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Abstract

Human is the most centric and interesting object in our life: many human-centric

techniques and studies have been proposed from both industry and academia, such as

motion capture and human-computer interaction. Recovery of accurate 3D geometry

of human (i.e., 3D human pose and shape) is a key component of the human-centric

techniques and studies. With the rapid spread of cameras, a single RGB image has

become a popular input, and many single RGB-based 3D human pose and shape

estimation methods have been proposed.

The 3D pose and shape of the whole body, which includes hands and face, pro-

vides expressive and rich information, including human intention and feeling. Unfor-

tunately, recovering the whole-body 3D pose and shape is greatly challenging; thus,

it has been attempted by few works, called expressive methods. Instead of directly

solving the expressive 3D pose and shape estimation, the literature has been devel-

oped for recovery of the 3D pose and shape of each part (i.e., body, hands, and face)

separately, called part-specific methods. There are several more simplifications. For

example, many works estimate only 3D pose without shape because additional 3D

shape estimation makes the problem much harder. In addition, most works assume

a single person case and do not consider a multi-person case. Therefore, there are

several ways to categorize current literature; 1) part-specific methods and expres-

sive methods, 2) 3D human pose estimation methods and 3D human pose and shape
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estimation methods, and 3) methods for a single person and methods for multiple

persons. The difficulty increases while the outputs of methods become richer by

changing from part-specific to expressive, from 3D pose estimation to 3D pose and

shape estimation, and from a single person case to multi-person case.

This dissertation introduces three approaches towards expressive 3D multi-person

pose and shape estimation from a single image; thus, the output can finally provide

the richest information. The first approach is for 3D multi-person body pose esti-

mation, the second one is 3D multi-person body pose and shape estimation, and the

final one is expressive 3D multi-person pose and shape estimation. Each approach

tackles critical limitations of previous state-of-the-art methods, thus bringing the

literature closer to the real-world environment.

First, a 3D multi-person body pose estimation framework is introduced. In con-

trast to the single person case, the multi-person case additionally requires camera-

relative 3D positions of the persons. Estimating the camera-relative 3D position

from a single image involves high depth ambiguity. The proposed framework utilizes

a deep image feature with the camera pinhole model to recover the camera-relative

3D position. The proposed framework can be combined with any 3D single person

pose and shape estimation methods for 3D multi-person pose and shape. Therefore,

the following two approaches focus on the single person case and can be easily ex-

tended to the multi-person case by using the framework of the first approach. Second,

a 3D multi-person body pose and shape estimation method is introduced. It extends

the first approach to additionally predict accurate 3D shape while its accuracy sig-

nificantly outperforms previous state-of-the-art methods by proposing a new target

representation, lixel-based 1D heatmap. Finally, an expressive 3D multi-person pose

and shape estimation method is introduced. It integrates the part-specific 3D pose
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and shape of the above approaches; thus, it can provide expressive 3D human pose

and shape. In addition, it boosts the accuracy of the estimated 3D pose and shape

by proposing a 3D positional pose-guided 3D rotational pose prediction system.

The proposed approaches successfully overcome the limitations of the previous

state-of-the-art methods. The extensive experimental results demonstrate the supe-

riority of the proposed approaches in both qualitative and quantitative ways.

Key words: 3D human pose, 3D human shape, expressive whole-body, multiple

persons, single image

Student number: 2015-22785
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Chapter 1

Introduction

1.1 Background and Research Issues

From the distant past, human has been the most centric and interesting object in

our life. Mythological gods are depicted in a human form, and ancient murals and

medieval art depict people to show the situation at that time. In modern society,

many interesting human-centric techniques, such as motion capture, virtual try-on,

and AR/VR, have been introduced, thanks to highly advanced computer graphics,

computer vision, and human-computer interaction, as shown in Figure 1.1. Recov-

ering accurate 3D geometry of human (i.e., 3D human pose and shape) is a key

component of the recent techniques; thus, 3D human pose and shape estimation

has drawn significant attention from both industry and academia. In particular, the

rapid popularization of cameras and smartphones motivated many single RGB-based

3D human pose and shape estimation methods. Their goal is to recover the 3D pose

and shape of humans in the input image, mostly taken from a single camera in an

uncontrolled environment (i.e., in-the-wild images).

1
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Motion capture Human-computer interaction Fitness assistant

AR/VR Telepresence Virtual try-on

Figure 1.1: 3D human pose and shape estimation is a key component of modern human-centric
techniques. From left to right and top to bottom, the figures are from 1, 2, 3, 4, 5, and 6.

We, humans, deliver our intention and feeling through a combination of body

and hand motions with a facial expression. Therefore, the 3D pose and shape of

the whole body, which includes hands and face, provides greatly rich information.

Unfortunately, recovering the whole-body 3D pose and shape is highly challenging;

thus, it has been attempted by very few works, called expressive methods [6,7,19,20].

Instead of directly solving the expressive 3D pose and shape estimation, the literature

has been developed to recover the 3D pose and shape of each part (i.e., body, hands,

and face) separately, called part-specific methods [5, 21–25]. Other than this, there

are several more simplifications. For example, many works estimate only 3D pose

without shape because additional 3D shape estimation makes the problem much

more difficult [3,14,26–28]. In addition, most previous works assume a single person

case [5, 23–25, 28–33] and do not consider a multi-person case. Therefore, there are

several ways to categorize current literature; 1) part-specific methods and expressive

methods, 2) 3D human pose estimation methods and 3D human pose and shape

estimation methods, and 3) methods for a single person and methods for multiple

2
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Figure 1.2: The research direction of this dissertation. Starting from the part-specific 3D pose
estimation in Chapter 2, part-specific 3D pose and shape estimation is introduced in Chapter 3.
Finally, expressive 3D pose and shape estimation is introduced in Chapter 4, which provides the
richest information, including human intention and feeling. Note that the 3D pose and shape of
a single person in Chapter 3 and Chapter 4 can be easily extended to the multi-person case by
combining them with the framework of Chapter 2.

persons. The difficulty increases while the outputs of methods become richer by

changing from part-specific to expressive, from 3D pose estimation to 3D pose and

shape estimation, and from a single person case to multi-person case.

1.2 Outline of the Dissertation

This dissertation introduces three approaches towards expressive 3D multi-person

pose and shape estimation from a single image; thus, the output can finally provide

the richest information, as shown in Figure 1.2. The first approach is for 3D multi-

person body pose estimation, the second one is 3D multi-person body pose and

shape estimation, and the final one is expressive 3D multi-person pose and shape

estimation. Each approach tackles critical limitations of previous state-of-the-art

3
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methods, thus bringing the literature closer to the real-world environment.

In Chapter 2, a camera distance-aware 3D multi-person body pose estimation

framework [34] is introduced. As described above, extending the 3D single body pose

estimation to the multi-person case requires the relative 3D position between the

camera and persons, which involves high depth ambiguity. To this end, I propose

RootNet, which refines a pre-defined human scale (2 meters × 2 meters) using a

deep image feature. The human scale, pre-defined for grown-ups with a standing

pose, can change according to the pose and appearance of a person in the input

image. For example, taking a crouching pose makes the scale smaller, and a child

has a smaller scale. As the deep image feature contains information on both pose

and appearance, RootNet can successfully refine the human scale. The refined hu-

man scale is plugged into the camera pinhole model equation, which provides the

relative position between the camera and person. By combining RootNet with state-

of-the-art human detection and 3D single person body pose estimation methods, 3D

multi-person body pose is successfully recovered from in-the-wild images. Another

advantage of the proposed framework is that it can be combined with any 3D single

person pose and shape estimation methods. Thus, the following two approaches focus

on the single person case, and their outputs are easily extended to the multi-person

case by combining them with the proposed framework.

In Chapter 3, a 3D human pose and shape estimation method, I2L-MeshNet [21],

is introduced. It extends 3D pose estimation methods of the first chapter to addi-

tionally predict 3D shape (i.e., 3D mesh) while preserving their accuracy. Most

of the previous 3D human pose and shape estimation methods [5, 23–25] directly

regress 3D rotations of human joints, which is a highly non-linear mapping as ad-

dressed by Moon et al. [35]. To resolve this issue, I propose the use of a heatmap
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as a prediction target instead of the 3D rotations. The heatmap preserves the spa-

tial relationship between pixels in the input image and can model uncertainty, thus

making it easier for the estimator to predict as demonstrated by Moon et al. [35].

However, unlike human joints consisting of several points, human mesh consists of

more than thousands of vertices. Thus, simply extending the 3D pose estimation

methods of predicting a 3D heatmap for each joint [9, 34] to mesh vertices causes

drastic GPU memory usage. To resolve this issue, I design I2L-MeshNet to predict

three lixel-based 1D heatmaps for each mesh vertex in x-, y-, and z-axis instead of

predicting a voxel-based 3D heatmap. The lixel (line+pixel) is a quantized cell in

one-dimensional space; likewise, voxel (volume+pixel) is defined as a quantized cell

in three-dimensional space. I show that the proposed I2L-MeshNet is much more

efficient than networks that predict the voxel-based 3D heatmap while achieving

better accuracy under a similar number of learnable parameters.

Finally, in Chapter 4, expressive 3D human pose and shape estimation method,

Pose2Pose [20], is introduced. Although the above described I2L-MeshNet [21] achieves

high accuracy, 3D rotations of human joints are needed for many computer graphics

applications, such as animation. Thus, Pose2Pose is designed to improve the accu-

racy of 3D rotation of human joints (i.e., 3D rotational pose) prediction by using the

heatmap as guidance. Unlike previous works [5, 23–25] that only rely on global im-

age features when predicting the 3D rotational pose, Pose2Pose utilizes joint-specific

local and global features, extracted from positions of human joints (i.e., positional

pose) when predicting the 3D rotational pose, where the positional pose is from the

heatmap. In addition, the proposed framework integrates the 3D poses and shapes

of body/hands with a facial expression; thus, it can provide expressive 3D human

pose and shape and convey human intention and feeling, while most of the previous

5
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works [5,21,23–25] can recover only one of body, hands, and face. The experimental

results demonstrate the superiority of Pose2Pose in both qualitative and quantitative

ways.

The conclusion of the dissertation is provided in Chapter 5 with a summary, and

suggestions for future works are also provided.
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Chapter 2

3D Multi-Person Pose

Estimation

2.1 Introduction

The goal of 3D multi-person body pose estimation is to localize semantic keypoints

of multiple human bodies in 3D space. Recently, many methods [28–33] utilize deep

convolutional neural networks (CNNs) and have achieved noticeable performance

improvement on large-scale publicly available datasets [2, 14].

Most of the previous 3D human pose estimation methods [28–33] are designed for

single-person case. They crop the human area in an input image with a groundtruth

bounding box or the bounding box that is predicted from a human detection model [36].

The cropped patch of a human body is fed into the 3D pose estimation module,

which then estimates the 3D location of each keypoint. As their models take a single

cropped image, estimating the absolute camera-centered coordinate of each keypoint

is difficult. To handle this issue, many methods [28–33] estimate the relative 3D pose

7



2. 3D Multi-Person Pose Estimation

Figure 2.1: Qualitative results of applying our 3D multi-person pose estimation framework to COCO
dataset [1] which consists of in-the-wild images. Most of the previous 3D human pose estimation
studies mainly focused on the root-relative 3D single-person pose estimation. In this study, we
propose a general 3D multi-person pose estimation framework that takes into account all factors
including human detection and 3D human root localization.

to a reference point in the body, e.g., the center joint (i.e., pelvis) of a human, called

root. The final 3D pose is obtained by adding the 3D coordinates of the root to the

estimated root-relative 3D pose. Prior information on the bone length [29] or the

groundtruth [28] has been commonly used for the localization of the root.

Recently, many top-down approaches [18, 37, 38] for the 2D multi-person pose

estimation have shown noticeable performance improvement. These approaches first

detect humans by using a human detection module and then estimate the 2D pose

of each human by a 2D single-person pose estimation module. Although they are

straightforward when used in 2D cases, extending them to 3D cases is nontrivial.

Note that for the estimation of 3D multi-person poses, we need to know the absolute

distance to each human from the camera as well as the 2D bounding boxes. However,

existing human detectors provide 2D bounding boxes only.

In this study, we propose a general framework for 3D multi-person pose esti-

mation. To the best of our knowledge, this study is the first to propose a fully

learning-based camera distance-aware top-down approach of which components are

compatible with most of the previous human detection and 3D human pose estima-

8
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tion methods. The pipeline of the proposed system consists of three modules. First,

a human detection network (DetectNet) detects the bounding boxes of humans in an

input image. Second, the proposed 3D human root localization network (RootNet)

estimates the camera-centered coordinates of the detected humans’ roots. Third, a

root-relative 3D single-person pose estimation network (PoseNet) estimates the root-

relative 3D pose for each detected human. Figures 2.1 and 2.2 show the qualitative

results and overall pipeline of our framework, respectively.

We show that our approach outperforms previous 3D multi-person pose estima-

tion methods [3, 13] on several publicly available 3D single- and multi-person pose

estimation datasets [2, 3] by a large margin. Also, even without any groundtruth

information (i.e., the bounding boxes and the 3D location of the roots), our method

achieves comparable performance with the state-of-the-art 3D single-person pose

estimation methods that use the groundtruth in the inference time. Note that our

framework is new but follows previous conventions of object detection and 3D human

pose estimation networks. Thus, previous detection and pose estimation methods can

be easily plugged into our framework, which makes the proposed framework quite

flexible and generalizable.

Our contributions can be summarized as follows.

• We propose a new general framework for 3D multi-person pose estimation from

a single RGB image. The framework is the first fully learning-based, camera

distance-aware top-down approach, of which components are compatible with

most of the previous human detection and 3D human pose estimation models.

• Our framework outputs the absolute camera-centered coordinates of multiple

humans’ keypoints. For this, we propose a 3D human root localization network

9
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(RootNet). This model makes it easy to extend the 3D single-person pose

estimation techniques to the absolute 3D pose estimation of multiple persons.

• We show that our method significantly outperforms previous 3D multi-person

pose estimation methods on several publicly available datasets. Also, it achieves

comparable performance with the state-of-the-art 3D single-person pose esti-

mation methods without any groundtruth information.

2.2 Related works

2D multi-person pose estimation. There are two main approaches in the multi-

person pose estimation. The first one, the top-down approach, deploys a human

detector that estimates the bounding boxes of humans. Each detected human area

is cropped and fed into the pose estimation network. The second one, the bottom-

up approach, localizes all human body keypoints in an input image first and then

groups them into each person using some clustering techniques.

[18,37–41] are based on the top-down approach. Papandreou et al. [39] predicted

2D offset vectors and 2D heatmaps for each joint. They fused the estimated vectors

and heatmaps to generate highly localized heatmaps. Chen et al. [38] proposed a

cascaded pyramid network whose cascaded structure refines an initially estimated

pose by focusing on hard keypoints. Xiao et al. [18] used a simple pose estimation

network that consists of a deep backbone network and several upsampling layers.

[42–46] are based on the bottom-up approach. Cao et al. [44] proposed the part

affinity fields (PAFs) that model the association between human body keypoints.

They grouped the localized keypoints of all persons in the input image by using

the estimated PAFs. Newell et al. [45] introduced a pixel-wise tag value to assign

10
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3D root-relative pose

Input image

RootNet

PoseNet

Cropped humans

y

x
3D absolute human root 

z

DetectNet

3D multi-person pose

Figure 2.2: Overall pipeline of the proposed framework for 3D multi-person pose estimation from a
single RGB image. The proposed framework can recover the absolute camera-centered coordinates
of multiple persons’ keypoints.

localized keypoints to a certain human. Kocabas et al. [46] proposed a pose residual

network for assigning detected keypoints to each person.

3D single-person pose estimation. Current 3D single-person pose estimation

methods can be categorized into single- and two-stage approaches. The single-stage

approach directly localizes the 3D body keypoints from the input image. The two-

stage methods utilize the high accuracy of 2D human pose estimation. They initially

localize body keypoints in a 2D space and lift them to a 3D space.

[28–30, 47, 48] are based on the single-stage approach. Li et al. [47] proposed

a multi-task framework that jointly trains both the pose regression and body part

detectors. Tekin et al. [48] modeled high-dimensional joint dependencies by adopting

an auto-encoder structure. Pavlakos et al. [29] extended the U-net shaped network

to estimate a 3D heatmap for each joint. They used a coarse-to-fine approach to

boost performance. Sun et al. [30] introduced compositional loss to consider the

joint connection structure. Sun et al. [28] used soft-argmax operation to obtain the

3D coordinates of body joints in a differentiable manner.

