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ABSTRACT 

 

One-dimensional Modeling of 

Thin-walled Beams with 

Arbitrary Cross-sections and 

Their Jointed Structures 
 

Jaeyong Kim 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

 

In a one-dimensional analysis model, displacement field is expressed by cross-

section modes. In the classical beam theories, since only six rigid-body cross-

section modes are considered, detailed behaviors cannot be expressed, leading to a 

stiffer structural rigidity compared to three-dimensional analysis models. This 

limitation can be overcome by considering higher-order modes that represent 

distortion or warping deformations of a cross-section. Although an accurate 

analysis of a single beam can be made through this advanced approach, it also 

arouses another difficulty when analyzing beam structures like space frames. At 
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joints of a beam structure, where multiple beams are connected, joint conditions are 

needed to define coupling relations of the cross-section modes. In the classical 

beam theories, a coordinate transformation matrix for the rigid-body cross-section 

modes can be used as a joint condition. However, when considering the higher-

order modes in addition to the rigid-body cross-section modes, a standard 

transformation is no longer valid, since the higher-order modes have no resultant. 

In this thesis, fist, a new process to derive cross-section modes is proposed. 

Equations of cross-section modes are derived from the constitutive relations for a 

plane stress state, then, the equations are transformed to an eigenvalue problem 

using mode orthogonality condition. Finally, a set of the cross-section modes are 

defined through the inner products of a basis function vector and obtained 

eigenvectors. As this process is repeated, the cross-section modes are recursively 

derived from the lowest set to higher sets. 

Second, this thesis proposes a new joint condition that is applicable to a joint of 

thin-walled beams analyzed by the higher-order modes as well as the six-rigid body 

modes. The proposed joint condition is defined using the continuities in 

displacements and rotations at designated connection points along the beam 

sections. The proposed joint condition two unique features; the connection points 

are set in a consistent way, and additional displacements induced by mismatch 

between the beam section and the joint section are taken into account. Without this 

theory using these features, accurate analyses of complicated beam structures 

would be impossible.  
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Several numerical case studies covered in this dissertation show that the proposed 

approaches for the one-dimensional modeling are appropriate to analyze a 

complicated beam structure with arbitrary sectioned members. 

 

Keywords: Thin-walled beam, Cross-section mode, Higher-order beam theory, 

Beam structure, Joint condition, Mode coupling relation 
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CHAPTER 1.  

INTRODUCTION 

 

 

1.1 Motivation and literature survey 

The inclusion of higher-order cross-section modes in addition to 6 fundamental 

rigid-body cross-section modes is crucial for an accurate beam-based analysis of 

thin-walled beams. Since Vlasov [1] demonstrated that the accuracy of the 

torsional stiffness of thin-walled beams can be significantly improved by adding 

warping modes, various studies have been conducted to find higher-order modes of 

thin-walled cross-sections. Carrera et al. [2-4] expressed cross-section 

deformations using polynomial functions defined through the Lagrangian 

expansion or Taylor expansion. Beside, approaches that assume a thin-walled 

cross-section as a beam frame and define free vibration modes as cross-section 

modes were also presented [5-8].  

For the analysis of thin-walled beams, recent studies focus on the derivation of 

cross-section modes by decomposing a three-dimensional continuum problem into 

a cross-section analysis and a one-dimensional analysis. In the generalized beam 
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theory (GBT), proposed by Schardt [9-11] and significantly improved by Camotim 

et al. [12-17], the cross-section modes are derived starting from initial modes of a 

discretized cross-section. The strain energy by the initial modes can be represented 

in a matrix form using initial mode vectors and matrices of the sectional constants. 

By combining the initial modes with eigenvectors of the matrices of sectional 

constants, higher-order cross-section modes can be derived. Garcea and his 

colleagues proposed the method of generalized eigenvectors (GE) [18-23]. In the 

GE method, initial displacement fields are represented by two-dimensional 

discretization, and cross-section modes are defined based on the Saint-Venant (SV) 

rod theory [24], inspired by other SV theory-based works [25-28]. Vieira et al. [29-

31] also employed a generalized eigenvector approach for a cross-section analysis 

of thin-walled beams. The validities of the GBT and the GE method have been 

confirmed in static, vibration and buckling analyses. Also, Hodges et al. [32-34] 

proposed the variational asymptotic beam sectional analysis (VABS), defining 

cross-section modes through an asymptotic analysis of an energy functional, and 

Kim et al. [35-40] derived warping and distortion modes using orthogonality 

condition among the cross-section modes. 

These advancements of beam theories have led to the accurate and efficient one-

dimensional analyses. At the same time, however, the introduction of these higher-

order modes makes it difficult to define joint condition that means the coupling 

relations of cross-section modes at a joint where multiple beams are connected as 

shown in Fig. 1.1. 
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The joint condition is essential to analyze beam structures like space frames of 

buildings or vehicle frames. In the classical beam theories that use six rigid-body 

modes only, the joint condition can be easily defined by using a coordinate 

transformation matrix, since their directions are defined on the cross-section as 

illustrated in Fig. 1.2(a). However, in the higher-order beam theories, coupling 

relations of the cross-section modes cannot be defined using the coordinate 

transformation matrix, since a higher-order mode does not generate the resultant 

that defines the direction on the cross-section as can be seen in Fig. 1.2(b). For this 

reason, some researchers have applied the spring stiffness into the joints of the 

classical beam models, rather than introducing the higher-order modes. In these 

approaches, spring stiffnesses are assessed through experimental [41, 42] or 

numerical studies [43-45], or are calculated by using the sectional moment of 

inertia [46, 47]. Some authors used these beam-spring models to analyze 

complicated structures like vehicle frames [45, 48, 49]. Donders et al. used a shell 

element-based super element to evaluate joint flexibility more accurately [50, 51], 

rather than using spring stiffness. However, these classical beam-based approaches 

have limitations in that the torsional stiffness of each beam member cannot be 

assessed correctly by the classical beam theories. Also, local deformations occurred 

near the joints cannot be captured by the spring elements. 

To overcome the limitations of the classical beam-based approaches, many 

attempts have been made to define the joint condition for the higher-order modes. 

In the early days, studies were mainly conducted to identify the warping 
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transmission mechanism at the joints of open-sectioned thin-walled beams that are 

used in space frames [52-54], and later, researches have been conducted to define 

the coupling relations of more complicated higher-order modes at the joints. Choi 

et al. defined coupling relations of warping and distortion modes at the joints where 

two box beams are connected [55, 56]. In their method, the joint condition is 

initially set as an unknown square matrix. To fine the unknown components in the 

matrix, they use displacement and rotation continuities as well as linear algebraic 

conditions. Also, in their later study [37], they developed the conditions to be 

applicable to the joints where three or more beams are connected. To do this, they 

proposed the consideration of the equilibrium of edge resultants that mean the 

forces and moments calculated for each cross-section edge. Although their 

approaches lead to effective and consistent joint conditions for beam structures, 

their joint conditions are limited only to the rectangular cross-sections. Jang at al. 

proposed a cross-sectional displacement continuity at the joints [57-61]. They 

introduced a virtual section that is referred to as the joint section to define 

displacements at the joint. Then they defined the joint condition by minimizing the 

mismatches of displacements on the joint section. Due to the condition of 

minimization, the joint condition is defined as a square matrix. Although they 

showed excellent performances for various cross-sections, their approach is 

appropriate only for the joint where two beams are connected, since the 

minimization process becomes complicated when three or more beams are 

connected [61]. In the GBT, the joint condition is defined by using displacement 
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and rotation continuities at connection points [62-70]. They carefully investigated 

the joint conditions for various cross-sections, mainly focusing on the open 

sections that are used in space frames, e.g., C-sections, I-sections and lipped 

sections. Their method has shown outstanding performances in static, vibration and 

buckling analyses for various structures. However, their approach is not 

appropriate for complicated beam structures like vehicle frames, since the way the 

connection points are set is not consistent depending on the cross-section shapes. 

Also, the directions of displacement and rotation continuities are not consistent for 

the points. 
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1.2 Research objectives 

First, we propose a new approach to derive cross-section modes for thin-walled 

beams with arbitrary cross-sections, by extending the higher-order beam theory 

(HoBT) of Kim and his colleagues [38, 39]. Compared to other cross-section mode 

derivation approaches, the proposed method has following advantages. 1) A set of 

“orthogonal” higher-order modes are derived hierarchically and recursively from 

four initial rigid-body modes. 2) Due to the orthogonality among the modes and the 

differential relations between the in-plane and out-of-plane modes, generalized 

forces can be decoupled in the stress expressions. 3) Mode derivation equations are 

developed based on field consistency between stress and strain (or constitutive 

equations). 4) The cross-section shape functions are defined edgewise, so no 

section discretization is required. 

Recently, Choi and Kim [38, 39] determined higher-order modes for rectangular 

cross-sections using constitutive equations of the plane stress state and mode 

orthogonality. However, the use of geometric symmetry was essential in their 

approach, implying that it cannot be applied to cross-sections with general thin-

walled shapes. To overcome this difficulty, we propose a new method utilizing an 

eigenvalue problem, which is formulated using the orthogonality among cross-

section modes. A set of higher-order modes are simultaneously derived by 

combining basis functions with corresponding coefficients, which are obtained as 

eigenvectors of the eigenvalue problem. By doing so, orthogonal sets of higher-

order modes can be uniquely determined for any thin-walled cross-sections with 
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arbitrary geometries, seamlessly extending key features of Choi and Kim [38, 39] 

while overcoming critical limitation of their work. Once a new set of cross-section 

modes are calculated, the stress field is updated. The next higher set of modes are 

determined so that they can satisfy the field consistency; they should represent the 

strain field induced by the updated stress field. Because lower-order modes make 

higher contributions to the strain energy, the determination of the level of the 

highest modes depends on the required accuracy for the analysis. 

Second, we present a new consistent and effective method to define the joint 

condition. The proposed method is inspired by several other studies; displacement 

and rotation continuities at the connection points are calculated as in the GBT, and 

the joint section proposed by Jang at el. is used. However, we newly propose some 

approaches to overcome the limitations in the existing studies. 1) A consistent rule 

is proposed to set the connection points; the connection points are set at the cross-

section corners that mean the end points of each cross-section edge and at the joint 

axis. This rule is applied consistently regardless of the cross-section shapes. At 

each connection point, continuities of three dimensional displacements and 

rotations are imposed. 2) Additional displacements on the joint section are taken 

into account. Because the cross-section of a beam is normal to the beam axis, the 

beam section and the joint section do not match in general. Therefore, 

displacements on the joint sections should be carefully assessed when using field 

variables of beam theories. The additional displacements on a joint section are 

calculated by using the rotations on the beam section, leading to the correct 
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calculation of displacements at the joint. Since the warping modes derived by the 

proposed mode derivation approach meet the C1 continuity, the rotations at a 

connection point are uniquely defined. One of the merit of the proposed method is 

that it can be applied to various shapes of beam structures in a consistent manner. 

To verify the effectiveness of the proposed cross-section modes and joint condition, 

static and vibration problems are solved for thin-walled beams with various shapes 

of cross-sections. Also, several complicated beam structures like vehicle frame in 

Fig. 1.3 are analyzed. The results of the proposed approach are shown to be highly 

accurate when comparing with the results from the shell theory. 
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1.3 Outline of thesis 

The thesis is organized as follows. 

