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ABSTRACT

One-dimensional Modeling of
Thin-walled Beams with
Arbitrary Cross-sections and
Their Jointed Structures

Jaeyong Kim
School of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

In a one-dimensional analysis model, displacement field is expressed by cross-
section modes. In the classical beam theories, since only six rigid-body cross-
section modes are considered, detailed behaviors cannot be expressed, leading to a
stiffer structural rigidity compared to three-dimensional analysis models. This
limitation can be overcome by considering higher-order modes that represent
distortion or warping deformations of a cross-section. Although an accurate
analysis of a single beam can be made through this advanced approach, it also

arouses another difficulty when analyzing beam structures like space frames. At



joints of a beam structure, where multiple beams are connected, joint conditions are
needed to define coupling relations of the cross-section modes. In the classical
beam theories, a coordinate transformation matrix for the rigid-body cross-section
modes can be used as a joint condition. However, when considering the higher-
order modes in addition to the rigid-body cross-section modes, a standard
transformation is no longer valid, since the higher-order modes have no resultant.
In this thesis, fist, a new process to derive cross-section modes is proposed.
Equations of cross-section modes are derived from the constitutive relations for a
plane stress state, then, the equations are transformed to an eigenvalue problem
using mode orthogonality condition. Finally, a set of the cross-section modes are
defined through the inner products of a basis function vector and obtained
eigenvectors. As this process is repeated, the cross-section modes are recursively
derived from the lowest set to higher sets.

Second, this thesis proposes a new joint condition that is applicable to a joint of
thin-walled beams analyzed by the higher-order modes as well as the six-rigid body
modes. The proposed joint condition is defined using the continuities in
displacements and rotations at designated connection points along the beam
sections. The proposed joint condition two unique features; the connection points
are set in a consistent way, and additional displacements induced by mismatch
between the beam section and the joint section are taken into account. Without this
theory using these features, accurate analyses of complicated beam structures

would be impossible.



Several numerical case studies covered in this dissertation show that the proposed
approaches for the one-dimensional modeling are appropriate to analyze a

complicated beam structure with arbitrary sectioned members.

Keywords: Thin-walled beam, Cross-section mode, Higher-order beam theory,

Beam structure, Joint condition, Mode coupling relation
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CHAPTER 1.
INTRODUCTION

1.1 Motivation and literature survey

The inclusion of higher-order cross-section modes in addition to 6 fundamental
rigid-body cross-section modes is crucial for an accurate beam-based analysis of
thin-walled beams. Since Vlasov [1] demonstrated that the accuracy of the
torsional stiffness of thin-walled beams can be significantly improved by adding
warping modes, various studies have been conducted to find higher-order modes of
thin-walled cross-sections. Carrera et al. [2-4] expressed cross-section
deformations using polynomial functions defined through the Lagrangian
expansion or Taylor expansion. Beside, approaches that assume a thin-walled
cross-section as a beam frame and define free vibration modes as cross-section
modes were also presented [5-8].

For the analysis of thin-walled beams, recent studies focus on the derivation of
cross-section modes by decomposing a three-dimensional continuum problem into

a cross-section analysis and a one-dimensional analysis. In the generalized beam



theory (GBT), proposed by Schardt [9-11] and significantly improved by Camotim
et al. [12-17], the cross-section modes are derived starting from initial modes of a
discretized cross-section. The strain energy by the initial modes can be represented
in a matrix form using initial mode vectors and matrices of the sectional constants.
By combining the initial modes with eigenvectors of the matrices of sectional
constants, higher-order cross-section modes can be derived. Garcea and his
colleagues proposed the method of generalized eigenvectors (GE) [18-23]. In the
GE method, initial displacement fields are represented by two-dimensional
discretization, and cross-section modes are defined based on the Saint-Venant (SV)
rod theory [24], inspired by other SV theory-based works [25-28]. Vieira et al. [29-
31] also employed a generalized eigenvector approach for a cross-section analysis
of thin-walled beams. The validities of the GBT and the GE method have been
confirmed in static, vibration and buckling analyses. Also, Hodges et al. [32-34]
proposed the variational asymptotic beam sectional analysis (VABS), defining
cross-section modes through an asymptotic analysis of an energy functional, and
Kim et al. [35-40] derived warping and distortion modes using orthogonality
condition among the cross-section modes.

These advancements of beam theories have led to the accurate and efficient one-
dimensional analyses. At the same time, however, the introduction of these higher-
order modes makes it difficult to define joint condition that means the coupling
relations of cross-section modes at a joint where multiple beams are connected as

shown in Fig. 1.1.



The joint condition is essential to analyze beam structures like space frames of
buildings or vehicle frames. In the classical beam theories that use six rigid-body
modes only, the joint condition can be easily defined by using a coordinate
transformation matrix, since their directions are defined on the cross-section as
illustrated in Fig. 1.2(a). However, in the higher-order beam theories, coupling
relations of the cross-section modes cannot be defined using the coordinate
transformation matrix, since a higher-order mode does not generate the resultant
that defines the direction on the cross-section as can be seen in Fig. 1.2(b). For this
reason, some researchers have applied the spring stiffness into the joints of the
classical beam models, rather than introducing the higher-order modes. In these
approaches, spring stiffnesses are assessed through experimental [41, 42] or
numerical studies [43-45], or are calculated by using the sectional moment of
inertia [46, 47]. Some authors used these beam-spring models to analyze
complicated structures like vehicle frames [45, 48, 49]. Donders et al. used a shell
element-based super element to evaluate joint flexibility more accurately [ 50, 51],
rather than using spring stiffness. However, these classical beam-based approaches
have limitations in that the torsional stiffness of each beam member cannot be
assessed correctly by the classical beam theories. Also, local deformations occurred
near the joints cannot be captured by the spring elements.

To overcome the limitations of the classical beam-based approaches, many
attempts have been made to define the joint condition for the higher-order modes.

In the early days, studies were mainly conducted to identify the warping



transmission mechanism at the joints of open-sectioned thin-walled beams that are
used in space frames [52-54], and later, researches have been conducted to define
the coupling relations of more complicated higher-order modes at the joints. Choi
et al. defined coupling relations of warping and distortion modes at the joints where
two box beams are connected [55, 56]. In their method, the joint condition is
mitially set as an unknown square matrix. To fine the unknown components in the
matrix, they use displacement and rotation continuities as well as linear algebraic
conditions. Also, in their later study [37], they developed the conditions to be
applicable to the joints where three or more beams are connected. To do this, they
proposed the consideration of the equilibrium of edge resultants that mean the
forces and moments calculated for each cross-section edge. Although their
approaches lead to effective and consistent joint conditions for beam structures,
their joint conditions are limited only to the rectangular cross-sections. Jang at al.
proposed a cross-sectional displacement continuity at the joints [57-61]. They
introduced a virtual section that is referred to as the joint section to define
displacements at the joint. Then they defined the joint condition by minimizing the
mismatches of displacements on the joint section. Due to the condition of
minimization, the joint condition is defined as a square matrix. Although they
showed excellent performances for various cross-sections, their approach is
appropriate only for the joint where two beams are connected, since the
minimization process becomes complicated when three or more beams are

connected [61]. In the GBT, the joint condition is defined by using displacement



and rotation continuities at connection points [62-70]. They carefully investigated
the joint conditions for various cross-sections, mainly focusing on the open
sections that are used in space frames, e.g.,, C-sections, [-sections and lipped
sections. Their method has shown outstanding performances in static, vibration and
buckling analyses for various structures. However, their approach is not
appropriate for complicated beam structures like vehicle frames, since the way the
connection points are set is not consistent depending on the cross-section shapes.
Also, the directions of displacement and rotation continuities are not consistent for

the points.



1.2 Research objectives

First, we propose a new approach to derive cross-section modes for thin-walled
beams with arbitrary cross-sections, by extending the higher-order beam theory
(HoBT) of Kim and his colleagues [38, 39]. Compared to other cross-section mode
derivation approaches, the proposed method has following advantages. 1) A set of
“orthogonal” higher-order modes are derived hierarchically and recursively from
four initial rigid-body modes. 2) Due to the orthogonality among the modes and the
differential relations between the in-plane and out-of-plane modes, generalized
forces can be decoupled in the stress expressions. 3) Mode derivation equations are
developed based on field consistency between stress and strain (or constitutive
equations). 4) The cross-section shape functions are defined edgewise, so no
section discretization is required.

Recently, Choi and Kim [38, 39] determined higher-order modes for rectangular
cross-sections using constitutive equations of the plane stress state and mode
orthogonality. However, the use of geometric symmetry was essential in their
approach, implying that it cannot be applied to cross-sections with general thin-
walled shapes. To overcome this difficulty, we propose a new method utilizing an
eigenvalue problem, which is formulated using the orthogonality among cross-
section modes. A set of higher-order modes are simultaneously derived by
combining basis functions with corresponding coefficients, which are obtained as
eigenvectors of the eigenvalue problem. By doing so, orthogonal sets of higher-

order modes can be uniquely determined for any thin-walled cross-sections with



arbitrary geometries, seamlessly extending key features of Choi and Kim [38, 39]
while overcoming critical limitation of their work. Once a new set of cross-section
modes are calculated, the stress field is updated. The next higher set of modes are
determined so that they can satisfy the field consistency; they should represent the
strain field induced by the updated stress field. Because lower-order modes make
higher contributions to the strain energy, the determination of the level of the
highest modes depends on the required accuracy for the analysis.

Second, we present a new consistent and effective method to define the joint
condition. The proposed method is inspired by several other studies; displacement
and rotation continuities at the connection points are calculated as in the GBT, and
the joint section proposed by Jang at el. is used. However, we newly propose some
approaches to overcome the limitations in the existing studies. 1) A consistent rule
is proposed to set the connection points; the connection points are set at the cross-
section corners that mean the end points of each cross-section edge and at the joint
axis. This rule is applied consistently regardless of the cross-section shapes. At
each connection point, continuities of three dimensional displacements and
rotations are imposed. 2) Additional displacements on the joint section are taken
into account. Because the cross-section of a beam is normal to the beam axis, the
beam section and the joint section do not match in general. Therefore,
displacements on the joint sections should be carefully assessed when using field
variables of beam theories. The additional displacements on a joint section are

calculated by using the rotations on the beam section, leading to the correct



calculation of displacements at the joint. Since the warping modes derived by the
proposed mode derivation approach meet the C' continuity, the rotations at a
connection point are uniquely defined. One of the merit of the proposed method is
that it can be applied to various shapes of beam structures in a consistent manner.

