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Abstract

The machine learning approach to develop interatomic potential attracts consider-

able attention because they can achieve simulation accuracy comparable to the refer-

ence first-principles calculations, with a much lower calculation cost. Of the many

choices of machine learning potentials, high-dimensional neural network potential

is highly anticipated due to its successful demonstrations in a wide range of mate-

rials, including metals, oxides, semiconductors, and molecular reactions. Despite its

success and attractiveness, machine learning potentials are often regarded as a black-

box method, and efforts to understand the basic foundation are lacking. The difficulty

in understanding machine learning potentials stems from the difference in traits that

distinguish it from the traditional classical potentials. Due to the fundamental differ-

ences, machine learning potentials present unique challenges that must be overcome

to achieve high accuracy when used.

In this dissertation, we address three significant challenges of machine learning

potentials and, with neural network potential, in particular, suggest the solution to the

challenges. First, we discuss an unbalanced training problem coming from a biased

distribution of training points. We provide various examples of biased sampling and

how it undermines the accuracy of the simulation. Using the Gaussian density function

that quantifies the sparsity of training points, we propose a weighting scheme to solve

the unbalanced training problem. Next, we focus on the establishment of prediction

uncertainty indicators. Because machine learning potentials do not have physics-based

functions like conventional classical potentials, their reliability can be questionable.

Therefore, a prediction uncertainty indicator is essential for machine learning poten-

tials. The uncertainty indicator should have atomic-level resolution to identify the ex-

act local atomic environment lacking in the training set. To this end, we propose a

replica ensemble method that can ensure the atomic-level resolution of uncertainty es-
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timation by excluding uncertainties arising from atomic energy mapping. We demon-

strate this method to run molecular dynamics simulations of the Ni-Si interface reac-

tion. Finally, we touch on one of the grand challenges in machine learning potential

application, which is applying machine learning potentials to search for new crystal

structures without any preceding information other than the chemical composition. In

usual practices, machine learning potentials are first trained over structures derived

from known structures. However, such information is not available at the outset in

exploring unknown crystals. As we will address that machine learning potentials can

effectively map the atomic energies from the reference total energy, we find that they

can sample diverse local orders that can appear in crystals from a training set com-

posed only of disordered structures. We prove this analogy on four different multinary

crystal systems over experimental phases as well as low-energy crystal structures. By

addressing and overcoming the inherent challenges in machine learning potentials, this

dissertation will extend the application range of the machine learning potentials.
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Chapter 1

Introdunction

1.1 Overview of machine learning potential

Machine learning approaches to develop interatomic potential attract considerable at-

tention as they are anticipated to overcome the inherent shortcoming of the classical

potential and density functional theory (DFT). Namely, classical potentials suffer from

limited accuracy and difficulty in development, and DFT demands a substantial com-

putational cost. On the other hand, by learning structure-energy relationships directly

from first-principle calculations through very flexible functional forms, machine learn-

ing potentials can achieve the simulation accuracy comparable to the reference calcu-

lations, but at a much lower computational cost scaling linearly with the number of

atoms.

To date, several types of machine learning potential have been suggested, including

spectral neighbor analysis potential (SNAP),[1] moment tensor potential (MTP),[2]

gradient-domain machine-learning (GDML),[3] deep tensor network (DTNN),[4] and

accurate neural network engine for molecular energies (AN1).[5] Among the machine-

learning potentials, two types are the most popular in material researches: Gaussian-

approximation potential (GAP)[6] and high-dimensional neural network potential (NNP).[7]

In particular, the high-dimensional neural network potential suggested by Behler and
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Parrinello is attracting broad interests with applications demonstrated over various ma-

terials. Some of the most advanced simulations carried successfully by NNP include

metastable structures search of Pt-H nanocluster,[8] CO2 reduction active site search

on Ni-Ga bimetallic facets,[9] and crystallization simulations of amorphous GeTe,[10]

to name a few.

Despite their success and attraction, machine learning potentials are often consid-

ered black-box methods, and there is a significant lack of effort to understand their fun-

damental domain. The difficulty of understanding the functioning of machine learning

potentials comes from its distinct characteristics-difference from conventional clas-

sical potentials. That is to say, the machine-learning potentials do not have prefixed

functional forms, and they try to mimic the structure-energy relationships of a given

training set. Also, unlike conventional classical potentials, which are based on the ap-

proximation of chemical bonds, machine learning potentials assume atomic energies

given according to the local atomic environments. Owing to the philosophical differ-

ences at fundamental level, machine learning potentials poise unique challenges to

overcome for reliable accuracy upon use.

One of the most severe problems is the unbalanced training of machine learn-

ing potentials, which originates from the highly biased distribution of training points.

From various examples, we found that unbalanced training significantly undermines

the accuracy and reliability of machine learning potentials. Moreover, as typical first-

principle calculations only provide the given system’s total energy rather than the in-

dividual energy of atoms, the unbalanced training problem challenges us to produce a

specialized solution. Such problems are less acute with traditional classical potentials

for which the developer can explicitly adjust the underlying functions.

Another of the most urgent challenges of machine learning potential is establishing

simulation uncertainty indicators with atomic-level resolution. As machine-learning

potentials lack the physics-based functional forms, their prediction uncertainty grows

rapidly as input features deviate from the training domain. In other words, the accuracy
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of the energy prediction degrades unacceptably if given local atomic configurations are

substantially different from those in the training set. If this happens during molecular

dynamics (MD) simulations, the computational results may not be entirely meaning-

ful even if the simulation terminates without any severe failures, such as diverging

energies. Therefore unlike in conventional classical potentials where principle-based,

hard-coded functions can safeguard atomic configurations against unintended struc-

tures, monitoring uncertainty levels during atomic simulations when utilizing machine

learning potentials is essential. The uncertainty quantification should be in atomic-

level resolution to secure the information of which exact local atomic environment

among the large-scale simulation cell is absent in the training set in order that the in-

formation can be utilized in the refinement of the potential. Although some methods

suggested estimating the prediction uncertainty in machine learning potentials, such as

posterior predictive variances in GAP and ensemble methods in NNP, those methods

can not guarantee the identification of problematic configurations with clear atomic-

resolution.

Outside of MD simulations, another significant application of machine learning

potentials is fast energy evaluation in crystal structure prediction (CSP). Prediction of

the stable crystal structure for multinary (ternary or higher) compounds demands fast

and accurate evaluation of free energies in exploring the vast configurational space.

Therefore, machine learning potentials are poised to meet the requirement for evaluat-

ing energies in multinary CSP. However, there is a distinctive challenge when machine

learning potentials are applied to search for new crystal structures. The heart of the

machine learning potentials is the gathering of a proper training set. However, such in-

formation is not available at the outset in exploring unknown crystals, and one should

construct the potentials out of nothing. Therefore, there is an acute need for the strat-

egy to build a training set that can encompass the diverse local orders that can appear

in crystals without any prior knowledge other than the chemical composition.
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1.2 Goal of the dissertation

The main goal of this dissertation is to address three major challenges of machine

learning potential and, with neural network potential in particular, suggest the solu-

tion to the challenge. To adequately address the uniqueness of the challenges, we also

provide an overview of density functional theory, classical interatomic potentials, and

machine learning potentials. From the overview, a hint can be found on why machine

learning potentials inherently possess the challenges mentioned above.

The first challenge to be addressed is the unbalanced training problem caused by

sampling bias. We define the Gaussian density function to quantify the sampling bias,

and by using the function, we suggest a weighting scheme to remedy the unbalanced

training problem. Next, we turn the topic to prediction uncertainty quantification with

atomic-level resolution. We discuss the importance of uncertainty indicator and sug-

gest a “replica” ensemble method that can secure the atomic-level resolution by ex-

cluding the uncertainty coming from atomic energy mapping. In addition, we demon-

strate these methods to molecuar dynamics simulation of Ni–Si interface reaction. Fi-

nally, we provide a strategy to train a machine learning potential for crystal structure

space exploration without any preceding information on material structures except for

the chemical composition. The key strategy is to train a machine learning potential

over disordered structures such as liquid and melt-quenched amorphous phases.

Through the discussion, we present a perspective on the unique foundation of the

machine learning potentials differentiated from conventional classical potentials and

contribute to expanding the application range of machine learning potentials in general.
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1.3 Organization of the dissertation

This dissertation consists of six chapters. Chapter 1 is the introduction, in which we

give an overview of machine learning potentials, the goal and the organization of this

dissertation. Chapter 2 provides the theoretical background on density functional the-

ory, classical interatomic potentials, and machine learning potentials. In Chapter 3,

we discuss the unbalanced training problem of machine learning potentials caused

by sampling bias. From the discussion, we derive a method to quantify the sampling

bias. Then, a weighting scheme is suggested as the solution to the unbalanced training

problem. With examples of defective silicon systems, we demonstrate the proposed

scheme. In Chapter 4, we address the necessity of a prediction uncertainty indicator

for machine learning simulations. Next, we present an efficient and atomic-resolution

uncertainty indicator for NNP based on a replica ensemble. The demonstration of the

replica ensemble-based indicator is carried on highly reactive MD simulation of Ni–Si

interface reaction. Chapter 5 provides a strategy to build a training set for crystal struc-

ture prediction of multinary systems. As no information other than chemical formula

is available at the outset in exploring unknown crystals, we suggest building a train-

ing set out of disordered structures and demonstrate its effectiveness for four different

multinary systems. Finally, in Chapter 6, we summarize and conclude each study.

5



Chapter 2

Theoretical background

2.1 Density functional theory

2.1.1 Born-Oppenheimer approximation

To calculate the properties of materials at a quantum mechanical level without any em-

pirical parameters, one should solve the Schrödinger equation; the fundamental equa-

tion that describes the state of atoms. For systems with multiple nuclei and electrons,

the (time-independent) Schrödinger equation is described as:

HΨ = EΨ, (2.1)

and the Hamiltonian operator H is:

H = − ~2

2me

∑
i

∇2
i −

∑
I

~2

2MI
∇2
I

+
1

2

∑
i 6=I

e2

|ri − rj |
+

1

2

∑
I 6=J

ZIZJe
2

|rI − rJ |
+
∑
i,I

ZIe
2

|ri − rI |
,

(2.2)

where i, j is the electron index, I, J is the atom index, Z is the charge, and M is the

mass of nucleus. In Eq. (2.2), the first two terms correspond to the kinetic energy
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of electrons and nuclei, and the next three terms represent electron-electron, nucleus-

nucleus, electron-nucleus interactions, respectively.

As the electron mass is negligible compared to the nucleus mass, the position of the

nuclei can be considered fixed. Thus the kinetic energy of the nuclei can be ignored,

and the nuclei merely act as the source of external potential on the electrons. This

approximation is called the Born-Oppenheimer approximation,[11] and H becomes:

H = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=I

e2

|ri − rj |
+

1

2

∑
I 6=J

ZIZJe
2

|rI − rJ |
, (2.3)

where Vext is the external potential. For practical materials systems (i.e. many-body

systems), solving Eq. (2.3) is not feasible. Therefore, several well-working approxima-

tion methodologies have been developed. One of the most successful approximation is

density functional theory (DFT).
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2.1.2 Hohenberg-Kohn theorem

Density functional theory is based on the Hohenberg-Kohn theorem.[12] Hohenberg-

Kohn theorem states that 1. for a system of electrons in an external potential Vext(r),

the total energy E is given exactly as a functional of the electron density ρ(r), and 2.

the electron density that minimizes the energy functional E[ρ] is the ground state den-

sity ρ0, with which other ground-state properties are also given. With the Hohenberg-

Kohn theorem, the energy functional E[ρ] can be expressed as:

E[ρ] =

∫
Vext(r)ρ(r)dr + F [ρ], (2.4)

with

F [ρ] = T [ρ] + Vee[ρ] (2.5)

where T [ρ] is the kinetic energy and Vee[ρ] is the electron-electron interaction energy.

While Hohenberg-Kohn theorem states that E[ρ] exists, it does not provide the actual

form of the functional. Thus further development is required to solve the many-body

Hamiltonian Eq. (2.3)
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2.1.3 Kohn-Sham equation

To bypass the many-body problem, Kohn and Sham assumed that the electron density

ρ(r) of N electrons can be expressed as a sum of one-electron orbital φi: [13]

ρ(r) =
N∑
i=1

|φi(r)|2. (2.6)

The one-electron orbital φi(r) is also known as the Kohn-Sham orbital. With this

assumption, the multi-electron problem becomes the set of one-electron problems.

Thus the Kohn-Sham equation is given as:

(
− ~2

2me
∇2
i + Veff(r)

)
φi(r) = εiφi(r), (2.7)

where Veff(r) is the effective potential:

Veff(r) = Vext(r) + VHartree(r) + Vxc(r). (2.8)

In Eq. (2.8) VHartree(r) corresponds to the Hartree energy which indicates the

Coulomb interaction energy of electron with itsef:

VHartree[ρ] =
e2

2

∫
drdr′

ρrρr′

|r− r′|
. (2.9)

where VXC(r) corresponds to the exchange-correlation energy, which includes all the

corrections from many-body interactions between electrons. The exact form of the

exchange-correlation energy is unknown, and some form of approximation must be

introduced. The approximated form of the exchange-correlation energy is discussed in

the next subsection.

