matched to the grid for the immersed boundary case.  
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Figure 24. Schematic diagram for the supersonic flow over the triangular prism 

(left) and enlarged pictures of two different grid configurations for simulation 

(right) 

 

Figure 25 shows the numerical Schlieren for the solutions at the deflection angles 

of 5  , 10 , and 20  of the present results (upper half) and the body-fit grid 

simulation (lower half). The generation of oscillating wakes behind the objects are 

due to the numerical viscosity by non-linear governing equations that become more 

complex for the more-deflected wedge. As the deflection angle gets larger, the 

oblique shock angles also increased. The oblique shock angles for three deflected 

prisms are reported in Table 3. The predicted oblique shock angles by the current 

solver show good agreement with the analytical solutions.  

 This consistently excellent agreement with the analytical solutions for all three 

different prism deflection angles demonstrate the validity of the NWIBM even for 

the supersonic compressible flow problems accompanying local flow discontinuous 

and smooth regions.  

 

Figure 25. Schematic diagram for the supersonic flow over the triangular prism 

(left) and enlarged pictures of two different grid configurations for simulation 

(right) 
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Table 3. Comparison of oblique shock angles for three deflected wedges 

 5    10   20   

NWIBM 20.2  24.4  34.6  

Body fit 20.3  24.5  34.7  

IDW 20.1  24.4  34.5  

Exact 20.19  24.39  34.61  

  

4.2.3 Shock-vortex interaction problem 

Let us consider the case of shock-vortex interaction and diffraction problem by 

moving the shock wave past a two-dimensional triangular prism with a deflection 

angle of 30 . This kind of flow-wedge interaction, the so-called Schardin’s problem 

[59], occurs when a valve or membrane is suddenly opened. Subsequently, ejected 

shock waves hit an object, resulting in unsteady flow characteristics. The initially 

prescribed discontinuity moves to the downstream only to collide against the 

triangular prism as shown in Fig. 26 (a). When the right state of the normal shock 

waves ( , , )
R R R

u p  are considered quiescent ambient state, the flow variables of the 

left state can be defined based on shock relations as: 
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where 
s

M  is the moving shock Mach number, and L
c  is speed of sound.  

After the moving shock is impinged on the prism, complex flow patterns arise 

with time evolution before and after the moving shock front, such as reflected 

shock, slip lines, vortices, and vortexlets. For the analysis, 3360 2500  grids are 

used, and a body-fit grid simulation is also performed with the equivalent grid 

size.  

The numerical results by a sequence of numerical Schlieren snapshots are 

qualitatively compared with the experimental results [60] in Fig. 26 (b). It can be 

found that the overall flow physics such as vortex cores and shear lines have been 

well reproduced from the present simulation. In particular, the vortexlets are 
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distinctively matched with the experiment in the last sequence. Detailed flow 

characteristics of the present problem are reported by Chang and Chang [60] . 

 

Figure 26. (a) Schematic diagram of shock–vortex interaction problem within the 

computational domain. MS: moving shock; RS: reflected shock; EW: expansion 

wave; V; vortex core; VL; vortexlet; DW: decelerated wave; SL: slip line; TP1, 

TP2: Mach triple points; (b) Comparison of numerical (upper) and experimental 

(lower) shock-vortex dynamics for Schardin’s problem. 
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Figure 27. Comparison of triple points and vortex core trajectory. 

 

Time evolutionary trajectories of triple points and vortex locus are compared 

between the present result and previous numerical and experimental studies in Fig. 

27. The behavior of triple points and vortex locus seem comparable to the previous 

studies, which confirms the validity of applying the present IBM to complex flow 

problems. Additionally, the results by NWIBM are qualitatively compared with IDW 

and body-fitted grid results in order to verify the non-oscillatory behavior in the 

supersonic flow. In the first and second column of Fig. 28, density plots of the upper 

half-plane of the prism are compared at 50 s  and 100 s . The global behavior 

among three cases seem similar, but it can be found that IDW results show 

propagation of oscillation stemmed from the slant face of the prism.  

This can be found more evidently in the shadowgraph plots in Fig. 29. Since the 

smooth region being developed after the reflected shock expanding into the upstream 

passes by, the conventional IBM is found to induce spurious waves. This again 

confirms the lemma from previous studies that the non-grid conforming interface is 

highly prone to the jump-discontinuity, which induces oscillations hampering the 

high-resolution simulation. However, such phenomenon is dramatically reduced in 

the present result because of nonlinear weighting process along with the reduction 

in the jump-discontinuity. Compared to the conventional approach, the result shows 

better agreement with that of the body-fitted grid simulation.  
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Figure 28. Density contours of shock-vortex interaction transition (first and 

second column) and 
2Q  contours of vortexlets at the rear edge of the prism (third 

column) for (a) body-fit grid results, (b) IDW; (c) NWIBM. 

 

The vortex behavior of the rear side by utilizing the 
2Q criterion  is also 

analyzed, which is defined as 

    
2

2 x y y x x y
Q u v u v u v           (80) 

For 
2 0Q  , the embedded shocks are excluded while capturing the coherent 

vortex effectively. In the third column in Fig. 28, 
2Q  contours are shown at 150 s  

when the flow become sufficiently developed. Because the Kelvin–Helmholtz 

instability occurs at the rear edge of the prism along the slip lines, a string of 

vortexlets is captured. It is shown that the configuration and numbers of vortexlets 

seem identical to each other except for experiencing slightly different behavior after 

the vortexlets are merged because of the numerical hysteresis by different wall 

boundary methods. Hence, it can be confirmed that the current algorithm accurately 

captures the flow physics in the complex discontinuous region as well as shows non-

oscillatory performance in the smoothly varying region. 



 52 

 

Figure 29. Shadowgraph plots of upper half-plane of the prism (first column) for (a) 

IDW and (b) NWIBM. 