[31–33,49–52] are based on the two-stage approach. Park et al. [49] estimated the

initial 2D pose and utilized it to regress the 3D pose. Martinez et al. [31] proposed

a simple network that directly regresses the 3D coordinates of body joints from 2D

11
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coordinates. Zhou et al. [32] proposed a geometric loss to facilitate weakly supervised

learning of the depth regression module with images in the wild. Yang et al. [33]

utilized adversarial loss to handle the 3D human pose estimation in the wild.

3D multi-person pose estimation. Few studies have been conducted on 3D multi-

person pose estimation from a single RGB image. Rogez et al. [13] proposed a top-

down approach called LCR-Net, which consists of localization, classification, and

regression parts. The localization part detects a human from an input image, and

the classification part classifies the detected human into several anchor-poses. The

anchor-pose is defined as a pair of 2D and root-relative 3D pose. It is generated by

clustering poses in the training set. Then, the regression part refines the anchor-

poses. Mehta et al. [3] proposed a bottom-up approach system. They introduced an

occlusion-robust pose-map formulation that supports pose inference for more than

one person through PAFs [44].

3D human root localization in 3D multi-person pose estimation. Rogez et

al. [13] estimated both the 2D pose in the image coordinate space and the 3D pose

in the camera-centered coordinate space simultaneously. They obtained the 3D lo-

cation of the human root by minimizing the distance between the estimated 2D pose

and projected 3D pose, similar to what Mehta et al. [14] did. However, this strat-

egy cannot be generalized to other 3D human pose estimation methods because it

requires both the 2D and 3D estimations. For example, many works [28, 29, 32, 33]

estimate the 2D image coordinates and root-relative depth values of keypoints. As

their methods do not output root-relative camera-centered coordinates of keypoints,

such a distance minimization strategy cannot be used. Moreover, contextual informa-

tion cannot be exploited because the image feature is not considered. For example,

it cannot distinguish between a child close to the camera and an adult far from the

12
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camera because their scales in the 2D image are similar.

2.3 Overview of the proposed model

The goal of our system is to recover the absolute camera-centered coordinates of mul-

tiple persons’ keypoints {Pabs
j }Jj=1, where J denotes the number of joints. To address

this problem, we construct our system based on the top-down approach that consists

of DetectNet, RootNet, and PoseNet. The DetectNet detects a human bounding box

of each person in the input image. The RootNet takes the cropped human image

from the DetectNet and localizes the root of the human R = (xR, yR, ZR), in which

xR and yR are pixel coordinates, and ZR is an absolute depth value. The same

cropped human image is fed to the PoseNet, which estimates the root-relative 3D

pose Prel
j = (xj , yj , Z

rel
j ), in which xj and yj are pixel coordinates in the cropped

image space and Zrelj is root-relative depth value. We convert Zrelj into Zabsj by

adding ZR and transform xj and yj to the original input image space. Then, the

final absolute 3D pose {Pabs
j }Jj=1 is obtained by simple back-projection.

2.4 DetectNet

We use Mask R-CNN [36] as the framework of DetectNet. Mask R-CNN [36] consists

of three parts. The first one, backbone, extracts useful local and global features from

the input image by using a deep residual network (ResNet) [53] and feature pyramid

network [54]. Based on the extracted features, the second part, the region proposal

network, proposes human bounding box candidates. The RoIAlign layer extracts the

features of each proposal and passes them to the third part, which is the classification

head network. The head network determines whether the given proposal is human
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or not and estimates the bounding box refinement offsets. It achieves state-of-the-

art performance on publicly available object detection datasets [1]. Due to its high

performance and publicly available code [55, 56], we use Mask R-CNN [36] as a

DetectNet in our pipeline.

2.5 PoseNet

2.5.1 Model design

The PoseNet estimates the root-relative 3D pose Prel
j = (xj , yj , Z

rel
j ) from a cropped

human image. Many works have been presented for this topic [14, 28–33]. Among

them, we use the model of Sun et al. [28], which is the current state-of-the-art

method. This model consists of two parts. The first part is the backbone, which

extracts a useful global feature from the cropped human image using ResNet [53].

Second, the pose estimation part takes a feature map from the backbone part and

upsamples it using three consecutive deconvolutional layers with batch normalization

layers [57] and ReLU activation function. A 1-by-1 convolution is applied to the

upsampled feature map to produce the 3D heatmaps for each joint. The soft-argmax

operation is used to extract the 2D image coordinates (xj , yj), and the root-relative

depth values Zrelj .

2.5.2 Loss function

We train the PoseNet by minimizing the L1 distance between the estimated and

groundtruth coordinates. The loss function Lpose is defined as follows:

Lpose =
1

J

J∑
j=1

‖Prel
j −Prel∗

j ‖1, (2.1)
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Figure 2.3: Visualization of a pinhole camera model. The green and blue arrows represent the human
root joint centered x and y-axes, respectively. The yellow lines show rays, and c is the hole. d, f ,
and lsensor are distance between camera and the human root joint (mm), focal length (mm), and
the length of human on the image sensor (mm), respectively.

where ∗ indicates groundtruth.

2.6 RootNet

2.6.1 Model design

The RootNet estimates the camera-centered coordinates of the human root R =

(xR, yR, ZR) from a cropped human image. To obtain them, RootNet separately

estimates the 2D image coordinates (xR, yR) and the depth value (i.e., the distance

from the camera ZR) of the human root. The estimated 2D image coordinates are

back-projected to the camera-centered coordinate space using the estimated depth

value, which becomes the final output.

Considering that an image provides sufficient information on where the human
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root is located in the image space, the 2D estimation part can learn to localize

it easily. By contrast, estimating the depth only from a cropped human image is

difficult because the input does not provide information on the relative position of

the camera and human. To resolve this issue, we introduce a new distance measure,

k, which is defined as follows:

k =

√
αxαy

Areal
Aimg

, (2.2)

where αx, αy, Areal, and Aimg are focal lengths divided by the per-pixel distance

factors (pixel) of x- and y-axes, the area of the human in real space (mm2), and image

space (pixel2), respectively. k approximates the absolute depth from the camera to

the object using the ratio of the actual area and the imaged area of it, given camera

parameters. Eq 2.2 can be easily derived by considering a pinhole camera projection

model, as shown in Figure 2.3. The distance d (mm) between the camera and object

can be calculated as follows:

d = αx
lx,real
lx,img

= αy
ly,real
ly,img

, (2.3)

where lx,real, lx,img, ly,real, ly,img are the lengths of an object in real space (mm) and

in image space (pixel), on the x and y-axes, respectively.

By multiplying the two representations of d in Eq 2.3 and taking the square root

of it, we can have the 2D extended version of depth measure k in Eq 2.2. Assuming

that Areal is constant and using αx and αy from datasets, the distance between the

camera and an object can be measured from the area of the bounding box. As we

only consider humans, we assume that Areal is 2000mm × 2000mm. The area of
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Figure 2.4: Correlation between k and real depth value of the human root. Human3.6M [2] and
MuCo-3DHP [3] datasets were used. r represents Pearson correlation coefficient.

the human bounding box is used as Aimg after extending it to fixed aspect ratio

(i.e., height:width = 1:1). Figure 2.4 shows that such an approximation provides a

meaningful correlation between k and the real depth values of the human root in 3D

human pose estimation datasets [2, 3].

Although k can represent how far the human is from the camera, it can be wrong

in several cases because it assumes that Aimg is an area of Areal (i.e., 2000mm ×

2000mm) in the image space when the distance between the human and the camera

is k. However, as Aimg is obtained by extending the 2D bounding box, it can have

a different value according to its appearance, although the distance to the camera

is the same. For example, as shown in Figure 2.5(a), two humans have different
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(a) Different area, same distance (b) Same area, different distance

Figure 2.5: Examples where k fails to represent the distance between a human and the camera
because of incorrect Aimg.

Aimg although they are at the same distance to the camera. On the other hand, in

some cases, Aimg can be the same, even with different distances from the camera.

For example, in Figure 2.5(b), a child and an adult have similar Aimg; however, the

child is closer to the camera than the adult.

To handle this issue, we design the RootNet to utilize the image feature to correct

Aimg, eventually k. The image feature can give a clue to the RootNet about how

much the Aimg has to be changed. For example, in Figure 2.5(a), the left image can

tell the RootNet to increase the area because the human is in a crouching posture.

Also, in Figure 2.5(b), the right image can tell the RootNet to increase the area

because the input image contains a child. Specifically, the RootNet outputs the

correction factor γ from the image feature. The estimated γ is multiplied by the

given Aimg, which becomes Aγimg. From Aγimg, k is calculated and it becomes the

final depth value.
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Figure 2.6: Network architecture of the RootNet. The RootNet estimates the 3D human root coor-
dinate.

2.6.2 Camera normalization

Our RootNet outputs correction factor γ only from an input image. Therefore, data

from any camera intrinsic parameters (i.e., αx and αy) can be used during training

and testing. We call this property camera normalization, which makes our RootNet

very flexible. For example, in the training stage, data from different αx and αy can

be used together. Also, in the testing stage, RootNet can be used when αx and αy

are not available, likely for in-the-wild images. In this case, αx and αy can be set to

any values α′x and α′y, respectively. Then, estimated ZR represents distance between

an object and camera whose αx and αy are α′x and α′y, respectively.

2.6.3 Network architecture

The network architecture of the RootNet, which comprises three components, is

visualized in Figure 2.6. First, a backbone network extracts the useful global feature

of the input human image using ResNet [53]. Second, the 2D image coordinate

estimation part takes a feature map from the backbone part and upsamples it using

three consecutive deconvolutional layers with batch normalization layers [57] and
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ReLU activation function. Then, a 1-by-1 convolution is applied to produce a 2D

heatmap of the root. Soft-argmax [28] extracts 2D image coordinates xR, yR from

the 2D heatmap. The third component is the depth estimation part. It also takes a

feature map from the backbone part and applies global average pooling. Then, the

pooled feature map goes through a 1-by-1 convolution, which outputs a single scalar

value γ. The final absolute depth value ZR is obtained by multiplying k with 1√
γ .

In practice, we implemented the RootNet to output γ′ = 1√
γ directly and multiply

it with the k to obtain the absolute depth value ZR (i.e., ZR = γ′k).

2.6.4 Loss function

We train the RootNet by minimizing the L1 distance between the estimated and

groundtruth coordinates. The loss function Lroot is defined as follows:

Lroot = ‖R−R∗‖1, (2.4)

where ∗ indicates the groundtruth.

2.7 Implementation details

Publicly released Mask R-CNN model [56] pre-trained on the COCO dataset [1] is

used for the DetectNet without fine-tuning on the human pose estimation datasets [2,

3]. For the RootNet and PoseNet, PyTorch [58] is used for implementation. Their

backbone part is initialized with the publicly released ResNet-50 [53] pre-trained

on the ImageNet dataset [59], and the weights of the remaining part are initialized

by Gaussian distribution with σ = 0.001. The weights are updated by the Adam

optimizer [60] with a mini-batch size of 128. The initial learning rate is set to 1 ×
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10−3 and reduced by a factor of 10 at the 17th epoch. We use 256×256 as the size

of the input image of the RootNet and PoseNet. We perform data augmentation,

including rotation (±30°), horizontal flip, color jittering, and synthetic occlusion [61]

in training. Horizontal flip augmentation is performed in testing for the PoseNet

following Sun et al. [28]. We train the RootNet and PoseNet for 20 epochs with four

NVIDIA 1080 Ti GPUs, which took two days, respectively.

2.8 Experiment

2.8.1 Dataset and evaluation metric

Human3.6M dataset. Human3.6M dataset [2] is the largest 3D single-person pose

benchmark. It consists of 3.6 million video frames. 11 subjects performing 15 activi-

ties are captured from 4 camera viewpoints. The groundtruth 3D poses are obtained

using a motion capture system. Two evaluation metrics are widely used. The first

one is mean per joint position error (MPJPE) [2], which is calculated after align-

ing the human root of the estimated and groundtruth 3D poses. The second one

is MPJPE after further alignment (i.e., Procrustes analysis (PA) [62]). This metric

is called PA MPJPE. To evaluate the localization of the absolute 3D human root,

we introduce the mean of the Euclidean distance between the estimated coordinates

of the root R and the groundtruth R∗, i.e., the mean of the root position error

(MRPE), as a new metric:

MRPE =
1

N

N∑
i=1

||R(i) −R(i)∗||2, (2.5)
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2. 3D Multi-Person Pose Estimation

where superscript i is the sample index, and N denotes the total number of test

samples.

MuCo-3DHP and MuPoTS-3D datasets. These are the 3D multi-person pose

estimation datasets proposed by Mehta et al. [3]. The training set, MuCo-3DHP,

is generated by compositing the existing MPI-INF-3DHP 3D single-person pose

estimation dataset [14]. The test set, MuPoTS-3D dataset, was captured from out-

doors, and it includes 20 real-world scenes with groundtruth 3D poses for up to

three subjects. The groundtruth is obtained with a multi-view marker-less motion

capture system. For evaluation, a 3D percentage of correct keypoints (3DPCKrel)

and area under 3DPCK curve from various thresholds (AUCrel) is used after root

alignment with groundtruth. It treats a joint’s prediction as correct if it lies within

15cm from the groundtruth joint location. We additionally define 3DPCKabs, which

is the 3DPCK without root alignment to evaluate the absolute camera-centered co-

ordinates. To evaluate the localization of the absolute 3D human root, we use the

average precision of 3D human root location (AP root25 ), which considers a prediction

is correct when the Euclidean distance between the estimated and the groundtruth

coordinates is smaller than 25cm.

2.8.2 Experimental protocol

Human3.6M dataset. Two experimental protocols are widely used. Protocol 1 uses

six subjects (S1, S5, S6, S7, S8, S9) in training and S11 in testing. PA MPJPE is used

as an evaluation metric. Protocol 2 uses five subjects (S1, S5, S6, S7, S8) in training

and two subjects (S9, S11) in testing. MPJPE is used as an evaluation metric. We use

every 5th and 64th frames in videos for training and testing, respectively following

[28,30]. When training, besides the Human3.6M dataset, we used additional MPII 2D
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2. 3D Multi-Person Pose Estimation

Settings MRPE MPJPE Time

Joint learning 138.2 116.7 0.132

Disjointed learning (Ours) 120.0 57.3 0.141

Table 2.1: MRPE, MPJPE, and seconds per frame comparison between joint and disjointed learning
on Human3.6M dataset.

human pose estimation dataset [63] following [28–30,32]. Each mini-batch consists

of half Human3.6M and half MPII data. For MPII data, the loss value of the z-axis

becomes zero for both of the RootNet and PoseNet following Sun et al. [28].

MuCo-3DHP and MuPoTS-3D datasets. Following the previous protocol, we

composite 400K frames of which half are background augmented. For augmentation,

we use images from the COCO dataset [1] except for images with humans. We use

an additional COCO 2D human keypoint detection dataset [1] when training our

models on the MuCo-3DHP dataset following Mehta et al. [3]. Each mini-batch

consists of half MuCo-3DHP and half COCO data. For COCO data, the loss value

of z-axis becomes zero for both of the RootNet and PoseNet following Sun et al. [28].

2.8.3 Ablation study

In this study, we show how each component of our proposed framework affects

the 3D multi-person pose estimation accuracy. To evaluate the performance of the

DetectNet, we use the average precision of the bounding box (AP box) following

metrics of the COCO object detection benchmark [1].

Disjointed pipeline. To demonstrate the effectiveness of the disjointed pipeline

(i.e., separated DetectNet, RootNet, and PoseNet), we compare MRPE, MPJPE,

and running time of joint and disjointed learning of the RootNet and PoseNet in

Table 2.1. The running time includes DetectNet and is measured using a single

TitanX Maxwell GPU. For the joint learning, we combine the RootNet and PoseNet
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2. 3D Multi-Person Pose Estimation

DetectNet RootNet AP box AP root25 AUCrel 3DPCKabs

R-50 k 43.8 5.2 39.2 9.6

R-50 Ours 43.8 28.5 39.8 31.5

X-101-32 Ours 45.0 31.0 39.8 31.5

GT Ours 100.0 31.4 39.8 31.6

GT GT 100.0 100.0 39.8 80.2

Table 2.2: Overall performance comparison for different DetectNet and RootNet settings on the
MuPoTS-3D dataset.

into a single model which shares backbone part (i.e., ResNet [53]). The image feature

from the backbone is fed to each branch of RootNet and PoseNet in a parallel

way. Compared with the joint learning, our disjointed learning gives lower error

under a similar running time. We believe that this is because each task of RootNet

and PoseNet is not highly correlated; therefore, jointly training all tasks can make

training harder, resulting in lower accuracy.

