creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Expressive Whole-Body 3D Multi-Person
Pose and Shape Estimation
from a Single Image

9l o] n| x| ZEE ofe] ALte]
EA7 A4 3D 44| L Fef 7

BY

GYEONGSIK MOON

February 2021

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Expressive Whole-Body 3D Multi-Person
Pose and Shape Estimation

from a Single Image

oY olm A ZHE o7 AFY
832 A4 3D AA 2 FH F=F

AE@s o A T
o] EES FHUA FAEEOE A2Y
2021d 2€

Agthstn it
A7 B REE}E
744

£A49 BoA GAERE AEY
20213 2€
4 #_ % ¥ ¥ G —-
a9z o] Pl g
2

a_ T 3

o o o £ L
5 )
Qlo—p—
vy
kel




2 A& et

SECRIL WATICAL LIMNERSTY



Abstract

Human is the most centric and interesting object in our life: many human-centric
techniques and studies have been proposed from both industry and academia, such as
motion capture and human-computer interaction. Recovery of accurate 3D geometry
of human (i.e., 3D human pose and shape) is a key component of the human-centric
techniques and studies. With the rapid spread of cameras, a single RGB image has
become a popular input, and many single RGB-based 3D human pose and shape

estimation methods have been proposed.

The 3D pose and shape of the whole body, which includes hands and face, pro-
vides expressive and rich information, including human intention and feeling. Unfor-
tunately, recovering the whole-body 3D pose and shape is greatly challenging; thus,
it has been attempted by few works, called expressive methods. Instead of directly
solving the expressive 3D pose and shape estimation, the literature has been devel-
oped for recovery of the 3D pose and shape of each part (i.e., body, hands, and face)
separately, called part-specific methods. There are several more simplifications. For
example, many works estimate only 3D pose without shape because additional 3D
shape estimation makes the problem much harder. In addition, most works assume
a single person case and do not consider a multi-person case. Therefore, there are
several ways to categorize current literature; 1) part-specific methods and expres-

sive methods, 2) 3D human pose estimation methods and 3D human pose and shape



estimation methods, and 3) methods for a single person and methods for multiple
persons. The difficulty increases while the outputs of methods become richer by
changing from part-specific to expressive, from 3D pose estimation to 3D pose and
shape estimation, and from a single person case to multi-person case.

This dissertation introduces three approaches towards expressive 3D multi-person
pose and shape estimation from a single image; thus, the output can finally provide
the richest information. The first approach is for 3D multi-person body pose esti-
mation, the second one is 3D multi-person body pose and shape estimation, and the
final one is expressive 3D multi-person pose and shape estimation. Each approach
tackles critical limitations of previous state-of-the-art methods, thus bringing the
literature closer to the real-world environment.

First, a 3D multi-person body pose estimation framework is introduced. In con-
trast to the single person case, the multi-person case additionally requires camera-
relative 3D positions of the persons. Estimating the camera-relative 3D position
from a single image involves high depth ambiguity. The proposed framework utilizes
a deep image feature with the camera pinhole model to recover the camera-relative
3D position. The proposed framework can be combined with any 3D single person
pose and shape estimation methods for 3D multi-person pose and shape. Therefore,
the following two approaches focus on the single person case and can be easily ex-
tended to the multi-person case by using the framework of the first approach. Second,
a 3D multi-person body pose and shape estimation method is introduced. It extends
the first approach to additionally predict accurate 3D shape while its accuracy sig-
nificantly outperforms previous state-of-the-art methods by proposing a new target
representation, lixel-based 1D heatmap. Finally, an expressive 3D multi-person pose

and shape estimation method is introduced. It integrates the part-specific 3D pose

ii



and shape of the above approaches; thus, it can provide expressive 3D human pose
and shape. In addition, it boosts the accuracy of the estimated 3D pose and shape
by proposing a 3D positional pose-guided 3D rotational pose prediction system.
The proposed approaches successfully overcome the limitations of the previous
state-of-the-art methods. The extensive experimental results demonstrate the supe-

riority of the proposed approaches in both qualitative and quantitative ways.

Key words: 3D human pose, 3D human shape, expressive whole-body, multiple

persons, single image
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Chapter 1

Introduction

1.1 Background and Research Issues

From the distant past, human has been the most centric and interesting object in
our life. Mythological gods are depicted in a human form, and ancient murals and
medieval art depict people to show the situation at that time. In modern society,
many interesting human-centric techniques, such as motion capture, virtual try-on,
and AR/VR, have been introduced, thanks to highly advanced computer graphics,
computer vision, and human-computer interaction, as shown in Figure Recov-
ering accurate 3D geometry of human (i.e., 3D human pose and shape) is a key
component of the recent techniques; thus, 3D human pose and shape estimation
has drawn significant attention from both industry and academia. In particular, the
rapid popularization of cameras and smartphones motivated many single RGB-based
3D human pose and shape estimation methods. Their goal is to recover the 3D pose
and shape of humans in the input image, mostly taken from a single camera in an

uncontrolled environment (i.e., in-the-wild images).

1



1. Introduction

Human-computer interaction Fitness assistant

AR/VR Telepresence Virtual try-on

Figure 1.1: 3D human pose and shape estimation is a key component of modern human-centric
techniques. From left to right and top to bottom, the figures are from |1}, 2, EI, 4,15, and 6L

We, humans, deliver our intention and feeling through a combination of body
and hand motions with a facial expression. Therefore, the 3D pose and shape of
the whole body, which includes hands and face, provides greatly rich information.
Unfortunately, recovering the whole-body 3D pose and shape is highly challenging;
thus, it has been attempted by very few works, called expressive methods [@,,.
Instead of directly solving the expressive 3D pose and shape estimation, the literature
has been developed to recover the 3D pose and shape of each part (i.e., body, hands,
and face) separately, called part-specific methods . Other than this, there
are several more simplifications. For example, many works estimate only 3D pose
without shape because additional 3D shape estimation makes the problem much
more difficult . In addition, most previous works assume a single person
case and do not consider a multi-person case. Therefore, there are
several ways to categorize current literature; 1) part-specific methods and expressive
methods, 2) 3D human pose estimation methods and 3D human pose and shape

estimation methods, and 3) methods for a single person and methods for multiple

.H e
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1. Introduction

geometry density

3D pose and shape

Chapter 3. 3D multi-person body poé‘ and shape Chapter 4. Expressive 3D multi-person pose and shape

3D pose

| _/?/'1“ \\

\JEhapter 2. 3D multi-person bodi;rpose

human part integration

part-specific expressive

Figure 1.2: The research direction of this dissertation. Starting from the part-specific 3D pose
estimation in Chapter [2} part-specific 3D pose and shape estimation is introduced in Chapter [3]
Finally, expressive 3D pose and shape estimation is introduced in Chapter [4 which provides the
richest information, including human intention and feeling. Note that the 3D pose and shape of
a single person in Chapter [3] and Chapter [4] can be easily extended to the multi-person case by
combining them with the framework of Chapter

persons. The difficulty increases while the outputs of methods become richer by
changing from part-specific to expressive, from 3D pose estimation to 3D pose and

shape estimation, and from a single person case to multi-person case.

1.2 Outline of the Dissertation

This dissertation introduces three approaches towards expressive 3D multi-person
pose and shape estimation from a single image; thus, the output can finally provide
the richest information, as shown in Figure The first approach is for 3D multi-
person body pose estimation, the second one is 3D multi-person body pose and
shape estimation, and the final one is expressive 3D multi-person pose and shape

estimation. Each approach tackles critical limitations of previous state-of-the-art

3



1. Introduction

methods, thus bringing the literature closer to the real-world environment.

In Chapter [2| a camera distance-aware 3D multi-person body pose estimation
framework [34] is introduced. As described above, extending the 3D single body pose
estimation to the multi-person case requires the relative 3D position between the
camera and persons, which involves high depth ambiguity. To this end, I propose
RootNet, which refines a pre-defined human scale (2 meters x 2 meters) using a
deep image feature. The human scale, pre-defined for grown-ups with a standing
pose, can change according to the pose and appearance of a person in the input
image. For example, taking a crouching pose makes the scale smaller, and a child
has a smaller scale. As the deep image feature contains information on both pose
and appearance, RootNet can successfully refine the human scale. The refined hu-
man scale is plugged into the camera pinhole model equation, which provides the
relative position between the camera and person. By combining RootNet with state-
of-the-art human detection and 3D single person body pose estimation methods, 3D
multi-person body pose is successfully recovered from in-the-wild images. Another
advantage of the proposed framework is that it can be combined with any 3D single
person pose and shape estimation methods. Thus, the following two approaches focus
on the single person case, and their outputs are easily extended to the multi-person
case by combining them with the proposed framework.

In Chapter a 3D human pose and shape estimation method, I12L-MeshNet [21],
is introduced. It extends 3D pose estimation methods of the first chapter to addi-
tionally predict 3D shape (i.e., 3D mesh) while preserving their accuracy. Most
of the previous 3D human pose and shape estimation methods [5,23-25] directly
regress 3D rotations of human joints, which is a highly non-linear mapping as ad-

dressed by Moon et al. [35]. To resolve this issue, I propose the use of a heatmap

4



1. Introduction

as a prediction target instead of the 3D rotations. The heatmap preserves the spa-
tial relationship between pixels in the input image and can model uncertainty, thus
making it easier for the estimator to predict as demonstrated by Moon et al. [35].
However, unlike human joints consisting of several points, human mesh consists of
more than thousands of vertices. Thus, simply extending the 3D pose estimation
methods of predicting a 3D heatmap for each joint [9,134] to mesh vertices causes
drastic GPU memory usage. To resolve this issue, I design 121.-MeshNet to predict
three lixel-based 1D heatmaps for each mesh vertex in z-, y-, and z-axis instead of
predicting a voxel-based 3D heatmap. The lixel (line+pixel) is a quantized cell in
one-dimensional space; likewise, voxel (volume+pixel) is defined as a quantized cell
in three-dimensional space. I show that the proposed I12L-MeshNet is much more
efficient than networks that predict the voxel-based 3D heatmap while achieving

better accuracy under a similar number of learnable parameters.

Finally, in Chapter [4] expressive 3D human pose and shape estimation method,

Pose2Pose [20], is introduced. Although the above described I2L-MeshNet [21] achieves

high accuracy, 3D rotations of human joints are needed for many computer graphics
applications, such as animation. Thus, Pose2Pose is designed to improve the accu-
racy of 3D rotation of human joints (i.e., 3D rotational pose) prediction by using the
heatmap as guidance. Unlike previous works [5,23-25] that only rely on global im-
age features when predicting the 3D rotational pose, Pose2Pose utilizes joint-specific
local and global features, extracted from positions of human joints (i.e., positional
pose) when predicting the 3D rotational pose, where the positional pose is from the
heatmap. In addition, the proposed framework integrates the 3D poses and shapes
of body/hands with a facial expression; thus, it can provide expressive 3D human

pose and shape and convey human intention and feeling, while most of the previous
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works [5,21}[23-25] can recover only one of body, hands, and face. The experimental

results demonstrate the superiority of Pose2Pose in both qualitative and quantitative

ways.
The conclusion of the dissertation is provided in Chapter [5] with a summary, and

suggestions for future works are also provided.
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Chapter 2

3D Multi-Person Pose

Estimation

2.1 Introduction

The goal of 3D multi-person body pose estimation is to localize semantic keypoints
of multiple human bodies in 3D space. Recently, many methods [28-33] utilize deep
convolutional neural networks (CNNs) and have achieved noticeable performance
improvement on large-scale publicly available datasets |2}/14].

Most of the previous 3D human pose estimation methods [28-33] are designed for
single-person case. They crop the human area in an input image with a groundtruth
bounding box or the bounding box that is predicted from a human detection model [36].
The cropped patch of a human body is fed into the 3D pose estimation module,
which then estimates the 3D location of each keypoint. As their models take a single
cropped image, estimating the absolute camera-centered coordinate of each keypoint

is difficult. To handle this issue, many methods [28-33] estimate the relative 3D pose

7



2. 3D Multi-Person Pose Estimation

Figure 2.1: Qualitative results of applying our 3D multi-person pose estimation framework to COCO
dataset which consists of in-the-wild images. Most of the previous 3D human pose estimation
studies mainly focused on the root-relative 3D single-person pose estimation. In this study, we
propose a general 3D multi-person pose estimation framework that takes into account all factors
including human detection and 3D human root localization.

to a reference point in the body, e.g., the center joint (i.e., pelvis) of a human, called
root. The final 3D pose is obtained by adding the 3D coordinates of the root to the
estimated root-relative 3D pose. Prior information on the bone length or the

groundtruth has been commonly used for the localization of the root.

Recently, many top-down approaches [18,/37,38] for the 2D multi-person pose
estimation have shown noticeable performance improvement. These approaches first
detect humans by using a human detection module and then estimate the 2D pose
of each human by a 2D single-person pose estimation module. Although they are
straightforward when used in 2D cases, extending them to 3D cases is nontrivial.
Note that for the estimation of 3D multi-person poses, we need to know the absolute
distance to each human from the camera as well as the 2D bounding boxes. However,

existing human detectors provide 2D bounding boxes only.

In this study, we propose a general framework for 3D multi-person pose esti-
mation. To the best of our knowledge, this study is the first to propose a fully
learning-based camera distance-aware top-down approach of which components are

compatible with most of the previous human detection and 3D human pose estima-

8



2. 3D Multi-Person Pose Estimation

tion methods. The pipeline of the proposed system consists of three modules. First,
a human detection network (DetectNet) detects the bounding boxes of humans in an
input image. Second, the proposed 3D human root localization network (RootNet)
estimates the camera-centered coordinates of the detected humans’ roots. Third, a
root-relative 3D single-person pose estimation network (PoseNet) estimates the root-
relative 3D pose for each detected human. Figures and show the qualitative
results and overall pipeline of our framework, respectively.

We show that our approach outperforms previous 3D multi-person pose estima-
tion methods [3,/13] on several publicly available 3D single- and multi-person pose
estimation datasets [2,3] by a large margin. Also, even without any groundtruth
information (i.e., the bounding boxes and the 3D location of the roots), our method
achieves comparable performance with the state-of-the-art 3D single-person pose
estimation methods that use the groundtruth in the inference time. Note that our
framework is new but follows previous conventions of object detection and 3D human
pose estimation networks. Thus, previous detection and pose estimation methods can
be easily plugged into our framework, which makes the proposed framework quite
flexible and generalizable.

Our contributions can be summarized as follows.

e We propose a new general framework for 3D multi-person pose estimation from
a single RGB image. The framework is the first fully learning-based, camera
distance-aware top-down approach, of which components are compatible with

most of the previous human detection and 3D human pose estimation models.

e Our framework outputs the absolute camera-centered coordinates of multiple

humans’ keypoints. For this, we propose a 3D human root localization network

9



2. 3D Multi-Person Pose Estimation

(RootNet). This model makes it easy to extend the 3D single-person pose

estimation techniques to the absolute 3D pose estimation of multiple persons.

e We show that our method significantly outperforms previous 3D multi-person
pose estimation methods on several publicly available datasets. Also, it achieves
comparable performance with the state-of-the-art 3D single-person pose esti-

mation methods without any groundtruth information.

2.2 Related works

2D multi-person pose estimation. There are two main approaches in the multi-
person pose estimation. The first one, the top-down approach, deploys a human
detector that estimates the bounding boxes of humans. Each detected human area
is cropped and fed into the pose estimation network. The second one, the bottom-
up approach, localizes all human body keypoints in an input image first and then
groups them into each person using some clustering techniques.

