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Abstract

In this dissertation, two main contributions are given as;

• Private information retrieval with information leakage under the Kullback-Leibler

divergence is formulated and solved.

• Private information retrieval with information leakage under the Jensen-Shannon

divergence is formulated and solved.

First, the private information retrieval (PIR) problem with information leakage is

proposed with the Kullback-Leibler (KL) divergence. The amount of information leak-

age is measured by the KL divergence. The divergence is from the given reference

probability distribution causing no information leakage in the PIR system to an arbi-

trary probability distribution of user’s choice. Information leakage can be helpful in

terms of the performance of the PIR system, that is, the download cost. In other words,

allowing information leakage enables us to reduce the download cost of the PIR prob-

lem. We want to restrict the problem as efficiently as possible, and thus, the optimal

tradeoff between the information leakage and the download cost is being considered.

The problem is formulated as an optimization problem and solved using convex opti-

mization. Furthermore, we propose an alternative PIR scheme with less message length

that shows a better tradeoff than the existing PIR scheme in some tradeoff intervals.

Second, the same private information retrieval problem with information leakage

is proposed but with the Jensen-Shannon (JS) divergence. The JS divergence is based

on the KL divergence. The divergence occurs from the difference in probability distri-

butions among the user’s desired messages. Similar to the KL divergence, it captures

the dissimilarity among the probability distributions but with some desirable features.

One of the advantages it gives is that it can measure the dissimilarity of more than

two probability distributions, which makes the problem more general. More specif-
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ically, the problem formulated with JS divergence does not need the given reference

probability distribution causing no information leakage in the PIR system. The tradeoff

between the information leakage measured by the JS divergence and the download cost

is formulated as a convex optimization problem and solved with numerical solutions.

keywords: Convex optimization, download cost, information leakage, information

theory, Jensen-Shannon (JS) divergence, Kullback–Leibler (KL) divergence, private

information retrieval (PIR).

student number: 2015-21002
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Chapter 1

Introduction

1.1 Background

In an era of information and data, telecommunication operators and IT service providers

build data centers for reliable and independent services. Besides, in a communication

environment that is more entangled than ever before, the privacy issue has become a

serious consideration. There are many ways to implement privacy in different disci-

plines in the communication environment. Among them, technologies that can protect

individual privacy from databases are in the spotlight. One of the ways to protect per-

sonal privacy is private information retrieval (PIR). PIR is a privacy problem model

consisting of multiple databases, messages stored therein, and a single user. The user

wants to download the desired message using several databases and does not want to

let all databases know about his desired message index. PIR mainly deals with the

problem of accessing sensitive data, but it is a model applicable to many applications

that want to hide user preferences.

Initially studied by computer scientists, it was mainly focused on improving com-

putational complexity problems. In the last years, it has been known what the maxi-

mum performance can be achieved with this PIR model through information-theoretic

problem setting and approach. Since then, it has attracted significant attention, and
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active research has been carried out to the present by a wide variety of models and

assumptions. An example of solving a problem originally studied by computer engi-

neers through an information-theoretic approach can also be found in index coding.

This problem was also originally suggested by computer engineers in 1998, but after a

long time, research through information theory has been actively conducted.

Solving the PIR problem by the information-theoretic approach means an approach

from a rigorous perspective. Recently, Sun and Jafar [2] presented the capacity or the

upper bound of information-theoretic performance of PIR and an achievable scheme to

meet the capacity. Since then, many studies on various assumptions and environments

have been actively conducted until now [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18].

Among the several derivatives of the classical PIR, recent studies [19, 20, 21] in-

troduced information leakage in the PIR problem. By allowing information leakage,

unlike the classical PIR, the privacy requirement is relaxed, and a certain amount of

information leakage is allowed in exchange for the improved PIR performance (the

download cost), which is even better than the capacity with no information leakage.

Therefore, in practical operation, one can think of finding an appropriate compromise

between the performance and perfect privacy. However, the tradeoff between infor-

mation leakage and performance shown in recent studies does not, by itself, mean PIR

capacity with information leakage. In [19], they showed the upper bound and the lower

bound on capacity, but there exists a gap between them.

1.2 Overview of Dissertation

This dissertation is organized as follows.

In Chapter 2, some preliminaries of PIR are briefly overviewed. Basic concepts of

PIR and related researches are introduced, especially about the problem with informa-
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tion leakage. The convex optimization is also introduced.

In Chapter 3, the PIR problem with information leakage under the Kullback-Leibler

divergence is proposed. We adopt a PIR scheme with the probabilistic query structure

as the target of optimization. By introducing the reference probability distribution in-

dicating no information leakage in the PIR system, KL divergence measures how far

an arbitrary probability distribution of user’s choice diverges. Information leakage es-

tablishes the tradeoff relationship with the performance measure of the system, the

download cost. The information leakage measured by KL divergence is minimized

using a convex optimization problem. By applying to the given probabilistic query

structure, an analytic solution to the optimal tradeoff is found. Furthermore, we ob-

serve that there can be alternative schemes that show the better tradeoff than currently

known schemes. As an example, we present an alternative PIR scheme that achieves

the more desirable tradeoff in some operational range.

In Chapter 4, another PIR problem with information leakage under the Jensen-

Shannon divergence is proposed. For the same problem settings with probabilistic

query structure, the divergence between the probability distributions in queries that

depend on the identity of the desired message is measured with the JS divergence. The

JS divergence is advantageous since unlike other commonly used dissimilarity mea-

sures, it can capture the dissimilarity of more than two distributions which is desirable

in the PIR system with an arbitrary number of messages. The tradeoff between the

information leakage taken by the JS divergence and the download cost is solved by

using a convex optimization formulation. Finally, the concluding remarks are given in

Chapter 5.
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1.3 Notations

For a positive integer a and b, we denote [a] , {1, 2, ..., a} and [a : b] , {a, a +

1, ..., b}. We use the notation A[a:b] , {Aa, Aa+1, ..., Ab} if a ≤ b, and null set,

otherwise. We use uppercase letters for random variables (RVs), X for scalar and X

for vector. EX [·] denotes the expectation with respect to RVX .H(X) denotes entropy

of X and I(X;Y ) denotes the mutual information (MI) between X and Y . DKL(P ‖

Q) represents the Kullback-Leibler divergence from a probability distribution Q to a

probability distribution P .

4



Chapter 2

Preliminaries

In this chapter, some preliminaries needed for this dissertation are introduced. First,

the basic problem setup and concepts of PIR are described. Second, some related re-

sults of recent research on information leakage for PIR are discussed. The principle of

maximum entropy and the principle of minimum cross-entropy are explained.

2.1 Private Information Retrieval

The PIR problem introduced in the seminal paper [1] deals with a security protocol

required for communication between a user and databases. The user wants to download

the desired information from databases while hiding the identity of the information

being requested from all databases. A trivial solution to this problem is to make the

user download all the information in the databases, which is very inefficient and not

desirable.

The original PIR problem was mainly studied by computer engineers. In the recent

work, however, the PIR problem was analyzed from the viewpoint of information the-

ory [2]. The upload cost (communication cost from the user to databases) is regarded

as negligible compared to the download cost (the amount of information flow from

5



Figure 2.1: Classical PIR model with N databases and K messages.

databases to the user). By considering only the size of the desired message and the

size of the required download, the performance measure of the PIR problem, that is,

the rate is defined as

Rate =
(desired message size)

(required download cost)
.

The maximum possible rate achievable for the given PIR problem is called the infor-

mation theoretic capacity.

The classical PIR model is depicted in Figure 2.1. It consists of N databases and

statistically independent K messages, all replicated and stored identically therein. For

this simple scenario, databases cannot communicate with each other, and all message

sizes are equal to L. By using the Shannon entropy notation, the following equations

hold

H(W1,W2, · · · ,WK) = H(W1) +H(W2) + · · ·+H(WK),

H(W1) = H(W2) = · · · = H(WK) = L.

The user wants to retrieve any one of the messages Wθ uniformly, while the identity

of the message or the user’s preference of the message θ ∈ [K] is hidden from all

6



databases. The user generates and forwards query Q
[θ]
n to each database n ∈ [N ].

There are two conditions that should be satisfied in the classical PIR problem, that is,

the privacy condition and the correctness condition. First, the privacy condition hides

the preference of the user, and each query should not contain any information about

the index θ. The privacy condition is often represented as

I(θ;Q[θ]
n ) = 0, θ ∈ [K], n ∈ [N ].

Once each database that has been queried as Q[θ]
n must send back the corresponding

answer, A[θ]
n . The answering process is deterministic with the query and messages in

the database, that is,

H(A[θ]
n | Q[θ]

n ,W1, · · · ,WK) = 0, θ ∈ [K], n ∈ [N ].

Second, the correctness condition is that the user has the collection of answers from

N databases and must be able to correctly decode the desired message Wθ, that is,

H(Wθ | Q
[θ]
[1:N ], A

[θ]
[1:N ]) = 0.

The authors in [2] proved that the exact capacity of the PIR problem with N

databases and K messages is given as

C =
1

1 +
1

N
+

1

N2
+ · · ·+ 1

NK−1

. (2.1)

The capacity result can be interpreted that
1

N
+

1

N2
+ · · · + 1

NK−1 extra bits of the

download cost are needed per desired message bit to ensure the privacy of the user.

Also, one can easily observe that the capacity increases with more N and less K. The

simplest classical PIR example for the case of N = 2,K = 2 from [2] achieving the

capacity result is presented in Table 2.1 to retrieve W1 and W2.

In this example, each message has the size of L = 4. W1 and W2 are represented

by [a1, a2, a3, a4] and [b1, b2, b3, b4], respectively. For both cases of retrieving W1 and

7



Table 2.1: The query of the classical PIR scheme with N = 2, K = 2

(a) To retrieve W1

Database 1 Database 2

a1 a2

b1 b2

a3 + b2 a4 + b1

(b) To retrieve W2

Database 1 Database 2

a1 a2

b1 b2

a2 + b3 a1 + b4

8



W2, symbols required from each database form symmetric structures from the perspec-

tive of individual database, and thus, the message being retrieved is indistinguishable.

Inevitably, unnecessary symbols are also requested for privacy expense, for example,

b1 from database 1 in Table 2.1 (a). This symbol is used in a way that is downloaded

in a summation to the desired symbol from another database that is not requested, for

this case, a4 + b1 from database 2.

2.2 Information Leakage in PIR

Information leakage can be introduced in private information retrieval system if the

perfect privacy requirement is relaxed. The relaxation gives a gain in rate, and there-

fore, the tradeoff between privacy cost and retrieval cost is of our interest. In a practical

way, obtaining perfect privacy in PIR accompanies inefficiency in terms of communi-

cation costs, especially when there is a large number of messages stored in databases.

It is reasonable if a user can selectively expose the privacy to some allowable extent.

With this idea, recent PIR studies have dealt with rate gains that can be obtained at the

expense of perfect privacy.

There are several representative kinds of research with information leakage in

the PIR problem. In their studies, information leakage was defined in different ways.

There were studies about finding information theoretic capacity of PIR with informa-

tion leakage, and also, there were studies about finding the numerical solution of the

problem. Most of the studies have in common that they used probabilistic query mod-

els. Therefore, before we cover the PIR studies about information leakage, it is worth

mentioning the work in [23].