From the previous discussions, one can see that there is a self-consistency problem

in solving the Kohn-Sham equations. That is to say, to solve the Kohn-Sham equa-

tions, external potentials need to be defined. To define the external potentials, electron

density must be given. To find the electron density, the Kohn-Sham orbital must be

9



given. To know the Kohn-Sham orbital, the Kohn-Sham equations must be solved. To

break this problem, an iterative method is used. In the method, the first step is to guess

the initial electron density. Then the iterative step shown in Fig. 2.1 is carried until the

difference between the input electron density and the calculated electron density from

the Kohn-Sham equation is below certain threshold.
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Fig. 2.1: The schematic description of the self-consistency method for solving the

Kohn-Sham equations.
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2.1.4 Exchange-correlation energy

Finally, we discuss the exchange-correlation energy EXC introduced in Eq. (2.8). The

simplest form of approximated EXC is the local density approximation (LDA),[13]

which is built under the assumption that the EXC of a many-electron system depends

only on the local electron density. Thus the EXC under LDA is expressed as:

ELDA
XC =

∫
drρ(r)εXC[ρ(r)]. (2.10)

LDA gives reasonable results for systems with slowly varying charge density.

However, for systems with electronic structures that deviate significantly from uni-

form electron gas, LDA typically provides a large error. To add more information to

LDA, generalized gradient approximation (GGA)EXC incorporates the gradient of the

electron density in addition to the local density:[14, 15]

ELDA
XC =

∫
drρ(r)εXC[ρ(r),∇ρ(r)]. (2.11)

GGA functionals generally provide more accurate results compared to LDA. How-

ever, both LDA and GGA functionals have a representative error of severe underesti-

mation in bandgap prediction. The error is caused by the omission of electron self-

interaction energy and derivative discontinuity at the integer number of electrons.

To correctly address the bandgap of insulators, beyond-DFT methods such as GW

approximation[16] or hybrid functionals should be adopted.[17] However, we do not

provide detailed discussions on those methods as they are out of the scope of this

dissertation.
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2.2 Classical potentials

Although DFT calculations can predict materials properties with high accuracy, the

practical usage of DFT is often hindered by its demanding computational cost. Ex-

pressly, as the computational cost of DFT scales asO(N3
e ), the model size is generally

limited to less than 1000 atoms for typical DFT calculations (Ne is the number of elec-

trons in the system). In this respect, classical interatomic potentials have a significant

advantage. Classical potentials approximate the atomic interactions using physically

driven functions, and by doing so, can omit the costly computation processes from

quantum mechanics. The computational burden of classical potentials typically scales

betweenO(Nat) andO(N2
at), whereNat is the number of the atoms in the system.[18]

Therefore, they can handle the model size as large as several million atoms with mod-

est computational cost. Consequently, they are beneficial for modeling atomic systems

requiring large supercell such as surface, interface, dislocation, grain boundary, stack-

ing fault, etc.

One of the most well known interatomic potentials is the Lennard-Jones potential[19]:

VLJ(rij) = 4ε
[( σ
rij

)12
−
( σ
rij

)6]
, (2.12)

where σ and ε are the parameters to set the length and the energy scale, respectively.

In this section, i, j, and k represent the atomic indices and r represents the distance be-

tween two atoms. The functional terms of Lennard-Jones potential are pretty straight-

forward for interpretation; the first term in Eq. (2.12) corresponds to the attraction and

the second term describes the repulsion. Lennard-Jones potential is very simple, how-

ever it is suitable for describing noble gases such He, Ne, Ar, Kr, and Xe for they have

very low chemical reactivity.

When the atomic systems of interest have stronger chemical bondings than no-

ble gases, the functional form to describe such bonding should contain corresponding

physics and chemistry. For example, for modeling metallic systems, embedded-atom-
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model (EAM) potential is often the favorable choice[20]:

E =
∑
i

Fi

[∑
j 6=i

ρij(rij)
]

+
1

2

∑
i=1

∑′

j=1

Vij(rij), (2.13)

where ρ is a function approximating the electron density, V is a pair potential, and Fi is

an embedding function representing the energy required to insert atom i into a specific

position in the electron cloud. The idea of EAM potential is to mimic cores (nuclei and

core electrons) and surrounding delocalized electrons in metallic systems.

In contrast, for covalent materials (e.g. silicon or carbon) where the bondings are

strongly directional and localized, the interatomic potential must reflect such direc-

tionality. Therefore favorable interatomic potentials for covalent systems often have

an explicit angular term in their functional forms. One example of such potential is

Stillinger-Weber potential[21]:

E =
∑
i

∑
j>i

V2(rij) +
∑
i

∑
j 6=i

∑
k>j

V3(rij , rik, θijk), (2.14)

where the two-body term V2 is expressed as:

V2(rij) = Aijεij

[
Bij

(σij
rij

)pij
−
(σij
rij

)qij]
exp
( σij
rij − aijσij

)
, (2.15)

and the three-body term V3 is:

V3(rij , rik, θijk) = λijkεijk[cosθijk − cosθ0,ijk]
2

× exp
( γijσij
rij − aijσij

)
exp
( γikσik
rik − aikσik

)
.

(2.16)

A, B, ε, p, q, a, σ, and γ are the potential parameters. While Stillinger-Weber potential

can provide accurate results for idealized systems to which the potential is fitted, it

may critically lack the transferability to other atomic systems since the underlying

functional form lacks the flexibility. Bond-order potentials such as Tersoff potentials
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can provide a more flexible and adaptable description of covalent systems. The general

functional form of the bond-order potentials is expressed as[22]:

E =
1

2

∑
i

Zi∑
j

[qVR(rij) + bVA(rij)], (2.17)

where Z is the number of neighboring atoms, q is a parameter depends on the local

electronic density, VR and VAare the repulsive and attractive interactions, respectively.

b is the bond order parameter that controls the strength of the bond according to the

bond character (i.e., single, double, or triple bond). An important variation of the bond-

order potential is reactive force-field (ReaxFF).[23] ReaxFF is particularly useful since

it well-describes the bond breaking and forming (i.e. chemical reactions) during the

simulations. This is addressed by building general functions, including terms describ-

ing two- three- and four-body interaction energy, over- and under- coordination en-

ergy, van der Waals energy, Coulomb energy, and conjugated bond energy. Therefore

ReaxFF inherently holds a large number of fitting parameters.

The classical potential parameters are typically determined such that the properties

given by the potential corresponds to that of reference data. The reference can be either

experiment or more accurate calculations. Some of the frequently used properties in-

clude the cohesive energy, lattice parameters, elastic constants, phonon modes, defect

formation energy, surface energy, etc.

While the aforementioned classical potentials are based on strong physics and have

had much success in atomic modeling for a long time, they possess some severe limita-

tions. First, the material systems in practice often do not have distinct bonding charac-

ter but rather have mixed bonding types. Therefore, it is exceedingly difficult to choose

the proper functional form and sometimes considered practically impossible in such

cases. Second, the parameter fitting is highly nontrivial, as the potential functions are

non-linear and highly-coupled. Therefore, the parameter fitting procedure itself can

be very demanding, especially for complex classical potentials and/or multispecies

systems. Third, as it is very hard to develop general potential working for diverse sys-

15



tems, the usage of most of the classical potentials are limited to the target system they

are fitted to. In other words, classical potentials lack transferability compared to first-

principles calculations. Finally, even when the parameters are carefully optimized, the

accuracy of the classical potentials can still be limited as they adopt major approxi-

mations. The most significant approximation is the existence of the explicit chemical

bonding function itself. For real systems, the concept of chemical bonding is vaguely

defined within the quantum mechanical level, especially for inorganic solids.
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2.3 Machine learning potentials

DFT calculations and physics-based classical interatomic potentials have the respec-

tive strengths shortcomings: DFT demands a substantial computational cost, and clas-

sical potentials have limited accuracy and difficulty in development. In this regard, ma-

chine learning potentials are highly anticipated to achieve simulation accuracy compa-

rable to the reference first-principles calculations, with a much lower calculation cost.

Through the years, several types of machine learning potentials have been suggested

varying by descriptors and models. Among the various potentials, high-dimensional

neural network potential (HDNNP; NNP)[7] and Gaussian approximation potential

(GAP)[6] are the two most appreciated and utilized models to this date. NNP and GAP

are suggested in 2007 and 2010, respectively, and have been applied to a wide range

of materials since. Figure 2.2 shows the citation number of seminal machine learning

potential papers per year.

Even though machine learning potentials are often considered a subclass of con-

ventional classical potentials, there is a fundamental difference. That is, unlike tradi-

tional classical potentials, machine learning potentials does not assume the chemical

bondings. Instead, machine learning potentials map atomic energies from the given

total energy of reference quantum mechanical calculations. This difference causes

unique characteristics of machine learning potentials. In the following subsection, we

discuss the atomic energy mapping of machine learning potentials in detail. But before

that, we first give a theoretical background for NNP and GAP from the perspective of

models and descriptors. Moreover, we provide some of the training techniques for

NNP, which is used throughout Chapter 3, 4, and 5.
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Fig. 2.2: The citation number of seminal machine learning potential papers per

year. The machine learning potentials include high-dimensional neural network po-

tential (NNP),[7] Gaussian approximation potential (GAP),[6] accurate neural net-

work engine for molecular energies (ANI),[5] deep tensor neural network (DTNN),[4]

gradient-domain machine-learning (GDML),[3] moment tensor potential (MTP),[2]

spectral neighbor analysis potential (SNAP),[1] and AGNI force field.[24]
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2.3.1 Models

Machine learning potentials utilize flexible machine learning models to describe the

structure-property relation of a given system. The models of machine learning poten-

tials can be categorized into four broad classes; linear models (e.g., SNAP, MTP),[1, 2]

artificial neural network-based models (e.g., NNP, ANI),[5, 7] kernel-based models

(e.g., GAP, GDML),[3, 6] and graph network-based models (e.g., DTNN).[4] Arti-

ficial neural network-based potentials and kernel-based potentials have the most ex-

tended history and have been frequently applied to advanced simulations of a wide

range of material systems.

Artificial neural networks are known to be universal function approximators when

the number of weights (parameters) is sufficiently large.[25] This indicates that they

have enough flexibility to be used for general material systems. The parameters of

neural networks are optimized by a training procedure called backpropagation.[26]

The training of artificial neural networks typically requires an iterative process and thus

long computation time. However, many useful techniques have been developed that

can save the training cost. As neural networks take vectors as the input, the information

material structures must be transformed into an input vector before it is fed to the

neural network.

On the other hand, kernel-based models predict the properties by the linear com-

bination of the kernel functions. The kernel functions measure the similarity between

the training set structures and the predicted structures. The model parameters can be

computed by linear algebra; thus, the training of the model can be done in an instant.

However, because the similarity must be measured for every training points whenever

the model evaluation is carried, the computational cost for property prediction grows

with the data set size. It contrasts to the neural network-based model, where the model

evaluation time is independent of the training set size once the model is trained.[27]

In the subsequent subsections, we describe high-dimensional neural network po-

tential and Gaussian approximation potential, which represent the neural network-
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based and kernel-based models.

High-dimensional neural network

Artificial neural network-based potentials typically adopt a simple feed forward neural

network to describe the structure-property relation. Feed forward neural network is

given as:

xi+1
k = σ(

N i∑
j

xijw
i
jk + bik), (2.18)

where xij is the jth node of the ith layer, wijk is a weight parameter connecting the jth

node of the ith layer and the kth node of the (i + 1)th layer, and bi is a bias for the

ith layer. The first layer or the input layer takes the structural information given as an

input vector (descriptor). Before the node values of ith layer propagate to (i + 1)th

layer, an activation function σ is applied. The activation function is preferred to be a

monotonically increasing nonlinear function such that it can provide nonlinearity to the

neural network model. Typically used activation functions include sigmoid, hyperbolic

tangent, and rectifying linear unit (ReLU).[28] In this dissertation, we mainly adopt the

sigmoid function (Eq. (2.19)) as the activation function:

σ(x) =
1

1 + e−x
. (2.19)

The activation function is omitted (in other words, the identity function is the activation

function) between the last hidden layer and the output layer to achieve an unbounded

output value. Schematic description of a feed forward neural network is shown in Fig.

2.3.

When building neural network models to describe structural-energy relationships,

the simplest method is to use atomic coordinates as input and total energy as output.[29–

31] However, such atomic coordinate-total energy models have serious drawbacks. The

most severe disadvantage is that when the model is optimized for a specific structure,
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Fig. 2.3: (a) Schematic descriptionof a feed-forward neural network. (b) Schematic

description of a hidden node.

21



it can only evaluate the energy of the structures with the same number of atoms as the

trained structure. This is because the model has a fixed input node size.

To this end, Behler and Parrinello introduced a high-dimensional neural network

(HDNN) model.[7] The main idea of the HDNN model is to take total energy (Etot)

as the sum of atomic energies (Eat):

Etot =

Nat∑
i=1

Eat(Gi), (2.20)

where Nat is the number of atoms. The neural network of Eq. (2.18) evaluate the

atomic energy rather than the total energy. Thus the input vector Gi describe the local

environment of each atom in the system. Figure 2.4 shows the schematic description

of a high-dimensional neural network potential model. The atomic forces are given by

Eq. (2.20):

Fi,α = −∂Etot

∂Ri,α
= −

Nat,j∑
j=1

Ns∑
s=1

∂Eat,j

∂Gj,s

∂Gj,s
∂Ri,α

, (2.21)

where α indicates the x, y, or z component, Ri,α is the coordinate of ith atom, Gj,s is

the sth component of Gj , Ns is the dimension of G, and Nat,j is the number of atoms

around atom j.

