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Over the past two decades, metamaterials have revolutionized how we 

manipulate classical waves. They allow us to obtain constitutive parameters 

beyond the bound of natural materials by artificially designing tailor-made 

resonance modes in the unit structure. Since all wave dynamics are 

anticipated from the constitutive parameters landscape in which the wave 

propagates, the implementation of entire constitutive parameters enables 

intriguing theoretical and practical applications in many wave systems, such 

as negative refraction and invisibility cloaking. Although various structures 

have been successfully proposed to obtain extraordinary wave properties, the 
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design approach to the existing metamaterial poses fundamental challenges 

in realizing the physical properties. 

In many practical applications, metamaterial structures capable of 

independent control of each wave property has been envisaged as an ideal 

platform for reconfigurability. While metamaterial structures consisting of a 

combined substructure that controls one of the fundamental resonances have 

been proposed, it is required that an integrated platform offering decoupled 

control of the wave parameters. In particular, in the case of reconfigurable 

metamaterials, tuning the constitutive parameters depends on modifying the 

physical structure attached to the metamaterials, posing a fundamental 

challenge in the tuning range. Therefore, there is a need for a study to achieve 

flexible control and realize extreme properties. 

In this dissertation, I provide the top-down design approach of the 

reconfigurable acoustic metamaterial that overcomes conventional 

limitations and achieves designer wave properties. Based on the principles of 

decoupling of fundamental resonances, acoustic metamaterial platforms that 

offer independent control of wave parameters and their applications are 

presented. Then, I propose the concept of virtualized metamaterials on their 

signal response function to escape the boundary inherent in the physical 

structure of metamaterials, which generate artificial polarizations based on 

the digital signal processing technique, escaping physically resonating 

structure. Virtualized metamaterials enable decoupled control of all possible 

complex wave parameters in a reconfigurable manner and extreme wave 
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properties. This dissertation is expected to provide a breakthrough in 

metamaterial design by implementing all wave properties independently, 

realizing designable frequency dispersion characteristics, and providing a 

flexible platform that can realize acoustic metamaterials' full capability.  

 

Keywords : Metamaterials, Acoustics, Bianisotropy, Active Metamaterials, 

Wave dynamics 
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Chapter 1 

 

Introduction 

 

In this chapter, I overview the progress and challenges in metamaterials. I 

introduce metamaterials in electromagnetic, acoustic, and elastic systems and 

present practical applications in a sense manipulating wave dynamics. Recent 

achievements and fundamental challenges underlying in realize 

metamaterials are discussed. In the last part, the scope and outline of this 

dissertation are described. 
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1.1. Achievements and challenges in metamaterials 

Metamaterials are artificial structures that offer extraordinary wave properties 

that cannot found in natural media. They enable unusual manipulations of 

classical waves, initially in the case of electromagnetic waves [1-9] and 

subsequently for acoustic waves [10-18], water waves[19], and more recently, 

elastic waves in solids [20-24]. In electromagnetics, artificial magnetism 

exhibiting negative permeability [5], double negative metamaterials [6], 

matched-zero index materials [7,8], and extremely high index metamaterials 

[9] have been demonstrated in microwave, terahertz, and optical frequencies. 

With a similar analogy to the electromagnetic metamaterials, acoustic and 

elastic metamaterials have realized tailor-made resonances for bulk modulus 

[12] and mass density [14] in different frequencies and background systems. 

The ability of metamaterials to acquire physical properties beyond those of 

natural materials reflects the engineering degrees of freedom in designing 

artificial structures. 

Since then, many intriguing phenomena manipulating classical waves further 

than the conventional method have been demonstrated, such as negative 

refraction [25-27], superfocusing [28-32], extraordinary transmission [33], 

invisibility cloaking [34-36], and metasurfaces [37-39]. In addition, 

metamaterials allow the quantum-classical analogy [40], which enables not 

only the classical simulation of unstable quantum phenomena [41,42] but also 

quantized wave dynamics in the classical system, including the quantum Hall 
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effect and topological theory [43-46], parity-time symmetry and non-

Hermitian degeneracy [47], Anderson localization [48], Bloch oscillations 

[49,50], and supersymmetry [51-55], which require the most extreme values 

of the constitutive parameters [56,57]. These effects consistently confirm that 

metamaterials can be designed to yield a wide range of constitutive 

parameters and can be inhomogeneous.  