To verify the effectiveness of the proposed cross-section modes and joint condition,
static and vibration problems are solved for thin-walled beams with various shapes
of cross-sections. Also, several complicated beam structures like vehicle frame in
Fig. 1.3 are analyzed. The results of the proposed approach are shown to be highly

accurate when comparing with the results from the shell theory.



1.3 Outline of thesis

The thesis is organized as follows.

In Chapter 2, displacement, strain, stress and governing equations are explained in
the frame work of the proposed HoBT. Also, this chapter shows that generalized
forces are derived from the governing equation, where the generalized forces mean
the work conjugates of cross-section modes in beam theories. Since the cross-
section modes are derived from the constitutive relations in the proposed HoBT, the
stresses are expressed for the generalized forces. At the end of the chapter, a finite
element formulation that is used to analyze thin-walled beam structures is

presented.

In Chapter 3, a new cross-section analysis approach is presented. In the cross-
section analysis, equations of cross-section modes of a thin-walled beam are
derived from the constitutive relations. The equations are solved by formulating
eigenvalue problems using the mode orthogonality. By solving the eigenvalue
problems with constraint matrices of mode continuity conditions, cross-section
modes are defined. This chapter also shows recursive and hierarchical process of

the cross-section mode derivation approach.

In Chapter 4, a new coupling relations of the cross-section modes at a joint, or

joint conditions, are presented. The proposed joint conditions are derived in a



consistent and simple manner, while existing other approaches are inconsistent for
the cross-section shapes or too complicated. The consistency and simplicity of the
proposed approach make it possible to analyze even complicated structures like a
vehicle structure. This chapter shows detailed process to define the joint conditions
that are derived by continuities of displacement and rotations at connection points

on a thin-walled beam cross-section.

In Chapter 5, the overall conclusion of this dissertation is presented.

10 1 &



Structure geometry One-dimensional model

Beam 1

Fig. 1.1 One-dimensional models of L-type and T-type joint structures
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(a)

Fig. 1.2 Cross-section modes of a box beam: (a) torsional rotation mode and (b)
distortion mode
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CHAPTER 2.
Higher-order beam theory

2.1 Displacement field and governing equations

Athin-walled cross-section consisting of Ng edges is illustrated in Fig. 2.1, where X,
Y and Z are the global coordinates and #. and s., defined on the midline of edge e (e
=1, 2, -, Ng), are local coordinates representing normal and shear directions,
respectively. The origin of the local coordinates is located at (X., Y.), one of the
corners of the edge. The angle of edge e with respect to the X axis is denoted as c.
In the proposed higher-order beam theory, three-dimensional displacements on the

midline are expressed by superposing displacements by each cross-section mode:
Np
U,(5,2) =Y Wi ()& (@) = v, (9E(), (k=n,s,2), 2.1)
i=1

where U, is the k-directional displacement on the midline and ;" is the shape
function for U, associated with cross-section mode & (i = 1, 2, -, Np; Np:

number of cross-section modes). In Eq. (2.1), s is used without denoting the edge

index for simplification, and z is the axial coordinate, defined orthogonal with

14 ;



respect to s and n. The cross-section mode vector § in Eq. (2.1) consists of six

rigid-body modes and higher-order modes as
C:, = {é:m}mzl,m,ND Z{vaUy'Uz '97'9y'9za§7v“'-§ND}T: (2-2)
where {U,,U,,U,,6,,6,,0,} are the rigid-body modes, and {&,---,§y } are the

higher-order modes. The higher-order modes are grouped into out-of-plane modes
(or warping modes) having z-directional deformations only and in-plane modes. In-
plane modes are further classified into distortion modes with both n- and s-
directional deformations, leading to shear deformations of a cross-section, and
wall-bending modes with n-directional deformations only, not accompanying shear
deformations. Note in Eq. (2.2) that deflection modes are defined for (x, y)
directions while bending rotation modes are defined for principal axes (X,Y),
because the cross-section modes in the proposed approach are defined orthogonal
each other. The directions and the center of (x, y) and (X,Yy) are given in Chapter
3 and Appendix A, respectively.

Using the displacement on the midline, the three-dimensional displacement U, (k

=n, s, z) at a generic point on the cross-section can be written as

a,(n,s,z)=u,(s,z), (2.3a)
a.(n,s,z) =u,(s,z) —nu,(s,z) =u.(s,z) +u,(n,s,z), (2.3b)
a,(n,s,z)=u,(s,z)—nu/(s,z) =u,(s,z) +u,(n,s,z), (2.3¢)

where (-)=8( )/0s and () =0()/0z. In Egs. (2.3b, c), displacements by wall

15 :



bending are given as the derivatives of u, according to the Kirchhoff plate theory,

expressed as (). The approximations of three-dimensional displacements in Egs.

(2.1, 3) are the same as in the GBT [12-17] except for the use of & (z), not its
derivative form, for the axial displacement.

Assuming a plane stress state, the stress (&) and strain (normal component &

and shear component 7 ) are calculated as

&, =0 =U,—ni, (2.4a)

g, =0, =u, —nuy, (2.4b)

7.=0+0, =u +u,—2nu/, (2.4¢)

G, =E (&, +VE,); 6, =E (Vi +&,); 6, =G7,, (2.5)

where E1=E/(1—?), and E, v and G represent the Young's modulus, Poisson's ratio,
and the shear modulus, respectively.
Using the displacement, strain and stress fields, the total potential energy of a thin-

walled beam can be written as:

[[=U+Q
(2.6)

SS77sS 77171

:%jv(c} By + Gy + 67 ) AV — [ (£,0,+ £,0,+ £,0,)aV,

where U'is the internal strain energy and € is an external work done by body forces,
fu, fs and f2 [N/m?]. In Eq. (2.6), one end of a beam (z=0) is fixed while surface
tractions % and ts are imposed on the other end, z=L. The strain energy can be

expressed using Egs. (2.1) and (2.3-2.5):
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Uu=uU+U,+U,+U,+U,,

where
U, =2 [ €] [E. (97, + 0%, ) + G, Jaget,

U,=[&"] (VENlw, + Gy, JdAdz,

Uy =2 [ &7 [ [Ewlv, +(wlv, + 4nv, ) Az ez

U, =[&"[ vEn"jlw dAg"dz,
_ 1 nT 2. T "
U5 _EL&.’ JA Eln ‘Vn\VndA‘: dZ,

and the external work is

Q=— [ (fow, + foy, + Ty, JdAEdz

In Eq. (2.8), the body forces are assumed constant in the thickness direction.

(2.7a)

(2.7b)

(2.7¢)

(2.7d)

(2.7¢)

(2.7f)

(2.8)

Based on the principle of minimum total potential energy, the matrix forms of the

governing equations and boundary conditions can be found by taking the first

variation of the total potential energy and setting it to zero:
CE+CE +CE"+CE" =F,

where coefficient matrices and force vector are given as

C, = [ | B (W, +mi, )+ Gyl v, [dA

C, = [ | vE(Wlw, ~wl,)+G(¥lw, ~wlv, ) [dA

17

(2.92)

(2.9b)
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Cy=—[ [Ewlw, +G(w]w, +4n’yys, ) [dA

(2.9d)

+[ VE (W, + v, JA
C,= IA En’y vy, dA, (2.9¢)
F= JA( fyl+fyl+fy! )dA. (2.99)

The generalized forces are obtained as stress resultants from the boundary terms:

R=[ (vio, +wlo, A
= [ (VEW]¥, +Guly, JdAg
+f [Ewlv, +G(wlv, +4ni i, ) jdag’

—[ VEN"yii,dAE — [ EnCyly, dAS”,

(2.10)
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2.2 Generalized forces

The generalized forces in Eq. (2.10) can be mode-wisely written for an in-plane

mode and an out-of-plane mode as

F=| owidA, (2.11a)

F = jAazzy/fi dA, (2.11b)
where subindices i and j denote in-plane modes and out-of-plane modes,
respectively.

If cross-section modes are defined orthogonal each other as J.Aa//k"z//f dA=0, (k=s,

z) for p=gq, the generalized force in Eqgs. (2.11) can be expressed in terms of the

shape function of its corresponding mode only, from which generalized forces can
be decoupled in the stress expressions. The derivation of orthogonal cross-section
modes will be discussed in Chapter 3.

To derive the explicit generalized force-stress relation for an in-plane mode, the
shear stress acting on the midline is considered. Using Egs. (2.1) and (2.3-2.5), the

stress is
ou, ou -, L&
ozs=eyzs=G(a—;+a—;j=6(2ws'§i+sz‘§,—j- (2.12)
i i

Because o = ch'it//f‘ (C;,; : coefficient; this will be proved in Sections 4 and 5),

Eq. (2.12) can be rewritten as
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o= Sy, (2.13)

where the coefficient S, consists of C.;, material properties, &

jid

; and &.

Substituting Eq. (2.13) into Eq. (2.11a) and using the orthogonality among in-plane
modes, the generalized force is obtained as

F =S4, (2.14)
where 4 sz (wS)?dA (4: cross-section area) is the sectional moment of inertia

for & . Note that the terms for modes other than & are dropped due to the

orthogonality. Using Eq. (2.14), the stress in Eq. (2.13) can be expressed in terms

of the generalized forces:
s =Z%l//;- (2.15)

Similarly, the generalized force-stress relation for an out-of-plane mode can be

obtained as
o, =2 =y, (2.16)
i
and the relation between wall-bending stress and generalized forces is
_ F F .
G,=-n ) =yl+) 2y j, (2.17)
PRI

where &, and F, are the wall-bending stress and the generalized force of wall-
bending mode 7, , respectively.