Before use, the weights of neural networks get optimized by the process called

training. The training process is carried by minimizing the difference between the ref-

erence property and the model prediction for given structures. Commonly used refer-

ence properties include total energy, atomic force, and viral stress. The difference of

reference property and the model prediction is represented by a function named loss

function (Γ). The typical loss function is represented as:
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Fig. 2.4: Schematic figure of a high-dimensional neural network potential.
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Γ =
1

Nstr

Nstr∑
i=1

(EDFT
i − ENNP

i

Nat,i

)2

+
µ

3
∑Nstr

i=1 Nat,i

Nstr∑
i=1

Nat,i∑
j=1

|FDFT
ij − FNNP

ij |2

+
ν

6Nstr

Nstr∑
i=1

(SDFT
i − SNNP

i

Nat,i

)2
,

(2.22)

where Nstr is the total number of structures in the training set, Nat,i is the number of

atoms in the ith structure,EDFT
i (ENNP

i ), FDFT
ij (FNNP

ij ), and SDFT
i (SNNP

i ) are the to-

tal energy of the ith structure, atomic force of the jth atom in the ith structure, and the

virial stress of the ith structure from DFT (NNP), respectively. µ and ν are the scaling

coefficient which control the relative training scale between energy, force, and stress

loss function term. Before training, the weights and bias are randomly initialized fol-

lowing a certain distribution. The favorable choice of weight initialization is a normal

distribution with 0 mean and small standard deviation. When the standard deviation

is too small, meaning σw → 0 the weight optimization by backpropagation algorithm

does not work. On the other hand, when σw is too large, the training process easily

gets stuck in local minima, and the training quality degrades. The training process is

updating the weights and bias iteratively such that the loss function gets minimized.

One example of a training algorithm is the simple gradient descent method[32]:

wn+1 = wn − α
∂Γ

∂wn
, (2.23)

where α is a hyperparameter call learning rate. When the learning rate is too small,

the training process takes excessive iteration steps. In contrast, when the learning rate

is too large, the loss function value may not converge properly, leading to a poorly-

trained neural network model. As the gradient descent algorithm generally requires a

large number of iteration steps and training time, more efficient training algorithms

have been developed, such as momentum optimizer,[33] Adam optimizer,[34] and
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Adagrad,[35] to name a few. Also, some of the well-known optimizing algorithms such

as Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS),[36] Levenberg-

Marquardt,[37, 38] and Kalman filter algorithms[39] have been applied to the training

of neural network potentials.[40–42]

Gaussian process regression

Gaussian approximation potential (GAP) is a widely-used machine learning potential

based on the Gaussian process regression model. [43] Like high-dimensional neural

network, GAP starts with representing the total energy as the sum of atomic energies.

Then the atomic energy is given as a linear combination of basis functions:

Eat,i =
∑
h

whφh(di), (2.24)

where φh is hth basis function,wh is the corresponding coefficient, and di is a descrip-

tor vector of ith atom, respectively. The prior distribution of the coefficientswh follows

the multivariate Gaussian distribution with 0 mean and variance of σ2
w. GAP evaluate

the atomic energy by measuring the similarity, which is given by the covariance:

〈Eat,iEat,j〉 = σ2
w

∑
h

φh(di)φh(dj). (2.25)

The covariance is expressed as a kernel function C as it is computationally much

simpler:

C(di,dj) =
∑
h

φh(di)φh(dj). (2.26)

Gaussian commonly uses smooth overlap of atomic positions (SOAP) as the kernel

function, which is explained in Section 2.3.2. When we say tN+1 is the property to be

predicted (atomic energy in this case) and tN is the collection of the properties from

the training set, the prior probability of tN is expressed as:
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P (tN ) ∝ exp

(
−1

2
tTNC−1tN

)
, (2.27)

where C is
〈
tNtTN

〉
. According to Bayes’ theorem, the probability distribution of the

tN+1 under training set tN is given as:

P (tN+1|tN ) =
P (tN |tN+1)P (tN+1)

P (tN )
. (2.28)

From Eq. (2.27) and Eq. (2.28), the posterior distribution is given by:

P (tN+1|tN ) ∝ exp

(
−1

2
[tN tN+1]TC−1

N+1[tN tN+1]T
)
, (2.29)

CN+1 ≡



 CN


k


[

kT
] [

κ
]

 (2.30)

The prediction value tN+1 can be evaluated from the mean of the posterior distri-

bution which can be derived by brute-force inversion of CN+1. Then we find:

t̂N+1 = kTC−1
N tN . (2.31)

Also, standard deviation of the posterior distribution is used as the prediction un-

certainty:

σ2
N+1 = κ− kTC−1

N k. (2.32)
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2.3.2 Descriptors

Descriptors are transformed values of atomic structure information for use in machine

learning potentials. Several descriptors, including the Coulomb matrix,[44] bag of

bonds,[45] bispectrum of neighbor density,[6], partial radial distribution functions,[46]

and crystal graph convolutional neural networks(CGCNN),[47] have been suggested

over the years. As the energy of an atomic structure is invariant to translation, rotation,

and permutation of atoms with the same species, it is desirable for descriptors to be

also invariant to such operations. Atom-centered symmetry function (ACSF)[48] and

smooth-overlap of atomic positions (SOAP)[49] are two descriptors that satisfy such

symmetry operation invariance. They are demonstrated to be very powerful when used

with high-dimensional neural network potential and Gaussian approximation potential,

respectively.

Atom-centered symmetry function

Atom-centered symmetry functions are the most popular choice of descriptor vectors

for high-dimensional neural network potential.[48] The symmetry functions are con-

sist of three types: cutoff function, radial functions, and angular functions. The cutoff

function is adopted to ensure the continuity of the function value and its derivatives

at the cutoff radius. The cutoff function has a smoothly decaying shape so that the in-

fluence of a neighboring atom can decay as the distance between the atoms increases

(See Fig. 2.5 (a)):

fc(Rij) =


1

2
cos

(
π
Rij
Rc

)
+

1

2
(Rij ≤ Rc)

0 (Rij > Rc)

, (2.33)

where Rij is the are distances between center atom i and neighboring atom j, and Rc

is the cutoff distance. The cutoff distance Rc should be large enough such that all the

relevant influences of neighboring atoms can be counted. However, when Rc is too

large, the computational cost grows rapidly.
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Radial functions and angular functions describe the many-body characteristics of

the atomic environments. Radial functions are constructed as the sums of two-body

terms, and angular functions have the additional three-body terms to the radial func-

tions. Three types of radial symmetry functions are expressed as:

G1
i =

∑
j

fc(Rij), (2.34)

G2
i =

∑
j

e−η(Rs−Rij)2 · fc(Rij), (2.35)

G3
i =

∑
j

cos (κRij) · fc(Rij), (2.36)

η, Rs, and κ are the radial symmetry function parameters which determine the shape

of functions. η determines the decaying rate,Rs determines the center of the Gaussian,

and κ determines the frequency of the cosine function. (See Fig. 2.5) In practice, G2
i

function is mostly adopted, because G1
i function is too simple and G3

i function can

give negative value. A negative value for symmetry function indicates that a presence

of certain atom contributes negatively to other atoms, which is unlikely in real material

systems.

Two tyeps of angular symmetry functions are:

G4
i =21−ζ

∑
j,k 6=j

(1 + λcosθijk)
ζ · e−η(R2

ij+R2
ik+R2

jk)

· fc(Rij) · fc(Rik) · fc(Rjk),
(2.37)

G5
i =21−ζ

∑
j,k 6=j

(1 + λcosθijk)
ζ · e−η(R2

ij+R2
ik)

· fc(Rij) · fc(Rik),
(2.38)

Again, ζ and λ are the angular symmetry function parameter which determine the

shape of the functions. The difference between G4 function and G5 function is the
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Fig. 2.5: (a) The shape of cutoff function. (b) The shape ofG2 symmetry function with

respect to η (c) The shape of G2 symmetry function with respect to Rs (d) The shape

of G3 symmetry function.
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additional e−ηR
2
jk and fc(Rjk) term. The additional terms decreases as Rjk increases,

and in turn θijk increases. Therefore G4
i function disregard the contribution of wide

angle θijk values. ζ determines the width of the Gaussian function and λ determines

the peak position. (See Fig. 2.6)

When building symmetry function input vector, each element of the vector is cal-

culated by different form of symmetry functions, varying the function parameters η,

Rs, κ, ζ, and λ. With the increase of input vector size and the diversity of param-

eters set, the structural resolution of the descriptor vector increases. However, if the

size of the input vector is too large, the computational cost becomes excessive. It is

especially the case for angular symmetry functions because they require estimations

of distance and angle of all combinations of neighbor atoms. Also, the increase of

the input size leads to an increase in the number of neural network weights, which

may cause overfitting problems or training process hindrance. Therefore, the optimum

choice of symmetry function vector size and parameter set must be decided according

to the training quality, computational cost, etc. [50, 51]

For multi-element systems, only a particular combination of elements is consid-

ered to evaluate the specific symmetry function. For instance, for element A in the

A-B system, radial symmetry function values are measured for either AA or AB inter-

action for an individual symmetry function. Likewise, a particular angular symmetry

function value is measured for either AAA, AAB, or ABB interactions. Thus, atoms

with different species contribute differently even when they are placed in the same po-

sition. One side effect is that the size of the input vector increase with quadratic scale

as the number of elements increases. As mentioned, an oversized input vector causes

overfitting problems or training process hindrance. Therefore some types of modified

symmetry functions have been suggested to keep the input vector size independent of

the number of elements in the system. [52]
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Fig. 2.6: (a) The shape of G4 symmetry function when λ is 1. (b) The shape of G4

symmetry function when λ is −1
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Smooth overlap of atomic positions (SOAP)

When Gaussian approximation potential was first demonstrated, the bispectrum of

the neighbor density method was adopted as the descriptor.[6] However, because the

neighbor density employs δ-function, slight deviations of positions cause strong nu-

merical changes. To solve this problem, smooth overlap of atomic position (SOAP)

scheme has been suggested.[49] Instead of δ-function, SOAP representation employs

smoothly decay Gaussian functions centered at the positions of each atoms. Thus the

atomic neighbor density function is given as:

ρ(r) =
∑
i

exp(−α|r− ri|2), (2.39)

where ri is a vector from center atom to neighbor atom i. In contrast to the symmetry

function input vector, where each symmetry function obtains the individual element,

and a set of function values obtains full input vector, Eq. (2.39) characterizes the full

atomic environment at once. Therefore Eq. (2.39) cannot achieve rotational invariance.

Thus when building a SOAP kernel for comparing two atomic environments, they are

integrated over all possible rotations R̂:

k(ρ, ρ′) =

∫
dR̂

∣∣∣∣ ∫ drρ(r)ρ(R̂r′)

∣∣∣∣n, (2.40)

n is usually chosen as 2 since the rotational information is lost for n = 1 due to the

interchangeability of the integrals. Then, the Gaussian density is expanded using a

set of normalized radial basis functions and spherical harmonics for computational

efficiency:

k(ρ, ρ′) =
∑
blm

cblmgb(|r|)Ylm(r̂), (2.41)

where b, l, m, is the coefficients and gb is normalized radial basis function. Finally,

SOAP kernel function is normalized as:
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C(ρ, ρ′) =

(
k(ρ, ρ′)√

k(ρ, ρ)k(ρ′, ρ′)

)ζ
, (2.42)

where ζ is a hyperparameter which can be any positive integer.
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2.3.3 The training techniques for NNP

This subsection introduces some of the training techniques for NNP that can improve

training speed, quality, and potential stability. The first technique to be introduced is

the scaling of the input descriptor vector. As explained in Section 2.3.1, the neural

network weights are randomly initialized with certain distribution before training. The

mean of the distribution is generally set to be 0; thus, preprocessing the range of the

descriptor vector to correspond to the mean of weight distribution helps the training

process by a large margin. Another meaning of the input scaling is to match the or-

der of descriptor vector elements. That is to say, it is beneficial for each element of

the descriptor vector to have a similar order of range since the machine learning model

would mostly focus on the largely varying elements, even when all elements contribute

in describing the atomic environments with a similar degree. A simple normalization

process of scaling the descriptor vector into the range of [-1, 1] is known to be effec-

tive. In addition, scaling the descriptor vector components to have 0 mean and unit

variance or scaling with reference to the uniform gas density has been demonstrated to

be useful.[53]

Another essential technique is principal component analysis transformation of the

descriptor vector. As the symmetry function components consist of function values

from a few functions with varying function parameters, they tend to have a very high

correlation with each other. The high correlation within the input vector components

is known to be disadvantageous to the training speed and quality. Hence, decorrelating

the input vectors using principal component analysis (PCA) and whitening is very ben-

eficial to the training procedure. PCA is a process to compute the principal component

out of a given data set, and the principal components are the direction within the vector

space that best fit the data while being orthogonal to other principal components.[54]

Because the principal components are linearly uncorrelated, when the input vectors are

transformed into principal components and whitened before fed to the neural network

model, the training convergence speed and quality improve drastically.
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The PCA transformation of the descriptor vector is carried as follows: First, the

covariance matrix must be calculated to extract the principal components from the

input vector set. When the symmetry function vector set of training data is given as

Nat by Ns matrix X (where Nat is the number of atoms in the training set, and Ns

is the dimension of the symmetry function vector.), the covariance matrix ΣXX is

computed and diagonalized as:

ΣXX = XTX = WΛWT . (2.43)

When Z is XW, the PCA is given as:

ΣZZ = ZXTZ = WTWΛWTW = Λ. (2.44)

Then, each principal component is scaled to have unit variance by a process called

whitening.

zwhiten
(i) =

z(i)√
Var(i)

, (2.45)

where z(i) indicates the ith principal component. Furthermore, it is beneficial to add a

small positive quantity ε to the variance to prevent numerical divergence:

zwhiten
(i) =

z(i)√
Var(i) + ε

. (2.46)

When ε is too large, overfitting becomes more likely to occur. On the other hand,

when ε is too small, the whitening becomes less effective as ε→∞ corresponds to no

whitening. Thus the proper value of ε must be decided through tests.

The next issue to be addressed is overfitting and the prevention technique of over-

fitting. Overfitting is a type of error that occurs when a machine learning model is

too closely fitted to training set data that its prediction ability to general data points

is seriously degraded. Overfitting typically arises when the size of the training set is
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too small compared to the model capacity (the number of weights), or the optimiza-

tion procedure is carried with an excessive amount of steps and a small learning rate.