[18,37H41] are based on the top-down approach. Papandreou et al. [39] predicted
2D offset vectors and 2D heatmaps for each joint. They fused the estimated vectors
and heatmaps to generate highly localized heatmaps. Chen et al. [38] proposed a
cascaded pyramid network whose cascaded structure refines an initially estimated
pose by focusing on hard keypoints. Xiao et al. [18] used a simple pose estimation
network that consists of a deep backbone network and several upsampling layers.

[42-46] are based on the bottom-up approach. Cao et al. [44] proposed the part
affinity fields (PAFs) that model the association between human body keypoints.
They grouped the localized keypoints of all persons in the input image by using

the estimated PAFs. Newell et al. [45] introduced a pixel-wise tag value to assign

10



2. 3D Multi-Person Pose Estimation

y
RootNet >
1.4
X 1 !

A i
‘ x\.._..._ —}_ ——— a"‘-"'.
N A v
e 3D absolute human root AN i 4
A (¥ Ly
PoseNet > RN /l /1
Input image Cropped humans 3D multi-person pose

3D root-relative pose

Figure 2.2: Overall pipeline of the proposed framework for 3D multi-person pose estimation from a
single RGB image. The proposed framework can recover the absolute camera-centered coordinates
of multiple persons’ keypoints.

localized keypoints to a certain human. Kocabas et al. proposed a pose residual

network for assigning detected keypoints to each person.

3D single-person pose estimation. Current 3D single-person pose estimation
methods can be categorized into single- and two-stage approaches. The single-stage
approach directly localizes the 3D body keypoints from the input image. The two-
stage methods utilize the high accuracy of 2D human pose estimation. They initially

localize body keypoints in a 2D space and lift them to a 3D space.

28! are based on the single-stage approach. Li et al. proposed

a multi-task framework that jointly trains both the pose regression and body part
detectors. Tekin et al. modeled high-dimensional joint dependencies by adopting
an auto-encoder structure. Pavlakos et al. extended the U-net shaped network
to estimate a 3D heatmap for each joint. They used a coarse-to-fine approach to
boost performance. Sun et al. introduced compositional loss to consider the
joint connection structure. Sun et al. used soft-argmax operation to obtain the

3D coordinates of body joints in a differentiable manner.

31 52| are based on the two-stage approach. Park et al. estimated the

initial 2D pose and utilized it to regress the 3D pose. Martinez et al. proposed

a simple network that directly regresses the 3D coordinates of body joints from 2D

11
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coordinates. Zhou et al. [32] proposed a geometric loss to facilitate weakly supervised
learning of the depth regression module with images in the wild. Yang et al. |33]
utilized adversarial loss to handle the 3D human pose estimation in the wild.

3D multi-person pose estimation. Few studies have been conducted on 3D multi-
person pose estimation from a single RGB image. Rogez et al. [13] proposed a top-
down approach called LCR-Net, which consists of localization, classification, and
regression parts. The localization part detects a human from an input image, and
the classification part classifies the detected human into several anchor-poses. The
anchor-pose is defined as a pair of 2D and root-relative 3D pose. It is generated by
clustering poses in the training set. Then, the regression part refines the anchor-
poses. Mehta et al. [3] proposed a bottom-up approach system. They introduced an
occlusion-robust pose-map formulation that supports pose inference for more than
one person through PAFs [44].

3D human root localization in 3D multi-person pose estimation. Rogez et
al. |13] estimated both the 2D pose in the image coordinate space and the 3D pose
in the camera-centered coordinate space simultaneously. They obtained the 3D lo-
cation of the human root by minimizing the distance between the estimated 2D pose
and projected 3D pose, similar to what Mehta et al. [14] did. However, this strat-
egy cannot be generalized to other 3D human pose estimation methods because it
requires both the 2D and 3D estimations. For example, many works [28}29,32,33]
estimate the 2D image coordinates and root-relative depth values of keypoints. As
their methods do not output root-relative camera-centered coordinates of keypoints,
such a distance minimization strategy cannot be used. Moreover, contextual informa-
tion cannot be exploited because the image feature is not considered. For example,

it cannot distinguish between a child close to the camera and an adult far from the

12



2. 3D Multi-Person Pose Estimation

camera because their scales in the 2D image are similar.

2.3 Overview of the proposed model

The goal of our system is to recover the absolute camera-centered coordinates of mul-

J
j:17

tiple persons’ keypoints {P?bs} where J denotes the number of joints. To address
this problem, we construct our system based on the top-down approach that consists
of DetectNet, RootNet, and PoseNet. The DetectNet detects a human bounding box
of each person in the input image. The RootNet takes the cropped human image
from the DetectNet and localizes the root of the human R = (g, yr, Zr), in which
rr and yr are pixel coordinates, and Zp is an absolute depth value. The same
cropped human image is fed to the PoseNet, which estimates the root-relative 3D
pose P;el = (4,9, Z;el), in which x; and y; are pixel coordinates in the cropped
image space and Z;-"EZ is root-relative depth value. We convert Z;el into Z;-lbs by

adding Zg and transform x; and y; to the original input image space. Then, the

final absolute 3D pose {P?bs }3-]:1 is obtained by simple back-projection.

2.4 DetectNet

We use Mask R-CNN [36] as the framework of DetectNet. Mask R-CNN [36] consists
of three parts. The first one, backbone, extracts useful local and global features from
the input image by using a deep residual network (ResNet) [53] and feature pyramid
network [54]. Based on the extracted features, the second part, the region proposal
network, proposes human bounding box candidates. The RolAlign layer extracts the
features of each proposal and passes them to the third part, which is the classification

head network. The head network determines whether the given proposal is human

13
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or not and estimates the bounding box refinement offsets. It achieves state-of-the-
art performance on publicly available object detection datasets |1]. Due to its high
performance and publicly available code [55,56], we use Mask R-CNN [36] as a

DetectNet in our pipeline.

2.5 PoseNet

2.5.1 Model design

The PoseNet estimates the root-relative 3D pose P;el = (xj,v;, Z;el) from a cropped
human image. Many works have been presented for this topic [14}28-33]. Among
them, we use the model of Sun et al. |28], which is the current state-of-the-art
method. This model consists of two parts. The first part is the backbone, which
extracts a useful global feature from the cropped human image using ResNet [53].
Second, the pose estimation part takes a feature map from the backbone part and
upsamples it using three consecutive deconvolutional layers with batch normalization
layers [57] and ReLU activation function. A 1-by-1 convolution is applied to the
upsampled feature map to produce the 3D heatmaps for each joint. The soft-argmax
operation is used to extract the 2D image coordinates (x;,y;), and the root-relative

depth values Z}"el.

2.5.2 Loss function

We train the PoseNet by minimizing the L1 distance between the estimated and

groundtruth coordinates. The loss function Ly, is defined as follows:

J
1 re relx
Lpose = j Z ”P] L Pj : ”17 (21)
i=1
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2. 3D Multi-Person Pose Estimation

Figure 2.3: Visualization of a pinhole camera model. The green and blue arrows represent the human
root joint centered x and y-axes, respectively. The yellow lines show rays, and c is the hole. d, f,
and lsensor are distance between camera and the human root joint (mm), focal length (mm), and
the length of human on the image sensor (mm), respectively.

where * indicates groundtruth.

2.6 RootNet

2.6.1 Model design

The RootNet estimates the camera-centered coordinates of the human root R =
(zRr,YRr, Zg) from a cropped human image. To obtain them, RootNet separately
estimates the 2D image coordinates (xg,ygr) and the depth value (i.e., the distance
from the camera Zg) of the human root. The estimated 2D image coordinates are
back-projected to the camera-centered coordinate space using the estimated depth
value, which becomes the final output.

Considering that an image provides sufficient information on where the human

15
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root is located in the image space, the 2D estimation part can learn to localize
it easily. By contrast, estimating the depth only from a cropped human image is
difficult because the input does not provide information on the relative position of

the camera and human. To resolve this issue, we introduce a new distance measure,

ATC(I
k= ‘/amayA‘ L (2.2)
img

where oy, oy, Areqr, and Agyg are focal lengths divided by the per-pixel distance

k, which is defined as follows:

factors (pixel) of 2- and y-axes, the area of the human in real space (mm?), and image
space (pixel?), respectively. k approximates the absolute depth from the camera to
the object using the ratio of the actual area and the imaged area of it, given camera
parameters. Eq[2.2] can be easily derived by considering a pinhole camera projection
model, as shown in Figure[2.3] The distance d (mm) between the camera and object

can be calculated as follows:

lmrea l Tea
d = q. Zreal _  lyreal (2.3)

i

T
lm,img ly,img

where Uy real, laimgs lyreals ly,img are the lengths of an object in real space (mm) and

in image space (pixel), on the x and y-axes, respectively.

By multiplying the two representations of d in Eq[2.3and taking the square root
of it, we can have the 2D extended version of depth measure k in Eq Assuming
that A,cq is constant and using «, and «, from datasets, the distance between the
camera and an object can be measured from the area of the bounding box. As we

only consider humans, we assume that A,.q is 2000mm x 2000mm. The area of
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Figure 2.4: Correlation between k and real depth value of the human root. Human3.6M and
MuCo-3DHP datasets were used. r represents Pearson correlation coefficient.

the human bounding box is used as A;jpy after extending it to fixed aspect ratio
(i.e., height:width = 1:1). Figure shows that such an approximation provides a
meaningful correlation between k and the real depth values of the human root in 3D

human pose estimation datasets ,.

Although k can represent how far the human is from the camera, it can be wrong
in several cases because it assumes that Aj,g is an area of A,¢q (i.e., 2000mm x
2000mm) in the image space when the distance between the human and the camera
is k. However, as Ay is obtained by extending the 2D bounding box, it can have
a different value according to its appearance, although the distance to the camera

is the same. For example, as shown in Figure a), two humans have different

17

) .-"Ix-‘r —.I:J::.' E

F L

| 8k
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(a) Different area, same dris\'tance (b) Sme aréa, ifférht diétance

Figure 2.5: Examples where k fails to represent the distance between a human and the camera
because of incorrect Ajpmg.

Aimg although they are at the same distance to the camera. On the other hand, in
some cases, Ajng can be the same, even with different distances from the camera.
For example, in Figure (b)7 a child and an adult have similar Aj,,4; however, the

child is closer to the camera than the adult.

To handle this issue, we design the RootNet to utilize the image feature to correct
Aimg, eventually k. The image feature can give a clue to the RootNet about how
much the A;;,, has to be changed. For example, in Figure (a), the left image can
tell the RootNet to increase the area because the human is in a crouching posture.
Also, in Figure b), the right image can tell the RootNet to increase the area
because the input image contains a child. Specifically, the RootNet outputs the
correction factor v from the image feature. The estimated 7 is multiplied by the

7

. . . ’y
given Ay, which becomes Aimg. From A,

@ k is calculated and it becomes the

final depth value.
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Figure 2.6: Network architecture of the RootNet. The RootNet estimates the 3D human root coor-
dinate.

2.6.2 Camera normalization

Our RootNet outputs correction factor v only from an input image. Therefore, data
from any camera intrinsic parameters (i.e., a and ay) can be used during training
and testing. We call this property camera normalization, which makes our RootNet
very flexible. For example, in the training stage, data from different o, and o, can
be used together. Also, in the testing stage, RootNet can be used when o, and «
are not available, likely for in-the-wild images. In this case, o, and «, can be set to
any values o/, and oz;, respectively. Then, estimated Zg represents distance between

an object and camera whose a, and o, are o, and a;, respectively.

2.6.3 Network architecture

The network architecture of the RootNet, which comprises three components, is
visualized in Figure[2.6] First, a backbone network extracts the useful global feature
of the input human image using ResNet [53]. Second, the 2D image coordinate
estimation part takes a feature map from the backbone part and upsamples it using

three consecutive deconvolutional layers with batch normalization layers and
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ReLU activation function. Then, a 1-by-1 convolution is applied to produce a 2D
heatmap of the root. Soft-argmax [28| extracts 2D image coordinates xg,yr from
the 2D heatmap. The third component is the depth estimation part. It also takes a
feature map from the backbone part and applies global average pooling. Then, the
pooled feature map goes through a 1-by-1 convolution, which outputs a single scalar
value . The final absolute depth value Zp is obtained by multiplying k with %
In practice, we implemented the RootNet to output 7/ = % directly and multiply

it with the k to obtain the absolute depth value Zg (i.e., Zr = v'k).

2.6.4 Loss function

We train the RootNet by minimizing the L1 distance between the estimated and

groundtruth coordinates. The loss function L., is defined as follows:
Lroot = HR - R*||17 (24)

where * indicates the groundtruth.

2.7 Implementation details

Publicly released Mask R-CNN model [56] pre-trained on the COCO dataset [1] is
used for the DetectNet without fine-tuning on the human pose estimation datasets [2,
3]. For the RootNet and PoseNet, PyTorch [58] is used for implementation. Their
backbone part is initialized with the publicly released ResNet-50 [53] pre-trained
on the ImageNet dataset [59], and the weights of the remaining part are initialized
by Gaussian distribution with ¢ = 0.001. The weights are updated by the Adam

optimizer [60] with a mini-batch size of 128. The initial learning rate is set to 1 x
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102 and reduced by a factor of 10 at the 17th epoch. We use 256x256 as the size
of the input image of the RootNet and PoseNet. We perform data augmentation,
including rotation (£30°), horizontal flip, color jittering, and synthetic occlusion [61]
in training. Horizontal flip augmentation is performed in testing for the PoseNet
following Sun et al. [28]. We train the RootNet and PoseNet for 20 epochs with four

NVIDIA 1080 Ti GPUs, which took two days, respectively.

2.8 Experiment

2.8.1 Dataset and evaluation metric

Human3.6M dataset. Human3.6M dataset 2] is the largest 3D single-person pose
benchmark. It consists of 3.6 million video frames. 11 subjects performing 15 activi-
ties are captured from 4 camera viewpoints. The groundtruth 3D poses are obtained
using a motion capture system. Two evaluation metrics are widely used. The first
one is mean per joint position error (MPJPE) [2], which is calculated after align-
ing the human root of the estimated and groundtruth 3D poses. The second one
is MPJPE after further alignment (i.e., Procrustes analysis (PA) [62]). This metric
is called PA MPJPE. To evaluate the localization of the absolute 3D human root,
we introduce the mean of the Euclidean distance between the estimated coordinates
of the root R and the groundtruth R*, i.e., the mean of the root position error

(MRPE), as a new metric:

N
1 . .
_ (i) _ R
MRPE = E'_l IIR® — RO*||,, (2.5)
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where superscript ¢ is the sample index, and N denotes the total number of test
samples.

MuCo-3DHP and MuPoTS-3D datasets. These are the 3D multi-person pose
estimation datasets proposed by Mehta et al. [3]. The training set, MuCo-3DHP,
is generated by compositing the existing MPI-INF-3DHP 3D single-person pose
estimation dataset [14]. The test set, MuPoTS-3D dataset, was captured from out-
doors, and it includes 20 real-world scenes with groundtruth 3D poses for up to
three subjects. The groundtruth is obtained with a multi-view marker-less motion
capture system. For evaluation, a 3D percentage of correct keypoints (3DPCK,.;)
and area under 3DPCK curve from various thresholds (AUC,;) is used after root
alignment with groundtruth. It treats a joint’s prediction as correct if it lies within
15cm from the groundtruth joint location. We additionally define 3DPCK;,, which
is the 3DPCK without root alignment to evaluate the absolute camera-centered co-
ordinates. To evaluate the localization of the absolute 3D human root, we use the
average precision of 3D human root location (AP2°), which considers a prediction

is correct when the Euclidean distance between the estimated and the groundtruth

coordinates is smaller than 25cm.