Note that the relations between stresses and generalized forces in Egs. (2.15-2.17)
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are valid only if the modes are defined orthogonal with respect to each other.
Although effective relations of stresses and generalized forces can also be found in
other studies such as Genoese et al. [19], those in Eqgs. (2.15-2.17) are expressed
explicitly for each cross-section mode. This is meaningful because the stress at a
point can be decomposed into those by corresponding generalized forces. In other
words, the contribution of each generalized force to the stress can be analyzed due
to the decoupled generalized force-stress relations. This will be shown in the case
studies of Section 3.3. In addition, the generalized force-stress relations can be
employed to solve a jointed beam problem, where the transfer mechanism of
generalized forces at a beam joint can be derived from the equilibrium of the

resultants on cross-section edges [37].
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2.3 Finite element formulation

The three-dimensional displacements in Eq. (2.3) are discretized as

a, 1 0 0]fu,
=40, p=|-nZ 1 0qu, p=AN)y(s)N(z)d, (2.18)
a,| |-nZ 0 1||u,

where A is the matrix mapping displacements on the midline of an edge to those at
a generic point on the cross-section, y is the matrix consisting of s, N is the
shape function matrix, and d is the nodal solution vector of & The Hermite cubic

polynomials are employed for shape functions in N:
N(K)=[N1(K)| N, ()l N;(x)l N4(K)|], (2.19)

where
1,3
Nl(K)IZ(K -3k +2),
1 3 2
N, (k) ==(x"—k"—x+1),
4 (2.20)

N, (x) :%(—,8 3c+2),

N4(K')=%(K3+K'2 -k -1,

where I is an identity matrix with the size Np, and « is the natural coordinate of an
element. Note that the second derivative terms in Eq. (2.4b) can be conserved by
using the Hermite cubic polynomials, whose effect can be noticeable on the
accuracy of problems with dominant wall-bending deformations.

The strains and stresses in Egs. (2.4) and (2.5) can be written in matrix form as
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=}

0 9/os O .
0 0 §/oz|ia, t=LAM)w(S)N(Z), (2.21)

SS

£€=1&, r=
Vs 0 o/oz ofos||q,
~ss El VEl 0 ~ss

6=:6,=|vE, E, 0[<&,=CLA(N)w(s)N(z)d, (2.22)
&ZS O O G )725

where L represents the operator matrix, and C is the elasticity matrix. The total

potential energy of a beam can be written as

M= %LL&T@ dAdz+ p [ 0"a,dAdz- | [ d"fdAdz
(2.23)

=%dTKd +d"™Md, ~d'F,
where () is the second derivative with respect to time, p is the density, f is the
body force vector, and K, M and F are the stiffness matrix, mass matrix and force
vector, respectively. By minimizing the total potential energy, the discretized
dynamic equation can be derived. Substituting Eqs. (2.19-23) into Eq. (2.24) gives

the stiffness matrix, mass matrix and force vector as

K = j N"SNdz, (2.24)
M = pL N"TNdz, (2.25)
F=| N'Rdz, (2.26)
where
S= qu,TAT L"CLAwdA, (2.27)
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T= jA\yTATA\ydA,

R= J’A\VTAdeA.

24

(2.28)

(2.29)



(Xy, Yy)

Edge 4

/

Midline

| : [Axes of deflections

Torsional center &

(., Yo[as % Edges (X, 1)*m
Z X fs

Fig. 2.1 The geometry of a thin-walled cross-section, and local and global

coordinates
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CHAPTER 3.
Derivation of cross-section modes for thin-walled

beams with arbitrary sections

3.1 Prerequisites and lower-order modes

The shape functions of the proposed cross-section modes are derived based on
following assumptions:

Assumption 1: Linear warping and inextensional distortion modes are induced by
shear stress aroused by generalized forces of in-plane rigid-body modes.
Assumption 2: Extensional distortion and wall-bending modes are induced by the
Poisson’s effect for the axial stress o, (or &, ) (see Figs. 3.1(a) and (b)).
Therefore, they are generated as the next higher-order modes of the corresponding
out-of-plane deformation modes [38, 39].

Assumption 3: Nonlinear warping modes are aroused by the shear stress o,, (see
Fig. 3.1(c)). They are derived to satisfy field consistency in the shear stress for the
given in-plane deformation modes [38].

Lower-order modes, including linear warping modes and inextensional distortion
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modes, are presented in this chapter. Extensional distortion modes, wall-bending
modes and nonlinear warping modes will be derived in the next chapter, for which
the generalized force-stress relations obtained in Section 2.2 are used to derive the

differential relations among the shape functions.

3.1.1 In-plane rigid-body modes
Shape functions i, (¢« = Us Uy, 0 k = n, s) representing in-plane rigid-body

modes are defined for each edge e in terms of the (x, y) coordinates (see Fig. 2.1) as

Wy = C08(a, = B); Wigsy =sin(e, — B), (3.1)
Wiy =SiN(@, = B); Wogsy =—C0(ct, — ), (3.2)
Ve = (X, = X,)sina, — (Y, —Y,)cos e, (3.32)
Weiy =—(X, = X,)c0s, — (Y, —Y,)sing, —s,, (3.3b)

where (Xo, Yo) and S are the origin and the orientation angle of the (x, y) coordinate

system, respectively. Note that the center of torsional rotation - is set at the origin
of (x, y). Using the orthogonality between Uy and U, JAI//SU wdA=0, B can be

determined as

NE
D l.sin2a,
1 e=1

p= Etan’l . : (3.4)
> 1, cos2a,
e=1

where /. and a. are the length and angle of edge e, respectively, and Ng is the
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number of the cross-section edges. Similarly, using jAz//;’ ‘w%dA=0 and

I Az,//;J "wdA =0, the origin of (x, y) is calculated as

{XO}—A‘lA (3.5
=ATA,, .Sa)
YO
where
Ne |'sine,sin(a, — —cosa, sin(a, —
A=Y (@ =/) asinta, =f) | (3.5b)
— "|sing, cos(ar, — f) —cose,cos(a, — f)
Ne [ X, sine,sin(a, — )Y, cosa, sin(a, —
A, =31, el (a, =) =Y. cosa,sin(a, =f) | (3.5¢)
= | X, sing, cos(a, — f) —Y, cosa, cos(e, — )

3.1.2 Linear warping and inextensional distortion modes

Following in assumption 1, the linear warping and inextensional distortion modes
are defined so that the shear strain caused by them can satisfy the field consistency
requirement with shear stress aroused by the generalized forces of the in-plane
rigid-body modes:

0,(5,2) _ouf (s,z) . ouy " (s,z)
G 0z 0s

v )" @)+ (W (2),  (3.6)

where uZ" is the s-directional displacement by the inextensional distortion y* and

u'" is the z-directional displacement by linear warping #". Using the generalized

force-stress relation in Eq. (2.15), the shear stress in Eq. (3.6) can be written as
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F
0.6.0=2 2y ), 67

where u = Uy, U,, 6-. Substituting Eq. (3.7) into Eq. (3.6) gives

“(s)— 72

: (s)= ZGAW 0" W*(Z)l//f*(s)- (3.8)

In Eq. (3.8), the relation between the cross-section shape functions is obtained as
ZOEDANZAORIZH O} (3.9)
V7
where ¢, is constant for a given z. Note that the coefficient for w{ is set as

unity because w?" is freely scalable.

Because y in Eq. (3.9) has inextensional wall deformation, its shape function for s-

directional displacement is edgewise constant; the displacement is constant on each

edge, which may differ from those on other edges. Therefore, w? in Eq. (3.9)

can be rewritten by introducing an unknown constant of edge e, C , as
lr//z (S) zclul//s (S) + Zce e’ (3‘ 10)
where d.=1 on edge e and 6.=0 otherwise. Integrating Eq. (3.10) gives
Ne
w, (s)=D.c,YE(s)+ D C.o, s+2ce » (3.11)
) e=1

where WY is the integrated function of w! excluding the integration constant.

Note that J. is used again in Eq. (3.11) to express the edgewise integration constant

ce. In matrix form, Eq. (3.11) is
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C
)7

w =W, 8, 8)1c 29", (3.12)
C

e

where WY ={¥) ¥, ¥} . 8={5.5,,5,} - C,={g,.c,.C}

¢ ={c/.c; -y} and c,={c,c, -y } .
In Eq. (3.12), multiple linear warping modes can be obtained by determining ¢
differently, which should be determined to satisfy the orthogonality among the

linear warping modes. For two linear warping modes W, and Wj* , the

orthogonality between the modes can be written as
[wiwlida=1s,, (3.13)

where 4 is the sectional moment of inertia, and d; is the Kronecker delta. Using Eq.

(3.12), the orthogonality in Eq. (3.13) can be rewritten as
ciTjA((pW*)T(pW*dch =c/P"c; = 15, (3.14)

Because P’ is a symmetric matrix, Eq. (3.14) can be expressed as a typical
eigenvalue problem:

P""c = Ac. (3.15)
The eigenvector ¢ obtained by solving Eq. (3.15) is employed as the coefficient
vector in Eq. (3.12). Therefore, multiple new linear warping modes are
simultaneously obtained by solving the eigenvalue problem in Eq. (3.15).
Although orthogonality is not an essential requirement for higher-order modes, it is

very important in that generalized forces can be decoupled in the stress expressions
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only if the cross-section modes are orthogonal to each other, as can be seen in Eq.
(2.15-2.17). This decoupling is essential in this paper given that the proposed
higher-order modes are considered as secondary deformations induced by sectional
stresses whose distributions are expressed by decoupled generalized force-stress
relations.

When solving the eigenvalue problem in Eq. (3.15), the constraint conditions for ¢
should be imposed so that the linear warping modes can satisfy the orthogonality
with existing out-of-plane modes and the displacement continuity at the cross-
section corners.

The orthogonality between a linear warping mode and an existing out-of-plane

mode can be written as

[yl dA=] y¢"dAc2Q" c=0. (3.16)
Note that because the linear warping modes are the first derived warping modes,
only the axial rigid-body mode U. is considered for the orthogonality condition.
The displacement continuity at the cross-section corners can also be defined as a

constraint condition for ¢. For example, for the cross-section in Fig. 2.1, the corner

continuity is

(P\g; (Il) - (P\(A;;(Iz)
o (1) -0 (0)
05 (1) -0 (0) [c=R""c=0, (3.17)
0 (1) — 05, (0)
0% () -0 0 |
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where ¢""(s) =gy, (s,) foredgee.

In addition to the conditions for the linear warping modes, those for the
inextensional distortion modes should also be considered. Because the shape
function of an inextensional distortion mode can be written as w7 =8c"
according to Egs. (3.9-3.12), where ¢" is included in ¢, the conditions for the
inextensional distortion modes can be dealt with as the constraint condition of the
eigenvalue problem in Eq. (3.15).