 

In Chapter 2, displacement, strain, stress and governing equations are explained in 

the frame work of the proposed HoBT. Also, this chapter shows that generalized 

forces are derived from the governing equation, where the generalized forces mean 

the work conjugates of cross-section modes in beam theories. Since the cross-

section modes are derived from the constitutive relations in the proposed HoBT, the 

stresses are expressed for the generalized forces. At the end of the chapter, a finite 

element formulation that is used to analyze thin-walled beam structures is 

presented.  

 

In Chapter 3, a new cross-section analysis approach is presented. In the cross-

section analysis, equations of cross-section modes of a thin-walled beam are 

derived from the constitutive relations. The equations are solved by formulating 

eigenvalue problems using the mode orthogonality. By solving the eigenvalue 

problems with constraint matrices of mode continuity conditions, cross-section 

modes are defined. This chapter also shows recursive and hierarchical process of 

the cross-section mode derivation approach. 

 

In Chapter 4, a new coupling relations of the cross-section modes at a joint, or 

joint conditions, are presented. The proposed joint conditions are derived in a 
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consistent and simple manner, while existing other approaches are inconsistent for 

the cross-section shapes or too complicated. The consistency and simplicity of the 

proposed approach make it possible to analyze even complicated structures like a 

vehicle structure. This chapter shows detailed process to define the joint conditions 

that are derived by continuities of displacement and rotations at connection points 

on a thin-walled beam cross-section. 

 

In Chapter 5, the overall conclusion of this dissertation is presented. 
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Fig. 1.1 One-dimensional models of L-type and T-type joint structures 
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Fig. 1.2 Cross-section modes of a box beam: (a) torsional rotation mode and (b) 

distortion mode 
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Fig. 1.3 A simplified automotive body frame 
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CHAPTER 2.  

Higher-order beam theory 

Equation Chapter 2 Section 1 

 

2.1 Displacement field and governing equations 

A thin-walled cross-section consisting of NE edges is illustrated in Fig. 2.1, where X, 

Y and Z are the global coordinates and ne and se, defined on the midline of edge e (e 

= 1, 2, ···, NE), are local coordinates representing normal and shear directions, 

respectively. The origin of the local coordinates is located at (Xe, Ye), one of the 

corners of the edge. The angle of edge e with respect to the X axis is denoted as αe. 

In the proposed higher-order beam theory, three-dimensional displacements on the 

midline are expressed by superposing displacements by each cross-section mode: 

 
1

( , ) ( ) ( ) ( ) ( ),  ( , , ),
D

i

N

k k i k

i

u s z s z s z k n s z
 



   ψ ξ   (2.1) 

where ku  is the k-directional displacement on the midline and i

k

  is the shape 

function for ku  associated with cross-section mode ξi (i = 1, 2, ···, ND; ND: 

number of cross-section modes). In Eq. (2.1), s is used without denoting the edge 

index for simplification, and z is the axial coordinate, defined orthogonal with 
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respect to s and n. The cross-section mode vector ξ in Eq. (2.1) consists of six 

rigid-body modes and higher-order modes as 

   T

71, ,
{ , , , , , , , , } ,

DD
m x y z x y z Nm N

U U U     


 ξ   (2.2) 

where { , , , , , }x y z x y zU U U     are the rigid-body modes, and 7{ , , }
DN   are the 

higher-order modes. The higher-order modes are grouped into out-of-plane modes 

(or warping modes) having z-directional deformations only and in-plane modes. In-

plane modes are further classified into distortion modes with both n- and s-

directional deformations, leading to shear deformations of a cross-section, and 

wall-bending modes with n-directional deformations only, not accompanying shear 

deformations. Note in Eq. (2.2) that deflection modes are defined for (x, y) 

directions while bending rotation modes are defined for principal axes ( , )x y , 

because the cross-section modes in the proposed approach are defined orthogonal 

each other. The directions and the center of (x, y) and ( , )x y  are given in Chapter 

3 and Appendix A, respectively. 

Using the displacement on the midline, the three-dimensional displacement ku  (k 

= n, s, z) at a generic point on the cross-section can be written as 

 ( , , ) ( , ),n nu n s z u s z   (2.3a) 

 ( , , ) ( , ) ( , ) ( , ) ( , , ),s s n s su n s z u s z nu s z u s z u n s z      (2.3b) 

 ( , , ) ( , ) ( , ) ( , ) ( , , ),z z n z zu n s z u s z nu s z u s z u n s z      (2.3c) 

where 
.

( ) ( ) s    and ( ) ( ) z    . In Eqs. (2.3b, c), displacements by wall 
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bending are given as the derivatives of 
nu  according to the Kirchhoff plate theory, 

expressed as 
_

( ) . The approximations of three-dimensional displacements in Eqs. 

(2.1, 3) are the same as in the GBT [12-17] except for the use of ( )i z , not its 

derivative form, for the axial displacement. 

Assuming a plane stress state, the stress ( )  and strain (normal component   

and shear component  ) are calculated as  

 ,ss s s nu u nu      (2.4a) 

 ,zz z z nu u nu        (2.4b) 

 2 ,zs s z s z nu u u u nu          (2.4c) 

 1 1( );  ( );  ,ss ss zz zz ss zz zs zsE E G              (2.5) 

where E1=E/(1−ν2), and E, ν and G represent the Young's modulus, Poisson's ratio, 

and the shear modulus, respectively.  

Using the displacement, strain and stress fields, the total potential energy of a thin-

walled beam can be written as: 

 
   

1
,

2
ss ss zz zz zs zs n n s s z z

V V

U

dV f u f u f u dV     

  

      
  (2.6) 

where U is the internal strain energy and Ω is an external work done by body forces, 

fn, fs and fz [N/m3]. In Eq. (2.6), one end of a beam (z=0) is fixed while surface 

tractions tzz and tzs are imposed on the other end, z=L. The strain energy can be 

expressed using Eqs. (2.1) and (2.3-2.5): 
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1 2 3 4 5 ,U U U U U U       (2.7a) 

where 

  T T 2 T T

1 1

1
,

2
s s n n z z

z A
U E n G dA dz   

  ξ ψ ψ ψ ψ ψ ψ ξ   (2.7b) 

  T T T

2 1 ,s z z s
z A

U E G dA dz   ξ ψ ψ ψ ψ ξ   (2.7c) 

  T T T 2 T

3 1

1
4 ,

2
z z s s n n

z A
U E G n dA dz    

  ξ ψ ψ ψ ψ ψ ψ ξ   (2.7d) 

 
T 2 T

4 1 ,n n
z A

U E n dA dz   ξ ψ ψ ξ   (2.7e) 

 T 2 T

5 1

1
,

2
n n

z A
U E n dA dz   ξ ψ ψ ξ   (2.7f) 

and the external work is 

   .n n s s z z
z A

f f f dA dz      ψ ψ ψ ξ   (2.8) 

In Eq. (2.8), the body forces are assumed constant in the thickness direction.  

Based on the principle of minimum total potential energy, the matrix forms of the 

governing equations and boundary conditions can be found by taking the first 

variation of the total potential energy and setting it to zero: 

 1 2 3 4 ,     C ξ C ξ C ξ C ξ F   (2.9a) 

where coefficient matrices and force vector are given as 

  T 2 T T

1 1 ,s s n n z z
A

E n G dA   
 C ψ ψ ψ ψ ψ ψ   (2.9b) 

    T T T T

2 1 ,s z z s z s s z
A

E G dA    
 C ψ ψ ψ ψ ψ ψ ψ ψ   (2.9c) 
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 

 

T T 2 T

3 1

2 T T

1

4

,

z z s s n n
A

n n n n
A

E G n dA

E n dA

    
 

 





C ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ
  (2.9d) 

 
2 T

4 1 ,n n
A

E n dA C ψ ψ   (2.9e) 

  T T T .n n s s z z
A

f f f dA  F ψ ψ ψ   (2.9f) 

The generalized forces are obtained as stress resultants from the boundary terms: 

 

 

 

 

T T

T T

1

T T 2 T

1

2 T 2 T

1 1

4

,

z zz s zs
A

z s s z
A

z z s s n n
A

n n n n
A A

dA

E G dA

E G n dA

E n dA E n dA

 





 

 

    
 

  







 

R ψ ψ

ψ ψ ψ ψ ξ

ψ ψ ψ ψ ψ ψ ξ

ψ ψ ξ ψ ψ ξ

  (2.10) 
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2.2 Generalized forces 

The generalized forces in Eq. (2.10) can be mode-wisely written for an in-plane 

mode and an out-of-plane mode as  

 ,i

i zs s
A

F dA
     (2.11a) 

 ,j

j zz z
A

F dA


     (2.11b) 

where subindices i and j denote in-plane modes and out-of-plane modes, 

respectively. 

If cross-section modes are defined orthogonal each other as 0,p q

k k
A

dA    (k=s, 

z) for p≠q, the generalized force in Eqs. (2.11) can be expressed in terms of the 

shape function of its corresponding mode only, from which generalized forces can 

be decoupled in the stress expressions. The derivation of orthogonal cross-section 

modes will be discussed in Chapter 3. 

To derive the explicit generalized force-stress relation for an in-plane mode, the 

shear stress acting on the midline is considered. Using Eqs. (2.1) and (2.3-2.5), the 

stress is  

 .jis z
zs zs s i z j

i j

u u
G G G

z s

     
   

      
    

    (2.12) 

Because ,
j i

z j i s

i

c
    ( ,j ic : coefficient; this will be proved in Sections 4 and 5), 

Eq. (2.12) can be rewritten as  
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 ,i

zs i s

i

S
    (2.13) 

where the coefficient iS  consists of ,j ic , material properties, j  and i  . 

Substituting Eq. (2.13) into Eq. (2.11a) and using the orthogonality among in-plane 

modes, the generalized force is obtained as 

 ,i i iF S    (2.14) 

where 
2( )i

i s
A

dA
    (A: cross-section area) is the sectional moment of inertia 

for i . Note that the terms for modes other than i  are dropped due to the 

orthogonality. Using Eq. (2.14), the stress in Eq. (2.13) can be expressed in terms 

of the generalized forces: 

 .ii
zs s

i i

F  


   (2.15) 

Similarly, the generalized force-stress relation for an out-of-plane mode can be 

obtained as 

 ,jj

zz z

j j

F 
 


   (2.16) 

and the relation between wall-bending stress and generalized forces is  

 ,k ik i
zz n n

k ik i

F F
n

   
 

 
   

 
    (2.17) 

where zz  and kF  are the wall-bending stress and the generalized force of wall-

bending mode k , respectively.  

Note that the relations between stresses and generalized forces in Eqs. (2.15-2.17) 
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are valid only if the modes are defined orthogonal with respect to each other. 