In [23], there was an attempt to reduce the conventional message size L = NK to

its optimal value N − 1. In that study, a probability-based PIR scheme was proposed

rather than the conventional deterministic PIR scheme, and the user could implement

9



Table 2.2: A probabilistic PIR query structure to retrieve Wθ

Option DB 1 · · · DB N Probability Download cost

1 Q
[θ]
1 (1) · · · Q

[θ]
N (1) p1 d1

2 Q
[θ]
1 (2) · · · Q

[θ]
N (2) p2 d2

...
...

...
...

...

M Q
[θ]
1 (M) · · · Q

[θ]
N (M) pM dM

PIR statistically by using one of several options. Assume that there are M options

for a user to retrieve an arbitrary desired message and any selected option gives the

user the desired message equivalently. When the m-th option is used to retrieve the

message Wθ, we denote the query received at database n and the answer to that query

as Q[θ]
n (m) and A[θ]

n (m), respectively. Then the correctness condition becomes

H(Wθ | Q
[θ]
[1:N ](m), A

[θ]
[1:N ](m)) = 0,

m ∈ [1 : M ], θ ∈ [1 : K].

A sketch of probabilistic query structure of PIR with options is shown in Table 2.2. M

options of possible query sets are represented with their corresponding probabilities

p1, p2, · · · , pM and the download costs d1, d2, · · · , dM .

In [23], the uniform distribution for M options is used for the capacity-achieving

scheme. However, in leaky PIR (LPIR) [19], ε-privacy is introduced where ε defines

the upper bound of the ratio of arbitrary two probabilities of queries sent to a database.

More specifically, with non-negative ε, ε-privacy is given as

Pr(Q
[k1]
n = q)

Pr(Q
[k2]
n = q)

≤ eε, k1, k2 ∈ [1 : K], n ∈ [1 : N ],

where ε indicates the amount of information leakage allowance and q represents the

possible realization of the query sent. Note that ε-privacy is similar to the definition

of differential privacy [22]. In the study of LPIR, they tried to find the capacity of

10



PIR with information leakage for the given ε but only loose bound is given as a result.

In another study of weakly PIR (WPIR) [20], the information leakage is defined in

more information theoretic manner as the nonzero mutual information between desired

message index and corresponding query. Therefore, their privacy condition is relaxed

as

I(θ;Q[θ]
n ) ≤ ρ, θ ∈ [1 : K], n ∈ [1 : N ],

where ρ indicates the amount of information leakage allowance. Also, in [21], the

maximal information leakage metric is proposed as a measure of information leakage

defined as

L(θ → Q[θ]
n ) = log

∑
q∈Q

max
k∈[1:K]

Pr
Q

[k]
n

(q),

where Q is the query space or the set of possible queries that the user can ask. In their

study, they found an optimal tradeoff between the information leakage and the down-

load cost for a specific achievable scheme. The research in this dissertation resembles

that of [21]. For a specific achievable scheme, we will apply the newly defined infor-

mation leakage measures to the PIR problem and solve the optimization problems to

find the optimal tradeoff between the information leakage measure and PIR perfor-

mance.

2.3 Convex Optimization

Convex optimization is a special class of mathematical optimization that studies the

problem of minimizing convex objective function over convex sets or maximizing

concave objective function over convex sets. Compared to general mathematical opti-

mization problems, many classes of convex optimization problems can be solved very

efficiently in polynomial time.

A set C is said to be convex if for x1, x2 ∈ C and 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C,

11



and a function f : Rn → R is said to be convex if its domain is convex set and for

x, y and 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.2)

A convex optimization problem in its standard form is given as follows:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m,

hi(x) = 0, i = 1, ..., p,

where x ∈ Rn is the optimization variable and convex function f0 : Rn → R is the

objective function. Inequalities with convex functions fi(x) : Rn → R are inequality

constraints and equalities with affine functions hi(x) : Rn → R are equality con-

straints. When the objective function is strictly convex, that is, only inequality holds in

(2.2), solving a convex optimization problem gives at most one optimal point or global

optimum point.
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Chapter 3

PIR with Information Leakage under the Kullback-Leibler

Divergence

3.1 Introduction

The classical PIR problem [2] and most of its related studies[ · · · ] use deterministic

query structures as their achievable schemes. This means that in order to download

the message the user wants, a fixed query structure must always be used. However,

some recent papers suggested the use of probabilistically generated queries to deal

with different semantics in messages [24] or to reduce the message size and the upload

cost [23]. In the probabilistic query model, the user can choose one of several query

options to download the desired message. It is necessary that the desired message can

be obtained no matter which option is used.

Furthermore, the probabilistic query model is also used in the studies on the PIR

problem with information leakage mentioned as in Section 2.2. In this case, the amount

of information leakage generated can be changed by adjusting the probability alloca-

tion. In this dissertation, the Kullback-Leibler (KL) divergence is introduced to de-

scribe how the adjustment is made. The KL divergence or relative entropy is a mea-

sure of how two probability distributions differ, which will be used as an information

13



leakage in this dissertation. Since its introduction [25] in 1951, it has been popularly

used in a wide variety of fields and applications. Consider that we have two probability

distributions P and Q. For discrete distributions, the KL divergence from Q to P is

defined as follows.

Definition 3.1. The Kullback-Leibler (KL) divergence from a probability distribution

Q to a probability distribution P defined on the probability space X is defined as

DKL(P ‖ Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
.

In the formula, the logarithm with base 2 or base e is used if the unit of information

being measured is in bits or in nats, respectively. Note that KL divergence is always

nonnegative and equal to zero if and only if P = Q.

3.2 Problem Formulation under the Kullback-Leibler Diver-

gence

We have a PIR scenario in Figure 2.1, where K messages are stored identically in

N databases without collusion. The messages are denoted as W1,W2, · · · ,WK and

equally sized by H(Wk) = L, k ∈ [1 : K]. Consider a probabilistic query struc-

ture with M options as shown in Table 2.2. The download costs for each option

d1, d2, · · · , dM are computed as the sum of the answer sizes received from databases.

The download cost dm for the m-th option is given as the summation of the answer

size across the databases given as

dm =

N∑
n=1

H(An(m)).
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The performance of this probabilistic PIR model is measured by the expectation of the

download cost normalized by the message size L given as

D =
1

L

M∑
m=1

pmdm. (3.1)

In fact, D is the amount of download needed per retrieval of unit message size. The

achievable rate is simply the reciprocal of it.

Essentially, without any information leakage, the upper bound of achievable rate

1/D must match the capacity C in (2.1). However, with allowed information leakage,

we can reduce the download cost in (3.1), and thus we can achieve a gain in rate. The

range that the download cost can take is between two extreme cases, no information

leakage case and full information leakage case. When there is no information leakage,

the user should download 1/C per unit message size. Otherwise, when we allow full

information leakage, the user directly downloads the desired message only, and the

download cost per unit message size is 1. Therefore, D has the following range,

D ∈
[
1,

1

C

]
. (3.2)

Consider a probabilistic PIR query structure in Table 2.2. LetU = (u1, u2, · · · , uM )

represent the probability assignment to P = (p1, p2, · · · , pM ) for the case with no

information leakage, or perfect privacy in statistical manner. Then the information

leakage denoted by ρKL when distribution P is used instead of U is measured as the

Kullback-Leibler divergence

ρKL = DKL(P ‖ U) (3.3)

=
∑
q∈Q

P (q) log
P (q)

U(q)

=

M∑
m=1

pm log
pm
um

, (3.4)

where the query space Q has the cardinality of |Q| = M . Note that if and only if

P = U , then the information leakage equals zero.

15



The goal of this dissertation is to find the most efficient probability distribution P

that minimizes the information leakage measured by the Kullback-Leibler divergence

given a probability distribution U and a certain amount of the target download cost

D. By doing so, the optimal tradeoff between the download cost and the information

leakage will be established. The problem can be formulated in a convex optimization

problem as follows:

minimize ρKL = DKL(P ‖ U)

subject to
1

L

M∑
m=1

pmdm = D,

M∑
m=1

pm = 1.

(3.5)

3.3 Achievable Scheme under the Kullback-Leibler Diver-

gence

3.3.1 Probabilistic Query Generation

Throughout the dissertation, the probabilistic query structure of Scheme 2 in [24] is

adopted, which corresponds to the TSC scheme proposed in [23] with database sym-

metry. Therefore we will refer to this scheme as the symmetric TSC scheme. Unlike

Scheme 2 in [24], no different semantics in messages are assumed, and the message

length L is fixed to its minimum value N − 1. Let Wθ be the desired message size

N − 1 given as

Wθ = [Wθ(1),Wθ(2), · · · ,Wθ(N − 1)], θ ∈ [1 : K].

The probabilistic query structure of PIR is explained as follows [23, 24] and described

in Table 3.4.
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• (Step 1) Use first N − 1 databases to download desired message symbols

Wθ(1),Wθ(2), · · · ,Wθ(N − 1),

respectively. Enumerate its cyclic shifts across databases. This step builds N

query options.

• (Step 2) Download Wi(1) from the first database, where i ∈ [1 : K]\{θ}. Use

the otherN−1 databases to download desired message symbols added toWi(1),

that is,

Wθ(1) +Wi(1)

Wθ(2) +Wi(1)

...

Wθ(N − 1) +Wi(1),

respectively. Enumerate its cyclic shifts across databases. Up to the cyclic shifts

we haveN query options. Repeat for other symbols inWi, which areWi(2), · · · ,Wi(N−

1). Repeat for the other i ∈ [1 : K]\{θ}. This step buildsN(N−1)
(
K−1
1

)
query

options.

• (Step 3) Download Wi(1) + Wj(1) from the first database, where i, j ∈ [1 :

K]\{θ} and i 6= j. Use the other N − 1 databases to download desired message

symbols added to Wi(1) +Wj(1), that is,

Wθ(1) +Wi(1) +Wj(1)

Wθ(2) +Wi(1) +Wj(1)

...

Wθ(N − 1) +Wi(1) +Wj(1),

respectively. Enumerate its cyclic shifts across databases. Up to the cyclic shifts

we have N query options. Repeat for other symbols in Wi and Wj , which are in

17



total (N−1)2 multiple cases. Repeat for the other i, j, where i, j ∈ [1 : K]\{θ}

and i 6= j. This step builds N(N − 1)2
(
K−1
2

)
query options.

• Repeat the steps with the same procedure until it reaches Step K. Step K builds

N(N − 1)K−1
(
K−1
K−1

)
query options.

In the query structure, the queries generated in Step 1 trivially request the desired

symbols only. It is obvious that the user can have the desired message directly. For the

queries generated from Step 2 to StepK, the user can subtract the undesired symbol or

the sum of the undesired symbols from received symbols and then recover the desired

message.

By adding up the number of query options built from each step, the number of

possible options can be calculated as

N +N(N − 1)

(
K − 1

1

)
+ · · ·+N(N − 1)K−1

(
K − 1

K − 1

)
= N

K−1∑
k=0

(N − 1)k
(
K − 1

k

)
= N ·NK−1

= NK .

(3.6)

Therefore, there are NK options that the user can take.

