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Abstract

Real-time Safety-guaranteed Trajectory Planning

using Hamilton-Jacobi Reachability Analysis

Hoseong Seo

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

Guaranteeing safety in planning trajectories of robotic systems is a fundamental re-

quirement for reliable operation. However, it is di�cult to verify in advance whether the

seemingly-safe planned trajectory will be safe because of unknown disturbances exerted

to the system during the actual runtime. This dissertation presents a real-time safety-

guaranteed trajectory planning algorithm.

The safety of the system can be guaranteed by the forward reachable sets (FRSs)

computed from the Hamilton-Jacobi (HJ) reachability analysis. Considering that the un-

expected disturbance can instantaneously drive the system to devastating situations, this

work concentrates on real-time safety verification. The proposed reachability analysis con-

sists of 2 stages: the analysis of the linearized (time-varying) dynamics, and nonlinear

dynamics that is polynomial of states and disturbances. For the reachability analysis on

linear time-varying (LTV) systems, this work presents an ellipsoidal approximation of the

FRS based on the generalized Hopf formula. Since the formula gives the explicit solution of

the Hamilton-Jacobi-Bellman (HJB) equation, the proposed ellipsoidal approximation en-

closes the FRS of LTV systems. To incorporate the nonlinearities that are neglected in the

derivation of the FRS of LTV systems, this work further proposes an algorithm for comput-

ing the funnel by approximating the value function of the HJB equation as a multivariate

polynomial of states. From the property of the Bernstein polynomial, the conservativeness

condition of the value approximation is converted as linear inequality constraints without
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any compromise. The proposed funnel computation algorithm consists of multiple linear

programs (LPs), and thus computationally much tractable compared to most of the existing

works.

Finally, a constrained optimization problem is formulated to generate the reference tra-

jectory of the system. The safety of the system is considered as nonlinear constraints of

the optimization such that the funnel and unsafe regions do not intersect. Since the funnel

certainly contains the FRS, the system is guaranteed to be safe regardless of disturbances.

Also, the fast computation of the funnel allows the optimization problem to be solved

in real-time. Consequently, the proposed method enables real-time replanning of the tra-

jectory with safety guarantees even when the system encounters unexpected disturbances

in runtime. Flight experiments of obstacle avoidance in a windy environment present the

validity of the proposed planning algorithm.

Keywords: Robot safety, Motion and path planning, Optimization and optimal con-

trol, Reachability analysis.

Student Number: 2016-30185
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1
Introduction

Guaranteeing safety is a core element for exploiting a wide range of robotic systems. Plan-

ning an appropriate reference trajectory for the system is necessary to avoid risky regions

and accomplish a given mission. Even though the planned trajectory is ostensibly safe, it

may lead to hazardous situations due to inevitable disturbances in real environments. To

verify the runtime safety of the system, the planner must take into account how far the

system strays from the nominal trajectory (i.e. the disturbance-free state trajectory) caused

by disturbances. In terms of guaranteeing safety, a funnel, the set of states which can be

reached from an initial set of states under adversarial disturbances, can be used.

Evaluating the funnel of the system is computationally burdensome because distur-

bances in runtime are usually unknown, and the nonlinear dynamics of the system make

the evaluation complicated. To overcome this computational issue, methods for the online

composition of funnels computed in the o✏ine step are proposed. These funnels are cal-

culated for the predefined (expected) bounded set of disturbances, and then, in the online

phase, the funnel suitable for the current disturbance condition is loaded from the precom-

puted funnels. However, the actual disturbances may exceed the predefined disturbance
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range. In this case, the previously computed funnels no longer guarantee the safety of the

system. To ensure the safety of the system under unexpected disturbances, it is necessary

to quickly compute the funnel, considering the additional disturbances in runtime.

The objective of this dissertation is to provide a safe reference trajectory for a vehicle

so that the vehicle reaches the goal while avoiding unsafe regions, regardless of distur-

bances. If the vehicle following a predefined reference trajectory comes across previously

unknown obstacles, the vehicle should modify its local maneuver plan to avoid possible

collisions. Furthermore, when additional disturbances suddenly interrupt the vehicle, the

evasive maneuver must take into account such unexpected disturbances to safely bypass

the obstacle. Keeping this circumstance in mind, this work aims for the safety-guaranteed

trajectory planning in the following two perspectives. First, the worst-case scenario, rather

than a probabilistic perspective, is analyzed to achieve the deterministic safety guarantee

as described in Fig. 1.1. Second, the local reference replanning as well as the worst-case

analysis must be performed in real-time to cope with sudden changes in the environment

during runtime as illustrated in Fig. 1.2. As a means of guaranteeing safety, this work uti-

lizes an outer approximation of the forward reachable set (FRS) of the system. The FRS is

the set of states driven by the disturbances from an initial set, where the initial set is the

set near the current state. We then solve a trajectory optimization problem to modify the

reference trajectory considering the derived FRS and updated environmental information.

The planned reference trajectory eventually guarantees the safety of the vehicle by making

sure that the corresponding FRS does not intersect with unsafe regions.

This dissertation presents an algorithm for computing a funnel, a tight outer approx-

imation of the FRS of nonlinear systems. To compute the funnel of the nonlinear system

with computational e�ciency, the FRS of the linearized LTV system is analyzed first. The

proposed computation of the FRS of LTV systems derives a sizable computational benefit

from the generalized Hopf formula [1]. From the formula, it is shown that the FRS of LTV

systems is the Minkowski sum of sets: the initial set and the sets propagated by distur-

bances. To reduce the computation burden regarding the Minkowski sum of sets, the sets
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propagated by disturbances are approximated as outer ellipsoids. Accordingly, the FRS of

LTV systems is also over-approximated as the Minkowski sum of the initial set and the

approximated ellipsoids for the sets due to disturbances.

Then, the funnel is computed by approximating the value function of the Hamilton-

Jacobi-Bellman (HJB) equation as a multivariate polynomial of states. The value function

is conservatively approximated so that the funnel certainly contains the FRS of nonlinear

systems. The conservativeness condition is shown to be inequality constraints between poly-

nomials. By using the property of the Bernstein polynomials [2], the polynomial inequality

constraints can be expressed as linear inequality constraints of the coe�cients of the ap-

proximated (polynomial) value function. Based on the derived linear inequality constraints,

sequential linear programming (SLP) is formulated to find the optimal coe�cients of the

polynomial value function. The ellipsoidal approximation of the FRS of the LTV system is

(a) Planning without considering disturbances (b) Planning with considering disturbances

Figure 1.1: Illustration of reachability-based planning. (a) If a multirotor follows a seem-
ingly collision-free reference trajectory (the solid red line), the multirotor may collide with
obstacles (the solid green line) due to disturbances during flight. (b) By considering the
FRS (the shaded orange region) in planning the reference trajectory, the multirotor can
safely bypass obstacles.
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used as the initial guess of the SLP. The proposed funnel computation consists of multiple

LPs, and thus it enables a tractable computation of the funnel.

After computing the funnel of nonlinear systems, the optimal reference trajectory is

generated as follows. Given a preplanned global reference trajectory used as the initial

guess of the local reference trajectory, a two-step approach is proposed to optimize the

local reference, as shown in Fig. 1.3. In the first step shaded in blue, the funnel of the

nonlinear system is computed along with the current reference. In the second step shaded

in red, constrained optimization is performed so that the funnel computed in the first

step does not intersect with the unsafe regions. After updating the current reference with

the optimal one computed in the second step, we reevaluate the funnel and repeat those

processes until the computation of the reference trajectory converges. Finally, the converged

reference trajectory guarantees safety while the system follows the corresponding reference.

(a) The multirotor disturbed by unexpected gust (b) Guaranteeing safety by replanning

Figure 1.2: Illustration of safety-guaranteed replanning of the reference trajectory. (a) Addi-
tional disturbances during runtime degrade the safety guarantee of the reference trajectory
(the solid red line) since the precomputed FRS (the shaded orange region) cannot capture
the unexpected deviation (the solid green line) due to the additional disturbances. (b) By
rapidly modifying the FRS considering the additional disturbances, the corresponding ref-
erence trajectory can be replanned so that the multirotor is guaranteed to be collision-free
regardless of the unexpected disturbances.
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Figure 1.3: Schematic diagram of the proposed planning pipeline
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1.1 Literature Survey

There exists an extensive body of literature in safe trajectory planning against bounded

disturbance. Originally, the reachable set of the system can be obtained by solving the

corresponding HJB equation [3]. Since it is di�cult to compute the analytic solution of

the HJB equation, some works utilize a numerical method to solve the HJB equation

and evaluate the reachable set [4, 5, 6]. Other works parameterize the solution of the

HJB equation, i.e. the value function, as a polynomial of states. Then, an optimization

problem is formulated to find the best approximation of the value function [7, 8, 9, 10, 11].

Works in other category represent the reachable set as a semi-algebraic set, and develop

the propagation law of the corresponding geometry [12, 13, 14]. The most closely related

works to the objective of this study are categorized as the following sections.

1.1.1 Hamilton-Jacobi Reachability Analysis

Hamilton-Jacobi (HJ) reachability analysis [15] is a method to derive the FRS through

solving a corresponding HJB equation. However, solving HJB equations by gridding the

state space leads to the exponential computational complexity in the dimension of the

state, and this has limited the use of the HJ reachability analysis in real-time planning. To

alleviate this exponential complexity, the Lax and Hopf theory [16, 17] aims to provide an

analytic solution to the HJB equation. Until very recently, state-dependent dynamics could

not have been addressed. The state-of-the-art works in such e↵orts include treatment of a

linear state-dependent dynamics [1, 18], or a linearization-based approach for a nonlinear

dynamics [19]. Such approaches can only determine whether a particular state is reachable

or not and do not provide the reachable set itself. It is not possible to guarantee the safety of

all states starting from the initial set by judging whether the particular state is reachable

or not. The proposed approach, whereas, presents the explicit form of the FRS of LTV

systems.
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1.1.2 Two-Player Di↵erential Game

In an attempt to utilize the HJ reachability analysis in planning a safety-guaranteed tra-

jectory, a pursuit-evasion di↵erential game is formulated. Works in this class formulate the

reachability problem as a two-player di↵erential game, and compute the numerical solution

of the HJB equation regarding the game by gridding state space and time. The game is

consist of two systems: the planning system that corresponds to the reference trajectory,

and the tracking system identical to the closed-loop dynamics. [4] performs HJ reachability

analysis to compute the maximum tracking error resulting from the di↵erence between the

planning and tracking systems. The planning system can adjust its maneuver so that the

tracking system does not collide with obstacles considering the maximum possible error.

As an extension of [4], [5] considers various planning systems and computes the maximum

tracking error for each planning model. In the online phase, the di�culty of environments

(e.g. the distance between obstacles) determines an appropriate planning system to be

used, considering the maximum tracking error. With the aid of a sampling-based planner,

[20] provides safety-guaranteed exploration in unknown environments. This work builds a

graph of states by recursively using the forward and backward reachability, and collision

avoidance is guaranteed from the maximum tracking error computed o✏ine.

This class of methods may lack scalability because solving HJB equations by gridding

the state space leads to exponential computational complexity in the dimension of the state.

Also, they require a reevaluation of the maximum tracking error when the system param-

eters are changed. The maximum error computed in the o✏ine phase may not guarantee

safety when additional disturbances suddenly interrupt the system. Although many e↵orts

have attempted to solve the HJ reachability problem e�ciently (for example, via system

decomposition [21] and warm-start [22]), the computation time is still inappropriate for

real-time applications.
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1.1.3 Lyapunov Theory and SOS programming

Sum-of-squares (SOS) programming has been utilized to compute a funnel. Works in this

category aim to find the optimal polynomial function that tightly approximates the value

function of the HJB equation. In [7], the funnels of nonlinear systems combined with an LQR

controller are computed around a given reference trajectory. But, the trajectory planning

problem is not addressed. In an attempt to use the funnels in robust planning, [8] proposes

the concept of a funnel library, which is the composition of funnels calculated around a finite

number of predefined reference trajectories. The funnel library of the system is constructed

during the o✏ine phase. Then during the online phase, the optimal sequence and duration

of the reference trajectory are planned so that the funnels do not collide with obstacles.

[9] generates a safety-guaranteed flight trajectory for a multirotor system using the funnel

library. It computes the funnels that describe the maximal tracking error of the translational

dynamics in the o✏ine phase, for di↵erent bounds on external force disturbances. In [10]

and [11], the funnel associated with admissible parameters is precomputed in the o✏ine

step, and then the optimal (safe) parameter are selected in the online step.

Although the funnels provide almost exact bounds of states under bounded distur-

bances, those approaches may not be scalable because it is necessary to reconstruct the

funnel library from scratch if some of the system parameters such as inertia and control

gains are changed. Also, the planned trajectory from the funnel library no longer guaran-

tees safety when the funnel library does not cover the magnitude of the actual disturbance

encountered in runtime. The heavy computational burden of SOS programming makes it

di�cult to use the funnels for verifying the runtime safety of the system.

1.1.4 Tube-based Model Predictive Control

Works in tube-based model predictive control (TMPC) compute the reachable sets in run-

time and approximate them as convex geometries, usually ellipsoids. [13] computes robust

forward invariant tubes and the optimal control inputs at the same time, based on the
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boundness of di↵erential inequalities [12]. Invariant tubes also provide theoretical enclo-

sures of the system under the bounded disturbances. However, the computation of the

robust forward invariant tubes requires the solution of a matrix-valued di↵erential equa-

tion at each sampling time. So, the real-time generation of the reference trajectory based

on the invariant tubes may not be possible for high-dimensional systems. [14] proposes an

e�cient approximation of the disturbance invariant sets and a robust planning method,

based on a nonlinear model predictive control (NMPC). However, it requires numerical

integration of all the states in the initial set, so lacks a theoretical guarantee of safety since

the FRS of the system is likely to be underestimated.

1.1.5 Feature of the Work

Most of the existing studies mainly focus on how to utilize funnels that are computed in the

o✏ine step. Accordingly, if system parameters or disturbance conditions used in the o✏ine

phase are di↵erent from those in the online phase, there is a common limitation that the

previously computed funnels can no longer be used to ensure the safety of the system. On

the other hand, the proposed work focuses on the quick computation of the funnel itself.

Thus, the proposed algorithm has the potential to react rapidly enough to the changes,

and can be used for verifying the safety even if additional disturbances are applied to the

system during runtime.
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1.2 Contributions

The contributions of this dissertation are summarized as follows.

• Characterization of the FRS of LTV systems: A Hopf-based method that pro-

vides an outer approximation of the FRS of LTV systems is presented. It should be

noted that the previous methods based on the Lax and Hopf theory do not provide

an FRS but determine if a single state is in the FRS or not.

• Tight ellipsoidal approximation of the FRS of LTV systems: The proposed

method finds the minimal volume ellipsoid that closely over-approximates the FRS of

LTV systems. There exists no closed-form formula for a minimum volume composition

of ellipsoids, and thus a fixed-point iteration is proposed for computational e�ciency.

• Polynomial approximation of the Hamiltonian: Closed-form polynomial expres-

sions that bound above the Hamiltonian of the HJB equation are presented. It should

be noted that solving the HJB equation with grid-based approaches [23] requires

nonlinear optimization on disturbances for each state on the grid. The proposition

significantly reduces the burden required to compute the Hamiltonian.