Although effective relations of stresses and generalized forces can also be found in 

other studies such as Genoese et al. [19], those in Eqs. (2.15-2.17) are expressed 

explicitly for each cross-section mode. This is meaningful because the stress at a 

point can be decomposed into those by corresponding generalized forces. In other 

words, the contribution of each generalized force to the stress can be analyzed due 

to the decoupled generalized force-stress relations. This will be shown in the case 

studies of Section 3.3. In addition, the generalized force-stress relations can be 

employed to solve a jointed beam problem, where the transfer mechanism of 

generalized forces at a beam joint can be derived from the equilibrium of the 

resultants on cross-section edges [37]. 
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2.3 Finite element formulation 

The three-dimensional displacements in Eq. (2.3) are discretized as 

 

1 0 0

1 0 ( ) ( ) ( ) ,

0 1

n n

s ss

z zz

u u

u n u n s z

u n u







    
    

       
        

u A ψ N d   (2.18) 

where A is the matrix mapping displacements on the midline of an edge to those at 

a generic point on the cross-section, ψ is the matrix consisting of ψ's, N is the 

shape function matrix, and d is the nodal solution vector of ξ. The Hermite cubic 

polynomials are employed for shape functions in N: 

  1 2 3 4( ) ( ) ( ) ( ) ( ) ,N N N N    N I I I I   (2.19) 

where 

 

3

1

3 2

2

3

3

3 2

4

1
( ) ( 3 2),

4

1
( ) ( 1),

4

1
( ) ( 3 2),

4

1
( ) ( 1),

4

N

N

N

N

  

   

  

   

  

   

   

   

  (2.20) 

where I is an identity matrix with the size ND, and κ is the natural coordinate of an 

element. Note that the second derivative terms in Eq. (2.4b) can be conserved by 

using the Hermite cubic polynomials, whose effect can be noticeable on the 

accuracy of problems with dominant wall-bending deformations.  

The strains and stresses in Eqs. (2.4) and (2.5) can be written in matrix form as 
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0 0

0 0 ( ) ( ) ( ) ,

0

ss n

zz s

zs z

s u

z u n s z

z s u







      
    

        
            

ε LA ψ N d   (2.21) 

 
1 1

1 1

0

0 ( ) ( ) ( ) ,

0 0

ss ss

zz zz

zs zs

E E

E E n s z

G

  

  

 

     
    

      
         

σ CLA ψ N d   (2.22) 

where L represents the operator matrix, and C is the elasticity matrix. The total 

potential energy of a beam can be written as 

 

T T T

,

T T T

,

1
 

2

1
,

2

tt
z A z A z A

tt

dAdz dAdz dAdz   

  

     σ ε u u u f

d Kd d Md d F

  (2.23) 

where ( ),tt is the second derivative with respect to time, ρ is the density, f is the 

body force vector, and K, M and F are the stiffness matrix, mass matrix and force 

vector, respectively. By minimizing the total potential energy, the discretized 

dynamic equation can be derived. Substituting Eqs. (2.19-23) into Eq. (2.24) gives 

the stiffness matrix, mass matrix and force vector as  

 
T ,

z
dz K N SN   (2.24) 

 
T ,

z
dz M N TN   (2.25) 

 
T ,

z
dz F N R   (2.26) 

where  

 
T T T ,

A
dA S ψ A L CLAψ   (2.27) 
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T T ,

A
dA T ψ A Aψ   (2.28) 

 
T T .

A
dA R ψ A f   (2.29) 
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Fig. 2.1 The geometry of a thin-walled cross-section, and local and global 

coordinates 
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CHAPTER 3.  

Derivation of cross-section modes for thin-walled 

beams with arbitrary sections 

 

 

3.1 Prerequisites and lower-order modes 

The shape functions of the proposed cross-section modes are derived based on 

following assumptions: 

Assumption 1: Linear warping and inextensional distortion modes are induced by 

shear stress aroused by generalized forces of in-plane rigid-body modes. 

Assumption 2: Extensional distortion and wall-bending modes are induced by the 

Poisson’s effect for the axial stress zz  (or zz ) (see Figs. 3.1(a) and (b)). 

Therefore, they are generated as the next higher-order modes of the corresponding 

out-of-plane deformation modes [38, 39]. 

Assumption 3: Nonlinear warping modes are aroused by the shear stress zs  (see 

Fig. 3.1(c)). They are derived to satisfy field consistency in the shear stress for the 

given in-plane deformation modes [38]. 

Lower-order modes, including linear warping modes and inextensional distortion 
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modes, are presented in this chapter. Extensional distortion modes, wall-bending 

modes and nonlinear warping modes will be derived in the next chapter, for which 

the generalized force-stress relations obtained in Section 2.2 are used to derive the 

differential relations among the shape functions. 

 

3.1.1 In-plane rigid-body modes 

Shape functions 
( )k e

  (μ = Ux, Uy, θz; k = n, s) representing in-plane rigid-body 

modes are defined for each edge e in terms of the (x, y) coordinates (see Fig. 2.1) as 

 
( ) ( )cos( );  sin( ),x xU U

s e e n e e           (3.1) 

 
( ) ( )sin( );  cos( ),y yU U

s e e n e e            (3.2) 

 
( ) 0 0( )sin ( )cos ,z

s e e e e eX X Y Y        (3.3a) 

 
( ) 0 0( )cos ( )sin ,z

n e e e e e eX X Y Y s          (3.3b) 

where (X0, Y0) and β are the origin and the orientation angle of the (x, y) coordinate 

system, respectively. Note that the center of torsional rotation θz is set at the origin 

of (x, y). Using the orthogonality between Ux and Uy, 0yx
UU

s s
A

dA   , β can be 

determined as 

 
1 1

1

sin 2
1

tan ,
2

cos2

E

E

N

e e

e

N

e e

e

l

l







 



 
 
 
 
 
 




  (3.4) 

where le and αe are the length and angle of edge e, respectively, and NE is the 
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number of the cross-section edges. Similarly, using 0x zU

s s
A

dA    and 

0y z
U

s s
A

dA   , the origin of (x, y) is calculated as 

 0 1

1 2

0

,
X

Y

 
 

 
A A   (3.5a) 

where 

 
1

1

sin sin( ) cos sin( )
,

sin cos( ) cos cos( )

EN
e e e e

e

e e e e e

l
     

     

   
  

   
A   (3.5b) 

 
2

1

sin sin( ) cos sin( )
.

sin cos( ) cos cos( )

EN
e e e e e e

e

e e e e e e e

X Y
l

X Y

     

     

   
  

   
A   (3.5c) 

 

3.1.2 Linear warping and inextensional distortion modes 

Following in assumption 1, the linear warping and inextensional distortion modes 

are defined so that the shear strain caused by them can satisfy the field consistency 

requirement with shear stress aroused by the generalized forces of the in-plane 

rigid-body modes: 

 
* *

* *( , ) ( , ) ( , )
( ) ( ) ( ) ( ),

W
Wzs s z

s z

s z u s z u s z
s z s W z

G z s




        
 

  (3.6) 

where 
*

su
 is the s-directional displacement by the inextensional distortion χ* and 

*W

zu  is the z-directional displacement by linear warping W*. Using the generalized 

force-stress relation in Eq. (2.15), the shear stress in Eq. (3.6) can be written as 
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( )

( , ) ( ),zs s

F z
s z s

 

 

 


   (3.7) 

where μ = Ux, Uy, θz. Substituting Eq. (3.7) into Eq. (3.6) gives 

 * *
( ) ( )

( ) ( ) ( ).
( ) ( )

W

z s s

F z z
s s s

G W z W z

  

 


  





 


    (3.8) 

In Eq. (3.8), the relation between the cross-section shape functions is obtained as 

 * *( ) ( ) ( ),W

z s ss c s s 




      (3.9) 

where c  is constant for a given z. Note that the coefficient for *

s

  is set as 

unity because *

s

  is freely scalable. 

Because χ* in Eq. (3.9) has inextensional wall deformation, its shape function for s-

directional displacement is edgewise constant; the displacement is constant on each 

edge, which may differ from those on other edges. Therefore, *

s

  in Eq. (3.9) 

can be rewritten by introducing an unknown constant of edge e, ec
, as 

 *

1

( ) ( ) ,
EN

W

z s e e

e

s c s c




  



     (3.10) 

where δe=1 on edge e and δe=0 otherwise. Integrating Eq. (3.10) gives 

 *

1 1

( ) ( ) ,
E EN N

W

z s e e e e

e e

s c s c s c




  

 

        (3.11) 

where s

  is the integrated function of s

  excluding the integration constant. 

Note that δe is used again in Eq. (3.11) to express the edgewise integration constant 

ce. In matrix form, Eq. (3.11) is 
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  * *,  ,  ,W W

z s

e

s



 

 
 

  
 
 

c

Ψ δ δ c φ c

c

  (3.12) 

where { , , }yx z
UU

s s s s

    Ψ , 
1 2{ , , , }

EN   δ , T{ , , }
x y zU Uc c c c , 

T

1 2{ , , }
ENc c c    c  and T

1 2{ , , , }
Ee Nc c c  c .  

In Eq. (3.12), multiple linear warping modes can be obtained by determining c 

differently, which should be determined to satisfy the orthogonality among the 

linear warping modes. For two linear warping modes *

iW  and *

jW , the 

orthogonality between the modes can be written as  

 ,ji
WW

z z ij
A

dA  


   (3.13) 

where λ is the sectional moment of inertia, and δij is the Kronecker delta. Using Eq. 

(3.12), the orthogonality in Eq. (3.13) can be rewritten as 

 
T * T * T *( ) .W W W

i j i j ij
A

dA  c φ φ c c P c   (3.14) 

Because PW* is a symmetric matrix, Eq. (3.14) can be expressed as a typical 

eigenvalue problem: 

 * .W P c c   (3.15) 

The eigenvector c obtained by solving Eq. (3.15) is employed as the coefficient 

vector in Eq. (3.12). Therefore, multiple new linear warping modes are 

simultaneously obtained by solving the eigenvalue problem in Eq. (3.15). 

Although orthogonality is not an essential requirement for higher-order modes, it is 

very important in that generalized forces can be decoupled in the stress expressions 
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only if the cross-section modes are orthogonal to each other, as can be seen in Eq. 

(2.15-2.17). This decoupling is essential in this paper given that the proposed 

higher-order modes are considered as secondary deformations induced by sectional 

stresses whose distributions are expressed by decoupled generalized force-stress 

relations. 

When solving the eigenvalue problem in Eq. (3.15), the constraint conditions for c 

should be imposed so that the linear warping modes can satisfy the orthogonality 

with existing out-of-plane modes and the displacement continuity at the cross-

section corners. 

The orthogonality between a linear warping mode and an existing out-of-plane 

mode can be written as 

 
* * * 0.z zU UW W W

z z z
A A

dA dA     φ c Q c   (3.16) 

Note that because the linear warping modes are the first derived warping modes, 

only the axial rigid-body mode Uz is considered for the orthogonality condition. 

The displacement continuity at the cross-section corners can also be defined as a 

constraint condition for c. For example, for the cross-section in Fig. 2.1, the corner 

continuity is 
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32 

where * *

( )( ) ( )W W

e es sφ φ  for edge e. 

In addition to the conditions for the linear warping modes, those for the 

inextensional distortion modes should also be considered. Because the shape 

function of an inextensional distortion mode can be written as *

s

  δc  

according to Eqs. (3.9-3.12), where c* is included in c, the conditions for the 

inextensional distortion modes can be dealt with as the constraint condition of the 

eigenvalue problem in Eq. (3.15). 

The orthogonality between an inextensional distortion modes and other existing in-

plane modes can be written as 

 
* *{ } { } 0,s s s

A A
dA dA          δ c Q c   (3.18) 

where T{ } { , , }yx z
UU

s s s s

    . Note in Eq. (3.18) that the in-plane modes defined 

earlier than inextensional distortion modes are only in-plane rigid body modes. 

The displacement continuity at the cross-section corners can be defined similarly to 

that of a linear warping mode in Eq. (3.17): 

 * 0,  R c   (3.19) 

where Rχ* is given in Appendix B for a cross-section corner. The conditions in Eqs. 