Remark 1. Refer to the k-sum terminology in [2], where a k-sum symbol is the sum

of k distinct symbols, each drawn from k different messages. Note that in the proba-

bilistic query structure explained above, all possible k-sums appear just once in each

database for every k = 1, · · · ,K. The structure also includes one 0-sum symbol for

each database, which means downloading nothing. By adding up the number of all

types of k-sum queries that the user can send to an individual database, the size of

universal query space Q can be calculated as follows.

• The number of 0-sum: 1

18



• The number of 1-sums: (N − 1)
(
K
1

)
• The number of 2-sums: (N − 1)2

(
K
2

)
...

• The number of K-sums: (N − 1)K
(
K
K

)
Adding all, we have

1 + (N − 1)

(
K

1

)
+ (N − 1)2

(
K

2

)
+ · · ·+ (N − 1)K

(
K

K

)
=

K∑
k=0

(N − 1)k
(
K

k

)
= NK ,

which is identical to the number of possible query options. Therefore, the probabilistic

query structure can be understood as a proper permutation of the elements in the query

space.

Remark 2. The query structure is symmetric within each database from Remark 1.

By allocating the uniform probability to NK query options, the PIR scheme achieves

perfect privacy. Therefore U = (u1, u2, · · · , uM ) in (3.3) is the uniform distribution

with probability mass function 1/NK for this PIR scheme and (3.4) can be rewritten

as

M∑
m=1

pm log
pm
um

=
M∑
m=1

pm(log pm − log um)

=
M∑
m=1

pm(log pm − log
1

NK
)

=

M∑
m=1

pm log pm + logNK

= H(U)−H(P ). (3.7)
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3.3.2 Example of Symmetric TSC Scheme with N = 2, K = 2

In this subsection, the simplest example of the probabilistic PIR scheme with N = 2

databases and K = 2 messages is introduced. The message size is L = N − 1 = 1

and two messages are simply W1 = W1(1) and W2 = W2(1). The number of query

options that the user can choose is M = NK = 4. The query structures to retrieve

W1 and W2 are shown in Table 3.1. The notation φ in the tables means that the user

requests nothing, and thus no symbol is downloaded. Without loss of generality, we

assume that W1 is wanted, and the PIR scheme is analyzed hereafter.

The queries are generated by the following steps.

• (Step 1) Use the first database to download the desired message symbol W1(1),

which is the option 1. Use its cyclic shift as the option 2.

• (Step 2) DownloadW2(1) from the first database. Let the second database down-

load desired message symbol W1(1) added to it, W1(1) + W2(1). This forms

the option 3 and use its cyclic shift as the option 4.

If probability (p1, p2, p3, p4) is equiprobable, the queries are symmetric within

each database. All possible 0-sum, 1-sum, and 2-sum symbols are generated over pos-

sible options in both databases. For database 1, each symbol from two messages is

requested equally likely at the option 1 and the option 3, respectively. The option 2

and the option 4 leaves no information about desired message index 1 since the op-

tion 2 requests no message symbol and the option 4 requests the sum of both message

symbols. Therefore database 1 cannot tell which one is the user’s interest between W1

and W2. A similar observation is found in database 2. Consequently, perfect privacy

is guaranteed. In this example, the expectation of the download cost normalized by

message size is calculated as

D =
1

L

M∑
m=1

pmdm

= p1 · 1 + p2 · 1 + p3 · 2 + p4 · 2. (3.8)
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Table 3.1: The probabilistic query structure of symmetric TSC scheme with N =

2,K = 2

(a) To retrieve W1

Option Database 1 Database 2 Probability Download cost

1 W1(1) φ p1 1

2 φ W1(1) p2 1

3 W2(1) W1(1) +W2(1) p3 2

4 W1(1) +W2(1) W2(1) p4 2

(b) To retrieve W2

Option Database 1 Database 2 Probability Download cost

1 W2(1) φ p1 1

2 φ W2(1) p2 1

3 W1(1) W1(1) +W2(1) p3 2

4 W1(1) +W2(1) W1(1) p4 2
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Since (p1, p2, p3, p4) is equiprobable, (3.8) becomes

D =
1

4
· 1 +

1

4
· 1 +

1

4
· 2 +

1

4
· 2 =

3

2
, (3.9)

where its reciprocal matches the PIR capacity result in (2.1) with N = 2 and K = 2,

C =
1

1 + 1/2
=

2

3
.

Now information leakage is introduced. Information leakage is generated by al-

lowing higher probabilities for the options with lower download costs. In the above

example, if the option 1 and the option 2 are more frequently used than the option

3 and the option 4, the average download cost can be reduced. For example, input

probability distribution (p1, p2, p3, p4) = (13 ,
1
3 ,

1
6 ,

1
6) in (3.8) gives

D =
1

3
· 1 +

1

3
· 1 +

1

6
· 2 +

1

6
· 2 =

4

3
,

which is definitely lower than the cost with no information leakage in (3.9), 3
2 .

The amount of information leakage ρKL, compared with the perfect privacy is

measured by the Kullback-Leibler divergence. Input probability distribution P =

(p1, p2, p3, p4) = (13 ,
1
3 ,

1
6 ,

1
6) and U = (u1, u2, u3, u4) = (14 ,

1
4 ,

1
4 ,

1
4) in (3.4) gives

the divergence from U to P ,

ρKL = DKL(P ‖ U)

=
1

3
log2

1
3
1
4

+
1

3
log2

1
3
1
4

+
1

6
log2

1
6
1
4

+
1

6
log2

1
6
1
4

= 5/3− log2 3 ≈ 0.0817,

or simply, from (3.7), we have

ρKL = H(U)−H(P )

= H

(
1

4
,
1

4
,
1

4
,
1

4

)
−H

(
1

3
,
1

3
,
1

6
,
1

6

)
≈ 2− 1.9183

= 0.0817.
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In the computation, a logarithm with base 2 is used throughout the dissertation.

Remark 3. Intuitively, allowing more information leakage will lower the download

cost. At this moment we only have two download cost-information leakage pairs of

(32 , 0) and (43 , 0.0817). Furthermore, if we allow maximum information leakage, the

download cost can be further reduced to its extreme point. Suppose the user only uses

the option 1 or the option 2 equally likely to retrieveW1 orW2, and then the download

cost becomes 1. It is obvious that the databases will notice what message the user

wants for sure. From (3.7), information leakage is calculated as

ρKL = H(U)−H(P )

= H

(
1

4
,
1

4
,
1

4
,
1

4

)
−H

(
1

2
,
1

2
, 0, 0

)
= 2− 1

= 1.

We now have one more download cost-information leakage pair of (1,1). We can

say that these pairs are achievable in the regime of information leakage measured

by the Kullback-Leibler divergence. With more achievable pairs, the download cost-

information leakage tradeoff can be described. However, it is not sure yet if these pairs

will draw the optimal curve. In Section 3.4 we will formally characterize the optimal

tradeoff between the download cost and information leakage.

In the next three subsections, two more examples of the query generation with

small N and K are presented without considering information leakage. Additionally,

a sketch of the probabilistic query structure of symmetric TSC scheme with general N

and K is followed.

3.3.3 Example of Symmetric TSC Scheme with N = 3, K = 2

The example of the query structure of probabilistic PIR scheme with N = 3 databases

and K = 2 messages is demonstrated. Each message consists of L = N −1 = 2 sym-
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bols, namelyW1 = [W1(1),W1(2)] andW2 = [W2(1),W2(2)], respectively. The user

has M = NK = 9 query options in total. If the options are chosen uniformly, perfect

privacy is achieved statistically. Otherwise, the model will suffer a certain amount of

information leakage. Specific query structures to retrieve W1 and W2 are presented in

Table 3.2.

Note that if the query options are chosen equally likely, then the expected down-

load cost normalized by message size L = 2 is calculated as

D =
1

L

M∑
m=1

pmdm (3.10)

=
1

2
(p1 · 2 + p2 · 2 + p3 · 2 + p4 · 3 + p5 · 3 + p6 · 3 + p7 · 3 + p8 · 3 + p9 · 3)

=
1

2
· 1

9
(2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3) =

24

18
=

4

3
,

where its reciprocal matches the PIR capacity result in (2.1) with N = 3 and K = 2,

C =
1

1 + 1/3
=

3

4
.

Now information leakage can be introduced, like the previous example with N =

2,K = 2. By allowing higher probabilities for the options with lower download costs,

the average download cost can be reduced. In this example, the options 1, 2, and 3

correspond to the options with lower download cost.

3.3.4 Example of Symmetric TSC Scheme with N = 3, K = 3

Likewise, the example of the query generation with N = 3 databases and K = 3

messages is demonstrated. Each message consists of L = N −1 = 2 symbols, namely

W1 = [W1(1),W1(2)],W2 = [W2(1),W2(2)] and W3 = [W3(1),W3(2)], respec-

tively. The number of query options the user can choose is M = NK = 27. The

query structure to retrieve W1 is shown in the Table 3.3. The retrieval of W2 or W3 is

identical with the case of W1 after modifications in the subscripts.
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Table 3.2: The probabilistic query structure of symmetric TSC scheme with N =

3,K = 2

(a) To retrieve W1

Option Database 1 Database 2 Database 3 Prob. Cost

1 W1(1) W1(2) φ p1 2

2 φ W1(1) W1(2) p2 2

3 W1(2) φ W1(1) p3 2

4 W2(1) W1(1) +W2(1) W1(2) +W2(1) p4 3

5 W1(2) +W2(1) W2(1) W1(1) +W2(1) p5 3

6 W1(1) +W2(1) W1(2) +W2(1) W2(1) p6 3

7 W2(2) W1(1) +W2(2) W1(2) +W2(2) p7 3

8 W1(2) +W2(2) W2(2) W1(1) +W2(2) p8 3

9 W1(1) +W2(2) W1(2) +W2(2) W2(2) p9 3

(b) To retrieve W2

Option Database 1 Database 2 Database 3 Prob. Cost

1 W2(1) W2(2) φ p1 2

2 φ W2(1) W2(2) p2 2

3 W2(2) φ W2(1) p3 2

4 W1(1) W1(1) +W2(1) W1(1) +W2(2) p4 3

5 W1(1) +W2(2) W1(1) W1(1) +W2(1) p5 3

6 W1(1) +W2(1) W1(1) +W2(2) W1(1) p6 3

7 W1(2) W1(2) +W2(1) W1(2) +W2(2) p7 3

8 W1(2) +W2(2) W1(2) W1(2) +W2(1) p8 3

9 W1(2) +W2(1) W1(2) +W2(2) W1(2) p9 3
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Table 3.3: The probabilistic query structure of symmetric TSC scheme with N =