Therefore, it is highly recommended to collect a sufficient amount of training data be-

fore training. Also, to monitor whether training steps are excessive, dividing the whole

data set into a training set and validation set is very common. A validation set is a

set of data points that are randomly selected and intentionally left out of the training

procedure so that its error can be monitored during the training. If the validation set

error increases while the training set error decreases, it is a clear sign of overfitting,

and the training procedure should be terminated at the point.

Another way to prevent the overfitting problem is to control the model capacity.

There are two popular algorithms to avoid excessive model capacity. The first method

is the regularization technique.[55] The regularization technique adds a penalty term

to the loss function to prevent the divergence of weight values. L1 and L2 norm is the

most favorable penalty terms.

ΓL1 = Γ + λ||w||1, (2.47)

ΓL2 = Γ + λ||w||22, (2.48)

where λ is the scaling coefficient. λ should be selected carefully such that the overfit-

ting can be prevented while the training quality remains acceptable.

The second method to suppress excessive model capacity is dropout technique.[56]

When dropout method is applied, randomly selected nodes and weights are turned off

during each iteration of training procedure. The dropout method introduce noise into

the weight update and thus prevent overfitting. Mathemetically, a dropout neural net-

work is equivalent to Bayesian network, which means that the dropout neural network

can be considered as averaged of neural network ensemble.[57]
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2.3.4 Atomic energy mapping of machine learning potentials

As explained in Section 2.3.1, most machine learning potentials are based on the as-

sumption that the DFT total energy (EDFT
tot ) can be represented as a sum of the atomic

energies (Eat) that depends on the local environment within a certain cutoff radius

(Rc):

EDFT
tot =

∑
i

Eat(Ri;Rc) , (2.49)

where Ri is the collection of relative position vectors of atoms lying within cutoff ra-

dius Rc from the ith atom. Thus it is important to understand that the atomic energy

is determined only by local atomic arrangement within DFT level: In other words, the

atomic energy is transferable within DFT level. Only when such condition is estab-

lished, the transferability of machine learning potentials would be secured.

By the semilocal density approximation,EDFT
tot can be expressed as a sum of kinetic

energy (Ekin), exchange-correlation energy (EXC), and Coulomb energy (ECoul):

EDFT
tot = Ekin + EXC + ECoul

= −1

2

∫
∇2

rρ(r, r′)|r=r′dr
′ +

∫
ρ(r)εXC(ρ(r),∇ρ(r))dr

+
1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ −

∑
i

∫
qiρ(r)

|r− ri|
dr +

∑
i>j

qiqj
|ri − rj |

,

(2.50)

where ρ(r, r′) is the one-electron density matrix and ρ(r) is the electron density. When

we assumeO(N) methods, in particular, the divide-and-conquer (DAC) approach,[58,

59] each energy term can be partitioned into atomic contributions defined locally

around each atomic site. In the following, we show that atomic energies depend only

on nearby atoms such that it is transferable to other systems as long as local environ-

ments are maintained.

As the first step, the given system is partitioned into atomic cells with the volume

Vi, without gaps or overlapping. Then ρi(r) can be defined as ρi(r) = ρ(r)[r ∈ Vi]
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where [...] is the Iverson bracket whose value is 1 when the logical proposition in

the bracket is true and 0 when is false. Thus the atomic contribution of exchange-

correlation energy becomes:

EXC,i =

∫
ρi(r)εXC(ρi(r),∇ρi(r))dr. (2.51)

The nearsightedness principles assumes that only nearby atoms influence the charge

density at a certain point if the local chemical potential of electrons is fixed.[60, 61]

Therefore, ρi(r), and hence EXC,i is indeed affected only by atomic arrangements

within a certain cutoff (R1
c ) from ri.

For next step we develop the atomic Coulomb energy by defining the total charge

density in Vi: ρtot,i(r) = qiδ(r − ri) − ρi(r) and substituting the term into Coulomb

energy equation:

ECoul,i =
1

2

∑
j 6=i

∫
ρtot,i(r)ρtot,j(r

′)

|r− r′|
drdr′

+
1

2

∫
ρi(r)ρi(r

′)

|r− r′|
drdr′ −

∫
qiρi(r)

|r− ri|
dr.

(2.52)

In Eq. (2.52), the second and third term can be locally defined with the finite cutoff

as they describe the energy within the same atomic cell i. However, the first term is

long-ranged, as it represents the energy between electrons in ith and jth atomic cells.

For condensed phases that effectively screen electrostatic interactions (which is quite

often), the first term can be ignored beyond a certain cutoff (R2
c ). Thus, the electrostatic

interaction between ρtot,i and ρtot,j can be omitted if |rj − ri| > R2
c . Since ρi(r) and

ρtot,i(r) are influenced by atoms within R1
c , ECoul,i depends on atoms inside R1

c +R2
c

(neglecting the volume of Vi). We note that aforementioned scheme may not accurately

describe systems with high ionic characters. For such systems, some implementations

of NNP have been suggested that explicitly describe the long-range Coulomb potential,

separately from short-ranged atomic energies.[62–64] In the following discussions, we

assume systems with well-screened electrostatic interactions.
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Lastly, we discuss the locality of Ekin. It is well-known that the one-electron den-

sity matrix ρ(r, r′) decays exponentially with |r− r′| in insulators and metals at finite

temperatures.[61, 65] Thus ρ(r, r′) can be ignored when |r − r′| > R3
c , where R3

c is

certain threshold. That is to say, ρ(r, r′) depends only on the atomic configurations

within a cutoff distance (R4
c ) (where R4

c > R3
c ). With the projected density matrix

ρij(r, r
′) = ρ(r, r′)[r ∈ Vi][r′ ∈ Vj ], the atomic density matrix ρat,i(r, r

′) is:

ρat,i(r, r
′) = ρii(r, r

′) +
1

2

|rj−ri|<R3
c∑

j 6=i
ρij(r, r

′). (2.53)

As ρ(r, r′) =
∑

i ρat,i(r, r
′), the atomic kinetic energy can be expressed as:

Ekin,i = −1

2

∫
∇2

rρat,i(r, r
′)|r=r′dr

′. (2.54)

Combining the above analyses, the atomic energy of the ith atom formally derives

from the DFT calculations:

Eat,i = Ekin,i + EXC,i + ECoul,i. (2.55)

By evaluating Eat,i under various environments, the atomic energy in principle can

be obtained as a continuous function of the local environment:

Eat,i −→ EDFT
at (R;Rc), (2.56)

where Rc = max(R1
c +R2

c , R
4
c ). The atomic energy is not unique and depends on the

way to partition atomic cells.

The above discussions imply that machine learning potential aims to identify un-

derlyingEDFT
at when total energies are given. This perspective differs from the conven-

tional belief that machine learning potentials merely interpolate given total energies.[66,

67] Thus, it is safe to say that the accuracy of machine learning potentials relies on how

closeENN
at is to the referenceEDFT

at over the configurational space spanned by the given

training set. However, since ENN
at is fitted to the total energies, rather than directly to

EDFT
at , the training procedure does not guarantee sufficient accuracies in ENN

at . That is
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to say, ENN
at can reproduce total energies in the training set precisely but deviate sig-

nificantly from EDFT
at . Indeed, machine learning potentials are vulnerable to such ‘ad

hoc’ energy mapping when the training set is not collected with care.[68] For example,

when the training set only consists of structures with fixed volume, fixed composition,

or a fixed number of atoms, the atomic energy error may cancel each other, and ad hoc

mapping may occur. In multi-component systems, ad hoc mapping can occur when the

training set only includes structures with a single stoichiometry, as the atomic energy

offset becomes completely arbitrary in such a situation. Ad hoc mapping can under-

mine the transferability and cause serious instability of machine learning potentials.

Therefore, it is recommended to collect training set structures with care and monitor

the atomic energy mapping during the training process using invariant points in the

descriptor space.
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Chapter 3

Unbalanced training problem

3.1 Introduction

While the machine learning potentials are getting popular, the weakness and strength

of the machine learning potentials are not fully understood at this moment, mainly

because of their black-box nature. In this Chapter, we raise a critical issue in training

neural network potentials (NNPs), i.e., the distribution of symmetry function vector

{G} in the training set is highly inhomogeneous and biased. This results in unbal-

anced training, which significantly undermines the accuracy and reliability of NNP. To

address this issue, we provide various examples of sampling bias and how it degrades

the quality of NNP. Then we propose an effective method that equalizes the learning

level over {G} in the training set. The method is based on the Gaussian density func-

tion(GDF), which quantifies the sparsity of training points. Various examples confirm

that GDF weighting significantly improves the reliability and transferability of NNPs

compared to the conventional training method.
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3.2 Examples of sampling bias

In this section, we first demonstrate the inhomogeneous distribution of symmetry func-

tion vector with an example of crystalline Si with one vacancy (See Fig. 3.1 (a)). The

training set was generated by performing density functional theory molecular dynam-

ics (DFT-MD) simulations on the 63 atom supercell for 16 ps with the temperature

varying from 500 to 1300 K and sampling the snapshots every 20 fs. In total, 50, 400

points were sampled in the feature space. Fig. 3.1 (b) shows the frequency of {G}

on the G2
X–G4

Y plane with log scale, where G2
X and G4

Y correspond to certain radial

component and angular component from symmetry function input vector, respectively.

(G2 and G4 denote G2 and G4 symmetry function explained in Section 2.3.2). The dis-

tributions of four-fold coordinated bulk Si atoms and three fold-coordinated defective

Si atoms neighboring the vacancy site (red atoms in Fig. 3.1 (a)) are displayed sepa-

rately. It is shown in Fig. 3.1 (b) that the distribution is highly biased and concentrated

within a narrow range of G. Namely, most G vectors belong to bulk Si atoms. This

is because training structures contain far more bulk atoms than defective ones (59 ver-

sus 4). In addition, the data is concentrated around the equilibrium point, which is

a result of the Boltzmann distribution. Because the NNP learns on G in the training

set, the inhomogeneous distribution enforces the NNP to be optimized toward spe-

cific configurations (bulk and equilibrium), sacrificing accuracy for underrepresented

configurations (defect or off-equilibrium). In order to investigate this quantitatively,

we define a Gaussian density function (GDF; ρ(G)) defined for an arbitrary G in the

symmetry-function space as follows:

ρ(G) =
1

Ntot

Nstr∑
i=1

Nat.i∑
j=1

exp
(
− 1

2σ2

|G−Gij |2

Ns

)
, (3.1)

where σ is the Gaussian width, Ns is the dimension of the symmetry function vector,

Nstr is the number of structures in the training set, Nat.i is the number of atoms in the

training set structure i, Gij is the G vector of jth atom in the ith structure and Ntot
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indicates the total number of atoms in the entire training set. Eq. (3.1) implies that

the value of ρ(G) ranges between 0 and 1; values close to 0 (or 1) mean that training

points are scarce (or abundant) around the specific G.

Fig. 3.1 (c) shows the calculated energy barrier of vacancy migration by the NNP

trained with the conventional energy and atomic force loss function in Eq. (2.22)

(NNP-c hereafter). The nudged elastic band(NEB) method is used for barrier calcu-

lation and reference DFT result is also plotted for comparison.[69] Even though tra-

jectories of the vacancy migration are included in the training set (the vacancy migrates

several times at temperatures higher than 1000 K within the present simulation time),

the NNP overestimates the energy barrier by 50 meV, which will significantly under-

estimate the diffusion coefficient of the vacancy. It is also seen that the force error

increases for atoms with small GDF values and the root mean square error (RMSE) of

defective Si is 0.27 eV/Å, much larger than 0.18 eV/Å for the bulk atoms. These force

errors are for the training set and hence evidence the unbalanced training between bulk

atoms and undersampled defective atoms. We stress that the inhomogeneous distribu-

tion of Gij persists for any reasonable choice of training sets. For instance, nonbulk

structures such as surfaces and defects are underrepresented in general because they

should be modeled together with bulk atoms that outnumber the atoms under the in-

terested environment. In addition, breaking and forming of bonds, critical in chemical

reactions, are rare events and occur only a few times during long-time MD simulations.
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Fig. 3.1: (a) Atomic structures of Si bulk with a vacancy. The defective atoms sur-

rounding the vacancy are marked in red. (b) Distribution of training points in the G

space. G2
X and G4

Y indicate a certain radial component and an angular component

from symmetry function vector, respectively, that are selected out of 26-dimensional

coordinates of G. The number of training points is enumerated on the 20 × 20 mesh

and color-coded on the log scale. (c)Vacancy migration barrier calculated by the NEB

method. The energy of the Si vacancy at equilibrium is set to zero.[70]
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3.3 GDF weighting scheme

In order to alleviate the unbalanced training, it is necessary to enhance the influence

of undersampled local environments.We first note that GDF defined in Eq. (3.1) can

detect the scarcity of training points around a specific G point. In addition, while

the DFT energy per se cannot be split into local atomic energies, the DFT forces are

obtained for individual atoms. Exploiting these two facts, we modify the loss function

as follows:

Γ =
1

Nstr

Nstr∑
i=1

(EDFT
i − ENNP

i

Ni

)2
+

µ

3
∑Nstr

i=1 Nat,i

Nstr∑
i=1

Nat,i∑
j=1

Θ(ρ−1(Gij))|FDFT
ij − FNNP

ij |2.