(3.16-3.19) are set as constraint matrices for the eigenvalue problem of Eq. (3.15), 

which are treated, for example, using Lagrange multipliers. After defining the s-

directional shape functions of the inextensional distortion modes, corresponding n-

directional shape functions are calculated such that the conditions of displacement 
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continuity, slope continuity and moment equilibrium at the corners are met [36, 39] 

(See Appendix C for details). 

 

Note that rigid-body bending rotations x  and 
y  are also obtained from the 

results of the eigenvalue problem in Eq. (3.15). Moreover, the axes of these 

bending rotation modes coincide with the principal axes ( , )x y  (see Fig. 2.1) 

owing to the orthogonality between the bending rotation modes. The torsional 

rotation mode is orthogonal to the x- and y-directional translations (bending 

deflections), from which the center of torsional rotation is determined, as expressed 

by Eqs. (3.5). However, the center of torsional rotation differs from the shear center. 

The linear warping modes of the proposed formulation are found to be identical to 

those by the GBT [12-17]. This is, however, not the case for nonlinear warping 

modes in higher sets. In addition, because the zero-shear stress condition on the 

midline of edges (or Vlasov condition) is not adopted in the proposed beam theory, 

warping modes and in-plane modes are not directly coupled. 
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3.2 Recursive derivation of higher-order modes 

3.2.1 Extensional distortion and wall-bending modes 

Following assumption 2, the extensional distortion modes are defined to express 

wall-extending/shrinking deformations caused by the Poisson effect when axial 

stress acts on the cross-section: 

 ,s
zz

u

s E

 



 


  (3.20) 

which can be rewritten as 

 
ˆˆ

ˆ ˆ
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 

 
   

 
 

   (3.21) 

where su  is the s-directional displacement by the extensional distortion mode χ 

and the Ŵ  variables denote the warping modes in lower sets. Note that the axial 

stress is expressed in terms of generalized forces of existing out-of-plane modes 

using Eq. (2.16). For a given z, Eq. (3.21) can be rewritten as 

 
ˆ

ˆ
ˆ

( ) ( ) ( ),z

z

U W

s U z zW
W

s c s c s      (3.22) 

where 
zUc  and 

Ŵ
c  are constants. Integrating Eq. (3.22) gives 

 
ˆ

ˆ
ˆ 1

( ) ( ) ( ) ,
E

z

z

N
U W

s U z z e eW
eW

s c s c s c 


        (3.23) 

whose matrix form is 
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s z z W
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 

   
 
 

Ψ δ c φ c
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  (3.24) 

where 
ˆ ˆ T{ }W W

z z Ψ  and 
ˆ ˆ{ }

W W
cc . As in the eigenvalue formulation of linear 

warping modes in Eqs. (3.13-3.15), considering the orthogonality among the 

extensional distortion modes gives 

 , P c c   (3.25) 

where 
T( )

A
dA   P φ φ . The coefficients in Eq. (3.23) (or (3.24)) can be found 

by solving the eigenvalue problem with the constraints of orthogonality and corner 

continuity, akin to when the inextensional distortion modes were calculated. It 

should be noted that the constraint matrix for orthogonality should be constructed 

by considering distortions in lower sets as well as in-plane rigid-body modes. 

 

As shown in Fig. 3.1(b), n-directional deformation is caused by the Poisson’s effect 

when the bending stress acts on the cross-section. This relation can be written as 

 ,s
zz

u

s E





 


  (3.26) 

where su  is the s-directional displacement caused by the wall-bending mode,  : 

 ( ) ( ),n
s n

u
u n n z s

s


 


   


  (3.27) 

and the bending stress zz  can be written in terms of the generalized forces in Eq. 

(2.17) as 
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In Eq. (3.28), ̂  and ̂  are wall-bending and distortion modes in lower sets, 

respectively. Substituting Eqs. (3.27, 3.28) into Eq. (3.26) gives 

 ˆ ˆ

ˆ ˆ

ˆ ˆ

( ) ( ) ( ) ( ).n n n ns c s c s c s   

  
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          (3.29) 

By integrating Eq. (3.29), the shape function for a wall-bending mode is obtained 

as  

  ˆ ˆ

ˆ ˆ ,1 ,0
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( ) ( ) ( ) ( ) ,
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n n n n e e e

e
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 


             (3.30) 

where ˆ ˆ ( , , )n

       is the double integrated function of n

  excluding 

integration constants. The n-directional shape functions must be defined so that 

they can satisfy the displacement continuity, slope continuity, and moment 

equilibrium at the corners [36, 39]. However, there are too few unknown 

integration constants in Eq. (3.30), two for each edge (
,0ec  and 

,1ec ), to satisfy all 

of these corner conditions. To resolve this, the last term in Eq. (3.30) is modified to 

cubic polynomials [39]:  
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from which the eigenvalue problem can be derived, as in Eqs. (3.13-3.15). 

Orthogonality between wall-bending modes in the new set and those in the lower 

sets, continuity conditions, and moment equilibrium at the cross-section corners 
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should be imposed as constraints for the eigenvalue problem (see Appendix C). 

 

3.2.2 Nonlinear warping modes 

Once the extensional distortion modes are defined in a mode set, the distribution of 

the sectional shear stress is updated to include the newly defined modes following 

Eq. (2.15): 
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 
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The nonlinear warping modes are defined to express the secondary deformations in 

the constitutive equation for this updated shear stress: 

 
( , ) ( , ) ( , )
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W

zs s zs z u s z u s z

G z s

  
 

 
  (3.33) 

where su  is the s-directional displacement, and W

zu  is the z-directional 

displacement caused by the nonlinear warping mode W, as expressed by 

 ˆˆ( , ) ( ) ( ) ( ) ( ),s s su s z z s z s 



       (3.34) 

 ( , ) ( ) ( ).W W

z zu s z W z s   (3.35) 

Note that the s-directional displacement is expressed using existing in-plane modes 

because in this section, the focus is on defining deformable shapes in the z-

direction. 

Substituting Eqs. (3.32, 3.34, 3.35) into Eq. (3.33) gives 
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which leads to 
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where c  and 
ˆc
 are constants for a given z. Integrating Eq. (3.37) gives 
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Using the orthogonality among the warping modes in the current set, an eigenvalue 

problem similar to that in Eq. (3.15) can be defined. The constraint matrix consists 

of the continuity condition in Eq. (3.17) and the orthogonality condition, for which 

warping modes in lower sets as well as the axial rigid-body mode should be 

considered. 

The derived warping modes in Eq. (3.38) update the axial stress in Eq. (3.20), 

inducing higher-order distortion modes. The proposed higher-order modes are 

derived by this recursive process. The number of mode sets employed for the 

analysis can be determined according to the required level of accuracy. Due to the 

integration form of the mode-derivation equations of Eqs. (3.23, 3.31, 3.38), the 

polynomial orders of shape functions for distortion and warping modes increase by 

one as the set number M increases (see Fig. 3.2), while those for wall-bending 

modes increase by two. 

Referring to our previous works [38, 39] would be helpful to understand a step-by-
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step procedure for calculating cross-section modes. Although they present cross-

section modes only for rectangular cross-sections, the overall procedure is similar  

except that those studies use the symmetry of a cross-section to calculate the 

coefficients of a shape function instead of conducting an eigenvalue analysis.  
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3.3 Numerical examples 

The proposed HoBT is applied to derive cross-section modes for open, closed, and 

flanged cross-sections in Fig. 3.3. Figures 3.4-3.6 show the corresponding cross-

section modes. In the figures, bending rotation modes x  and 
y  are listed as 

linear warping modes because they are derived by solving the eigenvalue problem 

for linear warping modes. Table 3.1 shows the number of cross-section modes for 

each mode set obtained by Eqs. (D.1-D.5) in Appendix D. 

The derived cross-section modes are used to solve static or modal analysis 

problems of thin-walled beams. The results by the proposed HoBT are compared 

with those obtained by shell elements (ABAQUS S8R elements) and other beam-

based approaches, for which the Timoshenko beam theory, the generalized beam 

theory (GBT) [12-17] and the method of generalized eigenvectors (GE) [18-23] are 

considered. For the material properties of the beams, Young’s modulus is set as E = 

210 GPa for the example in Section 3.3.2 and as E = 200 GPa for the other 

examples, and the Poisson’s ratio and density are correspondingly set as ν = 0.3 

and ρ = 7850 kg/m3 for all examples. 

 

3.3.1 Static analysis: a cantilever beam with an open cross-

section 

A static analysis is conducted for the thin-walled beam (length: 900 mm and 

thickness: 1 mm) with the open cross-section shown in Fig. 3.3(a). One end of the 
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beam (z = 0) is fixed and the cross-section on the other end (z = 900 mm) is 

subjected to a set of distributed loads in the s- and z-directions, representing 

complex loading at the joint of a beam frame structure approximating a T-joint (see 

Fig. 3.3(a)). In total, 200 finite elements are used in the numerical analysis. To 

capture the rapidly changing end effect, 100 elements are assigned near the loaded 

end (from z=800 mm to z=900 mm). 

For the analyses, various numbers of cross-section modes are used, in this case 26 

modes, 44 modes, 65 modes and 161 modes, which correspond to the number of 

the modes for the highest mode set, M= 2, 3, 4 and 9, respectively. In the analyses, 

warping modes in the last set are not employed because they influence the solution 

accuracy less compared to those of the other modes in the same set. Figures 3.7(a) 

and (b) show three-dimensional displacements and stress results, respectively, 

measured on the axial line corresponding to point P in Fig. 3.3(a). In these figures, 

the numbers in parentheses indicate the number of cross-section modes used for the 

analysis. These figures also show that excellent accuracy can be obtained for three-

dimensional displacements by the proposed HoBT only by using up to the second 

set of the cross-section shape functions. The stress results in Fig. 3.7(b), however, 

show that higher sets of modes are required for a correct estimation of the rapidly 

changing stress variation due to the end effect. The difference in the peak value of 

σzz in Fig. 3.7(b) between the result by the present HoBT and that of the shell 

elements is plotted in Fig. 3.8 with respect to the highest mode set number (and 

number of modes). In the figure, the use of M = 4 for the present HoBT yields  
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stress only within 4% error with respect to the shell-based calculation. These 

numerical tests suggest that satisfactory results can be obtained with M = 2 for the 

displacement calculations and M = 4 for the stress calculations (within 4% errors). 

If M ≥ 9 is used, the stress prediction can be accurate within 1% error relative to 

the shell results.  

Figure 3.9 shows the overall contribution of the three dominant distortion modes to 

the shear stress ( ZX ) in Fig. 3.7(b) calculated using the generalized force-stress 

relation in Eq. (2.15). Because the generalized forces are the work conjugates of 

one-dimensional deformations, element force vectors associated with the points of 

interest are used to calculate the stress curves in Fig. 3.9. Note in the figure that the 

three most influential distortion modes, 2 , 3  and 10 , show edge-

extending/shrinking deformations, especially on both horizontal cross-section 

edges. These dominant modes can be restrained by rigidly connecting two corners 

on the bottom edge in Fig. 3.3(a) (or two points at s2=0 and s3=0). For verification, 

an additional numerical test is conducted, showing that the peak stress is reduced 

from 112.3Pa to 66.4Pa (40.9% reduction) when the suggested constraint is 

imposed.  