Effect of the DetectNet. To show how the performance of the human detection

affects the accuracy of the final 3D human root localization and 3D multi-person

pose estimation, we compare AProot25 , AUCrel, and 3DPCKabs using the DetectNet in

various backbones (i.e., ResNet-50 [53], ResNeXt-101-32 [64]) and groundtruth box

in the second, third, and fourth row of Table 2.2, respectively. The table shows that

based on the same RootNet (i.e., Ours), a better human detection model improves

both the 3D human root localization and 3D multi-person pose estimation perfor-

mance. However, the groundtruth box does not improve overall accuracy consider-

ably compared with other DetectNet models. Therefore, we have sufficient reasons

to believe that the given boxes cover most of the person instances with such a high

detection AP. We can also conclude that the bounding box estimation accuracy does

not have a large impact on the 3D multi-person pose estimation accuracy.

Effect of the RootNet. To show how the performance of the 3D human root lo-
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2. 3D Multi-Person Pose Estimation

calization affects the accuracy of the 3D multi-person pose estimation, we compare

AUCrel and 3DPCKabs using various RootNet settings in Table 2.2. The first and

second rows show that based on the same DetectNet (i.e., R-50), our RootNet ex-

hibits significantly higher AProot25 and 3DPCKabs compared with the setting in which

k is directly utilized as a depth value. We use the x and y of the RootNet when the

k is used as a depth value. This result demonstrates that the RootNet successfully

corrects the k value. The fourth and last rows show that the groundtruth human

root provides similar AUCrel, but significantly higher 3DPCKabs compared with

our RootNet. This finding shows that better human root localization is required to

achieve more accurate absolute 3D multi-person pose estimation results.

Effect of the PoseNet. All settings in Table 2.2 provides similar AUCrel. Espe-

cially, the first and last rows of the table show that using groundtruth box and

human root does not provide significantly higher AUCrel. As the results in the table

are based on the same PoseNet, we can conclude that AUCrel, which is an evaluation

of the root-relative 3D human pose estimation, highly depends on the accuracy of

the PoseNet.

2.8.4 Comparison with state-of-the-art methods

Human3.6M dataset. We compare 3D human pose estimation error between ours

and state-of-the-art methods on the Human3.6M dataset [2] in Tables 2.3 and 2.4.

As most of the previous methods use the groundtruth information (i.e., bounding

boxes or 3D root locations) in inference time, we report the performance of the

PoseNet using the groundtruth 3D root location. Note that our full model does

not require any groundtruth information in inference time. The tables show that

our method achieves comparable performance despite not using any groundtruth
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Methods MRPE MRPEx MRPEy MRPEz

Baseline [13,14] 267.8 27.5 28.3 261.9

W/o limb joints 226.2 24.5 24.9 220.2

RANSAC 213.1 24.3 24.3 207.1

RootNet (Ours) 120.0 23.3 23.0 108.1

Table 2.5: MRPE comparisons between previous distance minimization-based approaches [13, 14]
and our RootNet on the Human3.6M dataset. MRPEx, MRPEy, and MRPEz represent the mean
of the errors in the x, y, and z axes, respectively.

Figure 2.7: Predicted correction factor γ′ on Human3.6M dataset. Orange box indicates actions
with crouching poses.
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information in inference time. Moreover, it significantly outperforms previous 3D

multi-person pose estimation methods [1, 3].

In addition, we compare 3D human root joint localization error between ours

and previous approaches [13, 14] in Table 2.5. The table shows that our RootNet

significantly outperforms previous approaches. Furthermore, the RootNet can be

designed independently of the PoseNet, giving design flexibility to both models. In

contrast, the previous 3D root localization methods [13, 14] require both 2D and

3D predictions for the root localization, which results in a lack of generalizability.

Figure 2.7 shows predicted correction γ′ has smaller value when a person in the

input image is taking crouching poses (e.g., sitting and sitting down). The figure

demonstrates our RootNet adjust the initial depth value k using the image feature.

The previous 3D human root joint localization approaches [13,14] simultaneously

estimate 2D image coordinates and 3D camera-centered root-relative coordinates of

keypoints. Then, absolute camera-centered coordinates of the human root are ob-

tained by minimizing the distance between 2D predictions and projected 3D pre-

dictions. For optimization, the linear least-squares formulation is used. To measure

the errors of their method, we implemented and used ResNet-152-based model of

Sun et al. [28] as a 2D pose estimator and model of Martinez et al. [31] as a 3D pose

estimator, which are state-of-the-art methods. In addition, to minimize the effect of

outliers in 3D-to-2D fitting, we excluded limb joints when fitting. Also, we performed

RANSAC with a various number of joints to get optimal joint set for fitting instead

of using a heuristically selected joint set.

MuCo-3DHP and MuPoTS-3D datasets. We compare our proposed system

with the state-of-the-art 3D multi-person pose estimation methods on the MuPoTS-

3D dataset [3] in Tables 2.6 and 2.7. The proposed system significantly outperforms
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2. 3D Multi-Person Pose Estimation

Methods Hd. Nck. Sho. Elb. Wri. Hip Kn. Ank. Avg

Rogez [13] 49.4 67.4 57.1 51.4 41.3 84.6 56.3 36.3 53.8

Mehta [3] 62.1 81.2 77.9 57.7 47.2 97.3 66.3 47.6 66.0

Ours 79.1 92.6 85.1 79.4 67.0 96.6 85.7 73.1 81.8

Table 2.7: Joint-wise 3DPCKrel comparison with state-of-the-art methods on the MuPoTS-3D
dataset. All groundtruths are used for evaluation.

DetectNet RootNet PoseNet Total

0.120 0.010 0.011 0.141

Table 2.8: Seconds per frame for each component of our framework.

them in most of the test sequences and joints.

2.8.5 Running time of the proposed framework

In Table 2.8, we report seconds per frame for each component of our framework.

The running time is measured using a single TitanX Maxwell GPU, and the batch

size is set to 1. The testing pipeline of the DetectNet is identical to the original

Mask R-CNN [36], which resizes the smallest side of the input image to 800 pixels.

As the table shows, most of the running time is consumed by DetectNet. It is hard

to directly compare running time with previous works [13,14] because they did not

report it. However, we guess that there would be no big difference because models

of [13] and [14] are similar with [70] and [44] whose speed is 0.2 and 0.11 seconds

per frame, respectively.

2.8.6 Qualitative results

Figures 2.8 and 2.9 show qualitative results of our 3D multi-person pose estimation

framework on the MuPoTS-3D [3] and COCO [1] datasets, respectively. Note that

COCO dataset consists of in-the-wild images which are hardly included in the 3D

human pose estimation training sets [2, 3].
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Figure 2.8: Qualitative results of applying our method on the MuPoTS-3D dataset [3].
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Figure 2.9: Qualitative results of applying our method on the COCO 2017 [1] validation set.
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2.9 Conclusion

We propose a novel and general framework for 3D multi-person pose estimation

from a single RGB image. Our framework consists of human detection, 3D human

root localization, and root-relative 3D single-person pose estimation models. Since

any existing human detection and 3D single-person pose estimation models can

be plugged into our framework, it is very flexible and easy to use. The proposed

system outperforms previous 3D multi-person pose estimation methods by a large

margin and achieves comparable performance with 3D single-person pose estimation

methods without any groundtruth information while they use it in inference time.

To the best of our knowledge, this work is the first to propose a fully learning-based

camera distance-aware top-down approach whose components are compatible with

most of the previous human detection and 3D human pose estimation models. We

hope that this study provides a new basis for 3D multi-person pose estimation, which

has only barely been explored.
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Chapter 3

3D Multi-Person Pose and

Shape Estimation

3.1 Introduction

3D human pose and mesh estimation aims to simultaneously recover 3D semantic

human joint and 3D human mesh vertex locations. Unlike the 3D human pose esti-

mation method of Chapter 2 that only predicts 3D locations of human joints, this

chapter aims to predict 3D locations of human mesh vertices additionally. This is

a very challenging task because of complicated human articulation and 2D-to-3D

ambiguity. It can be used in many applications such as virtual/augmented reality

and human action recognition.

SMPL [71] and MANO [72] are the most widely used parametric human body and

hand mesh models, respectively, which can represent various human poses and iden-

tities. They produce 3D human joint and mesh coordinates from pose and identity

parameters. Recent deep convolutional neural network (CNN)-based studies [23–25]
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3. 3D Multi-Person Pose and Shape Estimation

input image output mesh input image output mesh input image output mesh

Figure 3.1: Qualitative results of the proposed I2L-MeshNet on MSCOCO [1] and FreiHAND [4]
datasets.

for the 3D human pose and mesh estimation are based on the model-based ap-

proach, which trains a network to estimate SMPL/MANO parameters from an input

image. On the other hand, there have been few methods based on model-free ap-

proach [5,73], which estimates mesh vertex coordinates directly. They obtain the 3D

pose by multiplying a joint regression matrix, included in the human mesh model,

to the estimated mesh.

Although the recent deep CNN-based methods perform impressive, when esti-

mating the target (i.e., SMPL/MANO parameters or mesh vertex coordinates), all

of the previous 3D human pose and mesh estimation works break the spatial rela-

tionship among pixels in the input image because of the fully-connected layers at the

output stage. In addition, their target representations cannot model the uncertainty

of the prediction. The above limitations can make training harder, and as a result,

reduce the test accuracy as addressed in [35, 74]. To address the limitations, recent

state-of-the-art 3D human pose estimation methods [28, 34, 35], which localize 3D
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human joint coordinates without mesh vertex coordinates, utilize the heatmap as

the target representation of their networks. Each value of one heatmap represents

the likelihood of the existence of a human joint at the corresponding pixel positions

of the input image and discretized depth value. Therefore, it preserves the spatial

relationship between pixels in the input image and models the prediction uncertainty.

Inspired by the recent state-of-the-art heatmap-based 3D human pose estimation

methods, we propose I2L-MeshNet, an image-to-lixel prediction network that nat-

urally extends heatmap-based 3D human pose to heatmap-based 3D human pose

and mesh. Likewise voxel (volume+pixel) is defined as a quantized cell in three-

dimensional space, we define lixel (line+pixel) as a quantized cell in one-dimensional

space. Our I2L-MeshNet estimates per-lixel likelihood on 1D heatmaps for each mesh

vertex coordinates; therefore, it is based on the model-free approach. The previous

state-of-the-art heatmap-based 3D human pose estimation methods predict the 3D

heatmap of each human joint. Unlike the number of human joints, which is around

20, the number of mesh vertex is much larger (e.g., 6980 for SMPL and 776 for

MANO). As a result, predicting 3D heatmaps of all mesh vertices becomes compu-

tationally infeasible, which is beyond the limit of modern GPU memory. In contrast,

the proposed lixel-based 1D heatmap has an efficient memory complexity, which has

a linear relationship with the heatmap resolution. Thus, it allows our system to

predict heatmaps with sufficient resolution, which is essential for dense mesh vertex

localization.

For more accurate 3D human pose and mesh estimation, we design the I2L-

MeshNet as a cascaded network architecture, which consists of PoseNet and Mesh-

Net. The PoseNet predicts the lixel-based 1D heatmaps of each 3D human joint

coordinate. Then, the MeshNet utilizes the output of the PoseNet as an additional
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input along with the image feature to predict the lixel-based 1D heatmaps of each

3D human mesh vertex coordinate. As the locations of the human joints provide

coarse but important information about the human mesh vertex locations, utilizing

it for 3D mesh estimation is natural and can increase accuracy substantially.

Our I2L-MeshNet outperforms previous 3D human pose and mesh estimation

methods on various 3D human pose and mesh benchmark datasets. Figure 3.1 shows

3D human body and hand mesh estimation results on publicly available datasets.

In addition, it can be easily extended to the multi-person 3D human pose and mesh

estimation using the framework of Moon et al. [26], introduced in Chapter 2. We

show the multi-person results in the experimental result section.

Our contributions can be summarized as follows.

• We propose I2L-MeshNet, a novel image-to-lixel prediction network for 3D hu-

man pose and mesh estimation from a single RGB image. Our system predicts

lixel-based 1D heatmap that preserves the spatial relationship in the input

image and models the uncertainty of the prediction.

• Our efficient lixel-based 1D heatmap allows our system to predict heatmaps

with sufficient resolution, which is essential for dense mesh vertex localization.

• We show that our I2L-MeshNet outperforms previous state-of-the-art methods

on various 3D human pose and mesh datasets.

3.2 Related works

3D human body and hand pose and mesh estimation. Most of the current 3D

human pose and mesh estimation methods are based on the model-based approach,
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which predicts parameters of pre-defined human body and hand mesh models (i.e.,

SMPL and MANO, respectively). The model-based methods can be trained only

from groundtruth human joint coordinates without mesh vertex coordinates because

the model parameters are embedded in low dimensional space. Early model-based

methods [75] iteratively fit the SMPL parameters to estimated 2D human joint lo-

cations. More recent model-based methods regress the body model parameters from

an input image using CNN. Kanazawa et al. [23] proposed an end-to-end trainable

human mesh recovery (HMR) system that uses the adversarial loss to make their

output human shape is anatomically plausible. Pavlakos et al. [24] used 2D joint

heatmaps and silhouette as cues for predicting accurate SMPL parameters. Om-

ran et al. [76] proposed a similar system, which exploits human part segmentation

as a cue for regressing SMPL parameters. Xu et al. [77] used differentiable rendering

to supervise human mesh in the 2D image space. Pavlakos et al. [78] proposed a sys-

tem that uses multi-view color consistency to supervise a network using multi-view

geometry. Baek et al. [79] trained their network to estimate the MANO parame-

ters using a differentiable renderer. Boukhayma et al. [15] trained their network

that takes a single RGB image and estimates MANO parameters by minimizing

the distance of the estimated hand joint locations and groundtruth. Kolotouros et

al. [25] introduced a self-improving system consists of SMPL parameter regressor

and iterative fitting framework [75].

On the other hand, the model-free approach estimates the mesh vertex coor-

dinates directly instead of regressing the model parameters. Due to the recent ad-

vancement of the iterative human body and hand model fitting frameworks [4, 6,

75], pseudo-groundtruth mesh vertex annotation on large-scale datasets [1, 2, 4, 80]

became available. Those datasets with mesh vertex annotation motivated several
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model-free methods that require mesh supervision. Kolotouros et al. [5] designed

a graph convolutional human mesh regression system. Their graph convolutional

network takes a template human mesh in a rest pose as input and outputs mesh

vertex coordinates using image feature from ResNet [53]. Ge et al. [73] proposed

a graph convolution-based network which directly estimates vertices of hand mesh.

Recently, Choi et al. [22] proposed a graph convolutional network that recovers 3D

human pose and mesh from a 2D human pose.

Unlike all the above model-based and model-free 3D human pose and mesh

estimation methods, the proposed I2L-MeshNet outputs 3D human pose and mesh

by preserving the spatial relationship between pixels in the input image and modeling

uncertainty of the prediction. Those two main advantageous are brought by designing

the target of our network to the lixel-based 1D heatmap. This can make training

much stable, and the system achieves much lower test error.

Heatmap-based 3D human pose estimation. Most of the recent state-of-the-

art 2D and 3D human pose estimation methods use heatmap as a prediction tar-

get, which preserves the spatial relationship in the input image and models the

uncertainty of the prediction. Tompson et al. [74] proposed to estimate the Gaus-

sian heatmap instead of directly regressing coordinates of human body joints. Their

heatmap representation helps their model to perform 2D human pose estimation

more accurate and motivated many heatmap-based 2D human pose methods [18,38,

81]. Pavlakos et al. [29] and Moon et al. [35] firstly proposed to use 3D heatmaps

as a prediction target for 3D human body pose and 3D hand pose estimation, re-

spectively. Especially, Moon et al. [35] demonstrated that under the same setting,

changing prediction target from coordinates to heatmap significantly improves the

3D hand pose accuracy while requires much less amount of the learnable parameters.
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PoseNetinput image
(   )

MeshNet

3D pose (     )

3D mesh (      )

Figure 3.2: Overall pipeline of the proposed I2L-MeshNet.

Recently, Moon et al. [34] achieved significantly better 3D multi-person pose estima-

tion accuracy using 3D heatmap compared with previous coordinate regression-based

methods [13].