2.8.2 Experimental protocol

Human3.6M dataset. T'wo experimental protocols are widely used. Protocol 1 uses
six subjects (S1, S5, S6, S7, S8, S9) in training and S11 in testing. PA MPJPE is used
as an evaluation metric. Protocol 2 uses five subjects (S1, S5, S6, S7, S8) in training
and two subjects (S9, S11) in testing. MPJPE is used as an evaluation metric. We use
every bth and 64th frames in videos for training and testing, respectively following

[2830]. When training, besides the Human3.6M dataset, we used additional MPII 2D
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Settings MRPE MPJPE Time
Joint learning 138.2 116.7  0.132
Disjointed learning (Ours) 120.0 57.3  0.141

Table 2.1: MRPE, MPJPE, and seconds per frame comparison between joint and disjointed learning
on Human3.6M dataset.

human pose estimation dataset [63] following [28-30}:32]. Each mini-batch consists
of half Human3.6M and half MPII data. For MPII data, the loss value of the z-axis
becomes zero for both of the RootNet and PoseNet following Sun et al. |2§].

MuCo-3DHP and MuPoTS-3D datasets. Following the previous protocol, we
composite 400K frames of which half are background augmented. For augmentation,
we use images from the COCO dataset |1] except for images with humans. We use
an additional COCO 2D human keypoint detection dataset [1] when training our
models on the MuCo-3DHP dataset following Mehta et al. [3]. Each mini-batch
consists of half MuCo-3DHP and half COCO data. For COCO data, the loss value

of z-axis becomes zero for both of the RootNet and PoseNet following Sun et al. [28].

2.8.3 Ablation study

In this study, we show how each component of our proposed framework affects
the 3D multi-person pose estimation accuracy. To evaluate the performance of the
DetectNet, we use the average precision of the bounding box (AP"?) following
metrics of the COCO object detection benchmark [1].

Disjointed pipeline. To demonstrate the effectiveness of the disjointed pipeline
(i.e., separated DetectNet, RootNet, and PoseNet), we compare MRPE, MPJPE,
and running time of joint and disjointed learning of the RootNet and PoseNet in
Table The running time includes DetectNet and is measured using a single

TitanX Maxwell GPU. For the joint learning, we combine the RootNet and PoseNet
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DetectNet RootNet AP AP3oot |AUC, . 3DPCK g5
R-50 k 438 52 | 39.2 9.6
R-50 Ours 438 285 | 39.8 315
X-101-32  Ours 45.0 31.0 | 39.8 31.5
GT Ours 100.0 31.4 | 39.8 31.6
GT GT 100.0 100.0 | 39.8 80.2

Table 2.2: Overall performance comparison for different DetectNet and RootNet settings on the
MuPoTS-3D dataset.

into a single model which shares backbone part (i.e., ResNet [53]). The image feature
from the backbone is fed to each branch of RootNet and PoseNet in a parallel
way. Compared with the joint learning, our disjointed learning gives lower error
under a similar running time. We believe that this is because each task of RootNet
and PoseNet is not highly correlated; therefore, jointly training all tasks can make

training harder, resulting in lower accuracy.

Effect of the DetectNet. To show how the performance of the human detection
affects the accuracy of the final 3D human root localization and 3D multi-person
pose estimation, we compare Ang"t, AUC,.;, and 3DPCK;, using the DetectNet in
various backbones (i.e., ResNet-50 [53], ResNeXt-101-32 [64]) and groundtruth box
in the second, third, and fourth row of Table respectively. The table shows that
based on the same RootNet (i.e., Ours), a better human detection model improves
both the 3D human root localization and 3D multi-person pose estimation perfor-
mance. However, the groundtruth box does not improve overall accuracy consider-
ably compared with other DetectNet models. Therefore, we have sufficient reasons
to believe that the given boxes cover most of the person instances with such a high
detection AP. We can also conclude that the bounding box estimation accuracy does

not have a large impact on the 3D multi-person pose estimation accuracy.

Effect of the RootNet. To show how the performance of the 3D human root lo-
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calization affects the accuracy of the 3D multi-person pose estimation, we compare
AUC,; and 3DPCKgps using various RootNet settings in Table 2.2] The first and
second rows show that based on the same DetectNet (i.e., R-50), our RootNet ex-
hibits significantly higher AP52°" and 3DPCK s compared with the setting in which
k is directly utilized as a depth value. We use the z and y of the RootNet when the
k is used as a depth value. This result demonstrates that the RootNet successfully
corrects the k value. The fourth and last rows show that the groundtruth human
root provides similar AUC,.;, but significantly higher 3DPCK;s compared with
our RootNet. This finding shows that better human root localization is required to
achieve more accurate absolute 3D multi-person pose estimation results.

Effect of the PoseNet. All settings in Table provides similar AUC,.,;. Espe-
cially, the first and last rows of the table show that using groundtruth box and
human root does not provide significantly higher AUC,..;. As the results in the table
are based on the same PoseNet, we can conclude that AUC,..;, which is an evaluation
of the root-relative 3D human pose estimation, highly depends on the accuracy of

the PoseNet.

2.8.4 Comparison with state-of-the-art methods

Human3.6M dataset. We compare 3D human pose estimation error between ours
and state-of-the-art methods on the Human3.6M dataset [2] in Tables and
As most of the previous methods use the groundtruth information (i.e., bounding
boxes or 3D root locations) in inference time, we report the performance of the
PoseNet using the groundtruth 3D root location. Note that our full model does
not require any groundtruth information in inference time. The tables show that

our method achieves comparable performance despite not using any groundtruth
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2. 3D Multi-Person Pose Estimation

Methods Dir. Dis. Eat Gre. Phon. Pose Pur. Sit SitD. Smo. Phot. Wait Walk WalkD. WalkP. Avg

With groundtruth information in inference time

Yasin [65] 88.4 725 108.5 110.2 97.1 81.6 107.2 119.0 170.8 108.2 142.5 86.9 92.1 165.7 102.0 108.3
Chen [50] 71.6 66.6 74.7 79.1 70.1 676 89.3 90.7 1956 83.5 93.3 71.2 557 859 625 827
Moreno (66| 67.4 63.8 872 739 715 699 651 71.7 98.6 81.3 93.3 74.6 76.5 777 746 76.5
Zhou [67] 479 48.8 52.7 55.0 56.8 49.0 455 60.8 81.1 53.7 655 51.6 50.4 54.8 559 55.3
Martinez [31] 39.5 43.2 46.4 47.0 51.0 414 40.6 56.5 694 49.2 56.0 45.0 38.0 49.5 43.1 47.7

Sun |30 42.1 44.3 45.0 454 51.5 432 413 59.3 73.3 51.0 53.0 44.0 383 48.0 44.8  48.3 ©
Fang [51] 38.2 41.7 43.7 449 485 40.2 38.2 54.5 64.4 472 55.3 443 36.7 47.3 41.7 457 o
Sun |28 36.9 36.2 40.6 404 419 349 35.7 50.1 59.4 404 44.9 39.0 30.8 39.8 36.7 40.6

Ours 31.0 30.6 39.9 35.5 34.8 30.2 32.1 35.0 43.8 35.7 37.6 30.1 24.6 35.7 29.3 34.0
(PoseNet)

Without groundtruth information in inference time

Rogez [68]* - - - - - - - - - - - - - - - 42.7

Ours (Full) 32.5 31.5 41.5 36.7 36.3 31.9 33.2 36.5 44.4 36.7 38.7 31.2 25.6 37.1 30.5 35.2

Table 2.3: PA MPJPE comparison with state-of-the-art methods on the Human3.6M dataset using Protocol 1. % used extra synthetic data
for training.
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2. 3D Multi-Person Pose Estimation

Methods

MRPE MRPE, MRPE, MRPE,

Bascline [13,[14]

W /o limb joints
RANSAC
RootNet (Ours)

267.8 27.5 28.3 261.9
226.2 24.5 24.9 220.2
213.1 24.3 24.3 207.1
120.0 23.3 23.0 108.1

Table 2.5: MRPE comparisons between previous distance minimization-based approaches |13}/14]
and our RootNet on the Human3.6M dataset. MRPE,, MRPE,, and MRPE. represent the mean

of the errors in the z, y, and z axes, respectively.

Figure 2.7: Predicted correction factor ¥ on Human3.6M dataset. Orange box indicates actions

with crouching poses.
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2. 3D Multi-Person Pose Estimation

information in inference time. Moreover, it significantly outperforms previous 3D
multi-person pose estimation methods [1,3].

In addition, we compare 3D human root joint localization error between ours
and previous approaches [13,/14] in Table The table shows that our RootNet
significantly outperforms previous approaches. Furthermore, the RootNet can be
designed independently of the PoseNet, giving design flexibility to both models. In
contrast, the previous 3D root localization methods [13,|14] require both 2D and
3D predictions for the root localization, which results in a lack of generalizability.
Figure shows predicted correction ' has smaller value when a person in the
input image is taking crouching poses (e.g., sitting and sitting down). The figure
demonstrates our RootNet adjust the initial depth value £ using the image feature.

The previous 3D human root joint localization approaches [13}/14] simultaneously
estimate 2D image coordinates and 3D camera-centered root-relative coordinates of
keypoints. Then, absolute camera-centered coordinates of the human root are ob-
tained by minimizing the distance between 2D predictions and projected 3D pre-
dictions. For optimization, the linear least-squares formulation is used. To measure
the errors of their method, we implemented and used ResNet-152-based model of
Sun et al. [2§] as a 2D pose estimator and model of Martinez et al. [31] as a 3D pose
estimator, which are state-of-the-art methods. In addition, to minimize the effect of
outliers in 3D-to-2D fitting, we excluded limb joints when fitting. Also, we performed
RANSAC with a various number of joints to get optimal joint set for fitting instead
of using a heuristically selected joint set.

MuCo-3DHP and MuPoTS-3D datasets. We compare our proposed system
with the state-of-the-art 3D multi-person pose estimation methods on the MuPoTS-

3D dataset [3] in Tables and The proposed system significantly outperforms
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2. 3D Multi-Person Pose Estimation

Methods S1 S2 S3 S4 S5 S6 ST S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Avg

Accuracy for all groundtruths

Rogez 13| 67.7 49.8 53.4 59.1 67.5 22.8 43.7 49.9 31.1 78.1 50.2 51.0 51.6 49.3 56.2 66.5 65.2 62.9 66.1 59.1 53.8
Mehta [3] 81.0 60.9 64.4 63.0 69.1 30.3 65.0 59.6 64.1 83.9 68.0 68.6 62.3 59.2 70.1 80.0 79.6 67.3 66.6 67.2 66.0
Rogez |68]* 87.3 61.9 67.9 74.6 78.8 48.9 58.3 59.7 78.1 89.5 69.2 73.8 66.2 56.0 74.1 82.1 78.1 72.6 73.1 61.0 70.6
Mehta [27] 88.4 65.1 68.2 72.5 76.2 46.2 65.8 64.1 75.1 82.4 74.1 72.4 64.4 58.8 73.7 80.4 84.3 67.2 74.3 67.8 70.4
Ours 94.477.579.081.985.372.881.975.790.290.479.279.975.172.781.189.989.681.881.776.281.8

Accuracy only for matched groundtruths

Rogez 13| 69.1 67.3 54.6 61.7 74.5 25.2 48.4 63.3 69.0 78.1 53.8 52.2 60.5 60.9 59.1 70.5 76.0 70.0 77.1 81.4 62.4
Mehta 3] 81.0 65.3 64.6 63.9 75.0 30.3 65.1 61.1 64.1 83.9 72.4 69.9 71.0 72.9 71.3 83.6 79.6 73.5 78.9 90.9 70.8
Rogez [68]* 88.0 73.3 67.9 74.6 81.8 50.1 60.6 60.8 78.2 89.5 70.8 74.4 72.8 64.5 74.2 84.9 85.2 78.4 75.8 74.4 74.0
Mehta [27] 88.4 70.4 68.3 73.6 82.4 46.4 66.1 83.4 75.1 82.4 76.5 73.0 72.4 73.8 74.0 83.6 84.3 73.9 85.7 90.6 75.8
Ours 94.478.6 79.0 82.1 86.6 72.8 81.9 75.8 90.2 90.4 79.4 79.9 75.3 81.0 81.0 90.7 89.6 83.1 81.7 77.3 82.5

Table 2.6: Sequence-wise 3DPCK,..; comparison with state-of-the-art methods on the MuPoTS-3D dataset. * used extra synthetic data for
training.
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2. 3D Multi-Person Pose Estimation

Methods Hd. Nck. Sho. Elb. Wri. Hip Kn. Ank. Avg
Rogez [13] 49.4 67.4 57.1 51.4 413 84.6 56.3 36.3 53.8
Mehta [3] 62.1 81.2 77.9 57.7 472 97.3 66.3 47.6 66.0
Ours 79.1 92.6 85.1 79.4 67.0 96.6 85.7 73.1 81.8

Table 2.7: Joint-wise 3DPCK,.; comparison with state-of-the-art methods on the MuPoTS-3D
dataset. All groundtruths are used for evaluation.

DetectNet RootNet PoseNet Total
0.120 0.010 0.011 0.141

Table 2.8: Seconds per frame for each component of our framework.

them in most of the test sequences and joints.

2.8.5 Running time of the proposed framework

In Table we report seconds per frame for each component of our framework.
The running time is measured using a single TitanX Maxwell GPU, and the batch
size is set to 1. The testing pipeline of the DetectNet is identical to the original
Mask R-CNN [36], which resizes the smallest side of the input image to 800 pixels.
As the table shows, most of the running time is consumed by DetectNet. It is hard
to directly compare running time with previous works [13,/14] because they did not
report it. However, we guess that there would be no big difference because models
of |13] and [14] are similar with [70] and [44] whose speed is 0.2 and 0.11 seconds

per frame, respectively.

2.8.6 Qualitative results

Figures 2.8 and show qualitative results of our 3D multi-person pose estimation
framework on the MuPoTS-3D [3] and COCO [1] datasets, respectively. Note that
COCO dataset consists of in-the-wild images which are hardly included in the 3D

human pose estimation training sets [2}3].
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2. 3D Multi-Person Pose Estimation

Figure 2.8: Qualitative results of applying our method on the MuPoTS-3D dataset H
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2. 3D Multi-Person Pose Estimation

Figure 2.9: Qualitative results of applying our method on the COCO 2017 |1] validation set.

33



2. 3D Multi-Person Pose Estimation

2.9 Conclusion

We propose a novel and general framework for 3D multi-person pose estimation
from a single RGB image. Our framework consists of human detection, 3D human
root localization, and root-relative 3D single-person pose estimation models. Since
any existing human detection and 3D single-person pose estimation models can
be plugged into our framework, it is very flexible and easy to use. The proposed
system outperforms previous 3D multi-person pose estimation methods by a large
margin and achieves comparable performance with 3D single-person pose estimation
methods without any groundtruth information while they use it in inference time.
To the best of our knowledge, this work is the first to propose a fully learning-based
camera distance-aware top-down approach whose components are compatible with
most of the previous human detection and 3D human pose estimation models. We
hope that this study provides a new basis for 3D multi-person pose estimation, which

has only barely been explored.
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Chapter 3

3D Multi-Person Pose and

Shape Estimation

3.1 Introduction

3D human pose and mesh estimation aims to simultaneously recover 3D semantic
human joint and 3D human mesh vertex locations. Unlike the 3D human pose esti-
mation method of Chapter [2| that only predicts 3D locations of human joints, this
chapter aims to predict 3D locations of human mesh vertices additionally. This is
a very challenging task because of complicated human articulation and 2D-to-3D
ambiguity. It can be used in many applications such as virtual/augmented reality
and human action recognition.