Figure 3.10 shows the stress results measured on the inner surface (n = -t/2), outer 

surface (n = t/2), and midline at point P along the axial direction, which are 

perfectly matched with those obtained by the shell elements. 
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3.3.2 Static analysis: a simply supported beam with an open 

cross-section 

The simply supported beam problem with an open cross-section subjected to a 

sinusoidal load in Fig. 3.11(a), as studied initially in earlier work [23], is analyzed 

by the proposed HoBT, the GBT and the GE methods. For the proposed beam 

analysis, cross-section modes of M=2 corresponding to the first 24 cross-section 

modes in Fig. 3.4 are used (although there is a slight difference in the dimension 

between the cross-sections in Fig. 3.3(a) and Fig. 3.11(a), the shapes of the modes 

for both cross-sections are found to be almost the same). For the GBT analysis, the 

modes are obtained using the program GBTUL [12-17] with cross-section 

discretization of three intermediate nodes for the web and two intermediate nodes 

for each flange. Among the 39 modes obtained, the first 15 modes, shown in Fig. 

E.1 in Appendix E, are utilized in the analysis. In total, 50 finite elements with 

even discretization are used for the GBT and the proposed approach. For the GE 

method, the result available in the aforementioned study [23], obtained using 19 in-

plane modes and 19 out-of-plane modes, is used for comparison. In Fig. 3.11(b), 

the lateral displacements on the loading line obtained by the three methods show 

good agreement with the result by the shell elements.  

Figure 3.12 shows the contribution of each mode to the total strain energy and the 

displacement at the middle point of the loading line. In Fig. 3.12, while the 

proposed modes that make large contributions to the strain energy are found to be 
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identical to those by the GBT, the modes that make large contributions to the 

displacement are fewer than those by the GBT. This occurs because the point of the 

displacement measurement is in the middle of the beam, where only in-plane 

modes are aroused. Therefore, the out-of-plane modes corresponding to mode 3 

and mode 5 of the GBT make zero contributions to the displacement in the figure 

on the right in Fig. 3.12. A similar aspect is also observed in the GE modes; a 

detailed report of this is given in the references [23]. 

 

3.3.3 Static analysis: a cantilever beam with a closed cross-

section 

The free end of a clamped thin-walled beam with the cross-section in Fig. 3.3(b) is 

under vertical concentrated force at the lower right corner of the cross-section. The 

beam length is 400 mm and the wall thickness is 2 mm. The displacement and 

stress results at point P along the axial direction calculated by the proposed HoBT 

as well as the GBT are plotted in Figs. 3.13(a) and (b), respectively. For the cross-

section discretization of the GBT, three cases are studied; each edge is uniformly 

discretized with 1, 5 and 7 intermediate nodes, resulting in 78, 234 and 312 modes, 

respectively (see Fig. E.2 in Appendix E for the cross-section modes obtained using 

one intermediate node). Here, 200 finite elements in total are employed for the 

analysis of the GBT and the proposed HoBT, while 100 elements are assigned near 

the loaded end (from z=350 mm to z=400 mm). 
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In Fig. 3.13(a), moderate accuracy for the displacements can be obtained using 

M=2 (62 modes) in the proposed approach and 78 modes in the GBT, while more 

modes (M=5 or 213 modes in the proposed approach and 234 modes in the GBT) 

are required to capture the end effect of uz. For an accurate prediction of the stress, 

as in Fig. 3.13(b), M=7 (311 modes) and 312 modes are needed for the proposed 

HoBT and GBT, respectively. 

The contribution of the generalized forces to σzz in Fig. 3.13(b) is shown in Fig. 

3.14, where 3W   is calculated as the most dominant higher-order mode for the 

axial stress. Figures 3.15(a) and (b) show the von Mises stress and deformed shape 

on the cross-section midline calculated at z = 380 mm, where the peak of the shear 

stress ZY  occurs. In the figure, the results by the proposed approach and GBT 

are in good agreement with the shell results. 

 

3.3.4 Modal analysis: a beam with a flanged cross-section 

with a free-free support condition 

A modal analysis is conducted for a thin-walled beam with a flanged cross-section, 

as shown in Fig. 3.3(c), with no support condition. The beam length is 500 mm and 

the wall thickness is 1 mm. Figure 3.16 shows the free vibration mode shapes 

obtained using the shell elements, GBT and proposed HoBT, whose corresponding 

natural frequencies are listed in Table 3.2. Two intermediate nodes are placed for 

each cross-section edge to derive the GBT modes (see Fig. E.3 for the cross-section 
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modes). For the proposed HoBT, 21 modes are used, with M=2. In total, 50 finite 

elements with even discretization are used for the analyses of the GBT and the 

proposed HoBT. Although relatively few cross-section modes are employed, the 

free vibration characteristics of the beam are accurately predicted by both 

approaches. Specifically, the proposed HoBT gives results with less than 1% of a 

difference relative to the shell results. 
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Table 3.1 The number of cross-section modes for the cross-sections in Fig. 3.3 

 Open section  Closed section  Flanged section 

Set Nχ Nη NW Total  Nχ Nη NW Total  Nχ Nη NW Total 

1 2 0 5 11(7+4)  10 0 12 26(22+4)  1 0 3 8(4+4) 

2 6 9 6 32  13 23 13 75  4 9 4 25 

3 6 6 6 50  13 24 13 125  4 9 4 42 

4 6 9 6 71  13 25 13 176  4 9 4 59 

5 6 6 6 89  13 24 13 226  4 9 4 76 

6 6 8 6 109  13 23 13 275  4 9 4 93 

7 6 7 6 128  13 23 13 324  4 8 4 109 

8 6 6 6 146  13 22 13 272  4 9 4 126 

9 6 9 6 167  13 21 13 419  4 8 4 142 

 

 

  



48 

 

 

 

 

 

 

 

Table 3.2 Natural frequencies (Hz) of a beam with a flanged cross-section 

(numbers in parentheses denote the difference (%) from the shell results) 

Mode 1 2 3 4 5 6 7 

Shell 582.08 788.94 1482.1 1948.6 2098.0 2401.2 2850.9 

GBT 583.97 

(0.33) 

791.56 

(0.33) 

1485.7 

(0.24) 

1953.1 

(0.23) 

2097.0 

(0.05) 

2398.5 

(0.11) 

2846.4 

(0.16) 

Proposed 583.35 
(0.22) 

790.53 
(0.20) 

1492.5 
(0.71) 

1961.1 
(0.64) 

2100.8 
(0.13) 

2424.1 
(0.95) 

2873.2 
(0.78) 
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Fig. 3.1 Deformations by (a) axial stress, (b) bending stress and (c) shear stress 

acting on the sectional edge 
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Fig. 3.2 Recursive process of the proposed higher-order mode derivation 
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Fig. 3.3 Thin-walled cross-sections considered in the analyses: (a) an open section, 

(b) a closed section and (c) a flanged section   
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Fig. 3.4 Cross-section modes for the open section in Fig. 3.3(a) 
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Fig. 3.5 Cross-section modes for the closed section in Fig. 3.3(b)  
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Fig. 3.6 Cross-section modes for the flanged section in Fig. 3.3(c) 
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Fig. 3.7 Static analysis results measured along point P in Fig. 3.3(a): (a) 

displacement results and (b) stress results (the numbers in parentheses indicate the 

number of cross-section modes with M denoting the highest mode set number)  
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Fig. 3.8 Difference convergence of the axial stress ( ZZ ) at the peak point (z = 

893.4 mm) in Fig. 3.7(b) for varying numbers of mode sets 
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Fig. 3.9 Contribution of three dominant distortion modes to the shear stress ( ZX ) 

in Fig. 3.7(b) 
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Fig. 3.10 Stress results measured at different n coordinates (n = −t/2, 0, t/2) of 

point P for the thin-walled beam problem with the open cross-section in Fig. 3.3(a)  
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Fig. 3.11 (a) A simply supported thin-walled beam with an open cross-section 

subjected to a sinusoidal lateral load, and (b) resulting lateral displacements along 

the loading line 
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Fig. 3.12 Contributions to the strain energy and displacement at the center of the 

loading line by the GBT modes and proposed higher-order modes 
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Fig. 3.13 Static analysis results measured along point P in Fig. 3.3(b): (a) 

displacement results and (b) stress results  
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Fig. 3.14 Contribution of three dominant warping modes to the axial stress ( ZZ ) 

in Fig. 3.13(b) 
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Fig. 3.15 (a) Von Mises stress and (b) in-plane deformation calculated on the 

cross-section at z = 380mm for the thin-walled beam problem with the cross-

section in Fig. 3.3(b) 
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Fig. 3.16 Free-vibration mode shapes for a thin-walled beam with the flanged 

cross-section in Fig. 3.3(c): results by (a) the shell theory, (b) the GBT and (c) the 

proposed higher-order beam theory 
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CHAPTER 4.  

Coupling relations of cross-section modes at a joint of 

thin-walled beam structures 

 

 

4.1 Displacement and rotation continuities at a beam joint 

A joint condition using displacement and rotation continuities is presented here. 

Figure 4.1 shows the connection points where the continuities are imposed. In the 

proposed approach, the connection points are placed at the cross-section corners 

and joint axis, while those in other approaches, e.g., the GBT [62-70], are 

designated inconsistently for the cross-section shape. Note that the joint axis 

intersects the centroid so that the mass can be correctly evaluated in the one-

dimensional model. In Figs. 4.2(a, b) that show illustrative L- and T-type joints, it 

can be seen that connection points of each beam section do not meet directly since 

the beam section is normal to the beam axis. Because inaccurate results are yielded 

if this cross-sectional mismatch is neglected, as can be seen in other continuity-

based approaches [57-61], displacements and rotations on the joint section where 

the connection points are actually matched have to be carefully assessed when the 
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continuity conditions are calculated. To do this, we propose to take into account 

additional displacements on the joint section, which are aroused by rotations at the 

beam section, as can be seen in Fig. 4.2(c). 

Note in Figs. 4.2(a, b) that the continuities are imposed at an end section of each 

beam of the L-type joint, while those of the T-type joint are imposed at an end 

section of one beam and several sections of the other beam. 

In the Figs. 4.2(a, b), the vertical axis of each beam (Y1 and Y2) is set parallel to the 

joint axis, therefore, the relation between axes of two beams can be defined as 

 
1 2 2

1 2 1 2

1 2 2

cos 0 sin

0 1 0 ,

sin 0 cos

X X X

Y Y Y

Z Z Z

 

 

       
      

      
             

T   (4.1) 

where (Xb, Yb, Zb) is the coordinate system of beam b (b=1, 2),   is joint angle, 

and T1 is a coordinate transformation matrix. Using above relation, the 

displacement and rotation continuities can be written as 

 

1 2

1 2

1 2

1 0,

X X

Y Y

Z Z
p p

u u

u u

u u

 

 

 

   
      

    
   
      

T   (4.2) 

 

1 2

1 2

1 2

1 0,

X X

Y Y

Z Z
p p

 

 

 

    
      
      

   
       

T   (4.3) 

where 
bKu  and 

bK

  are displacement and rotation in K (K=Xb, Yb, Zb) direction 

for beam b (b=1, 2), respectively, and ( )
p

 is the value at connection point p (p=1, 
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···, NP; NP: the number of the connection points). 

 

4.1.1 Rotation on the joint section at an independent point 

The connection points are classified into two types; independent point defined on a 

single edge and dependent point where multiple edges are connected, as shown in 

Fig. 4.1. In this section, calculation of rotations at an independent point is 

presented. 