4.2.4 Double Mach reflection 

The double Mach reflection of a strong shock is an extensively studied benchmark 

problem [19,20,25] for numerical analysis of Euler equations in that the jet flow 

formed along the boundary is highly sensitive to numerical schemes. Moreover, it is 

a particularly well-suited example to test the new method because the numerical 

solution depicts a highly discontinuous region as well as smooth regions. Numerical 

analysis was carried out in a rectangular domain with dimensions 3 2 , and the rigid 

ramp starts from 1 / 6x   with an angle of 30  to the moving-shock direction. An 

initial moving shock starts with a shock speed of 10M   with preshock values of 

density 1/ 4   and pressure 1p  , and their postshock values can be found by 

Rankine–Hugoniot shock relations. In this study, two set of configurations are 

chosen, one of which is IBM and the other is body-fitted grid configuration as shown 

in Fig. 30.  

 

Figure 30. Geometry configurations for (a) immersed boundary and (b) body fitted 

calculations.  
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In Fig. 31 (a), the density contours obtained by the NWIBM and the IDW method 

are plotted over the contour of a body-fitted grid with the same grid size of 

0.003   at nondimensional time 0.2t  . 

It was observed that complex structures of shock evolve as the moving shock runs 

up the ramp. As the reflected shock runs into the primary slip line, a curled jet flow 

is formed. In the enlarged Figs. 31 (b) and (c), the NWIBM shows a better resolution 

of this jet flow. Moreover, the smooth region behind the slip line shows oscillatory 

behavior in the IDW method, whereas it is clearly formed in the NWIBM. Such 

improved results of the present method are more evident in the density plots in Fig. 

32. Although the global behaviors of both approaches seem to agree well with the 

body-fit grid solution, oscillations were found near the smoothly varying regions. 

Such a discrepancy was also found in the coarse grid, which implies that grid 

refinement increases the accuracy of the solution. However, it cannot fundamentally 

solve the oscillatory behavior stemming from jump discontinuity and low-order 

boundary formulation. 

 

 

Figure 31. (a) Line density contour results of NWIBM and IDW plotted over a 

body-fitted grid result and enlarged figures of (b) NWIBM and (c) IDW: 50 

density lines from 1.4 to 20 
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Figure 32. Density along the ramp wall with (a) fine and (b) coarse grids: inset is 

the enlarged plot in the smoothly varying region 

 

 

Figure 33. (a) Overlapped density contours by NWIBM at four time sequences 

and (b) time–space diagram of the nonlinear weighting 

 

In Fig. 33 (a), four time sequences of overlapped density contours obtained by the 

NWIBM are plotted as the incident shock passes along the ramp. To determine how 

practically the nonlinear weighting operates as the flow field evolves, a time–space 

diagram of the nonlinear weightings was plotted, as shown in Fig. 33 (b), where 
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x axis  is the position along the ramp, as in Fig. 33 (a). It was determined that the 

high-order interpolation is maintained before the shock arrives by showing a unity 

nonlinear weighting ( 1H  ). The nonlinear weighting radically decreases when 

the incident shock arrives, which implies the portion of high-order weighting 

decreases and low-order interpolation becomes active. After the incident shock 

passes, nonlinear weighting continuously recovers to unity because of the smoothly 

varying region behind the shock waves. Such a variation of nonlinear weighting 

corresponds well to the density contour. As a result, it was validated that the proper 

operation of the nonlinear weighting makes the solution more accurate and stable 

than those of the conventional IBMs.  

Computational costs are also compared in Fig. 34, which shows discrepancies among 

each approaches. It is obvious that body-fitted configuration requires large 

computational cost compared to immersed boundary configuration since immersed 

boundary configurations take less fluid region as can be found in Fig. 30. When it 

comes to the comparison between NWIBM and conventional IDW approach, 

NWIBM takes more computational time because of its additional nonlinear 

weighting algorithm. However, it becomes negligible as the grid size decreases, 

which implies that the portion of the algorithm calculation is marginal compared to 

the calculation costs of flux and time integration. 

 

 

Figure 34. Comparison of computational cost with respect to the grid sizes 
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Figure 35. Density along the ramp with body-fitted configuration using (a) 

NWIBM and (b) conventional body fitted method with respect to grid sizes 

 

 

Figure 36. (a) Global order of accuracy comparison and density line contours by 

(b) NWIBM (black line) and Body fitted (red line) results 

 

In order to analyze the global order of accuracy, NWIBM has been applied to the 

body-fitted configuration in the same manner of body-fitted grid in Fig. 30 (b). In 

this case, conventional IDW becomes equivalent to the body-fitted method. In Fig. 

35, density plots using NWIBM and conventional body fitted method with respect 

to grid sizes from 0.00125   to 0.04   are shown and its global order of 

accuracy is plotted in Fig. 36 (a). 
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Figure 37. (a) Global clustering of AMR 0.2t  ; (b) Comparison of body-fitted 

method using body-fitted configuration, NWIBM and IDW with grid sizes of 

 and 0.0025  ; (c) Enlarged figure near smoothly varying region 

for 0.0025   

 

 It has been found that NWIBM in body-fitted configuration well matches with the 

body-fitted method qualitatively (Fig. 36 (b)), but the order of accuracy with respect 

to the finest grid ( 0.00125  ) using NWIBM is 2.12 which is higher than body 

fitted method (1.98). This enhanced accuracy can be attributed to the high-order 

extension in the smoothly varying region using nonlinear weighting process. An 

inherent inability to cluster grids in the vicinity of the immersed boundary is one of 

the major drawbacks of the IBM. The grid clustering near the immersed boundary is 

required to solve the flow physics near the solid boundaries more accurately. To 

0.00125 
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overcome this problem, IBM with local, manual or adaptive, mesh refinement 

technique is adopted, which requires powerful solver capability to solve the 

governing equation in locally refined grid. Hence, the present method is solved by 

using adaptive mesh refinement (AMR) in order to prove the applicability of 

NWIBM in AMR as well as the enhanced performance even in highly refined mesh. 

