

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Contextualized Language Representations
with Deep Neural Networks for

Unsupervised Learning

비지도학습을위한딥뉴럴네트워크기반문맥화된
언어표현연구

BY

SHIN JOONGBO

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Contextualized Language Representations
with Deep Neural Networks for

Unsupervised Learning

비지도학습을위한딥뉴럴네트워크기반문맥화된
언어표현연구

BY

SHIN JOONGBO

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Abstract

In natural language processing, deep neural networks are powerful language learn-

ers since they are able to incorporate context information from raw text data in a flexi-

ble way. Language representations learned in an unsupervised manner on a large cor-

pus provide a source for deep neural networks to understand human language better.

Natural language understanding has been made remarkable progress with pre-training

contextualized language representations using language modeling, which is a repre-

sentative unsupervised learning or self-supervised learning technique. In contextual-

ized language representation learning, autoregressive language modeling and masked

language modeling are two major learning objectives, and state-of-the-art pre-training

methods are based on these two tasks. This dissertation presents a novel language

modeling task called bidirectional language autoencoding that takes advantage of both

of the previous learning objectives. The proposed learning objective enables a model

to understand a text in a deep and bidirectional way like masked language modeling,

and at the same time, to extract contextualized language representations without fine-

tuning like autoregressive language modeling. To learn bidirectional language autoen-

coding, this dissertation introduces a novel network architecture of a deep bidirectional

language model. The presented architecture allows the bidirectional language model to

learn useful language representations rather than simply copying and allows each word

to have a contextualized representation. The main contribution of this dissertation is

the verification that the proposed bidirectional language autoencoding can be a better

approach than the previous language modeling tasks when extracting contextualized

language representations for natural language understanding tasks. Experimental re-

sults are presented on N-best list re-ranking, semantic textual similarity, word sense

disambiguation, and text classification, demonstrating the advantages of the advanced

unsupervised representation learning over previous language modelings.

i

keywords: deep neural networks, language modeling, unsupervised learning,

contextualized language representations

student number: 2014-21625

ii

Contents

Abstract i

Contents iii

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Overview . 1

1.2 Contributions and Outline of This Dissertation 6

2 Background: Language Representation Models 8

2.1 Non-contextualized Word Representations: Word Embeddings 9

2.2 ALM-based Language Representation Models 12

2.2.1 ELMo . 13

2.2.2 GPT . 14

2.3 MLM-based Language Representation Models 16

2.3.1 BERT . 16

2.3.2 Other Language Representation Models 19

2.4 Base Language Model Architecture: SAN 21

iii

3 Masked Language Modeling for Sentence Scoring 26

3.1 Accurate Bidirectional LMs . 26

3.1.1 Overview . 26

3.1.2 Contributions . 27

3.2 Related Works . 29

3.2.1 Bidirectional LMs in NLP 29

3.2.2 Bidirectional LMs for ASR 29

3.3 Methodology . 30

3.3.1 Architecture of SAN-based LMs 30

3.3.2 Sentence Scoring with SANLMs 32

3.3.3 Re-ranking the N-best List with SANLMs 36

3.4 Experiments . 37

3.4.1 Acoustic Model Setups . 37

3.4.2 Language Model Setups . 38

3.4.3 Results: Re-ranking the N-best List 39

3.4.4 Analysis: Misrecognized Position 41

3.5 Summary of MLM for Sentence Scoring 43

4 Bidirectional Language Autoencoding for Sentence Scoring 44

4.1 Fast and Accurate Bidirectional LMs 44

4.1.1 Overview . 44

4.1.2 Contributions . 45

4.2 Related Works . 47

4.2.1 Bidirectional LMs for Unsupervised Tasks 47

4.2.2 Consideration of Inference Speed 47

4.3 Methodology . 48

4.3.1 Baselines: ALM for UniLM and MLM for BiLM 48

4.3.2 BLA: New Language Modeling Objective 49

4.3.3 T-TA: New Deep Bidirectional Language Model 51

iv

4.3.4 Verification of the T-TA Architecture 55

4.3.5 Comparison T-TA with BERT 56

4.4 Experiments . 57

4.4.1 Language Model Setups . 57

4.4.2 Analysis: Runtime Comparison 59

4.4.3 Settings: Re-ranking the N-best List 61

4.4.4 Results: Re-ranking the N-best List 65

4.4.5 Analysis: Re-ranking and Language models 68

4.5 Summary of BLA for Sentence Scoring 72

5 Bidirectional Language Autoencoding for Feature Extraction 73

5.1 Extracting Contextualized Language Representations 73

5.1.1 Overview . 73

5.1.2 Contributions . 74

5.2 Related Works . 76

5.2.1 Contextualization in Language Representations 76

5.2.2 Word-level VS Sentence-level Representations 76

5.3 Experiments on Unsupervised Learning Tasks 78

5.3.1 Language Model Setups . 78

5.3.2 Settings: Unsupervised STS 78

5.3.3 Results: Unsupervised STS 80

5.3.4 Settings: Unsupervised WiC 83

5.3.5 Results: Unsupervised WiC 84

5.4 Experiments on Supervised Learning Tasks 86

5.4.1 Language Model Setups . 86

5.4.2 Settings: Text Classification Tasks 87

5.4.3 Results: Feature Extraction 88

5.4.4 Results: Fine-tuning Approach 90

5.5 Summary of BLA for Feature Extraction 92

v

6 Conclusions and Future Works 93

6.1 Future Works . 94

Abstract (In Korean) 109

Acknowlegement 111

vi

List of Tables

1.1 Comparison of each language modeling 5

3.1 Oracle WERs of the 100-best lists on LibriSpeech 38

3.2 WERs for unidirectional and bidirectional SANLMs interpolated with

the baseline model on LibriSpeech 40

4.1 Accuracy of each language model for each training task. Plain texts of

the test-clean set of LibriSpeech ASR Corpus are used in this experiment. 58

4.2 Oracle WERs of the 50 best lists on LibriSpeech from Seq2SeqASR- . 63

4.3 Oracle WERs of the 50 best lists on LibriSpeech from Seq2SeqASR+ . 64

4.4 Oracle BLEU scores of the 50 best lists on WMT13 64

4.5 WERs after re-ranking with each language model on LibriSpeech . . 66

4.6 BLEU scores after re-ranking with each language model on WMT13 . 67

4.7 (pseudo)Perplexities and corresponding WERs of the language models

on LibriSpeech. 69

4.8 WERs after re-ranking with each large-size language model on Lib-

riSpeech . 70

5.1 Pearson’s r × 100 results on the STS-B dataset 78

5.2 Pearson’s r × 100 results on the STS-B dataset 81

5.3 Pearson’s r × 100 results on the SICK dataset 82

5.4 Accuracy on the WiC dataset . 84

vii

5.5 Accuracy on each pre-training task. 87

5.6 Accuracies on text classification tasks. 89

5.7 Accuracies on text classification tasks. 91

6.1 Comparison of bidirectional language modeling objectives. 94

viii

List of Figures

2.1 Representing a word from one-hot encoding to a dense vector. 9

2.2 Architectures of (a) CBOW and (b) skip-gram. 10

2.3 Schematic diagrams of a (a) forward and (b) backward RNNLMs. . . 13

2.4 Schematic diagram of ELMo. 14

2.5 Schematic diagram of SANLM. 15

2.6 Schematic diagram of MLM. Dashed arrows denote not used during

MLM training. 17

2.7 Illustration of input representations of BERT. 18

2.8 Schematic diagram of PLM. Dashed arrows denote that the only posi-

tion information without token information is forwarded to the upper

layer. Note that the sequence oreder is not permuted, and input and

output of PLM is the same instead of delayed. To achieve permutation

of the factorization order 3→ 2→ 4→ 1, the model should rely on a

proper attention mask in Transformer. 20

2.9 Architecture of the Transformer model. 22

2.10 (left) Scaled dot-product attention and (right) multi-head attention. . . 24

3.1 Architectures of (a) the self-attention network language model and (b)

the scaled dot-product attention. 31

3.2 Schematic diagram of the SANLMs. 33

3.3 Example of procedure for re-ranking using BERT on ASR. 36

ix

3.4 Error count by word position. 41

4.1 Schematic diagram of SAN-based (a) uniLM and (b) biLM. 48

4.2 Schematic diagram of a one-layer language model for BLA. 50

4.3 Example of loosing self-unknown property with a multi-layer language

model for BLA. 51

4.4 Architecture of our T-TA. The highlighted box and dashed arrows are

the innovations presented in this dissertation. 52

4.5 Diagonal masking of the scaled dot-product attention mechanism. The

highlighted box and dashed arrow represent the innovations reported

in this dissertation. 53

4.6 Schematic diagram of T-TA for BLA. 54

4.7 Average runtimes of each model according to the number of words on

the re-ranking task. 59

4.8 Runtimes according to the number of words for the uniLM and T-TA. 60

4.9 Runtimes according to the number of words in the GPU-augmented

environment. 60

4.10 Example of procedure for re-ranking using BERT on ASR. 61

5.1 Language autoencoding with (a) sequence-to-sequence model and (b)

bidirectional encoder. 76

5.2 Example of procedure for unsupervised STS. 80

5.3 Example of procedure for unsupervised WiC. 83

5.4 Feature extraction with language models for text classification tasks. . 89

5.5 Fine-tuning approach for text classification tasks. 90

6.1 Conditional MLM score for text evaluation. 95

6.2 Generator with MLM for pre-training discriminator. 96

6.3 Illustration of BLA for long texts. 96

x

Chapter 1

Introduction

1.1 Overview

In natural language processing (NLP), extracting useful features from raw text data

is one of the most fundamental techniques and, at the same time, one of the most

challenging tasks. Among others, word embeddings is the most popular technique for

representing words as feature vectors in a continuous space, and it has been established

as a more efficient and effective input representation rather than one-hot encoding or

term frequency-inverse document frequency. Up to this day, word embeddings has

been a basic input unit of state-of-the-art deep learning models for various NLP tasks.

In particular, word embeddings has received great attention in that word features

can be trained with unsupervised learning or self-supervised learning by using co-

occurrence information of words appearing in a large text corpus [1, 2]. Transferring

pre-trained word embeddings to downstream tasks has achieved performance improve-

ments showing unsupervised learning helps the generalization ability of networks. Fur-

thermore, pre-trained word embeddings can capture semantic by themselves, as in the

following examples.

1

Male-Female: xking − xman + xwoman ≈ xqueen

Verb Tense: xswimming − xswam + xwalked ≈ xwalking
Country-Capital: xSeoul − xKorea + xBeijing ≈ xChina

Like this, unsupervised representation learning in NLP is helpful to not only improve

performance in downstream tasks but also summarize and understand the meaningful

features of text data or natural language.

However, word embeddings has a major limitation: words with multiple meanings

are compressed into a single representation. In other words, word embeddings alone

cannot reflect the varying sense of words, and it does not distinguish the meaning of

words in context. For example, an “apple” can be a fruit or a company name, depending

on a given context. Similarly, a “bat” can be an animal or a baseball tool, but it cannot

be distinguished without any context.

In this light, deep neural networks are popular language learners because they

are able to incorporate context information on top of word embeddings in a flexible

way. Since making good use of context information boosts the performance in natural

language processing tasks, various kinds of neural networks such as fully-connected

neural networks (FNNs) [3, 4, 1], recurrent neural networks (RNNs) [5, 6, 7], convo-

lutional neural networks (CNNs) [8], and self-attention networks (SANs) [9, 10, 11]

have been proposed. As each network has pros and cons in a relative sense, there have

been many studies on designing model architectures to compensate for each other. For

example, RNN is good to encode global context, whereas CNN is good to encode lo-

cal context. Therefore, stacking CNNs followed by RNNs may be helpful to capture

local-to-global information by taking advantage of both networks [12]. Indeed, it has

been a ubiquitous approach to customize model architectures to obtain better contex-

tual language representations in many NLP tasks [13].

However, contextualized representation learning in a supervised manner has a ma-

jor limitation in that it requires a lot of labeled samples. Otherwise, language repre-

sentations are vulnerable to new patterns of contexts that have not been encountered

2

during training. Therefore, it is desirable that contextualized language representations

can be trained with unsupervised learning on a large corpus.

Recently, NLP has taken a new turn with the success of pre-training contextual-

ized language representations in an unsupervised manner. The success has been ac-

celerated by the use of unsupervised learning called language modeling based on deep

neural networks. In language modeling, autoregressive language modeling (ALM) and

masked language modeling (MLM) are two main learning objectives.

At first, ALM is to predict the next word in a sentence given previous words.

More formally, given a text sequence x = [x1, ..., xT], ALM is the task of assign-

ing the likelihood by forward product p(x) =
T∏
t=1

p(xt|x<t) or backward product

p(x) =
1∏

t=T

p(xt|x>t). The output of the neural network language model that learns

ALM is transferred to downstream tasks in general. Embeddings from Language Mod-

els (ELMo) is the representative model in this learning objective. In ELMo, bidirec-

tional RNNs are pre-trained with the forward and backward language modelings, re-

spectively, and contextual word representations are extracted by concatenating hidden

representations of each language model for each word. In this way, ELMo provides

contextual word representations instead of (or in addition to) non-contextual word em-

beddings and achieves performance improvements in many language understanding

tasks. However, it has been pointed out that ALM is less effective in deep bidirectional

context modeling because it only utilizes unidirectional context during pre-training.

On the other hand, MLM is another famous learning objective that can learn deep

bidirectional language representations during pre-training. In the MLM task, some

(usually 15%) words in a given text are randomly replaced with a special token [MASK],

and the model predicts the original words at the masked positions in the corrupted

input. Specifically, MLM is the task of computing probabilities of masked words

{p(xt|x̂)mt}mt=1 with the assumption that masked words are independent of each

other given the corrupted input text x̂, where mt = 1 indicates xt is masked. In this

learning objective, Bidirectional Encoder Representations from Transformers (BERT)

3

is the representative model. BERT and its variants have achieved huge successes on

various downstream tasks when transferring pre-trained models and fine-tuning the

entire network. In this pre-training and fine-tuning approach, MLM has been a fun-

damental learning objective on state-of-the-art pre-training techniques that have been

explored continually. Indeed, after BERT was recently proposed, pre-training contex-

tualized language representations on a large corpus is in a spotlight [11, 14, 15, 16, 17,

18, 19, 20].

However, the use of word-level contextualized language representations for unsu-

pervised learning tasks has stayed less mature despite its importance. In other words,

much research on extracting contextualized word representations using deep bidirec-

tional language models as generic linguistic features has not been sufficiently explored.

As ELMo did, studies of extracting contextualized word representations without fine-

tuning the pre-trained network and customizing the task-specific model on top of ex-

tracted language features deserve further exploration.

As mentioned above, deep neural networks learned with ALM are known to be

insufficient to use deep contextualized word representations due to their unidirectional

nature. In comparison, MLM is the pre-training objective that enables deep and bidi-

rectional language understanding. However, this MLM has several limitations to be

used for unsupervised learning or few-shot learning tasks, which do not have a lot of

labeled samples. At first, it is necessary to construct an artificial noise with [MASK]

in the input to learn MLM. When the pre-trained model is used as the feature extrac-

tor, there is a training-inference discrepancy that [MASK] does not exist in input text

at all during inference. The severer limitation of this input corruption is that training

signals occur only at the 15% masked positions, and nothing happens at the rest of

85% unmasked positions. Specifically, contextual word representations are computed

at masked positions to predict the original word, but the hidden representations at un-

masked positions are computed not for themselves but for predicting original word

ids of masked tokens. These points make it hard to guarantee which representation

4

will be computed at a specific position for an input text without [MASK]. Therefore,

pre-trained networks with MLM appear to have unstable performance when utilized

as feature extraction.

Table 1.1: Comparison of each language modeling

Property ALM MLM BLA

Understanding of Bidirectional Context 4 © ©

Application on Supervised Learning Tasks 4 © 4

Application on Unsupervised Learning Tasks © 4 ©

This dissertation deals with an approach for extracting fully contextualized word

representations with deep bidirectional language models learned with self-supervised

learning. This dissertation introduces a new learning objective called bidirectional

language autoencoding (BLA) and discusses its effectiveness with differences from

the aforementioned learning objectives. Like MLM, BLA allows deep bidirectional

language understanding during (pre-)training. Like ALM and word embeddings, the

proposed learning objective allows the model to extract useful linguistic features at

the word-level and be used for unsupervised learning tasks. In retrospect, the MLM-

trained model seems similar to the denoising autoencoder in the image domain, but

there is a critical difference that the bottleneck to prevent copy is not in the model but

only in the input. As mentioned before, the fact that learning only occurs at masked

positions in the MLM task makes it difficult for the model to be called (denoising) au-

toencoder. The proposed BLA, on the other hand, follows the traditional autoencoder

that has a bottleneck in the model and reconstructs the input as its name. Like an im-

age autoencoder, the encoder of the model that learns the proposed learning objective

could be used for extracting fully contextualized word representations.

5

1.2 Contributions and Outline of This Dissertation

The majority of the recent deep learning research in NLP is focused on developing pre-

training algorithms for fine-tuning the whole networks on supervised learning tasks.

More precisely, their fine-tuning oriented unsupervised or self-supervised learning al-

gorithms are not effective when used as feature extraction. In contrast, BLA we pro-

pose in this dissertation has opened a new phase in deep contextualized word repre-

sentations, enabling deeper exploration into the future usability of feature extraction.

Since unsupervised linguistic feature learning in NLP helps boost task performance

and uncover interesting patterns, I decided to investigate further the space of extract-

ing deep bidirectional language representations with deep neural networks.

To this end, this dissertation compares the pros and cons of utilizing two popular

language modeling objectives, ALM and MLM, for unsupervised learning tasks. This

dissertation points out that ALM lacks in the bidirectionality for text understanding.

While MLM is better for bidirectional language understanding than ALM, MLM suf-

fers the training-inference discrepancy when extracting contextualized word represen-

tation. To overcome the limitation of MLM, this dissertation presents BLA, which is

fully bidirectional and does not suffer from the training-inference discrepancy. There-

fore, a major contribution of this dissertation is to provide a better language modeling

framework for unsupervised learning tasks that need bidirectional language under-

standing. The outline of this dissertation is below:

Firstly, Chapter 2 briefly reviews language representation models ranging from the

basic word embedding models to the recent bidirectional language representation mod-

els like BERT. While this chapter lightly mentions advanced pre-training algorithms

such as permutation language modeling [16], sequence-to-sequence language model-

ing [17, 19, 20, 21], and multilingual or multimodal pre-training [15, 22], all they are

based on masked language modeling and/or autoregressive language modeling, which

is out of the scope of this dissertation.