SMPL [71] and MANO |[72] are the most widely used parametric human body and
hand mesh models, respectively, which can represent various human poses and iden-
tities. They produce 3D human joint and mesh coordinates from pose and identity

parameters. Recent deep convolutional neural network (CNN)-based studies [23}25]
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3. 3D Multi-Person Pose and Shape Estimation

Figure 3.1: Qualitative results of the proposed I2L-MeshNet on MSCOCO and FreiHAND
datasets.

for the 3D human pose and mesh estimation are based on the model-based ap-
proach, which trains a network to estimate SMPL/MANO parameters from an input
image. On the other hand, there have been few methods based on model-free ap-
proach [573], which estimates mesh vertex coordinates directly. They obtain the 3D
pose by multiplying a joint regression matrix, included in the human mesh model,

to the estimated mesh.

Although the recent deep CNN-based methods perform impressive, when esti-
mating the target (i.e., SMPL/MANO parameters or mesh vertex coordinates), all
of the previous 3D human pose and mesh estimation works break the spatial rela-
tionship among pixels in the input image because of the fully-connected layers at the
output stage. In addition, their target representations cannot model the uncertainty
of the prediction. The above limitations can make training harder, and as a result,
reduce the test accuracy as addressed in . To address the limitations, recent

state-of-the-art 3D human pose estimation methods , which localize 3D
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3. 3D Multi-Person Pose and Shape Estimation

human joint coordinates without mesh vertex coordinates, utilize the heatmap as
the target representation of their networks. Each value of one heatmap represents
the likelihood of the existence of a human joint at the corresponding pixel positions
of the input image and discretized depth value. Therefore, it preserves the spatial
relationship between pixels in the input image and models the prediction uncertainty.

Inspired by the recent state-of-the-art heatmap-based 3D human pose estimation
methods, we propose 12L.-MeshNet, an image-to-lixel prediction network that nat-
urally extends heatmap-based 3D human pose to heatmap-based 3D human pose
and mesh. Likewise voxel (volume+pixel) is defined as a quantized cell in three-
dimensional space, we define lizel (line+pizel) as a quantized cell in one-dimensional
space. Our I12L-MeshNet estimates per-lixel likelihood on 1D heatmaps for each mesh
vertex coordinates; therefore, it is based on the model-free approach. The previous
state-of-the-art heatmap-based 3D human pose estimation methods predict the 3D
heatmap of each human joint. Unlike the number of human joints, which is around
20, the number of mesh vertex is much larger (e.g., 6980 for SMPL and 776 for
MANO). As a result, predicting 3D heatmaps of all mesh vertices becomes compu-
tationally infeasible, which is beyond the limit of modern GPU memory. In contrast,
the proposed lixel-based 1D heatmap has an efficient memory complexity, which has
a linear relationship with the heatmap resolution. Thus, it allows our system to
predict heatmaps with sufficient resolution, which is essential for dense mesh vertex
localization.

For more accurate 3D human pose and mesh estimation, we design the I2L-
MeshNet as a cascaded network architecture, which consists of PoseNet and Mesh-
Net. The PoseNet predicts the lixel-based 1D heatmaps of each 3D human joint

coordinate. Then, the MeshNet utilizes the output of the PoseNet as an additional
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3. 3D Multi-Person Pose and Shape Estimation

input along with the image feature to predict the lixel-based 1D heatmaps of each
3D human mesh vertex coordinate. As the locations of the human joints provide
coarse but important information about the human mesh vertex locations, utilizing
it for 3D mesh estimation is natural and can increase accuracy substantially.

Our I2L-MeshNet outperforms previous 3D human pose and mesh estimation
methods on various 3D human pose and mesh benchmark datasets. Figure [3.1] shows
3D human body and hand mesh estimation results on publicly available datasets.
In addition, it can be easily extended to the multi-person 3D human pose and mesh
estimation using the framework of Moon et al. [26], introduced in Chapter [2 We
show the multi-person results in the experimental result section.

Our contributions can be summarized as follows.

e We propose [2L.-MeshNet, a novel image-to-lixel prediction network for 3D hu-
man pose and mesh estimation from a single RGB image. Our system predicts
lixel-based 1D heatmap that preserves the spatial relationship in the input

image and models the uncertainty of the prediction.

e Our efficient lixel-based 1D heatmap allows our system to predict heatmaps

with sufficient resolution, which is essential for dense mesh vertex localization.

e We show that our I2L-MeshNet outperforms previous state-of-the-art methods

on various 3D human pose and mesh datasets.

3.2 Related works

3D human body and hand pose and mesh estimation. Most of the current 3D

human pose and mesh estimation methods are based on the model-based approach,
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3. 3D Multi-Person Pose and Shape Estimation

which predicts parameters of pre-defined human body and hand mesh models (i.e.,
SMPL and MANO, respectively). The model-based methods can be trained only
from groundtruth human joint coordinates without mesh vertex coordinates because
the model parameters are embedded in low dimensional space. Early model-based
methods [75] iteratively fit the SMPL parameters to estimated 2D human joint lo-
cations. More recent model-based methods regress the body model parameters from
an input image using CNN. Kanazawa et al. [23] proposed an end-to-end trainable
human mesh recovery (HMR) system that uses the adversarial loss to make their
output human shape is anatomically plausible. Pavlakos et al. [24] used 2D joint
heatmaps and silhouette as cues for predicting accurate SMPL parameters. Om-
ran et al. [76] proposed a similar system, which exploits human part segmentation
as a cue for regressing SMPL parameters. Xu et al. [77] used differentiable rendering
to supervise human mesh in the 2D image space. Pavlakos et al. [78] proposed a sys-
tem that uses multi-view color consistency to supervise a network using multi-view
geometry. Baek et al. [79] trained their network to estimate the MANO parame-
ters using a differentiable renderer. Boukhayma et al. [15] trained their network
that takes a single RGB image and estimates MANQO parameters by minimizing
the distance of the estimated hand joint locations and groundtruth. Kolotouros et
al. [25] introduced a self-improving system consists of SMPL parameter regressor

and iterative fitting framework [75].

On the other hand, the model-free approach estimates the mesh vertex coor-
dinates directly instead of regressing the model parameters. Due to the recent ad-
vancement of the iterative human body and hand model fitting frameworks [4,6,
75], pseudo-groundtruth mesh vertex annotation on large-scale datasets [1,[2}4}80]

became available. Those datasets with mesh vertex annotation motivated several
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model-free methods that require mesh supervision. Kolotouros et al. [5] designed
a graph convolutional human mesh regression system. Their graph convolutional
network takes a template human mesh in a rest pose as input and outputs mesh
vertex coordinates using image feature from ResNet [53]. Ge et al. [73] proposed
a graph convolution-based network which directly estimates vertices of hand mesh.
Recently, Choi et al. [22] proposed a graph convolutional network that recovers 3D
human pose and mesh from a 2D human pose.

Unlike all the above model-based and model-free 3D human pose and mesh
estimation methods, the proposed I2L.-MeshNet outputs 3D human pose and mesh
by preserving the spatial relationship between pixels in the input image and modeling
uncertainty of the prediction. Those two main advantageous are brought by designing
the target of our network to the lixel-based 1D heatmap. This can make training
much stable, and the system achieves much lower test error.

Heatmap-based 3D human pose estimation. Most of the recent state-of-the-
art 2D and 3D human pose estimation methods use heatmap as a prediction tar-
get, which preserves the spatial relationship in the input image and models the
uncertainty of the prediction. Tompson et al. [74] proposed to estimate the Gaus-
sian heatmap instead of directly regressing coordinates of human body joints. Their
heatmap representation helps their model to perform 2D human pose estimation
more accurate and motivated many heatmap-based 2D human pose methods [18,38,
81]. Pavlakos et al. [29] and Moon et al. [35] firstly proposed to use 3D heatmaps
as a prediction target for 3D human body pose and 3D hand pose estimation, re-
spectively. Especially, Moon et al. [35] demonstrated that under the same setting,
changing prediction target from coordinates to heatmap significantly improves the

3D hand pose accuracy while requires much less amount of the learnable parameters.
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input image PoseNet 3D pose( )
() |

MeshNet 3Dmesh( )

Figure 3.2: Overall pipeline of the proposed 12L-MeshNet.

Recently, Moon et al. achieved significantly better 3D multi-person pose estima-

tion accuracy using 3D heatmap compared with previous coordinate regression-based

methods .

3.3 I2L-MeshNet

Figure [3.2] shows the overall pipeline of the proposed I2L-MeshNet. 12L-MeshNet
consists of PoseNet and MeshNet, which will be described in the following subsec-

tions.

3.3.1 PoselNet

The PoseNet estimates three lixel-based 1D heatmaps of all human joints PH =

{ptz pty Pl from the input image I. P™* and P"¥ are defined in 2- and
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V

-axis 1D heatmap

‘ 'i' - 3
1D &
e
upsampled feature (

-xis 10 heatmap mERIm

-axis 1D heatmap (

image feature

S
~

ENENINY N
) dewjeay @} sixe-

(

=3 convoluton =g FC = 3» average -+ > reshape

(a) network architecture to estimate lixel-based 1D heatmaps  (b) visualized feature map and 1D heatmaps

Figure 3.3: Network architecture to predict lixel-based 1D heatmaps and visualized examples of
feature maps and the 1D heatmaps.

y-axis of the image space, while P™# is defined in root joint (i.e., pelvis or wrist)-
relative depth space. For this, PoseNet extracts image feature Fp € R % from the
input image by ResNet . Then, three upsampling modules increases the spatial
size of Fp by 8 times, while changing channel dimension from ¢ = 2048 to ¢’ = 256.
Each upsampling module consists of deconvolutional layer, 2D batch normalization
layer [57], and ReLU function. The upsampled features are used to compute lixel-
based 1D human pose heatmaps, as illustrated in Figure (a). We obtain z- and

y-axis 1D human pose heatmaps as follows:

P = fiP0% (avg!(fP(Fp))) and PMY = fiP%(ave™ (P (Fp)),  (3.1)

42

i _-1”131 T



3. 3D Multi-Person Pose and Shape Estimation

where fp denotes the three upsampling modules of the PoseNet. avg’ and f;D’i de-
note i-axis marginalization by averaging and a 1-by-1 1D convolution that changes
channel dimension from ¢’ to J for i-axis 1D human pose heatmap estimation, re-

spectively.

We obtain z-axis 1D human pose heatmaps as follows:

P2 = iP5 (4 (fe(avg™ (Fp)))), (3.2)

where fp and ¢: RP? — RY*P denote a building block and reshape function,
respectively. The building block consists of a fully-connected layer, 1D batch nor-
malization layer, and ReLLU function, and it changes the activation size from ¢ to
' D. D denotes depth discretization size and is equal to 8h = 8w. We convert the dis-
cretized heatmaps of PH to continuous coordinates P¢ = [p&®, p©¥, p©?] ¢ R/*3

by soft-argmax [28].

3.3.2 MeshNet

The MeshNet has a similar network architecture with that of the PoseNet. Instead
of taking the input image I, MeshNet takes a pre-computed image feature from the
PoseNet Fp and 3D Gaussian heatmap PHe ¢ R/*Dx8hx8w oy ig the input of
the first residual block of the PoseNet whose spatial dimension is 8h x 8w. PHe is

obtained from P€ as follows:

(x =Py )2+ (y—py ") + (2 - pf’z)2> 3

202

PHG(.j7 279733) = exp <_

43



3. 3D Multi-Person Pose and Shape Estimation

C,z

where po%, p¥Y and p&* are jth joint 2-, y-, and z-axis coordinates from PC,

respectively. o is set to 2.5.

From PH¢ and Fp, we obtain image feature Fy as follows:
Fu = ResNety (fu(v(PHS) @ Fp)), (3.4)

where : R/*DPx8hx8w _y RIDx8hx8w anq g denote reshape function and concate-
nation along the channel dimension, respectively. fur is a convolutional block that
consists of a 3-by-3 convolutional layer, 2D batch normalization layer, and ReLU
function. It changes the channel dimension of the input to the input channel dimen-
sion of the first residual block of the ResNet. ResNety; is the ResNet starting from

the first residual block.

From the Fy, MeshNet outputs three lixel-based 1D heatmaps of all mesh
vertices M = {MT* MTY M"*} in an exactly the same manner with that of
PoseNet, as illustrated in Figure (a). Likewise heatmaps of PoseNet, M"® and
MY are defined in 2- and y-axis of the image space, while M is defined in root
joint-relative depth space. We obtain z- and y-axis 1D human mesh heatmaps as

follows:
MIT = D7 (avgd (£ (Fy))) and  MIY = fPV(avg? (AP(Fy)),  (3.5)

where fy{ denotes the three upsampling modules of the MeshNet. fﬁ/[D’i denote
a 1-by-1 1D convolution that changes channel dimension from ¢ to V for i-axis
1D human mesh heatmap estimation, respectively. Figure (b) shows visualized

W (Fm), M and M1y,
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We obtain z-axis 1D human mesh heatmaps as follows:

M= = FP* (W (far(ave™ (Fu)))), (3.6)

where fyr and ¢: REP? — RY*P denote a building block and reshape function,
respectively. The building block consists of a fully-connected layer, 1D batch nor-
malization layer, and ReLLU function, and it changes the activation size from ¢ to
¢ D. Likewise we did in the PoseNet, we convert the discretized heatmaps of M to

continuous coordinates M® = [m®* m®¥ m®*] € RV*3 by soft-argmax [28].

3.3.3 Final 3D human pose and mesh

The final 3D human mesh M and pose P are obtained as follows:
M=I(T'M®+R) and P=JM, (3.7)

where II, T~!, and R € R'*3 denote camera back-projection, inverse affine trans-
formation (i.e., 2D crop and resize), and z-axis offset whose element is a depth of
the root joint, respectively. R is obtained from RootNet [34]. We use normalized
camera intrinsic parameters if not available following Moon et al. [34]. J € R/*V is

a joint regression matrix defined in SMPL or MANO model.

3.3.4 Loss functions

PoseNet pose loss. To train the PoseNet, we use L1 loss function defined as
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follows:

LPoseNet _ ”PC _ PC*Hl? (38)

pose

where * indicates groundtruth. z-axis loss becomes zero if z-axis groundtruth is

unavailable.

MeshNet pose loss. To train the MeshNet to predict mesh vertex aligned with

body joint locations, we use L1 loss function defined as follows:

LMeshNet — HJMC _ PC*Hla (39)

pose

where * indicates groundtruth. z-axis loss becomes zero if z-axis groundtruth is

unavailable.

Mesh vertex loss. To train the MeshNet to output mesh vertex heatmaps, we

use L1 loss function defined as follows:
Lvertex — HMC - MC*Hl, (310)

where * indicates groundtruth. z-axis loss becomes zero if z-axis groundtruth is

unavailable.

Mesh normal vector loss. Following Wang et al. [82], we supervise normal
vector of predicted mesh to get visually pleasing mesh result. The L1 loss function

for normal vector supervision is defined as follows:

m¢ — m¢

Lnormalzz Z ’<Hmlc—mé||27n;>

f{idycsf J

: (3.11)

where f and n; indicate a mesh face and unit normal vector of face f, respectively.
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miC and m? denote ith and jth vertex coordinates of MC, respectively. n}i is com-
puted from M®*, where * denotes groundtruth. The loss becomes zero if groundtruth
3D mesh is unavailable.