3.3 I2L-MeshNet

Figure 3.2 shows the overall pipeline of the proposed I2L-MeshNet. I2L-MeshNet

consists of PoseNet and MeshNet, which will be described in the following subsec-

tions.

3.3.1 PoseNet

The PoseNet estimates three lixel-based 1D heatmaps of all human joints PH =

{PH,x,PH,y,PH,z} from the input image I. PH,x and PH,y are defined in x- and
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Figure 3.3: Network architecture to predict lixel-based 1D heatmaps and visualized examples of
feature maps and the 1D heatmaps.

y-axis of the image space, while PH,z is defined in root joint (i.e., pelvis or wrist)-

relative depth space. For this, PoseNet extracts image feature FP ∈ Rc×h×w from the

input image by ResNet [53]. Then, three upsampling modules increases the spatial

size of FP by 8 times, while changing channel dimension from c = 2048 to c′ = 256.

Each upsampling module consists of deconvolutional layer, 2D batch normalization

layer [57], and ReLU function. The upsampled features are used to compute lixel-

based 1D human pose heatmaps, as illustrated in Figure 3.3 (a). We obtain x- and

y-axis 1D human pose heatmaps as follows:

PH,x = f1D,xP (avgy(fupP (FP))) and PH,y = f1D,yP (avgx(fupP (FP))), (3.1)
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where fupP denotes the three upsampling modules of the PoseNet. avgi and f1D,iP de-

note i-axis marginalization by averaging and a 1-by-1 1D convolution that changes

channel dimension from c′ to J for i-axis 1D human pose heatmap estimation, re-

spectively.

We obtain z-axis 1D human pose heatmaps as follows:

PH,z = f1D,zP (ψ(fP(avgx,y(FP)))), (3.2)

where fP and ψ : Rc′D → Rc′×D denote a building block and reshape function,

respectively. The building block consists of a fully-connected layer, 1D batch nor-

malization layer, and ReLU function, and it changes the activation size from c to

c′D. D denotes depth discretization size and is equal to 8h = 8w. We convert the dis-

cretized heatmaps of PH to continuous coordinates PC = [pC,x,pC,y,pC,z] ∈ RJ×3

by soft-argmax [28].

3.3.2 MeshNet

The MeshNet has a similar network architecture with that of the PoseNet. Instead

of taking the input image I, MeshNet takes a pre-computed image feature from the

PoseNet F̃P and 3D Gaussian heatmap PHG ∈ RJ×D×8h×8w. F̃P is the input of

the first residual block of the PoseNet whose spatial dimension is 8h × 8w. PHG is

obtained from PC as follows:

PHG(j, z, y, x) = exp

(
−

(x− pC,x
j )2 + (y − pC,y

j )2 + (z − pC,z
j )2

2σ2

)
, (3.3)

43



3. 3D Multi-Person Pose and Shape Estimation

where pC,x
j , pC,y

j and pC,z
j are jth joint x-, y-, and z-axis coordinates from PC,

respectively. σ is set to 2.5.

From PHG and F̃P, we obtain image feature FM as follows:

FM = ResNetM(fM(ψ(PHG)⊕ F̃P)), (3.4)

where ψ : RJ×D×8h×8w → RJD×8h×8w and ⊕ denote reshape function and concate-

nation along the channel dimension, respectively. fM is a convolutional block that

consists of a 3-by-3 convolutional layer, 2D batch normalization layer, and ReLU

function. It changes the channel dimension of the input to the input channel dimen-

sion of the first residual block of the ResNet. ResNetM is the ResNet starting from

the first residual block.

From the FM, MeshNet outputs three lixel-based 1D heatmaps of all mesh

vertices MH = {MH,x,MH,y,MH,z} in an exactly the same manner with that of

PoseNet, as illustrated in Figure 3.3 (a). Likewise heatmaps of PoseNet, MH,x and

MH,y are defined in x- and y-axis of the image space, while MH,z is defined in root

joint-relative depth space. We obtain x- and y-axis 1D human mesh heatmaps as

follows:

MH,x = f1D,xM (avgy(fupM (FM))) and MH,y = f1D,yM (avgx(fupM (FM))), (3.5)

where fupM denotes the three upsampling modules of the MeshNet. f1D,iM denote

a 1-by-1 1D convolution that changes channel dimension from c′ to V for i-axis

1D human mesh heatmap estimation, respectively. Figure 3.3 (b) shows visualized

fupM (FM), MH,x, and MH,y.
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We obtain z-axis 1D human mesh heatmaps as follows:

MH,z = f1D,zM (ψ(fM(avgx,y(FM)))), (3.6)

where fM and ψ : Rc′D → Rc′×D denote a building block and reshape function,

respectively. The building block consists of a fully-connected layer, 1D batch nor-

malization layer, and ReLU function, and it changes the activation size from c to

c′D. Likewise we did in the PoseNet, we convert the discretized heatmaps ofMH to

continuous coordinates MC = [mC,x,mC,y,mC,z] ∈ RV×3 by soft-argmax [28].

3.3.3 Final 3D human pose and mesh

The final 3D human mesh M and pose P are obtained as follows:

M = Π(T−1MC + R) and P = JM, (3.7)

where Π, T−1, and R ∈ R1×3 denote camera back-projection, inverse affine trans-

formation (i.e., 2D crop and resize), and z-axis offset whose element is a depth of

the root joint, respectively. R is obtained from RootNet [34]. We use normalized

camera intrinsic parameters if not available following Moon et al. [34]. J ∈ RJ×V is

a joint regression matrix defined in SMPL or MANO model.

3.3.4 Loss functions

PoseNet pose loss. To train the PoseNet, we use L1 loss function defined as
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follows:

LPoseNet
pose = ‖PC −PC∗‖1, (3.8)

where ∗ indicates groundtruth. z-axis loss becomes zero if z-axis groundtruth is

unavailable.

MeshNet pose loss. To train the MeshNet to predict mesh vertex aligned with

body joint locations, we use L1 loss function defined as follows:

LMeshNet
pose = ‖JMC −PC∗‖1, (3.9)

where ∗ indicates groundtruth. z-axis loss becomes zero if z-axis groundtruth is

unavailable.

Mesh vertex loss. To train the MeshNet to output mesh vertex heatmaps, we

use L1 loss function defined as follows:

Lvertex = ‖MC −MC∗‖1, (3.10)

where ∗ indicates groundtruth. z-axis loss becomes zero if z-axis groundtruth is

unavailable.

Mesh normal vector loss. Following Wang et al. [82], we supervise normal

vector of predicted mesh to get visually pleasing mesh result. The L1 loss function

for normal vector supervision is defined as follows:

Lnormal =
∑
f

∑
{i,j}⊂f

∣∣∣〈 mC
i −mC

j

‖mC
i −mC

j ‖2
, n∗f

〉∣∣∣, (3.11)

where f and nf indicate a mesh face and unit normal vector of face f , respectively.
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mC
i and mC

j denote ith and jth vertex coordinates of MC, respectively. n∗f is com-

puted from MC∗, where ∗ denotes groundtruth. The loss becomes zero if groundtruth

3D mesh is unavailable.

Mesh edge length loss. Following Wang et al. [82], we supervise edge length

of predicted mesh to get visually pleasing mesh result. The L1 loss function for edge

length supervision is defined as follows:

Ledge =
∑
f

∑
{i,j}⊂f

= |‖mC
i −mC

j ‖2 − ‖mC∗
i −mC∗

j ‖2|, (3.12)

where f and ∗ indicate mesh face and groundtruth, respectively. mC
i and mC

j de-

note ith and jth vertex coordinates of MC, respectively. The loss becomes zero if

groundtruth 3D mesh is unavailable.

We train our I2L-MeshNet in an end-to-end manner using all the five loss func-

tions as follows:

L = LPoseNet
pose + LMeshNet

pose + Lvertex + λLnormal + Ledge, (3.13)

where λ = 0.1 is a weight of Lnormal. For the stable training, we do not back-

propagate gradients before PHG .

3.4 Implementation details

PyTorch [58] is used for implementation. The backbone part is initialized with the

publicly released ResNet-50 [53] pre-trained on the ImageNet dataset [59], and the

weights of the remaining part are initialized by Gaussian distribution with σ = 0.001.
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The weights are updated by the Adam optimizer [60] with a mini-batch size of 48.

To crop the human region from the input image, we use groundtruth bounding box

in both of training and testing stages following previous works [5,23,25]. When the

bounding box is not available in the testing stage, we trained and tested Mask R-

CNN [36] to get the bounding box. The cropped human image is resized to 256×256,

thus D = 64 and h = w = 8. Data augmentations, including scaling (±25%),

rotation (±60°), random horizontal flip, and color jittering (±20%), are performed

in training. The initial learning rate is set to 10−4 and reduced by a factor of 10 at

the 10th epoch. We train our model for 12 epochs with three NVIDIA RTX 2080Ti

GPUs, which takes 36 hours for training. Our I2L-MeshNet runs at a speed of 25

frames per second (fps).

3.5 Experiment

3.5.1 Datasets and evaluation metrics

Human3.6M. Human3.6M [2] contains 3.6M video frames with 3D joint coordinate

annotations. Because of the license problem, previously used groundtruth SMPL

parameters of the Human3.6M are inaccessible. Alternatively, we used SMPLify-

X [6] to obtain groundtruth SMPL parameters. MPJPE and PA MPJPE are used

for the evaluation [34], which is Euclidean distance (mm) between predicted and

groundtruth 3D joint coordinates after root joint alignment and further rigid align-

ment, respectively.

3DPW. 3DPW [80] contains 60 video sequences captured mostly in outdoor con-

ditions. We use this dataset only for evaluation on its defined test set following
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targets spatial uncertainty MPJPE no. param. GPU mem.

SMPL param. 7 7 100.3 91M 4.3 GB

xyz coord. 7 7 114.3 117M 5.4 GB

xyz lixel hm. wo.
spatial

7 3 92.6 82M 4.5 GB

xyz lixel hm. (ours) 3 3 86.2 73M 4.6 GB

Table 3.1: The MPJPE, the number of parameters, and the GPU memory usage comparison between
various target representations on Human3.6M.

Kolotouros et al. [25]. The same evaluation metrics with Human3.6M (i.e., MPJPE

and PA MPJPE) are used, following Kolotouros et al. [25].

FreiHAND. FreiHAND [4] contains real-captured 130K training images and 4K

test images with MANO pose and shape parameters. The evaluation is performed

at an online server. Following Zimmermann et al. [4], we report PA MPVPE, PA

MPJPE, and F-scores.

MSCOCO. MSCOCO [1] contains large-scale in-the-wild images with 2D bounding

box and human joint coordinates annotations. We fit SMPL using SMPLify-X [6]

on the groundtruth 2D poses and used the fitted meshes as groundtruth 3D meshes.

This dataset is used only for the training.

MuCo-3DHP. MuCo-3DHP [3] is generated by compositing the existing MPI-

INF-3DHP 3D [14]. 200K frames are composited, and half of them have augmented

backgrounds. We used images of the MSCOCO dataset that do not include humans

to augment the backgrounds following Moon et al. [34]. This dataset is used only

for the training.
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3.5.2 Ablation study

All models for the ablation study are trained and tested on Human3.6M. As Hu-

man3.6M is the most widely used large-scale benchmark, we believe this dataset is

suitable for the ablation study.

Benefit of the heatmap-based mesh estimation. To demonstrate the bene-

fit of the heatmap-based mesh estimation, we compare models with various target

representations of the human mesh, such as SMPL parameters, vertex coordinates,

and heatmap. Table 3.1 shows MPJPE, the number of parameters, and the GPU

memory usage comparison between models with different targets. The table shows

that our heatmap-based mesh estimation network achieves the lowest errors while

using the smallest number of the parameters and consuming small GPU memory.

The superiority of our heatmap-based mesh estimation network is in two folds.

First, it can model the uncertainty of the prediction. To validate this, we trained

two models that estimate the camera-centered mesh vertex coordinates directly and

estimates lixel-based 1D heatmap of the coordinates using two fully-connected layers.

Note that the targets of the two models are the same, but their representations are

different. As the first network regresses the coordinates directly, it cannot model

the uncertainty on the prediction, while the latter one can because of the heatmap

target representation. However, both do not preserve the spatial relationship in the

input image because of the global average pooling and the fully-connected layers. As

the second and third rows of the table show, modeling uncertainty on the prediction

significantly decreases the errors while using a smaller number of parameters. In

addition, it achieves lower errors than the SMPL parameter regression model, which

is the most widely used target representation but cannot model the uncertainty.
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targets mem. complx. resolution MPJPE GPU mem.

xyz voxel hm. O(V D3)
8×8×8 102.8 4.3 GB

16×16×16 - OOM

xy pixel hm. + z lixel hm. O(V D2)

8×8, 8 97.9 3.5 GB

32×32, 32 89.4 5.7 GB

64×64, 64 - OOM

xyz lixel hm. (ours) O(V D)

8, 8, 8 100.2 3.4 GB

32, 32 ,32 94.8 4.0 GB

64, 64, 64 86.2 4.6 GB

Table 3.2: The MPJPE and the GPU memory usage comparison between various heatmap repre-
sentations on Human3.6M.

Second, it preserves the spatial relationship between pixels in the input image.

The final model estimates the x- and y-axis heatmaps of each mesh vertex in a

fully-convolutional way, thus preserves the spatial relationship. It achieves the best

performance with the smallest number of parameters while consuming similar GPU

memory usage compared with the SMPL parameter regression method that requires

the least amount of GPU memory.

In Table 3.1, all models have the same network architecture with our I2L-

MeshNet except for the final output prediction part. We removed PoseNet from

all models, and the remaining MeshNet directly estimates targets from the input

image I. Except for the last row (ours), all settings output targets using two fully-

connected layers. We followed the training details of [23,25] for the SMPL parameter

estimation.

Lixel-based vs. pixel-based vs. voxel-based heatmap. To demonstrate the

effectiveness of the lixel-based 1D heatmap over other heatmap representations, we

train three models that predict lixel-based, pixel-based, and voxel-based heatmap,

respectively. We used the same network architecture (i.e., MeshNet of the I2L-
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MeshNet) for all settings except for the final prediction part. Their networks directly

predict the heatmaps from the input image. x-, y-, and z-axis of each heatmap repre-

sents the same coordinates. Table 3.2 shows memory complexity, heatmap resolution,

MPJPE, and GPU memory usage comparison between models that predict differ-

ent target representations of human mesh. The table shows that our lixel-based one

achieves the lowest error while consuming small GPU memory usage.

Compared with the pixel-based and voxel-based heatmap, our lixel-based one

consumes much less amount of GPU memory under the same resolution. The 8×8×8

voxel-based heatmap requires similar GPU memory usage with that of 64, 64, 64

lixel-based one, and we found that enlarging the voxel-based heatmap size from it

is not allowed in the current GPU memory limit (i.e., 12 GB). The pixel-based

heatmap is more efficient than the voxel-based one; however still much inefficient

than our lixel-based one, which makes enlarging from 32 × 32, 32 impossible. This

inefficient memory usage limits the heatmap resolution; however, we found that

the heatmap resolution is critical for dense mesh vertex localization. On the other

hand, the memory complexity of our lixel-based heatmap is a linear function with

respect to D; thus, we can predict a high-resolution heatmap for each mesh vertex.

The memory efficiency will be more important when a high-resolution human mesh

model is used.

Under the same resolution, the combination of pixel-based heatmap and lixel-

based heatmap achieves the best performance. We think that estimating the voxel-

based heatmap involves too many parameters at a single output layer, which makes

it produce high errors. In addition, lixel-based heatmap inherently involves spatial

ambiguity that arises from marginalizing the 2D feature map to 1D, which can be a

possible reason for worse performance than the combined one.
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settings MPJPE PA MPJPE GPU mem.

avg on FM 93.5 64.1 4.4 GB

avg on fMup(FM) (ours) 86.2 59.8 4.6 GB

Table 3.3: The MPJPE, PA MPJPE, and GPU memory usage comparison between various marginal-
ization settings on Human3.6M dataset.

Where to marginalize 2D to 1D. We report how the MPJPE, PA MPJPE, and

GPU memory usage change when the marginalization takes place on the ResNet

output (i.e., FP or FM), which is the input of the first upsampling module, instead

of the output of the last upsampling module (i.e., fPup(FP) or fMup(FM)) in Table 3.3.