Chapter 3 presents a method to use MLM for sentence scoring, which is to mea-

6

sure how natural a given sentence is grammatically and semantically [23]. This task is

the most direct application of language models that compute the (pseudo-)likelihood

of a sentence. When applied to the N -best list re-ranking, the proposed MLM-based

sentence scoring method outperforms the ALM-based one in terms of accuracy. This

is the first empirical demonstration that bidirectional language models outperform uni-

directional ones for the re-ranking task on the LibriSpeech ASR Corpus [24].

In Chapter 4, however, this dissertation argues that the MLM-based method suffers

a problem of growth in computational complexity since it requires mask-and-predict

repetition as many as the number of words in a sequence [25]. This chapter introduces

BLA and compares it with other language modeling objectives ALM and MLM to

solve this limitation. To learn the proposed BLA, this chapter presents a novel deep

bidirectional language model called Transformer-based text autoencoder (T-TA). De-

tails of the proposed language model are explained in this chapter with the theoretical

demonstration. In experiments, the proposed T-TA is much faster than BERT while

maintaining the BERT’s accuracy when applying language models to the N -best list

re-ranking tasks on ASR and NMT.

Chapter 5 investigates the potential of BLA for extracting contextualized language

representations. For various NLP tasks, BLA-trained models show better performances

than MLM-trained models when applying language models to feature extraction. The

empirical study includes semantic textual similarity, word sense disambiguation [26],

and text classification tasks in the GLUE benchmark [27].

Finally, Chapter 6 concludes this dissertation with relative merits of BLA and

MLM. In addition, several directions for future research using BLA are provided at

the end of this dissertation.

7

Chapter 2

Background: Language Representation Models

This section reviews several standard language representation techniques from word

embedding to BERT.

In general, “word” is considered as a basic unit in natural language. However, the

vocabulary size could be problematic when we use the word-level text encoding. Most

general solution is using the top-k frequentest words in the total corpus. But it could

be still problematic in the specific NLP tasks like named entity recognition (NER)

since many unknown words appears in the named entity. Character embedding could

be another solution to overcome this out-of-vocabulary issue. However, it may be too

fine-grained to keep some important information and it increases the length of the text.

To reduce the vocabulary size but handle unknown word or rare word, there has

been proposed several subword-level text encoding methods such as Byte Pair Encod-

ing (BPE) [28], WordPiece [29], and SentencePiece [30]. For example, “subword” can

be split into “sub” and “word”, and we use two vectors to represent the “subword”.

As you can see in the above example, subword is in between word and character. It

seems to use more resource to compute a word, but the reality is that we can use less

footprint with the fewer subword vocabulary than word. We note that this dissertation

uses a term “token” as a basic input unit, which comprehends word, subword, or even

character.

8

2.1 Non-contextualized Word Representations: Word Em-

beddings

Word embeddings is a technique for mapping words into a continuous vector space,

and it is used as the underlying input representation in the modern NLP tasks. The

primary purpose of the use of word embeddings is to reduce the number of dimensions

for representing words in a vector form. Compressing a high dimensional and very

sparse vector space (i.e., one-hot embedding) into a low dimensional and dense vector

space is useful not only to resolve the curse of dimensionality problem but also to

express words since it is possible to give semantics that was impossible in random

indexing. Indeed, when used as the input representations, word embedding has been

shown to boost the performance in NLP tasks such as sentiment analysis.

Figure 2.1: Representing a word from one-hot encoding to a dense vector.

Word vector for each word or token x of input sequence can be represented as

following:

e(x) = I(x)WV , (2.1)

whereWV ∈ RV×d is an embedding matrix for the total vocabulary, I(x) ∈ R1×V is a

function for the one-hot encoding, where only a single digit in the whole vector is one

and the rest are zero. Practically, we use an embedding lookup table for the efficient

computation.

9

Word embeddings can be trained both in task-agnostic and task-specific fashions.

Among them, training task-agnostic word embeddings is more broadly used since it

further boosts by capturing generic word meanings learned from a large text corpora

without any label. Once trained, it can be used as a backbone embedding for any NLP

task. The pre-training of word embeddings is especially useful when the task-specific

labeled data is insufficient.

We review a representative algorithm for pre-training word embeddings known as

word2vec introduced by [1, 4]. The word2vec algorithm uses a simple neural network

model to learn word associations from a large text corpus. Word2vec can utilize either

of two model architectures to produce a distributed representation of words: continu-

ous bag-of-words (CBOW) or skip-gram.

(a) CBOW (b) Skip-gram

Figure 2.2: Architectures of (a) CBOW and (b) skip-gram.

In the CBOW architecture, the model predicts the current word from a window of

surrounding context words. The order of context words does not influence prediction

10

as the bag-of-words assumption. More formally, given a training words x1, ..., xT , the

objective of the CBOW model is to maximize the average of log probability:

1

T

T∑
t=1

logp(xt|xt−c, ..., xt−1, xt+1, ..., xt+c), (2.2)

where c is the size of the training context, p(xt|xt−c, ..., xt−1, xt+1, ..., xt+c) is defined

by the softmax function, and context vectors are projected into the same position by

averaging them.

In the skip-gram architecture, the model uses the current word to predict the sur-

rounding window of context words. More formally, the objective of the skip-gram

model is to maximize the average of log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logp(xt+j |xt), (2.3)

where p(xt+j |xt) is also defined by the softmax function. To reflect the assumption

that the more distant words are usually less related to the current word than those

close to it, skip-gram assigns weights to nearby context words more heavily than more

distant context words. According to the authors’ note, CBOW is faster while skip-gram

is slower but does a better job for infrequent words.

This dissertation omits details of other popular techniques for pre-training word

embeddings such as GloVe [2] and FastText [31]. Instead, we note that those tech-

niques including word2vec do not capture contextual meaning themselves. By apply-

ing neural networks that can treat sequential input over the trained word embedding

can capture contextual meaning, and it actually improves task-specific accuracy in

many supervised learning tasks.

However, training additional neural networks needs a lot of task-specific labels,

which is laborious to collect. As data sparsity is a major problem in building deep neu-

ral networks for most NLP tasks, learning contextual language representations from

the supervised learning tasks might be insufficient. To handle this problem, following

11

sections deal with more advanced self-supervised learning techniques for pre-training

contextual language representations.

2.2 ALM-based Language Representation Models

To pre-train contextual language representations, most methods are based on a lan-

guage modeling objective, which is simple but powerful tools for learning contextual-

ization in a task-agnostic fashion.

As mentioned earlier, autoregressive language modeling (ALM) is one of the most

successful pre-training objectives. More formally, given a text sequence x = [x1, ..., xT],

ALM is the task of assigning the likelihood by forward product p(x) =
T∏
t=1

p(xt|x<t).

Neural network language models (LMs) performs pre-training by maximizing the like-

lihood under the forward ALM:

max
θ

log pθ(x) =

T∑
t=1

log pθ(xt|x<t) =

T∑
t=1

log
exp(hθ(x1:t−1)Te(xt))∑
x′

exp(hθ(x1:t−1)Te(x′))
, (2.4)

where hθ(x1:t−1) is a context representation produced by neural models, such as RNNs

or SANs, and e(x) denotes the embedding of x. Figure 2.3a shows an example of the

autoregressive language model based on RNN.

Theoretically, RNN can process an infinite number of states. However, vanilla

RNN suffers from gradient vanishing and gradient explosion problems, and thus it

hardly capture contexts in a long sequence. To resolve these problems and effectively

use longer contexts, RNN states have been replaced by gated states such as Long Short-

Term Memory (LSTM) [32, 6] and Gated Recurrent Unit (GRU) [7]. Actually, these

RNN variants became very popular after the invent of these controlled states since they

significantly outperformed in many NLP tasks, including language modeling tasks.

However, this dissertation omits specific formulations on these sophisticated RNNs

because they are out-of-scope of this dissertation.

12

(a) forward RNNLM (b) backword RNNLM

Figure 2.3: Schematic diagrams of a (a) forward and (b) backward RNNLMs.

2.2.1 ELMo

Since an autoregressive language model is only trained to encode a unidirectional

context, it is not effective at modeling deep bidirectional contexts. On the contrary,

downstream language understanding tasks such as named entity recognition [33] and

question answering [34] often require bidirectional context information.

To fill this gap, ELMo (abbreviation of Embeddings from Language Models) was

proposed to use bidirectional context by training two RNN language models (RNNLMs)

with an additional backward product p(x) =
1∏

t=T

p(xt|x>t), shown in Figure 2.3b, as

well as the forward product. Specifically, their bidirectional RNNLM (biRNNLM) is

trained to jointly maximize the log likelihood of the forward and backward directions:

T∑
t=1

(log p(xt|x1, ..., xt−1; Θx,Θf ,Θs) + log p(xt|xt+1, ..., xT ; Θx,Θb,Θs)), (2.5)

where Θx and Θs are tied parameters for word embedding and softmax layers respec-

tively, and Θf and Θb are separate parameters for the RNNs in each direction.

13

Once trained, ELMo computes contextual word representations by concatenating

each hidden layer of bidirectional RNNs and then computing weighted sum of all

layers. More formally, the t-th token representation in ELMo is follows:

EMLot = γ
L∑
l=0

slht,l, (2.6)

where ht,l = [hft,l; hbt,l], hft,l and hbt,l are forward and backward vectors in the l-th layer,

ht,0 means the token embedding, are s = [s0, ..., sl] are softmax-normalized weights.

Figure 2.4 shows the process to get the entire ELMo vectors. ELMo vectors are often

scaled by a scalar task-specific parameter γ to aid the optimization process.

Figure 2.4: Schematic diagram of ELMo.

Note that the pre-trained weights for ELMo vectors are fixed when applied to

downstream tasks. By constructing task-specific networks on top of ELMo vectors,

just task-specific network parameters including s and γ are trained to the target task.

This is called feature-based approach in transfer learning. Since ELMo learns ALM,

its contextualized word representations can be used directly without fine-tuning pre-

trained weights. In other words, ELMo works as a linguistic feature extractor, which

is a desirable property for applying on unsupervised learning tasks.

2.2.2 GPT

GPT [10], the abbreviation for Generative Pre-Training, is another model that learns

contextualized word representations with ALM. Its training scheme is not so special.

14

However, GPT uses SAN based language models (SANLMs) rather than RNN, and

it stacks multiple SAN layers, more than or equal 12 layers, for capturing linguistic

features in a large text corpus. The configuration of SANLMs is slightly different from

RNNLMs as shown in Figure 2.5. Note that GPT uses the masking operation with an

Figure 2.5: Schematic diagram of SANLM.

upper triangular matrix in the self-attention mechanism for prevent to see the future

input, just like in the masked self-attention in the Transformer decoder.

To use the pre-trained network, fine-tuning includes minimal modification for the

target task. Unlike feature-based approach, the whole network parameters are also up-

dated during the fine-tuning stage of GPT, and this is called the fine-tuning approach.

GPT-based models often outperforms many state-of-the-art models including ELMo

on many downstream tasks. With its deeper architecture whilst unidirectional language

modeling, GPT can understand more context than ELMo, which consists of only 2 lay-

ers. Rather than building complex network blocks with random initialization on top of

shallow pre-trained models, building simple task-specific networks on top of deep pre-

trained networks is empirically proven to be more powerful. Besides, using BPE, the

subword-level vocabulary, instead of the word-level vocabulary is another difference

between GPT and ELMo.

There have been more developments of GPT such as GPT-2 [35] and GPT-3 [36].

15

Rather than supervised learning tasks, they focus more on unsupervised learning and

few-shot learning settings, showing that bigger models, larger data, and longer training

are important for unsupervised or few-shot learning. This is because the main training

task of GPT series is still ALM, and thus they only use unidirectional context. While

advanced GPT focuses no longer on supervised learning tasks and the fine-tuning ap-

proach, the first GPT promotes the fine-tuning approach and gives a motivation to

BERT.

2.3 MLM-based Language Representation Models

2.3.1 BERT

BERT [37] is the abbreviation of Bidirectional Encoder Representations from Trans-

formers, and is based on the Transformer encoder (Figure 2.9), as in the name. BERT

marked a milestone in the recent NLP thanks to its simple and effective pre-training

method for improving the fine-tuning approach. The originality of BERT is its pre-

training objective, called masked language modeling (MLM) which is inspired by the

Cloze task [38]. The MLM task randomly masks some of the tokens from the input,

and the objective is to predict the original vocabulary id of the masked token based

only on its context. Specifically, they replace 15% of the tokens with [MASK], which

is a newly introduced special symbol only used for pre-training stage. To fill the gap

between pre-training and fine-tuning of the emergence of [MASK], 13% of the input

tokens are changed to [MASK], 1.5% of the input tokens are changed to a random

token, and 1.5% of the masked tokens remains unchanged but training occurs on all

15% of the masked positions.

In other words, BERT is similar to the denoising auto-encoding. More formally,

for a text sequence x, BERT first constructs a corrupted version x̂ with the masked

16

Figure 2.6: Schematic diagram of MLM. Dashed arrows denote not used during MLM

training.

tokens x̄. The training objective is to reconstruct x̄ from x̂

max
θ

log pθ(x̄|x̂) ≈
T∑
t=1

mt log pθ(xt|x̂) =
T∑
t=1

mt log
exp(Hθ(x̂)T

t e(xt))∑
x′

exp(hθ(x̂)T
t e(x

′))
, (2.7)

where mt = 1 indicates xt is masked, and Hθ is a Transformer that maps a length-T

text sequence x into a sequence of hidden vectors Hθ(x) = [Hθ(x)1, ...,Hθ(x)T].

Unlike left-to-right (autoregressive) language model pre-training, the MLM objec-

tive enables the representation to fuse the left and the right context, which allows us to

pre-train a deep bidirectional Transformer. While autoregressive language models like

GPT is also successful, but unidirectional restrictions are sub-optimal for sentence-

level tasks, and could be very harmful when applying fine-tuning based approaches to

token-level tasks such as question answering, where it is crucial to incorporate context

from both directions. Although ELMo uses the left and right context during the fine-

tuning stage, separate pre-training of the left-to-right and the right-to-left language

models is limited to the shallow fusion.

To make the BERT model to understand sentence relationship in a self-supervised

learning, BERT has another pre-training objective called next sentence prediction (NSP).

This is because many important downstream tasks such as question answering and

17

natural language inference are based on understanding the relationship between two

sentences, which is not directly captured by language modeling. Specifically, NSP is

to predict whether the subsequent sentence is the real next sentence or a randomly

sampled one. Although NSP is controversial to the robustness of BERT [14], distin-

guishing two input sentences in the bottom input representations is still universal. To

learn sentence relationship in the self-supervised learning, follow-up researches has

proposed other tasks such as sentence order prediction [39].

Figure 2.7: Illustration of input representations of BERT.

Figure 2.7 shows that input representations of BERT are the sum of token em-

beddings, segment embeddings and position embeddings, where all embeddings are

trainable parameters. Segment embeddings are invented for distinguishing two input

sentences and learning sentence relationship. [CLS] and [SEP] symbols are special

tokens to represent the start of the document and the end of the sentence, respectively.

Similar to GPT, BERT uses subword vocabulary, WordPiece, rather than word-level

vocabulary. For example in Figure 2.7, the word “playing” is divided into “play” and

“ing”, and a special symbol “##” in front of “ing” is for showing the middle of the

word and distinguish with the space character.

BERT showed that pre-trained representations reduce the need for many heavily-

engineered task-specific architectures or hand-crafted linguistic features. Since BERT

achieved tremendous performance improvements on many downstream tasks, the fine-

18

tuning approach has been major trend in NLP rather than the feature-based approach.

2.3.2 Other Language Representation Models

The MLM objective allows the model to be pre-trained to better capture bidirec-

tional context than ALM. However, the input to BERT contains artificial symbols like

[MASK] that never occur in downstream tasks, which creates a pretrain-finetune dis-

crepancy, where ALM has no such discrepancy. In addition, MLM factorizes the joint

conditional probability p(x̄|x̂) based on an independence assumption that all masked

tokens x̄ are separately reconstructed. In comparison, the ALM objective factorizes

pθ(x) using the product rule that holds universally without such an independence as-

sumption. As discussed above, ALM and MLM possess their unique advantages over

the other.

To integrate the advantages of ALM and MLM, a new language model, XLNet,

introduces another novel language modeling task called permutation language mod-

eling (PLM) [16]. Specifically, for a sequence x of length T , there are T ! different

orders to perform a valid autoregressive factorization. Intuitively, if model parameters

are shared across all factorization orders, in expectation, the model will learn to gather

information from all positions on both sides. More formally, the PLM objective can be

expressed as follows:

max
θ

Ez ZT
[

T∑
t=1

log pθ(xzt |xz<t], (2.8)

where z is a sampled permutation in all possible permutation ZT , zt and z<t are the

t-th token and the first t− 1 tokens of the permutation.

Note that the PLM objective only permutes the factorization order, not the se-

quence order, as shown in the Figure 2.8. Namely, XLNet keeps the original sequence

order, uses the positional encodings corresponding to the original sequence, and relies

on a proper attention mask in Transformers to achieve permutation of the factorization

order. This choice is necessary, since the model will only encounter text sequences with

the natural order during fine-tuning. While XLNet also introduces architectural mod-

19

Figure 2.8: Schematic diagram of PLM. Dashed arrows denote that the only position

information without token information is forwarded to the upper layer. Note that the

sequence oreder is not permuted, and input and output of PLM is the same instead of

delayed. To achieve permutation of the factorization order 3→ 2→ 4→ 1, the model

should rely on a proper attention mask in Transformer.

20

ifications based on self-attention networks such as two-stream self-attention to learn

PLM, we do not include those contents because they are too many details unrelated to

this dissertation.

In addition to GPT, BERT, and XLNet, pre-training deep and bidirectional lan-

guage representations in the self-supervised learning has been widely adopted in the

NLP domain. For example, there have been advanced pre-training techniques such as

RoBERTa [14] and ELECTRA [18], but their training objectives are still based on the

BERT’s MLM. Similarly, there have been extended approaches such as XLM [15],

UniLM [17], MASS [19], BART [20], and T-5 [21], but their targets are pre-training

sequence-to-sequence models and their training objectives are the variants of MLM.

Although building deeper networks, using larger text corpus, and training with larger

batch size are empirically proven to be important in the literature, those problems are

out of the scope of this dissertation.

However, this dissertation argues that MLM is only for the fine-tuning approach.