 

 

Figure 1.1 | a-c, Electromagnetic metamaterials exhibiting artificial 

magnetism. (a) Photograph of the zero-index metamaterial sample consists of 

SRR and wire strips at microwave [3]. (b) An electron micrograph of an SRR 

fabricated by electron-beam lithography for 100 THz [5]. (c) Field-emission 

scanning electron microscope images (left) and elementary cell (right) of 

optical negative index metamaterial [6]. d-f, Acoustic metamaterials (d) 

Helmholtz resonator with negative bulk modulus [12]. (e) Membrane type 

acoustic metamaterials with negative mass density [14]. (f) Negative 

refractive index using space-coiling structure [16]. 
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To make further use of metamaterials in practical situations, many 

applications require tunability or reconfigurability. This can be achieved by 

optical pumping active materials [58,59], mechanically changing geometric 

parameters using MEMS [60,61], or combining external RLC circuit 

elements with metamaterial structures. Tuning can also be extended to the 

level of each atom when backend electronics such as an FPGA chip or a 

computer are used to store and alter the state of the controlling parameters 

[62-64]. For most of these metamaterials, the tuning largely depends on the 

actual mechanism for modifying the metamaterial resonance of the physical 

structures. 

To this end, the separation of wave parameters has been predicted as an ideal 

platform for the deterministic reconfiguration of the meta-atom [65], while its 

validity has not yet responded. In many cases, metamaterial design has been 

realized using bottom-up, retro-fit approaches, in which the building blocks 

are proposed first, and the subsequent design is performed through a series of 

iterations and guesswork. Furthermore, reconfigurable metamaterials pose a 

fundamental challenge in terms of the degree of flexibility or range of 

tunability, which is crucial in many applications requiring real-time 

reconfigurability. Additionally, it is hard to imagine using standard 

approaches for separately configuring resonating strength, bandwidth, and 

phase lag, e.g., for a Lorentzian frequency dispersion, as these depend on the 

actual tuning mechanisms. 

In the context of tunability and reconfigurability, acoustic metamaterials, 
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mainly programmable by electronically controlled elements, can be used to 

achieve a wide range of tunable effective parameters [66-70]. These acoustic 

metamaterials have proved useful as a platform for many intriguing wave 

phenomena, such as unidirectional invisibility [67], sound isolation [68], 

Willis coupling [69], and highly tunable mechanical properties [70]. These 

works point to the direction that programmable control with external circuits 

or microprocessors can be used to provide a higher level of abstraction of the 

physical properties of metamaterials.  
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1.2. Outline of the dissertation 

This dissertation is focused on the design of bianisotropic acoustic 

metamaterial to provide a platform that enables decoupled control of acoustic 

wave properties in a reconfigurable way, as well as to offer extreme wave 

properties.  

In chapter 2, I introduce acoustic wave dynamics starting from the duality 

relation between acoustics and electromagnetics. Then I provide the 

definition and characteristics of bianisotropy and its applications. The 

experimental methods utilized in this work are also elaborated here. In chapter 

3, the top-down approach of bianisotropic acoustic metamaterials is addressed, 

and meta-atom structures implemented with membrane and space-coiling 

structures are provided. By extending the generalized Snell’s law, it is also 

introduced that deterministic approach to design metasurface, which 

independently manipulates reflection and transmission wavefronts. Chapter 4 

present the concept of virtualized metamaterials, reconfigurable 

metamaterials that generate artificial polarization based on the digital 

convolution signal processing technique. Demonstration of one-dimensional 

acoustic virtualized meta-atom proved programmable polarizabilities in a top-

down manner. In chapter 5, by extending the virtualization concept to 

bianisotropic metamaterials, extreme wave properties including reciprocal 

bianisotropy beyond the passivity limit, remarkably high nonreciprocity 
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without rapid flow, and broadband-, flat- frequency dispersions are 

demonstrated. 
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Chapter 2 

 

Acoustic Wave Dynamics 

 

This chapter introduces the background theory of linear acoustic wave 

dynamics. First, I briefly provide the governing wave equations for acoustic 

and electromagnetic systems, focusing on the duality relationship. The 

characteristics of bianisotropy with detailed classification are discussed in the 

electromagnetic and acoustic domains. Finally, experimental methods for the 

bianisotropic acoustic medium utilized in this work are described. 
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2.1 Duality relation between acoustics and 

electromagnetics 

The similarity between governing equations in different physical systems has 

provided novel perspectives and applications distinct from traditional 

viewpoints. This section provides the duality relation between acoustics and 

electromagnetics. Acoustic wave dynamics are governed by the linearized 

Euler’s equations consist of conservation of mass and Newton’s second law, 

,

,

t

t

p

e

  

   

π

v
    (2.1) 

where p and v are acoustic pressure and velocity fields, π is the momentum 

field, and e is the strain field. In isotropic acoustic media, strain and 

momentum fields are simply defined as 

1 ,

,

e B p





π v
    (2.2) 

where B is the bulk modulus and ρ is the mass density. Eqs. (2.1) and (2.2) 

lead to the acoustic wave equation for the scalar pressure field as 

 2 2

2

1
0,tp p

c
       (2.3) 

or equivalently, but for the velocity field, 

2 2

2

1
0,t

c
   v v     (2.4) 
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where c = (B/ρ)1/2 is the speed of the acoustic wave. 