3,K = 3 to retrieve W1

Opt. Database 1 Database 2 Database 3 Prob. Cost

1 W1(1) W1(2) φ p1 2

2 φ W1(1) W1(2) p2 2

3 W1(2) φ W1(1) p3 2

4 W2(1) W1(1) +W2(1) W1(2) +W2(1) p4 3

5 W1(2) +W2(1) W2(1) W1(1) +W2(1) p5 3

6 W1(1) +W2(1) W1(2) +W2(1) W2(1) p6 3

7 W2(2) W1(1) +W2(2) W1(2) +W2(2) p7 3

8 W1(2) +W2(2) W2(2) W1(1) +W2(2) p8 3

9 W1(1) +W2(2) W1(2) +W2(2) W2(2) p9 3

10 W3(1) W1(1) +W3(1) W1(2) +W3(1) p10 3

11 W1(2) +W3(1) W3(1) W1(1) +W3(1) p11 3

12 W1(1) +W3(1) W1(2) +W3(1) W3(1) p12 3

13 W3(2) W1(1) +W3(2) W1(2) +W3(2) p13 3

14 W1(2) +W3(2) W3(2) W1(1) +W3(2) p14 3

15 W1(1) +W3(2) W1(2) +W3(2) W3(2) p15 3

16 W2(1) +W3(1) W1(1) +W2(1) +W3(1) W1(2) +W2(1) +W3(1) p16 3

17 W1(2) +W2(1) +W3(1) W2(1) +W3(1) W1(1) +W2(1) +W3(1) p17 3

18 W1(1) +W2(1) +W3(1) W1(2) +W2(1) +W3(1) W2(1) +W3(1) p18 3

19 W2(1) +W3(2) W1(1) +W2(1) +W3(2) W1(2) +W2(1) +W3(2) p19 3

20 W1(2) +W2(1) +W3(2) W2(1) +W3(2) W1(1) +W2(1) +W3(2) p20 3

21 W1(1) +W2(1) +W3(2) W1(2) +W2(1) +W3(2) W2(1) +W3(2) p21 3

22 W2(2) +W3(1) W1(1) +W2(2) +W3(1) W1(2) +W2(2) +W3(1) p22 3

23 W1(2) +W2(2) +W3(1) W2(2) +W3(1) W1(1) +W2(2) +W3(1) p23 3

24 W1(1) +W2(2) +W3(1) W1(2) +W2(2) +W3(1) W2(2) +W3(1) p24 3

25 W2(2) +W3(2) W1(1) +W2(2) +W3(2) W1(2) +W2(2) +W3(2) p25 3

26 W1(2) +W2(2) +W3(2) W2(2) +W3(2) W1(1) +W2(2) +W3(2) p26 3

27 W1(1) +W2(2) +W3(2) W1(2) +W2(2) +W3(2) W2(2) +W3(2) p27 3
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Note that if the query options are chosen equally likely, then the expected down-

load cost normalized by message size L = 2 is calculated as

D =
1

L

M∑
m=1

pmdm

=
1

2

(
p1 · 2 + p2 · 2 + p3 · 2 +

27∑
m=4

(pm · 3)

)

=
1

2
· 1

27
(2 + 2 + 2 + 3 · 24) =

13

9
,

where its reciprocal matches the PIR capacity result of (2.1) with N = 3 and K = 3,

C =
1

1 + 1
3 + 1

32

=
9

13
.

3.3.5 Probabilistic PIR Scheme with General N,K

In this subsection, a sketch of the probabilistic TSC PIR query structure with general

N databases and K messages is presented. Each message consists of L = N − 1

symbols, and there are M = NK query options that the user can choose. As shown in

the previous examples, the first N options have the download cost of N −1 since each

of them usesN−1 databases for downloading a single symbol, respectively. There are

remaining NK − N options with the download cost of N . They use N databases for

downloading a single symbol or a sum of symbols, respectively. Rather than specific

query realization, a sketch of query structure is presented in Table 3.4.
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Note that if the query options are chosen equally likely, then the expected down-

load cost normalized by message size L = N − 1 is calculated as

D =
1

L

M∑
m=1

pmdm

=
1

N − 1

 N∑
m=1

(N − 1)pm +
NK∑

m=N+1

Npm


=

1

N − 1

(
N · N − 1

NK
+ (NK −N) · N

NK

)
=

1

NK−1 +
(
N +N2 + · · ·+NK−2 +NK−1) · N

NK

=
1

NK−1 +
1

NK−2 +
1

NK−3 + · · ·+ 1

N
+ 1,

where its reciprocal matches the PIR capacity result of (2.1) with general N and K

given as

C =
1

1 + 1
N + 1

N2 + · · ·+ 1
NK−1

.

3.4 Optimal Tradeoff Between Information Leakage and Down-

load Cost under the Kullback-Leibler Divergence

In this section, the examples from the previous section are revisited and formulated

by convex optimization problems. By solving them, we will find the optimal tradeoff

between the download cost and information leakage. Problems will be designed in the

form of the problem in (3.5) as

minimize ρKL = DKL(P ‖ U)

subject to
1

L

M∑
m=1

pmdm = D,

M∑
m=1

pm = 1.
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This is well-known cross-entropy minimization problem introduced by Kullback [28].

Since the divergence is measured from the uniform distribution U in the considering

query structure, the cross-entropy minimization problem above is reduced to the fol-

lowing problem,

minimize ρKL = H(U)−H(P ) (3.11)

subject to
1

L

M∑
m=1

pmdm = D,

M∑
m=1

pm = 1.

Since the objective function in (3.11) is a summation of the negative entropy and a con-

stant, it is convex on its domain, and the problem has a unique solution. In fact, this

problem is the well-known entropy maximization problem. We solve the optimization

problem for the probabilistic PIR scheme with arbitrary N and K and derive the ana-

lytic solution. After then the numerical result of the examples with graphical analysis

will be given.

3.4.1 Optimization of Probability Distribution

Before we give the optimal tradeoff as a main result, we will solve the optimization

problem in (3.5) for the case in Table 3.4. From the fact that the symmetric TSC

scheme has NK options as in (3.6), achieves perfect privacy by using the uniform

distribution U , and has message length of L = N −1, the problem in (3.5) is rewritten

as

minimize

NK∑
m=1

pm log2 pm + log2N
K

subject to
1

N − 1

NK∑
m=1

pmdm = D,

NK∑
m=1

pm = 1.

(3.12)

30



Since the objective function in (3.12) is a summation of the negative entropy and

a constant, it is convex on its domain and has a unique solution. The Lagrangian taken

from (3.12) is given as

L(P, λ, ν)

=

NK∑
m=1

pm log2 pm + logNK

+ λ

 1

N − 1

NK∑
m=1

pmdm −D

+ ν

NK∑
m=1

pm − 1

 ,

where P = (p1, · · · , pNK ) is the probability vector and λ and ν are the Lagrange

multipliers. Taking partial derivatives, we obtain

∂L

∂pm
= log2 pm +

1

ln 2
+

1

N − 1
λdm + ν,m ∈ [1 : NK ], (3.13)

∂L

∂λ
=

1

N − 1

NK∑
m=1

pmdm −D,

∂L

∂ν
=

NK∑
m=1

pm − 1. (3.14)

Equating (3.13)-(3.14) with zero gives the solution to P as

pm =
1

e(
1

N−1
λdm+ν) ln 2+1

,m ∈ [1 : NK ], (3.15)

where P = (p1, · · · , pNK ) satisfies

1

N − 1

NK∑
m=1

dm

e(
1

N−1
λdm+ν) ln 2+1

= D

⇔ 1

N − 1

NK∑
m=1

dm

e
1

N−1
λdm ln 2

= Deν ln 2+1 (3.16)

and
NK∑
m=1

1

e(
1

N−1
λdm+ν) ln 2+1

= 1

⇔
NK∑
m=1

1

e
1

N−1
λdm ln 2

= eν ln 2+1, (3.17)
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respectively. For a given set of the possible download cost {d1, . . . , dM} and the target

download cost D, we can solve (3.16) and (3.17) to find λ and ν. After then, the

optimal probability allocation (3.15) and corresponding information leakage ρKL in

(3.3) can be obtained.

In general, solving for P = (p1, · · · , pNK ) from the above procedure is not solv-

able in a closed-form equation explicitly. This observation is related to the fact that

there exists no algebraic solution to the general quintic equation with arbitrary poly-

nomial coefficients. Specifically, if NK ≥ 5 with arbitrary d1, . . . , dNK , we cannot

solve (3.16) and (3.17) for λ and ν, in a closed-form explicitly. Therefore, a numerical

method can be a good alternative option.

However, since the probabilistic query structure of the symmetric TSC scheme has

only two download costs, it is possible to solve the optimization problem explicitly. In

the scheme, note that Step 1 has N options with downloads of N − 1 symbols. Steps

2 to K have NK − N options in total with downloads of N symbols. Therefore, we

have

dm =


N − 1, m ∈ [1 : N ]

N, m ∈ [N + 1 : NK ].

Now substituting (3.17) into (3.16), we have

1

N − 1

NK∑
m=1

dm

e
1

N−1
λdm ln 2

= D

NK∑
m=1

1

e
1

N−1
λdm ln 2

. (3.18)
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Then from (3.18), we have

1

N − 1

{
N · N − 1

eλ ln 2
+ (NK −N) · N

e
1

N−1
λN ln 2

}
= D

{
N · 1

eλ ln 2
+ (NK −N) · 1

e
1

N−1
λN ln 2

}
⇔ (NK −N) · N − (N − 1)D

e
1

N−1
λN ln 2

= N · (N − 1)D −N + 1

eλ ln 2

⇔ (NK−1 − 1) · 1− (N − 1)(D − 1)

e
1

N−1
λN ln 2

=
(N − 1)(D − 1)

eλ ln 2

⇔ e
1

N−1
λ ln 2 =

(NK−1 − 1) {1− (N − 1)(D − 1)}
(N − 1)(D − 1)

, Λ, (3.19)

where (3.19) forms a closed-form solution to λ. Note that Λ is used for ease of the

notation. Further, we proceed to find ν. Substituting (3.19) into (3.17) gives
M∑
m=1

1

e
1

N−1
λdm ln 2

= eν ln 2+1

⇔
M∑
m=1

1

Λdm
= eν ln 2+1

⇔ N

ΛN−1
+
NK −N

ΛN
= eν ln 2+1, (3.20)

where (3.20) forms a closed-form solution to ν as well.

Now we are ready to show the solution to the optimal probability in (3.15). First,

for m = 1, . . . , N , we have

pm =
1

e(
1

N−1
λdm+ν) ln 2+1

=
1

e(λ+ν) ln 2+1

=
1

ΛN−1
(

N
ΛN−1 + NK−N

ΛN

)
=

1

N + NK−N
Λ

=
1

N +N (N−1)(D−1)
1−(N−1)(D−1)

=
1− (N − 1)(D − 1)

N
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and for m = N + 1, . . . , NK , we have

pm =
1

e(
1

N−1
λdm+ν) ln 2+1

=
1

e(
N
N−1

λ+ν) ln 2+1

=
1

ΛN
(

N
ΛN−1 + NK−N

ΛN

)
=

1

ΛN +NK −N

=
1

(NK−N){1−(N−1)(D−1)}
(N−1)(D−1) +NK −N

=
(N − 1)(D − 1)

NK −N
.

The above findings are summarized in the following lemma.

Lemma 3.1. The optimal solution to the optimization problem (3.5) on the symmetric

TSC scheme is given as

pm =


1−(N−1)(D−1)

N , m ∈ [1 : N ],

(N−1)(D−1)
NK−N , m ∈ [N + 1 : NK ].