Due to the training-inference discrepancy, caused by the artificial [MASK] token dur-

ing training, MLM is limited to the fine-tuning approach, which requires a lot of la-

beled samples for supervised learning tasks.

2.4 Base Language Model Architecture: SAN

As this dissertation mainly deals with SAN based language models throughout the

dissertation, this section reviews the architecture of the Transformer model [9], which

is a sequence-to-sequence model originally developed for the task of neural machine

translation (NMT).

As most competitive neural machine translation models, Transformer has an encoder-

decoder architecture. Both the encoder and decoder have stacked self-attention and

point-wise fully connected layers, shown in Figure 2.9. A residual connection [40]

around each of sub-layers followed by layer normalization [41, 42] is employed to im-

21

Figure 2.9: Architecture of the Transformer model.

22

prove the training. Namely, the output of each sub-layer is LayerNorm(x+Sublayer(x)).

To enable these residual connections, all sub-layers as well as the embedding layers

produce outputs of the same dimension throughout the model.

In addition to the two sub-layers in each encoder layer, the decoder has a third sub-

layer, called an encoder-decoder attention, that performs attention over the output of

the encoder. To prevent positions from attending to subsequent positions and keep the

autoregressive property, the self-attention sub-layer in the decoder is modified. Specif-

ically, masking the upper triangular matrix is employed to ensure that the predictions

for position t can depend only on the previous (known) outputs at positions less than

t.

Generally speaking, each layer of SAN means the encoder layer of Transformer,

the left part of Figure 2.9. As its name shows, the key function of SAN is in its attention

function. An attention function can be described as mapping a query (Q) and a set of

key-value (K-V) pairs into an output, where the query, keys, values, and the output

are all vector sequence. It computes a weighted sum of the values as the output, where

the weight of each value is obtained by a similarity function of the query with the

corresponding key.

The SAN uses the scaled dot-product attention as its attention mechanism (Fig-

ure 2.10). Computation of the output matrix of this attention is:

Attention(Q,K, V) = Softmax(
QKT
√
d

)V, (2.9)

where the dot-product attention is scaled by 1√
d

to normalize the gradients since this

scaling factor prevents performance drop with the large values of the hidden dimension

d.

Furthermore, instead of performing a single attention function, multi-head atten-

tion is employed. Multi-head attention is beneficial to allow the model to jointly attend

to information from different representation sub-spaces at different positions. The final

23

Figure 2.10: (left) Scaled dot-product attention and (right) multi-head attention.

attention is followed as:

MultiHead(Q,K, V) = Concat(head1, ..., headh)WO, (2.10)

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i), parameter matricesWQ

i ,W
K
i ,W

V
i ∈

Rd×dh , and WO ∈ Rhdh×d. To prevent the increase of computational cost, dh = d/h

is used.

Each of the SAN layers contains the position-wise feed-forward neural networks,

which is applied to each position separately and identically. Two linear transformations

with a ReLU activation is used as following:

FNN(x) = f(xW1 + b1)W2 + b2, (2.11)

with W1 ∈ Rd×df , W2 ∈ Rdf×d, and biases b1 and b2, where df = 4d in gen-

eral. In the right-hand-side of the above equation, f is a non-linear activation function

such as sigmoid, tanh, Rectified Linear Unit (ReLU) [43], Exponential Linear Unit

(ELU) [44], and Gaussian Error Linear Unit (GELU) [45].

To make use of the order of the text sequence, SAN based model needs to be in-

jected some information about the relative or absolute position of the tokens in the

24

sequence. In order to that, positional encodings, having the same dimension d as the

embeddings, are added to the input embeddings at the bottoms of the model, shown

in Figure 2.9. While the original Transformer model uses fixed (sinusoidal) positional

encodings for NMT, most SAN-based language models used trainable positional en-

codings.

When comparing SAN with RNN and CNN in several aspects, SAN has some

benefits on computational complexity per layer and parallelization of computation. In

terms of computational complexity, SAN layer is faster than RNN layers as well as

CNN layers when the sequence length T is smaller than the representation dimension

d, which is most often the case with NLP tasks. For parallelization property, SAN and

CNN can be fully parallelized due to the constant number of sequential operations, but

a RNN requires O(T) sequential operations.

Although conventional language models are based on RNN, self-attention network

(SAN) LMs have recently shown competitive performance on sequence modeling with

a slight trade-off between speed and accuracy [46, 47]. More recently, SANLMs have

drawn a big interest in many NLP communities since BERT [37] was proposed and

achieved state-of-the-art performances on many NLP tasks. As GPT-2 is also based on

the Transformer decoder, and shows remarkable performance on text generation.

25

Chapter 3

Masked Language Modeling for Sentence Scoring

This chapter introduces methods for applying BERT to sentence scoring on automatic

speech recognition proposed in the research paper [23]. With the proposed method,

this chapter empirically proves that masked language modeling (MLM) performs bet-

ter than autoregressive language modeling (ALM) on the N -best list re-ranking task,

which is the representative unsupervised learning task.

3.1 Accurate Bidirectional LMs

3.1.1 Overview

Language modeling is the task of assigning a probability to word sequence. A language

model (LM) is an essential component in recent automatic speech recognition (ASR)

systems. Since the LM captures the possibility of any word sequence, it helps to dis-

tinguish between words with similar sounds. Conventionally, LMs have been used to

predict the probability of the next word given its preceding words. Many state-of-the-

art speech recognition systems have achieved performance improvements with these

unidirectional LMs, including n-gram LMs [48] and recurrent neural network (RNN)

LMs [5].

Recently, there have been several studies that use bidirectional LMs for ASR in

26

order to capture the full context rather than just the previous words [49, 50]. They

applied their bidirectional LMs for the N -best list re-ranking task, which is the task

of selecting the most likely sentence from the hypothesis list that is recognized from

acoustic models. Even though bidirectional networks are superior to unidirectional

ones in many applications from phoneme classification [51] to acoustic modeling [52],

previous bidirectional LMs for ASR did not show their excellence compared to the uni-

directional LMs when applying the LMs to the re-ranking. This is because there is no

interaction between the past and the future words in the bidirectional LMs, although

the words on both sides are used to predict the current word. Namely, the left and the

right representations are not fused in the bidirectional LMs since they use a shallow

concatenation of independently encoded representations, and it may limit the bidirec-

tional LM’s potential.

The same issue has been addressed by the recently suggested model, BERT (Bidi-

rectional Encoder Representations from Transformers) [37]. In the BERT, the model is

mainly trained to predict a masked word from its context in order to enable the model to

fuse the left and the right representations, unlike the previous bidirectional LMs. Their

work proves the importance of the interaction between the past and the future words in

language understanding by achieving significant success on many downstream tasks

such as text classification [53] and question answering [34]. Therefore, the BERT is a

promising bidirectional LM for the task of the N -best list re-ranking [11].

3.1.2 Contributions

First, we develop an approach of adjusting the BERT to the re-ranking task, and verify

the empirical effectiveness of the BERT for ASR. The core idea of our approach is to

bridge the gap between training and testing environments. For training, we simplify the

training objective and the input pipeline of the original BERT. Specifically, we focus

only on the “masked word prediction” task and its relevant pipeline from the original

BERT, and discard the “next sentence prediction” task because only one sentence is

27

taken at inference. For testing, we mask each word one at a time in a given sentence,

and then make the bidirectional LM predict the probability of the original word at the

masked position from its context. We consider that hiding the target word is essential

to obtain the proper probability by preventing the bidirectional LM from getting a

meaninglessly high probability of the exposed words. The score of the sentence is

obtained by aggregating all the probabilities, and this score is used to re-score the

N -best list of the speech recognition outputs. Although it may not be a meaningful

sentence probability like perplexity, this sentence score can be interpreted as a measure

of naturalness of a given sentence conditioned on the bidirectional LM.

We conduct experiments on the 1000-hour LibriSpeech ASR corpus [24]. We first

obtain the N -best hypothesis lists from an acoustic model that we implement, and

we use our bidirectional LM for re-ranking them to reduce the final word error rates

(WERs). Our bidirectional LM achieves 1.61% and 3.00% absolute reductions in WER

on the test-clean and test-other sets, which are the subsets of LibriSpeech corpus, while

the WER of the acoustic model is 7.26% and 20.37%. Moreover, we empirically prove

that our sentence scoring method that uses bidirectional LM significantly outperforms

not only the unidirectional LM but the combination of the forward and backward LMs

regardless of the experimental conditions. In addition, an analysis of where WERs oc-

cur in a sentence shows that the bidirectional LM is more robust than the unidirectional

LM especially when a recognized sentence is short or a misrecognized word is at the

earlier part of the sentence. Through these results, we demonstrate that the left and

right representations in the bidirectional LM should be fused for scoring a sentence.

It is the first study for empirically demonstrating not only that the bidirectional

LM is notably better than the unidirectional LM for the N -best list re-ranking on a

practical scenario, but also that the BERT is successfully applied to the unsupervised

learning task of measuring the naturalness of a given sentence.

28

3.2 Related Works

3.2.1 Bidirectional LMs in NLP

In natural language processing (NLP), many bidirectional language models (LMs)

have been studied [54, 55, 37]. [54] investigated the training of bidirectional recurrent

neural network language models (RNNLMs) using noise contrastive estimation. ELMo

(Embeddings from Language Models) [55] used bidirectional LMs in order to ob-

tain the contextualized word representations, which were trained with large plain text.

Also, [55] proposed the method of transferring the forward and backward RNNLMs

in order to improve the performances on many downstream tasks from text classifica-

tion [53] to question answering [34].

3.2.2 Bidirectional LMs for ASR

There have been several studies on bidirectional RNNLMs in automatic speech recog-

nition (ASR) [56, 49, 50]. [56] interpolated the scores obtained from the forward and

backward RNNLMs, which were trained independently. [49, 50] investigated the train-

ing of bidirectional RNNLMs with jointly conditioned on backward and forward rep-

resentations. However, the bidirectional LMs achieved small or no improvements over

their unidirectional LM counterparts for the N -best list re-ranking. To the best of our

knowledge, however, no study is conducted on the N -best list re-ranking using BERT.

While [11] mentioned the re-ranking using BERT, but they did not conduct experi-

ments in practice.

29

3.3 Methodology

One of the main interests in this part is to demonstrate the superiority of MLM for sen-

tence scoring over ALM. For a fair comparison of MLM and ALM, the two LMs must

have the same architecture. As our bidirectional LM is a variant of the BERT [37],

which consists of the encoder of the Transformer [9], we also construct the unidi-

rectional LM based on this self-attention network (SAN). Although recurrent neural

networks (RNNs) appear to be a natural choice for language modeling, SANLMs have

recently shown competitive performance on sequence modeling with a slight trade-off

between speed and accuracy [46, 47]. From these reasons, this paper only considers

the bidirectional SANLM (biSANLM) and the unidirectional SANLM (uniSANLM)

for the re-ranking tasks.

3.3.1 Architecture of SAN-based LMs

We deal with the language models (LMs) that are based on the self-attention network

(SAN) as shown in Figure 3.1. Self-attention is an attention mechanism that com-

putes the representation of a single sequence by relating all positions by themselves.

As shown in Figure 3.1b, this computation is done by using the scaled dot-product

attention:

Attention(Q,K, V) = Softmax(
QKT
√
dk

)V, (3.1)

where Q,K, V are query, key, value matrices respectively, which are generated from

the input sequence X l ∈ RT×d with the number of words T and the input dimension

d. To leverage the capacity of the SAN, multi-head self-attention is applied:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)WO,

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i),

(3.2)

WQ
i ,W

K
i ,W

V
i ∈ Rd×dk and WO ∈ Rdkh×d are the parameter matrices for projec-

tions with the number of heads h, and dk = d/h is used for reducing the computational

30

Figure 3.1: Architectures of (a) the self-attention network language model and (b) the

scaled dot-product attention.

31

cost. The position-wise feed-forward network, the layer normalization with the resid-

ual connection, and dropout are also used in the SAN module for effective training of

the model as in the original Transformer [9].

To construct the conventional unidirectional LM, the optional operation of masking

the key-query attention in the scaled dot-product attention should be used. This mask-

ing operation prevents words from attending to the future words by making the upper

triangle of the key-query attention to be 0 as in the decoder of the Transformer [9]. To

make the LM aware of the order of the words in the sequence, the position embedding

XP ∈ RT×d is added to the sentence embedding XS ∈ RT×d at the bottom of the

encoder, and thus we have X l = XS + XP as the input of the LM. On top of this

input, we can build an encoder by stacking the SAN layers as many as we want. The

output sequence of the highest layer, Y L ∈ RT×d with the number of layers L, is

used to predict the probabilities of the words through the softmax layer with the linear

projection.

The unidirectional LM is trained with the “next word prediction” task. Figure 3.2a

shows and schematic diagram of the uniSANLM that predicts next word using only its

preceding words. We consider the sum of all log-likelihoods of each word in an input

sentence as the sentence score of the uniSANLM.

3.3.2 Sentence Scoring with SANLMs

In this section, we present the sentence scoring method which uses bidirectional lan-

guage model (LM) for re-ranking the N -best list. First, we outline the construction of

our bidirectional SANLM (biSANLM) which is a variant of the BERT [37]. we then

introduce the procedure of the sentence scoring using biSANLM.

BERT as BiSANLM

BERT is a recently proposed language representation model that consists of a multi-

layer bidirectional Transformer encoder [37]. Unlike the traditional LM that predicts

32

Figure 3.2: Schematic diagram of the SANLMs.

a word from its left context, BERT predicts a word from its left and right context as

depicted in Figure 3.2b. In training the BERT, we mask some words and let the model

predict the original words before they are masked, and this task is called “masked

language modeling”. The BERT benefits a lot from the fusing of the left and right

representations, and it can achieve state-of-the-art performances by transferring the

pre-trained BERT to many downstream tasks [37].

The original BERT has one more training objective called “next sentence predic-

tion”, which is designed to learn the relationship between two sentences. For this ob-

jective, the BERT has an additional construction of adding segment embedding as well

as the corresponding input processing. The next sentence prediction task is proven to

be beneficial to some downstream tasks such as question answering and natural lan-

guage inference, which need understanding sentence relationship.

We now explain the construction of our biSANLM, which is used for scoring a

given sentence in the next section. The core idea of developing our biSANLM is to

bridge the gap between the training and testing environments. Note that the archi-

33

tecture of the biSANLM is the same with that of uniSANLM for a fair compari-

son, including the summation of sentence embedding and position embeddings, the

SAN layer, and the softmax layer (Figure 3.1a). Unlike the uniSANLM, however, the

biSANLM do not use the masking operation so as to catch the left and right context

during the sentence scoring.

Our training approach has many differences from that of the BERT because our

purpose of training bidirectional LM is for scoring a sentence rather than for fine-

tuning the model to the other task [37]. To train our biSANLM, we only consider

the masked word prediction task from the BERT [37], and make several adjustments:

First, our training instance has a single sentence (maximum of 128 words) instead of

multiple sentences. Second, we randomly sample some words from the sentence like

in the BERT, but replace them by [MASK] tokens all the time unlike in the BERT

[37]. Lastly, the maximum number of masked tokens in a training instance is limited

by the small number of 4, because our instance has only one sentence and too much

loss in information is unhelpful to train the model. Note that we make the training

instances have multiple masked tokens [MASK] for efficient training, while we make

the inference instance have only one [MASK] for the sentence scoring.

In addition, we neglect the next sentence prediction task of the BERT for training

our biSANLM because this objective is not designed to learn to evaluate the probability

of a sentence. We also exclude the segment embedding from the input representation

of the original BERT, and ignore the [CLS] and [SEP] tokens from input processing

and our vocabulary. Even in our preliminary study, we observe that this task is not

helpful to language modeling, but rather hampers the predicting the masked word.

Discarding the next sentence prediction task with its corresponding input processing

is another difference between our biSANLM and the original BERT.

34

Sentence Scoring Method Using BiSANLM

This section introduces our sentence scoring method that adopts the masked word

prediction of the BERT [37]. The basic principle of our sentence scoring is to mask

one word in a given sentence and then compute the probability of the original word on

the masked position using the trained biSANLM. Because the whole sentence with the

masked word is taken to the model as an input, both past and future representations

can be fused during prediction.

Our sentence scoring method takes the following procedure: First, we create a set

of instances from a given sentence by replacing each word with the predefined token

[MASK] one at a time. For example, if the sentence has seven words, we create seven

instances as below:

• A given sentence:

move the vat over the hot fire

• A set of instances we create:

1. Input = [MASK] the vat over the hot fire

Label = move

2. Input = move [MASK] vat over the hot fire

Label = the

· · ·

7. Input = move the vat over the hot [MASK]

Label = fire

After the creation, our bidirectional LM takes each instance and computes the likeli-

hood of the original word in the masked position as shown in Figure 3.2b. Finally, the

score of the given sentence is obtained by summing all log-likelihoods of the masked

words from each input instance. Although it may not be a sentence probability as of

35

traditional LM, the score can still be used for the N -best list re-ranking conditioned

on the biSANLM. We note that the past and future words are connected through the

designated token [MASK] in the input instance, and thus we can make our biSANLM

have interactions between both sides without making the prediction task trivial.

3.3.3 Re-ranking the N-best List with SANLMs

Figure 3.3: Example of procedure for re-ranking using BERT on ASR.

Figure 3.3 shows an example of procedure for re-ranking using BERT on the ASR

system. We note that BERT can be replaced with any language model including the

proposed biSANLM and conventional uniSANLM.

We consider the sum of all log-likelihoods of each word as the sentence score in

the uniSANLM. Likewise, We consider the sum of all log-likelihoods of each masked

word in each input sentence as the sentence score of the biSANLM. Following the

previous works on bidirectional LMs for speech recognition [49, 50], we use our sen-

tence score for re-ranking the N -best hypotheses. We linearly interpolate the scores

obtained by the acoustic model (AM) and the language model (LM):

score = (1− λ) · scoreAM + λ · scoreLM, (3.3)

where λ is the interpolation weight, which is determined empirically on development

data. For a fair comparison in terms of information, we average the scores of the for-

ward and the backward SANLMs like scoreLM = (scoreuniSANLMfw
+scoreuniSANLMbw

)/2,

which is an ELMo-like bidirectional LM.

36

3.4 Experiments

We evaluate the proposed approach on the LibriSpeech ASR task [24]. The 960-hour of

training data is used to train an acoustic model, which is our base speech recognition

system. We obtain the 100-best hypothesis list for each audio in development and

test data using the acoustic model, and then use language models (LMs) to rescore

these 100-best lists. For comparison, we use our biSANLM, the forward uniSANLM,

and the backward uniSANLM. The details of the acoustic model and language model

settings are explained in the following sections.