The rotations are calculated by differentiating the midline displacements, where the 

midline displacements at an independent point p can be written as 

 

( )

( ) ,

( )

( ) ( ),

n e

s e e p p

z e
p

u

u s z

u

 
 

 
 
 

ψ ξ   (4.4) 

where uk(e) (k=n, s, z) is k-directional displacement on edge e, and se,p and zp are se 

and z coordinates of the point p, respectively. Note that se is the shear directional 

axis of edge e as shown in Fig. 2.1. ψ in Eq. (4.4) is shape function matrix for 

cross-section mode vector ξ as 

 .

Nx D

Nx D

Nx D

U

n nn

U

s s s

U
z z z







 

 

 

 
 

 
 

   
 

 
     

ψ

ψ ψ

ψ

  (4.5) 

Rotations can be calculated by differentiating the displacements in Eq. (4.4) as 

 ;  ;  ,n nz
n s z

u uu

s z s

 
      

  
  (4.6) 
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where Θk (k=n, s, z) is k-directional rotation. Rotations in Eq. (4.6) can be 

represented in a matrix form using Eq. (4.4) as 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 , 2 ,

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

( ) ( ) ( ) ( ),

n e n e n e

s e s e s e

z e z e z e
p p p

e p p e p p

u u

u u
s z

u u

s z s z

         
         

                            

 Q ψ ξ Q ψ ξ

  (4.7) 

where Q1 and Q2 are incidence matrices. The rotations in Eq. (4.7) can be written 

for local coordinate system of a beam (X, Y, Z) as 

 

( )

( )

( )

2 1 , 2 2 ,

sin cos 0

cos sin 0

0 0 1

( ) ( ) ( ) ( ),

X e e n e

Y e e s e

Z z ep p

e p p e p ps z s z

 

 

     
    

       
          

 T Q ψ ξ T Q ψ ξ

  (4.8) 

where T2 is a coordinate transformation matrix. The rotations on the joint section 

are the same as those on the beam section as 

 
2 1 , 2 2 ,
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,
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p
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      

 

 
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 
 
 

T Q ψ ξ T Q ψ ξ

ξ
T Q ψ Q ψ

ξ

ξ
S

ξ

  (4.9) 

where K

  (K=X, Y, Z) is the rotation on the joint section, and SR1,p is 3×2ND 

matrix to calculate K

  at independent point p. 
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4.1.2 Rotation on the joint section at a dependent point 

As briefly mentioned in Section 2.1, out-of-plane (z-directional) deformations used 

in this paper meet the C1 continuity at the dependent points [40]. Therefore, at a 

dependent point, in-plane rotations (ΘX and ΘY) are uniquely defined using 

differentiated z-directional displacements on any two connecting edges. Therefore, 

unlike in the independent points where ΘX and ΘY are calculated using n- and z-

directional displacements, ΘX and ΘY at a dependent point are calculated using z-

directional displacements only. For example, in-plane rotations at a dependent 

point p are calculated using the z-directional displacements on any two connecting 

edges e1 and e2 as below. 
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( 2)2 11 2
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2,2 11 2

1,
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n ee eX
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z e pe ee e
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 
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ξ

ψ
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T ξ

ψ

  (4.10) 

where αe1 and αe2 are the angles of edges e1 and e2 with respect to the X axis, 

respectively, as shown in Fig. 2.1, and T3 is a transformation matrix. z-directional 

rotation can be calculated using n-directional displacement on any edge e, as in the 

dependent points. 

 ( ) ,( ) ( ).Z z e n e p pp p
s z   ψ ξ   (4.11) 
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Note in Eq. (4.11) that the subindex e can be the e1 or e2 because it does not matter 

which edge is chosen due to the slope continuities of ψn’s at cross-section corners. 

The rotations on the joint section can be defined using Eqs. (4.10) and (4.11) as 
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,
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  (4.12) 

where SR2,p is 3×2ND matrix to calculate K

  at dependent point p. Note that SR2,p 

contains a zero matrix to match the format with SR1,p in Eq. (4.9). 

 

4.1.3 Displacement on the joint section 

The displacements at connection point p can be represented as 
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 T ψ ξ

  (4.13) 

where T2 is the transformation matrix in Eq. (4.8). Considering the additional 

displacements caused by rotations at a beam section, displacements on the joint 

section can be calculated as 
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  (4.14) 

where rp is z-coordinate of joint section from the connection point p illustrated in 

Fig. 4.2(c), Q3 is an incidence matrix, θX and θY are the bending rotation modes, 

and 1W

X  and 1W

Y  are rotation angles in X and Y directions caused by linear 

warping modes. Note in Eq. (4.14) that only bending rotation modes and linear 

warping modes are considered for the additional displacements on the joint section, 

where the linear warping modes mean warping modes that cause linear 

deformations as shown in Fig. 4.3. The bending rotation modes θX and θY can be 

calculated by transforming the bending rotation modes in Eq. (2.2) as 
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cos sin
,

sin cos

x xX

y yY p p p
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       
T   (4.15) 

where   is the orientation angle of the principal axes in Fig. 2.1, T4 is a 

transformation matrix, and x  and 
y  are the 4th and 5th components of ξ in Eq. 

(2.2): 

 4
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0 0 0 0 1 0 0
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ξ Q ξ   (4.16) 

where Q4 is an incidence matrix to select the bending rotation modes from the 

cross-section modes vector. The rotation angles by the linear warping modes can be 
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calculated as 
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where  
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S H
R
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  (4.18) 

In Eq. (4.18), Rp is a matrix to select 1 1( , )W W

X Y   from ( , )X Y   in Eqs. (4.8, 

10), and SR,p is the matrix defined in Eqs. (4.9, 12) to calculate the rotation angles 

at connection point p: 
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,

2,
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.
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

S
S

S
  (4.19) 

Also, H in Eq. (4.18) is 2ND×ND diagonal matrix to select the linear warping modes 

17 6{ , , }
WN  

 (NW1: number of the linear warping modes) from all cross-section 

modes, whose components are 

 
11 (7 6 )

.
0 (otherwise)

W

aa

a N
H

  
 


  (4.20) 

Note in Eq. (4.18) that the rotation angles by linear warping modes are considered 

only for the open section when the additional displacements on the joint section are 

calculated. This is done because it is already demonstrated in the studies of Choi et 

al. [37, 55, 56] that joint conditions can be derived without considering the 

additional displacements for the closed section. Substituting Eqs. (4.15-17) into Eq. 
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(4.14) gives 
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  (4.21) 

where SU,p is 3×ND matrix to calculate the displacements on the joint section at the 

connection point p. 
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4.2 Joint conditions for finite elements 

The nodal solution vector d in Eq. (2.18) is composed of degrees of freedom 

(DOFs) of each beam. For example, for a beam structure that consist of two beam 

members, d can be written as 

 
[1]

[2]
,

 
  
 

d
d

d
  (4.22) 

where d[b] represents the DOF vector for beam b (b=1, 2). Because the Hermite 

cubic polynomials are used as the finite element shape functions, d[b] is composed 

of the nodal DOFs and their derivatives as 

  [ ] [ ] [ ] [ ] [ ]

1 1;  ;  ;  ;  ,  ( 1,2).b b
N N

b b b b b

N N
b  d ξ ξ ξ ξ   (4.23) 

where [ ]b

cξ  and [ ]b

c
ξ  are nodal DOF vector for node c (c=1, ···, b

NN ; b

NN : 

number of the finite element nodes of beam b) of beam b. 

By substituting Eq. (4.21) into Eq. (4.2), the condition of displacement continuity 

for the nodal DOFs is defined as 

 [1] [1] [2] [2] 1 2

, 1 , 0,  (1 ;  1 ),U p i U p j N Ni N j N     S ξ TS ξ   (4.24) 

where [ ]

,

b

U pS  is the matrix to calculate displacements on the joint section at 

connection point p (p=1, ···, NP; NP: number of the connection points) on beam b 

(b=1, 2), 
[ ]b

Iξ  is the DOFs at corresponding finite element node I (I=i, j). In the 

similar way, substituting Eqs. (4.9, 12) into Eq. (4.3) gives the condition of rotation 

continuity for the nodal DOFs as 
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where [ ]

,

b

R pS  is the matrix to calculate rotations on the joint section at connection 

point p (p=1, ···, NP; NP: number of the connection points) on beam b (b=1, 2). 

Note that [ ]

,

b

R pS  depends on type of the connection point as explained in Sections 

4.1.1 and 4.1.2; 
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S
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where [ ]

1,

b

R pS  and [ ]

2,

b

R pS  are the matrices defined in Eqs. (4.9, 12), respectively. 
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4.3 Numerical examples 

For the verification of the proposed joint conditions, several numerical tests that 

cover L-type and T-type joints are conducted. Because the higher-order modes 

used in this paper are verified only for the static and vibration analyses [40], higher 

level analyses like buckling analyses are not included here, but they are going to be 

studied in our next research. 

In Sections 4.3.1 and 4.3.2, static and vibration analyses for several L-type joint 

structures that are solved in other earlier studies are conducted by the proposed 

approach. Also, the results by the proposed approach are compared with the results 

in each original paper. In Sections 4.3.3 and 4.3.4, the new problems are solved; T-

type joint structures having complicated cross-sections, and a simplif ied 

automotive frame that is composed of various L- and T-type join parts. All the 

results in this section are compared with the results by the shell theory (ABAQUS 

S8R elements). The same Poisson’s ratio and density (ν = 0.3 and ρ = 7850 kg/m3), 

and various Young’s modulus (E = 205 GPa for Section 4.3.1, E = 210 GPa for 

Section 4.3.2, and E = 200 GPa for the other examples) are used in the examples. 

 

4.3.1 An L-type joint structure with rectangular section 

An L-type joint structure shown in Fig. 4.4, which is covered in the study of Choi 

et al. [55], is analyzed. One end of the structure is fixed, and the other end is 

assumed to be rigid and subjected to vertical force. The analysis is conducted with 
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various joint angles ( 30  , 60 , 90 ), and the results by the shell elements, the 

Timoshenko beam theory, the Choi’s approach and the proposed approach are 

compared in Figs. 4.5-7 for each joint angle. Note that three rigid-body modes 

(vertical deflection, bending rotation, torsional rotation) are used in Timoshenko 

beam theory, and warping and distortion modes are additionally considered in the 

Choi's approach. Also, 43 cross-section modes derived by the method in Chapter 3 

are used in the proposed approach. It is shown in the graphs in Figs. 4.5-7 that the 

results by the Choi's approach and the proposed approach agree with the shell 

results consistently for the joint angle, while the Timoshenko beam results does not. 

Figure 4.8 shows the differences of the tip deflection by the shell elements and the 

proposed approach for the case of 30  . The horizontal axis of the graph 

indicates the number of the cross-section modes used in the proposed analysis. It 

can be seen from the graph that the difference decreases as more cross-section 

modes are used. When the three rigid-body modes are used in the proposed 

approach, the result is the same as that of the Timoshenko beam theory. To make 

the difference comes within 5%, more than 18 modes are needed. Also, in order to 

obtain better result than the Choi's approach, 31 or more modes have to be used. As 

a result, Choi's approach shows better accuracy when the same cross-section modes 

are used. This is because his approach is specialized in L-type joint sutures with a 

rectangular cross-section subjected to out-of-plane load, in the other words, his 

approach is limited to this case. Although the proposed approach needs many 
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cross-section modes for accurate analysis, the efficient analysis is possible by 

considering higher-set modes only for the elements near the joint, while 

considering the first set modes for the remaining elements, as described in 

Appendix F. Compared to other existing approaches, the proposed joint condition  

has merits in that it can cover arbitrary loading and complicated structures in a 

consistent manner, as can be seen in later examples. 