The orthogonality between an inextensional distortion modes and other existing in-

plane modes can be written as
[ iz dA= [ fyiyodAc £Q7c =0, (3.18)

where {w“}={w ", w." ,w%} . Note in Eq. (3.18) that the in-plane modes defined
earlier than inextensional distortion modes are only in-plane rigid body modes.

The displacement continuity at the cross-section corners can be defined similarly to
that of a linear warping mode in Eq. (3.17):

R*¢" =0, (3.19)
where R is given in Appendix B for a cross-section corner. The conditions in Eqs.
(3.16-3.19) are set as constraint matrices for the eigenvalue problem of Eq. (3.15),
which are treated, for example, using Lagrange multipliers. After defining the s-
directional shape functions of the inextensional distortion modes, corresponding #-

directional shape functions are calculated such that the conditions of displacement
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continuity, slope continuity and moment equilibrium at the corners are met [36, 39]

(See Appendix C for details).

Note that rigid-body bending rotations 6, and ¢, are also obtained from the

results of the eigenvalue problem in Eq. (3.15). Moreover, the axes of these

bending rotation modes coincide with the principal axes (X,y) (see Fig. 2.1)

owing to the orthogonality between the bending rotation modes. The torsional
rotation mode is orthogonal to the x- and y-directional translations (bending
deflections), from which the center of torsional rotation is determined, as expressed
by Egs. (3.5). However, the center of torsional rotation differs from the shear center.
The linear warping modes of the proposed formulation are found to be identical to
those by the GBT [12-17]. This is, however, not the case for nonlinear warping
modes in higher sets. In addition, because the zero-shear stress condition on the
midline of edges (or Vlasov condition) is not adopted in the proposed beam theory,

warping modes and in-plane modes are not directly coupled.
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3.2 Recursive derivation of higher-order modes

3.2.1 Extensional distortion and wall-bending modes

Following assumption 2, the extensional distortion modes are defined to express
wall-extending/shrinking deformations caused by the Poisson effect when axial

stress acts on the cross-section:

X
N _ Vg, (3.20)
oS E

which can be rewritten as

R, (@)

x(@)yé(s )——E[ o,

(S)+Z Fu Wz 2 (s )] (3.21)

where uf is the s-directional displacement by the extensional distortion mode y

and the W variables denote the warping modes in lower sets. Note that the axial
stress is expressed in terms of generalized forces of existing out-of-plane modes

using Eq. (2.16). For a given z, Eq. (3.21) can be rewritten as

W (S)=Copt (5)+ D 6wy (5), (3.22)

where ¢, and ¢, areconstants. Integrating Eq. (3.22) gives

Vi =6, 9+ g, ‘PW(s)+Zce g (3.23)

whose matrix form is

34 :



CUZ
wi(s)={w, ¥, s, 2o, (3.24)
C

e

where ‘I"f’ :{‘I"ZA?}T and ¢, ={c,}. As in the eigenvalue formulation of linear

warping modes in Eqs. (3.13-3.15), considering the orthogonality among the

extensional distortion modes gives

P*c=Ac, (3.25)
where P* = jA (%) @“dA . The coefficients in Eq. (3.23) (or (3.24)) can be found

by solving the eigenvalue problem with the constraints of orthogonality and corner
continuity, akin to when the inextensional distortion modes were calculated. It
should be noted that the constraint matrix for orthogonality should be constructed

by considering distortions in lower sets as well as in-plane rigid-body modes.

As shown in Fig. 3.1(b), n-directional deformation is caused by the Poisson’s effect

when the bending stress acts on the cross-section. This relation can be written as

S— (3.26)

where U, is the s-directional displacement caused by the wall-bending mode, 7 :

_ ou” )
0, =-n=t =)y (s), (3.27)

and the bending stress &,, can bewritten in terms of the generalized forces in Eq.

(2.17) as
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F.(2) F,
G =—H(Z¥wﬁ )+ %Z)

7 7 7

. F,(z
w§(8)+zﬁl//é‘(5)}- (3.28)
M /I/l
In Eq. (3.28), 7 and j are wall-bending and distortion modes in lower sets,

respectively. Substituting Egs. (3.27, 3.28) into Eq. (3.26) gives

W7 (8) = 2 cw (8) + 2w (8)+ e, v (9). (3.29)

By integrating Eq. (3.29), the shape function for a wall-bending mode is obtained

as
NE
wi(s)=2 ¢, PI(s)+ > ¢, Pi(s)+ D ¢, PL(s)+ D (C.uS+Cop)Sn (3:30)
Ul V4 u e=1

where W (£=7,7,u) is the double integrated function of w: excluding
integration constants. The n-directional shape functions must be defined so that
they can satisfy the displacement continuity, slope continuity, and moment
equilibrium at the corners [36, 39]. However, there are too few unknown

integration constants in Eq. (3.30), two for each edge (c,, and c,,), to satisfy all

of these comer conditions. To resolve this, the last term in Eq. (3.30) is modified to

cubic polynomials [39]:

— . - . _ Ng 3
wl(s)=D.c, V() + D ¢, Pi(s)+ D ¢, Wi(s)+ > > ¢, %5, =¢"c, (3.31)
7 Z H

e=1 p=0
from which the eigenvalue problem can be derived, as in Egs. (3.13-3.15).
Orthogonality between wall-bending modes in the new set and those in the lower

sets, continuity conditions, and moment equilibrium at the cross-section corners
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should be imposed as constraints for the eigenvalue problem (see Appendix C).

3.2.2 Nonlinear warping modes

Once the extensional distortion modes are defined in a mode set, the distribution of

the sectional shear stress is updated to include the newly defined modes following
Eq. (2.15):

0.2 = Y 2Dy 3 ) (.32

Z /1;: V4 /7‘;2

The nonlinear warping modes are defined to express the secondary deformations in

the constitutive equation for this updated shear stress:

0,(s,2) ou,(s,z) N ouY (s, z)
G oz os

(3.33)

where U, is the s-directional displacement, and u) is the z-directional

displacement caused by the nonlinear warping mode W, as expressed by

uy(s,2) = D u(2)y (s) + (2w (s), (3.34)

u; (s,2) =W (2)y; (s). (3.35)
Note that the s-directional displacement is expressed using existing in-plane modes
because in this section, the focus is on defining deformable shapes in the z-

direction.

Substituting Eqgs. (3.32, 3.34,3.35) into Eq. (3.33) gives
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F F. .
W (2)y;' (s)= Z[ é/(:) —/J'(Z)Jl//s”(s) + ZL§_2I(Z)jWS}( (s), (3.36)
which leads to
V2 (8) = D CuL (8)+ el (9), (337)

where ¢, and c, areconstants for a given z. Integrating Eq. (3.37) gives

Ne
wy (s)=) c, P4 (s)+ Y c,Pi(s)+ D c.0, =¢"C. (3.38)
H V4 e=1

Using the orthogonality among the warping modes in the current set, an eigenvalue
problem similar to that in Eq. (3.15) can be defined. The constraint matrix consists
of the continuity condition in Eq. (3.17) and the orthogonality condition, for which
warping modes in lower sets as well as the axial rigid-body mode should be
considered.

The derived warping modes in Eq. (3.38) update the axial stress in Eq. (3.20),
inducing higher-order distortion modes. The proposed higher-order modes are
derived by this recursive process. The number of mode sets employed for the
analysis can be determined according to the required level of accuracy. Due to the
integration form of the mode-derivation equations of Egs. (3.23, 3.31, 3.38), the
polynomial orders of shape functions for distortion and warping modes increase by
one as the set number M increases (see Fig. 3.2), while those for wall-bending
modes increase by two.

Referring to our previous works [38, 39] would be helpful to understand a step-by-
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step procedure for calculating cross-section modes. Although they present cross-
section modes only for rectangular cross-sections, the overall procedure is similar
except that those studies use the symmetry of a cross-section to calculate the

coefficients of a shape function instead of conducting an eigenvalue analysis.
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3.3 Numerical examples

The proposed HoBT is applied to derive cross-section modes for open, closed, and
flanged cross-sections in Fig. 3.3. Figures 3.4-3.6 show the corresponding cross-

section modes. In the figures, bending rotation modes 6, and 0, are listed as

linear warping modes because they are derived by solving the eigenvalue problem
for linear warping modes. Table 3.1 shows the number of cross-section modes for
each mode set obtained by Eqgs. (D.1-D.5) in Appendix D.

The derived cross-section modes are used to solve static or modal analysis
problems of thin-walled beams. The results by the proposed HoBT are compared
with those obtained by shell elements (ABAQUS S8R elements) and other beam-
based approaches, for which the Timoshenko beam theory, the generalized beam
theory (GBT) [12-17] and the method of generalized eigenvectors (GE) [18-23] are
considered. For the material properties of the beams, Young’s modulus is set as £ =
210 GPa for the example in Section 3.3.2 and as £ = 200 GPa for the other
examples, and the Poisson’s ratio and density are correspondingly set as v = 0.3

and p = 7850 kg/m? for all examples.

3.3.1 Static analysis: a cantilever beam with an open cross-

section

A static analysis is conducted for the thin-walled beam (length: 900 mm and

thickness: 1 mm) with the open cross-section shown in Fig. 3.3(a). One end of the
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beam (z = 0) is fixed and the cross-section on the other end (z = 900 mm) is
subjected to a set of distributed loads in the s- and z-directions, representing
complex loading at the joint of a beam frame structure approximating a T -joint (see
Fig. 3.3(a)). In total, 200 finite elements are used in the numerical analysis. To
capture the rapidly changing end effect, 100 elements are assigned near the loaded
end (from z=800 mm to z=900 mm).

For the analyses, various numbers of cross-section modes are used, in this case 26
modes, 44 modes, 65 modes and 161 modes, which correspond to the number of
the modes for the highest mode set, M= 2, 3, 4 and 9, respectively. In the analyses,
warping modes in the last set are not employed because they influence the solution
accuracy less compared to those of the other modes in the same set. Figures 3.7(a)
and (b) show three-dimensional displacements and stress results, respectively,
measured on the axial line corresponding to point P in Fig. 3.3(a). In these figures,
the numbers in parentheses indicate the number of cross-section modes used for the
analysis. These figures also show that excellent accuracy can be obtained for three-
dimensional displacements by the proposed HoBT only by using up to the second
set of the cross-section shape functions. The stress results in Fig. 3.7(b), however,
show that higher sets of modes are required for a correct estimation of the rapidly
changing stress variation due to the end effect. The difference in the peak value of
o-: in Fig. 3.7(b) between the result by the present HoBT and that of the shell
elements is plotted in Fig. 3.8 with respect to the highest mode set number (and

number of modes). In the figure, the use of M = 4 for the present HoBT yields
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stress only within 4% error with respect to the shell-based calculation. These
numerical tests suggest that satisfactory results can be obtained with M = 2 for the
displacement calculations and M = 4 for the stress calculations (within 4% errors).
If M = 9 is used, the stress prediction can be accurate within 1% error relative to
the shell results.