3.4.1 Acoustic Model Setups

In this study, we use the attention-based seq2seq model Listen, Attend and Spell (LAS)

[52] as our acoustic model with some differences. First, there are additional bottle-

neck fully connected (FC) layers between every bidirectional long-short term memory

(BLSTM) layer. Second, the number of time steps is reduced in half by just subsam-

pling hidden states for even number time steps before the FC layer, instead of concate-

nating every two hidden states. Third, LAS is trained with additional CTC objective

function because the left-to-right constraint of CTC helps LAS learn alignments be-

tween speech-text pairs [57]. Based on 5K case-insensitive sub-word units created via

unigram byte-pair encoding [58],

The details of our acoustic model follow the default settings provided in ESPNet

toolkit v.0.2.0 [59]. For the input features, we use 80-band mel-scale spectrogram de-

rived from the speech signal. The encoder consists of 5-layer pyramidal-BLSTM with

subsampling after second and third layers. The decoder is comprised of 2-layer LSTM

with location-aware attention mechanism [60]. The target sequence is processed in 5K

case-insensitive sub-word units created via unigram byte-pair encoding [58]. All the

LSTM and FC layers have 1024 hidden units each. Our model is trained for 10 epochs

using Adadelta optimizer [61] with learning rate of 1e-8. Including all these hyperpa-

37

rameters, for all hyperparameters, are default values in ESPNet and we also use the

other default values.

Using this acoustic model, we obtain 100-best decoded sentences for each input

through hybrid CTC-attention based scoring [57] method, and these 100-best lists will

be used for re-ranking. Table 3.1 shows the word error rates (WERs) obtained from the

acoustic model and the oracle WERs, which is the best possible errors of the 100-best

lists on the LibriSpeech tasks.

Table 3.1: Oracle WERs of the 100-best lists on LibriSpeech

Method
dev test

clean other clean other

1-best 7.17 19.79 7.26 20.37

100-best (oracle) 2.85 12.21 2.81 12.85

3.4.2 Language Model Setups

The model parameters of our language model (LM) are as follows: L = 3 for the

number of layers, d = 512 for the dimensions of the model and the embeddings, h = 8

for the number of head. 2048 hidden units are used in the position-wise feed-forward

layers. We use trainable positional embeddings with supported sequence lengths up to

128 tokens. We use a gelu activation [62] rather than the standard relu, following [10,

37]. Weight matrix of the softmax layer is shared with the word embedding table. The

word vocabulary is used in three sizes: 10k, 20k and 40k most frequent words. For a

fair comparison in terms of the number of parameters, our biSANLM and uniSANLMs

have the same architecture and parameters.

We train the LMs with the 1.5G normalized text-only data of the official Lib-

riSpeech corpus. We use Adam optimizer [63] with learning rate of 1e-4, β1 = 0.9,

β2 = 0.999. We use a dropout probability of 0.1 on all layers. Batch size is set to 128

38

for biSANLMs and 64 for uniSANLMs, and all the LMs are trained for 1M iterations.

We confirmed that all our LMs are converged before the 1M training steps.

3.4.3 Results: Re-ranking the N-best List

In this section, we compare the LMs for the N -best re-ranking on all test sets of the

LibriSpeech ASR corpus, in which the test sets are classified as “clean” or “other”

set based on their difficulties. We first prepare 100-best hypotheses using our acoustic

model (AM), which is a base speech recognition system in our experiments. For re-

ranking the 100-best list, the AM is linearly interpolated with one or two of LMs as in

Equation 3.3.

Table 3.2 shows re-ranking results of the biSANLMs and the other LMs with dif-

ferent test sets and different vocabulary sizes |V |. The WER results show that the

biSANLM with our approach is consistently and significantly better than the uniSANLM

regardless of the test set and the vocabulary size. While WER reductions are also ob-

served from the backward SANLMs, amounts of WER reduction are smaller than the

forward SANLMs. Moreover, combining the forward and the backward SANLMs is

not helpful to re-ranking the N -best list. The results demonstrate that the fusion of the

left and right representations is important to predict a score of a given sentence.

The interpolation weight is set to a value that achieves the best performance in the

development sets. We find that λ = 0.2 and 0.3 are the best weights for dev-clean

and dev-other sets respectively. Considering that the dev-other set is more difficult for

the acoustic model to recognize, it is reasonable to have larger interpolation weight in

dev-other (λ = 0.3) than in dev-clean (λ = 0.2).

Towards Further Improvements

To see greater performance improvements, we conduct linear interpolation of the biSANLM

and the uniSANLM for further improvements:

scoreLM = (1− α) · scoreuniSANLM + α · scorebiSANLM,

39

Table 3.2: WERs for unidirectional and bidirectional SANLMs interpolated with the

baseline model on LibriSpeech

Model |V |
dev test

clean other clean other

AM only 7.17 19.79 7.26 20.37

+ biSANLM

10k 5.65 16.85 5.69 17.59

20k 5.57 16.71 5.68 17.37

40k 5.52 16.61 5.65 17.44

+ uniSANLMfw

10k 6.09 17.50 6.08 18.33

20k 6.05 17.48 6.11 18.25

40k 6.08 17.32 6.11 18.13

+ uniSANLMbw

10k 6.15 17.78 6.24 18.51

20k 6.17 17.60 6.22 18.49

40k 6.17 17.57 6.24 18.29

+ uniSANLMfw

+ uniSANLMbw

10k 6.11 17.71 6.15 18.41

20k 6.12 17.52 6.16 18.32

40k 6.16 17.42 6.18 18.22

where α is another interpolation weight and scoreLM is used in Equation 3.3. We find

α = 1 shows the best performances on all dev sets, which means only the biSANLM

is used for interpolation (log-linear interpolation of the two LMs shows the same phe-

nomenon). Contrary to our first expectation, the biSANLM and the uniSANLM do not

complement each other in our experiments.

40

3.4.4 Analysis: Misrecognized Position

To understand how bidirectional LMs is better than unidirectional LMs in re-ranking

tasks, we analyze the position of the misrecognized words to see where the “word

error” occurs. We assume that bidirectional LMs will be more effective than unidirec-

tional LMs particularly when a recognized sentence is short or a misrecognized word

is at the beginning of the sentence. This is reasonable assumption since unidirectional

LMs also can utilize enough context when the sentence is long or misrecognized words

are at the end of the sentence.

Figure 3.4: Error count by word position.

Figure 3.4 shows the total number of the misrecognized words for each model

according to the position of the final hypotheses. Analysis shows that the bidirectional

LM is more robust than the unidirectional LM at the earlier position (< 30) of the

sentence. At the latter position (> 30) of a long sentence, however, the gap between the

unidirectional LM and bidirectional LM is reduced. From this analysis, we can confirm

our assumption that unidirectional LMs also perform well in general, but bidirectional

LM are more powerful especially when erroneous words appear in the beginning of

the recognized sentence.

Consequently, all experimental results demonstrate that our sentence scoring method

41

using the biSANLM is almost strictly better than the traditional method using uniSANLM

for the N -best list re-ranking. As far as we know, this is the first study that the bidi-

rectional language model significantly and consistently outperforms the unidirectional

language model for speech recognition.

42

3.5 Summary of MLM for Sentence Scoring

In this chapter, we proposed a sentence scoring method using a biSANLM and verified

its effectiveness for the N -best list re-ranking in automatic speech recognition. By

adapting BERT to the sentence scoring, the left and right representations are fused in

our biSANLM unlike previous bidirectional LMs for ASR. Experimental results on

the LibriSpeech ASR tasks show that the proposed sentence scoring method with our

biSANLM significantly and consistently outperforms the conventional uniSANLM for

re-ranking the N -best list. In addition, we confirm that bidirectional LMs are more

robust than unidirectional LMs especially when a recognized sentence is short or the

earlier part of the sentence is misrecognized.

We can conclude that a MLM-trained model (like biSANLM) understands a given

sentence better than a ALM-trained model (like uniSANLM) on unsupervised learning

tasks as well as on supervised learning tasks. Indeed, [64] supports this conclusion

with more experimental results in a large scale. However, MLM-trained models has a

critical limitation that their computational complexities increase by a factor ofO(T) to

compute likelihoods of word sequence of length T . This mask-and-predict repetition

will be tackled in detail in the next chapter.

43

Chapter 4

Bidirectional Language Autoencoding for Sentence Scor-

ing

This chapter introduces bidirectional language autoencoding (BLA), which is a new

language modeling objective proposed in the research paper [25]. Even though masked

language modeling (MLM) has achieved performance improvements in many NLP

tasks over autoregressive language modeling (ALM) including the N -best list re-

ranking, MLM is still limited by repetitive inferences for computing the pseudo-likelihood

of a given sentence. To resolve this limitation, we propose a novel deep bidirectional

language model called a Transformer-based text autoencoder (T-TA) that learns BLA.

The proposed BLA-trained model performs much faster than the MLM-trained model

on re-ranking tasks while maintaining the accuracy of MLM.

4.1 Fast and Accurate Bidirectional LMs

4.1.1 Overview

A language model is an essential component of many natural language processing

(NLP) applications ranging from automatic speech recognition (ASR) [52, 24] to neu-

ral machine translation (NMT) [65, 66, 9]. Recently, the Bidirectional Encoder Rep-

44

resentations from Transformers (BERT) [37] and its variations have led to significant

improvements in learning natural language representation and have achieved state-of-

the-art performances on various downstream tasks such as the General Language Un-

derstanding Evaluation (GLUE) benchmark [27] and question answering [34]. BERT

continues to succeed in various unsupervised tasks, such as the N -best list reranking

for ASR and NMT [23, 64], confirming that deep bidirectional language models are

useful in unsupervised applications as well.

However, concerning its applications to unsupervised learning tasks, BERT is sig-

nificantly inefficient at computing language representations at the inference stage [23,

64]. During training, BERT adopts the masked language modeling (MLM) objective,

which is to predict the original word of the explicitly masked word from the input

sequence. Following the MLM objective, the probability of each word should be com-

puted by a two-step process: masking a word in the input and feeding the result to

BERT. During the inference stage, this process is repeated T times to obtain the prob-

abilities of all words within a text sequence [11, 23, 64], resulting in a computational

complexity of O(T 3)1 in terms of the number of words T . Hence, it is necessary to

reduce the computational complexity when applying the model to situations where the

inference time is critical, e.g., mobile environments and real-time systems [67, 39].

Considering this limitation of BERT, we raise a new research question: “Can we con-

struct a deep bidirectional language model with a minimal inference time while main-

taining the accuracy of BERT?”

4.1.2 Contributions

In this chapter, in response to the question above, we propose a novel bidirectional

language model named the Transformer-based text autoencoder (T-TA), which has a

reduced computational complexity ofO(T 2) when applying the model to unsupervised

applications. The proposed model is trained with a new learning objective named bidi-

1A complexity of O(T 2) is derived from the per-layer complexity of the Transformer [9].

45

rectional language autoencoding (BLA). The BLA objective, which allows the target

labels to be the same as the text input, is to predict every token in the input sequence

simultaneously without merely copying the input to the output. To learn the proposed

objective, we devise both a diagonal masking operation and an input isolation mech-

anism inside the T-TA based on the Transformer encoder [9]. These components enable

the proposed T-TA to compute contextualized language representations at once while

maintaining the benefits of the deep bidirectional architecture of BERT.

We conduct experiments onN -best list re-ranking tasks in automatic speech recog-

nition (ASR) and neural machine translation (NMT). First, by conducting runtime ex-

periments in a CPU environment, we show that the proposed T-TA is 6.35 times faster

than the BERT-like model in the re-ranking task. Second, with its faster inference time,

T-TA achieves competitive performances relative to BERT on re-ranking tasks. Further

analysis shows that

46

4.2 Related Works

4.2.1 Bidirectional LMs for Unsupervised Tasks

For unsupervised tasks, researchers have adopted recently developed language-representation

models and investigated their effectiveness; a typical example is the N -best list re-

ranking for ASR and NMT tasks. In particular, studies have integrated left-to-right

and right-to-left language models [49, 50, 68] to outperform conventional unidirec-

tional language models [5, 69] in these tasks. Furthermore, BERT-based approaches

have been explored and have achieved significant performance improvements on these

tasks because bidirectional language models yield the pseudo-log-likelihood of a given

sentence, and this score is useful in ranking the N -best hypotheses [11, 64].

4.2.2 Consideration of Inference Speed

Another line of research involves reducing the computation time and memory con-

sumption of BERT. [39] proposed parameter-reduction techniques, factorized embed-

ding parameterization and cross-layer parameter sharing and reported 18 times fewer

parameters and a 1.7-fold increase in the training time. Similarly, [67] presented a

method to pretrain a smaller model that can be fine-tuned for downstream tasks and

achieved 1.4 times fewer parameters with a 1.6-fold increase in the inference time.

However, none of these studies developed methods that directly revise the BERT ar-

chitecture to reduce the computational complexity during the inference stage.

47

4.3 Methodology

One of the main interests in this chapter is to develop a new deep bidirectional lan-

guage model named T-TA and to demonstrate the superiority of T-TA for sentence scor-

ing over two baseline language models: (1) a unidirectional language model (uniLM)

that learns autoregressive language modeling (ALM) and (2) a bidirectional language

model (biLM) that learns masked language modeling (MLM). As our T-TA is a vari-

ant of the BERT [37], which consists of the encoder of the Transformer [9], we also

construct uniLM and biLM based on this self-attention network (SAN) as in the Chap-

ter 3. We first review ALM and MLM briefly in Section 4.3.1, and introduce our bidi-

rectional language autoencoding (BLA) in Section 4.3.2 and its model architecture in

Section 4.3.3. We note that all language models have the same architecture for a fair

comparison.

4.3.1 Baselines: ALM for UniLM and MLM for BiLM

(a) UniLM for ALM (b) BiLM for MLM

Figure 4.1: Schematic diagram of SAN-based (a) uniLM and (b) biLM.

In a conventional language modeling task, the i-th token xi is predicted using its

preceding context x<i = [x1, . . . , xi−1]; throughout this dissertation, this objective is

48

known as autoregressive language modeling (ALM). As shown in Figure 4.1a, we can

obtain (left-to-right) contextualized language representations HC=[HC
1 , . . . ,H

C
n] af-

ter feeding the input sequence to the ALM-trained language model only once, where

HC
i =hC(x<i) is the hidden representation of the i-th token. This dissertation takes this

unidirectional language model (uniLM) as our speed baseline. However, contextual-

ized language representations obtained from the uniLM are insufficient to accurately

encode a given text because future contexts cannot be leveraged to understand the

current tokens during the inference stage.

Recently, BERT [37] was designed to enable the full contextualization of language

representations by using the MLM objective, in which some tokens from the input

sequence are randomly masked; the objective is to predict the original tokens at the

masked positions using only their context. As in Figure 4.1b, we can obtain a contextu-

alized representation of the i-th tokenHM
i =hM(Mi(x)) by masking the token in the in-

put sequence and feeding it to the MLM-trained model, where Mi(x)=[x1, . . . , xi−1,

[MASK], xi+1, . . . , xn] signifies an external masking operation. this dissertation takes

this bidirectional language model (biLM) as our performance baseline. However, this

mask-and-predict approach should be repeated n times to obtain all the language rep-

resentations HM=[HM
1 , . . . ,H

M
n] because learning occurs only at the masked position

during the MLM training stage. Although the resulting language representations are

robust and accurate, as a consequence of this repetition, the model is significantly in-

efficient when applied to unsupervised tasks such as N -best list re-ranking [11, 64].

4.3.2 BLA: New Language Modeling Objective

In this dissertation, we propose a new learning objective named bidirectional language

autoencoding (BLA) for obtaining fully contextualized language representations with-

out repetition. The BLA objective, with which the output is the same as the input, is

to predict every token in a text sequence simultaneously without merely copying the

input to the output. For the proposed task, a language model should reproduce the

49

Figure 4.2: Schematic diagram of a one-layer language model for BLA.

whole input at once while avoiding over-fitting; otherwise, the model outputs only the

representation copied from the input representation without learning any statistics of

the language. To this end, the flow of information from the i-th input to the i-th output

should be blocked inside the model shown in Figure 4.2. From the BLA objective,

we can obtain fully contextualized language representations HL = [HL
1 , . . . ,H

L
n] all

at once, where HL
i =hL(x\i) and x\i = [x1, . . . , xi−1, xi+1, . . . , xn]. The method for

blocking the flow of information is described in the next section.

The most challenging part for the BLA task is that despite of blocking the acces-

sibility of each self-token in one layer, stacking multiple layers can make the model

to lose “self-unknown” property. For an example in Figure 4.3, each token can “see-

itself” indirectly in the two-layer architecture. Since stacking multiple layers is critical

to the performance of a language model, we should solve this challenge for developing

deep and bidirectional language model that learns our BLA.

50

Figure 4.3: Example of loosing self-unknown property with a multi-layer language

model for BLA.

4.3.3 T-TA: New Deep Bidirectional Language Model

Architecture of T-TA

In this section, we introduce the novel architecture of the proposed T-TA shown in

Figure 4.4. As indicated by its name, the T-TA architecture is based on the Trans-

former encoder [9]. To learn the proposed BLA objective, we develop both a diagonal

masking operation and an input isolation mechanism inside the T-TA. Both develop-

ments are designed to enable the language model to predict all tokens simultaneously

while maintaining the deep bidirectional property (see the descriptions in the following

subsections). We refer to Chapter 2 for the Transformer encoder [9] for other details

regarding the standard functions, such as the multi-head attention, scaled dot-product

attention mechanisms, layer normalization, and the position-wise fully connected feed-

forward network.

51

Figure 4.4: Architecture of our T-TA. The highlighted box and dashed arrows are the

innovations presented in this dissertation.

52

Diagonal Masking

Figure 4.5: Diagonal masking of the scaled dot-product attention mechanism. The

highlighted box and dashed arrow represent the innovations reported in this disser-

tation.

As shown in Figure 4.5, a diagonal masking operation is implemented inside the

scaled dot-product attention mechanism to be “self-unknown” during the inference

stage. This operation prevents information from flowing to the same position in the

next layer by masking out the diagonal values in the input of the softmax function.

Specifically, the output vector at each position is the weighted sum of the value V at

other positions, where the attention weights come from the query Q and the key K.

The diagonal mask becomes meaningless when we use it together with a residual

connection or utilize it within the multilayer architecture. To retain the self-unknown

functional, we can remove the residual connection and adopt a single-layer architec-

ture. However, it is essential to utilize a deep architecture to understand the intricate

patterns of natural language. To this end, we further develop the architecture described

in the next section.