For convenience, we removed PoseNet from our I2L-MeshNet and changed MeshNet

to take the input image. The table shows that the early marginalization increases

errors while requiring less amount of GPU memory. This is because the marginalized

two 1D feature maps can be generated from multiple 2D feature map, which results

in spatial ambiguity. To reduce the effect of this spatial ambiguity, we designed our

I2L-MeshNet to extract a sufficient amount of 2D information and then apply the

marginalization at the last part of the network instead of applying it in the early

stage.

When the marginalization is applied on the ResNet output FM, all 2D layers (i.e.,

deconvolutional layers and batch normalization layers) in the upsampling modules

are converted to the 1D layers. All models are trained on Human3.6M dataset. The

z-axis heatmap prediction part is not changed.

How to marginalize 2D to 1D. We report how the MPJPE and PA MPJPE

change when different marginalization methods are used in Table 3.4. For conve-

nience, we removed PoseNet from our I2L-MeshNet and changed MeshNet to take

the input image. The table shows that our average pooling achieves the lowest errors.
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settings MPJPE PA MPJPE

max pooling 93.5 64.1

weighted sum 89.4 61.4

avg pooling (ours) 86.2 59.8

Table 3.4: The MPJPE and PA MPJPE comparison between various marginalization settings on
Human3.6M dataset.

settings resolution uncertainty in z-axis MPJPE GPU mem.

2.5D heatmap [83] 8 × 8, 8 × 8 7 107.4 3.6GB

2.5D heatmap [83] 32 × 32, 32 × 32 7 100.4 8.4GB

lixel-based 1D heatmap 8, 8, 8 3 100.2 3.4GB

lixel-based 1D heatmap 32, 32, 32 3 94.8 4.0GB

lixel-based 1D heatmap 64, 64, 64 3 86.2 4.6GB

Table 3.5: The MPJPE and GPU memory usage comparison between various marginalization set-
tings on Human3.6M dataset.

Compared with the max-pooling that provides the gradients to one-pixel position per

one x or y position, our average pooling provides the gradients to all pixel positions,

which is much richer ones. We implemented the weighted sum by constructing a con-

volutional layer whose kernel size is (8h, 1) and (1, 8w) for x- and y-axis lixel-based

1D heatmap prediction, respectively, without padding. The weighted sum provides

a lower error than that of the max pooling, however still worse than our average

pooling. We believe the large size of a kernel of the convolutional layer (i.e., (8h, 1)

and (1, 8w)) is hard to be optimized, which results in higher error than ours. For

all settings, models are trained on Human3.6M dataset, and the z-axis heatmap

prediction part is not changed.

Comparison with previous 2.5D heatmap regression We compare the MPJPE

and GPU memory usage between a model that predicts our lixel-based 1D heatmap

and a model that predicts the 2.5D heatmap [83] in Table 3.5. The 2.5D heatmap [83]

consists of xy heatmap and z heatmap, where xy one is the pixel-based 2D heatmap,
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settings 3D pose MPJPE PA MPJPE

MeshNet 7 86.2 59.8

PoseNet+MeshNet (ours) 3 81.8 58.0

MeshNet GT 25.5 17.1

Table 3.6: The MPJPE and PA MPJPE comparison between various network cascading strategies
on Human3.6M.

and z one has the same spatial size as that of xy heatmap and contains root joint-

relative depth on the activated xy position for all mesh vertices. They predict the

depth values on z heatmap, not the likelihood, thus cannot model uncertainty of

the z-axis prediction. As the table shows, our lixel-based one achieves significantly

lower error under the same resolution while requiring a much smaller amount of

GPU memory. We think that this is because the 2.5D heatmap of Iqbal et al. [83]

cannot model uncertainty of the prediction in z-axis, while ours can. For all settings,

models are trained on Human3.6M dataset, and we removed PoseNet and changed

MeshNet to take an input image and predict the heatmap.

Benefit of the cascaded PoseNet and MeshNet. To demonstrate the benefit of

the cascaded PoseNet and MeshNet, we trained and tested three networks using var-

ious network cascading strategy. First, we removed PoseNet from the I2L-MeshNet.

The remaining MeshNet directly predicts lixel-based 1D heatmap of each mesh ver-

tex from the input image. Second, we trained I2L-MeshNet, which has cascaded

PoseNet and MeshNet architecture. Third, to check the upper bound accuracy with

respect to the output of the PoseNet, we fed the groundtruth 3D human pose in-

stead of the output of the PoseNet to the MeshNet in both the training and testing

stage. Table 3.6 shows utilizing the output of the PoseNet (the second row) achieves

better accuracy compared with using only MeshNet (the first row) to estimate the

human mesh. Interestingly, passing the groundtruth 3D human pose to the MeshNet
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input image
without with

input image
without with

Figure 3.4: Estimated meshes from models trained with different combinations of loss functions.

methods
Human3.6M 3DPW

MPJPE PA MPJPE MPJPE PA MPJPE

HMR [23] 153.2 85.5 300.4 137.2
GraphCMR [5] 78.3 59.5 126.5 80.1

SPIN [25] 72.9 51.9 113.1 71.7
I2L-MeshNet (Ours) 55.7 41.7 95.4 60.8

Table 3.7: The MPJPE and PA MPJPE comparison on Human3.6M and 3DPW. All methods are
trained on Human3.6M and MSCOCO.

(the last row) significantly improves the performance compared with all the other

settings. This indicates that improving the 3D human pose estimation network can

be one important way to improve 3D human mesh estimation accuracy.

Effect of each loss function For visually pleasant mesh estimation, we use normal

vector loss Lnormal and edge length loss Ledge. We show the effectiveness of the two

loss functions in Figure 3.4. As the figure shows, the two loss functions improve the

visual quality of output meshes. We checked that Lnormal and Ledge marginally affect

the MPJPE and PA MPJPE. For all settings, all models are trained on Human3.6M

dataset and MSCOCO dataset.
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methods MPJPE PA MPJPE

SMPLify [75] - 82.3
Lassner [84] - 93.9
HMR [23] 88.0 56.8
NBF [76] - 59.9

Pavlakos [24] - 75.9
Kanazawa [85] - 56.9
GraphCMR [5] - 50.1

Arnab [86] 77.8 54.3
SPIN [25] - 41.1

I2L-MeshNet (Ours) 55.7 41.1

Table 3.8: The MPJPE and PA MPJPE comparison on Human3.6M. Each method is trained on
different datasets.

methods MPJPE PA MPJPE

HMR [23] - 81.3
Kanazawa [85] - 72.6
GraphCMR [5] - 70.2

Arnab [86] - 72.2
SPIN [25] - 59.2

I2L-MeshNet (Ours) 93.2 57.7
I2L-MeshNet (Ours) + SMPL regress 100.0 60.0

Table 3.9: The MPJPE and PA MPJPE comparison on 3DPW. Each method is trained on different
datasets.

3.5.3 Comparison with state-of-the-art methods

Human3.6M and 3DPW. We compare the MPJPE and PA MPJPE of our I2L-

MeshNet with previous state-of-the-art 3D human body pose and mesh estimation

methods on Human3.6M and 3DPW test set. As each previous work trained their

network on different training sets, we report the 3D errors in two ways.

First, we train all methods on Human3.6M and MSCOCO and report the er-

rors in Table 3.7. The previous state-of-the-art methods [5, 23, 25] are trained from

their officially released codes. The table shows that our I2L-MeshNet significantly

outperforms previous methods by a large margin on both datasets.
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Second, we report the 3D errors of previous methods from their papers and ours

in Table 3.8 and Table 3.9. Each network of the previous method is trained on the

different combinations of datasets, which include Human3.6M, MSCOCO, MPII [63],

LSP [87], LSP-Extended [88], UP [84], and MPI-INF-3DHP [14]. We used MuCo-

3DHP for the additional training dataset for the evaluation on the 3DPW dataset.

We also report the 3D errors from an additional SMPL parameter regression module

following Kolotouros et al. [5]. The tables show that the performance gap between

ours and the previous state-of-the-art method [25] is significantly reduced.

The reason for the reduced performance gap is that previous model-based state-

of-the-art methods [23, 25] can get benefit from many in-the-wild 2D human pose

datasets [1, 87, 88] by a 2D pose-based weak supervision. As the human body or

hand model assumes a prior distribution between the human model parameters

(i.e., 3D joint rotations and identity vector) and 3D joint/mesh coordinates, the 2D

pose-based weak supervision can provide gradients in depth axis, calculated from

the prior distribution. Although the weak supervision still suffers from the depth

ambiguity, utilizing in-the-wild images can be highly beneficial because the images

have diverse appearances compared with those of the lab-recorded 3D datasets [2,3,

14]. On the other hand, model-free approaches, including the proposed I2L-MeshNet,

do not assume any prior distribution, therefore hard to get benefit from the weak

supervision. Based on the two comparisons, we can draw two important conclusions.

• I2L-MeshNet achieves much higher accuracy than the model-based methods

when trained on the same datasets that provide groundtruth 3D human poses

and meshes.

• The model-based approaches can achieve comparable or higher accuracy by
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methods PA MPVPE PA MPJPE F@5 mm F@15 mm GT scale

Hasson et al. [16] 13.2 - 0.436 0.908 3

Boukhayma et al. [15] 13.0 - 0.435 0.898 3

FreiHAND [4] 10.7 - 0.529 0.935 3

I2L-MeshNet (Ours) 7.6 7.4 0.681 0.973 7

Table 3.10: The PA MPVPE, PA MPJPE, and F-scores comparison between state-of-the-art
methods and the proposed I2L-MeshNet on FreiHAND. The checkmark denotes a method use
groundtruth information during inference time.

utilizing additional in-the-wild 2D pose data without requiring the 3D super-

visions.

We think that a larger number of accurately aligned in-the-wild image-3D mesh

data can significantly boost the accuracy of I2L-MeshNet. The iterative fitting [6,75],

neural network [89], or their combination [25] can be used to obtain more data. This

can be an important future research direction, and we leave this as future work.

FreiHAND. We compare MPVPE and F-scores of our I2L-MeshNet with previous

state-of-the-art 3D human hand pose and mesh estimation methods [4, 15, 16]. We

trained Mask R-CNN [36] on FreiHAND train images to get the hand bounding

box of test images. Table 3.10 shows that the proposed I2L-MeshNet significantly

outperforms all previous works without groundtruth scale information during the

inference time. We additionally report MPJPE in the table.

MSCOCO. We provide qualitative results comparison between ours and previous

state-of-the-art model-free method (i.e., GraphCMR [5]) in Figure 3.5. As the figure

shows, our I2L-MeshNet provides much more visually pleasant mesh results than

GraphCMR. We think this is because the graph convolutional network (GraphCNN)

often tends to smooth the meshes by averaging the vertex feature with that of

neighboring vertices.
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input image I2L-MeshNet (ours) GraphCMR

Figure 3.5: Estimated meshes comparisons between our I2L-MeshNet and GraphCMR [5].

Figure 3.6 shows 3D multi-person pose and mesh estimation result of an in-the-

wild image of MSCOCO. The framework of Moon et al. [26] is used to extend the

single person 3D pose and shape of I2L-MeshNet to the multi-person case.

3.6 Conclusion

We propose an I2L-MeshNet, image-to-lixel prediction network for accurate 3D hu-

man pose and mesh estimation from a single RGB image. We convert the output

of the network to the lixel-based 1D heatmap, which preserves the spatial relation-
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Figure 3.6: 3D multi-person pose and mesh estimation result on an in-the-wild image.

ship in the input image and models uncertainty of the prediction. Our lixel-based

1D heatmap requires much less GPU memory usage under the same heatmap res-

olution while producing better accuracy compared with a widely used voxel-based

3D heatmap. Our I2L-MeshNet outperforms previous 3D human pose and mesh

estimation methods on various 3D human pose and mesh datasets. We hope our

method can give useful insight to the following model-free 3D human pose and mesh

estimation approaches.
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Chapter 4

Expressive 3D Multi-Person

Pose and Shape Estimation

4.1 Introduction

Expressive 3D human pose and mesh estimation aims to localize joints and mesh

vertices of all human parts, including body, hands, and face, simultaneously in the

3D space. Unlike the 3D human pose and mesh estimation methods of previous

chapters are applicable to only one of the body, hands, and face at a time (i.e., part-

specific methods), this chapter aims to recover the 3D pose and mesh of the body,

hands, and face at the same time (i.e., expressive method). By combining 3D pose

and mesh of all human parts, we can understand not only human articulation and

shape but also human intention and feeling, which can be useful in motion capture,

virtual/augmented reality, and human action recognition. This is a very challenging

task and has been addressed by only several recent approaches.

3D rotations of human joints (i.e., 3D rotational pose) represent relative 3D
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rotations to a parent joint, defined in a human kinematic chain. Consideration of

the 3D rotational pose in addition to the 3D positions of human joints (i.e., 3D

positional pose) make human joints 6D object, thus enables skinning functions (e.g.,

linear blend skinning). As many computer vision and graphics tasks, such as motion

capture and animation, are based on skinning functions, they require a 3D rotational

pose as an input. Therefore, many previous 3D human pose and mesh estimation

methods have been proposed to predict the 3D rotational pose accurately.

Previous 3D human pose and mesh estimation methods [4,5,15,16,23–25] mostly

rely on only global image feature to predict 3D rotational pose. They perform global

average pooling (GAP) on the extracted image feature from ResNet [53] and pass the

pooled feature to several fully connected layers for the 3D rotational pose prediction.

The estimated 3D rotations are passed to human model layers (e.g., SMPL [71] for

body, MANO [72] for hands, FLAME [90] for face, or SMPL-X [6] for all parts)

for the final 3D pose and mesh. Although the global image feature can provide the

overall articulation of human, it lacks joint-specific local information, which can

be obtained from features on the positional pose. However, GAP in their networks

breaks the spatial domain; thus, it limits the chance of utilizing the local features

on the positional pose.

To effectively utilize both local and global features, we present Pose2Pose, a 3D

positional pose-guided 3D rotational pose prediction network. Our Pose2Pose con-

sists of PositionNet and RotationNet. PositionNet predicts the 3D positional pose

from an input image in a fully convolutional way. Then, a positional pose-guided

pooling extracts joint-specific local and global features on the predicted positional

pose of the ResNet output image feature. From the extracted joint-specific features,

the RotationNet constructs a human skeleton graph and regresses the 3D rota-

64



4. Expressive 3D Multi-Person Pose and Shape Estimation

Figure 4.1: Qualitative results of the proposed Pose2Pose on in-the-wild images. Our framework
can produce accurate expressive 3D human pose and mesh, which includes body, hands, and face.

tional pose using a joint-specific graph convolution. Unlike the vanilla graph con-

volution [91] that shares learnable weights for all graph vertices, our joint-specific

graph convolution uses separated learnable weights for each joint, which share a sim-

ilar spirit of Liu et al. [92]. This joint-specific graph convolution effectively processes

the joint-specific local and global features by learning joint-specific characteristics

and different relationships between different joints.

We use our Pose2Pose for expressive 3D human pose and mesh estimation. The

proposed Pose2Pose significantly outperforms previous 3D human pose and mesh

estimation methods by a large margin. Figure 4.1 shows qualitative results of the

proposed Pose2Pose. In addition, it can be easily extended to the multi-person 3D

human pose and mesh estimation using the framework of Moon et al. [26], introduced

in Chapter 2. We show the multi-person results in the experimental result section.

Our contributions can be summarized as follows.
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• We present Pose2Pose, a 3D positional pose-guided 3D rotational pose pre-

diction network for expressive 3D human pose and mesh estimation. Our

Pose2Pose utilizes joint-specific local and global features, extracted by a posi-

tional pose-guided pooling.

• To effectively process joint-specific local and global features, we propose to use

a joint-specific graph convolution.

• We show that our Pose2Pose outperforms all previous part-specific and ex-

pressive 3D human pose and mesh estimation methods.

4.2 Related works

Expressive 3D human pose and mesh estimation. Due to its difficulty and

absence of the unified expressive body model, there have been very few attempts to

simultaneously recover the 3D human pose and mesh of all human parts, including

body, hands, and face. Most previous attempts are an optimization-based approach,

which fits a 3D human model to the 2D/3D evidence. Joo et al. [19] fits their human

models (i.e., Frank and Adam) to 3D human joints coordinates and point clouds

in a multi-view studio environment. Xiang et al. [93] extended Joo et al. [19] to

the single RGB case. Pavlakos et al. [6] and Xu et al. [94] fits their human model,

SMPL-X and GHUM, respectively, to 2D human joint coordinates. As the above

optimization-based methods can be slow and prone to noisy evidence, a regression-

based approach is presented recently. Choutas et al. [7] presented ExPose, which

predicts the expressive human pose and mesh using body-driven attention.