Mesh edge length loss. Following Wang et al. [82], we supervise edge length
of predicted mesh to get visually pleasing mesh result. The L1 loss function for edge

length supervision is defined as follows:

Ledge =y, > = |Imf —mf|ls — [[mf* — m§™|s], (3.12)
F o {igics

where f and * indicate mesh face and groundtruth, respectively. miC and mjC de-
note ith and jth vertex coordinates of MC, respectively. The loss becomes zero if
groundtruth 3D mesh is unavailable.

We train our 12L-MeshNet in an end-to-end manner using all the five loss func-

tions as follows:

L= LPoseNet + LMeshNet + Lvertex + >\Lnorma1 + Ledgev (313)

pose pose

where A = 0.1 is a weight of Lyomal. For the stable training, we do not back-

propagate gradients before PHc

3.4 Implementation details

PyTorch [58] is used for implementation. The backbone part is initialized with the
publicly released ResNet-50 [53] pre-trained on the ImageNet dataset [59], and the

weights of the remaining part are initialized by Gaussian distribution with ¢ = 0.001.
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The weights are updated by the Adam optimizer [60] with a mini-batch size of 48.
To crop the human region from the input image, we use groundtruth bounding box
in both of training and testing stages following previous works [5,23}25]. When the
bounding box is not available in the testing stage, we trained and tested Mask R-
CNN [36] to get the bounding box. The cropped human image is resized to 256 x 256,
thus D = 64 and h = w = 8. Data augmentations, including scaling (+25%),
rotation (£60°), random horizontal flip, and color jittering (£20%), are performed
in training. The initial learning rate is set to 10~% and reduced by a factor of 10 at
the 10" epoch. We train our model for 12 epochs with three NVIDIA RTX 2080Ti
GPUs, which takes 36 hours for training. Our I2L-MeshNet runs at a speed of 25

frames per second (fps).

3.5 Experiment

3.5.1 Datasets and evaluation metrics

Human3.6M. Human3.6M [2] contains 3.6M video frames with 3D joint coordinate
annotations. Because of the license problem, previously used groundtruth SMPL
parameters of the Human3.6M are inaccessible. Alternatively, we used SMPLify-
X [6] to obtain groundtruth SMPL parameters. MPJPE and PA MPJPE are used
for the evaluation [34], which is Euclidean distance (mm) between predicted and
groundtruth 3D joint coordinates after root joint alignment and further rigid align-
ment, respectively.

3DPW. 3DPW [80] contains 60 video sequences captured mostly in outdoor con-

ditions. We use this dataset only for evaluation on its defined test set following
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targets spatial uncertainty MPJPE no. param. GPU mem.
SMPL param. X X 100.3 91M 4.3 GB
xyz coord. X X 114.3 117TM 5.4 GB
xyz lixel hm. wo. X v 92.6 82M 45 GB
spatial
xyz lixel hm. (ours) | v v 86.2 73M 4.6 GB

Table 3.1: The MPJPE, the number of parameters, and the GPU memory usage comparison between
various target representations on Human3.6M.

Kolotouros et al. [25]. The same evaluation metrics with Human3.6M (i.e., MPJPE

and PA MPJPE) are used, following Kolotouros et al. [25].

FreiHAND. FreiHAND [4] contains real-captured 130K training images and 4K
test images with MANO pose and shape parameters. The evaluation is performed
at an online server. Following Zimmermann et al. [4], we report PA MPVPE, PA

MPJPE, and F-scores.

MSCOCO. MSCOCO |[1] contains large-scale in-the-wild images with 2D bounding
box and human joint coordinates annotations. We fit SMPL using SMPLify-X [6]
on the groundtruth 2D poses and used the fitted meshes as groundtruth 3D meshes.

This dataset is used only for the training.

MuCo-3DHP. MuCo-3DHP [3] is generated by compositing the existing MPI-
INF-3DHP 3D [14]. 200K frames are composited, and half of them have augmented
backgrounds. We used images of the MSCOCO dataset that do not include humans
to augment the backgrounds following Moon et al. [34]. This dataset is used only

for the training.
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3.5.2 Ablation study

All models for the ablation study are trained and tested on Human3.6M. As Hu-
mand.6M is the most widely used large-scale benchmark, we believe this dataset is

suitable for the ablation study.

Benefit of the heatmap-based mesh estimation. To demonstrate the bene-
fit of the heatmap-based mesh estimation, we compare models with various target
representations of the human mesh, such as SMPL parameters, vertex coordinates,
and heatmap. Table shows MPJPE, the number of parameters, and the GPU
memory usage comparison between models with different targets. The table shows
that our heatmap-based mesh estimation network achieves the lowest errors while

using the smallest number of the parameters and consuming small GPU memory.

The superiority of our heatmap-based mesh estimation network is in two folds.
First, it can model the uncertainty of the prediction. To validate this, we trained
two models that estimate the camera-centered mesh vertex coordinates directly and
estimates lixel-based 1D heatmap of the coordinates using two fully-connected layers.
Note that the targets of the two models are the same, but their representations are
different. As the first network regresses the coordinates directly, it cannot model
the uncertainty on the prediction, while the latter one can because of the heatmap
target representation. However, both do not preserve the spatial relationship in the
input image because of the global average pooling and the fully-connected layers. As
the second and third rows of the table show, modeling uncertainty on the prediction
significantly decreases the errors while using a smaller number of parameters. In
addition, it achieves lower errors than the SMPL parameter regression model, which

is the most widely used target representation but cannot model the uncertainty.
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targets mem. complx. resolution MPJPE GPU mem.
8x8x8Y 102.8 4.3 GB
1 hm. oWVD?
s VOREL VD) gxi6x16 - OOM

8x8,8  97.9 3.5 GB
xy pixel hm. + z lixel hm.| O(VD?)  32x32,32 89.4 5.7 GB

64x64, 64 - 0OOM
8, 8,8 100.2 3.4 GB
xyz lixel hm. (ours) O(VD) 32,32,32  94.8 4.0 GB

64, 64, 64 86.2 4.6 GB

Table 3.2: The MPJPE and the GPU memory usage comparison between various heatmap repre-
sentations on Human3.6M.

Second, it preserves the spatial relationship between pixels in the input image.
The final model estimates the z- and y-axis heatmaps of each mesh vertex in a
fully-convolutional way, thus preserves the spatial relationship. It achieves the best
performance with the smallest number of parameters while consuming similar GPU
memory usage compared with the SMPL parameter regression method that requires

the least amount of GPU memory.

In Table all models have the same network architecture with our I2L-
MeshNet except for the final output prediction part. We removed PoseNet from
all models, and the remaining MeshNet directly estimates targets from the input
image I. Except for the last row (ours), all settings output targets using two fully-
connected layers. We followed the training details of [23])25] for the SMPL parameter

estimation.

Lixel-based vs. pixel-based vs. voxel-based heatmap. To demonstrate the
effectiveness of the lixel-based 1D heatmap over other heatmap representations, we
train three models that predict lixel-based, pixel-based, and voxel-based heatmap,

respectively. We used the same network architecture (i.e., MeshNet of the I2L-
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MeshNet) for all settings except for the final prediction part. Their networks directly
predict the heatmaps from the input image. x-, y-, and z-axis of each heatmap repre-
sents the same coordinates. Table 3.2]shows memory complexity, heatmap resolution,
MPJPE, and GPU memory usage comparison between models that predict differ-
ent target representations of human mesh. The table shows that our lixel-based one
achieves the lowest error while consuming small GPU memory usage.

Compared with the pixel-based and voxel-based heatmap, our lixel-based one
consumes much less amount of GPU memory under the same resolution. The 8 x 8 x 8
voxel-based heatmap requires similar GPU memory usage with that of 64,64,64
lixel-based one, and we found that enlarging the voxel-based heatmap size from it
is not allowed in the current GPU memory limit (i.e., 12 GB). The pixel-based
heatmap is more efficient than the voxel-based one; however still much inefficient
than our lixel-based one, which makes enlarging from 32 x 32,32 impossible. This
inefficient memory usage limits the heatmap resolution; however, we found that
the heatmap resolution is critical for dense mesh vertex localization. On the other
hand, the memory complexity of our lixel-based heatmap is a linear function with
respect to D; thus, we can predict a high-resolution heatmap for each mesh vertex.
The memory efficiency will be more important when a high-resolution human mesh
model is used.

Under the same resolution, the combination of pixel-based heatmap and lixel-
based heatmap achieves the best performance. We think that estimating the voxel-
based heatmap involves too many parameters at a single output layer, which makes
it produce high errors. In addition, lixel-based heatmap inherently involves spatial
ambiguity that arises from marginalizing the 2D feature map to 1D, which can be a

possible reason for worse performance than the combined one.
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settings MPJPE PA MPJPE  GPU mem.
avg on Fyp 93.5 64.1 4.4 GB
avg on %(FM) (ours) 86.2 59.8 4.6 GB

Table 3.3: The MPJPE, PA MPJPE, and GPU memory usage comparison between various marginal-
ization settings on Human3.6M dataset.

Where to marginalize 2D to 1D. We report how the MPJPE, PA MPJPE, and
GPU memory usage change when the marginalization takes place on the ResNet
output (i.e., Fp or Fp), which is the input of the first upsampling module, instead
of the output of the last upsampling module (i.e., fp(Fp) or %(FM)) in Table
For convenience, we removed PoseNet from our 12L-MeshNet and changed MeshNet
to take the input image. The table shows that the early marginalization increases
errors while requiring less amount of GPU memory. This is because the marginalized
two 1D feature maps can be generated from multiple 2D feature map, which results
in spatial ambiguity. To reduce the effect of this spatial ambiguity, we designed our
I2L-MeshNet to extract a sufficient amount of 2D information and then apply the
marginalization at the last part of the network instead of applying it in the early

stage.

When the marginalization is applied on the ResNet output Fy, all 2D layers (i.e.,
deconvolutional layers and batch normalization layers) in the upsampling modules
are converted to the 1D layers. All models are trained on Human3.6M dataset. The

z-axis heatmap prediction part is not changed.

How to marginalize 2D to 1D. We report how the MPJPE and PA MPJPE
change when different marginalization methods are used in Table For conve-
nience, we removed PoseNet from our 12L.-MeshNet and changed MeshNet to take

the input image. The table shows that our average pooling achieves the lowest errors.
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settings MPJPE PA MPJPE
max pooling 93.5 64.1
weighted sum 89.4 61.4
avg pooling (ours) 86.2 59.8

Table 3.4: The MPJPE and PA MPJPE comparison between various marginalization settings on
Human3.6M dataset.

settings resolution uncertainty in z-axis MPJPE GPU mem.
2.5D heatmap [83] 8§ x 8, 8x%x38 X 107.4 3.6GB
2.5D heatmap [83] 32 x 32,32 x 32 X 100.4 8.4GB
lixel-based 1D heatmap 8, 8,8 v 100.2 3.4GB
lixel-based 1D heatmap 32, 32, 32 v 94.8 4.0GB
lixel-based 1D heatmap 64, 64, 64 v 86.2 4.6GB

Table 3.5: The MPJPE and GPU memory usage comparison between various marginalization set-
tings on Human3.6M dataset.

Compared with the max-pooling that provides the gradients to one-pixel position per
one x or y position, our average pooling provides the gradients to all pixel positions,
which is much richer ones. We implemented the weighted sum by constructing a con-
volutional layer whose kernel size is (8h,1) and (1,8w) for x- and y-axis lixel-based
1D heatmap prediction, respectively, without padding. The weighted sum provides
a lower error than that of the max pooling, however still worse than our average
pooling. We believe the large size of a kernel of the convolutional layer (i.e., (8h,1)
and (1,8w)) is hard to be optimized, which results in higher error than ours. For
all settings, models are trained on Human3.6M dataset, and the z-axis heatmap

prediction part is not changed.

Comparison with previous 2.5D heatmap regression We compare the MPJPE
and GPU memory usage between a model that predicts our lixel-based 1D heatmap
and a model that predicts the 2.5D heatmap [83] in Table[3.5] The 2.5D heatmap [83]

consists of xy heatmap and z heatmap, where xy one is the pixel-based 2D heatmap,
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settings 3D pose MPJPE PA MPJPE

MeshNet X 86.2 59.8
PoseNet+MeshNet (ours) v/ 81.8 58.0

MeshNet GT 25.5 17.1

Table 3.6: The MPJPE and PA MPJPE comparison between various network cascading strategies
on Human3.6M.

and z one has the same spatial size as that of zy heatmap and contains root joint-
relative depth on the activated zy position for all mesh vertices. They predict the
depth values on z heatmap, not the likelihood, thus cannot model uncertainty of
the z-axis prediction. As the table shows, our lixel-based one achieves significantly
lower error under the same resolution while requiring a much smaller amount of
GPU memory. We think that this is because the 2.5D heatmap of Igbal et al. [83]
cannot model uncertainty of the prediction in z-axis, while ours can. For all settings,
models are trained on Human3.6M dataset, and we removed PoseNet and changed
MeshNet to take an input image and predict the heatmap.

Benefit of the cascaded PoseNet and MeshNet. To demonstrate the benefit of
the cascaded PoseNet and MeshNet, we trained and tested three networks using var-
ious network cascading strategy. First, we removed PoseNet from the I2L-MeshNet.
The remaining MeshNet directly predicts lixel-based 1D heatmap of each mesh ver-
tex from the input image. Second, we trained I2L-MeshNet, which has cascaded
PoseNet and MeshNet architecture. Third, to check the upper bound accuracy with
respect to the output of the PoseNet, we fed the groundtruth 3D human pose in-
stead of the output of the PoseNet to the MeshNet in both the training and testing
stage. Table shows utilizing the output of the PoseNet (the second row) achieves
better accuracy compared with using only MeshNet (the first row) to estimate the

human mesh. Interestingly, passing the groundtruth 3D human pose to the MeshNet
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without with

input image

without with

Figure 3.4: Estimated meshes from models trained with different combinations of loss functions.

methods Human3.6M 3DPW
MPJPE PA MPJPE | MPJPE PA MPJPE
HMR 153.2 85.5 300.4 137.2
GraphCMR 78.3 59.5 126.5 80.1
SPIN 72.9 51.9 113.1 71.7
I2L-MeshNet (Ours)| 55.7 41.7 95.4 60.8

Table 3.7: The MPJPE and PA MPJPE comparison on Human3.6M and 3DPW. All methods are

trained on Human3.6M and MSCOCO.

(the last row) significantly improves the performance compared with all the other

settings. This indicates that improving the 3D human pose estimation network can

be one important way to improve 3D human mesh estimation accuracy.

Effect of each loss function For visually pleasant mesh estimation, we use normal

vector 10ss Lyormal and edge length loss Leqge. We show the effectiveness of the two

loss functions in Figure As the figure shows, the two loss functions improve the

visual quality of output meshes. We checked that Lyormal and Leqge marginally affect

the MPJPE and PA MPJPE. For all settings, all models are trained on Human3.6M

dataset and MSCOCO dataset.
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methods MPJPE PA MPJPE
SMPLify [75] - 82.3
Lassner [84] - 93.9
HMR [23] 88.0 56.8
NBF (76] : 59.9
Pavlakos [24] - 75.9
Kanazawa [85] - 56.9
GraphCMR [5] - 50.1
Arnab [86] 77.8 54.3
SPIN [25] ; 41.1
I2L-MeshNet (Ours)| 55.7 41.1

Table 3.8: The MPJPE and PA MPJPE comparison on Human3.6M. Each method is trained on
different datasets.

methods MPJPE PA MPJPE
HMR [23] - 81.3
Kanazawa [85] - 72.6
GraphCMR [5] - 70.2
Arnab [86] - 72.2
SPIN [25] . 59.2
I2L-MeshNet (Ours) 93.2 57.7
I2L-MeshNet (Ours) + SMPL regress | 100.0 60.0

Table 3.9: The MPJPE and PA MPJPE comparison on 3DPW. Each method is trained on different
datasets.