53

Input Isolation

Figure 4.6: Schematic diagram of T-TA for BLA.

We now propose an input isolation mechanism to ensure that the residual connec-

tion and the multi-layer architecture are compatible with the aforementioned diagonal

masking operation. In the input isolation mechanism, the key and value inputs (K and

V, respectively) of all encoding layers are isolated from the network flow and are fixed

to the sum of the token embeddings and the position embeddings. Hence, only the

query inputs (Q) are updated across the layers during the inference stage by referring

to the fixed output of the embedding layer.

Additionally, we input the position embeddings to the Q of the very first encoding

layer, thereby making the self-attention mechanism effective. Otherwise, the attention

weights will be the same at all positions, and thus, the first self-attention mechanism

will function as a simple average of all the input representations (except the “self”

position). Finally, we apply the residual connection only to the query to completely

maintain unawareness. The dashed arrows in Figure 4.4 show the proposed input iso-

lation mechanism inside the T-TA.

54

By using diagonal masking and input isolation in conjunction, the T-TA can have

multiple encoder layers, enabling the T-TA to obtain high-quality contextual language

representations after feeding a sequence into the model only once. Schematic diagram

of the architecture of T-TA is shown in the Figure 4.6. Arrows denote information flow

and dotted (gray-colored) arrows denote the copy without updates.

4.3.4 Verification of the T-TA Architecture

Here, we discuss how diagonal masking with input isolation preserves the “self-unknown”

property in detail.

As shown in Figure 4.4, we have two input embeddings, namely, token embeddings

X = [X1, . . . , Xn]T ∈ Rn×d and position embeddings P = [P1, . . . , Pn]T ∈ Rn×d,

where d is an embedding dimension. From the input isolation mechanism, the key and

value K = V = X + P have the information of the input tokens and are fixed in all

layers, but the query Ql is updated across the layers during the inference stage starting

from the position embeddings Q1 = P in the first layer.

Let us consider the l-th encoding layer’s query input Ql and its output Hl = Ql+1:

Hl = SMSAN(Ql,K,V)

= g(Norm(Add(Ql, f(Ql,K,V)))),
(4.1)

where SMSAN(·) is the self-masked self-attention network, namely, the encoding

layer of the T-TA, g(x) = Norm(Add(x,FeedForward(x))) signifies two upper sub-

boxes of the encoding layer in Figure 4.4, and f(·) is the (multihead) diagonal-masked

self-attention (DMSA) mechanism. As illustrated in Figure 4.5, the DMSA module

computes Zl as follows:

Zl = f(Ql,K,V) = DMSA(Ql,K,V)

= SoftMax(DiagMask(QlKT/
√
d))V.

(4.2)

In the DMSA module, the i-th element of Zl = [Z l1, . . . , Z
l
n]T is always computed

by a weighted average of the fixed V while discarding the information of the i-th token

55

Xi in Vi. Specifically, Z li is the weighted average of V with the attention weight vector

sli, i.e., Z li = sliV, where sli = [sl1, . . . , s
l
i−1, 0, s

l
i+1, . . . , s

l
n]∈R1×n. Here, we note that

the DMSA mechanism is related only to the “self-unknown” property since no token

representations are referred to each other in subsequent transformations from Zl to

Hl. Therefore, we can guarantee that the i-th element of the query representation in

any layer, Qli, never encounters the corresponding token representation starting from

Q1
i =Pi. Consequently, the T-TA preserves the “self-unknown” property during the

inference stage while maintaining the residual connection and multilayer architecture.

4.3.5 Comparison T-TA with BERT

There are several differences between the strong baseline BERT [37] and the proposed

T-TA, while both models learn deep bidirectional language representations.

• While BERT uses an external masking operation in the input, the T-TA has an inter-

nal masking operation in the model, as we intend. Additionally, while BERT is based

on a denoising autoencoder, the T-TA is based on an autoencoder. With this novel

approach, the T-TA does not need mask-and-predict repetition during the computing

of contextual language representations. Consequently, we reduce the computational

complexity from O(T 3) with the BERT to O(T 2) with the T-TA in applications to

unsupervised learning tasks.

• As in the T-TA, feeding an intact input (without masking) into BERT is also pos-

sible. However, we argue that this process will significantly diminish the model

performance in unsupervised applications since the MLM objective does not con-

sider intact tokens much. In the next section, we include experiments that reveal the

model performance with intact inputs (described in Tables 4.5 and 4.6). For further

reference, we also suggest a previous study that reported the same opinion [64].

56

4.4 Experiments

To evaluate the proposed method, we conduct experiments on N -best list re-ranking

tasks in ASR and NMT. The following sections will demonstrate that the proposed

model is much faster than BERT during the inference stage (Section 4.4.2) while show-

ing competitive accuracy than that of BERT on re-ranking tasks (Section 4.4.3).

4.4.1 Language Model Setups

The main purpose of this dissertation is to compare the proposed T-TA with a biLM

trained with the MLM objective. For a fair comparison, each model has the same num-

ber of parameters based on the Transformer as follows: |L| = 3 self-attention layers

with d = 512 input and output dimensions, h = 8 attention heads, and df = 2048

hidden units for the position-wise feed-forward layers. We use a Gaussian error linear

unit (gelu) activation function [62] rather than the standard rectified linear unit (relu)

following OpenAI GPT [10] and BERT [37]. In our experiments, we set the position

embeddings to be trainable following BERT [37] rather than a fixed sinusoid [9] with

supported sequence lengths up to 128 tokens. We use WordPiece embeddings [29] with

a vocabulary of approximately |V | ' 30, 000 tokens. The weights of the embedding

layer and the last softmax layer of the Transformer are shared. For the speed baseline,

we also implement a uniLM that has the same number of parameters as the T-TA and

biLM.

For training, we create a training instance consisting of a single sentence with

[BOS] and [EOS] tokens at the beginning and end of each sentence, respectively.

We use 64 sentences as the training batch and train the language models over 1M

steps for ASR and 2M steps for NMT. We train the language models with Adam [63]

with an initial learning rate of 1e− 4 and coefficients of β1 = 0.9 of β2 = 0.999; the

learning rate is set to warm up over the first 50k steps, and the learning rate exhibits

linear decay. We use a dropout probability of 0.1 on all layers. Our implementation is

57

based on Google’s official code for BERT2.

To train the language models that we implement, we use an English Wikipedia

dump (approximately 13 GB in size) containing approximately 120M sentences. The

trained models are used for the re-ranking in NMT. For the ASR re-ranking task, we

use additional in-domain training data, namely, 4.0 GB of normalized text data from

the official LibriSpeech corpus containing approximately 40M sentences.

Table 4.1: Accuracy of each language model for each training task. Plain texts of the

test-clean set of LibriSpeech ASR Corpus are used in this experiment.

Method Accuracy

uniLM next token prediction 0.259

biLM masked token prediction 0.455

biLM\M self token prediction 0.732

T-TA language auto-encoding 0.498

Training accuracy of our implementations of uniLM, biLM and T-TA is shown in

Table 4.1. First, The next token prediction accuracy is approximately a half of masked

token prediction (and language auto-encoding), and this is reasonable result because

uniLM can use only unidirectional context. Since biLM has 15% independent masks

in a training instance, the accuracy for masked token prediction is lower than language

auto-encoding of T-TA. If we take mask-predict approach on biLM to each token, the

accuracy for masked token prediction increases to 0.514. The biLM\M obtains high

accuracy while biLM is only learn to MLM. It reveals that unmasked tokens in biLM

tend to forward themselves strongly.
2https://github.com/google-research/bert

58

https://github.com/google-research/bert

4.4.2 Analysis: Runtime Comparison

We first measure the runtime of each language model to compute the contextual lan-

guage representation HL ∈Rn×d of a given text sequence. In the case of the re-ranking

task, further computation is required: we compute Softmax(HLET) to obtain the like-

lihood of each token, where E ∈ R|V |×d is the weight parameter of the softmax layer.

To measure the runtime, we use an Intel(R) Core(TM) i7-6850K CPU (3.60 GHz) and

the TensorFlow 1.12.0 library with Python 3.6.8 on Ubuntu 16.04.06 LTS. In each

experiment, we measure the runtime 50 times and average the results.

Figure 4.7: Average runtimes of each model according to the number of words on the

re-ranking task.

Figure 4.7 shows that the T-TA exhibits faster runtimes than the biLM, and the gap

between the T-TA and biLM increases as the sentence becomes longer. To facilitate a

numerical comparison, we set the standard number of words to 20, which is approxi-

mately the average number of words in a contemporary English sentence [70]. In this

setup, the T-TA takes approximately 21.5 ms, while the biLM takes approximately 137

ms; hence, the T-TA is 6.37 times faster than the biLM.

We also measure the runtimes of the uniLM we implement. Figure 4.8 shows the

average runtimes of the uniLM and the T-TA for the number of words in a sentence.

Since we use subword tokens, the number of words Tw and the number of tokens T

59

Figure 4.8: Runtimes according to the number of words for the uniLM and T-TA.

can be different (Tw ≤ T).

Figure 4.9: Runtimes according to the number of words in the GPU-augmented envi-

ronment.

Additionally, we similarly measure the runtimes in a GPU-augmented environ-

ment (using GeForce GTX 1080 Ti). Figure 4.9 shows the average runtimes of the

biLM and the T-TA for the number of words in a sentence. In our 20-word standard,

the T-TA takes approximately 3.09 ms, whereas biLM takes approximately 5.56 ms,

showing that the T-TA is 1.80 times faster than the biLM. Compared to the CPU-only

environment, the speed difference is significantly reduced due to the support offered

60

by the GPU. Considering Figure 4.7, however, the CPU-only environment and GPU-

augmented environment show a similar tendency: the longer the sentence is, the more

significant the difference in the runtime between the T-TA and the biLM. With such a

fast inference time, we next demonstrate that the T-TA is as accurate as BERT.

4.4.3 Settings: Re-ranking the N-best List

Re-ranking Method

To evaluate the language models, we conduct experiments on the unsupervised task

of re-ranking the N -best list. In these experiments, we apply each language model to

re-score the 50 best candidate sentences, which are obtained in advance using each

sequence-to-sequence model on ASR and NMT.

Figure 4.10: Example of procedure for re-ranking using BERT on ASR.

Figure 4.10 shows an example of procedure for re-ranking using BERT on the

ASR system. We re-score the sentences by linearly interpolating two scores from a

sequence-to-sequence model and each language model as follows:

score = (1− λ) · scores2s + λ · scorelm,

where scores2s is the score from the sequence-to-sequence model, scorelm is the score

from the language model calculated by the sum (or mean) of the log-likelihood of each

token, and the interpolation weight λ is set to a value that leads to the best performance

in the development set.

One of the strong baseline language models, the pretrained BERT-base-uncased

model [37], is used for re-ranking tasks. We also include the re-ranking results from

61

the traditional count-based 5-gram language models trained on each dataset using the

KenLM library [71].

We note that the T-TA and biLM (including BERT) assign the pseudo-log-likelihood

to the score of a given sentence, whereas the uniLM assigns the log-likelihood. Be-

cause the re-ranking task is based on the relative scores of the n-best hypotheses, the

fact that the bidirectional models yields the pseudo-log-likelihood of a given sentence

does not impact this task [11, 64].

Implementations of Seq2SeqASR-

We use the attention-based seq2seq model Listen, Attend and Spell (LAS) [52] as

our acoustic model with some differences. First, there are additional bottleneck fully

connected (FC) layers between every bidirectional long-short term memory (BLSTM)

layer. Second, the number of time steps is reduced in half by just sub-sampling hidden

states for even number time steps before the FC layer, instead of concatenating every

two hidden states. Third, the model is trained with an additional connectionist tempo-

ral classification (CTC) objective function because the left-to-right constraint of CTC

helps learn alignments between speech-text pairs [57].

The details of our acoustic model follow the default settings provided in the effi-

cient spatial pyramid network (ESPNet) toolkit v.0.2.0 [59]. For the input features, we

use 80-band mel-scale spectrogram derived from the speech signal. The encoder con-

sists of 5-layer pyramidal-BLSTM with sub-sampling after second and third layers.

The decoder is a 2-layer bidirectional LSTM network with a location-aware atten-

tion mechanism [60]. All the layers have 1024 hidden units. The target sequence is

processed in 5K case-insensitive sub-word units created via unigram byte-pair encod-

ing [58]. Our model is trained for 20 epochs on 960h of LibriSpeech training data

using Adadelta optimizer [61] with learning rate of 1e-8. Using this acoustic model,

we obtain 50-best decoded sentences for each input through hybrid CTC-attention

based scoring [57] method, and these 50-best lists will be used for re-scoring. Table

62

4.2 shows the word error rates (WERs) obtained from the acoustic model and the or-

acle WERs, which is the best possible errors of the 50-best lists on the LibriSpeech

ASR tasks.

Table 4.2: Oracle WERs of the 50 best lists on LibriSpeech from Seq2SeqASR-

Method
dev test

clean other clean other

Seq2SeqASR- 7.17 19.79 7.26 20.37

oracle 3.18 12.98 3.19 13.61

Implementations of Seq2SeqASR+

To see the dependency on the power of ASR systems, we implement another ASR

system, Seq2SeqASR+. Since most configurations are similar to the Seq2SeqASR-, this

section details only differences. We replace a bottleneck FC layer with a VGG module

before the encoder, and it reduces the number of encoding time steps by one-quarter

through two max-pooling layers. For Seq2SeqASR+, we additionally use a pretrained

recurrent neural network language model (RNNLM) to combine the log-probability

plm of the RNNLM during decoding as follows:

log p(yn|y1:n−1)

= log pam(yn|y1:n−1) + β log plm(yn|y1:n−1),

where β is set to 0.7. Table 4.3 shows the oracle word error rates (WERs) of the 50 best

lists measured assuming that the best sentence is always picked from the candidates.

Implementations of Seq2SeqNMT

For NMT, we implement the standard Transformer model [9] using the Tensor2Tensor

library [72]. Both the encoder and the decoder of the Transformer consist of 6 lay-

63

Table 4.3: Oracle WERs of the 50 best lists on LibriSpeech from Seq2SeqASR+

Method
dev test

clean other clean other

Seq2SeqASR+ 4.11 12.31 4.31 13.14

oracle 1.80 7.90 1.96 8.39

ers with 512 hidden units, and the number of self-attention heads is 8. The maxi-

mum number of input tokens is set to 256, and we use a shared vocabulary of size

32k. For effective training, we let the token embedding layer and the last softmax

layer share their weights. The other hyperparameters of our translation system fol-

low the standard transformer_base_single_gpu setting in Google’s official

Tensor2Tensor repository3.

We train the baseline model on the standard WMT13 dataset. Fr→En and De→En

datasets with 250k steps using the Adam optimizer [63]. We use linear-warmup-square-

root-decay learning rate scheduling with the default learning rate (2.5e-4) and number

of warmup steps (16k). Using this baseline translation model, we obtain the 50 best

decoded sentences for each source through the beam search. The oracle BLEU scores

for the NMT system are shown in Table 4.4.

Table 4.4: Oracle BLEU scores of the 50 best lists on WMT13

Method
WMT13

De→En Fr→En

Seq2SeqNMT 27.83 29.63

oracle 38.18 39.58

3https://github.com/tensorflow/tensor2tensor

64

https://github.com/tensorflow/tensor2tensor

4.4.4 Results: Re-ranking the N-best List

Re-ranking on ASR

For re-ranking in ASR, we use prepared N -best lists obtained from dev and test sets

using Seq2SeqASR- and Seq2SeqASR+, which we train on the LibriSpeech ASR cor-

pus. Table 4.5 shows the word error rates (WERs) for each method after re-ranking.

The ‘other’ sets are recorded in noisier environments than the ‘clean’ sets. Bold font

denotes the best performance on each subtask, and LM with subscription w signifies

a word-level language model. The interpolation weights λ are set to be 0.2 or 0.3 in

N -best lists for Seq2SeqASR-. The interpolation weights λ are set to be 0.3 or 0.4 in

N -best lists for Seq2SeqASR+.

First, we confirm that the bidirectional models trained with the BLA (T-TA) and

MLM (biLM) objectives consistently outperform the uniLM trained with the ALM

objective. The performance gains from re-ranking are much lower in the better base

system Seq2SeqASR+, and it is evidently challenging to re-rank the N -best list using a

language model if the speech recognition model performs well enough. Interestingly,

the T-TA is competitive with (or even better than) the biLM; this may result from the

gap between the training and testing of the biLM: the biLM predicts multiple masks at

a time when training but predicts only one mask at a time when testing. Moreover, the

3-layer T-TA is better than the 12-layer BERT-base, showing that in-domain data are

critical to language model applications.

Finally, we note that feeding an intact input to BERT (the corresponding model is

denoted as “w/ BERT\M” in Table 4.5) causes the model to underperform relative to

the other models, demonstrating that the mask-and-predict approach is necessary for

effective re-ranking.

65

Table 4.5: WERs after re-ranking with each language model on LibriSpeech

Method
dev test

clean other clean other

Seq2SeqASR- 7.17 19.79 7.25 20.37

w/ n-gram 5.62 16.85 5.75 17.72

w/ BERT 5.24 16.56 5.38 17.46

w/ BERT\M 7.08 19.61 7.14 20.18

w/ uniLM 5.07 16.20 5.14 17.00

w/ biLM 4.94 16.09 5.14 16.81

w/ T-TA 4.98 16.09 5.11 16.91

Seq2SeqASR+ 4.11 12.31 4.31 13.14

w/ n-gram 3.94 11.93 4.15 12.89

w/ BERT 3.72 11.59 3.97 12.46

w/ BERT\M 4.09 12.26 4.28 13.15

w/ uniLM 3.82 11.73 4.05 12.63

w/ biLM 3.73 11.53 3.97 12.41

w/ T-TA 3.67 11.56 3.97 12.38

66

Re-ranking on NMT

To compare the re-ranking performances in another domain, NMT, we again prepare

N -best lists using Seq2SeqNMT
4 from the WMT13 German-to-English (De→En) and

French-to-English (Fr→En) test sets. Table 4.6 shows the bilingual evaluation under-

study (BLEU) scores for each method after re-ranking. Bold font denotes the best per-

formance on each sub-task, and the underlined values signify the best performances in

our implementations. Each interpolation weight becomes a value that shows the best

performance on each test set with each method in NMT. The interpolation weights λ

are 0.4 or 0.5 in the N -best lists for NMT.