A fully threaded tree (FTT) data structure [61] is used to organize the adaptive 

meshes up to three levels. In Fig. 37 (a), global clustering of refined mesh at 0.2t   

is shown where the finest grid size is 0.00125  . In Fig. 37 (b), body-fitted method 

using body-fitted configuration, NWIBM and IDW are compared using the grid sizes 

of 0.00125   and 0.0025  . It is interesting to find out that the results from 

body-fitted configuration shows more evident Kelvin-Helmholtz instability even in 

the coarse ( 0.00125)  grid set, compared to the immersed boundary 

configurations. Qualitative difference between NWIBM and IDW can be found in 

the smooth region in Fig. 37 (c), which shows reduced oscillations in NWIBM result 

even in AMR. This improvement can be found more clearly by the density plot along 

the ramp in Fig. 38.  

 

 

Figure 38. (a) Density along the ramp wall using AMR with NWIBM and IDW; 

(b) Enlarged figure near the smoothly varying region   
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4.3 Three-dimensional Extension 

The interaction of the shock wave with a sphere results in complex shock–

boundary interaction. It involves incident shock, direct or inverse Mach reflections, 

transmitted and reflected shocks, triple points, and slip lines [13]. The shock–

boundary interaction and its wake region have both smooth and discontinuous flow 

near the immersed boundary; therefore, it is one of the best examples to showcase 

switching between high and low order during shock-wave interaction with a sphere. 

The interaction of the shock wave with a sphere was investigated to demonstrate the 

extension of the proposed method to 3D and the capability of the proposed NWIBM. 

In the experimental studies carried out by Tanno et al. [62], the interaction of a 

planar shock wave of Mach number (Ms) 1.22 with an 80-mm-diameter sphere was 

selected, and the flow field was initialized based on Rankine–Hugoniot shock 

relations. Although the experimental results are not inviscid flow, because the flow 

is supersonic, the effect of convection is dominant. Therefore, the numerical results 

of the inviscid flow were quantitatively compared with the experimental results at 

four different times. For the diameter of the sphere, D, the numerical investigation 

was performed in two grids, i.e., / 100D   and / 200D  . The numerical 

domain size was kept large enough that the boundary condition provided at different 

boundaries did not interact with complex flow features of the interaction of the shock 

wave with a sphere at four experimentally measured result times (92 µs, 140 µs, 296 

µs, and 380 µs). As in the experimental measurement, after the incident shock wave 

reaches the sphere front side, the measurement time starts, i.e., at 0 μs, the incident 

shock is at the frontal stagnation point.  

 

Figure 39. Comparison of numerical shadow graph (top half) and experimental 

shadow graph [62] (bottom half) at different times 
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In addition to the comparison with experimental results, the proposed NWIBM 

results were compared with those of the IDW method. In the numerical simulation, 

the transition to Mach reflection time appeared, and the place of observation matched 

well with the experimentally measured values. A qualitative comparison of 

numerical schlieren snapshots with the experimental results — see Figs. 39 (a)–(d) 

— shows that the complex flow features of the shock front, shock reflection, 

diffraction of the shock wave, ring shape formation from the gradually curved Mach 

stem, and its collision at the rear stagnation point are well captured by the proposed 

method. In addition, the quantitative comparison of the numerical and 

experimentally measured pressure at the midsection of the sphere shows that the 

pressure distribution follows a trend similar to the experimental results, as shown in 

Figs. 40 (a)–(d). The numerical result shows some deviation from the experimental 

results in some points at different times. It is difficult to quantify because of the 

uncertainty in experimental measurement. The details of the uncertainty in 

experimental measurement are discussed elsewhere [62]. 

Moreover, comparisons of nondimensional pressure at the sphere surface 

computed by the IDW method and NWIBM reveals that the NWIBM-computed 

pressure distribution is smooth and more accurate in the smooth region, as in Figs. 

30 (a)–(d), and the pressure distribution at the discontinuous flow region closely 

matches the results of the IDW method — see Figs. 40 (a)–(b).  

Further investigation of the computed nonlinear weighting reveals that, even in 

the shock region, the nonlinear weighting is assigned appropriately based on the flow 

field, i.e., the nonlinear weightings are different in strong and weak shock regions, 

as recognized by the multidimensional smoothness indicator. Fig. 31 demonstrates 

the transient nonlinear weighting during the interaction of a moving shock wave with 

a sphere. After the incident shock wave passes the equator of the sphere, the Mach 

stem becomes diffracted. The variations of the nonlinear weightings well reflect the 

physics of shock strength changes during diffraction. Owing to the ability of 

weightings to distinguish the smooth and continuous regions, the solution obtained 

from the present method was found to be more accurate and stable than that obtained 

by the conventional IBMs. 
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Figure 40. Comparison of numerically obtained nondimensional pressure with 

experimentally measured [62] results at sphere midsection at four different times 

 

 

 

Figure 41. Demonstration of nonlinear weight change during shock-wave 

interaction with sphere at different nondimensional times. 
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4.4 Fluid-Structure Interaction  

4.4.2 Cylinder lift-off problem 

As part of the FSI test, the so-called cylinder liftoff problem was considered, 

which has frequently occurred in many studies since it was originally proposed [63]. 

In this problem, the rigid cylinder of a nondimensional diameter 0.1  and density 

10.77  is initially centered at (0.15,0.05) on the floor of a two-dimensional channel 

with a size of 1 0.2 . The domain is initialized by pressure 1 and density 1.4 with 

the initial shock 3sM   positioned at 0.08 from the left end. The top and bottom of 

the domains are rigid walls, the left boundary is set to the post-shock state, and an 

outflow boundary condition is used for the right boundary. The calculation grid 

included 1000 × 200 cells.  

The positions of the mass center of the cylinder is listed in Table 4 for two time 

instants at t = 0.1641 and 0.30085 s after the lifted motion of the cylinder occurs 

because of the effect of moving shock waves. With respect to the grid resolution, the 

present results match well with the results of previous studies. Even though a slight 

discrepancy is found, which can be attributed to the spatial schemes or time 

integration method of dynamics, it is a quantitatively reasonable behavior of cylinder 

motions.  