• LP-based computation of the funnel of nonlinear systems: Thanks to the

useful property of Bernstein polynomials, the proposed algorithm computes the funnel

via LPs, which are computationally more tractable compared to SOS programming.

To the best of the author’s knowledge, this dissertation is the first work that utilizes

Bernstein polynomials in computing the funnel.

• Real-time planning with guaranteed safety: A trajectory planning algorithm

combined with the proposed funnel computation method is presented. Also, the per-

formance of the proposed planning algorithm is validated through a flight experiment

using a multirotor.

10



1.3 Outline

The outline of the thesis is as follows. Chapter 2 provides preliminaries for the HJ reach-

ability analysis, which are thoroughly used in this work. Chapter 3 presents the analytic

expression and tight outer approximation of the FRS for LTV systems. Chapter 4 provides

the LP-based algorithm for computing the funnel of nonlinear systems. Chapter 5 describes

how to generate the safety-guaranteed reference trajectory using the funnel. Chapter 6 pro-

vides experimental results, and Chapter 7 ends the thesis with concluding remarks.
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2
Background

This section briefly summarizes the background materials of this work. The definition of

FRS and funnel is presented first. As a tool for computing the FRS, the key concept of the

HJ reachability analysis and the generalized Hopf formula are provided.

2.1 Forward Reachable Set and Funnel

Consider a nonlinear dynamics f : Rn ⇥W⇥ [t0, tN ]! Rn as

ẋ(t) = f
�
x(t), w(t), t

�
, (2.1)

where x(t) 2 Rn is state, w(t) 2 W ⇢ Rm is unknown disturbance, t0 2 R is the initial

time, and tN > t0 2 R represents a finite time horizon. n and m 2 R are the dimension of

the state and disturbance, respectively. W is a convex and bounded set of disturbances. It

is assumed that the dynamics f is Lipschitz continuous in x and uniformly continuous in

w. Also, without loss of generality, the system (2.1) is assumed to be centered at the origin,
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i.e. the solution of the following nominal dynamics represents x(t) = 0 for all t 2 [t0, tN ]:

ẋ(t) = f
�
x(t), 0, t

�
, x(t0) = 0. (2.2)

The FRS X(t) ⇢ Rn of the system (2.1) is the set of all states to which a system can

be driven from a given initial set of states X0 ⇢ Rn after a certain duration t > t0 2 R, in

the presence of the disturbance [3].

Definition 2.1 (Forward reachable set). For a given initial set of states X0 and bounded

set of disturbances W, a forward reachable set X : [t0, tN ]! P(Rn) of the system (2.1) is

X(t) :=

8
>>>><

>>>>:

y

����������

8⌧ 2 [t0, t], 9w(⌧) 2W,

ẋ(⌧) = f
�
x(⌧), w(⌧), ⌧

�
,

x(t0) 2 X0, y = x(t)

9
>>>>=

>>>>;

, (2.3)

where P(Rn) represents the power set of Rn.

The FRS of the system (2.1) is uniquely determined for the given initial set of states

X0 and set of disturbances W. With the definition of the FRS, the funnel F(t) ⇢ Rn of the

system (2.1) is defined as the following.

Definition 2.2 (Funnel). A funnel F : [t0, tN ] ! P(Rn) of the system (2.1) is a set that

contains the forward reachable set X(t) in (2.3) such that

X(t) ✓ F(t) 8t 2 [t0, tN ]. (2.4)

In short, the funnel is an outer approximation of the FRS. Note that any subset of

Rn can be a valid candidate for the funnel as far as the subset satisfies the condition

(2.4). Thus, computing the funnel that tightly encloses the FRS is important to prevent

unintended conservativeness due to approximation.
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2.2 Hamilton-Jacobi Reachability Analysis

To compute the FRS, the reachability problem [3] is considered. Let l : Rn ! R be a convex

function such that X0 = {y | l(y)  0}. The function l determines whether a particular state

is in X0 or not. Consider the cost functional J : Rn ⇥ Rm ⇥ [t0, tN ]! R defined as

J(x, w, t) = l(x(t0)) +

Z t

t0

L(w(⌧)) d⌧,

where the function L : Rm ! R is the running cost for the boundedness of disturbances

such that

L(w) =

8
><

>:

0 w 2W,

1 w /2W.

The value function V : Rn ⇥ [t0, tN ] ! R is the minimum of the cost over all possible

disturbances:

V (x, t) = min
w

J(x, w, t). (2.5)

The following theorem describes a temporal-spatial variation of the value function.

Theorem 2.1 (HJB equation [16]). Suppose f in (2.1) is Lipschitz in (x, t) and l is

Lipschitz in x. For (x, ⌧) 2 Rn ⇥ [t0, t], V in (2.5) is the unique viscosity solution to

@V (x, ⌧)

@t
+H

⇣
x,
@V (x, ⌧)

@x
, ⌧

⌘
= 0 in Rn ⇥ (t0, t),

V (x, ⌧) = l(x) on Rn ⇥ {⌧ = t0},
(2.6)

where the Hamiltonian H : Rn ⇥ Rn ⇥ [t0, t]! R is

H(x,�, ⌧) := max
w2W

�
� · f(x, w, ⌧)

�
. (2.7)

The reachability problem implies that there exists a sequence of disturbances that drives

x inside the subzero level set of V (x, t0) to the subzero level set of V (x, t). In other words,

14



the sequence of optimal disturbance w
?(⌧) can steer x in the zero level set of V (x, t0) to

the zero level set of V (x, t). Thus, the FRS can be expressed in terms of the value function:

X(t) = {x | V (x, t)  0} . (2.8)

2.3 The Generalized Hopf Formula

Considering that it is di�cult to solve the HJB equation for most state-dependent nonlinear

systems, grid-based methods such as the level-set method [23] are utilized to obtain a

numerical solution. This makes it intractable to compute the FRS for high-dimensional

systems over 5D. To alleviate this computational complexity, the generalized Hopf formula

that provides an analytic solution to the HJB equation for state-independent systems is

utilized. Since the dynamics (2.1) depends on the state, the linearization of the dynamics

(2.1) is considered. Then, the coordinate transform [18] that converts the linear dynamics

to state-independent is employed.

The linearization of (2.1) can be expressed as

ẋ(t) = A(t)x(t) +D(t)w(t), (2.9)

where A(t) 2 Rn⇥n and D(t) 2 Rn⇥m are the time-varying matrices from the linearization.

The corresponding FRS of the LTV system (2.9) is defined as

X(t) :=

8
>>>><

>>>>:

y

����������

8⌧ 2 [t0, t], 9w(⌧) 2W,

ẋ(⌧) = A(⌧)x(⌧) +D(⌧)w(⌧),

x(t0) 2 X0, y = x(t)

9
>>>>=

>>>>;

. (2.10)

As proposed in [18], we consider a time-varying coordinate transform such that x(t) =

�(t, t0)z(t), where �(t, t0) 2 Rn⇥n is the state transition matrix of a homogenous system

ẋ(t) = A(t)x(t) from t0 to t. From (2.9), the state-independent dynamics in the z coordinate

15



is derived as

ż(t) = �̇(t0, t)x(t) + �(t0, t)ẋ(t)

= ��(t0, t)A(t)x(t) + �(t0, t)
�
A(t)x(t) +D(t)w(t)

�

= �(t0, t)D(t)w(t) := Dz(t)w(t),

(2.11)

where �̇(t, t0) = A(t)�(t, t0) is used.

Similar to (2.5), a cost functional and the corresponding value function of the reacha-

bility problem in the z coordinate are

Jz(z, w, t) = lz(z(t0)) +

Z t

t0

L(w(⌧))d⌧,

Vz(z, t) = min
w

Jz(z, w, t),

(2.12)

where the subscript z represents the function expressed in the z coordinate. The generalized

Hopf formula which presents the analytic expression of the value function in (2.12) is

summarized as follows.

Theorem 2.2 (The generalized Hopf formula [24, 1]). For a given (z, ⌧) 2 Rn⇥ [t0, t], the

solution to the HJB equation associated with the dynamics (2.11) and cost (2.12) is

Vz(z, t) = �min
�

⇢
� z · �+ hz(�) +

Z t

t0

Hz(�, ⌧)d⌧

�
(2.13)

where the Hamiltonian Hz : Rn ⇥ [t0, t]! R is

Hz(�, ⌧) := max
w2W

�
� · (Dz(⌧)w)

�
, (2.14)

and hz : Rn ! R is the Fenchel-Legendre transformation of lz defined as

hz(�) := max
z

�
z · �� lz(z)

�
. (2.15)

Since the dynamics (2.11) is not a function of z, the corresponding Hamiltonian is also

independent of z. This is the main reason that the value function can be expressed as
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an analytic form through the generalized Hopf formula. Compared with solving the HJB

equation with numerical methods, the generalized Hopf formula provides a much more

computationally tractable way. Similar to (2.8), the FRS of the linearized system (2.11)

can be expressed in terms of the value function as

Z(t) = {y | Vz(y, t)  0}. (2.16)

Considering the coordinate transform that we employed, the FRS of the linearized system

(2.9) can also be expressed as

X(t) = {�(t, t0)y | y 2 Z(t)}. (2.17)

By using the formula, it is possible to compute the value Vz(z, t) in (2.13) for a given z

with the temporal discretization and numerical optimization algorithms. Thus, determining

whether a particular z is in the FRS is also possible with much less computational load

compared to grid-based methods. However, simply checking whether one state is inside the

FRS is not su�cient to ensure the safety of all states in the initial set. Since an explicit

representation of Z(t) in (2.16) cannot be obtained using the generalized Hopf formula

alone, the characterization of the shape of Z(t) is proposed in Chapter 3. Also, it should

be noted that X(t) in (2.3) and X(t) in (2.10) are not identical due to the linearization

error, and thus X(t) cannot be used for guaranteeing the safety of the nonlinear system. In

Chapter 4, an algorithm for computing the funnel of nonlinear systems via a polynomial

approximation of the value function V (x, t) in (2.5) is presented.
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3
Reachability Analysis of LTV Systems

This chapter is dedicated to computing the explicit form of the FRS of LTV systems and

its ellipsoidal approximation based on the generalized Hopf formula presented in Theorem

2.2. Section 3.1 proposes that the FRS of the transformed LTV system Z(t) in (2.16) is the

Minkowski sum of sets: the initial set and the sets propagated by disturbances. Then, as the

first step to approximate Z(t), Section 3.2 proposes an ellipsoid that encloses the sets due to

disturbances. Section 3.3 presents an iterative algorithm for computing the minimal ellipsoid

that encloses the Minkowski sum of ellipsoids to avoid overly conservative approximation.

Finally, the ellipsoidal approximation of the FRS of the linearized LTV system X(t) in

(2.10) is presented in Section 3.4.

3.1 Characterization of Forward Reachable Set

The objective of this section is to find an analytic expression of the FRS of the transformed

LTV system in (2.11). Consider the following ellipsoidal initial set of states

X0 = E(Q0) :=
�
Q

1
2
0 v | kvk2  1, v 2 Rn

 
⇢ Rn

,
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and the initial value function

l(x) = x
>
Q

�1
0 x� 1,

where E : Sn
++ ! P(Rn) describes an ellipsoid centered at the origin, Q0 2 Sn

++ is the shape

matrix of the ellipsoid E(Q0), and Sn
++ represents a set of n⇥n symmetric positive definite

matrices. Since z(t0) = �(t0, t0)x(t0) = x(t0), the initial set of states in the z coordinate is

identical to the initial set of states in the x coordinate. The initial set and the initial value

function in the z coordinate are

Z(t0) = E(Q0),

lz(z) = z
>
Q

�1
0 z � 1.

(3.1)

From (2.15), the convex conjugate of lz(z) is

hz(�) =
1

4
�
>
Q0�+ 1. (3.2)

Now, the following assumption on the disturbance is presented.

Assumption 3.1 (Independently bounded disturbance). Each element of disturbances wi,

the i-th element of w, a↵ects the system independently. Also, without loss of generality, wi

is normalized as �1  wi  1 for all i 2 {1, . . . ,m}, i.e. W = [�1, 1]m.

Based on Assumption 3.1, the Hamiltonian in (2.14) can be expressed as

Hz(�, t) =
mX

i=1

|�>Dz,i(t)| (3.3)

with the optimal disturbance

w
?(t) = sign(Dz(t)

>
�),

where Dz,i(t) is the i-th column of Dz(t) in (2.11).
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Proposition 3.1 (FRS of a state-independent LTV system). For a given initial set Z(t0)

in (3.1) and Hamiltonian Hz in (3.3), the FRS of the system (2.11) is

Z(t) = Z(t0)�D(t, t0), (3.4)

where the set due to the disturbance D(t, t0) ⇢ Rn is the Minkowski sum of Di(t, t0) ⇢ Rn

such that

D(t, t0) =
mM

i=1

Di(t, t0),

Di(t, t0) =

⇢Z t

t0

Dz,i(⌧)sign
⇣
Dz,i(⌧)

>
Q

� 1
2

0 v

⌘
d⌧

��� kvk2  1, v 2 Rn

�
.

(3.5)

Proof. Consider the property of Fenchel-Legendre transform [25] that the derivative of a

convex function is the optimal argument of its conjugate. Let �? 2 Rn be the minimizer of

(2.13) such that

Vz(z, t) = z · �? � hz(�
?)�

Z t

t0

Hz(�
?
, ⌧)d⌧. (3.6)

Since hz in (3.2) and Hz in (3.3) are convex in �, the first-order optimality condition is

@

@�

⇣
� z · �+ hz(�) +

Z t

t0

Hz(�, ⌧)d⌧
⌘���

�=�?
= 0.

The trajectory of z along �? can be expressed as

z
?(t) := z(t;�?) =

@hz(�)

@�

���
�=�?

+

Z t

t0

@Hz(�, ⌧)

@�

���
�=�?

d⌧. (3.7)

Substituting (3.7) into (3.6) yields the value function expressed in �? as

Vz(�
?
, t) = p

?>
✓
@hz(�)

@�

���
�=�?

+

Z t

t0

@Hz(�, ⌧)

@�

���
�=�?

d⌧

◆
� hz(�

?)�
Z t

t0

Hz(�
?
, ⌧)d⌧

=
1

4
�
?>
Q0�

? � 1,

(3.8)
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since
@hz(�)

@�

���
�=�?

=
1

2
Q0�

?
,

@Hz(�, ⌧)

@�

���
�=�?

=
mX

i=1

Dz,i(⌧)sign
�
Dz,i(⌧)

>
�
?
�
.

The subzero level set of (3.8) is

Vz(�
?
, t)  0 () �

? 2
�
2Q

� 1
2

0 v | kvk2  1, v 2 Rn
 
. (3.9)

By composing (3.7) and (3.9), we obtain

Vz(z, t)  0 () z 2 Z(t0)�D(t, t0).

Therefore, the proposed set Z(t) in (3.4) is the FRS of the system (2.11).

Remark 3.1. This analysis can be extended with other assumptions on the disturbance

such as kw(t)k2  1 for all t 2 [t0, tN ]. Di↵erent forms of the Hamiltonian and the value

function can be derived similarly.

Remark 3.2. The value function presented in (3.8) is independent of time. Thus, the

Hamiltonian and its time derivative are 0 for all t 2 [t0, tN ] if the initial value of Vz is 0.