Table 4.6: BLEU scores after re-ranking with each language model on WMT13

Method De→En Fr→En

Seq2SeqNMT 27.83 29.63

w/ n-gram 28.41 30.04

w/ BERT 29.31 30.52

w/ uniLM 28.80 30.21

w/ biLM 28.76 30.32

w/ T-TA 28.83 30.20

We confirm again that the bidirectional models trained with the BLA and MLM ob-

jectives perform better than the uniLM trained with the ALM objective. Additionally,

the Fr→En translation has less effect on the re-ranking than the De→En translation

because the base NMT system for Fr→En is better than that for De→En. The 12-

layer BERT model appears much better than the other models at re-ranking on NMT;

hence, the N -best hypotheses of the NMT model seem to be more indistinguishable

than those of the ASR model from a language modeling perspective.

All the re-ranking results on the ASR and NMT tasks demonstrate that the pro-
4The Seq2Seq models for De→En and Fr→En are trained independently using the t2t library [72].

67

posed T-TA performs both efficiently (similar to the uniLM) and effectively (similar to

the biLM).

4.4.5 Analysis: Re-ranking and Language models

Interpolation Weight

In our experiment settings on Librispeech ASR corpus, the interpolation weight λ

for each language model is set to a value that achieves the best performance in the

development sets. Therefore, we can interpret interpolation weight as how language

models take part in the re-ranking task. Considering that the interpolation weights for

the better ASR system Seq2SeqASR+ (λ = 0.3 for the dev-clean set, λ = 0.4 for the

dev-other set) are higher than those for Seq2SeqASR- (λ = 0.2 for the dev-clean set,

λ = 0.3 for the dev-other set), we could conclude that better N -best lists need more

intervention of language models. Considering that the interpolation weights for the

dev-other set (λ = 0.4) on ASR system Seq2SeqASR+ are higher than those for the dev-

clean set (λ = 0.3), we could conclude that language models are more important in a

noisy environment that is hard to recognize speech clearly, and the same observation

can be found on different ASR system Seq2SeqASR-.

Correlation with Language Modelings

In general, perplexity (PPL) is a measure of how well the language model is trained.

To investigate the alignment of the PPL and reranking, we compute the PPL of refer-

ence sentences from the LibriSpeech dev-clean and test-clean sets using each language

model. We can obtain the pseudoperplexity (pPPL) from the biLM and T-TA since they

do not follow the product rule, unlike the uniLM. Note that we compute the subword-

level (p)PPL (not word-level); these values are valid only in our vocabulary.

We find that the WERs are better aligned with the median of pPPLm than with

the average pPPLa. Interestingly, the pPPLa of the T-TA is similar to the PPLa of the

uniLM, but the pPPLm of the T-TA is similar to that of the biLM. We additionally

68

Method [WER] (p)PPLa (p)PPLm

dev
clean

uniLM [3.82] 341.5 70.80

biLM [3.73] (76.49) (11.93)

T-TA [3.67] (293.4) (11.69)

test
clean

uniLM [4.05] 495.5 73.18

biLM [3.97] (75.43) (12.72)

T-TA [3.97] (590.0) (12.43)

Table 4.7: (pseudo)Perplexities and corresponding WERs of the language models on

LibriSpeech.

discover that if the length of a sentence is short, the T-TA shows a very high PPL, even

higher than that of the uniLM.

Larger Language Models

In language modelings, having more layers, bigger batch size, and larger training sam-

ples is critical for the performance of language models. As there are many pre-trained

models available, we selectively report large language models’ performances on ASR

(Seq2SeqASR-) for better understanding.

In Table 4.8, we note that GPT-2 is trained on ALM, BERT and RoBERTa are

trained on MLM, where RoBERTa is an advanced version of BERT. Also, GPT-2

(117M), BERT (base), RoBERTa (base) consist of 12 SAN layers, and GPT-2 (345M),

BERT (large), RoBERTa (large) consist of 24 SAN layers.

In Table 4.8, bidirectional language modeling objectives such as MLM and BLA

is better than unidirectional language modeling like ALM, since WERs of GPT-2 al-

ways fall behind BERT and RoBERTa. In addition, pre-training on larger data is also

important to the language model’s performance (BERT (base, cased) vs RoBERTa

(base, cased)), and pre-training on bigger models is not negligible (BERT (base, cased)

69

Table 4.8: WERs after re-ranking with each large-size language model on LibriSpeech

Method
dev test

clean other clean other

baseline 7.17 19.79 7.25 20.37

uniLM (3-layer, + Libri) 5.07 16.20 5.14 17.00

biLM (3-layer, + Libri) 4.94 16.09 5.14 16.81

T-TA (3-layer, + Libri) 4.98 16.09 5.11 16.91

GPT-2 (117M, cased) [64] 5.39 16.81 5.64 17.60

BERT (base, cased) [64] 5.17 16.44 5.41 17.41

RoBERTa (base, cased) [64] 5.03 16.16 5.25 17.18

GPT-2 (345M, cased) [64] 5.15 16.48 5.30 17.26

BERT (large, cased) [64] 4.96 16.26 5.25 16.97

RoBERTa (large, cased) [64] 4.75 15.81 5.05 16.79

BERT (base, uncased) [64] 5.02 16.07 5.14 16.97

BERT (base, Only Libri.) [64] 4.63 15.56 4.79 16.50

BERT (base, + Libri.) [64] 4.37 15.17 4.58 15.96

70

vs BERT (large, cased)). Comparing BERT (base, uncased) and BERT (base, Only

Libri.), we can conclude in-domain data is important for appropriate language eval-

uation or sentence scoring. Comparing BERT (base, Only Libri.) and BERT (base, +

Libri.), pre-training LMs on a generic and large text corpus is also important.

We note that the performances of BLA-trained models will be the same as MLM-

trained models such as BERT and RoBERT. Since BERT and RoBERTa that learns

MLM require O(T) times repetitions for obtaining such results in Table 4.8, we can

conclude that BLA-trained models are the most promising language models for sen-

tence scoring.

71

4.5 Summary of BLA for Sentence Scoring

In this chapter, we pointed out that BERT-like bidirectional language models have

a trade-off between accuracy and speed for sentence scoring. To eliminate the com-

putational overload of applying MLM to unsupervised applications, we proposed a

new language modeling objective named BLA. Also, we introduced a novel language

bidirectional language model named the T-TA that learns BLA. Experimental results

demonstrated that the proposed learning objective and model architecture effectively

eliminate the speed-accuracy trade-off of MLM-trained model. Namely, T-TA main-

tained the accuracy of MLM without the loss of speed when applying it to the N -best

list re-ranking task.

We can conclude that a BLA-trained model (T-TA) understands a given sentence

similar to a MLM-trained model (biLM) and better than a ALM-trained model (uniLM)

in terms of sentence scoring or sentence likelihood. To extend this claim to general un-

supervised learning tasks, we will compare contextualized language representations

on the various unsupervised learning tasks as well as supervised learning tasks in the

next chapter.

72

Chapter 5

Bidirectional Language Autoencoding for Feature Ex-

traction

In the previous chapter, we have confirmed that our bidirectional language autoen-

coding (BLA) is more efficient than masked language modeling (MLM) and more

effective than autoregressive language modeling (ALM) for evaluating the naturalness

of a given text on sentence scoring tasks. This chapter further investigates BLA for

feature extractor on various NLP applications ranging from sentence-level to token-

level tasks. Furthermore, contextualized language representations from BLA-trained

models are tested both on unsupervised and supervised learning tasks to see potentials

of the BLA task.

5.1 Extracting Contextualized Language Representations

5.1.1 Overview

In natural language processing (NLP), extracting useful features from raw text data

is one of the most underlying techniques and one of the most challenging tasks, at

the same time. At the earlier stage, word embeddings has received a great attention in

that word features can be trained with unsupervised learning by using co-occurrence

73

information of words appearing in a large text corpus [1, 2, 44]. Recently, extracting

contextualized word representations from language modeling [55] or machine trans-

lation [73] has been shown to be more effective than using non-contextual (or static)

word embeddings.

More recently, Bidirectional Encoder Representations from Transformers (BERT) [37]

has achieved significant improvements in learning natural language representation by

showing state-of-the-art performances on various supervised learning tasks such as text

classification [27] and question answering [34]. However, we argue that contextualized

language representations extracted from BERT is not ready to use without fine-tuning

the whole network. Or, BERT should be used repeatedly to compute contextualized

language representations following its learning objective known as masked language

modeling (MLM). Otherwise, its performance will be degraded drastically due to the

training-inference discrepancy.

5.1.2 Contributions

Throughout this dissertation, we argue that bidirectional language autoencoding (BLA)

we propose is the most appropriate language modeling objective for learning deep bidi-

rectional language representations and extracting generic linguistic features. As shown

in the previous chapters, conventional autoregressive language modeling (ALM) lacks

in contextualization due to the use of unidirectional contexts during training. Further-

more, MLM has the speed-accuracy trade-off when computing contextualized lan-

guage reprensetations for unsuperivsed learning tasks.

In this chapter, we provide various experiments about how good contextualized

language representations are in different pre-trained models. First, this chapter em-

pirically examines the performance of contextualized language representations from

different language models for many unsupervised learning tasks. More precisely, tar-

get tasks are ranging from sentence-level to token-level tasks. For the sentence-level,

the BLA-trained model outperforms the MLM-trained model by up to 12 points in

74

Pearson’s r on unsupervised semantic textual similarity tasks. Furthermore, our BLA-

trained model (3-layer) outperforms the pre-trained BERT-base model (12-layer) with

a big margin in this sentence-level similarity tasks. For the token-level, the BLA-

trained model also outperforms the MLM-trained model on unsupervised words in

contexts task, and shows competitive performance with the BERT-base model. In ad-

dition to unsupervised learning tasks, we further explore BLA-trained models on su-

pervised learning tasks. Specifically, we conduct experiments on text classification

tasks in General Language Understanding Evaluation (GLUE) benchmark [27]. We

demonstrate that BLA-trained models could be a good candidate for the feature-based

approach.

75

5.2 Related Works

5.2.1 Contextualization in Language Representations

Many studies have been performed on neural network-based language models for

word-level representations. Distributed word representations were proposed and at-

tracted considerable interest, as they were considered to be fundamental building blocks

for NLP tasks [74, 3, 1]. Subsequently, researchers explored contextualized represen-

tations of text where each word has a different representation depending on the con-

text [55]. Most recently, a Transformer-based deep bidirectional model was proposed

and applied to various supervised-learning tasks with remarkable success [10, 37].

5.2.2 Word-level VS Sentence-level Representations

(a) Sequence-to-sequence (b) Bidirectional

encoder

Figure 5.1: Language autoencoding with (a) sequence-to-sequence model and (b) bidi-

rectional encoder.

When referring to an autoencoder for language modeling, sequence-to-sequence

learning approaches have been commonly used (Figure 5.1a). These approaches en-

code a given sentence into a compressed vector representation, followed by a decoder

76

that reconstructs the original sentence from the sentence-level representation based on

the autoregressive language modeling objective [65, 7, 75]. Sentence-level language

representation learning is useful for sentence-level tasks such as natural language

inference, sentiment analysis, and query categorization. However, their compressed

representations may be too simplified to solve a bunch of NLP tasks such as ques-

tion answering, machine translation, and named entity recognition. To the best of our

knowledge, however, none of these approaches consider an autoencoder that encodes

word-level representations (such as BERT) without an autoregressive decoding process

(Figure 5.1b).

77

5.3 Experiments on Unsupervised Learning Tasks

To evaluate contextualized language representations of different language modeling

objectives, we conduct experiments on unsupervised learning tasks. First, we apply

language representations of each language model to unsupervised semantic textual

similarity (STS) tasks. We then examine language representations in the words in con-

text (WiC) task.

5.3.1 Language Model Setups

For these unsupervised learning tasks, we use the same language models as in the pre-

vious chapter. Summary of configurations for each language model is in the Table 5.1.

Table 5.1: Pearson’s r × 100 results on the STS-B dataset

Configurations BERT T-TA (biLM, uniLM)

Number of layers 12 3

Number of heads 12 8

Hidden dimension 768 512

Intermediate dimension 3072 2048

Maximum sequence length 512 128

Train batch size 256 64

Train iteration 1M 2M

Total words for training 130G 16G

5.3.2 Settings: Unsupervised STS

We apply language models to an STS task, that is, measuring the similarity between the

meaning of sentence pairs. We use the STS Benchmark (STS-B) [76] and Sentences

78

Involving Compositional Knowledge (SICK) [77] datasets, both of which have a set

of sentence pairs with corresponding similarity scores. The evaluation metric of STS

is Pearson’s r between the predicted similarity scores and the reference scores of the

given sentence pairs. Example instance in the STS-B is:

Sentence1: A machine is sharpening a pencil.

Sentence2: The machine shaved the end of the pencil.

Similarity Score: 3.8/5.0

In this section, we address the unsupervised STS task to examine the inherent

ability of each language model to obtain contextual language representations, and we

mainly compare the language models that are trained on the English Wikipedia dump.

To compute the similarity score of a given sentence pair, we use the cosine similarity

of two sentence representations, where each representation is obtained by averaging

each language model’s contextual representations. Specifically, the contextual repre-

sentations of a given sentence are the outputs of the final encoding layer of each model,

denoted as context in Tables 5.2 and 5.3. For comparison, we use non-contextual rep-

resentations, which are obtained from the outputs of the embedding layer, denoted as

embed in Tables 5.2 and 5.3. Figure 5.2 shows an example of procedure for unsuper-

vised STS.

As a strong baseline for unsupervised STS tasks, we also include the 12-layer

BERT model [37], and we employ BERT in the mask-and-predict approach for com-

puting the contextual representations of each sentence. Note that we use the most

straightforward approach for the unsupervised STS task to focus on comparing token-

level language representations.

79

Figure 5.2: Example of procedure for unsupervised STS.

5.3.3 Results: Unsupervised STS

Results on STS-B

The STS-B dataset has (5749, 1500, 1379) sentence pairs with (train, dev, test) splits

and corresponding scores ranging from 0 to 5. We test the language models on the

STS-B-dev and STS-B-test sets using the simplest approach on the unsupervised STS

task. As additional baselines, we include the results of GloVe [2] and Word2Vec [4]

from the official sites of STS Benchmark1.

Table 5.2 shows our T-TA trained with the BLA objective best captures the se-

mantics of a sentence over the Transformer-based language models. “-” denotes an

infeasible value, and bold font denotes the top 2-performing models on each sub-task.

Remarkably, our 3-layer T-TA trained on a relatively small dataset outperforms the

12-layer BERT trained on a larger dataset (Wikipedia + BookCorpus). Furthermore,

the embedding representations are trained better by the ALM objective than by the

other language modeling objectives; we suppose that the uniLM depends strongly on
1http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

80

http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

Table 5.2: Pearson’s r × 100 results on the STS-B dataset

Method
STS-B-dev STS-B-test

context embed context embed

BERT 64.78 - 54.22 -

BERT\M 59.17 60.07 47.91 48.19

BERT[CLS] 29.16 17.18

uniLM 56.25 63.87 39.57 55.00

uniLM[EOS] 40.75 38.30

biLM 59.99 - 50.76 -

biLM\M 53.20 58.80 36.51 49.08

T-TA 71.88 54.75 62.27 44.74

GloVe - 52.4 - 40.6

Word2Vec - 70.0 - 56.5

81

the embedding layer due to its unidirectional context constraint.

Since the uniLM encodes all contexts in the last token, [EOS], we also use the

last representation as the sentence representation; however, this approach does not

outperform the average sentence representation. Similarly, BERT has a special token,

[CLS], which is trained for the “next sentence prediction” objective; thus, we also

use the [CLS] token to see how this model learns the sentence representation, but it

significantly underperforms the other models.

Results on SICK

We further evaluate the language models on the SICK dataset, which consists of (4934,

4906) sentence pairs with (training, testing) splits and scores ranging from 1 to 5. The

results are in Table 5.3, from which we obtain the same observations as those reported

for STS-B. “-” denotes an infeasible value, and bold font denotes the best performance

on each sub-task.

Table 5.3: Pearson’s r × 100 results on the SICK dataset

Method
SICK-test

context embed

BERT 64.31 -

BERT\M 61.18 64.63

uniLM 54.20 65.69

biLM 58.98 -

biLM\M 53.79 62.67

T-TA 69.49 60.77

All results on unsupervised STS tasks demonstrate that the T-TA learns textual

semantics best using the token-level BLA objective.

82

5.3.4 Settings: Unsupervised WiC

Depending on its context, an ambiguous word can refer to multiple, potentially un-

related, meanings. As mentioned earlier, mainstream static word embeddings, such

as Word2vec and GloVe, are unable to reflect this dynamic semantic nature. Contex-

tualised word embeddings are an attempt at addressing this limitation by computing

dynamic representations for words which can adapt based on context.

We apply language models to the words in context (WiC) dataset, where the task is

to identify the intended meaning of words [26]. WiC is framed as a binary classification

task. Example instance in the WiC dataset is:

Target word: part

Sentence1: The government must do its part.

Sentence2: Religions in all parts of the world.

Label: False

This dataset can also be viewed as an application of Word Sense Disambiguation in

practise.

Figure 5.3: Example of procedure for unsupervised WiC.

In this section, we address the unsupervised WiC task to examine the inherent

ability of each language model to obtain contextual language representations. Follow-

ing [26], we use the most straightforward approach for the unsupervised WiC task

83

to focus on comparing token-level language representations. We first obtain contex-

tualized representation of each word in the last layer, and then compute the cosine

similarity of the two word representations in different sentences. After the pre-defined

threshold, prediction can be obtained.

In this problem, we note that MLM-trained models like BERT and biLM can be di-

rectly applied by masking and predicting the target word for computing the contextual

word representations in a given sentence. Therefore, it is hard to say the BLA-trained

model (T-TA) is more efficient than MLM-trained models in the WiC task.

5.3.5 Results: Unsupervised WiC

Figure 5.3 shows an example of procedure for unsupervised WiC.

Table 5.4: Accuracy on the WiC dataset

Model Accuracy (%)

BERT 63.8

BERT\M 63.5

biLM 61.6

biLM\M 58.5

T-TA 63.2

As mentioned above, there is no difference in computational complexity between

the MLM-trained model and the BLA-trained model in the WiC task. Therefore, we

should compare accuracy of contextualized representations of the target word obtained

by each language modeling objective.

When using each language model, the train set is used for finding best threshold

calibrated by a factor of 0.1 and test on the validation set. The results are in Table 5.4. In

word-level contextualization task, T-TA outperforms biLM significantly. Furthermore,

despite of its smaller model configuration, T-TA achieves competitive performance

84

with the bigger model, BERT.