 

Figure 42. Pressure contours at two different time steps from NWIBM (a and b) 

and reference studies (c and d)  

Qualitative comparisons with the pressure flow field of a recent study [64,65] 

where the conventional IDW interpolation is utilized for sharp-interface IBM are 

shown in Fig. 42. The present simulations agree well with the reference results in 

terms of overall flow patterns including vortex structures and incident and reflected 

shock waves. However, both reference results seem to produce slight oscillations 

near the circular cylinder. One possible reason for this spurious flow pattern is the 
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low-order interpolation of IBM, which results in numerical errors accrued as time 

goes by because the dissipation of the nonlinear flux scheme is less in the smoothly 

varying region. Another reason could be the interpolation error when freshly 

emerged cells occur, which magnifies the jump discontinuity.  

 

Table 4. Positions ( , )x y of the mass center of the cylinder 

Grid size 
t = 0.1641 s t = 0.30085 s 

x  y  x  y  

1/250 0.3345 0.0750 0.6123 0.1322 

1/500 0.3437 0.0762 0.6101 0.1305 

1/1000 0.3449 0.0787 0.6137 0.1341 

Reference 1 [64] - - 0.6269 0.1370 

Reference 2 [65] - - 0.6173 0.1312 
 

Meanwhile, the present result shows a nonoscillatory flow pattern near the cylinder 

in the enlarged inset of Fig. 42 (a) and (b) because NWIBM sustains high-order 

interpolation and jump-discontinuity treatment. This reduced oscillatory behavior 

proves the enhanced performance of the present method in addition to validation 

with previous studies. 

 

4.4.2 Shock wave impacts on deforming panel 

 

 

Figure 43. Numerical configuration and geometric dimensions for shock wave 

impact on deforming panel (inset is a schematic diagram of the structure element) 
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As an application of the present method, the fluid–structure interaction (FSI) 

problem was chosen to analyze the behavior induced by a moving shock wave of a 

cantilever panel. Based on a numerical and experimental study [66], the NWIBM 

was applied to FSI to solve this benchmark problem, and the result was compared 

with those of previous studies [66–68]. The experimental setup used for the 

numerical calculation is shown in Fig. 43 with a length scale normalized by the 

thickness of the panel (1 mm). Within a two-dimensional channel with a size of 

295mm 80mm discretized by 0.15  mm, a steel panel composed of 1756 

triangular structure elements is clamped to a rigid forward-facing base at the lower 

bottom. In this study, two lengths (50 and 40 mm) of steel panels (Young’s modulus:

220GPasE  , density: 3
7600kg ms  , Poisson’s ratio: 0.33s  ) clamped to a 

rigid forward-facing base at the lower end were considered. In the left inlet boundary, 

the moving shock with a Mach number of 1.21  in air at rest ( 5
10 Pa  and 293K ) 

was imposed with the postshock values formulated based on Rankine–Hugoniot 

shock relations. In the other boundary, including the cantilever beam and base, a 

Neumann wall boundary condition was applied. The computational grid was 

composed of four-level grid sets with respect to the smallest one.    

A qualitative analysis of case 1 (0.05-m cantilever beam) was performed to 

validate the global flow field evolution by the present code. In Fig. 44, the numerical 

results using the NWIBM (on the right) are compared with the experimental 

visualizations (on the left) [66]. The results are shown from 0 st   in which the 

moving shock has already run over the beam, showing the initiation of the reflection 

and transmission of the incident shock wave as well as the bending of the beam to 

the downstream side. Because the shock wave undergoes the abrupt change of the 

area in the downstream from the region in between the beam and the top wall 

boundary, the normal shock wave transits to a cylindrical shock front. While this 

cylindrical wave moves forward, the vortex shedding starts at the right tip of the 

beam because of the roll-up of the slipstream ( 140 st  ). The reflected wave on 

the base wall interacts with the vortices ( 280 700 st   ), which induces 

unpredictably complex flow features. The spherically moving shock wave finally 

meets the right end wall, and it reflects back toward the upstream direction, which 
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induces the reverse bending of the beam ( 980 1560 st   ). The qualitative 

comparison of the flow evolution shows no evident discrepancy between the 

numerical simulation and the experiment except for experimental pictures at 

140 280 st    because of the flow leakage between the panel and the shock tube 

walls. 

 

Figure 44. Qualitative comparison between experimental shadow graph (left) [66] 

and numerical schlieren (right) for case 1 
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To evaluate the numerical results quantitatively, the time evolutions of the tip 

displacement and the pressure variations at the sensor are plotted in Figs. 44 and 45 

for cases 1 and 2, respectively. In addition to the experimental measurement, the 

numerical result [67] obtained by a cut-cell IBM is also compared. Because the cut-

cell IBM basically employs the finite-volume approach, which is known to preserve 

mass conservation, this recent study was chosen as a pertinent reference to validate 

the present study.   

 

 

Figure 45. (a) Time evolutions of panel tip displacement and (b) pressure signals 

recorded at sensor position for case 1 

 

 

Figure 46. (a) Comparison of time evolutions of panel tip displacement and (b) 

pressure signals recorded at sensor position for case 2 
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For case 1 (Fig. 45), all the numerical simulations predict a similar behavior of the 

beam in terms of the maximum amplitude and frequency of the first period. The 

panel oscillation period obtained with the present method was 2.85 ms, which is 

close to the analytical period of 2.87 ms when considering the first eigenmode of a 

clamped plate subjected to an impulse load [66]. The experimental period was 3.8 

ms. Even if the coarse grid case shows a slight deviation to the references after the 

first peak, the error was mitigated when a fine grid is used. This can be attributed to 

the inaccurate force imposition as the bending displacement becomes larger. In 

comparison with the experimental values, both the frequency and amplitude of the 

behavior differ from the numerical results. This deviation can be explained by the 

experimental error resulting from the small deformations of the base in the direct 

vicinity of the fixing point, which cause the uncertainties.  