Fig. 3.1 presents the comparison of the FRS Z(t) and the Minkowski sum of sets in

(3.4) for a state-independent 2-state LTV system. The level set toolbox [23] is utilized to

compute the FRS Z(t) by solving the HJB equation derived from (2.12). Also, numerical

integration of (3.5) with 0.01 seconds of time step is performed to obtain Di(t, t0) and

D(t, t0). As expected, the shapes of two sets Z(t) and Z(t0)�D(t, t0) are almost identical,

which validates Proposition 3.1.

Although the explicit form of the FRS Z(t) is analyzed, the real-time computation of

the Minkowski sum of sets in (3.4) is intractable as the number of state increases. Methods

for addressing such issues are discussed in the next section.
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Figure 3.1: FRS of a state-independent 2-state LTV system: ż1(t) = 0.4 cos(t)w1(t) �
0.4t2w2(t), ż2(t) = 0.08tw1(t) + 2.8 cos(3t)w2(t) with the initial shape matrix Q0 =
diag(0.25, 0.25). The red surface describes the zero level set of the solution of the HJB
equation, the black lines represent the regions due to two channels of disturbance respec-
tively. The green lines are the Minkowski sum of sets in (3.4).
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3.2 Ellipsoidal Approximation of Sets due to Disturbances

This section discusses an ellipsoidal approximation of the set due to disturbances D(t, t0)

in (3.4), which is the main component of the FRS of the state-independent LTV system.

As the first step, an ellipsoid which encloses Di(t, t0) in (3.5) is proposed.

Proposition 3.2 (Outer approximation of Di). The set Di(tb, ta) in (3.5) is the subset of

E(Zi(tb, ta)) if

Zi(tb, ta) = (tb � ta)

Z tb

ta

�
Dz,i(⌧)Dz,i(⌧)

> + ✏In

�
d⌧ 2 Sn

++, (3.10)

where In 2 Rn⇥n is the identity matrix, and ✏ 2 R is an arbitrarily small positive scalar.

Proof. The objective is to prove

d
>
Zi(tb, ta)

�1
d� 1  0

for all d 2 Di(tb, ta). Substituting Zi(tb, ta) in (3.10) into the above inequality yields

(tb � ta)� d
>
✓Z tb

ta

�
Dz,i(⌧)Dz,i(⌧)

> + ✏In

�
d⌧

◆�1

d � 0.

From the positive semi-definiteness condition of the Schur complement [26], the left-hand

side of the above inequality is the Schur complement of the following matrix:

M(tb, ta) =

2

4tb � ta d
>

d
R tb
ta

�
Dz,i(⌧)Dz,i(⌧)> + ✏In

�
d⌧

3

5 .

Let s(⌧) 2 R be sign
⇣
Dz,i(⌧)>Q� 1

2v

⌘
for all ⌧ 2 [ta, tb]. Now, consider the case when s(⌧)

is constant and the case when s(⌧) varies over ⌧ .

Case 1) Suppose that s(⌧) = 1 for all ⌧ 2 [ta, tb]. Then, d =
R tb
ta
Dz,i(⌧)d⌧ , and M(tb, ta) is
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the integration of the following matrix:

M(tb, ta) =

Z tb

ta

m(⌧)d⌧,

m(⌧) =

2

4 1 Dz,i(⌧)>

Dz,i(⌧) Dz,i(⌧)Dz,i(⌧)> + ✏In

3

5 2 Sn+1
++ .

Note that m(⌧) and M(tb, ta) are positive definite matrices, and the right bottom block of

M(tb, ta) is also positive definite. From the positive semi-definiteness condition, the Schur

complement of M(tb, ta) is positive semi-definite.

Case 2) Let t
0 2 [ta, tb] be the time instant when s(⌧) changes. Assume that s(⌧) = 1 if

⌧  t
0 and s(⌧) = �1 if ⌧ > t

0. In this case, M(tb, ta) can be expressed as the sum of two

matrices

M(tb, ta) =

Z t0

ta

m1(⌧)d⌧ +

Z tb

t0
m2(⌧)d⌧,

m1(⌧) =

2

4 1 Dz,i(⌧)>

Dz,i(⌧) Dz,i(⌧)Dz,i(⌧)> + ✏In

3

5 2 Snx+1
++ ,

m2(⌧) =

2

4 1 �Dz,i(⌧)>

�Dz,i(⌧) Dz,i(⌧)Dz,i(⌧)> + ✏In

3

5 2 Snx+1
++ .

Since all the matrices that compose M(tb, ta) are positive definite, the Schur complement

of M(tb, ta) is also positive semi-definite.

The computation of the outer ellipsoid in (3.10) requires the integration of a time-

varying matrix. For computational simplicity, the time-varying system matrices in (2.9)

are approximated as piecewise constant matrices between some sampled time indices,

namely tk�1 and tk, where t0  tk�1  tk  tN . Let Ak := A(tk�1) 2 Rn⇥n and Dk :=

D(tk�1) 2 Rn⇥m be the constant system matrices for t 2 [tk�1, tk). Using the relation

Dz(t) = �(t0, t)D(t) in (2.11), a term in the right-hand side of (3.10) can be written as

Z tk

tk�1

Dz,i(⌧)Dz,i(⌧)
>
d⌧ = �(t0, tk�1)Ni(tk, tk�1)�(t0, tk�1)

>
,
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where Ni(tk, tk�1) 2 Rn⇥n is the matrix such that

Ni(tk, tk�1) =

Z tk�tk�1

0

exp(�Ak⌧)
�
Dk,iD

>
k,i

�
exp(�A>

k ⌧)d⌧,

and Dk,i 2 Rn is the i-th column of Dk. So, Ni(tk, tk�1) is the solution of the following

Lyapunov equation:

AkNi(tk, tk�1) +Ni(tk, tk�1)A
>
k =

Dk,iD
>
k,i � exp(�Ak(tk � tk�1))Dk,iD

>
k,i exp(�A>

k (tk � tk�1)).
(3.11)

Note that the above equation has a unique solution whenever Ak is nonsingular [27]. Even

if Ak is singular, it is possible to compute the solution using [28]. Consequently, Zi(tk, tk�1)

in (3.10) is expressed as

Zi(tk, tk�1) = (tk � tk�1)�(t0, tk�1)Ni(tk, tk�1)�(t0, tk�1)
> + ✏(tk � tk�1)

2
In.

Now, let us focus on the outer approximation of Di(tk, t0) in (3.5). One may consider a

direct integration of (3.10) from t0 to tk which yields

Di(tk, t0) ✓ E(Zi(tk, t0)), (3.12)

where

Zi(tk, t0) =
kX

j=1

Zi(tj, tj�1)

↵j
, ↵j =

tj � tj�1

tk � t0
2 R.

Also, Di(tk, t0) can be approximated as the Minkowski sum of ellipsoids as the following:

Di(tk, t0) =
kM

j=1

Di(tj, tj�1) ✓
kM

j=1

E(Zi(tj, tj�1)). (3.13)

It is evident that (3.12) contains (3.13), from the formula of the ellipsoidal bounding of the
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Minkowski sum of ellipsoids [29], which represents

kM

j=1

E(Zi(tj, tj�1)) ✓ E

 
kX

j=1

Zi(tj, tj�1)

↵j

!
,

for all ↵j > 0 such that
P
↵j = 1. Consequently, (3.12) is just one of many ellipsoids which

includes Di(tk, t0), and thus (3.13) is used for the outer approximation of Di(tk, t0). For a

compact approximation, the minimum volume ellipsoid is defined as

Yi(tk, t0) := min
↵1,...,↵k

 
log det

 
kX

j=1

Zi(tj, tj�1)

↵j

!!
.

The computation of the minimum volume ellipsoid will be detailed in Section 3.3.

Fig. 3.2 illustrates the inclusion relationship betweenDi(t, t0), E(Zi(t, t0)), and E(Yi(t, t0)).

Numerical integration from t0 = 0 to tN = 2 with 0.01 seconds of time step is performed

to compute Zi in (3.10). As proposed, E(Zi(t, t0)) and E(Yi(t, t0)) tightly enclose Di(t, t0)

without any invasion. Also, E(Zi(t, t0)) is slightly larger than E(Yi(t, t0)), and thus the pro-

posed minimum volume composition Yi(t, t0) can prevent unintended conservatism of the

ellipsoidal approximation.

From (3.5), D(tk, t0) is enclosed by the Minkowski sum of ellipsoids as

D(tk, t0) =
mM

i=1

Di(tk, t0) ✓
mM

i=1

kM

j=1

E(Zi(tj, tj�1)).

Consequently, the outer approximation of Z(tk) in (3.4) is

Z(tk) ✓ E(Q0)�
mM

i=1

kM

j=1

E(Zi(tj, tj�1)). (3.14)
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Figure 3.2: Results of the ellipsoidal approximation for the 2-state LTV system discussed
in Fig. 3.1. The upper and lower figures are the results due to w1 and w2, i.e., the first and
second channels of disturbance, respectively. The shaded gray surfaces are the sets due to
disturbance (identical to the black lines of Fig. 3.1), the dashed magenta lines represent
the numerical integration of Zi(tk, tk�1) in (3.10), and the green lines describe the proposed
approximation.

27



3.3 Minimum Volume Composition of Ellipsoids

The Minkowski sum of ellipsoids is not an ellipsoid in general, making it di�cult to represent

the set Z(t) in (3.14) as an analytic form. The objective of this section is to find a shape

matrix of the minimum volume ellipsoid which contains the Minkowski sum of multiple

ellipsoidal regions. Consider N number of shape matrices, namely Bi 2 Sn
++ for all i =

{1, . . . , N}. As mentioned in Section 3.2, the ellipsoidal bounding formula [29] presents

NM

i=1

E(Bi) ✓ E(B(↵)), B(↵) =
NX

i=1

Bi

↵i

with the following constraints
NX

i=1

↵i = 1, ↵i > 0, (3.15)

where ↵ 2 RN is the concatenation of coe�cients ↵i 2 R.

Since the objective is a compact composition of ellipsoidal regions, the coe�cient ↵

must be determined under some appropriate criteria. This work aims to compute ↵ which

minimizes the volume of B(↵) such that

↵
det := argmin

�
log det(B(↵))

�
. (3.16)

However, numerical optimization or iterative methods [30] are required to compute the

optimal argument of (3.16), because a closed-form solution does not exist. To compute the

minimum volume ellipsoid in a computationally e�cient manner, a fixed-point iteration

algorithm is presented.

Proposition 3.3 (Minimum volume composition). Given an initial guess ↵[0] 2 RN that

satisfies (3.15), the following iteration

↵
[k+1]
i =  i(↵

[k]) =

r
1

n
trace

�
B(↵[k])�1Bi

�
(3.17)
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converges to ↵det in (3.16), where  i is the i-th element of a nonlinear map  : RN ! RN ,

and ↵[k] represents ↵ at the k-th iteration.

Proof. Note that the cost in (3.16) is convex for all ↵ that satisfy the condition (3.15) as

proposed in [31]. Consider an augmented cost function

Ca(↵, �) = log det(B(↵)) + �

 
NX

j=1

↵j � 1

!
, (3.18)

where � 2 R is the Lagrange multiplier for the equality constraint in (3.15). The first-order

optimality condition of (3.18) for ↵i is

@

@↵i
Ca(↵, �) = �

1

↵
2
i

trace
�
B(↵)�1

Bi

�
+ � = 0, (3.19)

since
@

@↵i
log det(B(↵)) = trace

✓
B(↵)�1 @

@↵i
B(↵)

◆
.

Rearranging (3.19) yields

trace

✓
B(↵)�1

✓
Bi

↵i

◆◆
� �↵i = 0. (3.20)

The summation of (3.20) from i = 1 to i = N determines � as

trace

 
B(↵)�1

 
NX

i=1

Bi

↵i

!!
� �

NX

i=1

↵i

= trace
�
B(↵)�1

B(↵)
�
� �

NX

i=1

↵i

= n� � = 0.

Consequently, (3.19) can be rewritten as

↵
2
i =

1

n
trace

�
B(↵)�1

Bi

�
,
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which concludes the fixed-point iteration ↵ =  (↵) in (3.17). The convexity of the cost

(3.16) supports that the iteration (3.17) converges to the unique and optimal point ↵det.

Remark 3.3. The proposed iteration (3.17) updates ↵ for multiple ellipsoids as described

in Fig. 3.3. This is the main advantage with respect to the previous works [31, 32] which

recursively compose multiple ellipsoids one after another. Also, (3.17) can be interpreted as

the generalization of [30] where the case of N = 2 only is covered.

Remark 3.4. Allowing some abuse of notation, the minimum volume bounding ellipsoid

from (3.16) is denoted as

B(↵det) :=
NM

i=1

Bi. (3.21)

Remark 3.5. The minimum volume composition is invariant under coordinate transfor-

mation since

↵
det = argmin

�
log det

�
RB(↵)R>��

= argmin
�
log
�
det(R) det(B(↵)) det(R>)

��

= argmin
�
log det(B(↵))

�

for all R 2 Rn⇥n.

3.4 Ellipsoidal Approximation of FRS of LTV Systems

Based on the minimum volume composition operator proposed in (3.21), the objective of

this section is to find ellipsoids E(Qz(t)) and E(Qx(t)) that enclose the FRS of the LTV

systems in (2.9) and (2.11) such that

Z(t) ✓ E(Qz(t)), X(t) ✓ E(Qx(t)) 8t 2 [t0, tN ].

From (3.14), the shape matrix for the FRS of the state-independent system is computed
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Figure 3.3: Minimum volume composition of 9 ellipsoids in R3. The wired red ellipsoid is
the result of the optimization (3.16), and the shaded green ellipsoid is the result at the 6th
iteration of (3.17). The shaded gray regions are the nine randomly generated ellipsoids.
The graphs at the bottom show the convergence characteristics of ↵[k].
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as the following recurrence:

Qz(t0) = Q0, Qz(tj) = Qz(tj�1)�
mM

i=1

Zi(tj, tj�1) 8j 2 {1, . . . , k}.

As a result, the shape matrix at t = tk is calculated as

Qz(tk) = Qz(t0)�
mM

i=1

kM

j=1

Zi(tj, tj�1).

Considering the coordinate transform in (2.17), the shape matrix for the FRS of the state-

dependent LTV system in (2.9) is

Qx(tk) = �(tk, t0)Qz(tk)�(tk, t0)
>
.

The recurrence for Qx is given by

Qx(t0) = Q0, Qx(tj) = �(tj, tj�1)Qx(tj�1)�(tj, tj�1)
>�

nwM

i=1

Xi(tj, tj�1), 8j 2 {1, . . . , k},

where the shape matrix Xi(tj, tj�1) 2 Sn
++ is computed as

Xi(tj, tj�1) = �(tj, t0)Zi(tj, tj�1)�(tj, tj�1)
>

= (tj � tj�1)�(tj, tj�1)Ni(tj, tj�1)�(tj, tj�1)
> + ✏(tj � tj�1)

2�(tj, t0)�(tj, t0)
>

(3.22)

for all j 2 {1, . . . , k}. Finally, we obtain

Qx(tk) = �(tk, t0)Qx(t0)�(tk, t0)
> �

mM

i=1

kM

j=1

�(tk, tj)Xi(tj, tj�1)�(tk, tj)
>
. (3.23)

Note that the composition of ellipsoids must be performed independently at each time

step. It means that Qx(tk) must be the composition of 1 + m ⇥ k shape matrices, and

Qx(tk�1) should not be used in the calculation of Qx(tk). This is because the proposed
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minimum volume composition operation is not associative, unlike the Minkowski sum of

convex sets as follows:

E(Q1)� E(Q2)� E(Q3) = E(Q1)� (E(Q2)� E(Q3)) ,

E(Q1 �Q2 �Q3) ✓ E (Q1 � (Q2 �Q3)) ,
(3.24)

where Q1, Q2, and Q3 are shape matrices of arbitrary ellipsoids. The sequential composition

of ellipsoids from Qx(t0) to Qx(tk) as in (3.24) leads to overly conservative approximation.