(3.2)

By choosing Θ in Eq. (3.2) as a monotonically increasing function, one can mag-

nify the influence of Gij’s with small GDF values on the loss function. Among various

choices of Θ, we select a modified sigmoid function as it produced the best results in

various cases:

Θ(x) =
Ax

1 + e−b(x−c)
, (3.3)

where A is a normalizing constant that makes the average of Θ to be 1 and b and c

are parameters that are fine-tuned for balanced training

We train a NNP with GDF weighting scheme on the same training set explained in

section 3.2. (NNP-GDF hereafter) In Fig. 3.1 (a), it is shown that the migration barrier

by NNP-GDF agrees with the DFT result within 3 meV. Also, the RMSEs of defective

and bulk atoms are 0.19 and 0.18 eV/Å for NNP-GDF, respectively, which are more

even than those in NNP-c. Fig. 3.1 (b) shows the remnant force error for each atom

(∆ Fij = |FDFT
ij − FNNP

ij |). For visual clarity, ∆ Fj’s are interval-averaged with re-

spect to the GDF (see circles). It is seen the NNP-GDF gives more uniform errors over
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the whole range of GDFs and the average force errors at G’s with GDF < 10−3 are

less than 0.3 eV/Å, which is disntictive from the NNP-c result where the force error in-

creases for atoms with small GDF values. These force errors are for the training set and

hence evidence the unbalanced training between bulk atoms and undersampled defec-

tive atoms has been remedied by GDF weighting. It is also noticeable that the average

force error slightly increases for GDF > 10−1. This supports that the GDF weighting

effectively increases (decreases) the influence of underrepresented (overrepresented)

G points. (The force errors on the validation set also confirm a similar effect of GDF

weighting.)

We also confirm benefits of the GDF weighting with the example of Si interstitials;

the training set is generated by carrying out DFT-MD simulations with the 65 atom

supercell including one interstitial atom at temperatures from 500 to 1300 K. Like

in the vacancy example, force errors for interstitials are much larger than those for

bulk atoms in NNP-c, but errors become more even when GDF weighting is applied.

(See Fig. 3.3) To further check the accuracy of the NNP, we scan the potential energy

surface (PES) of the Si interstitial around the equilibrium point (see Fig. 3.4). The PES

is obtained by displacing the interstitial atom on a spherical surface with a radius of

0.6 Å while other atoms are fixed. Comparing PESs from DFT, NNP-c, and NNP-GDF

(Fig. 3.3 2(b)–(d), respectively), we can see that NNP-GDF gives a PES closer to the

DFT result than NNP-c.

Furthermore, the GDF weighting improves the stability of NNP-MD simulations.

For instance, MD simulations with a Si interstitial using NNP-c trained in the above

failed repeatedly within 1 ns for temperatures above 1200 K and resulted in unphysical

structures. This can be understood as follows: the configurations with large vibrational

amplitudes occur during MD at high temperatures but they are underrepresented due

to the Boltzmann factor. This leads to large and unpredictable force errors. In contrast,

MD with NNP-GDF run stably for a much longer time. (see Fig. 3.5)

As another test, we calculate formation energies of vacancy clusters when the train-
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Fig. 3.2: (a) Vacancy migration barrier calculated by DFT, NNP-c, and NNP-GDF (b)

GDF value versus force error for each training point. The data are interval-averaged

along the GDF, and error bars are standard deviations.[70]
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Fig. 3.3: The NNP training for crystalline Si with one interstitial. (a) The atomic struc-

tures used in training. The interstitial atom is marked in red. (b) The distribution of

52, 000 training points in the G space. The number of training points are enumer-

ated on the 20× 20 mesh and color-coded in the log scale. (c) The GDF value versus

force error for each training point. The results with NNP trained with the conventional

method (NNP-c) are compared with those with the GDF weighting (NNP-GDF). The

data are interval-averaged along GDF and error bars represent the standard deviation.

(d) The root mean square force error and GDF values by the Si interstitial character.

The force error is compared between NNP-c and NNP-GDF.[70]
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Fig. 3.4: PES of the tetrahedral Si interstitial around the equilibrium point. (a) Angular

coordinates of the displaced interstitial. The radial distance from the equilibrium point

is 0.6 Å. (b)–(d) PESs as a function of angular coordinates calculated by DFT, NNP-c,

and NNP-GDF, respectively. The energy is referenced to the value at equilibrium for

each method.[70]
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Fig. 3.5: Comparison of the MD trajectories obtained by conventional NNP (NNP-c)

and NNP with GDF weighting (NNP-GDF). (a) The trajectory from NNP-c. (b) The

trajectory from NNP-GDF. In both figures, black line and unfilled dot indicate the

DFT results and the red line and solid dot indicates the NNP results. Inset figure of (a)

describes the snapshot of the trajectory (a) (after 400 ps).[70]
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ing set includes only mono-vacancy and perfect bulk structures. This will probe the

transferability of the NNP to configurations that are slightly different from those in the

training set. We first train NNP-c and NNP-GDF with the training set consisting of fcc

Si structures that are prefect or include one vacancy. In detail, snapshots are sampled

from DFT-MD simulations with the temperature ramped from 500 to 1300 K and crys-

tals with various deformations. When calculating the vacancy cluster formation energy,

2×2×2 supercells are used for mono- and tri-vacancies, while 3×3×3 supercells are

used for the penta-vacancy. The vacancy clusters are generated by removing Si atoms

connected in the most compact way. We then calculate the formation energy (Eform)

as Eform = Etot(defect) − N × ESi, where Etot(defect) is the total energy of the N-

atom supercell with vacancies and ESi is the total energy per atom of the perfect fcc

Si. The results are summarized in Table 3.1. Even for the mono-vacancy, NNP-GDF

gives a smaller error than NNP-c even though mono-vacancy structures are included

in the training set, implying that NNP-GDF learns on the vacancy property better than

NNP-c. More importantly, Table 3.1 shows that the prediction error for larger vacan-

cies increases for NNP-c (up to 12.2%) while those for NNP-GDF remain similar to

that of the mono-vacancy. This demonstrates that NNP-GDF has better transferability

than NNP-c. The enhanced transferability will allow for simplification of the training

set.

Clearly, the advantages of GDF weighting extend to other systems. For example,

we carried out similar analysis on the Pd(111) surface with an oxygen adsorbate, which

is a key step in various catalytic reactions and reconfirmed the merits of NNP-GDF.[71,

72] The training results again confirm that the GDF weighting improves the NNP

quailty. (See Fig. 3.6)

Fig. 3.7 schematically depicts the main idea of the present method using the di-

agram of energy versus configuration coordinates. The training points indicated by

circles are concentrated near the energy minimum or equilibrium point. In the con-

ventional training (Fig. 3.7 (a)), training and prediction uncertainties (shaded region)
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Table 3.1: Formation energies of vacancy clusters in eV calculated by DFT, NNP-c,

and NNP-GDF.

Mono-vacancy Tri-vacancy Penta-vacancy

DFT 3.59 7.14 9.87

NNP-c 3.34 (−6.8%) 7.83 (9.6%) 11.08 (12.2%)

NNP-GDF 3.45 (−4.0%) 7.09 (−0.6%) 10.19 (3.2%)
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Fig. 3.6: (a) The structures of Pd(111) surface with one oxygen adsorbate. The big

(small) spheres represent the Pd (O) atoms. (b) The force error given by NNP-c is

averaged in the atom-wise manner and color-coded on each atom. It is seen that the

force error is higher for O and neighboring Pd atoms. (c) A similar figure with NNP-

GDF. The force error more even than in (b). (d) The GDF value versus force error for

each training point. The data are interval-averaged along GDF and error bars represent

the standard deviation.[70]
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increase rapidly for underrepresented points. Through GDF weighting (Fig. 3.7 (b)),

the uncertainty level becomes more even throughout the training range regardless of

the sampling density. This also implies that the GDF weighting will effectively im-

prove the transferability of NNP because new configurations lie outside of the training

set (see stars in Fig. 3.7) and NNP-GDF would give a prediction error smaller than

NNP-c. This schematic idea can be confirmed with actual systems by estimating the

prediction uncertainty from multiple NNPs trained on the same data.

For a fixed size of neutral network, it is unavoidable to sacrifice the accuracy of the

PES in some part in order to improve the accuracy in another part. This means that the

GDF weighting can undermine the accuracy of physical properties at the equilibrium

point with high GDF values (the bottom region in Fig. 3.7. For instance, Fig. 3.2 (b)

and Fig. 3.3(c) show that the force error slightly increases for G’s with high GDF

values.

The data imbalance has been widely discussed within the machine learning community.[73]

Suggested solutions are adding more features to the training set that has been un-

dersampled (sometimes synthetic samples[74]) or leaving out some of the features

that have been oversampled. However, it is not feasible to apply these methods to

the present problem because the NNP predicts the atomic energy while it is trained

through total energies that are the sum of atomic energies. This poses a unique chal-

lenge in training the NNP, which motivated us to suggest the present method based on

the GDF.
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Fig. 3.7: Schematic diagram of training uncertainty with conventional NNP (NNP-c,

(a)) and NNP with GDF weighting scheme (NNP-GDF, (b)). The gray circle indicates

the known training points and the red line is the target function. The shade is the

training uncertainty.[70]
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3.4 Summary

In this chapter, we provided various examples of biased sampling and how it under-

mines the accuracy of the simulation. The examples include Si vacancy migration en-

ergy, the PES around Si interstitial defect, and MD stability of Si bulk with an intersti-

tial. First, we defined the Gaussian density function to quantify the sparsity of training

points and verified that the distribution of the training set points in the G-space is

highly biased. As the DFT energy per se cannot be split into local atomic energies, but

the DFT forces are obtained for individual atoms, we modified the loss function such

that the additional weighting term in the force loss function can enhance the influ-

ence of undersampled local environments. The results of the examples suggest that the

GDF weighting scheme can effectively remedy the unbalanced training problem. In a

bigger picture, the GDF weighting contributes to establishing a close correspondence

between what one wants the NNP to learn and what the NNP actually learns through

the training procedure, which is at the heart of every machine learning potential. Fi-

nally, we note that inhomogeneous feature sampling is a general issue for any machine

learning potentials that adopt local feature vectors as input, the present method can be

equally applied to other types of machine learning potentials.
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Chapter 4

Prediction uncertainty quantification

4.1 Introduction

It is well-known that the prediction uncertainty of a machine learning model over-

grows as input features deviate from the training domain. Machine learning potentials

are no exception; the accuracy of the energy prediction of machine learning potentials

degrades unacceptably if local atomic configurations are substantially different from

those in the training set. If this happens during molecular dynamics (MD) simulations,

computational results may not be fully meaningful even if the simulation terminates

without any drastic failures such as diverging energies. Therefore, it is critical to mon-

itor uncertainty levels during MD simulations when utilizing machine learning poten-

tials. To note, such problems are less acute with traditional classical potentials because

principle-based, hard-coded functions can safeguard atomic configurations against un-

intended structures.

While Gaussian approximation potential (GAP) can automatically estimate the

prediction uncertainty using posterior predictive variances,[75] no such formula exists

with neural network potential(NNP). In the machine-learning community, the predic-

tion uncertainty of neural network models is often assessed by employing a model

ensemble formed by varying the training data or network structure.[76] The output
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variances within the ensemble are used as an indicator of uncertainty. The ensemble

method was also applied to NNP.[77–79] However, these ensemble methods require

training multiple NNPs, which will impede the potential development for big training

data. Also, as atomic energy mapping under given total energies is not unique, a cer-

tain degree of randomness is introduced in atomic energies each time the training of

NNP in the ensemble is carried. (See 2.3.4 for more detailed discussions.) This should

obscure the atomic-scale resolution of the reliability indicator. Thus it is difficult to

localize atoms with high uncertainties among 103-105 atoms in the simulation box,

making it hard to refine NNPs by augmenting the training set.

In this chapter, we present an efficient and atomic-resolution uncertainty indicator

for NNP that is based on a “replica” ensemble. The NNPs in the replica ensemble

differ in the network structure and initial weights, and they are trained directly over the

atomic energies of the reference NNP that drives MD simulations. The training time for

replica NNPs is much shorter than for the reference NNP, and the standard deviation

within the ensemble plays as the atomic-resolution uncertainty indicator during MD

simulations. We apply this method in simulating silicidation processes of Ni contacts in

semiconductor devices and demonstrate that the method can reveal regions with high

uncertainty at the atomic scale. By analyzing the problematic part, we can improve

NNP with a repairing data set, thereby obtaining a reliable simulation.
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4.2 Replica ensemble

In this section, we explain the concept of the replica ensemble as an uncertainty in-

dicator. We first obtain a reference NNP in a standard way by training it over first-

principles results based on the density functional theory (DFT). This reference NNP

is used in evaluating potential energy surfaces for MD simulations. Similar to the pre-

vious literatures,[77–79] we employ an ensemble approach to gauge uncertainties in

Etot and Eat. The main difference in the present approach is that NNPs in the en-

semble (called replica NNPs hereafter) directly learn atomic energies {Eat(G); G ∈

training set} output by the trained reference NNP (see Fig. 4.1 (a)). To calibrate nu-

meric scales in uncertainty, we control the initial range of randomized NN weights and

also diversify the network size of replica NNPs. The standard deviation in the atomic

energy (σat(G)) is calculated among replica NNPs and used as prediction uncertainty

at G. During the MD simulation, Eat of each atom is calculated by the reference NNP,

and it is associated with the uncertainty value of σat from replica NNPs.

There are two benefits in employing such double-tier NNP: first, by training only

over atomic energies, excluding derivatives such as forces and stresses, the computa-

tional cost of training replica NNPs becomes negligible compared to that for training

the reference NNP over the whole set of properties. Second, replica NNPs by con-

struction is destined to produce the same atomic energies for local configurations in

the training set, but their inferences disagree for atoms with environments outside the

training set. This leads to an atomic resolution in the uncertainty estimation by replica

NNPs. As mentioned in the introduction, in the ensemble NNPs trained over total

energies, such atomic resolution is not always guaranteed because of freedom in par-

titioning total energies into atomic contributions.
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Fig. 4.1: (a) Schematic description of reference NNP and the replica NNP ensemble.