In respect of unsupervised learning tasks, empirical results in this section support

that contextualized language representations obtained from BLA-trained models are

superior to those from MLM-trained models or ALM-trained models.

85

5.4 Experiments on Supervised Learning Tasks

Following the recent trend of pre-training and fine-tuning approach, we apply our

BLA-trained models to the supervised tasks in addition to the unsupervised tasks.

First, we adopt each language model to feature extraction for supervised learning tasks

in order to see the inherent property of each pre-trained model. Then, we compare each

language model in the fine-tuning approach for the same downstream tasks, and pro-

vide a guidance to use BLA-trained models according to the application purpose.

5.4.1 Language Model Setups

The main purpose of this section is to compare the proposed BLA-trained model with

the MLM-trained model in supervised learning tasks. In this experiments,the BLA-

trained model consists of |L| = 4 self-attention layers with d = 768 input and output

dimensions, h = 12 attention heads, and df = 3072 hidden units for the position-wise

feed-forward layers. For a fair comparison, we also build the MLM-trained model that

has the same number of parameters with the BLA-trained model, but the only training

objective is different.

For training, we create each training instance following the BERT. We add [CLS]

and [SEP] tokens at the beginning and end of each sentence, respectively. Instead

of a single sentence for each training instance as in the previous experiments, a pair

of segments of sentences are concatenated with an additional [SEP] token between

them. This segment-pair is swapped at random for the task of sentence order prediction

(SOP), and it is used as the additional training objective as well as language modeling

objectives, in order to learn sentence relationship. This is because many NLP tasks like

Natural Language Inference (NLI) need to understand the relation of the two sentences.

Following BERT, the sentence representation of the MLM-trained model is ob-

tained from the [CLS] token. However, the sentence representation of the BLA-

trained model may be more suit to average pooling the sequence output of the final

86

layer. To that end, we additionally develop a more sophisticated technique that pre-

dicts sentence relation from not [CLS] but mean-pooled representations, and we de-

note this pre-training technique as SRP (abbreviation for sentence relation prediction

with mean-pooling) in the following results.

Training texts are from English Wikipedia (2,500M words) and the BookCorpus

(800M words) We use 32 sentences as the training batch and train all language models

over 1M steps. As we set maximum sequence length to 128, 32 × 128 × 1M ≈ 4G

tokens are used to pre-training, which is approximately 1.25 epoch over the 3.3 billion

word corpus. We train the language models with Adam [63] with an initial learning

rate of 1e − 4 and coefficients of β1 = 0.9 of β2 = 0.999; the learning rate is set to

warm up over the first 10k steps, and the learning rate exhibits linear decay.

Table 5.5: Accuracy on each pre-training task.

Method language modeling sentence relationship

MLM-trained 0.585 0.816

BLA-trained 0.607 0.813

Compared to 3-layer models (Table 4.1), 4-layer models (Table 5.5) achieve better

accuracy on each language modeling task.

5.4.2 Settings: Text Classification Tasks

To evaluate each language model, we apply the BLA-trained model and MLM-trained

model on 6 text classification tasks: MNLI, QQP, QNLI, SST-2, MRPC, and RTE

where all tasks are in the GLUE benchmark. While SST-2 is a single-segment classifi-

cation task, others are sentence relationship classification tasks.

MNLI: Multi-Genre Natural Language Inference is a large-scale, crowdsourced entail-

ment classification task [78]. Given a pair of sentences, the goal is to predict whether

the second sentence is an entailment, contradiction, or neutral with respect to the first

87

one. The amount of training data of MNLI is about 392k.

QQP: Quora Question Pairs is a binary classification task where the goal is to deter-

mine if two questions asked on Quora are semantically equivalent [79]. The amount of

training data of QQP is about 363k.

QNLI: Question Natural Language Inference is a version of the Stanford Question An-

swering Dataset [34] which has been converted to a binary classification task [80]. The

positive examples are (question, sentence) pairs which do contain the correct answer,

and the negative examples are (question, sentence) from the same paragraph which do

not contain the answer. The amount of training data of QNLI is about 108k.

SST-2: The Stanford Sentiment Treebank is a binary single-sentence classification task

consisting of sentences extracted from movie reviews with human annotations of their

sentiment [53]. The amount of training data of SST-2 is about 67k.

MRPC: Microsoft Research Paraphrase Corpus consists of sentence pairs automat-

ically extracted from online news sources, with human annotations for whether the

sentences in the pair are semantically equivalent [81]. The amount of training data of

MRPC is about 3.5k.

RTE: Recognizing Textual Entailment is a binary entailment task similar to MNLI,

but with much less training data [82]. The amount of training data of RTE is about

2.5k.

In text classification experiments, we train each model with Adam [63] with an

initial learning rate of 2e − 5 and coefficients of β1 = 0.9 of β2 = 0.999 during 3

epochs for each dataset with the pre-trained model weights.

5.4.3 Results: Feature Extraction

In feature extraction, pre-trained weights of each language model are frozen during

supervised learning on downstream tasks as shown in Figure 5.4. For the task-specific

network, we use a linear regression layer on top of the pooled output of each lan-

guage model to see the potential of BLA-trained models on this feature-based ap-

88

Figure 5.4: Feature extraction with language models for text classification tasks.

proach. Selected pooling strategies are the [CLS] pooling and mean pooling. We note

that MLM-trained models are also fitted without using [MASK] during the supervised

learning.

Table 5.6: Accuracies on text classification tasks.

Method Pooling MNLI QQP QNLI SST-2 MRPC RTE

BLA-trained [CLS] 46.2 70.2 64.8 66.5 68.4 59.2

BLA-trained mean 45.3 71.1 61.9 73.9 68.4 49.8

BLA-trained SRP 48.8 73.9 71.3 73.5 68.4 58.5

MLM-trained [CLS] 46.1 67.2 67.8 61.7 68.4 57.0

MLM-trained mean 45.8 71.5 66.3 70.6 68.4 53.8

MLM-trained pen. 48.5 71.0 72.7 70.6 68.4 47.7

When we see the tendency of BLA-trained models and MLM-trained models in

Table 5.6, BLA-trained models are better or equal to MLM-trained models on 5 out of

6 classification tasks. Therefore, we can conclude that BLA-trained models are better

than MLM-trained models for the usage of feature extraction on supervised learning

89

tasks. Also, the mean pooling is more suitable than the [CLS] pooling for the feature

extraction approach. We note that “pen.” in Table 5.6 denotes that the output of the

penultimate layer rather than the last layer is used for language representations with

mean pooling following the literature [37], which reports that using intermediate layers

for feature extraction is more effective than using the last layer of BERT.

We empirically demonstrate our argument that MLM-trained models are not guar-

anteed to output good contextualized language representations without fine-tuning the

whole network. Instead, we encourage practitioner to use BLA-trained models for ex-

tracting contextualized language representations in word-level.

5.4.4 Results: Fine-tuning Approach

Figure 5.5: Fine-tuning approach for text classification tasks.

In fine-tuning approach, pre-trained weights of each language model are updated

during supervised learning on each downstream task as shown in Figure 5.5. Following

the literature [37, 16, 18], we use a linear regression layer for classification on top of

the final hidden representations.

From results that MLM-trained models outperform BLA-trained models in all

cases, we may conclude that BLA is improper to the BERT-like fine-tuning approach.

90

Table 5.7: Accuracies on text classification tasks.

Method Pooling MNLI QQP QNLI SST-2 MRPC RTE

BLA-trained [CLS] 69.4 84.3 78.8 83.8 74.0 58.8

BLA-trained mean 72.0 86.2 81.8 84.4 73.8 54.2

BLA-trained SRP 72.2 86.2 82.8 85.2 74.7 58.8

MLM-trained [CLS] 76.2 87.7 84.7 86.1 76.5 62.5

MLM-trained mean 76.3 88.2 83.5 87.4 75.2 59.2

This is because the layer output of BLA-trained models does not include the token

information due to its self-unknown property. Consequently, we recommend that use

MLM-trained models for the fine-tuning approach.

91

5.5 Summary of BLA for Feature Extraction

This chapter empirically demonstrate that contextualized language representations learned

from BLA are better than those from MLM as well as ALM. Experimental results on

various NLP tasks, including unsupervised learning tasks as well as supervised learn-

ing tasks, demonstrate that BLA is the better option for feature extraction without

fine-tuning the whole network. In conclusion, the proposed BLA objective is the best

candidate for extracting contextualized language representations

Until now, we focused on demonstrating great potential of BLA. Since we trained

smaller language models with less training samples, there is still much room for im-

provements in BLA-trained models. To achieve state-of-the-art performances on super-

vised learning tasks with the proposed learning objective, we should pre-train bigger

language models than 3 or 4 layers using larger training examples than 16G words

with bigger batch size than 64. We leave those enhancements for future works.

92

Chapter 6

Conclusions and Future Works

This dissertation mainly focused on understanding how powerful linguistic features

obtained from pre-trained language models are by applying them to various NLP tasks.

Throughout the dissertation, we demonstrated that the proposed bidirectional language

autoencoding (BLA) is the better learning objective than autoregressive language mod-

eling (ALM) or masked language modeling (MLM) for extracting reliable contextual-

ized language representations with self-supervised learning on a large unlabeled text

corpus.

To that end, we first confirmed that the importance of deep and bidirectional learn-

ing of language models for understanding a given text by showing MLM-trained mod-

els significantly outperform the ALM-trained models on re-ranking tasks in Chap-

ter 3. Subsequently, we pointed out that MLM-trained models suffer from the speed-

accuracy trade-off due to the training-inference discrepancy in MLM. To eliminate

the trade-off of MLM, we introduced BLA and the corresponding deep bidirectional

language model called Transformer-based text autoencoder (T-TA). Chapter 4 demon-

strated the advantages of BLA-trained models over MLM-trained models in terms of

inference speed and ALM-trained models in terms of accuracy. Finally, we confirmed

that contextualized language representations from BLA-trained models are much bet-

ter than those of MLM-trained models by applying each language model to various

93

NLP tasks in Chapter 5. In conclusion, we convinced that BLA is the key technique

for extracting generic linguistic features.

To sum up, this dissertation provides a better option in language modeling for

feature extraction.

Table 6.1: Comparison of bidirectional language modeling objectives.

Property Speed Accuracy

Feature Extraction MLM ≤ BLA MLM ≤ BLA

Fine-tuning Approach MLM = BLA MLM > BLA

6.1 Future Works

Since the BLA-trained model is a totally different language model, it could be an-

alyzed and be compared with BERT and other language models. For one example,

analysis of layer-wise representation modifications from replacing a word in a given

text or the same word used in a different context will provide a deep understanding of

contextualization in each language model [83]. Probing task is another candidate for

evaluating language representations of pre-trained language models [84, 85].

In the meantime, the performance of a language model depends on the model size,

the corpus size, and the training time. Namely, having more layers, bigger batch size,

and longer supporting sequence length is critical for the performance of language mod-

els. Therefore, it is desirable to enlarge the construction of the BLA-trained model to

be equal to that of BERT. After these enhancements, we can check performances of

BLA-trained models on General Language Understanding Evaluation (GLUE) bench-

mark and Stanford Question Answering Dataset (SQuAD) and compare them with

those of the state-of-the-art pre-training methods such as RoBERTa, XLNet, T-5, etc.

As we verified the usefulness of BLA for sentence scoring, we could extend the

94

utilization of BLA to the conditional sentence scoring. Since many text generation

tasks such as dialogue system and question answering are conditional on the context,

scoring a sentence in company with the context could be a good metric. For example,

to tackle the lack of meaningful automatic evaluation metrics for dialog that has im-

peded open-domain dialog research, a recent study presented USR, an UnSupervised

and Reference-free evaluation metric for dialog [86]. In USR, the conditional MLM

score is one of the key algorithms to measure how appropriate a generated response is

given the previous dialog, as shown in Figure 6.1 We can replace this scoring method

with our BLA, eliminating the mask-and-predict repetition while keeping the scoring

performance. This scenario is similar to the invention of BLA in Chapter 4 for solving

the inefficiency of the MLM sentence scoring method presented in Chapter 3.

Figure 6.1: Conditional MLM score for text evaluation.

In addition to the text scorer, we can use BLA as a generator to train a discrimi-

nator, as shown in Figure 6.2. A study suggested replaced token detection, which is a

pre-training task where the model learns to distinguish real input tokens from plausible

but synthetically generated replacements [18]. It is called ELECTRA, the abbreviation

for Efficiently Learning an Encoder that Classifies Token Replacements Accurately.

They focus on the sample-efficient pre-training algorithm, and we believe that BLA

is a more efficient generator than MLM. This is because BLA can sample all tokens

95

simultaneously, whereas MLM can sample only 15% tokens.

Figure 6.2: Generator with MLM for pre-training discriminator.

Besides, documents that are much longer than the pre-trained length are frequently

addressed in real-world situations. Information retrieval and text summarization are

representative examples of handling lengthy documents. When dealing with such long

documents, fine-tuning MLM-trained networks may require too much computing re-

sources. On the other hand, using BLA-trained networks, it can be efficient and effec-

tive to extract contextualized language representations for the proper-sized chunk and

learn task-specific networks on top of them as shown in Figure 6.3.

Figure 6.3: Illustration of BLA for long texts.

Like in those examples above, we believe that BLA and BLA-trained models have

huge potentials for unsupervised linguistic feature learning and could be applied to

many NLP applications.

96

Bibliography

[1] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean, “Dis-

tributed representations of words and phrases and their compositionality,” in

Advances in neural information processing systems, 2013, pp. 3111–3119.

[2] Jeffrey Pennington, Richard Socher, and Christopher D Manning, “Glove: Global

vectors for word representation,” in Proceedings of the 2014 conference on em-

pirical methods in natural language processing (EMNLP), 2014, pp. 1532–1543.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin, “A

neural probabilistic language model,” Journal of machine learning research, vol.

3, no. Feb, pp. 1137–1155, 2003.

[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, “Efficient estimation

of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[5] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-

danpur, “Recurrent neural network based language model,” in Eleventh annual

conference of the international speech communication association, 2010.

[6] Alex Graves, “Long short-term memory,” in Supervised sequence labelling with

recurrent neural networks, pp. 37–45. Springer, 2012.

[7] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio, “Learning phrase rep-

resentations using rnn encoder–decoder for statistical machine translation,” in

97

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2014, pp. 1724–1734.

[8] Yoon Kim, “Convolutional neural networks for sentence classification,” arXiv

preprint arXiv:1408.5882, 2014.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin, “Attention is all you need,”

in Advances in Neural Information Processing Systems, 2017, pp. 5998–6008.

[10] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever, “Improv-

ing language understanding by generative pre-training,” 2018.

[11] Alex Wang and Kyunghyun Cho, “Bert has a mouth, and it must speak: Bert

as a markov random field language model,” in Proceedings of the Workshop on

Methods for Optimizing and Evaluating Neural Language Generation, 2019, pp.

30–36.

[12] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis Lau, “A c-lstm neural

network for text classification,” arXiv preprint arXiv:1511.08630, 2015.

[13] Joongbo Shin, Yanghoon Kim, Seunghyun Yoon, and Kyomin Jung,

“Contextual-cnn: A novel architecture capturing unified meaning for sentence

classification,” in 2018 IEEE International Conference on Big Data and Smart

Computing (BigComp). IEEE, 2018, pp. 491–494.

[14] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov, “Roberta: A

robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692,

2019.

98

[15] Alexis Conneau and Guillaume Lample, “Cross-lingual language model pretrain-

ing,” in Advances in Neural Information Processing Systems, 2019, pp. 7059–

7069.

[16] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le, “Xlnet: Generalized autoregressive pretraining for language

understanding,” in Advances in neural information processing systems, 2019,

pp. 5753–5763.

[17] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng

Gao, Ming Zhou, and Hsiao-Wuen Hon, “Unified language model pre-training

for natural language understanding and generation,” in Advances in Neural In-

formation Processing Systems, 2019, pp. 13063–13075.

[18] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning,

“Electra: Pre-training text encoders as discriminators rather than generators,” in

International Conference on Learning Representations, 2019.

[19] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu, “Mass: Masked

sequence to sequence pre-training for language generation,” in International

Conference on Machine Learning, 2019, pp. 5926–5936.

[20] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer, “BART: De-

noising sequence-to-sequence pre-training for natural language generation, trans-

lation, and comprehension,” in Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, Online, July 2020, pp. 7871–7880,

Association for Computational Linguistics.

[21] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu, “Exploring the limits

99

of transfer learning with a unified text-to-text transformer,” Journal of Machine

Learning Research, vol. 21, no. 140, pp. 1–67, 2020.

[22] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee, “Vilbert: Pretraining task-

agnostic visiolinguistic representations for vision-and-language tasks,” in Ad-

vances in Neural Information Processing Systems, 2019, pp. 13–23.

[23] Joongbo Shin, Yoonhyung Lee, and Kyomin Jung, “Effective sentence scoring

method using bert for speech recognition,” in Asian Conference on Machine

Learning, 2019, pp. 1081–1093.

[24] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur, “Lib-

rispeech: an asr corpus based on public domain audio books,” in 2015 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2015, pp. 5206–5210.

[25] Joongbo Shin, Yoonhyung Lee, Seunghyun Yoon, and Kyomin Jung, “Fast and

accurate deep bidirectional language representations for unsupervised learning,”

in Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, Online, July 2020, pp. 823–835, Association for Computational Lin-

guistics.

[26] Mohammad Taher Pilehvar and Jose Camacho-Collados, “Wic: the word-in-

context dataset for evaluating context-sensitive meaning representations,” in Pro-

ceedings of the 2019 Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers), 2019, pp. 1267–1273.

[27] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and

Samuel Bowman, “Glue: A multi-task benchmark and analysis platform for

natural language understanding,” in 7th International Conference on Learning

Representations, ICLR 2019, 2019.

100

[28] Rico Sennrich, Barry Haddow, and Alexandra Birch, “Neural machine translation

of rare words with subword units,” in Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), 2016,

pp. 1715–1725.

[29] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.,

“Google’s neural machine translation system: Bridging the gap between human

and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[30] Taku Kudo and John Richardson, “Sentencepiece: A simple and language in-

dependent subword tokenizer and detokenizer for neural text processing,” in

Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, 2018, pp. 66–71.

[31] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov, “Enrich-

ing word vectors with subword information,” Transactions of the Association for

Computational Linguistics, vol. 5, pp. 135–146, 2017.

[32] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[33] Erik F Sang and Fien De Meulder, “Introduction to the conll-2003 shared task:

Language-independent named entity recognition,” CoNLL, 2003.