Our Pose2Pose is also the regression-based approach; however, it has a clear

difference compared with the previous work, ExPose [7]. ExPose consists of body,
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hand, and face branches, and each branch relies on only global image features to

regress the parameters of the corresponding human model from the input images.

On the other hand, our Pose2Pose exploits both local and global features by the

positional pose-guided pooling and joint-specific graph convolution. We show that

utilizing both local and global features brings significant performance gain.

Local and global features for 3D human pose and mesh estimation. Uti-

lizing both local and global features has been proven to be crucial for accurate 3D

human pose and mesh estimation. Detection-based 3D human pose and mesh es-

timation methods [21, 28, 29, 35] have achieved high 3D positional pose accuracy

by utilizing both local and global features. They detect the human joints or mesh

vertices from an input image by predicting heatmaps, which have activations where

human joints or mesh vertices likely exist. As the heatmap is predicted in a fully

convolutional way, the detection-based methods do not require GAP; thus, they can

utilize both local and global features. However, their methods are hard to be used to

predict 3D rotational pose because the input image only contains the position and

intensity of each pixel; thus, the 3D rotational pose cannot be predicted in a fully

convolutional way.

On the other hand, regression-based methods [5, 23–25] can predict both 3D

positional and rotational pose by a direct regression. However, previous regression-

based methods suffer from low accuracy compared with detection-based methods

because the previous ones rely only on global features, obtained by GAP. Several

works attempted to utilize both local and global features. Guler and Kokkinos [95]

and Zhang et al. [96] extract joint-specific local and global features; however, they

did not pass the predicted positional pose to the final 3D rotational pose prediction

module. Especially, Zhang et al. [96] predicts 2D positional pose, which cannot
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Figure 4.2: The overall pipeline of Pose2Pose, which consists of PositionNet and RotationNet. The
PositionNet predicts the 3D positional pose. Then, the positional pose-guided pooling extracts the
joint-specific local and global features. The RotationNet takes the joint-specific features with the 3D
positional pose/scores and predicts the 3D rotational pose by the joint-specific graph convolution.
The final 3D human pose and mesh are obtained by forwarding the predicted 3D human model
parameters, including 3D rotational pose to a human model layer (e.g., SMPL-X [6]). For the
simplicity, we only illustrated body part Pose2Pose and head and right ankle operations.

convey depth information to the 3D rotational pose prediction module. On the other

hand, our Pose2Pose utilize both joint-specific local and global features and 3D

positional pose for the 3D rotational pose prediction. Especially, ours is for greatly

challenging expressive 3D human pose and mesh estimation, while they are only for

the body part.

Our Pose2Pose greatly improves the previous regression-based network by uti-

lizing both local and global features for accurate expressive 3D human pose and

mesh estimation. To this end, we combine the regression-based network with the

detection-based network. Our detection-based network, PositionNet, provides the

3D positional pose. Then, we extract the local and global features on the predicted

positional pose of the ResNet output image feature by the positional pose-guided

pooling. Our regression-based network, RotationNet, accurately predicts the 3D ro-

tational pose by the joint-specific graph convolution from the local and global fea-

tures.
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Figure 4.3: (a) The network architecture of the RotationNet. (b) The pipeline of the graph convolu-
tional block, which processes graph features by the joint-specific graph convolution and aggregates
the graph features using the adjacency matrix. FC, BN, and Agg denote a fully connected layer, 1D
batch normalization, and graph feature aggregation using the adjacency matrix, respectively. We
visualize detailed operations of only head and right ankle for the simplicity.

4.3 Pose2Pose

Figure 4.2 shows the overall pipeline of the proposed Pose2Pose. Pose2Pose consists

of PositionNet and RotationNet, which will be described in the following subsections.

4.3.1 PositionNet

The PositionNet is designed as a fully convolutional network, which predicts 3D posi-

tional pose (i.e., 3D positions of human joints) P = [p1, . . . ,pJP ]T ∈ RJP×3 from an

input image I. JP denotes the number of joints representing the 3D positional pose.

x- and y-axis of P are defined in image space, and z-axis of it is defined in root joint

(i.e., pelvis for the body and wrist for the hand)-relative depth space. For this, Posi-

tionNet extracts image feature F ∈ RC×H×W from the input image by ResNet [53],

where C, H, and W denote the number of channels, height, and width. Then, a 1-

by-1 convolution predicts 3D heatmaps of human joints H ∈ RJP×D×H×W , where D

denotes the depth dimension size. To predict the 3D heatmaps from the 2D feature

map F, the 1-by-1 convolution first predicts a tensor of shape RJPD×H×W , and we

reshape the tensor to the shape of H following Sun et al. [28]. The 3D positional

pose P is calculated from H by the soft-argmax operation [28] in a differentiable

way.
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4.3.2 RotationNet

The RotationNet is designed as a graph convolutional network (GraphCNN), which

predicts the 3D rotational pose (i.e., 3D rotations of human joints) R ∈ RJR×3,

as illustrated in Figure 4.3. JR denotes the number of joints representing the 3D

rotational pose, which is often different from JP. To this end, we construct a graph

G = (V,A), where V and A are graph vertices and an adjacency matrix, respectively.

The graph vertices represent human joints, where |V| = JP. The adjacency matrix

A ∈ {0, 1}JP×JP is constructed based on the human skeleton hierarchy in a pre-

processing stage and fixed during the training and testing stage.

The initial feature of a jth graph vertex FR
j ∈ RC+4 is a concatenation of a

joint-specific local and global feature Fj ∈ RC , the predicted 3D positional pose of

jth joint pj ∈ R3, and 3D positional pose prediction confidence of jth joint cj ∈ R.

The joint-specific features provide semantic information to the graph, computed

by the positional pose-guided pooling. Moreover, the 3D positional pose provides

geometric evidence, which conveys essential human articulation information. Finally,

the prediction confidence can tell whether the joint-specific image feature and the

3D positional pose of each joint are reliable or not. The initial features of all graph

vertices {FR
j }

JP
j=1 are processed by the joint-specific graph convolution. We provide

detailed descriptions of the positional pose-guided pooling and joint-specific graph

convolution below.

Positional pose-guided pooling. The positional pose-guided pooling computes

joint-specific local and global features {Fj}JPj=1 using the predicted 3D positional

pose P. Since the coordinates of pj , (xj , yj) are not integers, we obtain the jth joint

feature Fj at position pj using bilinear interpolation on the image feature map F.
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The interpolated feature Fj is obtained from the exact position of the joint j; thus,

it contains a local feature. However, the interpolated feature is not restricted to the

local feature because the large size of the receptive field of ResNet output makes Fj

contain information around the position of joint j, as well. Thus, Fj contains both

joint-specific local and global features. The 3D positional pose prediction confidences

{cj}JPj=1 are also obtained by performing the positional pose-guided pooling on the

estimated 3D heatmap H.

Joint-specific graph convolution. Our joint-specific graph convolution uses sepa-

rated learnable weights for each graph vertex. Specifically, we define learnable weight

matrices {Wj ∈ RCout×Cin}JPj=1 for all joints of each graph convolution layer, where

Cin and Cout denotes input and output channel dimensions, respectively. Then, the

output graph feature of joint j is obtained by Fout
j = σReLU(

∑
i∈N̂j

ãjiσBN(WiF
in
i )),

where Fin
i is the input graph feature of joint i. σReLU and σBN denotes ReLU activa-

tion function and 1D batch normalization [57], respectively. N̂j is defined as Nj∪{j},

where Nj denotes neighbors of a vertex j. ãji is is an entry of the normalized ad-

jacency matrix Ã at (j, i), where Ã = D−
1
2 (A + I)D−

1
2 . D is a diagonal matrix of

A + I. The RotationNet follows the network architecture of Liu et al. [92], which

consists of one graph convolutional block and four graph residual blocks. Each block

consists of joint-specific graph convolution, 1D batch normalization, and ReLU ac-

tivation function. All the graph features have a channel dimension of 128, except for

that of the input and output features.

At the last part of the RotationNet, we flatten the graph features into a vector

and use a single fully connected layer to predict 3D rotational pose R.
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Pose2Pose
(Hand)

Regressor
(Face)

Body mesh

Hand meshes

Face mesh

Expressive mesh

Integration

Original image Body image

Original image Hand images

Original image Face image

Pose2Pose
(Body)

Figure 4.4: Our entire system for expressive 3D human pose and mesh estimation consists of three
separated networks for the body, hand, and face. In the testing stage, the hand/face images are
obtained using the predicted hand/face boxes from the body part. The integration module integrates
the outputs of the three networks.

4.4 Expressive 3D human pose and mesh estimation

For the expressive 3D human pose and mesh estimation, we construct three separate

networks for the body, hand, and face following Choutas et al. [7], as shown in Fig-

ure 4.4. This separation enables us to use part-specific datasets such as FreiHAND [4]

and FFHQ [97]. Each network is responsible for each part, and an integration module

integrates the outputs of each network in the testing stage. We provide descriptions

of the networks of each part and the integration module below.

4.4.1 Body part

The body part uses Pose2Pose to predict 3D body global rotation θgb ∈ R3, 3D body

rotational pose θb ∈ R21×3, shape parameter βb ∈ R10, and camera parameter kb ∈

R3. The shape parameter βb represents human body shape identity (e.g., thin/fat

and short/tall), defined as coefficients of principal components in the human body

shape space. θgb and θb are predicted from RotationNet, and βb and kb are predicted

from the global average pooled F using a separated fully connected layer. Instead
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of directly predicting θb, we initially predict a latent code of VPoser [6] zb and use

VPoser to decode zb to θb. The outputs are passed to the SMPL-X layer to obtain

the final 3D body pose and mesh.

The body part additionally predicts hand and face bounding boxes to make the

hand and face-cropped images during the testing stage. To this end, we concatenate

the image feature F and 2D heatmap H′ and pass it to two convolutional layers.

The 2D heatmap H′ is generated by making a Gaussian blob on the (x, y) position

of P. The soft-argmax [28] is applied to the output of the convolutional layers for

the box centers. The widths and heights of the boxes are computed by performing

positional pose-guided pooling on the box centers of F and pass the features of each

box center to separated fully connected layers.

4.4.2 Hand part

We use exactly the same network architecture as that of the body part. The hand

part outputs 3D hand global rotation θgh ∈ R3, 3D hand rotational pose θh ∈ R15×3,

shape parameter βh ∈ R10, and camera parameter kh ∈ R3. The shape parameter

βh represents human hand shape identity (e.g., thin/fat and small/large), defined as

coefficients of principal components in the human hand shape space. The outputs

are passed to the MANO layer to obtain the final 3D hand pose and mesh.

4.4.3 Face part

Unlike the joints of the body and hand, most of the face keypoints do not move

according to 3D rotations of joints, making it hard to apply Pose2Pose. Instead,

we design a simple regressor that consists of ResNet and fully connected layers.

We perform GAP on the image feature F and fed it to separated fully connected
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layers, which predict 3D face global rotation θgf ∈ R3, 3D jaw rotation θf ∈ R3,

shape parameter βf ∈ R10, and expression code ψ ∈ R10. The shape parameter

βf represents human face shape identity (e.g., thin/fat and small/large), defined as

coefficients of principal components in the human face shape space. The expression

code ψ represents human face expression, defined in a human expression latent space

of Lin et al. [90]. The predicted parameters are passed to the FLAME layer to obtain

the final 3D face pose and mesh.

4.4.4 Training the networks

The three networks of each part are trained separately. For all parts, we calculate

L1 loss between predicted and groundtruth 3D positional pose following Moon and

Lee [21]. In addition, L1 loss between predicted and groundtruth SMPL-X/MANO/FLAME

parameters, 3D joint coordinates of SMPL-X/MANO/FLAME, and projected 2D

joint coordinates are also calculated following Kolotouros [25]. For the hand and

face box localization, we calculate L1 loss between predicted and groundtruth box

centers, widths, and heights.

4.4.5 Integration of all parts in the testing stage

The final expressive 3D human pose and mesh is obtained by forwarding {θgb , θb, βb, θ
g
rh, θrh, θ

g
lh, θlh, θf , ψ}

to SMPL-X, where ∗rh and ∗lh denote ∗ is from right and left hand, respectively. The

3D hand pose parameter θh of MANO and 3D jaw rotation θf and face expression

code ψ of FLAME are compatible with those of SMPL-X; thus, we use them for

the final prediction. As the body part often predicts wrong rotations of elbows and

wrists in the roll axis, we selectively use the 3D hand global rotation θgh to replace

rotations of the elbows and wrists.
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zero pose

-π/3 around 
x-axis of elbow

-π/3 around 
y-axis of elbow

-π/3 around 
z-axis of elbow

-π/3 around 
x-axis of wrist

-π/3 around 
y-axis of wrist

-π/3 around 
z-axis of wrist

Figure 4.5: Visualized rotations of the elbow and wrist in each axis.
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Algorithm 1 Integration of body and hands

Input: θgb : Global rotation of body
Input: θb = {θlj}21j=1: Local rotations of body joints
Input: θgrh, θ

g
lh: Global rotations of right and left hands

Output: θb: Updated local rotations of body joints
1: Compute global rotations of body joints {θgj }21j=1 from θgb and θb by forward

kinematics
2: Let re, le, rw, lw denote joint index of right elbow, left elbow, right wrist, and

left wrist, respectively.
3: for (e, w, h)← ((re, rw, rh), (le, lw, lh)) do
4: θgw ← θgh
5: x-axis of θge ← x-axis of (θge + θgh)/2

6: Compute new local rotations of elbow and wrist, θ̂le and θ̂lw, respectively,
from {θgj }21j=1 by reversing forward kinematics

7: if |y-axis of θ̂lw| < π/4 and |z-axis of θ̂lw| < π/2 then
8: Update θlw ← θ̂lw
9: Update θle ← θ̂le

10: end if
11: end for

Algorithm 1 and Figure 4.5 show the integration procedure and how rotations of

elbow and wrist change the body, respectively. First, we perform forward kinematics

to compute global rotations of all body joints, including wrists and elbows (line 1).

Then, we replace the global rotations of wrists and elbows using the global rotation

of hands (lines 4 and 5). The replacement assumes x-axis rotations (roll of Euler

angle) of the wrist and elbow are almost the same, which follows the anatomical

structure of the human body, as shown in Figure 4.5. To avoid a sudden change

of the elbow rotation, which can cause artifacts, we use an average rotation of the

elbow and wrist (line 5). From the replaced global rotations of wrists and elbows,

we compute new local rotations of wrists and elbows (line 6). Finally, we check the

new local rotation follows the anatomical structure of the human body (line 7),

where y- and z-axis rotations are shown in Figure 4.5. If true, we update the local

76



4. Expressive 3D Multi-Person Pose and Shape Estimation

rotations of body joints, which become the final output of the integration (lines 8

and 9). We convert the 3D rotation of joints to Euler angles in line 3 - line 11. The

integration is only performed when the distance between the center of the hand box

and predicted wrist position is smaller than the box scale. If the distance is longer

than the threshold, we consider the hand is not detected. In that case, we ignore

all outputs from the hand part Pose2Pose by skipping Algorithm 1 and setting the

hand pose to zero.

4.5 Implementation details

PyTorch [58] is used for implementation. The backbone part is initialized with the

publicly released ResNet50 [53] pre-trained on ImageNet [59]. The weights are up-

dated by Adam optimizer [60] with a mini-batch size of 192. The human body region

is cropped using groundtruth box in both of training and testing stages following

previous works [5, 23, 25]. The hand and face images are cropped from the original

image using groundtruth box in the training stage and the predicted box in the test-

ing stage. The cropped image is resized to 256×256. Data augmentations, including

scaling, rotation, random horizontal flip, and color jittering, are performed in train-

ing. All the 3D rotations except for θb are initially predicted in the 6D rotational

representation of Zhou et al. [98] and converted to the 3D axis-angle rotations. We

flipped all hands to the right hand during the training and testing stage of the hand

part. The initial learning rate is set to 10−4 and reduced by a factor of 10 at the

10th epoch. We train each body, hand, and face part separately for 12 epochs with

four NVIDIA RTX 2080 Ti GPUs.
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4.6 Experiment

4.6.1 Training sets and evaluation metrics

Training sets. To train the body part, we use Human3.6M [2], MPI-INF-3DHP [14],

MSCOCO [1,99], and MPII [63]. For the hand part, FreiHAND [4], InterHand2.6M [9],

and MSCOCO [99] are used for the training. Finally, FFHQ [97] and MSCOCO [99]

are used for the face part training. We obtained SMPL/SMPL-X/MANO/FLAME

fits of the datasets using SMPLify-X [6] and used them as pseudo-groundtruths. We

will release all fits for the reproducible and continual study.