Reference NNP drives MD simulations, and the replica NNP ensemble measures the

uncertainty level of atomic configurations by the standard deviation (σat) in atomic

energies. (b) Schematic description of how σat can be used as the uncertainty indicator

of atomistic simulations. When the MD trajectory of a certain atom deviates from the

trained area in the G space, (i.e, the grean area) the uncertainty in the replica ensemble

becomes larger. In contrast, the uncertainty of atoms within the trained area remains

small.[80]
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4.3 Application: Ni silicidation simulation

As an example to apply the replica ensemble as an uncertainty indicator, we choose

the Ni-silicidation process, one of the major processes in the fabrication of semi-

conductor devices. The metal-silicidation process reduces the contact resistance at

gate-source/drain contacts by lowering Schottky barriers. The process itself is rela-

tively simple; the metal layer is deposited on the Si substrate at room temperatures

and annealed at 350–450 ◦C, which yields high-quality silicides with a controlled

thickness.[81] Recently, the metal-silicidation process receives renewed attention in

sub-10 nm device architectures because the mechanism of silicide formation changes

when the deposited Ni thickness is below 4 nm.[82, 83] Furthermore, additive elements

such as Pt and Co are known to control the silicide phase and redistribute dopants in the

Si channel, but its microscopic understanding at the atomic scale is incomplete, which

may hinder further optimization of the silicidation process in highly scaled devices.

In Ref. [84], the formation of Ni silicide on the Si(001) substrate was studied by

first-principles MD simulations, focusing on the role of Pt as a stabilizer of the NiSi

phase. However, the sheer computational costs of DFT calculations severely limited

the system size and simulation time. Furthermore, to accelerate interface reactions,

the simulations were executed at an unrealistically high temperature of 2000 K, which

may affect the simulation results significantly in view of the temperature dependence

of the process.[82, 85] These limitations of DFT calculations could be mitigated by

employing NNP. However, the development of NNP aiming at the silicidation pro-

cess is challenging because the system concurrently involves typical covalent (Si) and

metallic (Ni) bonds, along with complicated mixed bonding (NixSiy). Furthermore,

the bonding nature continuously changes during reactive interdiffusion of Ni and Si

atoms, posing challenges in selecting a training set that can properly sample the con-

figurational space explored during MD simulations. The complexity of the training set

also underscores the importance of monitoring MD simulations using an uncertainty
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indicator.
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4.4 Training set and validation of reference NNP

Table 4.1 summarizes the training set for the reference NNP. Besides static distortions

of crystals, the training set includes DFT MD snapshots of crystals, liquids, amorphous

structures, and surface slabs. (Fig. 4.2 and Fig. 4.3) Crystal structures are annealed

at relatively high temperatures up to 2000 K because the highly exothermic reaction

can significantly increase local temperatures at the interface. We also consider MD

simulations of Ni–Si interfaces at various temperatures (300–1500 K) to train NNP

over interface reactions directly. (Fig. 4.4) The training set contains 4,944 structures

with 198,694 and 259,388 training points for Ni and Si, respectively.

From the total set in Table 4.1, 70% is randomly selected for training, and the

remaining 30% is used in model validation. The architecture of the reference NNP is

70-70-70-1 for both Ni and Si, with 20,022 parameters in total. We train the model by

fitting to total energies and atomic forces from the DFT calculations. We also employ a

GDF weighting scheme aiming at uniform training of reference atomic structures. (See

Section 3 for detailed discussion.) We transform symmetry function vectors by PCA

without truncating dimensions. After the transformation, variances of all components

are normalized (whitened). We also apply an L2 regularization to avoid overfitting.

(See Section 2.3.3 for detailed explanation.)

Using the trained NNP, we compare NNP and DFT on key properties such as

the equation of states for crystals, density and energy of amorphous structures, and

radial distribution function of liquid and amorphous structures. The results show that

all the properties agree well between NNP and DFT. (Not shown here) As a more direct

test, we also perform Ni silicidation for a relatively small Ni–Si interface structure

consisting of 60 Ni atoms and 120 Si atoms (see the top left figure in Fig. 4.5). This is

the same structure as Interface(2) in Table 4.1, but the test simulation lasts for 20 ps,

longer than 5 ps in the training set. The blue line in Fig. 4.5 shows total energies by

NNP for the simulation time, and top figures are structures at selected instances. For
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Table 4.1: Summary of Ni–Si interface reaction reference structures and root-mean-

square errors (RMSEs) for the validation set

structure type number of training points temputre (K) RMSEenergy RMSEenergy

Ni 3704 0, 500–1500 3.6 0.16

Ni(001) 8000 1000 2.1 0.16

Si 7408 0, 500–1500 3.0 0.16

Si(001) 15360 1000 4.4 0.38

δ-Ni2Si 18240 0, 1000–2000 3.9 0.28

l-Ni2Si 24000 2000 5.1 0.45

a-Ni2Si 9600 800 3.8 0.28

Ni2Si (l→ a) 14400 2000–300 3.1 0.28

NiSi 12160 0, 1000–2000 7.1 0.45

l-NiSi 16000 2000 7.0 0.41

a-NiSi 6400 800 7.4 0.43

NiSi (l→ a) 9600 2000-300 6.8 0.41

α-NiSi2 18240 0, 1000–2000 4.8 0.33

l-NiSi2 24000 2000 5.2 0.30

a-NiSi2 9600 800 8.3 0.50

NiSi2 (l→ a) 14400 2000–300 5.5 0.49

interface (1) 108410 300, 1000, 1300, 1500 4.8 0.40

interface (2) 92160 1000, 1300 2.5 0.30

interface (3) 46400 1000 3.0 0.28

total 458082 5.1 0.34
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Fig. 4.2: The training set structures. (a) Ni crystal. (b) Ni(001) surface slab. (c) Si

crystal. (d) Si(001) surface slab.[80]
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Fig. 4.3: The training set structures. (a) δ-Ni2Si crystal. (b) Liquid Ni2Si. (c) Amor-

phous Ni2Si. (d) NiSi crystal. (e) Liquid NiSi. (f) Amorphous NiSi. (g)α-NiSi2 crystal.

(h) Liquid NiSi2. (i) Amorphous NiSi2.[80]
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Fig. 4.4: The training set structures. (a) Interface(1) at 0 K. (b) Interface(1) after 4.4 ps

of 1300 K MD simulation. (c) Interface(2) at 0 K. (d) Interface(2) after 2 ps of 1300

K MD simulation. (e) Interface(3) at 0 K. (f) Interface(3) after 2 ps of 1000 K MD

simulation.[80]
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comparison, DFT energies are calculated every 50 fs along the NNP-MD trajectory

(see the green line). The overall agreements between NNP and DFT are good, and

DFT well reproduces fine features in the total energy. However, the energy difference

linearly increases with time (see the red line). This is attributed to a small discrepancy

in the reaction energy (Ni + Si→ NiSi) between DFT and NNP.
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Fig. 4.5: Comparison of the DFT and NNP total energies per atom along MD trajec-

tories for a small Ni–Si interface structure with 60 Ni atoms and 120 Si atoms. The

blue line represents the energy from 1000 K NNP-MD with a time step of 1 fs. The

green line represents the DFT energy of the NNP-MD trajectory sampled with a 50 fs

interval. The red line with the right-hand y scale represents differences between DFT

and NNP energies.[80]
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4.5 Large-scale Ni silicidation simulation

For a large-scale simulation of the silicidation process using NNP, we construct a

Ni/Si(001) interface slab of ∼8.5 nm thickness as shown in Fig. 4.6, which includes

3,008 Si and 2,080 Ni atoms. The Ni layer is 2 nm thick in the simulation, while Ni

films with thickness 1–10 nm are deposited in experiments. The lattice parameters in

the xy plane are fixed to those of crystalline Si at theoretical equilibrium. In Fig. 4.6,

the bottom two layers are fixed, and the above three layers are heated to 1000 K with

the NVT condition. The rest of the atoms are simulated in the NVE condition. This

allows for simulating the transport of the heat generated during interfacial reactions

and dissipated into the bottom layer through thermal conduction.

In the experiment, Ni is deposited at room temperatures. When we carry out the

simulation at this temperature, only a few Ni and Si atoms react at the interface dur-

ing 600 ps. Therefore, we start the high-temperature annealing right after the initial

relaxation of the structure in Fig. 4.6. Furthermore, at the experimental annealing tem-

peratures of 350–450 ◦C, the reaction almost stops after four Ni layers (∼0.7 nm) are

silicidated. To accelerate the dynamics and observe meaningful reactions within the

simulation time, we increase the temperature to 726 ◦C or 1000 K.

Fig. 4.7 displays characteristic instances during the MD simulation carried out up

to 1 ns. At the very early stage (t< 0.2 ns), vigorous interfacial reactions are observed,

which originates from the highly exothermic reaction of Ni + Si→ NiSi (1.0 eV per

formula unit). As a result, amorphous NixSiy layers grow up to a thickness of ∼2 nm

(see Fig. 4.7 (b)). For 0.2 < t < 0.5 ns, the concentration gradient of Ni decreases

along the z-axis, and so does the driving force for the reactive diffusion. Consequently,

the silicidation process gradually slows down. In Fig. 4.7 (c), the concentration profile

within the NixSiy layer is approximately linear with the atomic fraction of Si varying

continuously from 0.55 to 0.3, implying that there is no phase separation along the

z-direction. At around 0.6 ns, the L12 phase of NiSi nucleates and grows from the in-
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Fig. 4.6: Model structure of an 8.5-nm-thick Ni/Si(001) interface slab. The two bottom

layers are fixed during the MD simulations. The next three layers are heated to 1000

K using the NVT ensemble. Other parts are simulated using the NVE ensemble.[80]
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terface as shown in Fig. 4.7 (d). Once the crystalline phase with the thickness of ∼2

nm forms at the interface, the diffusion is virtually stopped, and no further interdiffu-

sion is observed until 1 ns. As a result, the system arrives at a steady-state distribution

comprising three distinct layers (a-Ni2Si/L12-NiSi/Si).
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Fig. 4.7: Snapshots and concentration profiles of Ni and Si with respect to z from the

large-scale NNP MD trajectory. (a) 0, (b) 0.2, (c) 0.5, and (d) 0.9 ns. The inset in (d)

indicates that the L12 phase formed at the interface.[80]
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4.6 Replica NNP training

Next, we check the soundness of the simulation using the replica ensemble. We train

a replica ensemble consisting of five NNPs independently trained over atomic ener-

gies of the reference NNP at G values in the training set. To obtain output variances

that are large enough for uncertainty quantification, NNPs in the ensemble should be

decorrelated. This can be achieved by diversifying model parameters and training con-

ditions such as initial weights, training/validation set selection from a data set (for

example, bootstrap aggregating), network design such as the layer size and depth, and

training hyperparameters. We find that varying the weight parameters and network size

achieves a sufficient range of prediction variation among these methods. In detail, the

initial weights are chosen from a normal Gaussian distribution with a zero mean and

a standard deviation of σw. When σw is too small, the replica NNPs tend to converge,

and energy variances of the ensemble become much smaller than actual errors rela-

tive to DFT results. On the other hand, if σw is too large, then NNPs easily fall into

local minima, degrading training. To strike a balance, we choose σw = 3.0; when σw

exceeds this value, some replica NNPs produce RMSEs larger than 100 meV, which

is a signature of poor training quality. In addition to tuning σw, we also diversify the

network structure (70-30-30-1, 70-50-50-1, 70-70-70-1, 70-100-100-1, and 70-120-

120-1) and select a random 70% of atomic energies by the reference NNP as a training

set, independently for each replica NNP. In training replica NNPs, we use the same

hyperparameters as for the reference NNP. Fig. 4.8 shows the learning curves of the

replica NNPs, and it is seen that resulting RMSEs range from 30 to 70 meV (RMSE

of the ensemble average is 16 meV). Notably, the standard deviation among replica

NNPs (σat(G)) is 50 meV for G in the training set, confirming that the prediction un-

certainty is low for the well-learned local configurations. Note that RMSEs of replica

NNPs are an order of magnitude larger than RMSEs for typical NNPs, usually a few

meV/atom. This is because direct learning of the atomic energy is far more constrained
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than learning total energies that are sums of atomic energies. In addition, σw is larger

than for regular training, causing the training result to fall into local minima.
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Fig. 4.8: The training set (solid lines) and validation set (dashed lines) root mean square

error (RMSE) of atomic energy during the replica NNP training iterations.[80]
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4.7 Uncertainty quantification on Ni silicidation simulation

4.9 (a) shows atom-by-atom coloring of σat for instances selected in Fig. 4.7. The

frequency histogram of σat for the whole simulation is shown in Fig. 4.9 (b), and it is

seen that σat is mostly less than 50 meV, which is the average σat for training points,

and thus can be used as a uncertainty threshold. As such, MD simulations appear to

be reasonable for most configurations as confirmed by dominantly light colors in Fig.

4.9 (a). Nevertheless, the uncertainty indicator also detects concerning values of σat

≥ 0.1 eV for a number of regions near Ni/NiSi and NiSi/Si interfaces as indicated

by blue (Ni) and red (Si) atoms. Most notably, σat is the largest for the L12 phase.

In fact, the L12 phase was not considered in the training set, and DFT calculations

show that theL12-NiSi phase is unstable against the most stable MnP-type NiSi by

0.21 eV/atom. However, the present NNP infers L12 to be more stable than the MnP

type by 0.08 eV/atom. This means that the nucleation of the L12 phase is an artifact

triggered by a subtle deviation from the training set.