Algorithm 1 presents the overall process for the computation of Qx(t), and how to compose

the shape matrices over time.

Fig. 3.4 illustrates the comparison between the FRS of a 2-state LTV system, i.e. X(t)

in (2.10), and the proposed ellipsoidal approximation E(Qx(t)) in (3.23). To compute X(t),

the solution of the HJB equation associated with the LTV system is computed by the level

set toolbox [23]. In the evaluation, t0 = 0 and tN = 2 with 0.01 seconds of time step is used.

As expected, the proposed ellipsoidal approximation E(Qx(t)) certainly encloses the FRS

X(t). Fig. 3.5 describes the distribution of the minimum volume composition parameter

Algorithm 1 Computing funnel of LTV systems

1: Qx(t0) = Q0

2: Qbasis  {Q0}
3: for k 2 {1, . . . , N � 1} do
4: Compute system matrices Ak and Dk.
5: for i 2 {1, . . . ,m} do
6: Compute Ni by solving the Lyapunov equation (3.11) using Ak and Dk.
7: Compute Xi from (3.22) using Ni.
8: Qbasis  Qbasis [ {Xi}
9: end for

10: � = exp(Ak(tk+1 � tk))
11: for Q 2 Qbasis do
12: Transform the shape matrices as Q = �Q�>.
13: end for
14: Compute Qx(tk+1) from the minimum volume composition (3.21) using Qbasis.
15: end for
16: Return F(t) = E(Qx(t)).
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↵ in (3.17). As tk proceeds, the range of tj is also stretched, which means an increase in

the number of ellipsoids to be composed. The distribution of ↵ depends on the system

characteristics. For this particular LTV system, the second channel of disturbance (i = 2)

is dominant since the most of the values of ↵ along the second channel are higher than the

first channel.

The proposed ellipsoidal approximation of the FRS of LTV systems does not require any

computationally burdensome procedure, such as a numerical optimization. So, the proposed

method seems to be used for quick computation of the outer approximation of the FRS.

However, the ellipsoidal approximation at this stage cannot guarantee the reachability of

the nonlinear dynamics since the linearization error is not considered. In the next chapter,

methods for addressing the nonlinearity of the system and an algorithm for approximating

the FRS of nonlinear systems are presented.
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(a) Perspective view

(b) Side views

Figure 3.4: Comparison of the FRS and the corresponding ellipsoidal approximation for
a 2-state LTV system: ẋ1(t) = (�0.8t + 0.5)x1(t) + cos(1.5t + 2)x2(t) + 0.4 cos(t)w1(t) �
0.4t2w2(t), ẋ2(t) = 0.5t2/3x1(t) � 2 exp(�0.7t)x2(t) + 0.08tw1(t) + 2.8 cos(3t)w2(t) with
Q0 = diag(0.25, 0.25). The black and the red regions are the FRS of the system and the
proposed ellipsoidal approximation respectively.
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Figure 3.5: Distribution of the coe�cients ↵ used in the minimum volume composition
(3.23). All computational conditions are identical with the case of Fig. 3.4. The values of
↵ are encoded as color. Each channel of disturbance is separated as the di↵erent heights of
the colored points.
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4
Reachability Analysis of Nonlinear Systems

This chapter concentrates on the computation of the funnel F(t) in (2.4) of nonlinear

systems via polynomial approximation of the value function V (x, t) in (2.5). Section 4.1

presents the approximated (polynomial) value function and formulates a constrained op-

timization problem to find the funnel that tightly encloses the FRS X(t) in (2.3). Section

4.2 lists some basic operations on polynomials utilized in the subsequent sections. Based

on the property of the Bernstein polynomial, Section 4.3 proposes an approximation of the

Hamiltonian and the relaxation of the constraint of the problem formulated in Section 4.2.

A numerical algorithm for computing the funnel is presented in Section 4.4. Finally, some

discussions and simulation results are presented in Section 4.5.

4.1 Minimal Funnel

In this section, an optimization problem to compute the funnel is presented. Let V̂ : Rn ⇥

[t0, tN ] ! R be an approximation of the value function V (x, t). The approximated value

function V̂ (x, t) must always be less than the value function V (x, t) so that the subzero level
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set of V̂ (x, t) certainly contains the subzero level set of V (x, t), expressed as the following:

V (x, t) � V̂ (x, t) 8(x, t) 2 Rn ⇥ [t0, tN ].

From Theorem 2.1, the condition for the conservative approximation is

@V̂ (x, t)

@t
+H

⇣
x,
@V̂ (x, t)

@x
, t

⌘
 0 8(x, t) 2 Rn ⇥ [t0, tN ],

V̂ (x, t) = l(x) 8(x, t) 2 Rn ⇥ t0,

(4.1)

where l and H are the initial value function and the Hamiltonian defined in the HJB

equation (2.6) respectively. As far as the approximated value function satisfies the condition

in (4.1), any set that encloses the subzero level set of V̂ (x, t) can be a valid candidate for

the funnel. At the same time, the funnel should enclose the FRS as compact as possible to

prevent unintended over-approximation. Consequently, the objective of this chapter is to

solve the following optimization problem.

Problem 4.1 (Minimal funnel). For the given initial value function l in (2.6), and the

Hamiltonian H in (2.7), find the optimal set F(t) that satisfies

inf
F(t)

Z tN

t0

Vol(F(t)) dt

s.t.
@V̂ (x, t)

@t
+H

⇣
x,
@V̂ (x, t)

@x
, t

⌘
 0 8(x, t) 2 Rn ⇥ [t0, tN ],

V̂ (x, t) = l(x) 8(x, t) 2 Rn ⇥ t0,

{x | V̂ (x, t)  0} ✓ F(t) 8t 2 [t0, tN ],

(4.2)

where Vol(·) represents the volume of a set.

Problem 4.1 is not appropriate to solve with numerical methods because the optimiza-

tion requires to search the optimal function of state and time, namely V̂ (x, t). For com-

putational e�ciency, V̂ (x, t) will be parameterized as a multivariate polynomial of states

in Section 4.3. The polynomial approximation of the value function significantly reduces
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the search space of the optimization (4.2), making it manageable to solve with numerical

methods. Consequently, the objective of (4.2) will be converted to search the optimal time-

varying coe�cient of the polynomial V̂ (x, t). In the next section, we present some basic

operations on polynomials, which are frequently used in the rest of the thesis.

4.2 Multivariate Bernstein Polynomial

This section presents the main property of a polynomial in a specific form, namely the

Bernstein polynomial. Using the multi-index notation, a multivariate monomial of degree

i is defined as the following:

x
i :=

nY

j=1

x
ij
j 2 R,

where xj is the j-th element of x, ij 2 N+ is the j-th element of the n-index i 2 Nn
+,

and N+ represents a set of nonnegative integers. The N -th order multivariate polynomial

p : Rn ! R is the weighted sum of monomials

p(x) =
X

iN

c(i)x
i
,

where N 2 Nn
+ is the maximum degree, c(i) 2 R is the i-th coe�cient of the polynomial

p, and the inequality i  N between n-indices holds if and only if ij  Nj for all j 2

{1, . . . , n}. The set of degrees of the N -th order polynomial is

ON := {i | i N} ⇢ Nn
+.

The number of coe�cients of the N -th order polynomial is denoted as |N | := card(ON ) =
Qn

j=1(Nj + 1) 2 N, thus c 2 R|N |. A basis vector �N : Rn ! R|N | of the N -th order

polynomial is defined as

�N ,(i)(x) := x
i 8i N ,

39



where �N ,(i)(x) is the i-th element of �N (x). Thus, the polynomial p can be expressed as

p(x) = �N (x)>c.

Lemma 4.1 (Product of polynomials). The product of p1(x) = �N1(x)
>
c1 and p2(x) =

�N2(x)
>
c2 can be expressed as p(x) = �N (x)>c, where N = N1 +N2 2 Nn

+, the coe�cient

vector c 2 R|N | is

c = PN1,N2(c1 ⌦ c2), (4.3)

and the (i, j) element of the matrix PN1,N2 2 R|N |⇥|N1||N2| is

�
PN1,N2

�
ij
=

8
><

>:

1 if
�
�N (x)

�
i
=
�
�N1(x)⌦ �N2(x)

�
j
,

0 otherwise,

for all i 2 {1, . . . , |N |} and j 2 {1, . . . , |N1||N2|}.

Remark 4.1. Since the Kronecker product c1 ⌦ c2 is bilinear, c in (4.3) can be expressed

in a linear form such that

c = PN1,N2(I|N1| ⌦ c2)c1 = PN1,N2(c1 ⌦ I|N2|)c2,

whenever either c1 or c2 is known.

Lemma 4.2 (Derivative of a polynomial). The derivative of p(x) = �N (x)>c with respect

to xj is �N (x)>c̃, where the coe�cient vector c̃ 2 R|N | is

c̃ = DN ,jc,

and DN ,j 2 R|N |⇥|N | is the constant matrix that satisfies

@�N (x)

@xj
= D

>
N ,j�N (x) 8j 2 {1, . . . , n}.
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The Bernstein polynomial is a multivariate polynomial of the following form:

p(x) =
X

iN

b(i)�N ,(i)(x) = �N (x)>b,

where b 2 R|N | is the Bernstein coe�cient, �N : Rn ! R|N | is the Bernstein basis of the

N -th order polynomial, b(i) and �N ,(i) are the i-th elements of b and �N , respectively. In

this work, the Bernstein basis defined on [�1, 1]n is considered such that

�N ,(i)(x) :=
nY

j=1

✓
Nj

ij

◆
1

2Nj
(1 + xj)

ij(1� xj)
Nj�ij 8i N .

Note that all the elements of the Bernstein basis �N (x) is also polynomials of x. Conse-

quently, a linear mapping between coe�cients b and c can be constructed.

Lemma 4.3 (Bernstein coe�cient of a polynomial). The Bernstein coe�cient of a poly-

nomial p(x) = �N (x)>c is

b = BNc,

where BN 2 R|N |⇥|N | is the Bernstein transformation matrix of the N -th order polynomial

that satisfies

�N (x) = B
>
N�N (x).

A key feature of a polynomial in Bernstein form is that the Bernstein coe�cient provides

lower and upper bounds of the polynomial defined on [�1, 1]n.

Theorem 4.1 (Bounds of a Bernstein polynomial). For all x 2 [�1, 1]n, a polynomial

p(x) = �N (x)>b is bounded below and above as

min
x2[�1,1]n

p(x) � min
iN

b(i), max
x2[�1,1]n

p(x)  max
iN

b(i).

Proof. It is apparent that �N ,(i)(x) � 0 for all x 2 [�1, 1]n and i  N . By using the
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Binomial theorem, the sum of �N ,(i)(x) is

X

iN

�N ,(i)(x) =
X

iN

nY

j=1

✓
Nj

ij

◆
1

2Nj
(1 + xj)

ij(1� xj)
Nj�ij

=
N1X

i1=0

· · ·
NnX

in=0

nY

j=1

✓
Nj

ij

◆⇣1 + xj

2

⌘ij⇣1� xj

2

⌘Nj�ij

=
nY

j=1

⇣1 + xj + 1� xj

2

⌘Nj

= 1.

Therefore, the following

p(x) =
X

iN

b(i)�N ,(i)(x) �
⇣
min
iN

b(i)

⌘X

iN

�N ,(i)(x) = min
iN

b(i)

p(x) =
X

iN

b(i)�N ,(i)(x) 
⇣
max
iN

b(i)

⌘X

iN

�N ,(i)(x) = max
iN

b(i)

holds for all x 2 [�1, 1]n.

From Theorem 4.1, a conservative approximation of the minimum and maximum of

a polynomial p(x) defined on [�1, 1]n can be obtained. However, not all polynomials are

defined on [�1, 1]n. The following lemma presents that any polynomial in an arbitrary

rectangular domain can be represented in [�1, 1]n.

Lemma 4.4 (Domain transformation of a polynomial). Let � : Rn ! Rn be a linear

transformation from v 2 [�1, 1]n to x such that x = �(v) = Q
1
2v, where Q 2 Sn

++ is the

given shape matrix of the rectangular region defined as

R(Q) := {Q 1
2v | v 2 [�1, 1]n} ⇢ Rn

.

Then, for all x 2 R(Q), a polynomial p(x) = �N (x)>c can be expressed as p(�(v)) =
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�N̄ (v)>c̃, where N̄ := (
Pn

j=1 Nj)1n 2 Nn
+,

c̃ = TN (Q)c 2 R|N̄ |
,

and TN : Sn
++ ! R|N̄ |⇥|N | is the domain transformation matrix that satisfies

�N (�(v)) = TN (Q)>�N̄ (v).

By combining Lemmas 4.3 and 4.4, the lower and upper bounds of a polynomial in a

finite domain can be obtained, as a direct consequence of Theorem 4.1.

Corollary 4.1 (Bounds of a polynomial in a finite domain). For a given shape matrix

Q 2 Sn
++, a polynomial p(x) = �N (x)>c is bounded below and above in R(Q) as

min
x2R(Q)

p(x) � min
iN̄

b(i), max
x2R(Q)

p(x)  max
iN̄

b(i),

where b(i) is the i-th element of b = BN̄TN (Q)c 2 R|N̄ |.

The Bernstein coe�cient of a polynomial is useful to handle inequality constraints

related to polynomials. Suppose finding an admissible set of coe�cients of a polynomial

p(x) = �N (x)>c such that p(x)  0 for all x 2 R(Q). From Corollary 4.1, the following

implication

BN̄TN (Q)c  0 =) p(x)  0 8x 2 R(Q) (4.4)

is valid. Consequently, polynomial inequalities on a finite domain can be easily converted

to linear inequalities of the corresponding coe�cient. This implication will be thoroughly

used for the proposed funnel computation algorithm, as discussed in the following section.
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4.3 Approximation of Hamiltonian

This section proposes a polynomial approximation of the Hamiltonian H in (2.7) that is the

component of the inequality constraint of Problem 4.1. To exploit the useful property of the

Bernstein polynomial presented in Section 4.2, the following assumption on the structure

of the dynamics is presented.

Assumption 4.1 (Polynomial dynamics). The dynamics f : Rn ⇥Rm ⇥ [t0, tN ]! Rn can

be expressed as polynomials of states and disturbances such that

fj(x(t), w(t), t) = �Nw(w)
>
Sj(t)

>
�Nx(x) 8j 2 {1, . . . , n}, (4.5)

where fj is the j-th element of f , Sj : [t0, tN ] ! R|Nx|⇥|Nw| is the time-varying coe�cient

matrix of fj, Nx 2 Nn
+ and Nw 2 Nm

+ are the maximum degree of fj in x and w, respectively.