Evaluation metrics. MPJPE and MPVPE are widely used to evaluate 3D hu-

man body/hand pose and mesh estimation, where each calculates the average 3D

joint distance (mm) and 3D mesh vertex distance (mm) between predicted and

groundtruth, respectively, after aligning a root joint translation. PA MPJPE and

PA MPVPE further align a rotation and scale. F-score is additionally used for the

3D hand pose and mesh estimation evaluation. For the face part, the average of the

closest distance between a predicted 3D face mesh vertex and groundtruth 3D face

scan point is used.

4.6.2 Ablation study

For the ablation study, we train the body part on Human3.6M, MSCOCO, and

MPII and report errors on 3DPW, which is a standard experimental protocol of

recent 3D human body pose and mesh estimation works. We use SMPL for the

human model of the body part. For the hand part ablation study, we train the hand

part Pose2Pose on FreiHAND, MSCOCO, and InterHand2.6M and report errors on

the FreiHAND validation set. For the expressive whole-body ablation study, we test
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How to pool? How to process? PA MPJPE

GAP
FC 60.7 [23–25]

GraphCNN 59.5

GAP+PPP
FC 57.4

GraphCNN 57.6

PPP
FC 57.5

GraphCNN 56.8 (Ours)

Table 4.1: PA MPJPE comparison between models with various pooling methods and processing
modules on 3DPW.

How to pool? How to process? PA MPJPE PA MPVPE

GAP FC 6.7 6.5

PPP GraphCNN 5.4 5.2

Table 4.2: PA MPJPE and PA MPVPE comparison between the previous widely used approach
(first row) [4, 15–17] and our approach (second row) on FreiHAND.

our entire system on EHF.

Effectiveness of the positional pose-guided pooling. We show the effective-

ness of the positional pose-guided pooling (PPP) in Table 4.1. For this, we report

PA MPJPE of our Pose2Pose and its variants that use GAP or a combination of

GAP and PPP. As the table shows, adding PPP to GAP or replacing GAP with

PPP decrease the error regardless of the processing modules, fully connected layer

(FC) and GraphCNN. It is noticeable that our PPP achieves significantly lower er-

ror compared with the combination of GAP and FC, the most widely used one in

previous works [23–25]. Interestingly, replacing GAP with PPP achieves a better

result than adding PPP to GAP when the GraphCNN is used. This is because a

global image feature from the GAP contains much unnecessary information, such

as backgrounds, which makes the performance worse. On the other hand, the local

and global features from the PPP contains essential human articulation informa-

tion, and the GraphCNN aggregates the features by considering the human skeleton

hierarchy, which makes the aggregated feature highly useful. Table 4.2 shows the
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How to pool? Which graph conv.? PA MPJPE

GAP
Shared graph conv. 61.5 [5]

Joint-specific graph conv. 59.5

PPP
Shared graph conv. 64.5

Joint-specific graph conv. 56.8 (Ours)

Table 4.3: PA MPJPE comparison between models with various pooling methods and graph con-
volutions on 3DPW.

Image feature Joint coordinate + confidence PA MPJPE

3 7 58.0

7 3 59.2

3 3 56.8 (Ours)

Table 4.4: PA MPJPE comparison between models with various input combinations of the Rota-
tionNet on 3DPW.

same tendency on the hand part. The comparisons clearly show the benefit of PPP,

which preserves joint-specific local and global features, while GAP cannot. For the

experiment, we used the joint-specific graph convolution for all GraphCNN. When

PPP is used, the local and global image features of joints and joint coordinates with

the confidence are used for the final 3D rotational pose prediction. When both GAP

and PPP are used, the FC takes a concatenation of flattened {FR
j }

JP
j=1 and the out-

put vector of GAP. On the other hand, the GraphCNN takes a graph, where jth

node is a concatenation of FR
j and the output vector of GAP.

Effectiveness of the joint-specific graph convolution. Table 4.3 shows the

benefit of the joint-specific graph convolution. To this end, we report PA MPJPE

of Pose2Pose and its variants that use GAP or the shared graph convolution. The

shared graph convolution uses shared learnable weights for all graph vertices like the

vanilla graph convolution [91]. Our joint-specific graph convolution achieves a lower

error than the shared graph convolution regardless of the pooling method, GAP and

PPP. Especially, the combination of the PPP and the joint-specific graph convolution

significantly outperforms a combination of GAP and shared graph convolution, used
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Figure 4.6: Qualitative results of our framework on MSCOCO validation set.

in Kolotouros et al. [5]. We also found that the shared graph convolution increases

the error a lot when the input features are from PPP. This is because the shared

graph convolution applies the same weights to features of all graph vertices, while

each feature of a graph vertex from PPP has distinctive joint-specific information.

The comparisons clearly show the benefit of the joint-specific graph convolution.

Inputs of the RotationNet. We show how each input of the RotationNet af-

fects the accuracy in Table 4.4. The table shows that taking both the image feature

and joint coordinate with confidence achieves the best accuracy. The image feature

extracted by PPP can provide local/global contextual information, and the joint

coordinate with confidence predicted by PositionNet can provide 3D geometric in-

formation. We design our RotationNet to take both inputs, thus can utilize both

local/global contextual information and 3D geometric information. The comparison

clearly shows the validity of our RotationNet design.
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What PositionNet predicts? PA MPJPE

2D positional pose 58.2

3D positional pose 56.8 (Ours)

Table 4.5: PA MPJPE comparison between models with various output of the PositionNet on
3DPW.

Integration method PA MPVPE

Without prior 55.5

With prior 51.9 (Ours)

Table 4.6: PA MPVPE comparison between models without and with the anatomical prior during
the integration on EHF.

Effectiveness of the 3D positional pose. We show the effectiveness of utilizing

the 3D positional pose over the 2D positional pose in Table 4.5. The table shows

that PA MPJPE gets better when PositionNet predicts 3D positional pose than

2D positional pose. This is because additional depth information is provided to the

RotationNet, which helps to resolve the depth ambiguity. The comparison clearly

shows the effectiveness of predicting 3D positional pose from the PositionNet.

Effectiveness of the anatomical prior during the integration. We show the

effectiveness of the anatomical prior during the integration, described in line 7 of

Algorithm 1 in Table 4.6. The table shows that our anatomical prior significantly

reduces PA MPVPE. The comparison clearly shows the benefit of the anatomical

prior.

4.6.3 Comparison with state-of-the-art methods

Body part. Table 4.7 shows comparison between our body part Pose2Pose and pre-

vious state-of-the-art methods on 3DPW [80]. It shows our Pose2Pose significantly

outperforms previous works by a large margin, including both body-only methods

and the expressive method [7]. Following previous works [21,22,25], we use SMPL for

the human model, and 14 joints are used for the evaluation. In addition, we report
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Methods Scale MPJPE PA MPJPE

HMR [23]

Body only

130.0 81.3

HMMR [85] - 72.6

GraphCMR [5] - 70.2

Arnab et al. [86] - 72.2

SPIN [25] 96.9 59.2

Pose2Mesh [22] 88.9 58.3

I2L-MeshNet [21] 93.2 57.7

ExPose [7]

All parts

93.4 60.7

Pose2Pose (Ours) 89.4 55.5

Pose2Pose* (Ours) 84.8 52.9

Table 4.7: MPJPE and PA MPJPE comparison on 3DPW. * denotes its ResNet is initialized with
that of SimpleBaseline [18].

Methods Scale PA errors F scores

Hasson et al. [16]

Hand only

13.2 / - 0.436 / 0.908

Boukhayma et al. [15] 13.0 / - 0.435 / 0.898

FreiHAND [4] 10.7 / - 0.529 / 0.935

Pose2Mesh [22] 7.8 / 7.7 0.674 / 0.969

I2L-MeshNet [21] 7.6 / 7.4 0.681 / 0.973

ExPose [7]
All parts

11.8 / 12.2 0.484 / 0.918

Pose2Pose (Ours) 7.4 / 7.4 0.683 / 0.974

Table 4.8: PA MPVPE/PA MPJPE and F-score@5mm/15mm comparison on FreiHAND.

the performance of another Pose2Pose, of which ResNet part is initialized with the

pre-trained weights of 2D human pose estimation network [18] on MSCOCO. The

table shows that initializing the ResNet part, included in PositionNet, with a pre-

trained 2D human pose estimation network significantly boosts the performance. We

think this is because the pre-trained 2D human pose estimation network already can

provide accurate 2D pose; thus, it can converge to a better 3D positional pose esti-

mation network. This shows better PositionNet can lead to significant performance

gain in our framework.

Hand part. Table 4.8 shows a comparison between our hand part Pose2Pose and

previous state-of-the-art methods on FreiHAND [4]. It shows our Pose2Pose achieves
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Methods Scale Mean Median Std.

RingNet [100] Face only 2.08/2.02 1.63/1.58 1.79/1.68

ExPose [7]
All parts

2.27/2.42 1.76/1.91 1.97/2.03

Regressor (Ours) 2.02/1.99 1.55/1.53 1.78/1.76

Table 4.9: Mean, median, and standard deviation of 3D face mesh error comparison on low-
quality/high-quality images of Stirling.

Methods
PA MPVPE PA MPJPE

All Hands Face Body Hands

SMPLify-X [6] 65.3 12.3 6.3 87.6 12.9

MTC [93] 67.2 - - 107.8 16.7

ExPose [7] 54.5 12.8 5.8 62.8 13.1

Pose2Pose (Ours) 51.9 12.0 5.6 62.6 11.8

Table 4.10: PA MPVPE and PA MPJPE comparison on EHF. The numbers in hands are averaged
values of left and right hands.

comparable accuracy with a recent state-of-the-art hand-only method [21] and sig-

nificantly outperforms the expressive method [7].

Face part. Table 4.9 shows comparison between our face part regressor and previous

state-of-the-art methods on Stirling [101]. It shows our regressor achieves lower errors

compared with the face-only method and expressive method [7].

All parts. Table 4.10 shows comparison between our Pose2Pose and previous ex-

pressive methods on EHF [6]. SMPL-X is used for the human model of the body part.

For the evaluation, we integrated body, hand, and face parameters by our integra-

tion module, described in Section 4.4.5. The table shows our Pose2Pose outperforms

previous methods by a large margin. Figure 4.8 shows qualitative comparison with

previous state-of-the-art expressive method, ExPose [7], with ours on MSCOCO val-

idation set. Pose2Pose recovers much more accurate expressive 3D pose and shape,

including hands and face.

Taken together, our Pose2Pose outperforms all methods on all part-specific and

expressive datasets. The comparisons clearly show the effectiveness of Pose2Pose,
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Figure 4.7: Qualitative results on internet images. From top to bottom, left to right, the persons
in the images are Freddie Mercury of band Queen, Lady Gaga, Adele, Dave Mustaine of band
Megadeth, James Hetfield of band Metallica, David Draiman of band Disturbed, Lisa Su of AMD,
Jensen Huang of NVIDIA, Steven Ogg of GTA 5, Steven Jobs of Apple, Elon Musk of Tesla, and
Mark Zuckerberg of Facebook.
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Pose2Pose (Ours) ExPose
Figure 4.8: Qualitative comparison with ExPose [7] on MSCOCO validation set. Pose2Pose recovers
much more accurate expressive 3D pose and shape, including hands and face.

which benefit from our novel positional pose-guided pooling and joint-specific graph

convolution. Figure 4.6 and 4.7 show qualitative results of Pose2Pose on MSCOCO

and internet images, respectively. Figure 4.9 shows expressive 3D multi-person pose

and mesh estimation result on in-the-wild images of MSCOCO. The framework of

Moon et al. [26] is used to extend the expressive single person 3D pose and mesh to

the multi-person case.
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Figure 4.9: Expressive 3D multi-person pose and mesh estimation result on in-the-wild images.

4.6.4 Running time

From a single RGB image, the body and hand part Pose2Pose take 0.06 and 0.07

seconds per frame, respectively, and the face regressor takes 0.02 seconds per frame.

The hand part takes the left and right hand images simultaneously. The integration

module takes 0.01 seconds per frame, which includes the forwarding time to the

SMPL-X layer. In total, our whole framework runs at 6.3 frames per second for

expressive 3D human pose and mesh estimation from a single RGB image. This is

the same running time as that of the previous expressive method, ExPose [7]. The

running times are measured by using a single RTX 2080 Ti GPU and making the

mini-batch size 1.

4.7 Conclusion

We present Pose2Pose, a 3D positional pose-guided 3D rotational pose prediction

network for expressive 3D human pose and mesh estimation from a single RGB

image. In contrast to previous works that rely on only a global image feature, ours

utilize joint-specific local and global features, extracted by the positional pose-guided

pooling, with joint-specific graph convolution. We apply our Pose2Pose for expressive
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3D human pose and mesh estimation and achieved state-of-the-art accuracy on all

part-specific and expressive datasets.
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Chapter 5

Conclusion and Future Work

5.1 Summary and Contributions of the Dissertation

In this dissertation, three kinds of novel approaches towards expressive 3D multi-

person pose and shape estimation from a single image were introduced, which are

based on 1) 3D multi-person body pose estimation, 2) 3D multi-person pose and

shape estimation, and 4) 3D pose and shape estimation for the integrated body,

hands, and face.

In Chapter 2, a camera distance-aware 3D multi-person body pose estimation

framework [26] was proposed. The proposed RootNet [26] computes a relative po-

sition between the camera and all persons by refining a pre-defined human scale (2

meters × 2 meters) using a deep image feature. As the deep image feature contains

both pose and appearance information, it can refine the pre-defined scale, which

can differ by pose and appearance variations of humans. The proposed whole frame-

work [26], which consists of RootNet and state-of-the-art human detection and 3D

single person body pose estimation methods, achieves state-of-the-art performance
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on various datasets. The framework is also used for the following approaches in this

dissertation to extend them to the multi-person case.

In Chapter 3, I proposed I2L-MeshNet [21], which predicts heatmaps of mesh

vertices instead of 3D rotations of human joints for accurate 3D human pose and

shape estimation. To reduce drastic GPU usage that arises from predicting heatmaps

for all mesh vertices, the lixel-based 1D heatmap is used as a prediction target instead

of the voxel-based 3D heatmap. Experimental results demonstrate the effectiveness

of the lixel-based 1D heatmap compared with 3D rotations of human joints and

voxel-based 3D heatmaps.

Finally, in Chapter 4, I proposed a framework [20] for expressive 3D human pose

and shape estimation. Although the above described I2L-MeshNet achieves highly

accurate performance, 3D rotations of human joints are needed for many computer

graphical applications, such as animations. To this end, Pose2Pose [20], 3D posi-

tional pose-guided 3D rotational pose prediction network, is designed for accurate

3D rotational pose prediction. The outputs of body, hand, and face part networks

are integrated for the expressive 3D human pose and shape. The experimental re-

sults show that Pose2Pose achieves state-of-the-art performance on all part-specific

and expressive datasets.

5.2 Future Directions

Although the above methods are demonstrated to be highly effective, there is room

for improvement.
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Figure 5.1: Global context-aware 3D multi-person pose estimation of HMOR [8].

5.2.1 Global Context-Aware 3D Multi-Person Pose Estimation

To compute the relative position between the camera and persons, RootNet takes

a cropped single person image, thus ignoring global contextual information outside

of the human area. The global information can contain other persons, objects, or

background scenes, which can be helpful in determining the absolute depth value of

the human. For example, if a person is occluded by objects, we can guess that the

objects are closer to the camera than the person. Utilizing such information in a

weakly-supervised way [8] can be a promising future work, as shown in Figure 5.1.

5.2.2 Unified Framework for Expressive 3D Human Pose and Shape

Estimation

The proposed framework for expressive 3D human pose and shape estimation con-

sists of three separate networks, which takes body, hands, and face images, respec-

tively, as shown in Figure 5.2. To make it easier to use and lighter, the three networks

should be unified into a single one, which also enables the network to utilize image

features outside of the hand/face area when predicting hand/face 3D poses. The

image feature outside the area will be especially helpful for the hand part when a

hand is occluded or suffers from severe motion blur because the network can guess
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a probable hand pose from the outside image feature. Unifying can be achieved by

adding hand and face branches to the body branch. However, unifying can degrade

the hand and face part accuracy because input hand and face image resolutions will

be largely decreased compared with those of the proposed framework that employs

separated networks and takes cropped and resized hand and face images. In addition,

using part-specific datasets [2, 9] becomes difficult because a single network should

handle all parts. Nevertheless, I think integrating the separated three networks into

a single system is a promising future work.