The atomic resolution of σat allows for localizing simulation defects temporally

as well as spatially. At ∼0.5 ns, a cluster of atoms near the NiSi/Si interface begins

to develop high uncertainties (see the round box in Fig. 4.9 (a)), which later nucleates

into the L12 phase. Also, some atoms near the NiSi/Ni interface and Si atoms at the

Ni surface exhibit notable uncertainties. These errors should follow from deficiencies

of the interface models in the training set (see Table 4.1). By close inspections, we

find that NixSiy layer in the training set is rather Ni-rich compared to the boxed region

in Fig. 4.9 (a). This is because the simulation time is too short to permit sufficient

interdiffusion. Furthermore, there are only three Ni layers in Interface(1–2) models,

which are too thin to properly sample Ni/NiSi interfaces.

Inspired by the above analysis, we augment the training set with additional struc-

tures from DFT calculations. We first add MD trajectories of a model with five Ni

layers (similar to Interface(3)) at the higher temperature of 1300 K and a longer sim-
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Fig. 4.9: (a) Snapshots from the Ni-silicidation MD trajectory at 0, 0.2, 0.5, and 0.9 ns

with the color scale by σat. (Parts of the bottom Si layers are removed.) (b) Histogram

of σat collected over the 1 ns simulation.[80]
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ulation time of 40 ps, thereby sampling interfacial compositions similar to NNP-MD

simulations. Furthermore, we add annealing trajectories at 1000–2000 K for crystals

such as γ-Ni31Si12, β1-Ni3Si, β2-Ni3Si, ε-Ni3Si2, θ-Ni2Si, and NiSi (ε-FeSi type)

to calibrate formation energies of NixSiy mixed layers with fine stoichiometric vari-

ations. We also consider a surface model of amorphous NiSi because Si atoms with

high uncertainties are found at the surface region (see Fig. 4.9 (a) for t = 0.9 ns). These

supplementary structures add 258,030 points to the final training set, which is then

used for training a refined NNP (r-NNP). The RMSEs of r-NNP are 5.62 meV/atom

(energy) and 0.23 eV/Å (force) for the validation set. The computational results on test

structures are very similar between r-NNP and the original NNP.

Fig. 4.10 (a–d) show the sequence of silicidation process simulated by r-NNP up

to 0.9 ns (total simulation time is 3.6 ns). The model and simulation conditions are

the same as in the previous simulation and the prediction uncertainties by σat in Figs.

4.10 (e) and (f) are evaluated similarly to Fig. 4.9. In contrast with Fig. 4.9 (b), almost

all the atoms exhibit σat < 0.1 eV throughout the whole simulation except for brief

fluctuations above the threshold, indicating that the supplementary training structures

enabled reliable and stable simulations. Overall, the simulation proceeds similarly to

Fig. 4.9 up to ∼0.5 ns, namely, vigorous initial reactions until 0.2 ns followed by

sluggish interdiffusion. The amorphous NixSiy layer is thicker than the previous simu-

lation by∼1.5 nm. Unlike the previous simulation, the incubation of any crystal phase

is absent with r-NNP, which contributes to the formation of thick interfacial layers (see

the dashed box in Fig. 4.10 (c)) rather than the abrupt interface in Fig. 4.7 (c). After

0.6 ns, the thickness of the NixSiy layer remains nearly constant, and atoms diffuse

mainly within the amorphous layer. Further simulation up to 3.6 ns only changes the

stoichiometry within the amorphous layer close to 1:1 (not shown). In experiments,

epitaxial NiSi2−δ(δ = 0.5–0.6) phases appear at high annealing temperatures.[86] En-

ergy differences between crystal and amorphous phases are similar between r-NNP and

DFT, so amorphous NiSi will eventually crystalize in the simulation. However, the in-
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cubation time for crystallization is much longer than the feasible simulation time, so

we could not observe the formation of crystalline phases within 3.6 ns.
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Fig. 4.10: Snapshots and concentration profiles of Ni and Si with respect to z from the

large-scale r-NNP MD trajectory at (a) 0, (b) 0.2, (c) 0.5, and (d) 0.9 ns. (e) Histogram

of σat of the 3.6 ns r-NNP simulation trajectory atoms. (f) Snapshots from the large-

scale Ni silicidation r-NNP MD trajectory at 0.2, 0.5, and 0.9 ns. The color intensity is

scaled by σat. (Part of the bottom Si layers are removed.)[80]
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4.8 Schottky barrier height estimation

For further analysis on the electronic property, we theoretically estimate the Schottky

barrier height (SBH, Φb) for the as-obtained NixSiy/Si interface. The NixSiy/Si inter-

face structure is obtained from the r-NNP MD simulation of the model structure after

3.6 ns of 1000 K MD. Before the DFT calculation, atomic positions are relaxed with

r-NNP at 0 K. Then, the interface region of the whole structure is sliced to reduce the

number of atoms below 1000. Dangling bonds of the bulk-terminated Si surface are

passivated with H atoms. As a result, the interface structure consists of 7 layers of Si

and 6.2-Å thick NixSiy layer (see Fig. 4.11). To address the finite-size effect, the crys-

talline Si is also computed independently. The SBHs for n- and p-type Si are obtained

as follows:

Φb,n = EC − EF − (〈V 〉bulk
Si − 〈V 〉interface

Si ) (4.1)

Φb,n = EF − EV + (〈V 〉bulk
Si − 〈V 〉interface

Si ) (4.2)

where EC and EV denote the conduction and valence band edges obtained from

the bulk Si structure, and EF indicates the Fermi energy obtained from the NixSiy/Si

interface structure. In Eqs. (4.1) and (4.2), 〈V 〉interface
Si refers to the average electro-

static potential of bulk Si part in NixSiy/Si interface system, while 〈V 〉bulk
Si is the cor-

responding value for the crystalline Si.[87] In addition, to compensate the band-gap

underestimation in semilocal functionals, the band edge energies are corrected with

the hybrid functional method (HSE06).[17, 88] As a result, the interface model gives

SBH of 0.83 and 0.21 eV for Φb,n and Φb,p, respectively, which is in reasonable agree-

ment with experimental values of 0.7 and 0.35 eV for NiSi/Si interfaces.
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Fig. 4.11: (a) Model structure of the NixSiy/Si interface slab for the Schottky barrier

height estimation. The dangling bonds of bulk-terminated Si surface are passivated

with H atoms. (b) The black line represents the electrostatic potential of the NixSiy/Si

interface slab averaged to the z-axis. The red line represents the macroscopic average

of the potential with a sampling window set to the layer spacing of the Si(001) slab.[80]
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4.9 Summary

In summary, we proposed the replica ensemble that enables efficient and atomic-

resolution uncertainty estimation in energy prediction by NNPs. The replica NNPs are

trained directly over the atomic energies of the reference NNP that calculates poten-

tial energy surface during MD simulations. By excluding energy derivatives from the

loss function, the construction of the replica ensemble takes much less time than for

conventional NNPs. The usefulness of the suggested indicator was demonstrated by

simulating the Ni silicidation process. The replica ensemble was able to trace highly

uncertain atomic configurations at interfaces during the MD simulation, which later

evolved into the formation of the unphysical L12 phase. The uncertainty analysis re-

vealed structures that were deficient in the training set. With the augmented training

set, a refined NNP was developed, and reliable Ni silicidation simulation was carried

out until 3.6 ns.
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Chapter 5

Crystal structure prediction by machine learning po-

tentials

5.1 Introduction

Crystal structure prediction (CSP) for given chemical composition is among the grand

challenges in condensed matter physics.[89] The goal of CSP is to identify atomic

arrangements in space that produce the lowest free energy under given thermody-

namic conditions. Mathematically, this is equivalent to the global optimization in a

high-dimensional space, to which there is no general solution.[90] Nevertheless, vari-

ous heuristic methods have been developed for navigating the gigantic configurational

space efficiently and intelligently such as random structure sampling,[91, 92] simu-

lated annealing,[93] particle-swarm optimization,[94, 95] minima hopping,[96] basin

hopping,[97] metadynamics,[98] and evolutionary algorithm.[99] In evaluating the ob-

jective function or free energy, the method of choice is the first-principles calculations

based on the density functional theory (DFT). The non-empirical nature of DFT al-

lows for exploring the energy landscape with little restrictions yet achieving high pre-

cisions. The DFT-based CSP has been successfully applied to identifying structures

of organic crystals, superconducting materials, and inorganic crystals under extreme
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conditions.[100–103] One intriguing field to apply CSP is the structure prediction of

ternary or higher (simply multinary hereafter) inorganic crystals at ambient conditions.

Its importance arises from the low throughput of crystal synthesis: while structures of

most unary and binary compounds were thoroughly investigated by X-ray crystallog-

raphy, only about 16% and 0.6% have been revealed within the ternary and quaternary

spaces, respectively. [104]

There have been several theoretical attempts to identify the stable structures of un-

known ternary systems.[102, 103, 105–110] However, the previous works often limited

the configurational space by referring to available prototypes or fixing the number of

atoms in the unit cell. The main reason for the restrictive searching is the sheer com-

putational cost of DFT calculations. To predict the equilibrium structure of multinary

crystals from exhaustive searching, an exponential increase of possible atomic arrange-

ments demands evaluating the objective function far more efficiently than DFT. The

classical potential is computationally cheap, which allowed for predicting stable struc-

tures of even quinary compounds.[111] However, scarcity and low fidelity of classical

potentials prohibit wide use as an objective function. Therefore, machine learning po-

tential is poised to meet the requirement for evaluating energies in multinary CSP.

The development style of machine learning potential invokes a distinct challenge

when applying machine learning potential to CSP for unknown multinary compounds.

That is to say, machine learning potential infers total energies after learning on DFT

results for reference structures. In usual practices, machine learning potentials are first

trained over structures derived from known crystals. However, such information is

not available at the outset in CSP for unknown compounds, and one should construct

machine learning potentials out of ‘nothing’.

Motivated by the above discussions, we propose a way to construct machine learn-

ing potential as a hi-fidelity surrogate model of DFT, mainly targeting to predict the

most stable structure of multinary inorganic crystals at ambient conditions. The key

strategy is to train a machine learning potential over disordered structures such as liq-
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uid and melt-quenched amorphous phases. With only compositional information, the

molecular dynamics (MD) simulation on liquids can self-start from a random distri-

bution and quickly equilibrates at sufficiently high temperatures (well above melting

points), which is then cooled to amorphous structures. Thus, it is feasible to build the

whole training set without preceding knowledge of the crystal structure. Furthermore,

short-range orders in the amorphous phase resemble those in the crystalline phase (for

example, consider amorphous Si and SiO2), and local fluctuations in liquid and amor-

phous phases also sample diverse local orders that can appear in crystals. Therefore, it

is anticipated that the trained machine learning potential provides correct energies for

stable as well as metastable phases, thus properly ranking energies of various struc-

tures emerging from search algorithms.
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5.2 Test materials

To test the concept, we choose four compounds (three ternary and one quaternary)

from Inorganic Crystal Structure Database (ICSD):[112] Ba2AgSi3 (Fddd), Mg2SiO4

(Pnma), LiAlCl4 (Pmn21) and InTe2O5F (C2221). (See Fig. 5.1.) These four mate-

rials encompass diverse structural motifs such as layers, intercalations, and shared

polyhedra. In addition, they are employed in a variety of applications owing to their

mechanical, electrical, and optical properties: Ba2AgSi3 is a member of the Ba-Ag-Si

system, which is anticipated for potential high-Tc superconductors,[113] and has a lay-

ered structure formed by Si6.[114] Mg2SiO4 (also known as forsterite) features high

fracture toughness and is actively studied as bioceramic implants.[115] It has a shared-

polyhedra structure with Mg and Si occupying octahedral and tetrahedral sites, respec-

tively. There are also three additional structures of Mg2SiO4 available in ICSD with

the space group of Ibmm, Fd3m, and Cmc21. LiAlCl4 is an archetypal halide solid-

state Li-ion conductor.[116] There are two structures of LiAlCl4 in ICSD with the

space group of P21/c and Pmn21. Among them, we find that the Pmn21 structure has a

slightly lower DFT energy at 0 K. LiAlCl4 has a relatively simple structure where both

Li and Al ions are tetrahedrally coordinated by Cl ions. Lastly, InTe2O5F is anticipated

for nonlinear optical applications owing to a non-centrosymmetric structure.[117] The

In ions occupy octahedral sites surrounded by four O and two F ions.
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Fig. 5.1: Unit cells of the stable phase of (a) Ba2AgSi3, (b) Mg2SiO4, (c) LiAlCl4, and

(d) InTe2O5F.[118]
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5.3 Construction of training set

To generate training structures for NNP to be used in CSP, we carry out first-principles

molecular dynamics (FPMD) simulations on the melt-quench-annealing process for

each material. We first determine the melting temperature (Tm) and simulation vol-

ume as follows: the initial structure is prepared by randomly distributing ∼100 atoms

for the given stoichiometry, which is then superheated at 4000 K for 5 ps. Next, we

perform FPMD simulations by lowering the temperature gradually and select an ad

hoc Tm as the lowest temperature at which the mean square displacement of atoms

linearly increases with time. The determined Tm’s are 1500, 3500, 1500, and 2000

K for Ba2AgSi3, Mg2SiO4, LiAlCl4, and InTe2O5F, respectively. (The experimental

Tm’s are 2174 K [119] and 419 K [120] for Mg2SiO4 and LiAlCl4, respectively.) The

cell volume is then adjusted such that the average hydrostatic pressure is equal to zero.