Figure 3.9 shows the overall contribution of the three dominant distortion modes to
the shear stress (o, ) in Fig. 3.7(b) calculated using the generalized force-stress
relation in Eq. (2.15). Because the generalized forces are the work conjugates of
one-dimensional deformations, element force vectors associated with the points of
interest are used to calculate the stress curves in Fig. 3.9. Note in the figure that the
three most influential distortion modes, yx,, ¥, and y,, , show edge-
extending/shrinking deformations, especially on both horizontal cross-section
edges. These dominant modes can be restrained by rigidly connecting two corners
on the bottom edge in Fig. 3.3(a) (or two points at 55=0 and $3=0). For verification,
an additional numerical test is conducted, showing that the peak stress is reduced
from 112.3Pa to 66.4Pa (40.9% reduction) when the suggested constraint is
imposed.

Figure 3.10 shows the stress results measured on the inner surface (r = -#/2), outer
surface (n = #/2), and midline at point P along the axial direction, which are

perfectly matched with those obtained by the shell elements.
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3.3.2 Static analysis: a simply supported beam with an open

cross-section

The simply supported beam problem with an open cross-section subjected to a
sinusoidal load in Fig. 3.11(a), as studied initially in earlier work [23], is analyzed
by the proposed HoBT, the GBT and the GE methods. For the proposed beam
analysis, cross-section modes of M=2 corresponding to the first 24 cross-section
modes in Fig. 3.4 are used (although there is a slight difference in the dimension
between the cross-sections in Fig. 3.3(a) and Fig. 3.11(a), the shapes of the modes
for both cross-sections are found to be almost the same). For the GBT analysis, the
modes are obtained using the program GBTUL [12-17] with cross-section
discretization of three intermediate nodes for the web and two intermediate nodes
for each flange. Among the 39 modes obtained, the first 15 modes, shown in Fig.
E.1 in Appendix E, are utilized in the analysis. In total, 50 finite elements with
even discretization are used for the GBT and the proposed approach. For the GE
method, the result available in the aforementioned study [23], obtained using 19 in-
plane modes and 19 out-of-plane modes, is used for comparison. In Fig. 3.11(b),
the lateral displacements on the loading line obtained by the three methods show
good agreement with the result by the shell elements.

Figure 3.12 shows the contribution of each mode to the total strain energy and the
displacement at the middle point of the loading line. In Fig. 3.12, while the

proposed modes that make large contributions to the strain energy are found to be
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identical to those by the GBT, the modes that make large contributions to the
displacement are fewer than those by the GBT. This occurs because the point of the
displacement measurement is in the middle of the beam, where only in-plane
modes are aroused. Therefore, the out-of-plane modes corresponding to mode 3
and mode 5 of the GBT make zero contributions to the displacement in the figure
on the right in Fig. 3.12. A similar aspect is also observed in the GE modes; a

detailed report of this is given in the references [23].

3.3.3 Static analysis: a cantilever beam with a closed cross-

section

The free end of a clamped thin-walled beam with the cross-section in Fig. 3.3(b) is
under vertical concentrated force at the lower right corner of the cross-section. The
beam length is 400 mm and the wall thickness is 2 mm. The displacement and
stress results at point P along the axial direction calculated by the proposed HoBT
as well as the GBT are plotted in Figs. 3.13(a) and (b), respectively. For the cross-
section discretization of the GBT, three cases are studied; each edge is uniformly
discretized with 1, 5 and 7 intermediate nodes, resulting in 78, 234 and 312 modes,
respectively (see Fig. E2 in Appendix E for the cross-section modes obtained using
one intermediate node). Here, 200 finite elements in total are employed for the
analysis of the GBT and the proposed HoBT, while 100 elements are assigned near

the loaded end (from z=350 mm to z=400 mm).
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In Fig. 3.13(a), moderate accuracy for the displacements can be obtained using
M=2 (62 modes) in the proposed approach and 78 modes in the GBT, while more
modes (M=5 or 213 modes in the proposed approach and 234 modes in the GBT)
are required to capture the end effect of u.. For an accurate prediction of the stress,
as in Fig. 3.13(b), M=7 (311 modes) and 312 modes are needed for the proposed
HoBT and GBT, respectively.

The contribution of the generalized forces to ¢ in Fig. 3.13(b) is shown in Fig.
3.14, where W, is calculated as the most dominant higher-order mode for the
axial stress. Figures 3.15(a) and (b) show the von Mises stress and deformed shape
on the cross-section midline calculated at z = 380 mm, where the peak of the shear
stress o,, occurs. In the figure, the results by the proposed approach and GBT

are in good agreement with the shell results.

3.3.4 Modal analysis: a beam with a flanged cross-section

with a free-free support condition

A modal analysis is conducted for a thin-walled beam with a flanged cross-section,
as shown in Fig. 3.3(c), with no support condition. The beam length is 500 mm and
the wall thickness is 1 mm. Figure 3.16 shows the free vibration mode shapes
obtained using the shell elements, GBT and proposed HoBT, whose corresponding
natural frequencies are listed in Table 3.2. Two intermediate nodes are placed for

each cross-section edge to derive the GBT modes (see Fig. E.3 for the cross-section
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modes). For the proposed HoBT, 21 modes are used, with M=2. In total, 50 finite
elements with even discretization are used for the analyses of the GBT and the
proposed HoBT. Although relatively few cross-section modes are employed, the
free vibration characteristics of the beam are accurately predicted by both

approaches. Specifically, the proposed HoBT gives results with less than 1% of a

difference relative to the shell results.
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Table 3.1 The number of cross-section modes for the cross-sections in Fig. 3.3

Open section Closedsection Flanged section

Set N, N, Ny Total N, N, Nw  Total N, N, Nw Total
1 2 0 5 11(7+ 10 0 12 26(22+4) 1 0 3 84+4
2 6 9 © 32 13 23 13 75 4 9 4 25
3 6 6 ©6 50 13 24 13 125 4 9 4 42
4 6 9 © 71 13 25 13 176 4 9 4 59
5 6 6 © 89 13 24 13 226 4 9 4 76
6 6 8 6 109 13 23 13 275 4 9 4 93
7 6 7 6 128 13 23 13 324 4 8 4 109
8 6 6 ©6 146 13 22 13 272 4 9 4 126
9 6 9 6 167 13 21 13 419 4 8 4 142
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Table 3.2 Natural frequencies (Hz) of a beam with a flanged cross-section
(numbers in parentheses denote the difference (%) from the shell results)

Mode 1 2 3 4 5 6 7
Shell 582.08 788.94 1482.1 1948.6 2098.0 2401.2 2850.9
GBT 583.97 791.56 1485.7 1953.1 2097.0 2398.5 2846.4
(0.33) (0.33) (0.24) (0.23) (0.05) (0.11) (0.16)
Proposed 583.35 790.53 14925 1961.1 2100.8 2424.1 2873.2
(0.22) (0.20) (0.71) (0.64) (0.13) (0.95) (0.78)
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Fig. 3.1 Deformations by (a) axial stress, (b) bending stress and (c) shear stress
acting on the sectional edge
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Fig. 3.8 Difference convergence of the axial stress ( o, ) at the peak point (z =
893.4 mm) in Fig. 3.7(b) for varying numbers of mode sets
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cross-section in Fig. 3.3(c): results by (a) the shell theory, (b) the GBT and (c) the
proposed higher-order beam theory
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CHAPTER 4.
Coupling relations of cross-section modes at a joint of

thin-walled beam structures

4.1 Displacement and rotation continuities at a beam joint

A joint condition using displacement and rotation continuities is presented here.
Figure 4.1 shows the connection points where the continuities are imposed. In the
proposed approach, the connection points are placed at the cross-section corners
and joint axis, while those in other approaches, e.g., the GBT [62-70], are
designated inconsistently for the cross-section shape. Note that the joint axis
intersects the centroid so that the mass can be correctly evaluated in the one-
dimensional model. In Figs. 4.2(a, b) that show illustrative L- and T-type joints, it
can be seen that connection points of each beam section do not meet directly since
the beam section is normal to the beam axis. Because inaccurate results are yielded
if this cross-sectional mismatch is neglected, as can be seen in other continuity-
based approaches [57-61], displacements and rotations on the joint section where

the connection points are actually matched have to be carefully assessed when the

65



continuity conditions are calculated. To do this, we propose to take into account
additional displacements on the joint section, which are aroused by rotations at the
beam section, as can be seen in Fig. 4.2(c).

Note in Figs. 4.2(a, b) that the continuities are imposed at an end section of each
beam of the L-type joint, while those of the T-type joint are imposed at an end
section of one beam and several sections of the other beam.

In the Figs. 4.2(a, b), the vertical axis of each beam (Y1 and Y>) is set parallel to the

joint axis, therefore, the relation between axes of two beams can be defined as

X, cosg 0 sing |[X, X,
Y, r=| O 1 0 Y, t2T1 Y, ¢, 4.1)
Z —sing 0 cos¢||Z, Z,

where (X», Y, Zp) is the coordinate system of beam b (b=1, 2), ¢ is joint angle,

and Ti is a coordinate transformation matrix. Using above relation, the

displacement and rotation continuities can be written as

qu uXZ
Uy, -T Uy, =0, (4.2)
u; u;
allp 2 J1p
G)x1 ®xz
@Y1 -T, @Yz =0, 4.3)
allp ZJ]p

where Uy and ©) are displacement and rotation in K (K=Xb, Y», Z) direction

for beam b (b=1, 2), respectively, and ( )|p is the value at connection point p (p=1,
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-+, Np; Np: the number of the connection points).

4.1.1 Rotation onthe joint section at an independent point

The connection points are classified into two types; independent point defined on a
single edge and dependent point where multiple edges are connected, as shown in
Fig. 4.1. In this section, calculation of rotations at an independent point is
presented.