Remark 4. The solution is a valid probability mass function. Trivially, one can easily

find that
∑NK

m pm = 1. The probability is always non-negative since as mentioned in

(3.2), the range of D covers between two extreme cases, no information leakage and

full information leakage. Therefore, 1 ≤ D ≤ 1
C and pm is always non-negative.

Remark 5. The result we found in Lemma 3.1 has essentially the same meaning with

the optimal probability distribution found by Theorem 1 in [21]. In fact, since we

considered the symmetric version of the TSC scheme with N cyclic shifts, compared

with [21], we obtain N times smaller probability with N times many queries. In other

words, if we solve the optimization problem using KL divergence as the information

leakage measure according to the problem setting they solved, exactly the same optimal

probability distribution will be obtained as their theorem.
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3.4.2 Optimal Tradeoff Between Information Leakage and Download Cost

Now, we are ready to present the optimal tradeoff in PIR. The following theorem gives

the optimal tradeoff between the information leakage measured in KL divergence ρKL

and the expectation of normalized download cost D on the symmetric TSC scheme.

Theorem 3.1. The optimal tradeoff between the information leakage measured by KL

divergence ρKL and the expected normalized download cost D on the symmetric TSC

PIR scheme with arbitrary N databases and K messages is given as

ρKL = {1− (N − 1)(D − 1)} log2
1− (N − 1)(D − 1)

N

+ (N − 1)(D − 1) log2
(N − 1)(D − 1)

NK −N

+ log2N
K ,

where the range of the expected normalized download cost is

1 ≤ D ≤ 1

C
.

Then the information leakage-download cost pairs establish the optimal tradeoff.

Proof. The proof is straightforward by substituting Lemma 3.1 in the objective func-

tion (3.12). The optimality of the tradeoff is obtained from the fact that the optimization

problem we designed in (3.12) has its global optimum since it has the convex objective

function and affine constraint functions.

3.4.3 Numerical Analysis with Examples

In this subsection, we present graphical analyses on the numerical results of some

examples previously considered, N = 2,K = 2 case, N = 3,K = 2 case, and N =

3,K = 3 case. Curves showing the tradeoffs between information leakage and the

download cost are shown in the Figures 3.1, 3.2, and 3.3. For all cases, the download

costs shown in the figures are normalized with the desired message size L.
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The two extreme points are located at the bottom right corner and the top left

corner of each graph. The bottom right corner corresponds to the case where there

is no information leakage, and the download cost for this point is the same as that

obtained from the classical PIR result given as reciprocal of (2.1),

1

C
= 1 +

1

N
+

1

N2
+ · · ·+ 1

NK−1 .

In the three cases of examples, 1/C are computed as

1 +
1

2
=

3

2
= 1.5,

1 +
1

3
=

4

3
≈ 1.3333,

1 +
1

3
+

1

9
=

13

9
≈ 1.4444,

respectively, which agree with the graphical results.

The top left corner corresponds to the case where direct downloading is used with-

out the need for privacy. Because direct downloading is used, the download cost for

this point is 1 and information leakage shows its maximum value. Information leakage

expressed in (3.7), H(U)−H(P ) can be used to verify whether the information leak-

age occurring at this point is optimal, that is, its minimum possible value. Since direct

downloading is the only option for the user to achieve the cost 1, the user has to decide

which options to choose and with what probability to use among all possible direct

downloadable options. They are N direct downloadable options out of the total NK

options. The solution to minimizing H(U)−H(P ) is to have the uniform probability

distribution for P with probability space having maximum cardinality. Therefore let

pm =


1
N , m = 1, . . . , N

0, otherwise,

and then H(U)−H(P ) has its minimum value given as

ρKL = log2N
K − log2N,
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which agrees with Theorem 3.1 when D = 1. Also, in the three cases of examples,

ρKL are computed as

log2 22 − log2 2 = 1,

log2 32 − log2 3 = log2 3 ≈ 1.5850,

log2 33 − log2 3 = log2 9 ≈ 3.1699,

respectively, which agree with the graphical results.

We give different numerical analyses for the three cases of examples in Figures

3.4, 3.5, and 3.6. In the figures, the optimal information leakage and download cost

for the probability of options with lower download cost are shown in the same graph.

The probability is given in Lemma 3.1 and corresponds to the case for m ∈ [1 :

N ]. As the probability increases, we observe that the download cost decreases and

information leakage increases. The range of the probability is from 1/NK to 1/N ,

which corresponds to the case of no leakage case and maximum leakage, respectively.

3.5 Alternative Probabilistic PIR Scheme

In this section, we present an alternative probabilistic PIR scheme achieving a better

tradeoff between information leakage and download cost within a certain range. The

proposed alternative PIR scheme resembles the symmetric TSC scheme but with a

smaller option size and a shorter message length. Since we have the symmetric TSC

scheme with N = 3,K = 2 from the previous section, We begin with the alternative

PIR example with the case of N = 3,K = 2 as in Table 3.5. For comparison with the

conventional TSC scheme, refer to Table 3.2. Note that the total number of options is

reduced from 9 to 6, and the message length L is reduced from 2 to 1. With uniform

distribution to P = (p1, · · · , p6), perfect privacy will be achieved since databases will

be accessed with unbiased queries. However, unlike the symmetric TSC scheme, the
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Figure 3.1: Optimal tradeoff between information leakage and the normalized down-

load cost of symmetric TSC scheme with N = 2, K = 2.
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Figure 3.2: Optimal tradeoff between information leakage and the normalized down-

load cost of symmetric TSC scheme with N = 3, K = 2.
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Figure 3.3: Optimal tradeoff between information leakage and the normalized down-

load cost of symmetric TSC scheme with N = 3, K = 3.
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Figure 3.4: Optimal information leakage and download cost for the probability of

lower download cost of symmetric TSC scheme with N = 2, K = 2.
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Figure 3.5: Optimal information leakage and download cost for the probability of

lower download cost of symmetric TSC scheme with N = 3, K = 2.
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Figure 3.6: Optimal information leakage and download cost for the probability of

lower download cost of symmetric TSC scheme with N = 3, K = 3.
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alternative PIR scheme with uniform distribution does not give the PIR capacity. This

is simply verified as

D =
1

L

M∑
m=1

pmdm =
1

6
· (1 + 1 + 1 + 2 + 2 + 2) =

3

2
,

which is strictly higher than D in (3.10). Therefore, the alternative PIR scheme seems

to be undesirable. However, as the allowed information leakage increases, the alterna-

tive PIR scheme shows a more desirable tradeoff. We will first give a formal descrip-

tion of the alternative PIR scheme.

3.5.1 The Proposed Alternative PIR Scheme

The alternative PIR scheme we want to consider basically shares the same skeleton of

the symmetric TSC scheme but has a smaller option size and a shorter message length.

Let Wθ be the desired message given as

Wθ = [Wθ(1),Wθ(2), · · · ,Wθ(L)], θ ∈ [1 : K],

where 1 ≤ L < N − 1. As in Section 3.3, the query structure of the alternative PIR

scheme is explained as follows.

• (Step 1) Use first L databases to download desired message symbols

Wθ(1),Wθ(2), · · · ,Wθ(L),

respectively. Enumerate its cyclic shifts across databases. This step builds N

query options.

• (Step 2) Download Wi(1) from the first database, where i ∈ [1 : K]\{θ}. Use

the other L databases to download desired message symbols added to Wi(1),
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Table 3.5: The probabilistic query structure of alternative PIR scheme with N =

3,K = 2 to retrieve W1

Option Database 1 Database 2 Database 3 Prob. Cost

1 W1(1) φ φ p1 1

2 φ W1(1) φ p2 1

3 φ φ W1(1) p3 1

4 W2(1) W1(1) +W2(1) φ p4 2

5 φ W2(1) W1(1) +W2(1) p5 2

6 W1(1) +W2(1) φ W2(1) p6 2
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that is,

Wθ(1) +Wi(1)

Wθ(2) +Wi(1)

...

Wθ(L) +Wi(1),

respectively. Enumerate its cyclic shifts across databases. Up to the cyclic shifts

we haveN query options. Repeat for other symbols inWi which areWi(2), · · · ,Wi(L).

Repeat for the other i ∈ [1 : K]\{θ}. This step builds NL
(
K−1
1

)
query options.

• (Step 3) Download Wi(1) + Wj(1) from the first database, where i, j ∈ [1 :

K]\{θ} and i 6= j. Use the other L databases to download desired message

symbols added to Wi(1) +Wj(1), that is,

Wθ(1) +Wi(1) +Wj(1)

Wθ(2) +Wi(1) +Wj(1)

...

Wθ(L) +Wi(1) +Wj(1),

respectively. Enumerate its cyclic shifts across databases. Up to the cyclic shifts

we have N query options. Repeat for other symbols in Wi and Wj which are in

total L2 multiple cases. Repeat for the other i, j where i, j ∈ [1 : K]\{θ} and

i 6= j. This step builds NL2
(
K−1
2

)
query options.

• Repeat the steps with the same procedure until it reaches Step K. Step K builds

NLK−1
(
K−1
K−1

)
query options.

In the query structure, the queries generated in Step 1 trivially request the desired

symbols only. It is obvious that the user can have the desired message directly. For the

46



queries generated from Step 2 to Step K, the user can subtract the undesired symbol

or the sum of the undesired symbols from received symbols then recover the desired

message.

By adding up the number of query options built from each step, the number of

possible options for the proposed alternative PIR scheme can be calculated as

N +NL

(
K − 1

1

)
+ · · ·+NLK−1

(
K − 1

K − 1

)
= N

K−1∑
k=0

Lk
(
K − 1

k

)
= N(L+ 1)K−1.

Therefore, there are N(L + 1)K−1 options that the user can take. Since we assume

L < N − 1, the number of total options in this scheme is less than NK .