3.5.3 Comparison with state-of-the-art methods

Human3.6M and 3DPW. We compare the MPJPE and PA MPJPE of our 12L-
MeshNet with previous state-of-the-art 3D human body pose and mesh estimation
methods on Human3.6M and 3DPW test set. As each previous work trained their
network on different training sets, we report the 3D errors in two ways.

First, we train all methods on Human3.6M and MSCOCO and report the er-
rors in Table [3.7] The previous state-of-the-art methods [5},[23,[25] are trained from
their officially released codes. The table shows that our 12L-MeshNet significantly

outperforms previous methods by a large margin on both datasets.
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Second, we report the 3D errors of previous methods from their papers and ours
in Table [3.8 and Table [3.9] Each network of the previous method is trained on the
different combinations of datasets, which include Human3.6M, MSCOCO, MPII [63],
LSP [87], LSP-Extended [88], UP [84], and MPI-INF-3DHP [14]. We used MuCo-
3DHP for the additional training dataset for the evaluation on the 3DPW dataset.
We also report the 3D errors from an additional SMPL parameter regression module
following Kolotouros et al. [5]. The tables show that the performance gap between
ours and the previous state-of-the-art method [25] is significantly reduced.

The reason for the reduced performance gap is that previous model-based state-
of-the-art methods [23]25] can get benefit from many in-the-wild 2D human pose
datasets [1,/87,88] by a 2D pose-based weak supervision. As the human body or
hand model assumes a prior distribution between the human model parameters
(i.e., 3D joint rotations and identity vector) and 3D joint/mesh coordinates, the 2D
pose-based weak supervision can provide gradients in depth axis, calculated from
the prior distribution. Although the weak supervision still suffers from the depth
ambiguity, utilizing in-the-wild images can be highly beneficial because the images
have diverse appearances compared with those of the lab-recorded 3D datasets [2,3,
14]. On the other hand, model-free approaches, including the proposed 12L-MeshNet,
do not assume any prior distribution, therefore hard to get benefit from the weak

supervision. Based on the two comparisons, we can draw two important conclusions.

e [2L.-MeshNet achieves much higher accuracy than the model-based methods
when trained on the same datasets that provide groundtruth 3D human poses

and meshes.

e The model-based approaches can achieve comparable or higher accuracy by
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methods PA MPVPE PA MPJPE F@5 mm FQ15 mm GT scale
Hasson et al. [16] 13.2 - 0.436 0.908 v
Boukhayma et al. [15] 13.0 - 0.435 0.898 v
FreiHAND [4] 10.7 - 0.529 0.935 v
I2L-MeshNet (Ours) 7.6 7.4 0.681  0.973 X

Table 3.10: The PA MPVPE, PA MPJPE, and F-scores comparison between state-of-the-art
methods and the proposed I2L-MeshNet on FreiHAND. The checkmark denotes a method use
groundtruth information during inference time.

utilizing additional in-the-wild 2D pose data without requiring the 3D super-

visions.

We think that a larger number of accurately aligned in-the-wild image-3D mesh
data can significantly boost the accuracy of I2L-MeshNet. The iterative fitting [6,75],
neural network [89], or their combination [25] can be used to obtain more data. This

can be an important future research direction, and we leave this as future work.

FreiHAND. We compare MPVPE and F-scores of our 12L.-MeshNet with previous
state-of-the-art 3D human hand pose and mesh estimation methods [4}/15}/16]. We
trained Mask R-CNN [36] on FreiHAND train images to get the hand bounding
box of test images. Table [3.10] shows that the proposed I2L-MeshNet significantly
outperforms all previous works without groundtruth scale information during the
inference time. We additionally report MPJPE in the table.

MSCOCO. We provide qualitative results comparison between ours and previous
state-of-the-art model-free method (i.e., GraphCMR [5]) in Figure As the figure
shows, our I12L-MeshNet provides much more visually pleasant mesh results than
GraphCMR. We think this is because the graph convolutional network (GraphCNN)
often tends to smooth the meshes by averaging the vertex feature with that of

neighboring vertices.
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Figure 3.5: Estimated meshes comparisons between our 12L-MeshNet and GraphCMR .

Figure [3.6] shows 3D multi-person pose and mesh estimation result of an in-the-
wild image of MSCOCQO. The framework of Moon et al. is used to extend the

single person 3D pose and shape of 12L.-MeshNet to the multi-person case.

3.6 Conclusion

We propose an 12L-MeshNet, image-to-lixel prediction network for accurate 3D hu-
man pose and mesh estimation from a single RGB image. We convert the output

of the network to the lixel-based 1D heatmap, which preserves the spatial relation-
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Figure 3.6: 3D multi-person pose and mesh estimation result on an in-the-wild image.

ship in the input image and models uncertainty of the prediction. Our lixel-based
1D heatmap requires much less GPU memory usage under the same heatmap res-
olution while producing better accuracy compared with a widely used voxel-based
3D heatmap. Our [2L-MeshNet outperforms previous 3D human pose and mesh
estimation methods on various 3D human pose and mesh datasets. We hope our
method can give useful insight to the following model-free 3D human pose and mesh

estimation approaches.
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Chapter 4

Expressive 3D Multi-Person

Pose and Shape Estimation

4.1 Introduction

Expressive 3D human pose and mesh estimation aims to localize joints and mesh
vertices of all human parts, including body, hands, and face, simultaneously in the
3D space. Unlike the 3D human pose and mesh estimation methods of previous
chapters are applicable to only one of the body, hands, and face at a time (i.e., part-
specific methods), this chapter aims to recover the 3D pose and mesh of the body,
hands, and face at the same time (i.e., expressive method). By combining 3D pose
and mesh of all human parts, we can understand not only human articulation and
shape but also human intention and feeling, which can be useful in motion capture,
virtual /augmented reality, and human action recognition. This is a very challenging
task and has been addressed by only several recent approaches.

3D rotations of human joints (i.e., 3D rotational pose) represent relative 3D
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rotations to a parent joint, defined in a human kinematic chain. Consideration of
the 3D rotational pose in addition to the 3D positions of human joints (i.e., 3D
positional pose) make human joints 6D object, thus enables skinning functions (e.g.,
linear blend skinning). As many computer vision and graphics tasks, such as motion
capture and animation, are based on skinning functions, they require a 3D rotational
pose as an input. Therefore, many previous 3D human pose and mesh estimation
methods have been proposed to predict the 3D rotational pose accurately.

Previous 3D human pose and mesh estimation methods [4,5}/15}/16,23-25] mostly
rely on only global image feature to predict 3D rotational pose. They perform global
average pooling (GAP) on the extracted image feature from ResNet [53] and pass the
pooled feature to several fully connected layers for the 3D rotational pose prediction.
The estimated 3D rotations are passed to human model layers (e.g., SMPL [71] for
body, MANO [72]| for hands, FLAME [90] for face, or SMPL-X [6] for all parts)
for the final 3D pose and mesh. Although the global image feature can provide the
overall articulation of human, it lacks joint-specific local information, which can
be obtained from features on the positional pose. However, GAP in their networks
breaks the spatial domain; thus, it limits the chance of utilizing the local features
on the positional pose.

To effectively utilize both local and global features, we present Pose2Pose, a 3D
positional pose-guided 3D rotational pose prediction network. Our Pose2Pose con-
sists of PositionNet and RotationNet. PositionNet predicts the 3D positional pose
from an input image in a fully convolutional way. Then, a positional pose-guided
pooling extracts joint-specific local and global features on the predicted positional
pose of the ResNet output image feature. From the extracted joint-specific features,

the RotationNet constructs a human skeleton graph and regresses the 3D rota-
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Figure 4.1: Qualitative results of the proposed Pose2Pose on in-the-wild images. Our framework
can produce accurate expressive 3D human pose and mesh, which includes body, hands, and face.

tional pose using a joint-specific graph convolution. Unlike the vanilla graph con-
volution that shares learnable weights for all graph vertices, our joint-specific
graph convolution uses separated learnable weights for each joint, which share a sim-
ilar spirit of Liu et al. . This joint-specific graph convolution effectively processes
the joint-specific local and global features by learning joint-specific characteristics

and different relationships between different joints.

We use our Pose2Pose for expressive 3D human pose and mesh estimation. The
proposed Pose2Pose significantly outperforms previous 3D human pose and mesh
estimation methods by a large margin. Figure shows qualitative results of the
proposed Pose2Pose. In addition, it can be easily extended to the multi-person 3D
human pose and mesh estimation using the framework of Moon et al. , introduced

in Chapter [2, We show the multi-person results in the experimental result section.

Our contributions can be summarized as follows.
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e We present Pose2Pose, a 3D positional pose-guided 3D rotational pose pre-
diction network for expressive 3D human pose and mesh estimation. Our
Pose2Pose utilizes joint-specific local and global features, extracted by a posi-

tional pose-guided pooling.

e To effectively process joint-specific local and global features, we propose to use

a joint-specific graph convolution.

e We show that our Pose2Pose outperforms all previous part-specific and ex-

pressive 3D human pose and mesh estimation methods.

4.2 Related works

Expressive 3D human pose and mesh estimation. Due to its difficulty and
absence of the unified expressive body model, there have been very few attempts to
simultaneously recover the 3D human pose and mesh of all human parts, including
body, hands, and face. Most previous attempts are an optimization-based approach,
which fits a 3D human model to the 2D /3D evidence. Joo et al. [19] fits their human
models (i.e., Frank and Adam) to 3D human joints coordinates and point clouds
in a multi-view studio environment. Xiang et al. [93] extended Joo et al. [19] to
the single RGB case. Pavlakos et al. [6] and Xu et al. [94] fits their human model,
SMPL-X and GHUM, respectively, to 2D human joint coordinates. As the above
optimization-based methods can be slow and prone to noisy evidence, a regression-
based approach is presented recently. Choutas et al. [7] presented ExPose, which
predicts the expressive human pose and mesh using body-driven attention.

Our Pose2Pose is also the regression-based approach; however, it has a clear

difference compared with the previous work, ExPose [7]. ExPose consists of body,
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hand, and face branches, and each branch relies on only global image features to
regress the parameters of the corresponding human model from the input images.
On the other hand, our Pose2Pose exploits both local and global features by the
positional pose-guided pooling and joint-specific graph convolution. We show that
utilizing both local and global features brings significant performance gain.

Local and global features for 3D human pose and mesh estimation. Uti-
lizing both local and global features has been proven to be crucial for accurate 3D
human pose and mesh estimation. Detection-based 3D human pose and mesh es-
timation methods [21,[28,29,135] have achieved high 3D positional pose accuracy
by utilizing both local and global features. They detect the human joints or mesh
vertices from an input image by predicting heatmaps, which have activations where
human joints or mesh vertices likely exist. As the heatmap is predicted in a fully
convolutional way, the detection-based methods do not require GAP; thus, they can
utilize both local and global features. However, their methods are hard to be used to
predict 3D rotational pose because the input image only contains the position and
intensity of each pixel; thus, the 3D rotational pose cannot be predicted in a fully
convolutional way.

On the other hand, regression-based methods [5,23-25] can predict both 3D
positional and rotational pose by a direct regression. However, previous regression-
based methods suffer from low accuracy compared with detection-based methods
because the previous ones rely only on global features, obtained by GAP. Several
works attempted to utilize both local and global features. Guler and Kokkinos [95]
and Zhang et al. |96] extract joint-specific local and global features; however, they
did not pass the predicted positional pose to the final 3D rotational pose prediction

module. Especially, Zhang et al. [96] predicts 2D positional pose, which cannot
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Figure 4.2: The overall pipeline of Pose2Pose, which consists of PositionNet and RotationNet. The
PositionNet predicts the 3D positional pose. Then, the positional pose-guided pooling extracts the
joint-specific local and global features. The RotationNet takes the joint-specific features with the 3D
positional pose/scores and predicts the 3D rotational pose by the joint-specific graph convolution.
The final 3D human pose and mesh are obtained by forwarding the predicted 3D human model
parameters, including 3D rotational pose to a human model layer (e.g., SMPL-X [@]) For the
simplicity, we only illustrated body part Pose2Pose and head and right ankle operations.

convey depth information to the 3D rotational pose prediction module. On the other
hand, our Pose2Pose utilize both joint-specific local and global features and 3D
positional pose for the 3D rotational pose prediction. Especially, ours is for greatly
challenging expressive 3D human pose and mesh estimation, while they are only for

the body part.

Our Pose2Pose greatly improves the previous regression-based network by uti-
lizing both local and global features for accurate expressive 3D human pose and
mesh estimation. To this end, we combine the regression-based network with the
detection-based network. Our detection-based network, PositionNet, provides the
3D positional pose. Then, we extract the local and global features on the predicted
positional pose of the ResNet output image feature by the positional pose-guided
pooling. Our regression-based network, RotationNet, accurately predicts the 3D ro-
tational pose by the joint-specific graph convolution from the local and global fea-

tures.
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(a) Network architecture of RotationNet (b) Graph i block of

Figure 4.3: (a) The network architecture of the RotationNet. (b) The pipeline of the graph convolu-
tional block, which processes graph features by the joint-specific graph convolution and aggregates
the graph features using the adjacency matrix. FC, BN, and Agg denote a fully connected layer, 1D
batch normalization, and graph feature aggregation using the adjacency matrix, respectively. We
visualize detailed operations of only head and right ankle for the simplicity.

4.3 Pose2Pose

Figure shows the overall pipeline of the proposed Pose2Pose. Pose2Pose consists

of PositionNet and RotationNet, which will be described in the following subsections.

4.3.1 PositionNet

The PositionNet is designed as a fully convolutional network, which predicts 3D posi-
tional pose (i.e., 3D positions of human joints) P = [p, ..., pJP]T e R/"*3 from an
input image I. Jp denotes the number of joints representing the 3D positional pose.
x- and y-axis of P are defined in image space, and z-axis of it is defined in root joint
(i.e., pelvis for the body and wrist for the hand)-relative depth space. For this, Posi-
tionNet extracts image feature F € RE*#*W from the input image by ResNet [53],
where C, H, and W denote the number of channels, height, and width. Then, a 1-
by-1 convolution predicts 3D heatmaps of human joints H € R/PXPXHXW ‘where D
denotes the depth dimension size. To predict the 3D heatmaps from the 2D feature
map F, the 1-by-1 convolution first predicts a tensor of shape RPPXHXW “and we
reshape the tensor to the shape of H following Sun et al. [28]. The 3D positional
pose P is calculated from H by the soft-argmax operation [28] in a differentiable

way.
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4.3.2 RotationNet

The RotationNet is designed as a graph convolutional network (GraphCNN), which
predicts the 3D rotational pose (i.e., 3D rotations of human joints) R € R/rX3,
as illustrated in Figure Jr denotes the number of joints representing the 3D
rotational pose, which is often different from Jp. To this end, we construct a graph
G = (V,A), where V and A are graph vertices and an adjacency matrix, respectively.
The graph vertices represent human joints, where |V| = Jp. The adjacency matrix
A <€ {0,1}/7*/P is constructed based on the human skeleton hierarchy in a pre-

processing stage and fixed during the training and testing stage.