Remark 4.2. Assumption 1 is not highly restrictive because high-order (usually 3 or

greater) Taylor expansion of the dynamics along the nominal state trajectory can appropri-

ately capture the nonlinearities of the system in practice [8]. Also, the small-angle assump-

tion of trigonometric functions, which is widely used for multirotor systems [33], can also

simplify the nonlinear dynamics to a polynomial of states.

Consider anN -th order polynomial of states that parameterizes the approximated value

function such that

V̂ (x, t) = �N (x)>c(t), (4.6)

where c : [t0, tN ]! R|N | is the time-varying coe�cient of V̂ (x, t). Assuming that the initial

value function l(x) in (2.6) is a polynomial of states, c0 := c(t0) is determined as

l(x) = �N (x)>c0.

Proposition 4.1 (Approximation of the Hamiltonian). For the given polynomial dynamics

f in (4.5) and approximated value function V̂ in (4.6), the Hamiltonian in (2.7) is bounded
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above with the following |Nw| linear functions of c such that

H

⇣
x,
@V̂ (x, t)

@x
, t

⌘
 �N+Nx(x)

>
Hm(t)c(t) 8m Nw, (4.7)

where Hm : [t0, tN ]! R|N+Nx|⇥|N | is a time-varying matrix.

Proof. From (2.7), the Hamiltonian is

H

⇣
x,
@V̂ (x, t)

@x
, t

⌘
= max

w2W

⇣ nX

j=1

@V̂ (x, t)

@xj
fj(x, w, t)

⌘
.

By using Lemmas 4.1 and 4.2, the argument of the maximization in the above equation is

@V̂ (x, t)

@xj
fj(x, w, t) = �Nw(w)

>
c̃j(x, t) 8j 2 {1, . . . , n}, (4.8)

where the m-th element of c̃j : Rn ⇥ [t0, tN ]! R|Nw| is the polynomial of x such that

c̃j,(m)(x, t) = (�N (x)>DN ,jc(t))(�Nx(x)
>
Sj,m(t))

= �N+Nx(x)
>
PN ,Nx

�
I|N | ⌦ Sj,m(t)

�
DN ,jc(t),

and Sj,m : [t0, tN ] ! R|Nx| is the m-th column of Sj. The summation of (4.8) for all

j 2 {1, . . . , n} yields

@V̂ (x, t)

@x
· f(x, w, t) = �Nw(w)

>
c̃(x, t), (4.9)

where the m-th element of c̃ : Rn ⇥ [t0, tN ]! R|Nw| is

c̃(m)(x, t) = �N+Nx(x)
>
PN ,Nx

⇣ nX

j=1

�
I|N | ⌦ Sj,m(t)

�
DN ,j

⌘
c(t).

Using Lemma 4.3, the Bernstein transform of (4.9) is

�Nw(w)
>
c̃(x, t) = �Nw(w)

>
BNw c̃(x, t) = �Nw(w)

>
b̃(x, t),
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where m-th element of b̃ : Rn ⇥ [t0, tN ]! R|Nw| is

b̃(m)(x, t) =
X

iNw

(BNw)mi c̃(i)(x, t) = �N+Nx(x)
>
Hm(t)c(t),

(BNw)mi is the (m, i) element of BNw , and Hm is defined as

Hm(t) :=
X

iNw

(BNw)mi PN ,Nx

⇣ nX

j=1

�
I|N | ⌦ Sj,m(t)

�
DN ,j

⌘
(4.10)

for all m  Nw. Based on Assumption 3.1 and Theorem 4.1, the Hamiltonian is bounded

above with the corresponding Bernstein coe�cients such that

H

⇣
x,
@V̂ (x, t)

@x
, t

⌘
 max

mNw

b̃(m)(x, t),

which concludes the proof.

Remark 4.3. Since the Hamiltonian is approximated by a conservative manner as in (4.7),

the following implication

@V̂ (x, t)

@t
+ �N+Nx(x)

>
Hm(t)c(t)  0 8m Nw

=) @V̂ (x, t)

@t
+H

⇣
x,
@V̂ (x, t)

@x
, t

⌘
 0

(4.11)

is valid for all (x, t) 2 Rn ⇥ [t0, tN ].

4.4 Funnel Computation

This section presents an LP-based numerical algorithm to solve Problem 4.1 based on the

findings in Sections 4.2 and 4.3. Instead of computing the approximated value function that

is valid for the entire domain Rn, this work searches for a locally valid approximation such
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that
@V̂ (x, t)

@t
+H

⇣
x,
@V̂ (x, t)

@x
, t

⌘
 0 8(x, t) 2 R(Q(t))⇥ [t0, tN ], (4.12)

where Q : [t0, tN ]! Sn
++ is the shape matrix of the domain of interest R, respectively. The

locally valid approximation in (4.12) is introduced to utilize the implication (4.4) in the

subsequent derivation. Note that the FRS is the subzero level set of the value function, so it

is enough to approximate the value function on the finite domain, provided that the region

R is su�ciently close to the FRS. Moreover, the value function can further be approximated

for the entire state space by using the subdivision method [2], which is not the scope of the

current work.

Also, to represent the funnel F(t) as an ellipsoid, a quadratic function is introduced

such that

Ṽ (x, t) := x
>
R(t)x+ ⇢(t), (4.13)

where R : [t0, tN ]! Sn
++, and ⇢ : [t0, tN ]! R. Then, the subzero level set of Ṽ (x, t) can be

the funnel F(t), namely

F(t) = E(�⇢(t)R(t)�1).

Since a quadratic function of states is also a polynomial of states, Ṽ (x, t) can also be

expressed as �N (x)>EN c̃(t), where c̃ : [t0, tN ] ! Rn2+n+2
2 is the time-varying coe�cient

vector such that

c̃(t) = [⇢(t), vech(R(t))>]>,

vech : Sn
++ ! R

n(n+1)
2 is the half-vectorization operator for symmetric matrices, and EN 2

R|N |⇥n2+n+2
2 is the constant matrix that satisfies

�N (x)>EN c̃(t) = x
>
R(t)x+ ⇢(t).
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Consequently, Problem 4.1 is converted to a computationally tractable form as follows.

max
c(t),c̃(t)

Z tN

t0

⇣Z

R(Q(t))

Ṽ (x, t) dx
⌘
dt

s.t.
@V̂ (x, t)

@t
+H

⇣
x,
@V̂ (x, t)

@x
, t

⌘
 0 8(x, t) 2 R(Q(t))⇥ [t0, tN ],

Ṽ (x, t)� V̂ (x, t)  0 8(x, t) 2 R(Q(t))⇥ [t0, tN ],

(4.14)

where the cost function in (4.2), i.e. the minimization of Vol(F(t)), is replaced by the

maximization of the integral of Ṽ (x, t) over R(Q(t)) because the two criteria have similar

meaning. For computational e�ciency, the following assumption is used.

Assumption 4.2 (Time discretization). Let tk 2 [t0, tN ] be one of N +1 evenly discretized

time indices, where tk < tk+1 for all k 2 {0, . . . , N � 1}. For a su�ciently small interval

[tk, tk+1),
@V̂ (x, tk)

@t
=

V̂k+1(x)� V̂k(x)

�t
,

where V̂k(x) := V̂ (x, tk) for all k 2 {0, . . . , N}, and �t 2 R is the discretized time step.

Note that the converted optimization problem (4.14) can be divided into two subsequent

problems: the polynomial approximation for determining c(t), and the quadratic approxi-

mation for determining c̃(t) with respect to the given c(t). This is because it is possible to

find the optimal c(t) regardless of c̃(t) by redesigning the cost function of (4.14) with respect

to c(t). The details of the optimization procedure are covered in the following subsections.

4.4.1 Polynomial Approximation

Suppose that the initial guess of the domain R(Q(t)) is given for all t 2 [t0, tN ]. For visual

clarity, Qk := Q(tk) 2 Sn
++ is used for all k 2 {0, . . . , N}. Considering the given sequence of

R(Qk) and Lemma 4.4, a cost function of the polynomial approximation problem is designed
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as the summation of the integral of V̂k(x) over the domain R(Qk) for all k 2 {1, . . . , N}:

NX

k=1

Z

R(Qk)

V̂k(x) dx =
NX

k=1

Z

[�1,1]n
�N̄ (v)>TN (Qk)ck dv

= h
>
N̄

⇣ NX

k=1

TN (Qk)ck
⌘
, (4.15)

where ck := c(tk), and the i-th element of the constant vector hN̄ 2 R|N̄ | is defined as

hN̄ ,(i) :=

Z

[�1,1]n
�N̄ ,(i)(v) dv 8i  N̄ .

Now, consider the inequality constraint in (4.12). By using Assumption 4.2 and the

implication (4.11) of Proposition 4.1, the su�cient condition of (4.12) is given as

�N+Nx(x)
>�

CN ,Nx(ck+1 � ck) + �tHm(tk)ck
�
 0 (4.16)

for all x 2 R(Qk), m  Nw, and k 2 {0, . . . , N � 1}, where CN ,Nx 2 R|N+Nx|⇥|N | is the

constant matrix that satisfies

�N (x) = C
>
N ,Nx

�N+Nx(x).

From the implication in (4.4), the inequality (4.16) is valid only if

BN+Nx
TN+Nx(Qk)

�
CN ,Nx(ck+1 � ck) + �tHm(tk)ck

�
 0

for all m Nw and k 2 {0, . . . , N � 1}. Consequently, the following LP is formulated:

Problem 4.2 (Polynomial approximation). Let f be the polynomial dynamics in (4.5), and

Hm be the time-varying matrix defined in (4.10). For the given initial coe�cients c0 2 R|N |

and the sequence of the domain R(Qk) for all k 2 {0, . . . , N}, find the optimal coe�cient
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ck of the polynomial value function V̂k(x) = �N (x)>ck that satisfies

max
c1,...,cN

h
>
N̄

⇣ NX

k=1

TN (Qk)ck
⌘

s.t. BN+Nx
TN+Nx(Qk)

�
CN ,Nx(ck+1 � ck) + �tHm(tk)ck

�
 0

8m Nw 8k 2 {0, . . . , N � 1}.

(4.17)

4.4.2 Quadratic Approximation

The next step is to find the optimal quadratic approximation Ṽ (x, t) in (4.13) with respect

to the given V̂k(x) computed from Problem 4.2 for all k 2 {1, . . . , N}. As can be seen in

(4.14), the constraint related with Ṽ (x, t) does not involve time-dependent terms. So, it is

possible to compute the optimal c̃k := c̃(tk) for each k 2 {1, . . . , N}. Similar to (4.15), a

cost function of the quadratic approximation for the given domain R(Qk) is designed as

Z

R(Qk)

Ṽk(x) dx = h
>
N̄TN (Qk)EN c̃k,

where Ṽk(x) := Ṽ (x, tk). Also, by using the implication in (4.4), a linear inequality con-

straint that ensures Ṽk(x)� V̂k(x)  0 for all x 2 R(Qk) can be constructed as

BN̄TN (Qk)(EN c̃k � ck)  0.

Consequently, the following simple LP is proposed to find the optimal quadratic function:

Problem 4.3 (Quadratic approximation). For the given coe�cient ck computed in (4.17)

and the domain R(Qk) for all k 2 {1, . . . , N}, find the optimal coe�cient c̃k of the quadratic

function Ṽk(x) = �N (x)>EN c̃k that satisfies

max
c̃k

h
>
N̄TN (Qk)EN c̃k

s.t. BN̄TN (Qk)(EN c̃k � ck)  0,

(4.18)
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for each k 2 {1, . . . , N}.

After optimizing c̃k from Problem 4.3 for all k 2 {1, . . . , N}, the following ellipsoid can

be computed as the subzero level set of the quadratic value function Ṽk(x):

{x | Ṽk(x)  0} = E
�
� ⇢kR�1

k

�
,

where Rk := R(tk), and ⇢k := ⇢(tk). The previously given domain R(Qk) for all k 2

{1, . . . , N} can be updated as

Qk = �⇢kR�1
k . (4.19)

As the domain of interest R(Qk) for all k 2 {1, . . . , N} is renewed, Problems 4.2 and 4.3

are solved again. Those processes are iterated until the sum of the volume of ellipsoids,

i.e.
PN

k=1 log(det(Qk)), converges. After the iteration finishes, the resulting ellipsoid E(Qk)

is used as the funnel Fk := F(tk) for all k 2 {1, . . . , N}. Algorithm 2 presents the overall

process of the proposed funnel computation procedure.

Algorithm 2 Computing funnel of nonlinear systems

1: Initialize the domain R(Qk).
2: converged = false

3: costprev =
PN

k=1 log(det(Qk))
4: while ¬converged do
5: Compute ck by solving LP (4.17) using Qk.
6: Compute c̃k by solving LP (4.18) using ck, and Qk.
7: Update Qk from (4.19).
8: cost =

PN
k=1 log(det(Qk))

9: dcost = (costprev � cost)/costprev
10: if |dcost| < ✏ then
11: converged = true

12: end if
13: costprev = cost

14: end while
15: Return Fk = E(Qk).
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4.4.3 Initial Guess of the Domain

Until now, the initial guess of the domain of interest R(Q(t)) for all t 2 [t0, tN ] has been

assumed to be given in advance. However, the quality of the initial guess of the domain is

crucial for how fast the iterative computation converges. Suppose that the size of R(Q(t))

is much larger than the FRS of the system. It means that the polynomial value function

V̂ (x, t) at the initial step covers the unnecessary region that will be contracted as the

iteration proceeds. Contrary, when the size of R(Q(t)) is much smaller than the FRS of the

system, the polynomial value function V̂ (x, t) at the initial step cannot fully capture the

FRS of the system. So, it takes extra iterations until the polynomial value function V̂ (x, t)

covers the FRS of the system. In this work, the ellipsoidal approximation of the FRS of

the linearized system, i,e, E(Qx(t)) in (3.23), is utilized as the initial guess of the domain

R(Q(t)). Although the ellipsoidal approximation of the FRS of LTV systems cannot enclose

the FRS of nonlinear systems, it is su�ciently close to the FRS of nonlinear systems, and

thus appropriate for the initial guess of Q(t).

4.5 Simulation Results and Discussion

This section presents the simulation results of the funnel computation for various examples.

The proposed algorithm is implemented in MATLAB R2020b, and CVX [34] is used for

solving the LP. We also implement the proposed LP formulation in C++ with CPLEX

running on Ubuntu 18.04. For comparison, we compute the funnel by SOS program, follow-

ing the formulation presented in [8]. We use SOSTOOLS [35] to convert the SOS program

to a semi-definite program (SDP), and SeDuMi [36] is used for solving the SDP. We also

solve the HJB equation with a numerical solver [23] to compare the funnels and the FRS

of the system. The comparison of computation times is summarized in Table 4.1. All the

computation times in Table 4.1 are measured in a machine with eight processors, 2.3 GHz

of CPU, and 16 GB of RAM.
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4.5.1 Lotka-Volterra

The proposed funnel computation algorithm is validated for the following nonlinear system:

ẋ1(t) = (0.1w(t) + 3)x1(t)(1� x2(t)),

ẋ2(t) = (0.1w(t) + 3)x2(t)(x1(t)� 1).
(4.20)

The system (4.20) is polynomial of states and disturbance, with Nx = [1, 1]> and Nw = 1.