5.2.3 Enhancing Appearance Diversity of Images Captured from

Multi-View Studio

Images captured from multi-view studio are paired with GT 3D poses; however

they have monotonous appearances [2, 9], which are far from those of in-the-wild

images, as shown in Figure 5.3. Thus, a model trained on the images often fails to

generalize to in-the-wild images. Although making a mini-batch with half from multi-

view studio datasets and a half from in-the-wild datasets [1] can resolve this issue to

some degree, there is still a large image appearance domain gap. Recent advancement

of the pose transfer [102] and image translation [103] can be used to enhance the

appearance diversity of the images of multi-view datasets to those of in-the-wild

images. In particular, as hand images often suffer from many image degradation

issues, adding image degradation, such as motion blur, is necessary for 3D hand

pose and shape estimation. Recently, Moon et al. [104] proposed a framework to

obtain pseudo-GT 3D human pose and shape from in-the-wild images, and this

future work can complement their approach by enhancing the images captured from

multi-view studio. Therefore, a model can enjoy both image appearance diversity
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5.expr_pose_shape/fig/expressive_pipeline.pdf

Figure 5.2: Expressive 3D human pose and shape estimation pipeline of Chapter 4 consisting of
three separated networks.
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Figure 5.3: Appearance comparison between images from (a) multi-view datasets [2, 9] and (b)
in-the-wild datasets [1].

and strong 3D supervisions.

5.2.4 Extension to the video for temporally consistent estimation

All the introduced approaches are single image-based ones. Although the results

on video, obtained by applying them on each frame of the video, are reasonable,

there are noticeable jitterings. Recent advancement of video-based 3D human pose

and shape estimation [10] can be applied for the temporal consistency, as shown in

Figure 5.4.

5.2.5 3D clothed human shape estimation in the wild.

Current 3D human shape estimation methods have two separate directions: 1) 3D

naked body shape estimation from images with diverse appearance and poses [20,21],

2) 3D clothed body shape estimation from images with simple appearance and

poses [11]. Figure 5.5 shows 3D clothed human shape reconstruction results of PI-

FuHD [11]. The reason for this separated direction is that obtaining GT 3D naked
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Figure 5.4: Temporally consistent 3D human pose and shape estimation network of TCMR [10].

Figure 5.5: Reconstructed 3D clothed human shapes of PIFuHD [11].
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Figure 5.6: Robust action recognition of IntegralAction [12] on both in-context and out-of-context
action videos.

body shape from in-the-wild images is possible to some extent by fitting parametric

body models to the GT 2D poses, however obtaining GT 3D clothed body shape is

only possible when 3D scan data is provided, which is not applicable to the in-the-

wild environment. The proposed approaches in this dissertation are focused on the

first direction; however, I am planning to merge the second direction by designing a

weakly-supervised setting and loss functions that can be applied on images without

3D scans. This new direction would be helpful for many applications, such as making

a clothed personal avatar.

5.2.6 Robust human action recognition from a video.

The estimated 3D human pose and shape can be useful for human action recognition

from a video. In particular, Weinzaepfel et al. [105] and Moon et al. [12] showed

that the 3D pose and shape are especially useful when the input video contains

out-of-context actions, as shown in Figure 5.6. The out-of-context action means a

sequence of human motion, where the motion does not match the context of a video

(e.g., mime). As 3D pose and shape provide only geometric information without

appearance information, a model that takes only 3D human pose and shape is not

easily fooled by out-of-context action videos. However, as human actions can be
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determined by objects or backgrounds, the lack of appearance information can make

the input 3D pose and shape video ambiguous. On the other hand, a model that

takes only an RGB video can be easily fooled by out-of-context action videos; for

example, it predicts the human action class as “swimming” although a human is just

standing in the swimming pool, while does not suffer from the context ambiguity.

Recently, an action recognition system that takes RGB and 2D pose videos has been

proposed for robust action recognition on both in-context and out-of-context action

videos [12]. Although they successfully showed the robustness on both in-context

and out-of-context action videos, the geometric information delivered by 2D pose

video is not sufficient. It lacks depth information and only contains sparse body

keypoint coordinates. Providing additional depth information with hand poses and

facial expressions using the proposed approach can be a promising future work.
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국문초록

인간은 우리의 일상생활에서 가장 중심이 되고 흥미로운 대상이다. 그에 따라 모

션 캡처, 인간-컴퓨터 인터렉션 등 많은 인간중심의 기술과 학문이 산업계와 학계에서

제안되었다. 인간의 정확한 3D 기하 (즉, 인간의 3D 자세와 형태)를 복원하는 것은

인간중심 기술과 학문에서 가장 중요한 부분 중 하나이다. 카메라의 빠른 대중화로 인

해 단일 이미지는 많은 알고리즘의 널리 쓰이는 입력이 되었고, 그로 인해 많은 단일

이미지 기반의 3D 인간 자세 및 형태 추정 알고리즘이 제안되었다.

손과 발을 포함한 전신의 3D 자세와 형태는 인간의 의도와 느낌을 포함한 표현적

이고 풍부한 정보를 제공한다. 하지만 전신의 3D 자세와 형태를 복원하는 것은 매우

어렵기때문에오직극소수의방법만이이를풀기위해제안되었고,이를위한방법들을

표현적인 방법이라고 부른다. 표현적인 3D 자세와 형태를 한 번에 복원하는 것 대신,

사람의 몸, 손, 그리고 얼굴의 3D 자세와 형태를 따로 복원하는 방법들이 제안되었다.

이러한 방법들을 부분 특유 방법이라고 부른다. 이러한 문제의 간단화 이외에도 몇 가

지의 간단화가 더 존재한다. 예를 들어, 많은 방법은 3D 형태를 제외한 3D 자세만을

추정한다. 이는 추가적인 3D 형태 추정이 문제를 더 어렵게 만들기 때문이다. 또한,

대부분의방법은오직단일사람의경우만고려하고여러사람의경우는고려하지않는

다. 그러므로, 현재 제안된 방법들은 몇 가지 기준에 의해 분류될 수 있다; 1) 부분 특유

방법 vs. 표현적 방법, 2) 3D 자세 추정 방법 vs. 3D 자세 및 형태 추정 방법, 그리고 3)

단일 사람을 위한 방법 vs. 여러 사람을 위한 방법. 부분 특유에서 표현적으로, 3D 자세

추정에서 3D 자세 및 형태 추정으로, 단일 사람에서 여러 사람으로 갈수록 추정이 더
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어려워지지만, 더 풍부한 정보를 출력할 수 있게 된다.

본 학위논문은 단일 이미지로부터 여러 사람의 표현적인 3D 자세 및 형태 추정을

향하는 세 가지의 접근법을 소개한다. 따라서 최종적으로 제안된 방법은 가장 풍부한

정보를 제공할 수 있다. 첫 번째 접근법은 여러 사람을 위한 3D 자세 추정이고, 두 번

째는 여러 사람을 위한 3D 자세 및 형태 추정이고, 그리고 마지막은 여러 사람을 위한

표현적인 3D 자세 및 형태 추정을 위한 방법이다. 각 접근법은 기존 방법들이 가진

중요한 한계점들을 해결하여 제안된 방법들이 실생활에서 쓰일 수 있도록 한다.

첫 번째 접근법은 여러 사람을 위한 3D 자세 추정 프레임워크이다. 단일 사람의

경우와는 다르게 여러 사람의 경우 사람마다 카메라 상대적인 3D 위치가 필요하다. 카

메라 상대적인 3D 위치를 단일 이미지로부터 추정하는 것은 매우 높은 깊이 모호성을

동반한다. 제안하는 프레임워크는 심층 이미지 피쳐와 카메라 핀홀 모델을 사용하여

카메라 상대적인 3D 위치를 복원한다. 이 프레임워크는 어떤 단일 사람을 위한 3D 자

세 및 형태 추정 방법과 합쳐질 수 있기 때문에, 다음에 소개될 두 접근법은 오직 단일

사람을 위한 3D 자세 및 형태 추정에 초점을 맞춘다. 다음에 소개될 두 접근법에서

제안된 단일 사람을 위한 방법들은 첫 번째 접근법에서 소개되는 여러 사람을 위한 프

레임워크를 사용하여 쉽게 여러 사람의 경우로 확장할 수 있다. 두 번째 접근법은 여러

사람을 위한 3D 자세 및 형태 추정 방법이다. 이 방법은 첫 번째 접근법을 확장하여 정

확도를 유지하면서 추가로 3D 형태를 추정하게 한다. 높은 정확도를 위해 릭셀 기반의

1D 히트맵을 제안하고, 이로 인해 기존에 발표된 방법들보다 큰 폭으로 높은 성능을

얻는다. 마지막 접근법은 여러 사람을 위한 표현적인 3D 자세 및 형태 추정 방법이다.

이것은 몸, 손, 그리고 얼굴마다 3D 자세 및 형태를 하나로 통합하여 표현적인 3D 자

세 및 형태를 얻는다. 게다가, 이것은 3D 위치 포즈 기반의 3D 회전 포즈 추정기법을

제안함으로써 기존에 발표된 방법들보다 훨씬 높은 성능을 얻는다.

제안된 접근법들은 기존에 발표되었던 방법들이 갖는 한계점들을 성공적으로 극복

한다. 광범위한 실험적 결과가 정성적, 정량적으로 제안하는 방법들의 효용성을 보여
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준다.

주요어: 3D 인간 자세, 3D 인간 형태, 표현적 전신, 여러 사람, 단일 이미지

학번: 2015-22785
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먹게 되었고, 그 결과 컴퓨터 비전을 연구하는 연구자가 되었습니다. 뿐만 아니라, 학부

졸업후컴퓨터비전연구실에진학하고싶었을때,서울대학교이경무교수님연구실을

소개해주셔서 제가 이경무 교수님의 연구실에 입학할 수 있었습니다. 최승문 교수님의

인간-컴퓨터 상호작용 수업을 듣고 이 분야, 혹은 인간과 관련된 주제로 연구를 하고

싶다고 생각했습니다. 그 결과 3D 인간 자세 및 형태 추정이라는 주제로 박사학위 논

문을 작성하게 되었습니다. 비록 인간-컴퓨터 상호작용 연구실로 진학하진 않았지만,
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감사드립니다.

포항에서 25년을 살다가 낯선 서울에 올라왔을 때, 연구실 사람들은 저의 좋은 친구
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가되어주었습니다.특히,연구실선배들은저에게많은것을가르쳐준고마운분들입니

다. 제가 연구실 인턴일 때, 저의 많은 질문에 모두 잘 답해주셨던 희수형과 명섭이에게

감사합니다. 그리고 신입생 교육 때 많은 신입생에게 항상 친절하게 교육을 진행해 주

었던 해솔이 형에게도 감사합니다. 제가 저년차일 때 가장 많이 배우고 연구자로서의

예리함에 놀랐던 유민 누나에게 감사합니다. 비록 연구주제가 달랐지만 몇 번의 co-

work의 기회가 유민누나와 있었는데, 그 시간이 저에게 정말 큰 배움이 되었습니다.

특히 유민 누나의 예리함에 제가 허를 찔릴 때가 많았고, 그것이 저에게 큰 자극과 가르

침이 되었습니다. 이외에도 푸근한 매력을 가진 정민이 형, 지금은 한양대학교 교수로

재직하고있고본받을게많은형인태현이형,마성의매력을가진광모형, ICCV 2017

에서많이친해졌던승연이형,걸어다니는나무위키장훈이형,코로나와이사,그리고

결혼때문에보기가힘들어진의영이형,항상성실히연구실에나와서열심히연구하는

승준이, 상남자 동우, 그리고 스타트업을 하는 지홍이 형에게 모두 감사합니다.

저의 하나뿐인 연구실 동기 성용이에게도 감사합니다. 성용이는 제가 낯을 가리고

다가가기 어려운 타입인데도 항상 먼저 말을 걸어주고 친하게 지내주었습니다. 그뿐

만 아니라 연구실 대부분의 사람과 친하게 지내어 연구실의 분위기를 화기애애하게

만들어줍니다. 아마 연구실의 모든 사람이 성용이를 좋아하리라 생각합니다. 그것 때

문인지 성용이가 지금 방장을 맡고 있는데, 앞으로도 맡은 방장의 역할을 잘 해내 주길

바랍니다.

짧지않은 5년반동안연구실에있으면서후배도많아졌습니다. EDSR을쓰고이젠

스타트업을 하는 비, 학회에서 가끔 만나는 준형이, 특유의 친화력으로 많이 친해졌던

병건이 형, 교수님의 애제자 상현이, 후배들과 친하게 지내는 희원이형, 외국에서 와서

외로울 텐데 잘 지내고 있는 Mohsen과 Reyhaneh, 전혀 동생 같지 않은 재영이, 의영이

형과 함께 연구실에서 얼굴 보기 가장 힘든 석일이, 내 옆자리에서 고생하고 있는 현진

이, 이번에 석사 졸업하게 된 건운이, 입대해서 지금 군 생활 열심히 하고 있을 재희,

듬직한 수영이, 연구실 운동 왕 영욱이, 추운 겨울에 입대해서 고생하고 있을 재린이,
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super-resolution의 희망 재하, 얼굴 보기 힘든 강건이, 같은 분야 연구하는 파이터 홍

석이, 친화력 좋고 엉뚱한 매력이 있는 채은이, 어몽어스와 인디언 포커 고수 정훈이,

denosing의 희망 우석이, 자리가 외진 곳에 있어서 보기 힘든 도희에게 직/간접적으로

받은 도움에 대해 감사합니다. 연구실에서 혼자 3D 인간 자세 및 형태 추정 분야를

연구하다가 홍석이가 입학한 후 같이하고 있는데, 이 기회를 통해 후배와 일하는 법

에 대해서 많이 배웠습니다. 처음에 후배와 같이 일하는 법을 몰랐을 때 약간 벅찰 수

있는 기준을 많이 요구했는데, 그것에 맞추기 위해 열심히 연구해준 홍석이에게 특히

감사합니다. 앞으로도 같이 좋은 연구들 많이 하면 좋겠습니다.

박사과정 초년 차 때 같이 co-work을 많이 했었던 장주용 교수님께 감사드립니다.

아직 다듬어지지 않고 서툰 게 많았던 시절, 장주용 교수님의 지도를 받아 더 나은

방향으로 나아갈 수 있었습니다. 학회를 통해 처음 뵙고 인사를 드리다가 co-work을

하게 되었고, 그 후 저에게 Google Fellowship 추천서를 써주시는 등 큰 도움을 주고

계신 조민수 교수님께 감사드립니다. 조민수 교수님과의 co-work은 제가 한 단계 더

성장할 수 있는 큰 가르침이 되었습니다. 2019년 Facebook Reality Lab, Pittsburgh

에서 research intern으로 재직할 때, 저의 manager였던 Takaaki Shiratori, co-work을

했던 Shoo-i Yu와 He Wen에게 감사합니다. 피츠버그에서의 시간은 저에게 정말 큰

의미가 있었습니다. 연구적으로 큰 성장을 하게 되었고 연구와 연구 외적인 면을 모두

포함하여 더 넓은 시야를 가지게 되었습니다.

부모님과 동생을 포함한 가족들에게 감사합니다. 언제나 내 편을 들어주고 응원해

주는 가족이 있어서 오직 연구에만 집중하여 성과를 낼 수 있었습니다. 저도 언젠가

부모가된다면저의부모님처럼자식에게든든한버팀목이되어줄수있는부모가되겠

습니다. 그리고 사랑하는 여자친구이자 곧 아내가 될 윤아에게 감사합니다. 연구하느라

많은시간을같이보내지못해도이해해주고칙칙할수있는저의삶에밝음을불어넣어

주는 고마운 존재입니다. 앞으로 결혼을 하고 평생을 같이 재미있게 살아가겠습니다.

이외에도 포항공과대학교 10분반, 컴퓨터공학과, 브레멘, RA 등에서 알게 된 모든
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사람에게감사합니다.또한요즘에도가끔연락하는고등학교친구들인종권이,형탁이,

그리고 저의 재수 친구 요한이에게 감사합니다. 마지막으로 할아버지, 할머니, 외할머

니, 돌아가신 외할아버지와 모든 친척분께 감사드립니다.
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