 

4.3.2 L-type joint structures with I-section 

L-type joint structures with flange continuity and web continuity in Fig. 4.9 are 

analyzed to cover the problems in the studies of the GBT [66, 70]. Although both 

joint structures in the examples have the same cross-section, joint conditions in [66, 

70] are different each other because they have different joint continuities. The 

support condition in Fig. 4.9, which applies to both example, implies that both ends 

of the structure are fixed and out-of-plane (Y1 and Y2) displacement at the center of 

the joint section is constrained. In the analyses by the proposed approach, 20 

modes for Section 4.3.2.1 and 42 modes for Section 4.3.2.2 are used. 

4.3.2.1 Flange continuity 

A static analysis is performed for the I-beam structure with the flange continuity. 

Each member of the structure has a different length (L1=4m and L2=3m), and a 

torsional moment of 1000Nm is applied at the mid-span of the beam 1 (or at 

Z1=2m). The analysis results in Fig. 4.10(a) show that torsional rotations by the 
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GBT [66] and the proposed approach are well matched with the shell result, while 

the Timoshenko beam theory yields too stiff result because transmission of the 

torsional rotation is not captured. Also, it can be seen from Fig. 4.10(b) that full 

transmission of the linear warping induced by equilibrium of the bimoment, which 

is demonstrated in [53], is well captured by the proposed approach. 

4.3.2.2 Web continuity 

A vibration analysis is performed for the L-type joint structure with the web 

continuity (L1=L2=3m). Table 4.1 shows the first 15 natural frequencies yielded by 

the shell elements, the GBT [70] and the proposed approach. From the table, it is 

found that both results by the GBT and the proposed approach show good 

agreements with the shell results. 

It is worth noting that only unstiffened joints are dealt in this section although 

various stiffened joints are studied in the original examples in [66, 70], because 

stiffened joints cannot be modeled in the proposed approach. In the GBT, the 

stiffening effects of various types of joints are carefully implemented, and effective 

stiffened joint conditions are proposed. Although the proposed approach is limited 

to the unstiffened joints, it has a merit in that the joint condition can be defined in a 

consistent manner regardless of the joint continuity types, while different joint 

conditions are used in the GBT depending on the continuity. This is because the 

GBT is mainly interested in efficient analyses of building frames, while the 

proposed approach is focused on analyzing more complex structures such as 

automotive frames. 
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In Appendix G, additional tests are implemented for the structures in Section 4.3.2 

to check whether the proposed joint condition works with the GBT modes, showing 

that it is effective not only for the proposed cross-section modes but also for the 

GBT modes. 

4.3.3 A T-type joint structure with pentagonal and 

rectangular sections 

A T-type joint structure in which a rectangular tube (beam 2) is connected to a 

pentagonal sectioned beam (beam 1) with the joint angle   is analyzed (see Fig. 

4.11). Both ends of the beam 1 is fixed, and one end of the beam 2 is assumed to be 

rigid and subjected to axial force. In the proposed approach, 57 modes for the 

pentagonal section and 46 modes for the rectangular section are used for analyses. 

Figures 4.12 show the deformed shapes calculated by the shell elements, the 

proposed approach and the Timoshenko beam theory for various joint angles 

( 30 ,60 ,90  ), and Fig. 4.13 shows the differences between the tip 

displacement (magnitude) by shell and both beam based approaches. It can be seen 

from Figs. 4.12 and 4.13 that the results by the proposed approach are almost the 

same as the shell results, while the Timoshenko beam theory gives inaccurate 

results. 

 

4.3.4 A simplified vehicle frame 

Figure 4.14(a) shows the line along the centroid of each member of the vehicle 
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frame in Fig. 1.3. The frame is fixed at two points and subjected to torsional forces. 

The sections in which forces are applied are assumed to be rigid. Figure 4.14(b) 

shows cross-sections of the vehicle frame members. For each cross-section, 53, 35, 

53, 53, 28, 53 and 53 modes are used in the proposed model. Detailed modeling 

information of members marked with blue numbers in Fig. 4.14(a) is given in Table 

4.2.  

It can be seen from Fig. 4.15 that the deformed shape of the proposed approach 

well matches with that of the shell elements, while the Timoshenko beam model is 

too stiff. Specifically, the difference of vertical displacement at point A in Fig. 

4.14(a), one of the loading point, is calculated as 0.4% in the proposed approach 

and 45.5% in the Timoshenko beam theory, compared to the shell result. Also, the 

proposed approach gives outstanding results for the free vibration analysis of the 

vehicle frame as can be seen in Fig. 4.16. 
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Table 4.1 Natural frequencies (Hz) from the vibration analysis of an L-type joint 

structure in Section 4.3.2.2 (numbers in parentheses denote the differences (%) 

from the shell results) 

Mode Shell GBT [70] Proposed 

1 27.92 28.21 (1.1) 27.42 (1.8) 

2 28.90 29.23 (1.1) 28.38 (1.8) 

3 38.24 39.02 (2.0) 37.66 (1.5) 

4 40.63 42.23 (3.9) 40.40 (0.6) 

5 77.67 79.45 (2.3) 78.63 (1.2) 

6 90.98 91.87 (1.0) 90.03 (1.0) 

7 95.93 99.49 (3.7) 95.68 (0.3) 

8 108.06 112.42 (4.0) 108.13 (0.1) 

9 118.68 122.43 (3.2) 117.97 (0.6) 

10 144.94 149.09 (2.9) 143.24 (1.2) 

11 147.80 153.34 (3.7) 148.05 (0.2) 

12 160.07 164.61 (2.8) 165.21 (3.2) 

13 179.67 185.93 (3.5) 176.29 (1.9) 

14 223.83 231.94 (3.6) 217.10 (3.0) 

15 234.54 241.16 (2.8) 231.70 (1.2) 
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Table 4.2 Beam modeling information for the vehicle frame in Fig. 4.14 

Beam Section Orientation  End coordinates 1  End coordinates 2 

  XG YG ZG  XG YG ZG  XG YG ZG 

1 1 1 0 0  0.50 0 1.60  0.50 0 2.40 

2 2 0 0 -1  0.80 0.07 1.55  0.80 0.50 1.55 

3 1 0 0 -1  -0.85 0 1.55  0.85 0 1.55 

4 5 0 0 -1  -0.85 0.50 1.55  0.85 0.50 1.55 

5 1 1 0 0  0.80 0 -1.50  0.80 0 1.50 

6 6 1 0 0  0 0 0.05  0 0 1.50 

7 3 -0.94 -0.24 0.24  0.75 0.53 1.53  0.52 1 1.06 

8 3 -1 0 0  0.52 1 1.06  0.52 1.21 0.85 

9 7 0 0.71 -0.71  -0.47 1.07 0.93  0.47 1.07 0.93 

10 3 -1 0 0  0.52 1.21 0.85  0.52 1.21 -0.85 

11 1 0 0 -1  -0.75 0 0  0.75 0 0 

12 4 0 0 1  0.79 0.07 0  0.79 0.95 0 

13 4 0 0 1  0.79 0.95 0  0.54 1.19 0 

14 7 0 0 -1  -0.47 1.17 0  0.47 1.17 0 

15 6 1 0 0  0 0 -1.50  0 0 -0.05 

16 3 -1 0 0  0.52 1.21 -0.85  0.52 1 -1.06 

17 7 0 -0.71 -0.71  -0.47 1.07 -0.93  0.47 1.07 -0.93 

18 3 -0.94 -0.24 -0.24  0.52 1 -1.06  0.75 0.53 -1.53 

19 2 0 0 -1  0.80 0.07 -1.55  0.80 0.50 -1.55 

20 1 0 0 -1  -0.85 0 -1.55  0.85 0 -1.55 

21 5 0 0 -1  -0.85 0.50 -1.55  0.85 0.50 -1.55 
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Fig. 4.1 Connection points on a thin-walled cross-section 
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Fig. 4.2 One-dimensional models of (a) L-type joint and (b) T-type joint, and (c) 

additional displacements on joint section by rotations at a connection point  
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Fig. 4.3 Rotations that cause additional displacements on joint section: (a) sectional 

rotations by the bending rotation modes and (b) edge rotations by a linear warping 

mode 
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Fig. 4.4 L-type joint structure with rectangular section subjected to vertical force 
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Fig. 4.5 Analysis results of the problem in Fig. 4.4 with 30    
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Fig. 4.6 Analysis results of the problem in Fig. 4.4 with 60    
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Fig. 4.7 Analysis results of the problem in Fig. 4.4 with 90    
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Fig. 4.8 Accuracy convergence of the tip deflection in Fig. 4.5 for the number of 

used cross-section modes 
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Fig. 4.9 L-type joint structure with I-section, and boundary conditions 
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Fig. 4.10 Static analysis results of the problem in Section 4.3.2.1: (a) torsional 

rotation and (b) linear warping mode 
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Fig. 4.11 T-type joint structure with pentagonal and rectangular sections subjected 

to axial force 
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Fig. 4.12 Deformed shapes of the T-type joint structure in Fig. 4.11 with various 

joint angles ( 30 ,60 ,90  ) yielded by the shell elements, the Timoshenko beam 

theory and the proposed approach 
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Fig. 4.13 Accuracy of the tip displacements in Fig. 4.12 
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Fig. 4.14 (a) Dimensions and boundary conditions of the vehicle frame in Fig. 1.3 

(the numbers in blue indicate beam numbers in Table 4.1), and (b) cross-sections of 

the members  
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Fig. 4.15 Deformed shapes of the vehicle frame in Fig. 4.14 yielded by the shell 

elements, the Timoshenko beam theory and the proposed approach 
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Fig. 4.16 Free vibration analysis results of the vehicle frame in Fig. 4.14 yielded by 

(a) the shell elements, (b) the Timoshenko beam theory and (c) the proposed 

approach 

  



100 

 

 

 

CHAPTER 5.  

Conclusions 

 

 

Through this dissertation, we presented a procedure for the one-dimensional 

modeling of complicated beam structures. 

In Chapter 3, an analytic and systematic approach to derive cross-section modes of 

a thin-walled cross-section is proposed. While other constitutive relation-based 

approaches were limited to rectangular cross-sections, the proposed approach is 

applicable to arbitrarily shaped general sections, for which a formulation utilizing 

an eigenvalue problem was newly presented. This required the use of orthogonality 

among cross-section modes, from which the coefficients of basis functions for the 

modes in the higher set can be obtained as eigenvectors. For hierarchical derivation 

from lower to higher modes, we first derived integral equations between lower and 

higher modes using constitutive equations of a plane stress state. By doing so, the 

modes in the higher mode set can represent the strain field corresponding to the 

stress field generated by the modes in lower sets. To confirm the validity, the 

proposed cross-section modes were used for analyses of various thin-walled beams, 

whose results were compared with those by other beam-based approaches as well 



101 

as full shell models. The numerical results showed that the proposed approach can 

yield excellent accuracy for three-dimensional displacements only using up to 

second set of cross-section modes. To correctly estimate rapidly changing stress by 

the end effect, more modes from higher-order mode sets might be required, but the 

error can be reduced to less than 1% as long as sufficient higher modes are 

employed. 