The rotations are calculated by differentiating the midline displacements, where the

midline displacements at an independent point p can be written as

un(e)
us(e) = ‘I’(Se,p)é(zp)i (44)

Yo )],

where wuie (k=n, s, z) is k-directional displacement on edge e, and s, and z, are s.
and z coordinates of the point p, respectively. Note that s. is the shear directional
axis of edge e as shown in Fig. 2.1. y in Eq. (4.4) is shape function matrix for

cross-section mode vector & as

\I’n !//r:JX l//fND
SNp

==l e e (4.5)
‘Vz l//;JX V/fND

Rotations can be calculated by differentiating the displacements in Eq. (4.4) as

0, =M g . - Mo (4.6)
0s oz s
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where O« (k=n, s, z) is k-directional rotation. Rotations in Eq. (4.6) can be

represented in a matrix form using Eq. (4.4) as

0 0O u

+1002u
0z

0 0O u

0 0 1] [u
o. U =lo o o2y
0 10 0|%|u

n(e) n(e)

s(e) s(e) (4.7)

z(e) z(e)

=Qur(s, ;)&(z,) + Qw (s, )& (),

z(e)

where Qi and Q: are incidence matrices. The rotations in Eq. (4.7) can be written

for local coordinate system of a beam (X, Y, Z) as

O, sina, cosa, 0[O,
O, ¢| =|-cosa, sina, 010, 43
0, 0 0 1]\0,, (4.8)

p

= TZQl‘i,(Se,p)g(zp) + T2Q2\|’(Se, p)él(zp)!
where T> is a coordinate transformation matrix. The rotations on the joint section

are the same as those on the beam section as

ol (o

CH =10,

o,)| leo,]|,
p

= T,Q(s, ,)5(z,) + T,Qu(s, ,)&'(2,)
=T,[Qu(s,,) QZ\V(se,p)]{a(z")}

§'(z,)
&(z,)
SRl,p {gr(zp)}’

where Oy (K=X, Y, Z) is the rotation on the joint section, and Sgip is 3x2Np

(4.9)

1>

matrix to calculate ®; at independent point p.
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4.1.2 Rotation on the joint section at a dependent point

As briefly mentioned in Section 2.1, out-of-plane (z-directional) deformations used
in this paper meet the C' continuity at the dependent points [40]. Therefore, at a
dependent point, in-plane rotations (®x and ®y) are uniquely defined using
differentiated z-directional displacements on any two connecting edges. Therefore,
unlike in the independent points where Oy and @y are calculated using n- and z-
directional displacements, ®yx and ®y at a dependent point are calculated using z-
directional displacements only. For example, in-plane rotations at a dependent
point p are calculated using the z-directional displacements on any two connecting

edges el and e2 as below.

{@X} ~ 1 [come2 —cos%H@n(ﬂ)}
®Y p Sin(ael_aez) Smaez _Slna91 ®n(e2) p
~ 1 CoSa@,, —CO0S || W, (Sep)
sin(a, —at,,) [ Sina,,  —Sinagy || W, (Sq;,p)

éT{‘i'Z(S“"’)}a(zp),

}é(zp) (4.10)

v, (Sez,p)
where a1 and oo are the angles of edges el and €2 with respect to the X axis,
respectively, as shown in Fig. 2.1, and Tz is a transformation matrix. z-directional
rotation can be calculated using n-directional displacement on any edge e, as in the
dependent points.

®z| = ®z(e)

S =W (5.0 )8(z,). (4.11)

p
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Note in Eq. (4.11) that the subindex e can be the el or €2 because it does not matter
which edge is chosen due to the slope continuities of y,’s at cross-section corners.

The rotations on the joint section can be defined using Egs. (4.10) and (4.11) as

o}, o, W, (Serp)

0, O, = T3|:\i]z(sez,p):| 0 {2((2213))}

0, )|, 0], | -G, ’ (4.12)
N &(z,)
_SRz,p{é;(Zp)}a

where Sr2, is 3X2Np matrix to calculate ©, at dependent point p. Note that Sz,

contains a zero matrix to match the format with Sz1, in Eq. (4.9).

4.1.3 Displacementon the joint section

The displacements at connection point p can be represented as

Uy sina, cosa, 0]|Uq

U, | =|—Cose, sina, 0 |{Ugq 413

Uz Jj, 0 0 1)Uy (4.13)
:TZ\I’(Se,p)&.t(Zp)’

where T> is the transformation matrix in Eq. (4.8). Considering the additional
displacements caused by rotations at a beam section, displacements on the joint

section can be calculated as
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u; u 0 1
X X 0, +0%"
uY = uY + I’p _1 0 W1
* 0Y + ®Y
uzj|, vz, 0 0 P (4.14)
0, +0%"
= Z\I’(Se,p)é(zp)+rpQ3{9j +®\£\;1} p !

where 7, is z-coordinate of joint section from the connection point p illustrated in
Fig. 4.2(c), Qs is an incidence matrix, fy and Oy are the bending rotation modes,
and ©}%' and @) are rotation angles in X and Y directions caused by linear
warping modes. Note in Eq. (4.14) that only bending rotation modes and linear
warping modes are considered for the additional displacements on the joint section,
where the linear warping modes mean warping modes that cause linear
deformations as shown in Fig. 4.3. The bending rotation modes €x and Oy can be

calculated by transforming the bending rotation modes in Eq. (2.2) as
0| |cosB —sinp || a1 1
0., LsinB cosp ||6]| ‘16,

where B is the orientation angle of the principal axes in Fig. 2.1, Ty is a

, (4.15)

p

transformation mafrix, and ¢, and @, are the 4" and 5" components of & in Eq.

o).

where Q4 is an incidence matrix to select the bending rotation modes from the

(2.2):

_[000100

0 A
000010 o}ﬁ(zp)=Q4é(zp), (4.16)

cross-section modes vector. The rotation angles by the linear warping modes can be
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calculated as

=R,&(z,), (4.17)

p

o

where

100 S, H (open section)
0 1 0] F° P .

0 (closed section)

R, =

(4.18)

In Eq. (4.18), R, is a matrix to select (©%",0)") from (®,,0,) in Egs. (4.8,
10), and Sg,, is the matrix defined in Egs. (4.9, 12) to calculate the rotation angles

at connection point p:

(4.19)

s - Sgy,  (independent point)
®P |Sg,, (dependent point) -

Also, Hin Eq. (4.18) is 2Np*xNp diagonal matrix to select the linear warping modes

{& &,y (Vw1 number of the linear warping modes) from all cross-section

modes, whose components are

1 (7<a<6+N
Haa:{ ( wi) (4.20)

0 (otherwise)

Note in Eq. (4.18) that the rotation angles by linear warping modes are considered
only for the open section when the additional displacements on the joint section are
calculated. This is done because it is already demonstrated in the studies of Choi et
al. [37, 55, 56] that joint conditions can be derived without considering the

additional displacements for the closed section. Substituting Eqs. (4.15-17) into Eq.
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(4.14) gives

p

- [Tz\v(se,p) +1,Q,(T.Q, +R, )}g(zp)

£5,.,8(2,),

(4.21)

where Sy, is 3xNp matrix to calculate the displacements on the joint section at the

connection point p.
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4.2 Joint conditions for finite elements

The nodal solution vector d in Eq. (2.18) is composed of degrees of freedom
(DOFs) of each beam. For example, for a beam structure that consist of two beam

members, d can be written as

d[1]
d= e (4.22)

where d’! represents the DOF vector for beam b (b=1, 2). Because the Hermite
cubic polynomials are used as the finite element shape functions, d”l is composed

of the nodal DOFs and their derivatives as
dt = {e; g; - & g, (b=12) (4.23)

where &P and & are nodal DOF vector for node c¢ (c=1, ---, NJ; Np:
number of the finite element nodes of beam b) of beam b.

By substituting Eq. (4.21) into Eq. (4.2), the condition of displacement continuity
for the nodal DOFs is defined as

SHeM - TS el =0, (L<i<Ny; 1< j<NJ), (4.24)
where Sﬁf?p is the matrix to calculate displacements on the joint section at

connection point p (p=1, ---, Np; Np: number of the connection points) on beam b
(b=1, 2), & is the DOFs at corresponding finite element node I (I=i, j). In the

similar way, substituting Egs. (4.9, 12) into Eq. (4.3) gives the condition of rotation

continuity for the nodal DOFs as
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1 g[ll 2 é[Z] H 1 H 2
S[R?P é!lm _Tls[R,]p §IJ[2] =0, A<i<Ny; 1< J<Ny), (4.25)
i i

where S[Ff’ylp is the matrix to calculate rotations on the joint section at connection
point p (p=1, ---, Np; Np: number of the connection points) on beam b (b=1, 2).
Note that S[é”]p depends on type of the connection point as explained in Sections
4.1.1and 4.1.2;

ol {ng,p (independent point), (b=12) 4.26)

Sk,  (dependent point)

[b]
where Sp) )

and S[Ff’;’p are the matrices defined in Eqgs. (4.9, 12), respectively.

75 5



4.3 Numerical examples

For the verification of the proposed joint conditions, several numerical tests that
cover L-type and T-type joints are conducted. Because the higher-order modes
used in this paper are verified only for the static and vibration analyses [40], higher
level analyses like buckling analyses are not included here, but they are going to be
studied in our next research.

In Sections 4.3.1 and 4.3.2, static and vibration analyses for several L-type joint
structures that are solved in other earlier studies are conducted by the proposed
approach. Also, the results by the proposed approach are compared with the results
in each original paper. In Sections 4.3.3 and 4.3.4, the new problems are solved; T-
type joint structures having complicated cross-sections, and a simplified
automotive frame that is composed of various L- and T-type join parts. All the
results in this section are compared with the results by the shell theory (ABAQUS
S8R elements). The same Poisson’s ratio and density (v = 0.3 and p = 7850 kg/m?),
and various Young’s modulus (E = 205 GPa for Section 4.3.1, £ = 210 GPa for

Section 4.3.2, and £ =200 GPa for the other examples) are used in the examples.