For case 2 in Fig. 46 (a), the numerical results of a shorter cantilever beam show 

excellent agreement with experimental data compared with case 1. Moreover, the 

coarse grid case shows less deviation from the other numerical results. This result 

explains more about the error in case 1 because the reduced stresses on the base 

diminishes the influence of the base on the panel motion and uncertainties in the 

experiment. Finally, the pressure signals recorded at (35 ,80 )D D  for both panel 

lengths are compared with the same numerical and experimental database (b) in Figs. 

45 and 46. Again, all the numerical results are similar with respect to the time of 

arrival of pressure waves at the sensor and the pressure difference across the waves. 

While larger deviations are observed between numerical and experimental data for 

case 1, almost identical time evolutions up to t = 2 ms are observed for case 2. 

 In Fig. 47 (a), the enlarged figure of Fig. 35 (b) is used to compare the pressure 

signals obtained using NWIBM and the conventional IDW method. Except for the 

reasonable peaks caused by the reflections of shock waves, high-frequency peaks are 

generated in the IDW method because of the spurious waves that occur owing to 

jump discontinuity. Further, these features are shown in the density contours of Fig. 

47 (b). The evident diminution of spurious oscillation was captured compared to the 

IDW method with a flow field disturbed by high-frequency waves; NWIBM 

produces a less oscillatory flow field. Hence, the nonlinear weighting process 
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including jump reduction results in more accurate and physical solutions in the 

overall flow field as well as near the immersed boundary. 

 

 

 

Figure 47. Comparison of NWIBM and IDW by (a) enlarged pressure signals 

recorded at sensor position and (b) enlarged density contours. 
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Chapter 5. Application problem 

5.1 Flexible cylinder impinging on the wall  

Contact between bodies is a very common problem in applied mechanics. This 

phenomenon is particularly relevant to the problems such as impinging of particles, 

vocal fold vibration, collision of supersonic projectiles and so on. In the current study, 

a penalty coefficient method [69] is used to model the contact in between solid wall 

and flexible cylinders as an extension of Chapter 4.4.2. in order to validate the 

applicability of NWIBM in contact problems. According to [69], the contact force is 

defined as 

contactF g gdA   (81) 

where  , g  and A  are a penalty coefficient, penetration distance and the contact 

area, respectively. The integrated contact force ove the contact area creates the 

contact force that opposes penetration of cylinders.  

As illustrated in Fig. 48, even if the contact problem were properly solved, there 

are one critical problem when applying the contact in IBM. When the distance 

between two bodies is very small, there is a chance that not sufficient number of cell 

is defined to reconstruct the ghost-cell values. In NWIBM, it is readily handled by 

interpolation of the ghost cell values using the values and derivatives at BI point 

obtained in the previous time steps.  

 

 

Figure 48. Before contact occurs using NWIBM (left) and after contact occurs 

using penetration algorithm (right) 
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In Fig. 49 (a), numerical results of cylinder trajectories with three different 

Young’s modulus including rigid body case are shown. It can be found that the 

overall behavior of cylinders differs as the flexibility changes. Compared to rigid 

case which shows perfectly elastic collision, the other cases show nonlinear behavior 

with delayed reflections. Moreover, there is a critical point when the behavior of lift-

off itself totally changes when the Young’s modulus becomes lower than 1kPa. 

These characteristics could be quantitatively compared in density contour in Fig. 49. 

(b) where the reflecting position differs.   

 

 

Figure 49. (a) Cylinder trajectories with respect to Young’s modulus and (b) 

density contours of cylinder when it reflects off the wall. 

 

5.2 Shock-flame interaction in channel with flexible obstacles  

5.2.1 Evolution of detonation formation 

In this chapter, currently developed NWIBM is applied to reactive flow problem 

with fluid-structure interaction. Before the analysis, complex flow phenomena 

including the validation of the reactive Navier–Stokes equations via the detonation 

formation problem [70] have been discussed. The formulations of reactive Navier-

Stokes equations including models for chemical reactions with energy release can be 

written by changing Eq. (1) to  
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where the variables of chemical reaction, Y is the mass fraction of a reactant, q  

is the chemical energy release, and   is a one-step reaction model described by the 

first-order Arrhenius kinetics, which is defined as 

 
/aE RTdY

A Ye
dt

  
  , (83) 

where A  is the pre-exponential factor and 
a

E  is the activation energy. In this 

study, an ideal gas assumption is taken for the equation of state as /p RT M  

with the universal gas constant R  and molecular weight M . 

Within a rectangular domain with dimensions [0,150] [ 0.5,0.5]  , the reactive 

gas is at rest in thermal equilibrium with the nondimensional initial condition 

 0 0 0 0 01, 0Y T u v       (84) 

and the specific heat ratio of 1.4  . The nondimensional pre-exponential factor, 

chemical energy release, and activation energy are defined as, 15A  , 15q  , and 

13.79aE  , respectively. In the left and right boundaries, the wall boundary 

condition is imposed while the upper and lower boundaries are set as periodic 

boundaries. 

In the initial few moments, the spatial distribution of the transient thermal power 

source term in 1 5x  , 

  2.1 tanh[5( 0.5)] tanh[5( 10)]W t t     (85) 

is added on the right-hand side of Eq. (1), which reproduces the flame and shock 

propagation. 

The results of the chemical heat release rate, 
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 dQ q


  , (86) 

are shown in Fig. 50 (a) with respect to four grid sizes with (0.0195,0.039   

,0.078,0.156) and compared with the reference study [70]. The transient heat 

release behavior of the current simulations with the finest grid size shows good 

agreement with the reference result. Two noticeable peaks of the heat release rate 

correspond to power addition by the source term and the overdriven detonation, 

respectively. The prolonged peak after the overdriven detonation is caused by the 

consumption of a localized pocket of unburned fuel. 