Using the obtained Tm and cell parameters, we generate liquid-phase trajectories for

20 ps in the NVT condition. Subsequently, the liquid is quenched with a cooling rate

of 100 K/ps from Tm to 300 K, and then annealed at 500 K for 15 ps to sample amor-

phous structures. The training set samples the whole melt-quench-annealing trajectory

every 20 fs, and consists of 2,400–3,200 snapshots.
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5.4 Crystal structure prediction by genetic algorithm

To sample metastable structures for each material, CSP is performed by an evolution-

ary algorithm implemented in the Universal Structure Predictor: Evolutionary Xtal-

lography (USPEX) package,[121] while DFT calculations carry out the energy eval-

uation. We fix the number of formula units (Z) to that of the stable structure (4 for

every material). We set the population size to 20–60, which increases with the number

of atoms in the unit cell. Initial structures are generated by either random symmet-

ric [122] or topological structure generators.[123] The succeeding structures are pro-

duced by random generators and evolutionary operators, including heredity, permuta-

tion, soft mutation, and lattice mutation. The ratio of variation operators in USPEX

is set automatically, encouraging the operators to produce more diverse structures in

the low-energy spectrum.[123] The generated structures are fully relaxed (both atomic

positions and lattice vectors) until atomic forces and total stress is less than 0.1 eV/Å

and 20 kbar, respectively, or the number of relaxation steps reaches 400. Also, we turn

on the antiseed option, which prevents the evolution from being trapped in local min-

ima by adding repulsive Gaussian potentials for sampled structures.[124] We collect

metastable structures generated during the whole evolution and use them in bench-

marking NNPs. For an accurate evaluation of energies, the metastable structures are

further relaxed by DFT calculations until atomic forces and stresses are less than 0.02

eV/Å and 4 kbar.
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5.5 Comparison of NNP and DFT energies

To judge the suitability of the developed NNPs for multinary CSP, we compare NNP

and DFT energies for metastable structures collected by USPEX and experimental

structures in ICSD. During 10–20 generations, USPEX garnered on average ∼274

metastable structures with energies relative to that of the stable phase (∆Etot) less

than 500 meV/atom. The lowest ∆Etot’s are 46.5, 28.2, 1.9, and 33.2 meV/atom for

Ba2AgSi3, Mg2SiO4, LiAlCl4, and InTe2O5F, respectively. (The package could not

identify experimental structures.) We note that many metastable structures share sim-

ilar atomic configurations, such that slight shifts of a few atoms relax one metastable

structure to another.

Using NNPs trained over disordered structures, we evaluate energies for metastable

structures without further relaxations and compare them with DFT energies in Fig.

5.2. It is seen that the NNP and DFT energies are highly correlated, and Pearson co-

efficients among the structures with ∆EDFT
tot < 200 meV/atom are 0.769, 0.864, 0.977,

and 0.962 for Ba2AgSi3, Mg2SiO4, LiAlCl4, and InTe2O5F, respectively. This is strik-

ing because none of the metastable structures were explicitly included in the training

set. Thus, it is confirmed that the training set could sample the structural motifs ap-

pearing in low-energy metastable phases. It is also intriguing in Fig. 5.2 that the NNPs

consistently predict the most stable experimental structure to be more stable than any

theoretical structures (see red squares). This is the case even if the structures are re-

laxed using the NNPs. Therefore, by combining the NNPs and search algorithms, one

should be able to identify the stable phase in principle without calling for additional

DFT calculations.

Each disordered structure in the training set consists of various local configura-

tions similar to structural motifs in metastable phases. The strong energy correlations

in Fig. 5.2 suggest that the machine-learning procedure successfully delineated local

energies without ad hoc energy mapping.[68] In Fig. 5.2, it is also seen that the errors
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Fig. 5.2: Correlation between DFT and NNP energies. Structures are fixed to

metastable structures from USPEX (blue circles) or experimental structures from

ICSD that are relaxed by DFT (red squares). In both ∆ENNP
tot and ∆EDFT

tot , the reference

energy is the DFT energy of the stable phase. The experimental structures are plotted

as red squares. (a) Ba2AgSi3, (b) Mg2SiO4, (c) LiAlCl4, and (d) InTe2O5F.[118]
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of NNP prediction increase with ∆Etot. This is because structural features in high-

energy phases were not sufficiently sampled in the liquid and amorphous structures.

(For reference, ∆Etot of the amorphous structure is 60–180 meV/atom.)

In Fig. 5.2 (a), we note that the energy scale is not well resolved for low-energy

structures of Ba2AgSi3. For instance, ∆Etot for the third-lowest metastable structure

is 93 meV/atom in DFT but it is only 14 meV/atom in NNP. This is attributed to

deficiencies in the training set: in the disordered phases, we find that the hexagonal

Si ring in the crystalline structure is absent and linear Si chains embedded with Ag

atoms are prevalent. Since the low-energy structures mainly differ in the connection

topology of Si chains, the energy prediction in this region becomes rather inaccurate.

This sampling problem is caused by the high cooling rate of 100 K/ps, which may

not provide enough time to establish medium-range orders such as hexagonal rings.

However, this can be remedied by coupling metastable structures obtained from the

NNP-CSP algorithm to the training set.[118]

In Fig. 5.3, using the principal component analysis, we examine element-by-element

distributions of G vectors in the training set and (meta)stable structures of Ba2AgSi3.

It is seen that most G points from USPEX-generated and experimental structures lie

within those from the training set. (Analysis on other principal axes show a similar

relationship.) Other materials also exhibit G-point distributions similar to Ba2AgSi3.

(The only exception is Al in LiAlCl4, where Al atoms from high-energy metastable

structures are distinct from the training set.) Therefore, we explicitly confirm that the

local motifs of USPEX-generated structures and ICSD structures are well-included in

a region spanned by the training set.
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Fig. 5.3: The distribution of G vectors in Ba2AgSi3 projected onto the first two prin-

cipal component axes (PC1 and PC2). The distribution of (a) Ba atoms, (b) Ag atoms,

and (c) Si atoms. The projected density on each axis is plotted on the top and side.[118]
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5.6 Summary

In summary, we proposed a way to train NNPs using disordered structures sampled

from liquid-quench-annealing MD trajectories. From the strong correlations of NNP

and DFT energies among diverse metastable structures, it was confirmed that the NNPs

can properly rank energies of structures that emerge from search algorithms. As a

future work, more NNP-oriented and efficient CSP algorithm should be developed to

be used with NNP. In conclusion, by proposing a way to develop machine-learning

potentials for CSP, this work will pave the way to identifying unexplored multinary

phases efficiently.
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Chapter 6

Conclusion

We addressed three significant challenges of machine learning potentials and, with the

example of neural network potential, suggested the solution to the challenges. First,

we provided various examples of biased sampling and how it undermines the accu-

racy of the simulation. The examples include Si vacancy migration energy, the PES

around Si interstitial defect, and MD stability of Si bulk with an interstitial. First,

we defined the Gaussian density function to quantify the sparsity of training points

and verified that the distribution of the training set points in the G-space is highly

biased. As the DFT energy per se cannot be split into local atomic energies, but the

DFT forces are obtained for individual atoms, we modified the loss function such that

the additional weighting term in the force loss function can enhance the influence of

undersampled local environments. The results of the examples suggest that the GDF

weighting scheme can effectively remedy the unbalanced training problem. Next, we

proposed the replica ensemble that enables efficient and atomic-resolution uncertainty

estimation in energy prediction by NNPs. The replica NNPs are trained directly over

the atomic energies of the reference NNP that calculates potential energy surface dur-

ing MD simulations. By excluding energy derivatives from the loss function, the con-

struction of the replica ensemble takes much less time than for conventional NNPs.

The usefulness of the suggested indicator was demonstrated by simulating the Ni sili-
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cidation process. The uncertainty analysis revealed structures that were deficient in

the training set. Finally, we proposed a way to train NNPs using disordered structures

sampled from liquid-quench-annealing MD trajectories. From the strong correlations

of NNP and DFT energies among diverse metastable structures, it was confirmed that

the NNPs could properly rank energies of structures that emerge from search algo-

rithms. Therefore it is expected that the proposed way will pave the way to identifying

unexplored multinary phases efficiently. In conclusion, by addressing the critical chal-

lenges and their solutions, we believe that this dissertation will extend the application

range of the machine learning potentials.
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초록

현재나노스케일소재연구에서활발히사용되는제일원리계산(First-principles

calculations)은 과다한 컴퓨팅 자원을 요구하여 모델링 사이즈가 수 nm를 넘기 힘

들다는 한계가 있다. 반대로 고전 원자간 퍼텐셜(Classical interatomic potential)의

경우정해진함수형태를통해서원자간결합을기술하여계산속도가매우빠르지

만,정확도가제한적이고복잡한화학결합을기술하는함수형태를개발하는것이

매우어렵다는단점이있다.

기계학습 모델을 통해 제일원리계산을 학습하여 주어진 시스템의 퍼텐셜 에너

지표면(Potential energy surface)을기술하는,일명기계학습퍼텐셜은앞서언급한

두방법론의장점을조합하여높은정확도의계산을훨씬적은계산비용으로얻을

수있는방법론으로많은관심을받고있다.그중특히인공신경망모델을기반으로

하는고차원인공신경망퍼텐셜(High-dimensional neural network potential, NNP)은

금속,산화물,반도체,분자간반응등광범위한물질계에성공적으로응용된사례가

이미보고되었으며점차그응용분야를넓혀가는모습이다.

하지만여전히연구자들사이에기계학습퍼텐셜에대한근본적인이해가많이

부족한데 상황인데, 그에 따라 흔한 저지르는 오류는 기계학습 퍼텐셜을 고전적인

원자간 퍼텐셜의 일종으로 생각하여 그 둘을 비슷한 방식으로 해석하려는 것이다.

그러나고전적인원자간퍼텐셜과기계학습퍼텐셜간에는더욱근본적인차이가존

재한다.그것은바로고전적인퍼텐셜이원자간의화학결합을명시적인함수형태

로근사하는반면기계학습퍼텐셜은이러한근사없이단지학습세트(Training set)

로 주어지는 제일원리계산의 전체 에너지(Total energy)를 각 원자 에너지(Atomic

energy)의합으로맵핑(mapping)한다는것이다.이러한특수성때문에기계학습퍼

텐셜은 고전적 원자간 퍼텐셜과는 상당히 다른 방식으로 작동하게 되며 따라서 시

뮬레이션중오류를유발하는요인또한새로이이해하고그에맞는해결책을제시

하여야한다.

본 논문에서는 비교적 복잡한 시스템을 다루는 기계학습 퍼텐셜을 개발할 때
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쉽게 마주할 수 있는 내재적 어려움 중 세 가지 주요한 주제를 다루고 그 문제들에

대한해결책을제시한다.본논문에서논의하는첫번째주제는학습데이터의편중

된 분포에 의한 불균형적인 학습의 문제이다. 이 문제는 특히 공공(Vacancy), 침입

(Interstitial) 등 결함(Defect)이 포함된 원자 구조를 다룰 때 크게 두드러지는데 그

것은 쉽게 말해 결함이 포함된 원자 구조를 기계학습 퍼텐셜로 학습할 경우 학습

에러가모든원자에고르게분포하지않고적게샘플되는결함원자에편중된다는

것이다.이러한에러의편중은많은경우시뮬레이션정확성을크게하락시키며결

함 에너지 (Defect energy) 등의 물리량 예측에 있어서 큰 오류를 유발한다. 우리는

훈련 포인트의 밀도를 정량화하는 가우스 밀도 함수를 새롭게 제시하고 이 함수를

통한가중치부여방법론을적용함으로써불균형적학습문제를해결할수있었다.

다음으로 다루는 주제는 예측 불확실성의 정량화 문제이다. 고전적인 원자 간

퍼텐셜이 물리적 기반을 가진 함수를 근간으로 하는 것에 반해 기계학습 퍼텐셜

은그러한물리적근간이부족하므로예측결과의높은신뢰성을보장하기어렵다.

따라서 기계학습 방법론의 신뢰성 확보를 위해서는 예측 불확실성의 정량화가 필

요하다. 이에 우리는 복제 인공신경망 앙상블(Replica NNP ensemble)을 통한 예측

불확실성의 정량화 방법을 제시한다. 복제 인공신경망 앙상블 방법은 인공신경망

퍼텐셜이 물질 시스템의 기저에 깔린 원자 단위의 에너지를 학습할 때 필연적으

로 발생하는 불확실성을 배제함으로써 원자 단위에서 예측 불확실성을 정확하게

정량화할 수 있다는 강력한 장점을 지닌다. 우리는 이 방법론을 니켈-실리콘 고체

계면반응 모사를 위한 인공신경망 퍼텐셜 개발 과정에 적용하였고 해당 방법론의

효용성을확인할수있었다.

마지막으로, 우리는 기계학습 퍼텐셜을 사용하여 화학식 이외의 어떠한 선행

정보도 없이 안정한 결정 구조를 찾을 때 발생하는 어려움에 대해 논의한다. 일반

적으로기계학습퍼텐셜을개발할때는목표로하는시뮬레이션중나타날수있는

국소적인원자구조를예측하여학습세트를구축하게된다.그러나기계학습퍼텐

셜을 미지의 결정 구조 탐색에 적용한다면 구조 탐색 중 어떠한 결정 구조가 나타

날지예측할수없다는문제가발생한다.이에따라우리는액상과비정질구조로만

학습 세트를 구성하여 결정 구조 내에 나타날 수 있는 다양한 국지적 원자 환경을
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샘플링하는방법을제안한다.이방법론을세가지의 3성분계(Ternary system)와한

가지 4성분계(Quaternary system)물질의안정한결정구조탐색에적용했을때비록

기계학습 퍼텐셜이 액상과 비정질 구조만을 학습하였음에도 결정 구조 예측 알고

리즘 중 나타나는 수많은 다양한 결정 구조들의 에너지를 제일원리계산에 비하여

정확히예측한다는것을확인하였다.

본 연구에서는 기계학습 퍼텐셜이 가진 특징적인 문제 중 세 가지 주요한 주제

를다루고해결책을제시하였다.우리는해당논의가기계학습퍼텐셜의적용범위

확장에기여할것으로기대한다.

주요어:기계학습퍼텐셜,인공신경망퍼텐셜,분자동역

학번: 2015-20862
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