In Chapter 4, an approach to define the joint condition was proposed. In the 

proposed approach, the joint condition is derived using the displacement and 

rotation continuities at the connection points. Although many enriched joint 

conditions that use the continuities have been proposed, e.g., the GBT, the 

proposed approach have some merits. First, the way the connection points are set is 

consistent regardless of the cross-section shapes. Second, additional displacements 

on the joint section caused by the rotations at a connection point are taken into 

account. The consideration of the additional displacements is essential for an 

authentic assessment of displacements at the joint, because the beam section and 

the joint section are in different planes for general joint angle. For the verification 

of the proposed joint condition, four examples were implemented. In the first two 

examples that were covered by Choi et al. and the GBT, respectively, it was shown 

that both results by the proposed approach and existing studies agree well with the 

shell results. Although each existing study shows its own uniqueness, it also was 

able to be found that the proposed joint condition has an advantage in that it is 

applicable to various cross-sections in a consistent manner. Last two examples 
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covered more complicated joint structures; a T-type joint structure and a vehicle 

frame that is composed of various L- and T-type joints. Results of the examples 

showed that the proposed approach is suitable to analyze complicated and practical 

structures. 

This dissertation showed that effective one-dimensional analyses of complicated 

structures can be made using the proposed approaches, while other existing beam 

theories are limited to simple cases only. The proposed joint condition also has a 

limitation in that it can be used only if the connection points of beams can meet at 

the intersection point by extending them along the beam axis, making it 

challenging to cover the vehicle frames having complex joint parts. For future 

works, joints of beams of chamfered section and beams of different heights will be 

studied. 
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APPENDIX A. 

Determination of centroid and principal axes 

 

 

Coordinates of the centroid on a cross-section are 
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where (Xe, Ye) and αe are the origin and the orientation angle of local coordinate 

system of edge e, le is the length of edge e, and NE is the number of cross-section 

edges. 

Using the obtained XC and YC, the orientation angle of the principal axes can be 

calculated as 
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where 
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APPENDIX B. 

Corner continuity condition for s-directional 

displacements 

 

 

If more than two edges are connected at a corner, the s-directional displacement of 

an edge at the corner should be represented by those of any other two edges 

according to the displacement continuity. For example, if edges e1, e2 and e3 are 

connected at corner r, the s-directional displacement on edge e3, 
( 3)s eu , can be 

expressed in terms of 
( 1)s eu  and 

( 2)s eu  as 
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If 
*

s su       δc  according to Eqs. (3.9-3.12), Eq. (B.1) can be written as 
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If corner r has 
r

EN  connecting edges, ( 2r

EN  ) continuity conditions of Eq. (B.2) 

should be considered.  
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APPENDIX C. 

Corner continuity conditions for n-directional 

displacements 

 

 

The n-directional shape function of an in-plane mode should be defined to satisfy 

the continuity with corner displacement. For example, if the displacement at corner 

r is expressed by already defined s-directional shape functions of edges e1 and e2, 

the displacement continuity for edge ei (i = 1, 2, ···, r

EN ; r

EN : number of 

connecting edges at corner r) is 

 2 1
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where the corner displacement by s-directional shape function is expressed using 

Eq. (B.2). 

In addition, the slope continuity conditions and moment equilibrium are 
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where ωi = 1 for s = lei and ωi = −1 for s = 0 because the sign of the moment differs 
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at both ends of an edge. 

If 
( )n ei

  is set as a quadratic function for an open edge and as a cubic function for 

a closed edge, the number of coefficients is always equal to the number of 

conditions in Eqs. (C.1-C.3); hence, the n-directional shape function can be 

uniquely defined. 
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APPENDIX D. 

Equations for the number of cross-section modes 

 

 

The number of modes for warping (NW* and NW), distortion (Nχ* and Nχ), and wall-

bending modes (Nη) are 
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where NE and NC are the number of cross-section edges and the number of corners, 

respectively, and 
Ŵ

N  and ˆN
 are correspondingly the numbers of warping and 

distortion modes already derived in the lower sets. Above, Mi(r) (i = 1, 2, 3) 

denotes the number of continuity conditions at corner r: 
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Here, r

EN  is the number of cross-section edges connected at corner r. Note that an 

inequality is used in Eq. (D.5). This is because the rank of the matrix used in the 

eigenvalue problem can be lower than the number of basis functions because of not 

considering the orthogonality between n-directional displacements and wall-

bending modes. 

  



110 

 

 

 

APPENDIX E. 

GBT modes used for problems in Section 3.3 

 

 

Figures E.1-E.3 present the GBT modes employed in problems in Section 3.3. The 

modes are obtained using the GBTUL [12-17]. 
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Fig. E.1 GBT modes employed in the analysis in Section 3.3.2 
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Fig. E.2 GBT modes for the cross-section in Fig. 3.3(b) 
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Fig. E.3 GBT modes for the cross-section in Fig. 3.3(c) 
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APPENDIX F. 

Effectiveness of the use of higher-set modes for the 

joint 

 

 

The L-type joint structure in Fig. 4.4 is analyzed for 30  , considering 43 

cross-section modes for the elements near the joint, while considering 8 cross-

section modes used in [55] for the remaining elements. The total length of the joint 

elements of each beam is set 50mm. The analysis results in Fig. F.1 show that the 

efficient analysis is possible by considering higher-set modes only for the elements 

near the joint where complex deformations are occurred. In the analysis, 77% of 

degrees of freedom is reduced compared to the case of Section 4.3.1. 
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Fig. F.1 Analysis results of the problem in Fig. 4.4 with 30   considering 43 

cross-section modes for the elements near the joint and 8 cross-section modes for 

the remaining elements 
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APPENDIX G. 

Effectiveness of the proposed joint condition for the 

GBT modes 

 

 

The numerical tests are implemented for the structures in Section 4.3.2 to check 

whether the proposed joint condition works with the GBT modes. Figure F.1 shows 

the torsional rotation and linear warping modes obtained by analyzing the structure 

in Section 4.3.2.1, and Table F.1 shows the modal analysis results of the structure 

in Section 4.3.2.2. From the results, it is found that the proposed joint condition is 

effective not only for the proposed cross-section modes but also for the GBT 

modes, although some results seem to be slightly differ from those of the shell. 
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Table G.1 Natural frequencies (Hz) from the vibration analysis of an L-type joint 

structure in Section 4.3.2.2 (numbers in parentheses denote the differences (%) 

from the shell results) 

Mode Shell GBT Proposed GBT modes & 

Proposed joint 
condition 

1 27.92 28.21 (1.1) 27.42 (1.8) 27.77 (0.5) 

2 28.90 29.23 (1.1) 28.38 (1.8) 28.72 (0.6) 

3 38.24 39.02 (2.0) 37.66 (1.5) 37.56 (1.8) 

4 40.63 42.23 (3.9) 40.40 (0.6) 40.75 (0.3) 

5 77.67 79.45 (2.3) 78.63 (1.2) 79.60 (2.5) 

6 90.98 91.87 (1.0) 90.03 (1.0) 91.05 (0.1) 

7 95.93 99.49 (3.7) 95.68 (0.3) 93.49 (2.5) 

8 108.06 112.42 (4.0) 108.13 (0.1) 108.77 (0.7) 

9 118.68 122.43 (3.2) 117.97 (0.6) 117.09 (1.3) 

10 144.94 149.09 (2.9) 143.24 (1.2) 119.21 (17.8) 

11 147.80 153.34 (3.7) 148.05 (0.2) 145.58 (1.5) 

12 160.07 164.61 (2.8) 165.21 (3.2) 164.44 (2.7) 

13 179.67 185.93 (3.5) 176.29 (1.9) 177.93 (1.0) 

14 223.83 231.94 (3.6) 217.10 (3.0) 219.15 (2.1) 

15 234.54 241.16 (2.8) 231.70 (1.2) 233.98 (0.2) 
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Fig. G.1 Static analysis results of the problem in Section 4.3.2.1 using GBT modes 

with the proposed joint condition: (a) torsional rotation and (b) linear warping 

mode 
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ABSTRACT (KOREAN) 

 

임의  단면을 갖는 박판 보 연결 구조의 

일차원 모델링 

 
김 재 용 

서울대학교 대학원 

기계항공공학부 

 

일차원 해석 모델에서는 단면 모드를 통해 변위장이 표현되기 때문에 고

려되는 단면 모드의 정의 방법과 개수는 해석 정확도에 큰 영향을 미친

다. Euler-Bernoulli 보나 Timoshenko 보 이론과 같은 고전 보 이론에서는 

여섯 개의 단면 강체모드만이 고려되기 때문에 상세 변형이 표현되지 않

으며, 결과적으로 실제보다 구조 강성이 높게 계산된다. 이와 같은 고전 

보 이론의 한계점은 보 단면의 뒤틀림(distortion)이나 일그러짐(warping) 

변형을 나타내는 고차 모드를 고려함으로써 해결될 수 있다. 고차 모드

는 보의 복잡한 변위 분포를 표현함으로써 강성이 정확하게 평가되도록 

하며 역학적 특성을 반영할 수 있도록 정의되어야 한다. 

고차 모드는 연결된 보 구조물 해석 시 주의 깊게 다뤄져야 한다. 일차
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원 해석 모델에서는 여러 개의 보가 연결되는 조인트에서 단면 모드 커

플링 관계(조인트 조건)가 정의되어야 한다. 고전 보 이론에서는 단면 강

체모드의 조인트 조건이 좌표 변환 행렬을 이용해 간단하게 정의되지만, 

결과력을 발생시키지 않는 고차 모드의 경우 방향성을 지니지 않기 때문

에 기존 방법으로는 조인트 조건을 정의할 수 없다. 

본 논문에서는 임의 단면을 갖는 박판 보에 적용 가능한 단면 모드 정의 

방법론과 조인트 조건이 제안된다. 제안하는 단면 모드 정의 방법론에서

는 평면 응력 상태에 대한 구성 방정식으로부터 단면 모드 식이 유도되

고, 그 식은 단면 모드의 직교 조건을 이용해 고윳값 문제로 변환된다. 

이 고윳값 문제를 풂으로써 구해진 고유벡터들을 기반으로 한 세트의 단

면 모드들이 정의된다. 이러한 과정이 반복되면서 단면 모드는 저차 세

트부터 고차 세트까지 반복적으로 유도된다. 제안하는 조인트 조건은 단

면 연결점(connection point)에서 변위 및 회전각 연속 조건을 부여함으로

써 정의된다. 연결점은 단면의 형상에 관계없이 일관된 방법으로 지정되

기 때문에 다양한 부재로 구성되는 복잡한 보 구조물에 대해서도 조인트 

조건을 정의할 수 있다. 또한 보 단면과 조인트 단면이 일치하지 않음에 

따라 발생되는 조인트 단면에서의 추가 변위를 고려함으로써 정확한 해

석이 가능하다. 타당성 검증을 위해, 제안하는 일차원 모델링 방법론을 

이용해 다양한 예제를 풀고 쉘(shell) 해석 결과와 비교해 보았다. 검증을 
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통해, 제안하는 방법으로 임의 단면을 갖는 복잡한 보 구조물을 고전 보 

대비 정확하게 해석 가능함을 확인하였다. 

 

주요어: 박판 보, 단면 모드, 고차 보 이론, 보 구조, 조인트 조건, 모드 커

플링 관계 

학 번 : 2016-30174 
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