 After the overdriven detonation, it shows relaxation to a steady-state detonation. 

The grid refinement study shows convergence when the grid size is 0.039  ; 

however, even in the most coarse grid case ( 0.156  ), the peak heat release time 

lies within 5% of the reference value. This implies that the global structure of the 

DDT process is a weak function of numerical resolution because the smallest-scale 

structures contain very little reactants and are the sources of a tiny amount of energy 

release. To evaluate the characteristics of complex flow and combustion phenomena, 

the space-time diagram at 0y   is plotted in Fig. 50 (a) and (b). The initial spark 

caused by thermal power deposition creates two shock waves that travel in both the 

upstream and downstream directions. In Fig. 50 (a), the lead shock wave that 

propagates downstream induces the chemical reaction by heating the inert gas, 

thereby leaving the material interface behind around 5t  . Meanwhile, the 

upstream propagated shock wave reflects back at the left wall and runs into the 

material interface where both transmission and reflection occur. In Fig. 50 (b), it is 

shown that the transmitted shock wave coalesces with the lead shock, which in turn 

formulates the hot spot. After the hot spot formulation, an induction zone occurs, 

and the chemical heat release starts to increase. It can be found that a localized 

explosion occurs where the reflected shock trespasses the induction zone, which 

subsequently creates an accelerating reaction. Overdriven detonation eventually 

occurs 21t   when the accelerating reaction front reaches the lead shock by 

introducing an immediate rapid reaction on the acoustic timescale. 
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From the series of complex flow behaviors, it is notable that multiple shock 

reflections subsequently heat the temperature, which becomes the major source of 

deflagration to detonation transition.  

 

 

Figure 50. (a) Chemical heat release rate with respect to four grid sizes, and space-

time diagram for (b) temperature and (c) pressure 

  

5.2.2 Problem description 

Let us consider a two-dimensional channel with evenly spaced obstacles, as shown 

in Fig. 51, with a characteristic length D = 10 mm and grid size 0.1 mm where the 

reaction zone thickness is resolved. Initially, the channel is filled with a 

stoichiometric inert ethylene–air mixture and burnt circular shaped flame. To 

facilitate the DDT process, a moving shock wave with 3.0sM   is modeled to 

function as an ignition mode. The initial flame and shock are located at 20 and 5 mm 

from the left boundary, respectively. Inflow and outflow boundary conditions are 

imposed on the left and right boundaries. A slip-wall boundary condition is imposed 

on the upper and lower boundaries, except for the obstacles where a no-slip wall 

boundary is applied to separately consider the boundary layer effects caused by the 

obstacles.  

 

Figure 51. Schematic of straight tube with eight obstacles, initial flame and 

shock wave. 
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Because there are neither direct experimental data nor reliable detailed chemical 

one-step reaction models for the ethylene–air mixture, the input parameters of the 

current reactive system are calculated by the theoretical equations based on adiabatic 

flame temperature and CJ detonation velocity [71]. The initial flow, stoichiometric, 

and structural properties for the numerical simulations are described in Table 5. 

 

Table 5 Input parameters and properties of stoichiometric ethylene-air mixture. 

Input parameters 

0  1 31.58 10 kg m  Initial density 

0p  4 31.33 10 J m   Initial pressure 

0T  293K  Initial temperature 

0Y  1  Initial composition 

  1.15 Specific heat ratio 

M  29 Molecular weight 

aE  
029.3RT  Activation energy 

A  
8 33.2 10 m kg s   Pre-exponential factor 

q  
035 /RT M  Chemical energy release 

0 0 0D    6 0.71.3 10 ( / cm K )g s    Transport constants 

Output parameters 

bT  2340K  Adiabatic flame temperature 

b  2 31.98 10 kg m  Adiabatic flame density 

sT  1500K  Postshock detonation temperature 

s  31.15kg m  Postshock detonation density 

CJD  1870m s  CJ detonation velocity 

Structure material properties for flexible obstacles 

YM 68GPa  and 6.8GPa   Young’s modulus 

s  0.33 Poisson’s ratio 

s  32700kg/m  Material density 
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5.2.3 Effects of geometrical configuration 

First, the effect of the geometrical configuration is considered with respect to 

detonation transition and energy release. As an example, the process of detonation 

transition is shown for two differently staggered obstacle configurations (case 2 and 

case 3) in Figs. 52 and 53. In each figure, the temperature contours and enlarged 

pressure contour at the time between detonations occur to capture the hot spot 

formation. In both cases, the first detonation seems to occur when the flame 

accelerated at the first obstacle (
1O ) impact on the second obstacle (

5O ). In the 

pressure contours, the hot spot can be found with the CJ detonation pressure at 
5O . 

 

Figure 52. Temperature (left) and pressure (right) under shock-flame interaction 

to detonation transition for case 2. 

 

In the other time sequences, similar characteristics where an abrupt rise in pressure 

induces hot spots are shown, which results in local detonation transition. The 

detonation seems weaker when the lower and upper obstacles are aligned as in case 

3. This can be attributed to the blockage effect that keeps the shock wave from 

propagating and the reactant from entering the chemical reaction. The temperature 

contours (c) in Figs. 52 and 53 clearly show the results of the blockage effect because 



 76 

the temperature in case 3 is delayed as the flame propagates through the obstacles 

compared to case 2.  

 

Figure 53. Temperature (left) and pressure (right) under shock-flame interaction 

to detonation transition for case 3. 

    

A quantitative comparison of each obstacle case is performed by the energy 

release rates in Fig. 54. In a short, smooth channel without a boundary effect, a flame 

ignited by a shock hardly transits to a detonation for an ethylene–air mixture. 

However, DDT always occurs when the pressure is sufficiently high to reach the CJ 

detonation point by the obstacles.  