Another examples of the alternative PIR scheme to retrieve the first message W1

are shown in Tables 3.6 and 3.7 for N = 3,K = 3 and N = 4,K = 2. L = 1

is used for the case of N = 3,K = 3 and W1 = W1(1). Note that for the case

of N = 4,K = 2 in Table 3.7, alternative schemes for two possible message sizes

L = 2 and L = 1 are shown. W1 is denoted as W1 = [W1(1),W1(2)] for L = 2 and

W1 = W1(1) for L = 1, respectively.
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Table 3.6: The probabilistic query structure of alternative PIR scheme with N =

3,K = 3 to retrieve W1

Opt. Database 1 Database 2 Database 3 Prob. Cost

1 W1(1) φ φ p1 1

2 φ W1(1) φ p2 1

3 φ φ W1(1) p3 1

4 W2(1) W1(1) +W2(1) φ p4 2

5 φ W2(1) W1(1) +W2(1) p5 2

6 W1(1) +W2(1) φ W2(1) p6 2

7 W3(1) W1(1) +W3(1) φ p7 2

8 φ W3(1) W1(1) +W3(1) p8 2

9 W1(1) +W3(1) φ W3(1) p9 2

10 W2(1) +W3(1) W1(1) +W2(1) +W3(1) φ p10 2

11 φ W2(1) +W3(1) W1(1) +W2(1) +W3(1) p11 2

12 W1(1) +W2(1) +W3(1) φ W2(1) +W3(1) p12 2
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Table 3.7: The probabilistic query structure of alternative PIR scheme with N =

4,K = 2 to retrieve W1

(a) With message size L = 2

Opt. Database 1 Database 2 Database 3 Database 4 Prob. Cost

1 W1(1) W1(2) φ φ p1 2

2 φ W1(1) W1(2) φ p2 2

3 φ φ W1(1) W1(2) p3 2

4 W1(2) φ φ W1(1) p4 2

5 W2(1) W1(1) +W2(1) W1(2) +W2(1) φ p5 3

6 W2(2) W1(1) +W2(2) W1(2) +W2(2) φ p6 3

7 φ W2(1) W1(1) +W2(1) W1(2) +W2(1) p7 3

8 φ W2(2) W1(1) +W2(2) W1(2) +W2(2) p8 3

9 W1(2) +W2(1) φ W2(1) W1(1) +W2(1) p9 3

10 W1(2) +W2(2) φ W2(2) W1(1) +W2(2) p10 3

11 W1(1) +W2(1) W1(2) +W2(1) φ W2(1) p11 3

12 W1(1) +W2(2) W1(2) +W2(2) φ W2(2) p12 3

(b) With message size L = 1

Opt. Database 1 Database 2 Database 3 Database 4 Prob. Cost

1 W1(1) φ φ φ p1 1

2 φ W1(1) φ φ p2 1

3 φ φ W1(1) φ p3 1

4 φ φ φ W1(1) p4 1

5 W2(1) W1(1) +W2(1) φ φ p5 2

6 φ W2(1) W1(1) +W2(1) φ p6 2

7 φ φ W2(1) W1(1) +W2(1) p7 2

8 W1(1) +W2(1) φ φ W2(1) p8 2
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3.5.2 Alternative Optimal Tradeoff Between Information Leakage and

Download Cost

Now, as in (3.12), we can solve the following optimization problem with a smaller

option size and a shorter message length,

minimize

N(L+1)K−1∑
m=1

pm log2 pm + log2N(L+ 1)K−1

subject to
1

L

N(L+1)K−1∑
m=1

pmdm = D,

N(L+1)K−1∑
m=1

pm = 1.

(3.21)

Solving the problem in (3.21) is similar to (3.12) but with different download cost for

each option of

dm =


L, m ∈ [1 : N ]

L+ 1, m ∈ [N + 1 : N(L+ 1)K−1].

We omit the detailed solving procedure for the optimal probability and present the

following lemma.

Lemma 3.2. The optimal solution to the optimization problem in (3.21) on the alter-

native PIR scheme is given as

pm =


1−L(D−1)

N , m ∈ [1 : N ]

L(D−1)
N(L+1)K−1−N , m ∈ [N + 1 : N(L+ 1)K−1],

where 1 ≤ L < N − 1.

From Lemma 2, we have the following theorem for the alternative PIR scheme.

We simply denote the information leakage in the alternative PIR scheme as ρaltKL.
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Theorem 3.2. The optimal tradeoff between the information leakage measured by KL

divergence ρaltKL and the expected normalized download cost D on the alternative PIR

scheme with arbitrary N databases and K messages is given as

ρaltKL = {1− L(D − 1)} log2
1− L(D − 1)

N

+ L(D − 1) log2
L(D − 1)

N(L+ 1)K−1 −N

+ log2N(L+ 1)K−1,

where the range of D is

1 ≤ D ≤ 1

C
,

and the message size L satisfies

1 ≤ L < N − 1.

Then the information leakage-download cost pairs establish the optimal tradeoff.

Proof. The proof is straightforward as in Theorem 3.1. The optimality of the tradeoff

is obtained by convex optimization as well.

3.5.3 Numerical Analysis of the Proposed Alternative Scheme

By using Theorems 3.1 and 3.2, we compare the optimal tradeoffs achieved from two

PIR schemes, that is, the symmetric TSC scheme and the alternative PIR scheme. Fig-

ure 3.7 shows the case of N = 3,K = 2. Note that there exists a specific range such

that ρaltKL < ρKL for the given download cost. In other words, alternative PIR scheme

achieves lesser download cost than the conventional symmetric TSC scheme for the

given information leakage. Figure shows that when download cost is prioritized over

information leakage, the alternative PIR scheme is more desirable. However, since two

PIR schemes we consider have different option sizes ofNK andN(L+1)K−1, respec-

tively, a normalized version of the KL divergence can be used for a fair comparison
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between the symmetric TSC scheme and the alternative PIR scheme. Thus, (3.3) can

be rewritten as

ρ̄KL =
DKL(P ‖ U)

H(U)
,

and then in this schme, ρ̄KL = ρKL/log2N
K . Similarly for the alternative PIR

scheme, ρ̄altKL = ρaltKL/log2N(L+ 1)K−1 will be used. Figure 3.8 shows the same

example of N = 3,K = 2 with normalized information leakage. Note that there is

still some range where the alternative PIR scheme is better in terms of information

leakage, that is, ρ̄altKL < ρ̄KL for a fixed download cost. Figures 3.9 and 3.10 are rep-

resented for the case of N = 3,K = 3 as well.

We present another example with N = 4,K = 2. As mentioned earlier, since

1 ≤ L < N − 1, there are two possible message sizes, L = 1 and L = 2. We present

the optimal tradeoffs in Figure 3.11 for both cases of the alternative PIR scheme with

the conventional symmetric TSC scheme. Likewise, their normalized information leak-

age versions are shown in Figure 3.12. In both figures, there exist ranges in download

costs such that ρaltKL < ρKL and ρ̄altKL < ρ̄KL. Note that as the message size L becomes

shorter, the alternative PIR scheme performs better when the amount of allowed in-

formation leakage is relaxed. In a practical scenario, therefore, a user might want to

choose between N − 1 possible schemes, including the conventional symmetric TSC

scheme according to the specified information leakage allowance.
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Figure 3.7: Optimal tradeoff between information leakage and the download cost for

two PIR schemes with N = 3, K = 2.
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Figure 3.8: Optimal tradeoff between normalized information leakage and the down-

load cost for two PIR schemes with N = 3, K = 2.
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Figure 3.9: Optimal tradeoff between information leakage and the download cost for

two PIR schemes with N = 3, K = 3.
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Figure 3.10: Optimal tradeoff between normalized information leakage and the down-

load cost for two PIR schemes with N = 3, K = 3.
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Figure 3.11: Optimal tradeoff between information leakage and the download cost for

two PIR schemes with N = 4, K = 2.

57



1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Symmetric TSC scheme

Alternative scheme, L=2

Alternative scheme, L=1

Figure 3.12: Optimal tradeoff between normalized information leakage and the down-

load cost for two PIR schemes with N = 4, K = 2.
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Chapter 4

PIR with Information Leakage under the Jensen-Shannon

Divergence

4.1 Introduction

In this chapter, a PIR problem with information leakage with the same purpose as in

the previous chapter is introduced but under a different information leakage measure.

In the problem setting and the optimization process in the previous chapter, there was a

probability distributionU as a reference uniform distribution indicating no information

leakage in the PIR system. The Kullback-Leibler (KL) divergence from the reference

probability distribution U to arbitrary probability distribution P was measured to show

how much the information leakage is occurring when the user chooses P instead of

U . We have the same probabilistically generated query model, and the information

leakage is measured in a more generalized way. As will be explained in more detail

later, it is no longer necessary to have the predefined probability distribution U .

Here we propose the Jensen-Shannon (JS) divergence as a measure of the informa-

tion leakage, which is based on the KL divergence. The JS divergence has its nomen-

clature since it is in the form of the Jensen’s inequality applied to Shannon’s entropy.

Before we begin to explore the detailed problem setting, the formal definition of the
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JS divergence is given as follows.

Definition 4.1. The Jensen-Shannon (JS) divergence between two probability distri-

butions P1 and P2 is defined as

DJS,π(P1, P2) = H(π1P1 + π2P2)− π1H(P1)− π2H(P2) (4.1)

where π = (π1, π2) is the weight, or prior of P1 and P2, respectively, such that

π1, π2 ≥ 0, π1 + π2 = 1. With little efforts, (4.1) can be expressed equivalently using

the KL divergence as

DJS,π(P1, P2) = π1DKL(P1 ‖M) + π2DKL(P2 ‖M), (4.2)

where M = π1P1 + π2P2.

If uniform π is used, that is, π = (π1, π2) = (12 ,
1
2), then (4.1) and (4.2) are simply

DJS(P1, P2) = H

(
1

2
P1 +

1

2
P2

)
− 1

2
H(P1)−

1

2
H(P2)

and

DJS(P1, P2) =
1

2
DKL(P1 ‖M) +

1

2
DKL(P2 ‖M),

respectively, where M = P1+P2
2 .

Note that by definition DJS,π is symmetric with its elements, that is,

DJS,π(P1, P2) = DJS,π(P2, P1).

Also, a well-known property of the Jensen-Shannon divergence is that it has the bounded

range [27]. When the logarithm with base 2 is used, then

0 ≤ DJS,π(P1, P2) ≤ 1

and with base e,

0 ≤ DJS,π(P1, P2) ≤ ln 2.
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Also, note that DJS,π(P1, P2) = 0 if and only if P1 = P2.

Unlike KL divergence having two probability distributions as variables, the JS di-

vergence has the generalized version about more than two probability distributions. We

will find the generalized version useful for our problem configuration. The definition

of the generalized Jensen-Shannon divergence is given below.

Definition 4.2. The generalized Jensen-Shannon (JS) divergence amongK probability

distributions P1, . . . , PK is defined as

DJS,π(P1, . . . , PK) = H

(
K∑
k=1

πkPk

)
−

K∑
k=1

πkH(Pk), (4.3)

where π = (π1, . . . , πK) is the weight, or prior of P1,. . . ,P2, respectively, such that

πk ≥ 0,
∑K

k=1 πk = 1. Again, (4.3) can be expressed equivalently using KL divergence

as

DJS,π(P1, . . . , PK) =

K∑
k=1

πkDKL(Pk ‖M), (4.4)

where M =
∑K

k=1 πkPk.

If uniform π is used, then (4.3) and (4.4) are simply

DJS(P1, . . . , PK) = H

(
1

K

K∑
k=1

Pk

)
− 1

K

K∑
k=1

H(Pk) (4.5)

and

DJS(P1, . . . , PK) =
1

K

K∑
k=1

DKL(Pk ‖M), (4.6)

respectively, where M = 1
K

∑K
k=1 Pk.

Also, the generalized version of the JS divergence is symmetric with its elements

and has the bounded range. With logarithm base 2, we have

0 ≤ DJS,π(P1, . . . , PK) ≤ log2K
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and with base e,

0 ≤ DJS,π(P1, . . . , PK) ≤ lnK.

Also, note that DJS,π(P1, . . . , PK) = 0 if and only if P1 = P2 = · · · = PK .

4.2 Problem Formulation under the Jensen-Shannon Diver-

gence

The problem we want to solve is almost the same as the previous one. There are N

replicated databases that each of them storing all K messages with equal size L. Table

4.1 shows a probabilistic query structure with M options to retrieve the message Wθ.