For the polynomial approximation of the value function, N = [3, 3]> is used. The funnel is

computed for 1 second with evenly discretized 50 time segments, i.e. N = 50 and �t = 0.02

seconds. The initial value function is l(x) = x
>
Q(t0)�1

x�1, whereQ(t0) = diag(0.05, 0.05)2.

Also, to solve the HJB equation, each state space is gridded by 401 points and thus a total

of 160801 grid points are used for the computation of the FRS.

Fig. 4.1 presents the comparison between the funnels computed by the proposed method

and SOS program. Both of the funnels are good outer approximations of the FRS, as can

be seen in Fig. 4.1 where the green ellipsoids and the shaded red surface enclose the shaded

gray surface. The proposed method and the SOS program-based method yield fairly similar

results; however, the proposed method is much faster than the SOS program-based method,

as supported by Table 4.1.

Cases Level set [23] SOS program[8]
Proposed

MATLAB C++
Lotka-Volterra 391.2246 s 108.9980 s 2.1813 s 0.0615 s

Unicycle 1821.6029 s 295.5570 s 9.5814 s 0.4571 s

Table 4.1: Comparison of the funnel computation time
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Figure 4.1: Comparison of the funnels of the system (4.20) computed by the proposed
method and SOS program [8]. The shaded gray surface and the black line represent the
FRS X(t) from the HJB equation [23]. The shaded red surface and the dashed red line
represent the result of the proposed method. The funnel computed by SOS program is
depicted as green ellipsoids. Note that the sets are shifted by the nominal trajectory for a
better comparison.
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The proposed algorithm computes the funnel via two di↵erent parameterizations of

the value function: the polynomial approximation V̂ , and the quadratic approximation Ṽ .

Since a quadratic function of states is also a polynomial of states, a question may arise

as to whether the two-step procedure (the polynomial and quadratic approximation) of

the proposed algorithm makes sense. Note that the property of the Bernstein polynomial

used in the proposed algorithm holds only for a finite domain of interest. Considering

that it is di�cult to compute the subzero level set of arbitrary order of a polynomial

function, the quadratic approximation of the value function is required to characterize

the domain of interest as an ellipsoid. However, approximating the value function to a

quadratic function can be overly conservative, because the quadratic function does not

have enough variables to imitate the value function. From this point of view, the polynomial

approximation of the value function alleviates the problem of the lack of decision variables of

a quadratic function. Fig. 4.2 represents the funnels computed by two di↵erent methods: the

quadratic approximation, and the combination of quadratic and polynomial approximation.

The funnel computed from only the quadratic approximation is more conservative than the

funnel computed by the proposed two-step procedure as can be seen in Fig. 4.2 where the

red ellipsoids are enclosed by the blue ellipsoids.

A similar tendency can be observed depending on the order of the polynomial approxi-

mation. Fig. 4.3 describes the funnels of the system (4.20) computed by 2 di↵erent orders

of the polynomial value function. In this simulation, the funnel computed by the high-order

polynomial, i.e. N = [5, 5]>, is compared to the funnel computed by the low-order polyno-

mial, i.e. N = [2, 2]>. Both of the funnels certainly enclose the FRS as can be seen in Fig.

4.3 where the shaded gray region is located in the shaded red and green regions. However,

the funnel computed by the high-order polynomial is less conservative compared to the

funnel computed by the low-order polynomial as can be seen in Fig. 4.3 where the shaded

red region encloses the shaded green region. This is because the high-order polynomial

involves quite more decision variables (coe�cients) compared to the low-order polynomial.

The high-order polynomial can better approximate the value function, resulting in a less
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Figure 4.2: Comparison of the funnels of the system (4.20) computed by two di↵erent
approaches. The solid blue lines and the dashed red lines represent the funnels computed
by the quadratic approximation and the combination of the quadratic and polynomial
approximation of the value function, respectively. The solid black lines represent the FRS
of the system (4.20). For the polynomial approximation of the value function, N = [2, 2]>

is used for this simulation. Other computational conditions are identical with Fig. 4.1.
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Figure 4.3: Comparison of the funnels of the system (4.20) computed by di↵erent orders
of polynomials. The shaded red and the green regions are the funnels computed by the
low (N = [2, 2]>) and high-order (N = [5, 5]>) polynomials, respectively. The shaded gray
region in the colored regions represents the FRS of the system (4.20). Other computational
conditions are identical with Fig. 4.1.
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conservative approximation of the FRS.

Fig. 4.4 describes the tradeo↵ between the computation time and the conservativeness

of the funnel. The higher the order of the polynomial, the tighter approximation of the

FRS is possible as supported by Fig. 4.3. At the same time, the computation time of the

funnel with the high-order polynomial takes longer than the low-order polynomial due to

the di↵erence in the number of variables. In Fig. 4.4, the computation time is measured as

the total time spent in 3 iterations of Algorithm 2. Also, the conservativeness of the funnel

is evaluated by the ratio of the volume of the funnel to the FRS, i.e.

Conservativeness =

Z tN

t0

Vol(F(t))

Vol(X(t))
dt.

As the order of the approximation increases, the computation time also increases, but the

conservatism tends to decrease.

Figure 4.4: The tradeo↵ between the computation time and the conservativeness of the
funnel. The horizontal axis of the graph represents the order of the polynomial. The blue
and red lines represent the computation time and the conservativeness of the funnel, re-
spectively. Other computational conditions are identical with Fig. 4.1.
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4.5.2 Unicycle

The proposed algorithm has been tested for the following unicycle dynamics:

ẋ1(t) = u1(t) cos(x3(t)),

ẋ2(t) = u1(t) sin(x3(t)),

ẋ3(t) = u2(t) + 0.05w(t),

(4.21)

where u = [u1, u2]> 2 R2 is the input of the system. The trigonometric functions are

replaced by the 3rd order Taylor expansion to make the dynamics (4.21) polynomial of

states. In this simulation, evenly discretized time segments from t0 = 0 to tN = 1 with

N = 50 are used. For the polynomial approximation of the value function, N = [2, 2, 2]> is

used. The funnels of (4.21) are computed for 5 di↵erent inputs such that u2(t) = 3⇢ sin(2⇡t),

where ⇢ 2 {�1,�0.5, 0, 0.5, 1}. Also, u1(t) = 1 and Q(t0) = diag(0.03, 0.03, 0.03)2 for all

cases. For the computation of the FRS, each state space is gridded by 151 points, and thus

a total of 3442951 grid points are used.

Similar to the results of the 2-dimensional case, the computed funnels certainly enclose

the FRSs as illustrated in Fig. 4.5. Also, as illustrated in Fig. 4.6, 500 states in the initial set

are sampled and propagated with the worst-case disturbance. As expected, the computed

funnels certainly encompass all the states a↵ected by disturbances. The computation time

of the proposed method is 0.4571 seconds, and thus the proposed method is a suitable

solution for the runtime safety verification of the system (4.21).
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Figure 4.5: Comparison of the funnels of the system (4.20) computed by the proposed
method and SOS program [8]. The shaded gray surface and the black line represent the
FRS X(t) from the HJB equation [23]. The shaded red surface and the dashed red line
represent the result of the proposed method. The funnel computed by the SOS program
is depicted as green ellipsoids. Note that the sets are projected onto x1–x2 plane for the
visualization.
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Figure 4.6: Comparison of the funnels of the system (4.21) and state trajectories interrupted
by the worst-case disturbances. The colored regions are the funnels that start with blue
and end with yellow. The gray lines in the colored regions are the state trajectories starting
from the randomly sampled initial states.
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4.5.3 Multirotor

The proposed algorithm is further applied to the following 8-state mass-normalized multi-

rotor dynamics:

ẋ1(t) = x4(t), ẋ2(t) = x5(t), ẋ3 = x6(t),

ẋ4(t) = u1(t) cos(x7(t)) sin(x8(t)) + w1(t)w̄1,

ẋ5(t) = �u1(t) sin(x7(t)) + w2(t)w̄2,

ẋ6(t) = u1(t) cos(x7(t)) cos(x8(t))� g + w3(t)w̄3,

ẋ7(t) = u2(t), ẋ8(t) = u3(t),

(4.22)

where u 2 R3 is consist of the normalized thrust, and the desired roll/pitch rates, w 2 R3

represents the external acceleration disturbances, and g 2 R is the gravitational accelera-

tion. For the known control sequence, the FRS of the system (4.22) can be reconstructed

from FRSs of the following subsystems:

⇠̇i(t) = si(⇠i(t), wi(t), u(t)) 8i 2 {1, 2, 3},

where s1, s2, and s3 are the corresponding dynamics from (4.22), and the states of the

subsystems are defined as

⇠1(t) := [x1(t), x4(t), x7(t), x8(t)]
> 2 R4

,

⇠2(t) := [x2(t), x5(t), x7(t), x8(t)]
> 2 R4

,

⇠3(t) := [x3(t), x6(t), x7(t), x8(t)]
> 2 R4

.

The FRS of the system (4.22) is contained in the intersection of the reprojections of the

FRSs of the subsystems [21]. Instead of directly applying the proposed algorithm to the

system (4.22), the funnels of the subsystems are evaluated and then reprojected to the

entire state space to compute a set containing the FRS, which is a valid funnel of the

system (4.22).
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Fig. 4.7 presents the funnels of the system (4.22) for some selected control sequences.

The funnels are computed for the finite duration t 2 [0, 1] with 25 segments, and w̄ =

[0.01, 0.01, 0.01]> is used. The trigonometric functions in (4.22) are replaced with the

3rd order Taylor expansion. The average funnel computation time for one subsystem is

measured as 1.0891 seconds with the implementation in C++. Note that the funnel of

each subsystem can be computed in parallel, and thus it took about 1 second to generate

the funnel of the system (4.22) for a single control sequence. Consequently, the proposed

method has the potential to react to changes regarding additional disturbances at runtime

and thus can be used for online safety verification.

Through Chapters 3 and 4, how to compute the funnel of the nonlinear system is

presented. Based on the conservative approximation of the FRS of the LTV system and the

value function of the HJB equation, the funnel computed by the proposed method tightly

encompasses the FRS without compromising the theoretical guarantee. In the following

chapter, the proposed funnel is used for planning the safety-guaranteed reference trajectory.
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Figure 4.7: Comparison of the funnels and state trajectories of the multirotor in (4.22)
interrupted by the worst-case disturbances for some selected control sequences. The colored
regions are the funnels that start with blue and end with yellow. The gray lines in the colored
regions are the state trajectories starting from the randomly sampled initial states. The
funnels certainly enclose all the states a↵ected by disturbances.
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5
Safety-guaranteed Trajectory Planning

This section details the generation of the safety-guaranteed reference trajectory. Section 5.1

states the safety-guaranteed trajectory planning problem regarding the closed-loop dynam-

ics of nonlinear systems. In Section 5.2, the generation of the global reference trajectory that

is used as the initial guess of the local replanning is briefly explained. Section 5.3 presents

the local replanning of the reference trajectory with a safety guarantee. Simulation results

and discussion are provided in Section 5.4.

5.1 Problem Statement

Consider an open-loop nonlinear system f : Rn ⇥ Rnu ⇥W! Rn as

ẋ(t) = f
�
x(t), u(t), w(t)

�
,

where u(t) 2 Rnu denotes the input of the system, and nu 2 R is the dimension of the input.

Let the reference trajectory be denoted as r(t) 2 Rnr , where nr 2 R is the dimension of the

reference state. In this work, a nonlinear state-feedback reference-tracking controller includ-
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ing some disturbances such as errors in state measurements, i.e. u(t) = µ(x(t), r(t), w(t)),

is considered. The closed-loop system is expressed as

ẋ(t) = f
�
x(t), µ(x(t), r(t), w(t)), w(t)

�

= g
�
x(t), w(t), r(t)

�

:= gr

�
x(t), w(t), t

�
,

(5.1)

where the subscript r of g represents that the closed-dynamics depends on the reference

trajectory. In the generation of the reference trajectory, the following dynamic system

s : Rnr ⇥ Rna ! Rnr for the reference state r(t) is considered:

ṙ(t) = s(r(t), a(t)), (5.2)

where a(t) 2 Rna is the input of (5.2) and na 2 R is the dimension of a(t). As an example,

if r(t) is consist of the desired position and velocity of the system, the corresponding input

a(t) can be the desired acceleration of the system.

The planning objective is to guarantee the safety of the system described in (5.1) by

modifying the reference trajectory. Accordingly, the reference trajectory r(t) should be

planned such that the FRS of the system (5.1) and unsafe regions do not intersect.

Problem 5.1 (Safety-guaranteed trajectory planning). For a given preplanned reference

r
d : [0, tf ] ! Rnr , find the local reference during a finite horizon t 2 [t0, tN ] ⇢ [0, tf ] that

satisfies

min
r, a

Z tN

t0

��r(t)� r
d(t)
��2 + 

��a(t)
��2 dt

s.t ṙ(t) = s(r(t), a(t)) 8t 2 [t0, tN ],

X(t) \ Xunsafe = ? 8t 2 [t0, tN ],

(5.3)

where  2 R is a positive weight between tracking and regulation, s : Rnr ⇥ Rna ! Rnr

is the dynamics of reference state in (5.2), X(t) is the FRS of the system in (5.1), and

Xunsafe ⇢ Rn is the set of unsafe states.
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In Chapters 3 and 4, reachability analysis has been performed on the dynamics whose

nominal trajectory is centered at the origin, as mentioned in (2.2). Accordingly, the closed-

loop dynamics in (5.1) is also shifted to the origin in order to utilize the proposed method.

Given the reference trajectory r(t), the nominal trajectory q(t) 2 Rn is defined as the

solution of the disturbance-free dynamics:

q̇(t) = gr(q(t), 0, t) (5.4)

with the initial condition q(t0) = x(t0). By introducing the deviation of state x̃(t) :=

x(t)� q(t) 2 Rn, the time-derivative of x̃(t) is

˙̃x(t) = gr(x̃(t) + q(t), w(t), t)� gr(q(t), 0, t)

:= g̃r(x̃(t), w(t), t),
(5.5)

and it is apparent that the dynamics in (5.5) is centered at the origin. Let F̃(t) ⇢ Rn be

the funnel of the shifted dynamics in (5.5). Consequently, the funnel F(t) of the dynamics

in (5.1) can be represented as

F(t) = q(t) + F̃(t) = E(q(t), Q(t)) 8t 2 [t0, tN ], (5.6)

where Q(t) 2 Sn
++ is the shape matrix computed from Algorithm 2 associated with the

shifted dynamics in (5.5), and E : Rn ⇥ Sn
++ ! P(Rn) denotes an ellipsoid centered at the

first argument vector.

5.2 Global Reference Planning

As proposed in Problem 5.1, the objective of planning is the local modification of the

current reference r(t) for t 2 [t0, tN ] considering the global reference r
d(t) for t 2 [0, tf ].

The global reference trajectory r
d is planned only once in the o✏ine phase, and the local
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reference trajectory r is generated to follow the preplanned reference r
d in runtime. This

preplanning process on r
d is necessary as a top-level command of the system to make the

system towards the goal. In this work, smooth piecewise polynomials of time t [37] that

connect some predefined waypoints between the start and goal points are used. Instead

of the piecewise polynomials, a sampling-based [38] or grid-based method [39] can also be

used for the preplanning. Note that safety constraints such as collision avoidance are not

considered for the preplanned reference rd, since guaranteeing safety is the role of the local

reference optimization as detailed in the following subsection.