Up to 0.15 ms, both aligned (case 1) and staggered (case 2) cases show similar 

energy increments because the first upper and lower obstacles affect the acceleration 

of the flame propagation and energy release rate. Meanwhile, the fully staggered 

(case 3) case shows slower DDT because the first obstacle in the upper wall is not 

effective. After the flame passes the first obstacles, case 2 reaches the local 

maximum energy release rate around 0.2 ms while the other cases reach at 0.25 ms. 

Overdriven detonation is first captured at 0.3 ms for case 2, which does not occur in 

case 1 until 0.5 ms. For case 3, overdriven detonation occurs after 0.3 ms when the 

last upper and lower obstacle changes from aligned to staggered. The maximum 
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energy release rate is found in case 2 compared to the other cases that make smaller 

areas for the flame to propagate. These results imply that proper blockage in the 

propagation direction accelerates DDT.  

 

 

Figure 54. Chemical heat release rate for each case of the straight tube with and 

without rigid obstacles. 

  

5.2.4 Flow behavior based on flexibility  

Now the effects of FSI is considered in addition to the previously discussed rigid-

body analysis. Time sequences of temperature (left) and density gradient magnitude 

(right) for case 2 are depicted in Figs. 55 to 58. In each figure, the obstacle is rigid 

(a), flexible with YM = 68 GPa (b), and highly flexible with YM = 6.8 GPa (c); the 

other conditions remain the same as those listed in Section 5.3.1. In addition, these 

qualitative results were compared with the pressure histories at four probe locations 

and the chemical heat release rate shown in Fig. 59. 



 78 

 

Figure 55. Temperature (left) and density gradient magnitude (right) under 

shock-flame interaction in straight tube with (a) rigid, (b) flexible and (c) highly-

flexible obstacles at t = 0.17 ms. 

 

In Fig. 55 (at t = 0.17 ms,) the fast flame propagation occurs after the first weak 

detonation near 
1O  caused by the shock–flame interaction. In the flexible obstacle 

case, it is observed that the accelerating reaction front near 
2O  is more evident 

compared to the rigid case, which can be attributed to the bending of 
2O  and 

5O  

that widens the effective area in the axial direction. Further, in the highly flexible 

obstacle case, it was found that the reversely bent 
2O  trapped the flame, thereby 

resulting in weak flame propagation. The effect of the structural deformation is 

shown in Fig. 59. 

 

 

Figure 56. Temperature (left) and density gradient magnitude (right) under 

shock-flame interaction in straight tube with (a) rigid, (b) flexible, and (c) 

highly-flexible obstacles at t = 0.2 ms. 
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This accelerating reaction front in a flexible obstacle leads to stronger detonation 

(Fig. 56) and a large emission of energy with faster reaction at t = 0.2 ms, where 

energy release is locally maximized (Fig. 59). Further, it is observed that flexible 

and highly flexible obstacles 
2O  delay flame propagation in the region above 

3O  

compared to the rigid case. The delayed shock resulted in a more complex and 

focused density region in the right figures of Fig. 56 (b) and (c).  

 

Figure 57. Temperature (left) and density gradient magnitude (right) under 

shock-flame interaction in straight tube with (a) rigid, (b) flexible, and (c) 

highly-flexible obstacles at t = 0.25 ms. 

 

As the flame propagates further, the overdriven detonation occurs around t = 0.25 

ms. In Fig. 57, all cases show a strong shock wave toward the bottom wall after the 

detonation occurs behind 
7O . However, the chemical reaction and detonation seem 

to occur less in the highly flexible case, which can be attributed to the formation of 

the material interface by a chain reaction of strong shock, as marked in Fig. 57 (c). 

This material interface hinders the induction of energy and the feeding of the fuel 

that results in less, but sustaining energy release rate as shown in Fig. 59 (b). 

Meanwhile, the flexible obstacle case showed the maximum over detonation. Thus, 

it can be inferred that elastically deforming obstacles could accelerate or decelerate 

the DDT process. In terms of shock wave propagation, the deformation of obstacles 

forms a more complex flow field and strong diffracted shock (Fig. 57).  
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Figure 58. Temperature (left) and density gradient magnitude (right) under 

shock-flame interaction in straight tube with (a) rigid, (b) flexible, and (c) 

highly-flexible obstacles at t = 0.17 ms. 

 

In the last snapshot (Fig. 58), the effects of deforming structures on shock wave 

propagation can be found. Because of the increased multiple reflections by obstacles, 

shock focusing occurs after the flame exits 
8O , which results in a strong shock wave. 

It is evident from Fig. 59 (a) that the pressure magnitude of the flexible obstacle 

cases increases at P4 compared to the rigid case. Comparing the energy release rate 

in Fig. 59 (b) with Fig. 54, it is interesting to find that the effect of flexibility is as 

much as that of the geometrical configuration changes in the DDT process. 

 

 

Figure 59. (a) Normalized pressure magnitude histories at four probe locations 

and (b) chemical heat release rates  
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In addition, the space-time diagram has been analyzed to investigate the effects of 

flexibility at the bottom wall. In Fig. 60, the temperature variation caused by the 

detonation shows a noticeable difference at the bottom wall as well. In the 
1 2O O  

region, all three cases show similar behavior up to 0.14 ms. Compared to the other 

two cases, the temperature increase is more evident in the flexible case in the 

1 2O O  region, which affects the accelerating reaction front, as shown in Fig. 55 

(a). In the 
2 3O O  region, where the first detonation wave reaches approximately 

0.18 ms, it is found that the rigid case shows a lower temperature near 
3O  

compared to the flexible cases. It can be inferred that the reduced blockage by 

flexible obstacles accelerated flame propagation toward the bottom wall.  

Finally, the transient temperature change due to the overdriven detonation can be 

found in the 
3 4O O  region. The material interface is clearly observed in the highly 

flexible case, while the high-temperature region caused by the detonation wave is 

found, especially in the flexible case. From the quantitative and qualitative 

comparison with respect to the flexibility of obstacles, it was found that not only the 

overall behavior, but also detailed features of the flame-shock interaction change. 