The initial feature of a jth graph vertex F})” € R¢** is a concatenation of a
joint-specific local and global feature F; ¢ RC, the predicted 3D positional pose of
Jth joint p; € R3, and 3D positional pose prediction confidence of jth joint cj € R.
The joint-specific features provide semantic information to the graph, computed
by the positional pose-guided pooling. Moreover, the 3D positional pose provides
geometric evidence, which conveys essential human articulation information. Finally,
the prediction confidence can tell whether the joint-specific image feature and the
3D positional pose of each joint are reliable or not. The initial features of all graph
vertices {F?}jﬁl are processed by the joint-specific graph convolution. We provide
detailed descriptions of the positional pose-guided pooling and joint-specific graph

convolution below.
Positional pose-guided pooling. The positional pose-guided pooling computes
joint-specific local and global features {Fj}}]L using the predicted 3D positional

pose P. Since the coordinates of p;, (z;,y;) are not integers, we obtain the jth joint

feature F; at position p; using bilinear interpolation on the image feature map F.
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The interpolated feature F; is obtained from the exact position of the joint j; thus,
it contains a local feature. However, the interpolated feature is not restricted to the
local feature because the large size of the receptive field of ResNet output makes F;
contain information around the position of joint j, as well. Thus, F; contains both
joint-specific local and global features. The 3D positional pose prediction confidences
{¢; }‘jjil are also obtained by performing the positional pose-guided pooling on the

estimated 3D heatmap H.

Joint-specific graph convolution. Our joint-specific graph convolution uses sepa-
rated learnable weights for each graph vertex. Specifically, we define learnable weight
matrices {W; € [RCout X Cin }3.]21 for all joints of each graph convolution layer, where
Cin and Cyyt denotes input and output channel dimensions, respectively. Then, the
output graph feature of joint j is obtained by F‘]’-llt = OReLU(D ;e 5, ajiopn (WiFn)),
where F%n is the input graph feature of joint i. ogrer,y and ogn denotes ReLU activa-
tion function and 1D batch normalization [57], respectively. J\A/J is defined as N;U{j},
where N denotes neighbors of a vertex j. aj; is is an entry of the normalized ad-
jacency matrix A at (j,4), where A = Df%(A + I)D_%. D is a diagonal matrix of
A + 1. The RotationNet follows the network architecture of Liu et al. [92], which
consists of one graph convolutional block and four graph residual blocks. Each block
consists of joint-specific graph convolution, 1D batch normalization, and ReLLU ac-
tivation function. All the graph features have a channel dimension of 128, except for

that of the input and output features.

At the last part of the RotationNet, we flatten the graph features into a vector

and use a single fully connected layer to predict 3D rotational pose R.
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Figure 4.4: Our entire system for expressive 3D human pose and mesh estimation consists of three
separated networks for the body, hand, and face. In the testing stage, the hand/face images are
obtained using the predicted hand/face boxes from the body part. The integration module integrates
the outputs of the three networks.

4.4 Expressive 3D human pose and mesh estimation

For the expressive 3D human pose and mesh estimation, we construct three separate
networks for the body, hand, and face following Choutas et al. [7], as shown in Fig-
ure This separation enables us to use part-specific datasets such as FreiHAND
and FFHQ . Each network is responsible for each part, and an integration module
integrates the outputs of each network in the testing stage. We provide descriptions

of the networks of each part and the integration module below.

4.4.1 Body part

The body part uses Pose2Pose to predict 3D body global rotation 6 € R3, 3D body
rotational pose 6, € R?'*3 shape parameter 8, € R'°, and camera parameter k; €
R3. The shape parameter 3 represents human body shape identity (e.g., thin/fat
and short/tall), defined as coefficients of principal components in the human body
shape space. GZ and 6, are predicted from RotationNet, and 3, and k;, are predicted

from the global average pooled F using a separated fully connected layer. Instead
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of directly predicting 65, we initially predict a latent code of VPoser [6] 2, and use
VPoser to decode z, to 0. The outputs are passed to the SMPL-X layer to obtain
the final 3D body pose and mesh.

The body part additionally predicts hand and face bounding boxes to make the
hand and face-cropped images during the testing stage. To this end, we concatenate
the image feature F and 2D heatmap H’ and pass it to two convolutional layers.
The 2D heatmap H' is generated by making a Gaussian blob on the (z,y) position
of P. The soft-argmax [28] is applied to the output of the convolutional layers for
the box centers. The widths and heights of the boxes are computed by performing
positional pose-guided pooling on the box centers of F and pass the features of each

box center to separated fully connected layers.

4.4.2 Hand part

We use exactly the same network architecture as that of the body part. The hand
part outputs 3D hand global rotation 67 € R3, 3D hand rotational pose 6}, € R®*3
shape parameter 35, € R'Y, and camera parameter k;, € R3. The shape parameter
By, represents human hand shape identity (e.g., thin/fat and small/large), defined as
coefficients of principal components in the human hand shape space. The outputs

are passed to the MANO layer to obtain the final 3D hand pose and mesh.

4.4.3 Face part

Unlike the joints of the body and hand, most of the face keypoints do not move
according to 3D rotations of joints, making it hard to apply Pose2Pose. Instead,
we design a simple regressor that consists of ResNet and fully connected layers.

We perform GAP on the image feature F and fed it to separated fully connected
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layers, which predict 3D face global rotation 9? € R3, 3D jaw rotation 0y € R3,
shape parameter 3; € R and expression code 1) € R!. The shape parameter
B represents human face shape identity (e.g., thin/fat and small/large), defined as
coefficients of principal components in the human face shape space. The expression
code v represents human face expression, defined in a human expression latent space
of Lin et al. [90]. The predicted parameters are passed to the FLAME layer to obtain

the final 3D face pose and mesh.

4.4.4 Training the networks

The three networks of each part are trained separately. For all parts, we calculate
L1 loss between predicted and groundtruth 3D positional pose following Moon and
Lee |21]. In addition, L1 loss between predicted and groundtruth SMPL-X/MANO/FLAME
parameters, 3D joint coordinates of SMPL-X/MANO/FLAME, and projected 2D
joint coordinates are also calculated following Kolotouros [25]. For the hand and
face box localization, we calculate L1 loss between predicted and groundtruth box

centers, widths, and heights.

4.4.5 Integration of all parts in the testing stage

The final expressive 3D human pose and mesh is obtained by forwarding {67, 0y, By, 0%, , 04,65, , 01, 05,1}
to SMPL-X, where *,,, and *;; denote * is from right and left hand, respectively. The
3D hand pose parameter 6, of MANO and 3D jaw rotation 6y and face expression
code ¥ of FLAME are compatible with those of SMPL-X; thus, we use them for
the final prediction. As the body part often predicts wrong rotations of elbows and
wrists in the roll axis, we selectively use the 3D hand global rotation 67 to replace

rotations of the elbows and wrists.
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Figure 4.5: Visualized rotations of the elbow and wrist in each axis.
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Algorithm 1 Integration of body and hands

Input: 67: Global rotation of body

Input: 6, = {95 32-1:1: Local rotations of body joints
Input: 69,67 : Global rotations of right and left hands
Output: 6;,: Updated local rotations of body joints

1:

2:

* 3

10:
11:

Compute global rotations of body joints {67 }321:1 from 0] and 6, by forward
kinematics
Let re, le, rw, lw denote joint index of right elbow, left elbow, right wrist, and
left wrist, respectively.
for (e,w,h) < ((re,rw,rh), (le,lw,lh)) do
03, < 67
z-axis of 0¢ < z-axis of (67 + 67)/2
Compute new local rotations of elbow and wrist, éle and éf_u, respectively,
from {ng }]21:1 by reversing forward kinematics
if |y-axis of 0! | < 7/4 and |z-axis of 0!, < 7/2 then
Update 0!, < 0.,
Update 6. « 6!
end if
end for

Algorithm [ and Figure [4.5] show the integration procedure and how rotations of

elbow and wrist change the body, respectively. First, we perform forward kinematics

to compute global rotations of all body joints, including wrists and elbows (line 1).

Then, we replace the global rotations of wrists and elbows using the global rotation

of hands (lines 4 and 5). The replacement assumes x-axis rotations (roll of Euler

angle) of the wrist and elbow are almost the same, which follows the anatomical

structure of the human body, as shown in Figure To avoid a sudden change

of the elbow rotation, which can cause artifacts, we use an average rotation of the

elbow and wrist (line 5). From the replaced global rotations of wrists and elbows,

we compute new local rotations of wrists and elbows (line 6). Finally, we check the

new local rotation follows the anatomical structure of the human body (line 7),

where y- and z-axis rotations are shown in Figure If true, we update the local
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rotations of body joints, which become the final output of the integration (lines 8
and 9). We convert the 3D rotation of joints to Euler angles in line 3 - line 11. The
integration is only performed when the distance between the center of the hand box
and predicted wrist position is smaller than the box scale. If the distance is longer
than the threshold, we consider the hand is not detected. In that case, we ignore
all outputs from the hand part Pose2Pose by skipping Algorithm [I] and setting the

hand pose to zero.

4.5 Implementation details

PyTorch [58] is used for implementation. The backbone part is initialized with the
publicly released ResNet50 [53] pre-trained on ImageNet [59]. The weights are up-
dated by Adam optimizer [60] with a mini-batch size of 192. The human body region
is cropped using groundtruth box in both of training and testing stages following
previous works [523,25]. The hand and face images are cropped from the original
image using groundtruth box in the training stage and the predicted box in the test-
ing stage. The cropped image is resized to 256 x256. Data augmentations, including
scaling, rotation, random horizontal flip, and color jittering, are performed in train-
ing. All the 3D rotations except for 6, are initially predicted in the 6D rotational
representation of Zhou et al. [98] and converted to the 3D axis-angle rotations. We
flipped all hands to the right hand during the training and testing stage of the hand
part. The initial learning rate is set to 10~* and reduced by a factor of 10 at the
10*" epoch. We train each body, hand, and face part separately for 12 epochs with

four NVIDIA RTX 2080 Ti GPUs.
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4.6 Experiment

4.6.1 Training sets and evaluation metrics

Training sets. To train the body part, we use Human3.6M [2], MPI-INF-3DHP [14],
MSCOCO [1,99], and MPII [63]. For the hand part, FretHAND [4], InterHand2.6M [9],
and MSCOCO [99] are used for the training. Finally, FFHQ [97] and MSCOCO [99]
are used for the face part training. We obtained SMPL/SMPL-X/MANO/FLAME
fits of the datasets using SMPLify-X [6] and used them as pseudo-groundtruths. We
will release all fits for the reproducible and continual study.

Evaluation metrics. MPJPE and MPVPE are widely used to evaluate 3D hu-
man body/hand pose and mesh estimation, where each calculates the average 3D
joint distance (mm) and 3D mesh vertex distance (mm) between predicted and
groundtruth, respectively, after aligning a root joint translation. PA MPJPE and
PA MPVPE further align a rotation and scale. F-score is additionally used for the
3D hand pose and mesh estimation evaluation. For the face part, the average of the
closest distance between a predicted 3D face mesh vertex and groundtruth 3D face

scan point is used.

4.6.2 Ablation study

For the ablation study, we train the body part on Human3.6M, MSCOCO, and
MPII and report errors on 3DPW, which is a standard experimental protocol of
recent 3D human body pose and mesh estimation works. We use SMPL for the
human model of the body part. For the hand part ablation study, we train the hand
part Pose2Pose on FreiHAND, MSCOCO, and InterHand2.6M and report errors on

the FreiHAND validation set. For the expressive whole-body ablation study, we test
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How to pool? How to process? PA MPJPE
FC 60.7 [23-25]
GAP
GraphCNN 59.5
FC 57.4
GAP+PPP

+ GraphCNN 57.6

PPP FC 57.5
GraphCNN 56.8 (Ours)

Table 4.1: PA MPJPE comparison between models with various pooling methods and processing
modules on 3DPW.

How to pool? | How to process? | PA MPJPE PA MPVPE
GAP FC 6.7 6.5
PPP GraphCNN 5.4 5.2

Table 4.2: PA MPJPE and PA MPVPE comparison between the previous widely used approach
(first row) [4,15H17] and our approach (second row) on FreiHAND.

our entire system on EHF.

Effectiveness of the positional pose-guided pooling. We show the effective-
ness of the positional pose-guided pooling (PPP) in Table For this, we report
PA MPJPE of our Pose2Pose and its variants that use GAP or a combination of
GAP and PPP. As the table shows, adding PPP to GAP or replacing GAP with
PPP decrease the error regardless of the processing modules, fully connected layer
(FC) and GraphCNN. It is noticeable that our PPP achieves significantly lower er-
ror compared with the combination of GAP and FC, the most widely used one in
previous works [23-25]. Interestingly, replacing GAP with PPP achieves a better
result than adding PPP to GAP when the GraphCNN is used. This is because a
global image feature from the GAP contains much unnecessary information, such
as backgrounds, which makes the performance worse. On the other hand, the local
and global features from the PPP contains essential human articulation informa-
tion, and the GraphCNN aggregates the features by considering the human skeleton

hierarchy, which makes the aggregated feature highly useful. Table shows the
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How to pool? Which graph conv.? PA MPJPE
GAP .Shared.graph conv. 61.5 [5]
Joint-specific graph conv. 59.5
PPP Shared graph conv. 64.5
Joint-specific graph conv. 56.8 (Ours)

Table 4.3: PA MPJPE comparison between models with various pooling methods and graph con-
volutions on 3DPW.

Image feature  Joint coordinate + confidence | PA MPJPE
v X 58.0
X v 59.2
v v/ 56.8 (Ours)

Table 4.4: PA MPJPE comparison between models with various input combinations of the Rota-
tionNet on 3DPW.

same tendency on the hand part. The comparisons clearly show the benefit of PPP,
which preserves joint-specific local and global features, while GAP cannot. For the
experiment, we used the joint-specific graph convolution for all GraphCNN. When
PPP is used, the local and global image features of joints and joint coordinates with
the confidence are used for the final 3D rotational pose prediction. When both GAP
and PPP are used, the FC takes a concatenation of flattened {F?}jil and the out-
put vector of GAP. On the other hand, the GraphCNN takes a graph, where jth
node is a concatenation of F? and the output vector of GAP.

Effectiveness of the joint-specific graph convolution. Table shows the
benefit of the joint-specific graph convolution. To this end, we report PA MPJPE
of Pose2Pose and its variants that use GAP or the shared graph convolution. The
shared graph convolution uses shared learnable weights for all graph vertices like the
vanilla graph convolution [91]. Our joint-specific graph convolution achieves a lower
error than the shared graph convolution regardless of the pooling method, GAP and
PPP. Especially, the combination of the PPP and the joint-specific graph convolution

significantly outperforms a combination of GAP and shared graph convolution, used
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Figure 4.6: Qualitative results of our framework on MSCOCO validation set.

in Kolotouros et al. . We also found that the shared graph convolution increases
the error a lot when the input features are from PPP. This is because the shared
graph convolution applies the same weights to features of all graph vertices, while
each feature of a graph vertex from PPP has distinctive joint-specific information.

The comparisons clearly show the benefit of the joint-specific graph convolution.

Inputs of the RotationNet. We show how each input of the RotationNet af-
fects the accuracy in Table The table shows that taking both the image feature
and joint coordinate with confidence achieves the best accuracy. The image feature
extracted by PPP can provide local/global contextual information, and the joint
coordinate with confidence predicted by PositionNet can provide 3D geometric in-
formation. We design our RotationNet to take both inputs, thus can utilize both
local/global contextual information and 3D geometric information. The comparison

clearly shows the validity of our RotationNet design.
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What PositionNet predicts? PA MPJPE
2D positional pose 58.2
3D positional pose 56.8 (Ours)

Table 4.5: PA MPJPE comparison between models with various output of the PositionNet on
3DPW.