4.3.1 An L-type joint structure with rectangular section

An L-type joint structure shown in Fig. 4.4, which is covered in the study of Choi
et al. [55], is analyzed. One end of the structure is fixed, and the other end is

assumed to be rigid and subjected to vertical force. The analysis is conducted with
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various joint angles (¢ =30, 60, 90 ), and the results by the shell elements, the
Timoshenko beam theory, the Choi’s approach and the proposed approach are
compared in Figs. 4.5-7 for each joint angle. Note that three rigid-body modes
(vertical deflection, bending rotation, torsional rotation) are used in Timoshenko
beam theory, and warping and distortion modes are additionally considered in the
Choi's approach. Also, 43 cross-section modes derived by the method in Chapter 3
are used in the proposed approach. It is shown in the graphs in Figs. 4.5-7 that the
results by the Choi's approach and the proposed approach agree with the shell
results consistently for the joint angle, while the Timoshenko beam results does not.
Figure 4.8 shows the differences of the tip deflection by the shell elements and the
proposed approach for the case of ¢ =30 . The horizontal axis of the graph
indicates the number of the cross-section modes used in the proposed analysis. It
can be seen from the graph that the difference decreases as more cross-section
modes are used. When the three rigid-body modes are used in the proposed
approach, the result is the same as that of the Timoshenko beam theory. To make
the difference comes within 5%, more than 18 modes are needed. Also, in order to
obtain better result than the Chofi's approach, 31 or more modes have to be used. As
a result, Choi's approach shows better accuracy when the same cross-section modes
are used. This is because his approach is specialized in L-type joint sutures with a
rectangular cross-section subjected to out-of-plane load, in the other words, his

approach is limited to this case. Although the proposed approach needs many
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cross-section modes for accurate analysis, the efficient analysis is possible by
considering higher-set modes only for the elements near the joint, while
considering the first set modes for the remaining elements, as described in
Appendix F. Compared to other existing approaches, the proposed joint condition
has merits in that it can cover arbitrary loading and complicated structures in a

consistent manner, as can be seen in later examples.

4.3.2 L-type joint structures with I-section

L-type joint structures with flange continuity and web continuity in Fig. 4.9 are
analyzed to cover the problems in the studies of the GBT [66, 70]. Although both
joint structures in the examples have the same cross-section, joint conditions in [66,
70] are different each other because they have different joint continuities. The
support condition in Fig. 4.9, which applies to both example, implies that both ends
of the structure are fixed and out-of-plane (Y1 and Y2) displacement at the center of
the joint section is constrained. In the analyses by the proposed approach, 20

modes for Section 4.3.2.1 and 42 modes for Section 4.3.2.2 are used.
4.3.2.1 Flange continuity

A static analysis is performed for the [-beam structure with the flange continuity.
Each member of the structure has a different length (L1=4m and 7,=3m), and a
torsional moment of 1000Nm is applied at the mid-span of the beam 1 (or at

Z1=2m). The analysis results in Fig. 4.10(a) show that torsional rotations by the
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GBT [66] and the proposed approach are well matched with the shell result, while
the Timoshenko beam theory yields too stiff result because transmission of the
torsional rotation is not captured. Also, it can be seen from Fig. 4.10(b) that full
transmission of the linear warping induced by equilibrium of the bimoment, which

is demonstrated in [53], is well captured by the proposed approach.
4.3.2.2 Web continuity

A vibration analysis is performed for the L-type joint structure with the web
continuity (Li=L;=3m). Table 4.1 shows the first 15 natural frequencies yielded by
the shell elements, the GBT [70] and the proposed approach. From the table, it is
found that both results by the GBT and the proposed approach show good
agreements with the shell results.

It is worth noting that only unstiffened joints are dealt in this section although
various stiffened joints are studied in the original examples in [66, 70], because
stiffened joints cannot be modeled in the proposed approach. In the GBT, the
stiffening effects of various types of joints are carefully implemented, and effective
stiffened joint conditions are proposed. Although the proposed approach is limited
to the unstiffened joints, it has a merit in that the joint condition can be defined in a
consistent manner regardless of the joint continuity types, while different joint
conditions are used in the GBT depending on the continuity. This is because the
GBT is mainly interested in efficient analyses of building frames, while the
proposed approach is focused on analyzing more complex structures such as

automotive frames.
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In Appendix G, additional tests are implemented for the structures in Section 4.3.2
to check whether the proposed joint condition works with the GBT modes, showing
that it is effective not only for the proposed cross-section modes but also for the

GBT modes.

433 A T-type joint structure with pentagonal and

rectangular sections

A T-type joint structure in which a rectangular tube (beam 2) is connected to a
pentagonal sectioned beam (beam 1) with the joint angle ¢ is analyzed (see Fig.
4.11). Both ends of the beam 1 is fixed, and one end of the beam 2 is assumed to be
rigid and subjected to axial force. In the proposed approach, 57 modes for the
pentagonal section and 46 modes for the rectangular section are used for analyses.
Figures 4.12 show the deformed shapes calculated by the shell elements, the

proposed approach and the Timoshenko beam theory for various joint angles
(¢$=30,60,90 ), and Fig. 4.13 shows the differences between the tip

displacement (magnitude) by shell and both beam based approaches. It can be seen
from Figs. 4.12 and 4.13 that the results by the proposed approach are almost the
same as the shell results, while the Timoshenko beam theory gives inaccurate

results.

4.3.4 A simplified vehicle frame

Figure 4.14(a) shows the line along the centroid of each member of the vehicle

80 .



frame in Fig. 1.3. The frame is fixed at two points and subjected to torsional forces.
The sections in which forces are applied are assumed to be rigid. Figure 4.14(b)
shows cross-sections of the vehicle frame members. For each cross-section, 53, 35,
53, 53, 28, 53 and 53 modes are used in the proposed model. Detailed modeling
information of members marked with blue numbers in Fig. 4.14(a) is given in Table
4.2.

It can be seen from Fig. 4.15 that the deformed shape of the proposed approach
well matches with that of the shell elements, while the Timoshenko beam model is
too stiff. Specifically, the difference of vertical displacement at point 4 in Fig.
4.14(a), one of the loading point, is calculated as 0.4% in the proposed approach
and 45.5% in the Timoshenko beam theory, compared to the shell result. Also, the
proposed approach gives outstanding results for the free vibration analysis of the

vehicle frame as can be seen in Fig. 4.16.
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Table 4.1 Natural frequencies (Hz) from the vibration analysis of an L-type joint
structure in Section 4.3.2.2 (numbers in parentheses denote the differences (%)

from the shell results)

Mode Shell GBT [70] Proposed
1 27.92 28.21 (1.1)  27.42 (1.8)
2 28.90 29.23 (1.1)  28.38 (1.8)
3 38.24 39.02 (2.0)  37.66 (1.5)
4 40.63 42.23 (3.9)  40.40 (0.6)
5 77.67 79.45 (2.3)  78.63 (1.2)
6 90.98 91.87 (1.0)  90.03 (1.0)
7 95.93 99.49 (3.7)  95.68 (0.3)
8 108.06 112.42 (4.0) 108.13 (0.1)
9 118.68 122.43 (3.2) 117.97 (0.6)
10 144.94 149.09 (2.9) 143.24 (1.2)
11 147.80 153.34 (3.7) 148.05 (0.2)
12 160.07 164.61 (2.8) 165.21 (3.2)
13 179.67 185.93 (3.5) 176.29 (1.9)
14 223.83 231.94 (3.6) 217.10 (3.0)
15 234.54 241.16 (2.8) 231.70 (1.2)
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Table 4.2 Beam modeling information for the vehicle frame in Fig. 4.14

Beam Section Orientation End coordinates 1 End coordinates 2
XG YG ZG XG YG ZG XG YG ZG
1 1 1 0 0 0.50 0 1.60 0.50 0 2.40
2 2 0 0 -1 0.80 007 155 0.80 050 1.55
3 1 0 0 -1 -0.85 0 1.55 0.85 0 1.55
4 5 0 0 -1 -0.85 0.50 1.55 0.85 050 1.55
5 1 1 0 0 0.80 0 -1.50 0.80 0 1.50
6 6 1 0 0 0 0 0.05 0 0 1.50
7 3 -0.94 -024 024 075 053 153 0.52 1 1.06
8 3 -1 0 0 0.52 1 1.06 052 121 0.85
9 7 0 0.71 -0.71 -047 1.07 093 047 1.07 093
10 3 -1 0 0 052 121 0.85 052 121 -0.85
11 1 0 0 -1 -0.75 0 0 0.75 0 0
12 4 0 0 1 0.79 0.07 0 0.79 095 0
13 4 0 0 1 0.79 0095 0 054 1.19 0
14 7 0 0 -1 -047 1.17 0 047 1.17 0
15 6 1 0 0 0 0 -1.50 0 0 -0.05
16 3 -1 0 0 052 121 -0.85 0.52 1 -1.06
17 7 0 -0.71  -0.71 -047 1.07 -0.93 047 1.07 -093
18 3 -094 -024 -0.24 0.52 1 -1.06 075 053 -1.53
19 2 0 0 -1 0.80 007 -1.55 0.80 050 -1.55
20 1 0 0 -1 -0.85 0 -1.55 0.85 0 -1.55
21 5 0 0 -1 -0.85 0.50 -1.55 0.85 050 -1.55
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Fig. 4.3 Rotations that cause additional displacements on joint section: (a) sectional
rotations by the bending rotation modes and (b) edge rotations by a linear warping
mode
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Fig. 4.4 L-type joint structure with rectangular section subjected to vertical force
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Fig. 4.11 T-type joint structure with pentagonal and rectangular sections subjected
to axial force
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Fig. 4.12 Deformed shapes of the T-type joint structure in Fig. 4.11 with various
joint angles (¢ =30",60",90) yielded by the shell elements, the Timoshenko beam
theory and the proposed approach
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Fig. 4.14 (a) Dimensions and boundary conditions of the vehicle frame in Fig. 1.3
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Fig. 4.15 Deformed shapes of the vehicle frame in Fig. 4.14 yielded by the shell
elements, the Timoshenko beam theory and the proposed approach
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Fig. 4.16 Free vibration analysis results of the vehicle frame in Fig. 4.14 yielded by
(a) the shell elements, (b) the Timoshenko beam theory and (c) the proposed
approach
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CHAPTER 5.

Conclusions

Through this dissertation, we presented a procedure for the one-dimensional
modeling of complicated beam structures.