[34] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang, “Squad:

100,000+ questions for machine comprehension of text,” in Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing, 2016,

pp. 2383–2392.

[35] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever, “Language models are unsupervised multitask learners,” OpenAI

blog, vol. 1, no. 8, pp. 9, 2019.

101

[36] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al., “Language models are few-shot learners,” arXiv preprint

arXiv:2005.14165, 2020.

[37] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “Bert:

Pre-training of deep bidirectional transformers for language understanding,” in

Proceedings of the 2019 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers), 2019, pp. 4171–4186.

[38] Wilson L Taylor, ““cloze procedure”: A new tool for measuring readability,”

Journalism quarterly, vol. 30, no. 4, pp. 415–433, 1953.

[39] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut, “Albert: A lite bert for self-supervised learning of

language representations,” in International Conference on Learning Representa-

tions, 2019.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learn-

ing for image recognition,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 770–778.

[41] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton, “Layer normalization,”

arXiv preprint arXiv:1607.06450, 2016.

[42] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin, “Un-

derstanding and improving layer normalization,” in Advances in Neural Infor-

mation Processing Systems, 2019, pp. 4381–4391.

[43] Vinod Nair and Geoffrey E Hinton, “Rectified linear units improve restricted

boltzmann machines,” in ICML, 2010.

102

[44] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter, “Fast and accu-

rate deep network learning by exponential linear units (elus),” ICLR, 2016.

[45] Dan Hendrycks and Kevin Gimpel, “Gaussian error linear units (gelus),” arXiv

preprint arXiv:1606.08415, 2016.

[46] Matthew Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih, “Dis-

secting contextual word embeddings: Architecture and representation,” in Pro-

ceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, 2018, pp. 1499–1509.

[47] Gongbo Tang, Mathias Müller, Annette Rios, and Rico Sennrich, “Why self-

attention? a targeted evaluation of neural machine translation architectures,” in

Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, 2018, pp. 4263–4272.

[48] Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H Clark, and Philipp Koehn,

“Scalable modified kneser-ney language model estimation,” in Proceedings of

the 51st Annual Meeting of the Association for Computational Linguistics (Vol-

ume 2: Short Papers), 2013, vol. 2, pp. 690–696.

[49] Ebru Arisoy, Abhinav Sethy, Bhuvana Ramabhadran, and Stanley Chen, “Bidi-

rectional recurrent neural network language models for automatic speech recog-

nition,” in 2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2015, pp. 5421–5425.

[50] Xie Chen, Anton Ragni, Xunying Liu, and Mark JF Gales, “Investigating bidi-

rectional recurrent neural network language models for speech recognition.,” in

INTERSPEECH, 2017, pp. 269–273.

[51] Alex Graves and Jürgen Schmidhuber, “Framewise phoneme classification with

bidirectional lstm and other neural network architectures,” Neural Networks, vol.

18, no. 5-6, pp. 602–610, 2005.

103

[52] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals, “Listen, attend and

spell: A neural network for large vocabulary conversational speech recognition,”

in 2016 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2016, pp. 4960–4964.

[53] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Man-

ning, Andrew Y Ng, and Christopher Potts, “Recursive deep models for semantic

compositionality over a sentiment treebank,” in Proceedings of the conference

on empirical methods in natural language processing (EMNLP). Citeseer, 2013,

vol. 1631, p. 1642.

[54] Tianxing He, Yu Zhang, Jasha Droppo, and Kai Yu, “On training bi-directional

neural network language model with noise contrastive estimation,” in 2016 10th

International Symposium on Chinese Spoken Language Processing (ISCSLP).

IEEE, 2016, pp. 1–5.

[55] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer, “Deep contextualized word representations,”

in Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Vol-

ume 1 (Long Papers), 2018, vol. 1, pp. 2227–2237.

[56] Yangyang Shi, Martha Larson, Pascal Wiggers, and Catholijn M Jonker, “Ex-

ploiting the succeeding words in recurrent neural network language models.,” in

INTERSPEECH, 2013.

[57] Takaaki Hori, Shinji Watanabe, Yu Zhang, and William Chan, “Advances in joint

ctc-attention based end-to-end speech recognition with a deep cnn encoder and

rnn-lm,” Proc. Interspeech 2017, pp. 949–953, 2017.

[58] Yusuxke Shibata, Takuya Kida, Shuichi Fukamachi, Masayuki Takeda, Ayumi

Shinohara, Takeshi Shinohara, and Setsuo Arikawa, “Byte pair encoding: A text

104

compression scheme that accelerates pattern matching,” Tech. Rep., Technical

Report DOI-TR-161, Department of Informatics, Kyushu University, 1999.

[59] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba,

Yuya Unno, Nelson-Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner,

Nanxin Chen, et al., “Espnet: End-to-end speech processing toolkit,” Proc. In-

terspeech 2018, pp. 2207–2211, 2018.

[60] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and

Yoshua Bengio, “Attention-based models for speech recognition,” in Advances

in neural information processing systems, 2015, pp. 577–585.

[61] Matthew D Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint

arXiv:1212.5701, 2012.

[62] Dan Hendrycks and Kevin Gimpel, “Bridging nonlinearities and stochastic regu-

larizers with gaussian error linear units,” arXiv preprint arXiv:1606.08415, 2016.

[63] Diederik Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[64] Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff, “Masked

language model scoring,” in Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, Online, July 2020, pp. 2699–2712,

Association for Computational Linguistics.

[65] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Sequence to sequence learning

with neural networks,” in Advances in Neural Information Processing Systems,

2014, pp. 3104–3112.

[66] Rico Sennrich, Barry Haddow, and Alexandra Birch, “Improving neural machine

translation models with monolingual data,” in Proceedings of the 54th Annual

105

Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers), 2016, pp. 86–96.

[67] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf, “Distilbert,

a distilled version of bert: smaller, faster, cheaper and lighter,” arXiv preprint

arXiv:1910.01108, 2019.

[68] Alvaro Peris and Francisco Casacuberta, “A bidirectional recurrent neural lan-

guage model for machine translation,” Procesamiento del Lenguaje Natural, vol.

55, pp. 109–116, 2015.

[69] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney, “Lstm neural networks

for language modeling,” in Thirteenth annual conference of the international

speech communication association, 2012.

[70] William H DuBay, “The classic readability studies.,” Impact Information, Costa

Mesa, California., 2006.

[71] Kenneth Heafield, “Kenlm: Faster and smaller language model queries,” in Pro-

ceedings of the sixth workshop on statistical machine translation. Association for

Computational Linguistics, 2011, pp. 187–197.

[72] Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan Gomez,

Stephan Gouws, Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar,

et al., “Tensor2tensor for neural machine translation,” in Proceedings of the 13th

Conference of the Association for Machine Translation in the Americas (Volume

1: Research Papers), 2018, pp. 193–199.

[73] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher, “Learned

in translation: Contextualized word vectors,” in Advances in neural information

processing systems, 2017, pp. 6294–6305.

106

[74] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams, “Learning repre-

sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536,

1986.

[75] Andrew M Dai and Quoc V Le, “Semi-supervised sequence learning,” in Ad-

vances in neural information processing systems, 2015, pp. 3079–3087.

[76] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia,

“Semeval-2017 task 1: Semantic textual similarity multilingual and crosslingual

focused evaluation,” in Proceedings of the 11th International Workshop on Se-

mantic Evaluation (SemEval-2017), 2017, pp. 1–14.

[77] Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano

Menini, and Roberto Zamparelli, “Semeval-2014 task 1: Evaluation of composi-

tional distributional semantic models on full sentences through semantic related-

ness and textual entailment,” in Proceedings of the 8th international workshop

on semantic evaluation (SemEval 2014), 2014, pp. 1–8.

[78] Adina Williams, Nikita Nangia, and Samuel Bowman, “A broad-coverage chal-

lenge corpus for sentence understanding through inference,” in Proceedings of

the 2018 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long Papers),

2018, pp. 1112–1122.

[79] Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi Zhao, “Quora question

pairs,” 2018.

[80] Wei Wang, Ming Yan, and Chen Wu, “Multi-granularity hierarchical attention fu-

sion networks for reading comprehension and question answering,” in Proceed-

ings of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), 2018, pp. 1705–1714.

107

[81] William B Dolan and Chris Brockett, “Automatically constructing a corpus of

sentential paraphrases,” in Proceedings of the Third International Workshop on

Paraphrasing (IWP2005), 2005.

[82] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo, “The fifth

pascal recognizing textual entailment challenge.,” in TAC, 2009.

[83] Kawin Ethayarajh, “How contextual are contextualized word representations?

comparing the geometry of BERT, ELMo, and GPT-2 embeddings,” in Proceed-

ings of the 2019 Conference on Empirical Methods in Natural Language Process-

ing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), Hong Kong, China, Nov. 2019, pp. 55–65, Association for

Computational Linguistics.

[84] Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas Mc-

Coy, Najoung Kim, Benjamin Van Durme, Samuel Bowman, Dipanjan Das, et al.,

“What do you learn from context? probing for sentence structure in contextual-

ized word representations,” in 7th International Conference on Learning Repre-

sentations (ICLR), 2019.

[85] John Hewitt and Christopher D. Manning, “A structural probe for finding syntax

in word representations,” in Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Min-

nesota, June 2019, pp. 4129–4138, Association for Computational Linguistics.

[86] Shikib Mehri and Maxine Eskenazi, “USR: An unsupervised and reference free

evaluation metric for dialog generation,” in Proceedings of the 58th Annual Meet-

ing of the Association for Computational Linguistics, Online, July 2020, pp. 681–

707, Association for Computational Linguistics.

108

초록

딥 뉴럴 네트워크는 비정형 텍스트 데이터에서 상황에 맞는 정보를 유연하게

다룰수있기때문에자연어처리분야에서강력한도구로활용되고있다.큰말뭉치

에서감독되지않는방법으로학습한언어표현은딥뉴럴네트워크가문맥정보를

더 잘 활용할 수 있도록 원천을 제공한다. 자연어 이해는 대표적인 자가지도학습

기술인언어모델링을사용하여문맥화된언어표현을배움으로써사전훈련된 (비

문맥적)단어임베딩을넘어괄목할만한발전을이루었다.언어모델링은크게자기

회귀언어모델링과마스킹된언어모델링으로분류될수있으며,최신의사전훈련

방법들또한이두언어모델링에기반하고있다.본학위논문은두언어모델링의

장점을모두취하는새로운언어모델링양방향언어오토인코딩을제시한다.제시

된 양방향 언어 오토인코딩은 마스킹된 언어 모델링처럼 깊은 양방향 언어 이해를

가능하게 하고, 동시에 자기회귀 언어 모델링처럼 미세조정없이 문맥화된 언어 표

현을추출해서사용할수있게한다.본학위논문에서는양방향언어오토인코딩을

학습을가능하게하기위한새로운뉴럴네트워크구조를설계한다.제시된양방향

언어 모델은 단순한 복사가 아닌 유용한 언어 표현을 학습할 수 있도록 하며, 각각

의 단어가 문맥화된 표현을 갖게 하여 정보에 손실이 없도록 한다. 본 논문의 주요

공헌은 새로운 양방향 언어 모델을 제안하여 자연어 이해 문제에 있어서 문맥화된

언어표현을추출해서사용할때에기존보다좋은방안이될수있음을검증한것에

있다.실험결과는 N-베스트목록재순위,의미론적텍스트유사성검사,단어의미

중의성해소,그리고텍스트분류에대해제시되며,제안된기법이이전기법들보다

나은장점을보여준다.

109

주요어:딥뉴럴네트워크,언어모델링,비지도학습,문맥화된언어표현

학번: 2014-21625

110

ACKNOWLEGEMENT

I would like to thank the MILAB members who provided insight and expertise

that greatly assisted the research. In addition, I would like to express my gratitude

to professor K. Jung for the advisory and discussion. To conclude, I cannot forget to

thank my family, Sunwoo and parents, to support me spiritually with unconditional

love throughout this very intense academic year.

111

	1 Introduction
	1.1 Overview
	1.2 Contributions and Outline of This Dissertation

	2 Background: Language Representation Models
	2.1 Non-contextualized Word Representations: Word Embeddings
	2.2 ALM-based Language Representation Models
	2.2.1 ELMo
	2.2.2 GPT

	2.3 MLM-based Language Representation Models
	2.3.1 BERT
	2.3.2 Other Language Representation Models

	2.4 Base Language Model Architecture: SAN

	3 Masked Language Modeling for Sentence Scoring
	3.1 Accurate Bidirectional LMs
	3.1.1 Overview
	3.1.2 Contributions

	3.2 Related Works
	3.2.1 Bidirectional LMs in NLP
	3.2.2 Bidirectional LMs for ASR

	3.3 Methodology
	3.3.1 Architecture of SAN-based LMs
	3.3.2 Sentence Scoring with SANLMs
	3.3.3 Re-ranking the N-best List with SANLMs

	3.4 Experiments
	3.4.1 Acoustic Model Setups
	3.4.2 Language Model Setups
	3.4.3 Results: Re-ranking the N-best List
	3.4.4 Analysis: Misrecognized Position

	3.5 Summary of MLM for Sentence Scoring

	4 Bidirectional Language Autoencoding for Sentence Scoring
	4.1 Fast and Accurate Bidirectional LMs
	4.1.1 Overview
	4.1.2 Contributions

	4.2 Related Works
	4.2.1 Bidirectional LMs for Unsupervised Tasks
	4.2.2 Consideration of Inference Speed

	4.3 Methodology
	4.3.1 Baselines: ALM for UniLM and MLM for BiLM
	4.3.2 BLA: New Language Modeling Objective
	4.3.3 T-TA: New Deep Bidirectional Language Model
	4.3.4 Verification of the T-TA Architecture
	4.3.5 Comparison T-TA with BERT

	4.4 Experiments
	4.4.1 Language Model Setups
	4.4.2 Analysis: Runtime Comparison
	4.4.3 Settings: Re-ranking the N-best List
	4.4.4 Results: Re-ranking the N-best List
	4.4.5 Analysis: Re-ranking and Language models

	4.5 Summary of BLA for Sentence Scoring

	5 Bidirectional Language Autoencoding for Feature Extraction
	5.1 Extracting Contextualized Language Representations
	5.1.1 Overview
	5.1.2 Contributions

	5.2 Related Works
	5.2.1 Contextualization in Language Representations
	5.2.2 Word-level VS Sentence-level Representations

	5.3 Experiments on Unsupervised Learning Tasks
	5.3.1 Language Model Setups
	5.3.2 Settings: Unsupervised STS
	5.3.3 Results: Unsupervised STS
	5.3.4 Settings: Unsupervised WiC
	5.3.5 Results: Unsupervised WiC

	5.4 Experiments on Supervised Learning Tasks
	5.4.1 Language Model Setups
	5.4.2 Settings: Text Classification Tasks
	5.4.3 Results: Feature Extraction
	5.4.4 Results: Fine-tuning Approach

	5.5 Summary of BLA for Feature Extraction

	6 Conclusions and Future Works
	6.1 Future Works

	Abstract (In Korean)
	Acknowlegement

<startpage>15
1 Introduction 1
 1.1 Overview 1
 1.2 Contributions and Outline of This Dissertation 6
2 Background: Language Representation Models 8
 2.1 Non-contextualized Word Representations: Word Embeddings 9
 2.2 ALM-based Language Representation Models 12
 2.2.1 ELMo 13
 2.2.2 GPT 14
 2.3 MLM-based Language Representation Models 16
 2.3.1 BERT 16
 2.3.2 Other Language Representation Models 19
 2.4 Base Language Model Architecture: SAN 21
3 Masked Language Modeling for Sentence Scoring 26
 3.1 Accurate Bidirectional LMs 26
 3.1.1 Overview 26
 3.1.2 Contributions 27
 3.2 Related Works 29
 3.2.1 Bidirectional LMs in NLP 29
 3.2.2 Bidirectional LMs for ASR 29
 3.3 Methodology 30
 3.3.1 Architecture of SAN-based LMs 30
 3.3.2 Sentence Scoring with SANLMs 32
 3.3.3 Re-ranking the N-best List with SANLMs 36
 3.4 Experiments 37
 3.4.1 Acoustic Model Setups 37
 3.4.2 Language Model Setups 38
 3.4.3 Results: Re-ranking the N-best List 39
 3.4.4 Analysis: Misrecognized Position 41
 3.5 Summary of MLM for Sentence Scoring 43
4 Bidirectional Language Autoencoding for Sentence Scoring 44
 4.1 Fast and Accurate Bidirectional LMs 44
 4.1.1 Overview 44
 4.1.2 Contributions 45
 4.2 Related Works 47
 4.2.1 Bidirectional LMs for Unsupervised Tasks 47
 4.2.2 Consideration of Inference Speed 47
 4.3 Methodology 48
 4.3.1 Baselines: ALM for UniLM and MLM for BiLM 48
 4.3.2 BLA: New Language Modeling Objective 49
 4.3.3 T-TA: New Deep Bidirectional Language Model 51
 4.3.4 Verification of the T-TA Architecture 55
 4.3.5 Comparison T-TA with BERT 56
 4.4 Experiments 57
 4.4.1 Language Model Setups 57
 4.4.2 Analysis: Runtime Comparison 59
 4.4.3 Settings: Re-ranking the N-best List 61
 4.4.4 Results: Re-ranking the N-best List 65
 4.4.5 Analysis: Re-ranking and Language models 68
 4.5 Summary of BLA for Sentence Scoring 72
5 Bidirectional Language Autoencoding for Feature Extraction 73
 5.1 Extracting Contextualized Language Representations 73
 5.1.1 Overview 73
 5.1.2 Contributions 74
 5.2 Related Works 76
 5.2.1 Contextualization in Language Representations 76
 5.2.2 Word-level VS Sentence-level Representations 76
 5.3 Experiments on Unsupervised Learning Tasks 78
 5.3.1 Language Model Setups 78
 5.3.2 Settings: Unsupervised STS 78
 5.3.3 Results: Unsupervised STS 80
 5.3.4 Settings: Unsupervised WiC 83
 5.3.5 Results: Unsupervised WiC 84
 5.4 Experiments on Supervised Learning Tasks 86
 5.4.1 Language Model Setups 86
 5.4.2 Settings: Text Classification Tasks 87
 5.4.3 Results: Feature Extraction 88
 5.4.4 Results: Fine-tuning Approach 90
 5.5 Summary of BLA for Feature Extraction 92
6 Conclusions and Future Works 93
 6.1 Future Works 94
Abstract (In Korean) 109
Acknowlegement 111
</body>