Note that the query sent to the n-th database by using m-th option to retrieve the

message Wθ is denoted by Q
[θ]
n (m) and its corresponding answer is A[θ]

n (m). Any

choice of option should give the user the desired message Wθ, which can be written as

H(Wθ | Q
[θ]
[1:N ](m), A

[θ]
[1:N ](m)) = 0, m ∈ [1 : M ],

which is called correctness condition. M options with probabilities of p[θ]1 , . . . , p
[θ]
M to

be chosen by the user have their corresponding download costs d[θ]1 , . . . , d
[θ]
M , respec-

tively. The download cost d[θ]m of m-th option is summation of the answer sizes across

the databases given as

d[θ]m =
N∑
n=1

H(A[θ]
n (m)).

Again the performance measure of the probabilistic PIR model is the expectation of

the normalized download cost and computed as

D =
1

L

M∑
m=1

p[θ]m d
[θ]
m .

62



Table 4.1: A probabilistic PIR query structure to retrieve Wθ

Option Database 1 · · · Database N Probability Download cost

1 Q
[θ]
1 (1) · · · Q

[θ]
N (1) p

[θ]
1 d

[θ]
1

2 Q
[θ]
1 (2) · · · Q

[θ]
N (2) p

[θ]
2 d

[θ]
2

...
...

...
...

...

M Q
[θ]
1 (M) · · · Q

[θ]
N (M) p

[θ]
M d

[θ]
M

As mentioned before, the range of D is as in (3.2), that is, 1 ≤ D ≤ 1/C, where C is

the capacity of PIR without information leakage.

Note that we denoted the probability p[θ]m and the download cost d[θ]m including its

concerning message index θ unlike the previous ones in Table 2.2. Now define the

probability distributions for query sent to the database n to retrieve the message Wθ as

P
Q

[θ]
n

(q) = P (Q[θ]
n = q), n ∈ [1 : N ], θ ∈ [1 : K], q ∈ Q,

where Q with the cardinality |Q| = M is the set of all possible query realizations that

the user can ask.

Now we define the information leakage denoted as ρJS measured by JS divergence

at the n-th database as

ρJS = DJS

(
P
Q

[1]
n
, . . . , P

Q
[K]
n

)
. (4.7)

Note that (4.5) or (4.6) is used instead of (4.3) or (4.4) since we assume that messages

are requested uniformly by the user, that is, there is no bias in requesting messages.

From a system-wide perspective, when an option is selected, then the corresponding

query is automatically determined across databases. If the query structure is symmetric

across databases, the information leakage defined in (4.7) is identical across databases.

Therefore, if it is the case, it is sufficient to consider the information leakage only at

one arbitrary database.
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The goal of the problem setting for the probabilistic PIR with JS divergence is to

find the most efficient probability distributions P
Q

[k]
n

for all k ∈ [1 : K] that minimizes

the information leakage measured by ρJS given a certain amount of target download

cost. Obviously, the download cost must be the same no matter what message the user

wants for fairness and privacy. As in the previous chapter, we want to find the optimal

tradeoff between the download cost of the PIR system and the information leakage

measured in the JS divergence. The problem is written as a convex optimization prob-

lem as follows:

minimize ρJS = DJS(P
Q

[1]
n
, . . . , P

Q
[K]
n

)

subject to
1

L

M∑
m=1

p[k]m d
[k]
m = D, k ∈ [1 : K]

M∑
m=1

p[k]m = 1, k ∈ [1 : K].

4.3 Achievable Scheme under the Jensen-Shannon Divergence

4.3.1 Probabilistic Query Generation

We use the same probabilistic PIR query structure of Section 3.3. Its queries are sym-

metric across all the databases, and all possible queries appear in each database with

probability, which is desirable in our case. Again, only the query structure is adopted

without different semantics between messages. If the different popularity between

messages is of interest, we can use non-uniform π in the definition of JS divergence.

However, it is not the scope of this dissertation. Refer to Section 3.3 for the detailed

query structure. We start with the simplest example to capture the main idea.
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4.3.2 Example of Symmetric TSC Scheme with N = 2, K = 2

Consider the simplest PIR example with N = 2 databases and K = 2 messages. The

message size is L = N − 1 = 1 and two messages are denoted as W1 = W1(1)

and W2 = W2(1), respectively. The number of query options is M = NK = 4. The

probabilistic query structures to retrieveW1 andW2 are given in Table 4.2. Any choice

of options in the query structure will give the user arbitrary desired messages for sure,

but possibly with different download cost 1 or 2. The expected normalized download

costs to retrieveW1 andW2 can be computed from the tables. No matter what message

is wanted, the expectation of the cost must be the same. Denote the download cost as

D, and then we have

D =
1

L

4∑
m=1

p[1]m d
[1]
m = p

[1]
1 · 1 + p

[1]
2 · 1 + p

[1]
3 · 2 + p

[1]
4 · 2, (4.8)

and

D =
1

L

4∑
m=1

p[2]m d
[2]
m = p

[2]
1 · 1 + p

[2]
2 · 1 + p

[2]
3 · 2 + p

[2]
4 · 2, (4.9)

respectively. Adjusting the probability distributions (p
[k]
1 , . . . , p

[k]
M ), k = 1, 2 will de-

termineD ∈ [1, 1/C], whereC is the capacity of the PIR without information leakage.

Tables 4.2 (a) and 4.2 (b) are analyzed together to investigate the information leak-

age generated in the database 1. Due to the symmetry of the query structure, that is,

every possible query appears once in each of the databases, minimizing the informa-

tion leakage in the database 1 will suffice to optimize the entire system. For ease of

handling the dissimilarity seen at the database 1, Tables 4.2 (a) and 4.2 (b) are recasted

in Table 4.3. It shows the information leakage occurring in the database 1. Four possi-

ble queries are requested with two different probability distributions according to the

index of the message being retrieved. This difference or dissimilarity is measured by
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Table 4.2: The probabilistic query structure of symmetric TSC scheme with N =

2,K = 2

(a) To retrieve W1

Option Database 1 Database 2 Probability Download cost, d[1]m

1 W1(1) φ p
[1]
1 1

2 φ W1(1) p
[1]
2 1

3 W2(1) W1(1) +W2(1) p
[1]
3 2

4 W1(1) +W2(1) W2(1) p
[1]
4 2

(b) To retrieve W2

Option Database 1 Database 2 Probability Download cost, d[2]m

1 W2(1) φ p
[2]
1 1

2 φ W2(1) p
[2]
2 1

3 W1(1) W1(1) +W2(1) p
[2]
3 2

4 W1(1) +W2(1) W1(1) p
[2]
4 2
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Table 4.3: The dissimilarity of probability distribution of queries according to the de-

sired message index seen at database 1 for N = 2,K = 2

Query Probability

q P
Q

[1]
1

(q) P
Q

[2]
1

(q)

φ p
[1]
2 p

[2]
2

W1(1) p
[1]
1 p

[2]
3

W2(1) p
[1]
3 p

[2]
1

W1(1) +W2(1) p
[1]
4 p

[2]
4

the JS divergence given as

ρJS (4.10)

= DJS(P
Q

[1]
1

, P
Q

[2]
1

)

=
1

2
DKL

(
P
Q

[1]
1

∥∥∥∥∥PQ[1]
1

+ P
Q

[2]
1

2

)
+

1

2
DKL

(
P
Q

[2]
1

∥∥∥∥∥PQ[1]
1

+ P
Q

[2]
1

2

)

=
1

2

p[1]2 log2
p
[1]
2

p
[1]
2 +p

[2]
2

2

+ p
[1]
1 log2

p
[1]
1

p
[1]
1 +p

[2]
3

2

+ p
[1]
3 log2

p
[1]
3

p
[1]
3 +p

[2]
1

2

+ p
[1]
4 log2

p
[1]
4

p
[1]
4 +p

[2]
4

2



+
1

2

p[2]2 log2
p
[2]
2

p
[1]
2 +p

[2]
2

2

+ p
[2]
3 log2

p
[2]
3

p
[1]
1 +p

[2]
3

2

+ p
[2]
1 log2

p
[2]
1

p
[1]
3 +p

[2]
1

2

+ p
[2]
4 log2

p
[2]
4

p
[1]
4 +p

[2]
4

2

 .

Note that if and only if P
Q

[1]
1

= P
Q

[2]
1

, then the JS divergence ρJS equals zero,

which means no information leakage. Assume the extreme case with uniform distribu-

tion, P
Q

[1]
1

(q) = P
Q

[2]
1

(q) = 1/4, q ∈ Q, and then it is easy to see that ρJS = 0 from

(4.10). The expected download cost in this case is 3/2 from (4.8) and (4.9), which is

the reciprocal of the PIR capacity without information leakage. Another solution to the
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extreme case achieving the download cost 1 to retrieve W1 or W2 is given as

(p
[1]
1 , p

[1]
2 , p

[1]
3 , p

[1]
4 ) =

(
1

2
,
1

2
, 0, 0

)
,

(p
[2]
1 , p

[2]
2 , p

[2]
3 , p

[2]
4 ) =

(
1

2
,
1

2
, 0, 0

)
,

respectively, which is the case using only the queries with download cost of 1. The JS

divergence for this solution is calculated as ρJS = 0.5 from (4.10). Lastly, an example

of intermediate solution with the download cost between the capacity and 1 is given as

(p
[1]
1 , p

[1]
2 , p

[1]
3 , p

[1]
4 ) =

(
1

3
,
1

3
,
1

6
,
1

6

)
,

(p
[2]
1 , p

[2]
2 , p

[2]
3 , p

[2]
4 ) =

(
1

3
,
1

3
,
1

6
,
1

6

)
,

respectively, which can achieve the download cost 4/3. ρJS ≈ 0.0409 is obtained for

this case.

The goal of this chapter is to find the optimal tradeoff between the information

leakage ρJS and the download cost D. We want to minimize the information leakage

(4.10) satisfying the download cost as in (4.8) and (4.9). We have three download cost-

information leakage pairs for now, and they are achievable in the regime of information

leakage measured by the JS divergence. We want to find the optimal pairs and connect

them into the optimal tradeoff curve. Then the optimization problem we have in this

example is given as

minimize ρJS = DJS(P
Q

[1]
1

, P
Q

[2]
1

)

subject to

2∑
m=1

p[k]m +

4∑
m=3

2p[k]m = D, k = 1, 2

4∑
m=1

p[k]m = 1, k = 1, 2,

(4.11)

where 1 ≤ D ≤ 1/C = 1 + 1/2 = 3/2.
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4.3.3 Example of Symmetric TSC Scheme with N = 3, K = 2

In this subsection, one more example with small N and K is presented without much

detail. A table similar to Table 4.3 is given to explore the dissimilarity between dis-

tributions. We use query structures to retrieve W1 and W2 as presented in Tables 3.2

(a) and 3.2 (b) from Subsection 3.3.3 but with desired message index added in the

superscript. The probabilistic queries of symmetric TSC scheme are in Tables 4.4 (a)

and 4.4 (b). Then the dissimilarity of probability distribution according to the desired

message index seen at the database 1 can be recasted in Table 4.5.

Then the optimization problem we want to solve is given as

minimize ρJS = DJS(P
Q

[1]
1

, P
Q

[2]
1

)

subject to
1

2

(
3∑

m=1

2p[k]m +
9∑

m=4

3p[k]m

)
= D, k = 1, 2

9∑
m=1

p[k]m = 1, k = 1, 2,

(4.12)

where 1 ≤ D ≤ 1/C = 1 + 1/3 = 4/3. The problem (4.12) will be solved in the next

section.