5.3 Local Replanning with Safety Guarantee

Given the preplanned reference r
d, this subsection aims to solve Problem 5.1 using the

funnel F(t) in (5.6). Since it is proven that the FRS X(t) in (2.3) is contained in the funnel,

the following implication for the constraint of (5.3) holds:

E(q(t), Q(t)) \ Xunsafe = ? =) X(t) \ Xunsafe = ?.

The unsafe set is considered as the following ellipsoid

Xunsafe = E(qunsafe, Qunsafe),

where qunsafe 2 Rn and Qunsafe 2 Sn
++ are the center and shape matrix of the unsafe

set respectively. In order to make the intersection of two ellipsoids empty, the distance

between two ellipsoids must be positive. Consequently, the following inequality is used as

the constraint of (5.3), instead of X(t) \ Xunsafe = ?:

(q(t)� qunsafe)
>�

Qx(t)�Qunsafe

��1
(q(t)� qunsafe) > 1,

where the operation � between positive definite matrices is defined in (3.21).
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Fig. 5.1 illustrates how the local reference trajectory r(t) is optimized. First, r(t) is

initialized with r
d(t) for t 2 [t0, tN ], and the nominal trajectory q(t) is computed according

to r(t). Then, the funnel F(t) is computed along the nominal trajectory. As can be seen in

Fig. 5.1a, the funnel collides with the obstacle at the initial step. By solving Problem 5.1,

the reference trajectory is updated with a new one which is provably collision-free as well

as closest to the predefined reference as described in Fig. 5.1b. Note that the shape of the

funnel is fixed during the optimization, whereas the nominal trajectory is renewed according

to the reference trajectory. After updating the local reference as in Fig. 5.1c, the funnel is

reevaluated according to the updated reference. Those processes (the funnel computation

and trajectory optimization) are repeated until the local reference trajectory converges.

When the iteration is over, the resultant local reference trajectory r(t) for t 2 [t0, tN ] is

commanded to the closed-loop dynamics of the system.

Since the funnel can be computed independently of the trajectory optimization proce-

dure, any optimization algorithm which can handle nonlinear constraints can be employed.

In this work, the constrained version of di↵erential dynamic programming (DDP) [40] is

used.

The safety-guaranteed reference trajectory r(t) should be generated repeatedly as time

progresses, considering unexpected disturbances during runtime. Let us denote �t > 0 as

the planning cycle which represents the timing between the previous and current trajectory

generation. Suppose a new reference trajectory r(t) for a new horizon t 2 [tk, tk+N ] is

planned, where [tk, tk+N ] = �t+[t0, tN ]. The result of the previous horizon can be used, i.e.

a warm-start strategy, for the current reference generation. The current value is initialized

as a(t) = aprev(t) for t 2 [tk, tN ] and a(t) = aprev(tN) for t 2 [tN , tk+N ], where the subscript

prev represents the corresponding value in the previous prediction horizon. Then, the initial

conditions of the reference, center and shape matrix of the funnel, are updated as r(tk) =

rprev(tk), q(tk) = qprev(tk), and Q(tk) = Qprev(tk), respectively. From (5.2), (5.4), and

Algorithm 2, the terms r(t), q(t), and Q(t) for t 2 [tk, tk+N ] are computed by the warm-

started a(t), and used as the initial guess of the current prediction horizon.
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(a) Initialization of r(t) with rd(t)

(b) Optimization of r(t) considering the safety constraint

(c) Recomputation of F(t) with the updated reference r(t)

Figure 5.1: The procedure of the proposed trajectory planning. The shaded blue areas
represent the funnel F(t) and the dashed red lines describe the corresponding reference
trajectory r(t). The black lines and the gray regions are the predefined reference r

d(t) and
an obstacle, respectively. The green line in (c) represents the boundary of the funnel in (b),
which is slightly di↵erent from the blue region of (c).
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5.4 Simulation Results and Discussion

This subsection presents the validation of the proposed planning algorithm with the 4-state

unicycle described in Appendix A. The predefined reference rd(t) is generated with piecewise

polynomials, which connects r
d(0) = [0, 0, 0.2, 0]> and r

d(tf ) = [2, 2, 0.2, 0]> with tf = 6.

Also, an additional disturbance that is assumed to be unknown, but can be estimated when

the unicycle enters a disturbed region is considered. In the disturbed region, an unknown

friction force that acts along the driving direction is increased. So, w̄1 is enlarged when

the unicycle enters the region with the disturbance. The local reference trajectory r(t) is

planned for 1 second of prediction horizon, i.e. tN�t0 = 1. The optimization in Problem 5.1

is solved every 0.1 seconds in the simulation time. Detailed descriptions of the parameters

used in the simulation are listed in Table 5.1.

Fig. 5.2 illustrates the trajectory optimization results and the corresponding funnels at

some selected instances. Starting from the initial condition r(0) = r
d(0), the local reference

r(t) is computed such that the funnels avoid obstacles while following the predefined refer-

ence r
d(t). Fig. 5.2a describes the moment when the unicycle enters the disturbed region.

According to the updated disturbance bound, the funnels predicted from the current time

t0 are also enlarged, as shown in the di↵erence between the light blue and the dark blue

regions. This size increase makes the local reference r(t) predicted from the current time

Description Value

Initial nominal state q(0) = [�0.05m,�0.05m, 0.2m/s, 0.1745rad]>

Initial shape matrix Q(0) = diag([0.0354m, 0.0354m, 0.0354m/s, 0.0354rad])2

Disturbance bound w̄ = [0.05m/s2, 0.05rad/s2, 0.01m, 0.01m, 0.01m/s, 0.01rad]>

Disturbance bound
w̄ = [0.4m/s2, 0.05rad/s2, 0.01m, 0.01m, 0.01m/s, 0.01rad]>

(in disturb. region)
Discretization step tk � tk�1 = 0.01 s
Prediction horizon tN � t0 = 1 s
Planning cycle �t = 0.1 s

Table 5.1: Parameters used in the simulation.
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(the orange line) detour the obstacle more securely compared to the previously predicted

local reference (the dashed red line). Similarly, Fig. 5.2b shows the trajectory optimization

results when the unicycle escapes from the disturbed area. Since the increased disturbance

bound is reverted to the original one at this moment, the size of the funnels predicted from

the current time slightly decreased compared to the previous predictions. Also, the local

reference r(t) predicted from the current time is modified to follow the predefined reference

r
d(t) (the green line) a little more compared to the previously optimized local reference.

The safety guarantee of the optimized local reference r(t) is validated in Fig. 5.2c. 20,000

states are randomly sampled in the initial set E(q(0), Q(0)) and the worst-case trajectory

for each sampled initial state are computed using the method of characteristics [41]. As ex-

pected, the funnels enclose the worst-case trajectories for the entire duration of the mission.

Consequently, the optimized local reference r(t) can drive all of the states in the initial set

to the goal point with guaranteed safety regardless of the unexpected disturbances.

The proposed trajectory optimization algorithm generates the locally optimal reference

r(t) for receding horizon. Thus, the quality of the solution depends on the preplanned

reference trajectory r
d(t). Moreover, a feasible reference may not be found depending on

the initial guess. To alleviate this inherent limitation of the local planner, a search-based

method such as A⇤ or RRT⇤ can be used in some regions adjacent to the current state to

obtain multiple hypotheses. Then, a good initial guess for trajectory optimization can be

selected. Also, similar to the concept of [8], it is possible to precompute the funnels for

some local references r(t) during the o✏ine phase and choose the best reference to escape

from the local minima in runtime. To summarize, the local minima issue can be addressed

using various simple technical ideas.

Along with the local minima issue mentioned above, the optimization may become infea-

sible in complex environments. The main reason for the infeasibility is the conservativeness

of the proposed reachability analysis. The conservativeness of the funnel may hinder the

planner from finding a collision-free trajectory when the obstacles are densely distributed.

Since the funnel computed by the proposed method become conservative as the prediction
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(a) Results when the nominal state enters the disturbed region
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(b) Results when the nominal state exits the disturbed region
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(c) Results for the entire duration

Figure 5.2: Results of the robust trajectory optimization for some selected instances. The
regions with light blue and dark blue represent the funnel F(t) for the previous and current
predictions, respectively. The dashed red lines describe the previously optimized local refer-
ence r(t), and the orange lines are the local reference r(t) computed at the current instance.
The green lines are the predefined reference rd(t) generated in the o✏ine phase. The dashed
black lines and the shaded gray regions are the unsafe and disturbed regions, respectively.
In (c), the gray lines are the worst-case trajectories computed from [41] for some sampled
initial states in the initial set. The black dots and the blue ellipsoids represent the states
on the worst-case trajectories and the funnels at some selected instances.
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time horizon gets longer, the safety margin of the collision avoidance constraints can be

reduced for the latter part of the prediction horizon if it is needed. Also, when the size of

the funnel becomes unintentionally large, the initial set can be reset as a region near the

current state in order to remove the accumulated conservativeness.

Incorporation with the backward reachable sets from a target set (e.g. a narrow gap

between obstacles) of states can also be considered to improve the feasibility of the planner

[42]. The backward reachable set represents a set of states which is guaranteed to reach

the target set considering all possible disturbances. As far as the reference trajectory is

planned such that the funnel and the backward reachable set are connected, the system

is guaranteed to safely pass through the obstacles even in complicated environments. An

illustration of the planning in the complicated environment combined with the backward

reachability analysis can be seen in Fig. 5.3.

As for dynamic environments where the obstacles move over time, the safety guarantee

of the proposed planning algorithm depends on whether the movement of the obstacles

is known or not. Since the proposed trajectory planning algorithm runs su�ciently fast

as validated by flight experiments in the next section, it is possible to avoid the moving

obstacles by rapidly replanning the reference trajectory provided that the movement of the

obstacles is known or can be predicted. When the movement of the obstacles cannot be

predicted, the unknown movement of the obstacles can be treated as additional bounded

disturbances. Similar to the concept of [4], the reachability analysis can be performed on

the relative dynamics (i.e. the di↵erence between the system and the obstacles), and then

the reference trajectory can be planned so that the relative distance between the system

and the obstacles becomes larger than the safety margin.
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(a) Planning only with the forward reachability analysis

(b) Planning with the backward reachability analysis

Figure 5.3: Illustrative simulation for the system passing through between obstacles. The
colored regions are the funnel F(t), which start with blue and end with yellow. The magenta
line is the planned reference trajectory r(t). The thick black line represents the target set
and the red regions are the corresponding backward reachable sets. The shaded gray regions
are obstacles. (a) Planning that only considers the forward reachability analysis fails to
find the reference trajectory which passes through the target region. (b) Planning with the
backward reachable sets generates the reference trajectory that can traverse the complex
region without collision. The gray trajectories inside of the colored regions are the reference
tracking results starting from the randomly sampled initial states.
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6
Experimental Validation

This section presents the results of the proposed trajectory planning algorithm through

indoor flight experiments with a multirotor. In Section 6.1, the experiment scenario and

environment are briefly described. Setups for the experiment are followed in Section 6.2,

and the results and discussion are presented in Section 6.3.

6.1 Scenario

The objective of the experiments is to avoid obstacles in an environment disturbed by the

wind. Before the experiment, the global reference trajectory r
d(t) is preplanned with piece-

wise polynomials that connect some designated waypoints, as described in Fig. 6.1. Two

electric fans that generate gusts up to 5 m/s are installed to exert additional disturbances

unknown to the multirotor, as depicted in Fig. 6.2. While the multirotor follows the global

reference three times, the electric fans are moved so that the region a↵ected by gust is

changed for each flight cycle.
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Figure 6.1: The environment of the experiment. The black line is the predefined reference
r
d(t) generated from the waypoints described as red dots. The green objects are the obsta-
cles modeled as ellipsoids. The blue boxes and arrows are the expected regions a↵ected by
gusts and the direction of gusts, respectively. The arrowheads indicate the direction of the
reference.

Figure 6.2: Snapshot of the experiment. Two green nets and two red cones are used as
obstacles. Also, two black fans generate gusts in the environment. The multirotor avoids
the obstacles against gust.
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6.2 Setups

The platform is a customized F450 multirotor from DJI, as described in Fig. 6.3. E800

motors with 620S electronic speed controllers are used as a propulsion system. A flight

control unit (Pixhawk4) is installed at the center of the multirotor and connected to an

onboard computer via USB. For the onboard computer, intel NUC (8 GB RAM with quad-

core i7-7567U@3.5 GHz CPU) running Ubuntu 18.04 is used. A MAVROS package is used

for the communication between the flight control unit and the onboard computer. The

position and velocity of the multirotor are measured with VICON and sent to the onboard

computer via Crazyradio 2.4 GHz radio telemetry. The transmitted state measurements are

used for onboard control and planning algorithms. Geometric controller [43] is implemented

to generate the desired thrust and angular velocity inputs. Those commands are sent to

the autopilot, and it is assumed that the flight control unit can track the desired thrust

and angular velocity commands su�ciently well. The detailed dynamics of the multirotor

system is described in Appendix B.

For the constrained optimization of the local reference r(t), a constrained version of

DDP algorithm [40] is implemented with C++. The local reference is generated for 2 sec-

onds of the prediction horizon with 0.01 seconds of the time step. The optimization problem

is solved for every 0.1 seconds so that the overall frequency of trajectory planning becomes

Figure 6.3: The platform used in the experiment
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about 10 Hz. It is assumed that the position and size of the obstacles are known, and

the obstacles are considered as ellipsoids. A disturbance estimation algorithm [44] is also

implemented so that the estimated bounds of the external disturbances are automatically

adjusted. Let �̂ 2 R3 denotes the estimated disturbance. The bound of the external distur-

bance is updated as �̄ = �0+ |�̂|, where �0 2 R3 represents the nominal magnitude of the

external disturbances. The other disturbance bounds (the maximum state measurement

errors) are constant during the entire experiment. Parameters used in the experiment are

listed in Table 6.1. The overall structure of the system, as well as the proposed algorithm,

is described in Fig. 6.4.

6.3 Results and Discussion

Fig. 6.5 describes the trajectories and the corresponding funnel of the multirotor per cycle.

During the entire experiment, the multirotor successfully avoids the obstacles and follows

the 8-shaped trajectory despite the external disturbance from unexpected gusts. As the

multirotor approaches the electric fans, the size of the funnel is enlarged according to the

estimated magnitude of external disturbances. The reference trajectory r(t) is adjusted in a

safer direction to bypass the obstacles more certainly. Thanks to the real-time computation

of the funnel, those kinds of evasive maneuvers can happen whenever the system perceives

additional disturbances. Table 6.2 validates the real-time compatibility of the proposed

planning algorithm.

As can be seen in Fig. 6.6, the funnels properly contain the states at most times.