Integration method PA MPVPE
Without prior 55.5
With prior 51.9 (Ours)

Table 4.6: PA MPVPE comparison between models without and with the anatomical prior during
the integration on EHF.

Effectiveness of the 3D positional pose. We show the effectiveness of utilizing
the 3D positional pose over the 2D positional pose in Table The table shows
that PA MPJPE gets better when PositionNet predicts 3D positional pose than
2D positional pose. This is because additional depth information is provided to the
RotationNet, which helps to resolve the depth ambiguity. The comparison clearly
shows the effectiveness of predicting 3D positional pose from the PositionNet.

Effectiveness of the anatomical prior during the integration. We show the
effectiveness of the anatomical prior during the integration, described in line 7 of
Algorithm [1] in Table The table shows that our anatomical prior significantly
reduces PA MPVPE. The comparison clearly shows the benefit of the anatomical

prior.

4.6.3 Comparison with state-of-the-art methods

Body part. Table shows comparison between our body part Pose2Pose and pre-
vious state-of-the-art methods on 3DPW [80]. It shows our Pose2Pose significantly
outperforms previous works by a large margin, including both body-only methods
and the expressive method [7]. Following previous works [21},22,25], we use SMPL for

the human model, and 14 joints are used for the evaluation. In addition, we report
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Methods Scale MPJPE PA MPJPE
HMR [23] 130.0 81.3
HMMR [85] - 72.6
GraphCMR [5] - 70.2
Arnab et al. [86] Body only - 72.2
SPIN [25] 96.9 59.2
Pose2Mesh [22] 88.9 58.3
12L-MeshNet [21] 93.2 57.7
ExPose [7] 93.4 60.7
Pose2Pose (Ours) All parts 89.4 55.5
Pose2Pose* (Ours) 84.8 52.9

Table 4.7: MPJPE and PA MPJPE comparison on 3DPW. * denotes its ResNet is initialized with

that of SimpleBaseline [18§].

Methods Scale PA errors I scores
Hasson et al. [16] 13.2 / - 0.436 / 0.908
Boukhayma et al. [15] 13.0 / - 0.435 / 0.898
FreiHAND |[4] Hand only 10.7 / - 0.529 / 0.935
Pose2Mesh [22] 7.8 /7.7 0.674 / 0.969
I12L-MeshNet [21] 76 /7.4 0.681 / 0.973
ExPose |7] Allpargs | L8/ 122 048470918
Pose2Pose (Ours) 7.4 /74 0.683 / 0.974

Table 4.8: PA MPVPE/PA MPJPE and F-score@5mm/15mm comparison on FreiHAND.

the performance of another Pose2Pose, of which ResNet part is initialized with the

pre-trained weights of 2D human pose estimation network [18] on MSCOCO. The

table shows that initializing the ResNet part, included in PositionNet, with a pre-

trained 2D human pose estimation network significantly boosts the performance. We

think this is because the pre-trained 2D human pose estimation network already can

provide accurate 2D pose; thus, it can converge to a better 3D positional pose esti-

mation network. This shows better PositionNet can lead to significant performance

gain in our framework.

Hand part. Table shows a comparison between our hand part Pose2Pose and

previous state-of-the-art methods on FreiHAND [4]. It shows our Pose2Pose achieves
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Methods Scale Mean Median Std.
RingNet [100] Face only 2.08/2.02 1.63/1.58 1.79/1.68
ExPose [7] All pargs | 2277242 L76/191 197/2.03
Regressor (Ours) 2.02/1.99 1.55/1.53 1.78/1.76

Table 4.9: Mean, median, and standard deviation of 3D face mesh error comparison on low-
quality /high-quality images of Stirling.

PA MPVPE PA MPJPE
Methods
All Hands Face Body Hands
SMPLify-X (6] 65.3 12.3 6.3 87.6 12.9
MTC [93] 67.2 - - 107.8 16.7
ExPose [7] 54.5 12.8 5.8 62.8 13.1
Pose2Pose (Ours) 51.9 12.0 5.6 62.6 11.8

Table 4.10: PA MPVPE and PA MPJPE comparison on EHF. The numbers in hands are averaged
values of left and right hands.

comparable accuracy with a recent state-of-the-art hand-only method [21] and sig-

nificantly outperforms the expressive method [7].

Face part. Table shows comparison between our face part regressor and previous
state-of-the-art methods on Stirling [101]. It shows our regressor achieves lower errors

compared with the face-only method and expressive method [7].

All parts. Table shows comparison between our Pose2Pose and previous ex-
pressive methods on EHF [6]. SMPL-X is used for the human model of the body part.
For the evaluation, we integrated body, hand, and face parameters by our integra-
tion module, described in Section The table shows our Pose2Pose outperforms
previous methods by a large margin. Figure shows qualitative comparison with
previous state-of-the-art expressive method, ExPose 7], with ours on MSCOCO val-
idation set. Pose2Pose recovers much more accurate expressive 3D pose and shape,

including hands and face.

Taken together, our Pose2Pose outperforms all methods on all part-specific and

expressive datasets. The comparisons clearly show the effectiveness of Pose2Pose,
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Figure 4.7: Qualitative results on internet images. From top to bottom, left to right, the persons
in the images are Freddie Mercury of band Queen, Lady Gaga, Adele, Dave Mustaine of band
Megadeth, James Hetfield of band Metallica, David Draiman of band Disturbed, Lisa Su of AMD,
Jensen Huang of NVIDIA, Steven Ogg of GTA 5, Steven Jobs of Apple, Elon Musk of Tesla, and
Mark Zuckerberg of Facebook.
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Pose2Pose (Ours) ExPose

Figure 4.8: Qualitative comparison with ExPose 7] on MSCOCO validation set. Pose2Pose recovers
much more accurate expressive 3D pose and shape, including hands and face.

which benefit from our novel positional pose-guided pooling and joint-specific graph
convolution. Figure and [4.7 show qualitative results of Pose2Pose on MSCOCO
and internet images, respectively. Figure shows expressive 3D multi-person pose
and mesh estimation result on in-the-wild images of MSCOCO. The framework of
Moon et al. is used to extend the expressive single person 3D pose and mesh to

the multi-person case.

86



4. Expressive 3D Multi-Person Pose and Shape Estimation

Figure 4.9: Expressive 3D multi-person pose and mesh estimation result on in-the-wild images.

4.6.4 Running time

From a single RGB image, the body and hand part Pose2Pose take 0.06 and 0.07
seconds per frame, respectively, and the face regressor takes 0.02 seconds per frame.
The hand part takes the left and right hand images simultaneously. The integration
module takes 0.01 seconds per frame, which includes the forwarding time to the
SMPL-X layer. In total, our whole framework runs at 6.3 frames per second for
expressive 3D human pose and mesh estimation from a single RGB image. This is
the same running time as that of the previous expressive method, ExPose [7]. The
running times are measured by using a single RTX 2080 Ti GPU and making the

mini-batch size 1.

4.7 Conclusion

We present Pose2Pose, a 3D positional pose-guided 3D rotational pose prediction
network for expressive 3D human pose and mesh estimation from a single RGB
image. In contrast to previous works that rely on only a global image feature, ours
utilize joint-specific local and global features, extracted by the positional pose-guided

pooling, with joint-specific graph convolution. We apply our Pose2Pose for expressive
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3D human pose and mesh estimation and achieved state-of-the-art accuracy on all

part-specific and expressive datasets.
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Chapter 5

Conclusion and Future Work

5.1 Summary and Contributions of the Dissertation

In this dissertation, three kinds of novel approaches towards expressive 3D multi-
person pose and shape estimation from a single image were introduced, which are
based on 1) 3D multi-person body pose estimation, 2) 3D multi-person pose and
shape estimation, and 4) 3D pose and shape estimation for the integrated body,

hands, and face.

In Chapter [2| a camera distance-aware 3D multi-person body pose estimation
framework [26] was proposed. The proposed RootNet [26] computes a relative po-
sition between the camera and all persons by refining a pre-defined human scale (2
meters X 2 meters) using a deep image feature. As the deep image feature contains
both pose and appearance information, it can refine the pre-defined scale, which
can differ by pose and appearance variations of humans. The proposed whole frame-
work [26], which consists of RootNet and state-of-the-art human detection and 3D

single person body pose estimation methods, achieves state-of-the-art performance
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on various datasets. The framework is also used for the following approaches in this

dissertation to extend them to the multi-person case.

In Chapter |3 I proposed I12L-MeshNet |21], which predicts heatmaps of mesh
vertices instead of 3D rotations of human joints for accurate 3D human pose and
shape estimation. To reduce drastic GPU usage that arises from predicting heatmaps
for all mesh vertices, the lixel-based 1D heatmap is used as a prediction target instead
of the voxel-based 3D heatmap. Experimental results demonstrate the effectiveness
of the lixel-based 1D heatmap compared with 3D rotations of human joints and

voxel-based 3D heatmaps.

Finally, in Chapter 4} I proposed a framework [20] for expressive 3D human pose
and shape estimation. Although the above described I12L-MeshNet achieves highly
accurate performance, 3D rotations of human joints are needed for many computer
graphical applications, such as animations. To this end, Pose2Pose [20]|, 3D posi-
tional pose-guided 3D rotational pose prediction network, is designed for accurate
3D rotational pose prediction. The outputs of body, hand, and face part networks
are integrated for the expressive 3D human pose and shape. The experimental re-
sults show that Pose2Pose achieves state-of-the-art performance on all part-specific

and expressive datasets.

5.2 Future Directions

Although the above methods are demonstrated to be highly effective, there is room

for improvement.
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Figure 5.1: Global context-aware 3D multi-person pose estimation of HMOR, .

5.2.1 Global Context-Aware 3D Multi-Person Pose Estimation

To compute the relative position between the camera and persons, RootNet takes
a cropped single person image, thus ignoring global contextual information outside
of the human area. The global information can contain other persons, objects, or
background scenes, which can be helpful in determining the absolute depth value of
the human. For example, if a person is occluded by objects, we can guess that the
objects are closer to the camera than the person. Utilizing such information in a

weakly-supervised way [8] can be a promising future work, as shown in Figure

5.2.2 Unified Framework for Expressive 3D Human Pose and Shape

Estimation

The proposed framework for expressive 3D human pose and shape estimation con-
sists of three separate networks, which takes body, hands, and face images, respec-
tively, as shown in Figure[5.2] To make it easier to use and lighter, the three networks
should be unified into a single one, which also enables the network to utilize image
features outside of the hand/face area when predicting hand/face 3D poses. The
image feature outside the area will be especially helpful for the hand part when a

hand is occluded or suffers from severe motion blur because the network can guess
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a probable hand pose from the outside image feature. Unifying can be achieved by
adding hand and face branches to the body branch. However, unifying can degrade
the hand and face part accuracy because input hand and face image resolutions will
be largely decreased compared with those of the proposed framework that employs
separated networks and takes cropped and resized hand and face images. In addition,
using part-specific datasets [2,9] becomes difficult because a single network should
handle all parts. Nevertheless, I think integrating the separated three networks into

a single system is a promising future work.

5.2.3 Enhancing Appearance Diversity of Images Captured from
Multi-View Studio

Images captured from multi-view studio are paired with GT 3D poses; however
they have monotonous appearances |2,9], which are far from those of in-the-wild
images, as shown in Figure [5.3] Thus, a model trained on the images often fails to
generalize to in-the-wild images. Although making a mini-batch with half from multi-
view studio datasets and a half from in-the-wild datasets [1] can resolve this issue to
some degree, there is still a large image appearance domain gap. Recent advancement
of the pose transfer [102] and image translation [103] can be used to enhance the
appearance diversity of the images of multi-view datasets to those of in-the-wild
images. In particular, as hand images often suffer from many image degradation
issues, adding image degradation, such as motion blur, is necessary for 3D hand
pose and shape estimation. Recently, Moon et al. [104] proposed a framework to
obtain pseudo-GT 3D human pose and shape from in-the-wild images, and this
future work can complement their approach by enhancing the images captured from

multi-view studio. Therefore, a model can enjoy both image appearance diversity
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5.expr_pose_shape/fig/expressive_pipeline.pdf

Figure 5.2: Expressive 3D human pose and shape estimation pipeline of Chapter [4] consisting of

three separated networks.
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(a) Images from multi-view studio datasets (b) Images from datasets in the wild

Figure 5.3: Appearance comparison between images from (a) multi-view datasets Eﬂ and (b)
in-the-wild datasets [1].

and strong 3D supervisions.

5.2.4 Extension to the video for temporally consistent estimation

All the introduced approaches are single image-based ones. Although the results
on video, obtained by applying them on each frame of the video, are reasonable,
there are noticeable jitterings. Recent advancement of video-based 3D human pose
and shape estimation can be applied for the temporal consistency, as shown in

Figure

5.2.5 3D clothed human shape estimation in the wild.

Current 3D human shape estimation methods have two separate directions: 1) 3D
naked body shape estimation from images with diverse appearance and poses ,
2) 3D clothed body shape estimation from images with simple appearance and
poses . Figure shows 3D clothed human shape reconstruction results of PI-

FuHD . The reason for this separated direction is that obtaining GT 3D naked
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Figure 5.4: Temporally consistent 3D human pose and shape estimation network of TCMR, .

Figure 5.5: Reconstructed 3D clothed human shapes of PIFuHD .
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| appearance-only: reading newspaper
- pose-only: driving car (x)
: reading newpaper

appearance-only: clean and jerk (X)
pose-only: hurdling
: hurdling

Figure 5.6: Robust action recognition of IntegralAction on both in-context and out-of-context
action videos.

body shape from in-the-wild images is possible to some extent by fitting parametric
body models to the GT 2D poses, however obtaining GT 3D clothed body shape is
only possible when 3D scan data is provided, which is not applicable to the in-the-
wild environment. The proposed approaches in this dissertation are focused on the
first direction; however, I am planning to merge the second direction by designing a
weakly-supervised setting and loss functions that can be applied on images without
3D scans. This new direction would be helpful for many applications, such as making

a clothed personal avatar.

5.2.6 Robust human action recognition from a video.

The estimated 3D human pose and shape can be useful for human action recognition
from a video. In particular, Weinzaepfel et al. and Moon et al. showed
that the 3D pose and shape are especially useful when the input video contains
out-of-context actions, as shown in Figure [5.6] The out-of-context action means a
sequence of human motion, where the motion does not match the context of a video
(e.g., mime). As 3D pose and shape provide only geometric information without
appearance information, a model that takes only 3D human pose and shape is not

easily fooled by out-of-context action videos. However, as human actions can be
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determined by objects or backgrounds, the lack of appearance information can make
the input 3D pose and shape video ambiguous. On the other hand, a model that
takes only an RGB video can be easily fooled by out-of-context action videos; for
example, it predicts the human action class as “swimming” although a human is just
standing in the swimming pool, while does not suffer from the context ambiguity.
Recently, an action recognition system that takes RGB and 2D pose videos has been
proposed for robust action recognition on both in-context and out-of-context action
videos [12]. Although they successfully showed the robustness on both in-context
and out-of-context action videos, the geometric information delivered by 2D pose
video is not sufficient. It lacks depth information and only contains sparse body
keypoint coordinates. Providing additional depth information with hand poses and

facial expressions using the proposed approach can be a promising future work.
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