4.4 Optimal Tradeoff Between Information Leakage and Down-

load Cost under the Jensen-Shannon Divergence

4.4.1 Optimization Problem with General N,K

In this subsection, we will formulate the optimization problems (4.11) and (4.12) with

general N databases and K messages. From the general PIR query structure in Table

3.4 with general N and K, the optimization problem to minimize the JS divergence

seen at the database n with K probability distributions P
Q

[1]
n
, . . . , P

Q
[K]
n

as optimiza-
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Table 4.4: The probabilistic query structure of PIR scheme with N = 3,K = 2

(a) To retrieve W1

Option Database 1 Database 2 Database 3 Prob. Cost

1 W1(1) W1(2) φ p
[1]
1 2

2 φ W1(1) W1(2) p
[1]
2 2

3 W1(2) φ W1(1) p
[1]
3 2

4 W2(1) W1(1) +W2(1) W1(2) +W2(1) p
[1]
4 3

5 W1(2) +W2(1) W2(1) W1(1) +W2(1) p
[1]
5 3

6 W1(1) +W2(1) W1(2) +W2(1) W2(1) p
[1]
6 3

7 W2(2) W1(1) +W2(2) W1(2) +W2(2) p
[1]
7 3

8 W1(2) +W2(2) W2(2) W1(1) +W2(2) p
[1]
8 3

9 W1(1) +W2(2) W1(2) +W2(2) W2(2) p
[1]
9 3

(b) To retrieve W2

Option Database 1 Database 2 Database 3 Prob. Cost

1 W2(1) W2(2) φ p
[2]
1 2

2 φ W2(1) W2(2) p
[2]
2 2

3 W2(2) φ W2(1) p
[2]
3 2

4 W1(1) W1(1) +W2(1) W1(1) +W2(2) p
[2]
4 3

5 W1(1) +W2(2) W1(1) W1(1) +W2(1) p
[2]
5 3

6 W1(1) +W2(1) W1(1) +W2(2) W1(1) p
[2]
6 3

7 W1(2) W1(2) +W2(1) W1(2) +W2(2) p
[2]
7 3

8 W1(2) +W2(2) W1(2) W1(2) +W2(1) p
[2]
8 3

9 W1(2) +W2(1) W1(2) +W2(2) W1(2) p
[2]
9 3
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Table 4.5: The dissimilarity of probability distribution of queries according to the de-

sired message index seen at database 1 for N = 3,K = 2

Query Probability

q P
Q

[1]
1

(q) P
Q

[2]
1

(q)

φ p
[1]
2 p

[2]
2

W1(1) p
[1]
1 p

[2]
4

W1(2) p
[1]
3 p

[2]
7

W2(1) p
[1]
4 p

[2]
1

W2(2) p
[1]
7 p

[2]
3

W1(1) +W2(1) p
[1]
6 p

[2]
6

W1(1) +W2(2) p
[1]
9 p

[2]
5

W1(2) +W2(1) p
[1]
5 p

[2]
9

W1(2) +W2(2) p
[1]
8 p

[2]
8
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tion variables is formulated as follows:

minimize ρJS = DJS(P
Q

[1]
n
, . . . , P

Q
[K]
n

)

subject to
1

N − 1

 N∑
m=1

(N − 1)p[k]m +

NK∑
m=N+1

Np[k]m

 = D, k ∈ [1 : K]

N∑
m=1

p[k]m = 1, k ∈ [1 : K].

(4.13)

Note that there are NK query options. Among them, N query options have the down-

load cost of (N − 1), and the rest of NK − N options have the download cost of

N . Again, queries are symmetric across databases and all possible queries appear

in each database with probability. Therefore considering only one arbitrary database

n ∈ [1 : N ] is enough to solve the optimization problem.

Remark 6. Note that the JS divergence suits well to compare more than two multiple

probability distributions. At a glance, ρJS = DJS(P
Q

[1]
n
, . . . , P

Q
[K]
n

) captures how the

K distributions vary depending on what the desired message is. Furthermore, there is

no need to introducing the reference probability distribution U indicating no informa-

tion leakage in the PIR system as in Chapter 3. The amount of information leakage is

decided only from the user’s choice of retrieval probability.

An analytic or explicit solution to the optimization problem (4.13) is hard to obtain

because of the complexity. Each of the K probability distributions P
Q

[k]
n
, k ∈ [1 : K]

have NK optimization variables. Therefore there are KNK optimization variables

in (4.13). However, fortunately, the JS divergence is known to be convex [29] in its

domain. By intuition, the JS divergence is a weighted sum of KL divergences which

is convex in its domain. Therefore with the affine constraints in (4.13), there exists a

global optimum solution.
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4.4.2 Numerical Analysis with Examples

In this subsection, we present the numerical solution to two examples previously con-

sidered, N = 2,K = 2 case and N = 3,K = 2 case. Curves representing the trade-

offs between information leakage and the download cost are shown in Figures 4.1 and

4.2. For both cases, the download costs shown in the figures are normalized with their

desired message size L. We can find two extreme points located at the bottom right

corner and the top left corner of each graph. The bottom right corner corresponds to

the case where there is no information leakage. The download cost for this point is the

reciprocal of PIR capacity (2.1),

1

C
= 1 +

1

N
+

1

N2
+ · · ·+ 1

NK−1 .

In the two examples, 1/C are computed as

1 +
1

2
=

3

2
= 1.5,

1 +
1

3
=

4

3
≈ 1.3333,

respectively, which agree with the graphical results. This point can be achieved by

using uniform distribution to P
Q

[k]
n
, k ∈ [1 : K] for all NK options.

The top left corner corresponds to the case where only direct downloading is used

without keeping any privacy. The download cost for this point is 1 and information

leakage reaches its maximum. This point can be achieved by using uniform distribution

to P
Q

[k]
n
, k ∈ [1 : K] for the first N options, that is,

p[k]m =


1
N , m = 1, . . . , N

0, otherwise.

One can think of only using the first option among the N direct downloading options.

In the example of N = 2,K = 2, this will lead to

(p
[1]
1 , p

[1]
2 , p

[1]
3 , p

[1]
4 ) = (1, 0, 0, 0) ,

(p
[2]
1 , p

[2]
2 , p

[2]
3 , p

[2]
4 ) = (1, 0, 0, 0) .
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However, the JS divergence derived from these probability distributions is somewhat

different. Specifically, in this case, ρJS seen at the database 1 becomes 1 and ρJS

seen at the database 2 becomes 0. Therefore, we can bias information leakage between

the databases, which can be advantageous in some practical scenarios. Note that the

average information leakage is still 0.5, which agrees with the graphical result.
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Figure 4.1: Optimal tradeoff between information leakage by the JS divergence and

the normalized download cost of PIR scheme with N = 2, K = 2.

75



1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PIR capacity achieving point

without information leakage

Maximum leakage point

with minimum download cost

Figure 4.2: Optimal tradeoff between information leakage by the JS divergence and

the normalized download cost of PIR scheme with N = 3, K = 2.
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Chapter 5

Conclusions

In this dissertation, research on the private information retrieval with information leak-

age was presented.

In Chapter 2, some preliminaries of PIR were briefly overviewed. Basic concepts

of PIR and related researches were introduced, especially for the problem with infor-

mation leakage. The convex optimization was also introduced.

In Chapter 3, the PIR problem with information leakage under the Kullback-Liebler

divergence was proposed. The symmetric TSC PIR scheme with probabilistic query

structure is adopted as the target of optimization. Given a probability distribution with

no leakage as a reference, the KL divergence measures how much a probability distri-

bution diverges from the perfect privacy. Information leakage establishes the tradeoff

relationship with the performance measure of the PIR system, the download cost. The

information leakage measured by the KL divergence is minimized with the entropy

minimization problem. By using the given probabilistic PIR query structure, an ana-

lytic solution to the optimal tradeoff is found. We also considered an alternative PIR

scheme that has different tradeoff curves. At some range with increased information

leakage, the alternative PIR scheme shows a better tradeoff than that of the symmetric

TSC scheme.

In Chapter 4, another PIR problem with information leakage under the Jensen-
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Shannon divergence is proposed. For the same problem settings with probabilistic PIR

query structure, the divergence between the probability distributions of queries that de-

pend on the identity of the desired message was measured with the JS divergence. The

JS divergence is advantageous since unlike other commonly used dissimilarity mea-

sures, it captures more than two distributions, which is desirable in our scenario of the

PIR system. It was no longer necessary to have the predefined probability distribution

indicating no leakage in the PIR system. The tradeoff between the information leak-

age taken by JS divergence and the download cost is solved with convex optimization

formulation.
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초록

이논문에서의두가지주요공헌은다음과같다.

• Kullback-Leibler발산으로측정한정보누출이존재하는개인정보검색문제

를만들고해결하였다.

• Jensen-Shannon발산으로측정한정보누출이존재하는개인정보검색문제

를만들고해결하였다.

첫째로, Kullback-Leibler발산을사용하여정보누출이존재하는개인정보검색

문제를제안한다.정보누출량은 Kullback-Leibler발산으로측정된다.발산이가지

는의미는개인정보검색시스템에누출이없게되는기준이되는특정분포로부터

사용자가 선택할 수 있는 임의 분포로의 차이를 측정한 것이다. 정보 누출은 개인

정보 검색 시스템의 성능인 다운로드 비용 측면에서 도움을 줄 수 있다. 가능한 한

효율적으로 정보 누출을 이용하는 방법을 찾고자 하였으며 정보 누출과 다운로드

비용간의최적의균형지점을찾는문제를제시하였다.이문제는컨벡스최적화문

제로만들어해결하였다.또한,일부트레이드오프구간에서기존의개인정보검색

방식보다 더 나은 성능을 보여주는 메시지 길이가 더 짧은 개인 정보 검색 방식을

제안하였다.

둘째로, Jensen-Shannon발산을사용하여정보누출이존재하는개인정보검색

문제를 제안한다. Jensen-Shannon 발산은 Kullback-Leibler 발산을 기반으로 하는

확률 분포 사이의 비유사성을 나타내는 값이다. 사용자가 원하는 메시지가 무엇이

냐에 따라 사용자가 선택할 수 있는 확률 분포의 차이가 발생하고 그 확률 분포들
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간의 발산을 측정한다. Jensen-Shannon 발산에는 몇 가지 적절한특징이있는데 그

중 하나는 3 개 이상의 확률 분포 간의 비유사성을 측정할 수 있다는 것이다. 이를

이용하여 Jensen-Shannon발산으로공식화된문제에는개인정보검색시스템에누

출이없게 되는 기준이 되는 특정 분포가 필요하지 않다. Jensen-Shannon 발산으로

측정된정보누출과다운로드비용간의균형지점은컨벡스최적화문제로만들수

있으며,시뮬레이션을통한솔루션이제시되었다.

주요어: 컨벡스 최적화, 다운로드 비용, 정보 누출, 정보 이론, Jensen-Shannon(JS)

발산, Kullback–Leibler(KL)발산,개인정보검색.

학번: 2015-21002
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