In Chapter 3, an analytic and systematic approach to derive cross-section modes of
a thin-walled cross-section is proposed. While other constitutive relation-based
approaches were limited to rectangular cross-sections, the proposed approach is
applicable to arbitrarily shaped general sections, for which a formulation utilizing
an eigenvalue problem was newly presented. This required the use of orthogonality
among cross-section modes, from which the coefficients of basis functions for the
modes in the higher set can be obtained as eigenvectors. For hierarchical derivation
from lower to higher modes, we first derived integral equations between lower and
higher modes using constitutive equations of a plane stress state. By doing so, the
modes in the higher mode set can represent the strain field corresponding to the
stress field generated by the modes in lower sets. To confirm the validity, the
proposed cross-section modes were used for analyses of various thin-walled beams,

whose results were compared with those by other beam-based approaches as well
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as full shell models. The numerical results showed that the proposed approach can
yield excellent accuracy for three-dimensional displacements only using up to
second set of cross-section modes. To correctly estimate rapidly changing stress by
the end effect, more modes from higher-order mode sets might be required, but the
error can be reduced to less than 1% as long as sufficient higher modes are
employed.

In Chapter 4, an approach to define the joint condition was proposed. In the
proposed approach, the joint condition is derived using the displacement and
rotation continuities at the connection points. Although many enriched joint
conditions that use the continuities have been proposed, e.g., the GBT, the
proposed approach have some merits. First, the way the connection points are set is
consistent regardless of the cross-section shapes. Second, additional displacements
on the joint section caused by the rotations at a connection point are taken into
account. The consideration of the additional displacements is essential for an
authentic assessment of displacements at the joint, because the beam section and
the joint section are in different planes for general joint angle. For the verification
of the proposed joint condition, four examples were implemented. In the first two
examples that were covered by Choi et al. and the GBT, respectively, it was shown
that both results by the proposed approach and existing studies agree well with the
shell results. Although each existing study shows its own uniqueness, it also was
able to be found that the proposed joint condition has an advantage in that it is

applicable to various cross-sections in a consistent manner. Last two examples
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covered more complicated joint structures; a T-type joint structure and a vehicle
frame that is composed of various L- and T-type joints. Results of the examples
showed that the proposed approach is suitable to analyze complicated and practical
structures.

This dissertation showed that effective one-dimensional analyses of complicated
structures can be made using the proposed approaches, while other existing beam
theories are limited to simple cases only. The proposed joint condition also has a
limitation in that it can be used only if the connection points of beams can meet at
the itersection point by extending them along the beam axis, making it
challenging to cover the vehicle frames having complex joint parts. For future
works, joints of beams of chamfered section and beams of different heights will be

studied.
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APPENDIX A.

Determination of centroid and principal axes

Coordinates of the centroid on a cross-section are

Ng |2
Z(Xele +ecosaSJ
2

X =—x , (A.1)
2.
e=1
Ne 2
Z[Yele +-2sin ae]
Yo = , (A2)

where (X., Ye) and o. are the origin and the orientation angle of local coordinate
system of edge e, L is the length of edge e, and Ng is the number of cross-section
edges.

Using the obtained Xc and Yc, the orientation angle of the principal axes can be

calculated as
ﬁzétanl(—ZBl J (A3)
3

where
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Ne 2
B.=> 1l [(Xe - Xe +|Eecosaej(Ye -Y. +|Eesin aej+%sin(2ae)} (A4)
e=1

Ng 2
B,=>I [(xe — X )2+ 1, (X, = X.)cosa, +%cosz ae} (A.5)
e=1
Ng |2
B, :Z|{o{e ~Y. )2 +1.(Y, =Y. )sine, +§sin2ae} (A.6)
e=1
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APPENDIX B.
Corner continuity condition for s-directional

displacements

If more than two edges are connected at a corner, the s-directional displacement of
an edge at the corner should be represented by those of any other two edges
according to the displacement continuity. For example, if edges el, e2 and e3 are

connected at corner r, the s-directional displacement on edge €3, u,., , can be

expressed in terms of u,,, and u,,, as

us(ea)

={cosa,; sin ae3}{ux }

uY
' (B.1)

. -1
_ cosa, sina, | [u
= {cosa, sma%}{ o “} { s(el’} :

Cosa,, Sina, | |Uyey

If u =wZ " =8c"y" according to Egs. (3.9-3.12), Eq. (B.1) can be written as

*

¢c"=R”c¢" =0. (B2)

r

{ SN =) s Sin(ag —a) 5 }
(3) o €)= (e2)
sin(a, —a,,) sin(a, —a,,)

If corner  has N¢ connecting edges, (Ng —2 ) continuity conditions of Eq. (B.2)

should be considered.
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APPENDIX C,
Corner continuity conditions for n-directional

displacements

The n-directional shape function of an in-plane mode should be defined to satisfy
the continuity with corner displacement. For example, if the displacement at corner
r is expressed by already defined s-directional shape functions of edges el and €2,
the displacement continuity for edge ei (i = 1, 2, ---,N{; Ng: number of

connecting edges at corner r) is

, (C.1)

r

, _(_cos(ozez—ocei . 008y —ay) j
Vaeiy|, =

sin(e, —a,,) Y sin(e, —a,,) "

where the corner displacement by s-directional shape function is expressed using
Eq. (B.2).

In addition, the slope continuity conditions and moment equilibrium are

l/)r{(ej) r_l/)rf(el) r :0’ (j:2131"'1N|;)1 (C2)
NE
Zwi W e . =0, (C.3)
i1

where w; =1 for s = [.; and w; =—1 for s = 0 because the sign of the moment differs
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at both ends of an edge.

If wi. Issetas aquadratic function for an open edge and as a cubic function for

a closed edge, the number of coefficients is always equal to the number of
conditions in Egs. (C.1-C.3); hence, the n-directional shape function can be

uniquely defined.
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APPENDIX D.

Equations for the number of cross-section modes

The number of modes for warping (Nw+ and Nw), distortion (N,+ and N,), and wall-

bending modes (;) are
Nc
Ny =2Ng 1= (M, (r) + M,(r)), (D.1)
r=1
Nc
N,.=Ng=3-> M,(r), (D.2)
r=1
Nc
Ny =Ng +N; =N +2-> M,(r), (D.3)
r=1
Nc
N, =Ng =N, +N, —2-> M,(r), (D.4)
r=1
Nc
N, <BN¢ + N, +3-> M,(n), (D.5)

r=1
where Ng and Nc are the number of cross-section edges and the number of corners,

respectively, and N, and N, are correspondingly the numbers of warping and

distortion modes already derived in the lower sets. Above, M{(r) (i = 1, 2, 3)

denotes the number of continuity conditions at corner 7
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CINE-1 (NE>D)
Ml(r)—{ 0 (NL<1) (D.6)

INg=2 (N£>2)

Mz(r)—{ 0 (NL<2) (D.7)
2N (N>

M3(r)_{ (N -1y (D.8)

Here, N; is the number of cross-section edges connected at corner . Note that an
mnequality is used in Eq. (D.5). This is because the rank of the matrix used in the
eigenvalue problem can be lower than the number of basis functions because of not

considering the orthogonality between n-directional displacements and wall-

bending modes.
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APPENDIX E.

GBT modes used for problems in Section 3.3

Figures E.1-E.3 present the GBT modes employed in problems in Section 3.3. The

modes are obtained using the GBTUL [12-17].
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Fig. E.1 GBT modes employed in the analysis in Section 3.3.2

111



QWW @@m@g@@@@

@@@@@maﬁagaﬁag

Fig. E.2 GBT modes for the cross-section in Fig. 3.3(b)

11°

'1;‘:1'1
1

)

29
e

2 A =

112



wbm&MDw

s-section in Fig. 3.3(c)

Fig. E.3 GBT modes for the cros

| &8} 7

113



APPENDIX F.
Effectiveness of the use of higher-set modes for the

joint

The L-type joint structure in Fig. 4.4 is analyzed for ¢ =30, considering 43
cross-section modes for the elements near the joint, while considering 8 cross-
section modes used in [55] for the remaining elements. The total length of the joint
elements of each beam is set SOmm. The analysis results in Fig. F.1 show that the
efficient analysis is possible by considering higher-set modes only for the elements
near the joint where complex deformations are occurred. In the analysis, 77% of

degrees of freedom is reduced compared to the case of Section 4.3.1.
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APPENDIX G.
Effectiveness of the proposed joint condition for the
GBT modes

The numerical tests are implemented for the structures in Section 4.3.2 to check
whether the proposed joint condition works with the GBT modes. Figure F.1 shows
the torsional rotation and linear warping modes obtained by analyzing the structure
in Section 4.3.2.1, and Table F.1 shows the modal analysis results of the structure
in Section 4.3.2.2. From the results, it is found that the proposed joint condition is
effective not only for the proposed cross-section modes but also for the GBT

modes, although some results seem to be slightly differ from those of the shell.
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Table G.1 Natural frequencies (Hz) from the vibration analysis of an L-type joint
structure in Section 4.3.2.2 (numbers in parentheses denote the differences (%)
from the shell results)

Mode Shell GBT Proposed  GBT modes &
Proposed joint
condition

1 27.92 2821 (1.1) 2742 (1.8) 27.77 (0.5)
2 28.90 2923 (1.1)  28.38 (1.8) 28.72 (0.6)
3 38.24 39.02 2.0)  37.66 (1.5) 37.56 (1.8)
4 40.63 4223 (3.9)  40.40 (0.6) 40.75 (0.3)
5 77.67 7945 (23) 78.63 (1.2) 79.60 (2.5)
6 90.98 91.87 (1.0)  90.03 (1.0) 91.05 (0.1)
7 95.93 99.49 3.7)  95.68 (0.3) 93.49 (2.5)
8 108.06 112.42 (4.0) 108.13 (0.1) 108.77 (0.7)
9 118.68 12243 (3.2) 117.97 (0.6) 117.09 (1.3)
10 144.94 149.09 (2.9) 143.24 (1.2) 119.21 (17.8)
11 147.80 153.34 (3.7) 148.05 (0.2) 145.58 (1.5)
12 160.07 164.61 (2.8) 165.21 (3.2) 164.44 (2.7)
13 179.67 185.93 (3.5) 176.29 (1.9) 177.93 (1.0)
14 223.83 231.94 (3.6) 217.10 (3.0) 219.15 (2.1)
15 234.54 241.16 (2.8) 231.70 (1.2) 233.98 (0.2)
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