Some sources of the occasional violations are listed as follows: First, the inaccuracy of the

estimated external disturbance can degenerate the guarantee. The disturbance estimator

may not converge fast enough to the true value when the multirotor suddenly faces gusts

and maneuvers in the turbulent windy area formed by two electric fans. The funnel cannot

capture the deviation of states appropriately because the actual magnitude of disturbances

exceeds the expected bounds. Second, the actual multirotor system may have unknown
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Figure 6.4: Structure of modules used in the experiment

Description Value

Initial nominal state q(0) = state of the multirotor at the initial

Initial shape matrix
Q(0) = diag([0.1m, 0.1m, 0.1m,

0.1m/s, 0.1m/s, 0.1m/s,
0.01 rad, 0.01 rad, 0.05 rad])2

Position measurement bound �̄p = [0.05m, 0.05m, 0.05m]>

Velocity measurement bound �̄v = [0.02m/s, 0.02m/s, 0.02m/s]>

Attitude measurement bound �̄q = [0.005 rad, 0.005 rad, 0.005 rad]>

Nominal external disturbance �0 = [0.15m/s2, 0.15m/s2, 0.15m/s2]>

Discretization step tk � tk�1 = 0.01 s
Prediction horizon tN � t0 = 2 s
Planning cycle �t = 0.1 s

Table 6.1: Parameters used in the experiment
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dynamics that are not reflected in the closed-loop dynamics. The gust directly fronted to the

propellers of the multirotor complicates aerodynamics, and it makes the overall dynamics

considerably di↵erent from the nominal one. Also, the low-level controller implemented in

the autopilot may not perfectly track the commands from the high-level controller.

To validate the importance of the modification of the disturbance bound during run-

time, comparative flight experiments are performed as can be seen in Fig. 6.7. Two flight

experiments are qualitatively compared. In the first experiment of Fig. 6.7, the disturbance

bound is updated as the multirotor enters the disturbed region. Considering the modified

funnel at the time the multirotor enters the risky area, the reference trajectory is computed

in a safer direction, resulting in the successful obstacle avoidance in the disturbed environ-

ment as can be seen in the first three columns of Fig. 6.5. In the second experiment of

Fig. 6.7, the disturbance bound is not renewed, and the nominal value of the disturbance

bound is used for computing the funnel. Without modifying the disturbance bound, the

multirotor collides with the obstacle because the funnel no longer guarantees safety when

the multirotor is a↵ected by gusts, as can be seen in the last column of Fig. 6.5.
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(a) 1
st

cycle

(b) 2
nd

cycle

(c) 3
rd

cycle

Figure 6.5: Results of the experiment. Figures in the left columns are snapshots of the
environment, and the right columns are the corresponding visualizations. The solid red lines
represent the actual trajectory of the multirotor. The red regions describe the funnels, and
the black lines are the preplanned global references. The green objects are the obstacles
modeled as ellipsoids, and the shaded blue boxes and arrows are the expected regions
a↵ected by gusts and the direction of gusts, respectively.
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Procedure Process time

Reachability Analysis
Analysis on the linearized dynamics 5.7 ms
Analysis on the nonlinear dynamics 22.3 ms

Etc. 0.2 ms

Trajectory optimization
Forward pass 11.8 ms
Backward pass 52.4 ms

Etc. 0.1 ms

Total 92.5 ms

Table 6.2: Mean computation time spent to generate one reference trajectory. The funnel
of the linearized LTV system is used as the initial guess of the proposed algorithm that
computes the funnel of the nonlinear system. The forward and backward passes in the
trajectory optimization section represent routines of the DDP algorithm [45]. The cost of
the trajectory planning problem (5.3) for the given r(t) and a(t) is computed during the
forward pass. In the backward pass, a new sequence of a(t) that decreases the cost of the
trajectory planning problem (5.3) is updated. The forward and backward passes are iterated
until the locally optimal sequence of r(t) and a(t) is obtained.

85



Figure 6.6: Deviation of states from the nominal trajectory. The green lines are the ab-
solute value of the deviation, i.e. |xi(t) � qi(t)| for all i 2 {1, . . . , 9}. The black lines are
the corresponding bounds from Q(t). Each row represents the position, velocity, and atti-
tude, respectively. Each column describes the corresponding state along x, y, and z axes,
respectively.
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Figure 6.7: Comparison of flight experiments with and without updating the disturbance
bound. The shaded blue region is the area a↵ected by wind, and the green cylinders and
magenta ellipsoids are the actual and inflated shape of obstacles. The blue line represents
the optimized reference trajectory and the colored axes on the trajectory denote the cur-
rent pose of the multirotor. The red ellipsoids represent the funnel of the multirotor. The
thick black solid line denotes the predefined reference trajectory. The first three columns
(numbered as 1–6 in green) represent the success case, and the last column (numbered as
1 and 2 in red) represents the failure case.
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7
Conclusion

This dissertation presents a real-time safety-guaranteed trajectory planning method. The

safeness of the planned trajectory is guaranteed through the reachability analysis. Given

that unexpected disturbances can drive the system to risky regions instantaneously, this

work concentrates on fast computation of the funnel so that the system can evaluate the

danger of the current maneuver plan and swiftly modify the maneuver plan considering the

funnel and unsafe regions.

For a real-time reachability analysis, the generalized Hopf formula is employed. Since

the formula provides an explicit solution to the value function of the reachability prob-

lem, the sizable computational benefit can be derived from the formula compared to the

grid-based methods such as the level-set method. The contribution of this dissertation in

utilizing the generalized Hopf formula is the characterization of the shape of the FRS,

which is proven to be the Minkowski sum of the initial set and the set due to disturbances.

To reduce the computational burden regarding the Minkowski sum of sets, the conser-

vative ellipsoidal approximation of the set due to disturbances is proposed. Furthermore,

this dissertation presents the minimum volume composition algorithm to prevent overly
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conservative ellipsoidal approximation of the Minkowski sum of ellipsoids.

The main limitation of the generalized Hopf formula in computing the FRS is that

the formula applies only to LTV systems. The FRS computed for the linearized dynamics

cannot guarantee the reachability of the system due to the ignored nonlinearity. This dis-

sertation presents the polynomial approximation of the value function of the HJB equation.

To guarantee that the funnel encloses the FRS, the conservativeness condition of the poly-

nomial value function is constructed. By using the property of the Bernstein polynomial,

the conservativeness condition is converted to linear inequalities of the coe�cients of the

polynomial value function. The proposed funnel computation method is consist of multiple

LPs, which requires much less computational burden compared to SOS program.

After computing the funnel, the locally optimal reference trajectory is found under the

safety constraints. The constraints associated with the funnel enforce the system not to fall

back into the unsafe area. Thanks to the dedicated computation of the funnel, the trajectory

optimization problem can also be solved in real-time. The successful flight experiments in

an environment disturbed by gusts validate that real-time safety-guaranteed planning is

available through the proposed algorithm.

The possible future works of this study will be the integration with the backward reach-

ability analysis. The backward reachable set, a set of states which is guaranteed to arrive at

the desired set under all possible disturbances, will be useful to find trajectory candidates

in environments where obstacles are densely distributed. It is expected that the conserva-

tiveness of the funnel will be reduced by combining the forward and backward reachable

sets and this will improve the feasibility of the trajectory planning even in complicated

environments.
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Appendix

A. Dynamics of Unicycle

The state variables of the unicycle consist of the position in the horizontal plane (x1 and

x2), speed (x3), and heading angle (x4). The inputs of this system are the acceleration

(u1) and angular velocity (u2). The total six disturbances are considered, i.e. m = 6. The

first two (w1 and w2) are the external disturbances in acceleration and angular velocity,

respectively. The others (w3, w4, w5, and w6) are the disturbances in state measurement.

The reference state of this system consists of the desired position in the horizontal plane

(r1 and r2) and its time derivatives (r3 and r4).

The open-loop dynamics of the unicycle f : R4 ⇥ R2 ⇥ R6 ! R4 is

ẋ(t) = f(x(t), u(t), w(t)),
8
>>>>>>>><

>>>>>>>>:

ẋ1 = x3 cos x4,

ẋ2 = x3 sin x4,

ẋ3 = u1 + w1,

ẋ4 = u2 + w2.

To construct a reference-tracking controller, the error states are defined as

ê :=

2

4x1 + w3

x2 + w4

3

5�

2

4r1
r2

3

5 2 R2
,

˙̂e =

2

4(x3 + w5) cos(x4 + w6)

(x3 + w5) sin(x4 + w6)

3

5�

2

4r3
r4

3

5 2 R2
.
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The reference-tracking controller is formulated as

u(t) = µ(x(t), r(t), w(t))

=
1

v0
G(x(t), w(t))(�Kpê(t)�Kd

˙̂e(t)),

where the matrix G(x, w) 2 R2⇥2 is

G(x, w) =

2

4(x3 + w5) cos(x4 + w6) (x3 + x5) sin(x4 + w6)

� sin(x4 + w6) cos(x4 + w6)

3

5 ,

Kp = diag(2, 2) 2 R2⇥2, Kd = diag(3, 3) 2 R2⇥2 are feedback gain matrices, and v0 = 0.5 is

used in the simulation. The dynamics of the reference state is

ṙ(t) = s(r(t), a(t)),

ṙ1 = r3, ṙ2 = r4, ṙ3 = a1, ṙ4 = a2.

B. Dynamics of Multirotor

The state variables of the multirotor consist of the position p 2 R3, velocity v 2 R3, and

Euler angles q 2 R3. The inputs are the thrust F 2 R and angular velocity ! 2 R3. The

disturbances of this system are w = [�p>
, �v>

, �q>
, �>]> 2 R12, where �p 2 R3, �v 2 R3

and �q 2 R3 are the errors in position, velocity, and attitude measurements, respectively.

� 2 R3 is the external disturbance acting through the acceleration channel. The reference

for this system consists of the desired position (r1, r2, and r3) and velocity (r4, r5, and r6).
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The open-loop dynamics of the multirotor f : R9 ⇥ R4 ⇥ R12 ! R9 is:

ẋ(t) = f
�
x(t), u(t), w(t)

�
,

8
>>>>><

>>>>>:

ṗ = v,

v̇ =
F

m
R(q)e3 + g+�,

q̇ = G(q)!,

where R : R3 ! SO(3) is the rotation matrix from the Euler angles, G : R3 ! R3⇥3 maps

the rates of the Euler angles to the angular velocity, g 2 R3 is the gravitational acceleration,

m 2 R is the total mass of the multirotor, and e3 = [0, 0, 1]>. A geometric controller [43] is

used to generate the thrust and angular velocity commands. Similar to the unicycle case,

the controller computes the inputs using the state perturbed by the measurement error.

The controller can be parameterized with feedback gains as

u(t) = µ(x(t), r(t), w(t);K),

where K = [K>
p , K

>
v , K

>
R ]

> 2 R9 is the stack of position, velocity, and rotation feedback

gains. Kp = [6, 6, 10]> 2 R3, Kv = [4, 4, 8]> 2 R3, and KR = [10, 10, 6]> 2 R3 are used in

the experiment. The dynamics of the reference state is

ṙ(t) = s(r(t), a(t)),

ṙ1 = r4, ṙ2 = r5, ṙ3 = r6,

ṙ4 = a1, ṙ5 = a2, ṙ6 = a3.
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\⌥XH��x¥©D ⌅t⌧î H⌅1tÙ•⌧ Ω\| ƒçXîÉt⌘îX‰. X¿Ã,

‰⌧ XΩ–⌧î �¡X ª\ xÄt ‹§\– �•D ¸å ⇠¿\ ¨⌅– ƒç⌧ H⌅t

Ùtî Ω\� ‰⌧ ¿Ñ–⌧ H⌅\¿ ¥© ⌅– ⇣ËXî É@ ¥5‰. ¯ |8–⌧î

tÏ\ ¥$¿D ˘ıX0 ⌅\ ƒÏ �•1 Ñ� 0ï¸ t| 0⇠<\ H⌅1t Ù•⌧

Ω\ ƒç 0ïD ⌧H\‰.

‹§\X H⌅ ÏÄî t�4-êTD ƒÏ �•1 Ñ�D µt ƒ∞⌧ ƒÏ �• �ÌD

µt Ù• ⇠ à‰. ‰⌧ XΩ–⌧X �¡X ª\ xÄt ‹§\D â‹ ⌅ÿ\ ¡i<\

 ƒ` ⇠ à‰î ⇣D ‡$XÏ, ¯ |8@ ƒÏ �•1 Ñ�X ‰‹⌅T| ©\\ \‰.

¯ l–⌧ ⌧HXî ƒÏ �•1 Ñ� L‡¨ò@  � ‹¿ ‹§\¸ D � ‹§\–

�\ P ÖXX 0ï‰\ l1⇠¥ à‰.  � ‹¿ ‹§\– �\ ƒÏ �• �Ì– �t⌧

¯ lî |⇠T⌧ Hopf formula| 0⇠<\ Xî ¿– ¸¨| ⌧‹\‰. t˘ ı›@ t

�4-êTD-®Ã )�›X t| ⌧ıX0 L8–, t| 0⇠<\ \ ¯ lX ¿– ¸¨î

 � ‹¿ ‹§\X ƒÏ �• �ÌD Ïh\‰î Ét Ù•⌧‰.  � ‹¿ ‹§\X ƒÏ

�• �Ì ¸¨ ¸�–⌧ ‡$⇠¿ J@ D �1¸X µiD ⌅t ¯ lî t�4-êT

D-®Ã )�›X t(value function)| ‰m h⇠\ ‰⌧¿⇠TXÏ D � ‹§\X ƒÏ

�• �ÌD ¸¨TXî L‡¨òD î��<\ ⌧H\‰. ¯ l–⌧î Bernstein ‰m

h⇠X π1D \©h<\h t˘ value functionX Ù⇠1 ptt  � ÄÒ› ⌧}pt<

\ ¿X ⇠ àLD Ùx‰. ¯ l–⌧ ⌧HXî D � ‹§\X ƒÏ �• �Ì– �\

¸¨T L‡¨ò@ ı⇠X  � ⌅\¯®<\ l1⇠¥ à<¿\ 0tX ƒÏ �•1 Ñ�

0ï‰– Dt Ù‰ �@ ƒ∞ ‹⌅<\ ƒÏ �• �ÌD ¸¨T ` ⇠ à‰.

»¿…<\, ¯ lî ⌧H⌧ ƒÏ �•1 Ñ� ∞¸| 0⇠<\ H⌅1t Ù•⌧ Ω\

ƒç– �\ \�T 8⌧| $�\‰. t L, ‹§\X H⌅@ ¸¨T⌧ ƒÏ �• �Ì¸

H⌅X¿J@�Ìtπ–¿¿Jƒ]XîD �⌧}pt<\‡$⌧‰.¯l–⌧⌧

H\ƒÏ�•�ÌX¸¨∞¸î‰⌧ƒÏ�•�ÌDÏhX0L8–,t˘⌧}ptD
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ƒÏ �• �Ì Ñ� L‡¨ò@ ‰⌧ ƒÏ �• �ÌD `tå ¸¨T ` ⇠ à<¿\ H⌅

1t Ù•⌧ Ω\X ‰‹⌅ \�T| �•Xå \‰. ∞¸�<\, ¯ l� ⌧HXî ƒÏ

�•1Ñ�✏Ω\ƒçL‡¨òDµt¿Ñ⌘‹§\–�¡Xª\xÄtë©⇠î

Ω∞–ƒ‹§\XH⌅tÙ•⇠ƒ]Xî‰‹⌅Ω\⇠�t�•X‰.åtŒtÄî

XΩ–�\‹`X•`<å<Dâ‰ÿ‰Dµt¯l–⌧⌧H\L‡¨òX¿˘1
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