 

 

Figure 60 Space–time diagram of the temperature at the bottom wall for (a) 

rigid, (b) flexible, and (c) highly flexible obstacle case. 
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Chapter 6. Concluding Remarks 

 

A new ghost-cell IBM, NWIBM, was developed by combining the conventional 

low-order and high-order polynomial reconstructions. To enforce the boundary 

conditions, two different polynomials are combined during the ghost-cell value 

estimation by the nonlinear weighting process. The nonlinear weightings are 

assigned based on a smoothness indicator that has been designed in a 

multidimensional way using spatial derivatives obtained from the high polynomial 

to evaluate the flow discontinuity. Because of the nonlinear weightings that cause 

the immersed boundary reconstruction to utilize adaptively the high-order and low-

order interpolations, the flows near the discontinuous and smooth regions show 

stable and accurate behavior, respectively. When the high-order stencils are spread 

in the smoothly varying region, weightings from the high-order polynomials become 

dominant, while the weightings from the low-order polynomials become negligible. 

Such a process operates the other way around in the discontinuous region, which is 

attributed to a more stable and accurate numerical solution.   

In addition, flow field reconstruction is implemented where a smooth condition 

near the boundary is determined by nonlinear weighting process. It has been found 

that the jump-discontinuity is minimized, which facilitates a high-order stable 

solution for compressible flow simulation, not previously explored actively in the 

IBM research field. The fundamental idea is the correlation between ghost and fluid 

fields that makes the function across the immersed boundary close to the analytic 

function. It is quite notable that the reduced jump-discontinuity induces less spurious 

waves and enhances stability of the solution. The magnitude of the jump-correction 

term, the major source of the jump-discontinuity, has been diminished when the 

present method is applied.  

The performance of the proposed method was investigated using various 

numerical test problems. The numerical results reveal that the NWIBM is less 

oscillatory than conventional low-order IBMs in a compressible flow in cylinder, 

sphere, shock-obstacle interaction cases including fluid-structure interaction 

problems, which validates the applicability of the proposed method in fluid–structure 

interaction problems.  
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Two engineering application problems were solved as an application of NWIBM 

with FSI. Firstly, flexible cylinder lift-off with collision was considered. It was found 

that the reflection of cylinders after collision differs as well as there are critical point 

the behavior of lift-off itself totally changes with respect to the flexibility of cylinders.  

In addition, the present NWIBM was applied to investigate the effects of the 

structure response on the deflagration to detonation transition. Compared to previous 

studies that addressed the effects of the size or shape of the obstacles in the channel, 

the current study highlighted the importance of FSI in deflagration to detonation 

transition in that the transient change of structures could induce the formation of 

different positions of the hot spot and detonation and the overall flow patterns. In 

addition to the current DDT applications, the present method is expected to be 

utilized in other research involving compressible flow that requires stable and 

accurate imposition of boundary conditions. 

However, there are still limitations of the current algorithm. One is the efficiency 

issue due to the introduction of additional complexity of algorithm in calculating the 

nonlinear weightings. Even if it has been found that the efficiency becomes 

negligible compared to flux calculation and time integration when the number of grid 

increases, it is still problematic that computational cost is acceptable in FSI case 

which calculate the IBM subroutine iteratively. Another issue has to do with the 

smoothness indicator in nonlinear weighting calculation. Since the smoothness 

indicator is found spatially, not directionally like conventional WENO schemes, it is 

possible to locate discontinuous region more conservatively. Lastly, no optimal 

value of linear weighting for general problems are proven mathematically in this 

study. Thus, the order of accuracy can be hampered by using low-order 

reconstruction in not discontinuous region. 

Despite above issues not dealt with in this study, the proposed algorithm based on 

nonlinear weighting and jump-discontinuity reduction processes is expected to be 

effective in various engineering problems that requires stable and accurate solutions 

in compressible flow.  
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국문초록 

 

가상경계기법 (Immersed Boundary Method; IBM)을 이용한 압축성 전산 

유동 해석시, 물체 주변 유동의 연속 및 불연속성에 따라 전산 해석에서 

어려움이 발생한다. 본 연구에서는, 기존의 연속적 영역에서 발생하게 되

는 저차의 IBM 의 정확도 문제와 불연속적 영역에서 발생 할 수 있는 

고차 IBM의 안정성 문제를 해결하기 위해 새로운 ghost-cell IBM의 일환

으로, 가중치가 적용된 가상경계기법 (Nonlinear Weighted Immersed 

Boundary Method; NWIBM)이 제안되었다. WENO 내삽 기법과 같이, 고차

와 저차 내삽 다항식을 조합하여, 유동 상황에 맞는 적절한 가상경계의

ghost-cell 값을 구하게 된다. 다차원 연속 판별식을 고안하여 유동의 불

연속성을 판단하였으며, 판별식에서 얻어진 비선형 가중치를 통해 연속

적인 유동 영역에서는 고차 기법의 IBM 이, 불연속적인 유동 영역에서는 

저차 기법의 IBM 이 지배적으로 사용되게 하였다. 또한, 충분한 유동의 

연속성이 판별되게 되면, 기존 IBM 기법에서 발생하는 비약 불연속 

(jump-discontinuity)을 감소시키기 위해 ghost-cell 에 인접한 유동영역을 재

설계 (flow-field reconstruction) 하는 기법을 제안하였다.  본 연구에서는, 

이러한 비선형 가중치 및 비약 불연속 감소를 위한 유동영역 재설계가 

압축성 유동에서의 연속 및 불연속성에 따라 적절히 작동되며, 비물리적

인 진동 감소 및 해석의 정확도를 높이는 것을 확인하였다.  

  

주요 용어: 가상경계기법 (Immersed Boundary Method), 압축성 유동 

(Compressible flow), 충격파 (Shock waves), 비선형 가중치 (Nonlinear 

weighting), 비약 불연속점 (Jump-discontinuity), 유체-구조 연성 (Fluid-

Structure Interaction) 
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