On the other hand, electromagnetic wave dynamics are governed by the 

Maxwell equations, of which source-free case can be written as, 

0

0

t

t

  

  

 

 

E B

H D

D

B

     (2.5) 

where E, H, D, and B are electric field, magnetic field, electric displacement, 

and magnetic field density, respectively, with constitutive relation  









D E

B H
    (2.6) 

where ε and μ are electric permittivity and magnetic permeability. These two 

equations have a duality relation between two-dimensional acoustic and 

electromagnetic systems with a single polarization. In Cartesian coordinate, 

the acoustic wave and transverse electric (TE) or transverse magnetic (TM) 

polarized electromagnetic waves which only contain z-directional electric 

field E = Ezz or H = Hzz are identical when exchanging the variables as 

follows:  

TE case  1

zp B E    v z H   , (2.7a) 

TM case  1

zp B H     v z E   . (2.7b) 

While acoustic wave equations do not satisfy invariant symmetry in 3D [71], 
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which is crucial for the coordinate transformation[65], duality relations in Eq. 

(2.7) enable direct adaption of electromagnetically demonstrated phenomena 

into acoustic systems, e.g., acoustic cloaking [72-74], acoustic hyperlens [75], 

extraordinary acoustic transmission [76], and many intriguing applications. It 

is noted that because acoustic waves with a solely longitudinal nature offer a 

single polarization mode, duality relation cannot be utilized for 

electromagnetic waves with mixed polarization. I further note that the elastic 

waves that have both longitudinal and transverse polarizations can have a 

duality relation with the electromagnetic system while it requires polarization 

restrictions in elastic systems. 
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2.2 Bianisotropy 

2.2.1 Bianisotropy in electromagnetics 

Bianisotropy is an exotic electromagnetic property that describes the coupling 

between electric and magnetic fields. The simplest form of electric and 

magnetic field coupling, which is referred to as bi-isotropy, can be expressed 

by the following constitutive relation, 

 

 

D E H

B H E

 

 
     (2.8) 

where ξ and ζ are magnetoelectric- and electromagnetic- coupling constants, 

or simply bi-isotropic parameters. By decomposing ξ and ζ based on the 

Lorentz reciprocity, Eq. (2.8) can be rewritten as, 

 

 

i

i

 

  

D E H

B H E

  

  
   (2.9) 

where κ ≡ i(ξ − ζ)/2 and χ ≡ i(ξ + ζ)/2 are reciprocal- and nonreciprocal bi-

isotropic parameter, respectively. In bi-isotropic materials for both reciprocal 

and nonreciprocal cases, the cross-coupling results in energy exchange 

between different polarizations, and thus, waves propagating in these media 

undergo polarization rotation. Bi-isotropic reciprocal media (κ ≠ 0) is often 

referred to as chiral media, while the bi-isotropic nonreciprocal media (χ ≠ 0) 

is called Tellegen media [77], which has long been debated whether they can 

physically realizable.  
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To further generalize bi-isotropy, one can conceive cross-coupling with 

anisotropic tensorial form as anisotropic media. These generalized linear 

electromagnetic properties can be written as following bianisotropic 

constitutive relations 

  

   

D ε E ξ H

B μ H ζ E
    (2.10) 

where ε and μ are the permittivity and permeability parameters in the form of 

dyadic tensor, ξ and ζ are bianisotropic dyadic. Again based on the Lorentz 

reciprocity, Eq. (2.10) can be rewritten as,  

 
 

T Ti

i

   

    

D ε E χ κ H

B μ H χ κ E
   (2.11) 

where κ ≡ i(ξT − ζ)/2 and χ ≡ i(ξT + ζ)/2 are reciprocal- and nonreciprocal- 

bianisotropic parameters, respectively, with superscript T denotes transpose 

operation.  

The bianisotropy can be classified into two significant groups based on the 

symmetry of the bianisotropic dyadic. First, the media with symmetric κ and 

χ, i.e., κ = κT and χ = χT, are usually referred to as bi-isotropic since these 

kinds of couplings involve energy exchange between different polarizations 

as bi-isotropic media discussed above. On the other hand, antisymmetric κ 

and χ, i.e., κ = −κT and χ = −χT are called bianisotropic parameters, 

distinguished by their unique property that exchanges the intensity between 
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electric and magnetic field in the same polarization. More strict classification 

and capabilities of the bianisotropy can be found in Tretyakov et al. [78]. 

Media with antisymmetric κ will exchange the intensity between electric and 

magnetic fields while conserving the polarization. These media are called 

omega media since Ω-shape structure can efficiently produce electromagnetic 

coupling in a single polarization. In omega media, wave feels different 

impedances depending on the direction of propagation. For example, in one-

dimensional reciprocal bianisotropic media with  

0 0 0

, , 0 0 0

0 0

 



 
 

    
 
 

ε I μ I κ ,   (2.12) 

where I is the unit dyadic, wave impedances for +x and –x directions are given 

by 

,f bz z
n i n i

 

 
 

 
,    (2.13) 

with refractive index n = ± (εμ – κ2)1/2. 

Antisymmetric χ, i.e., nonreciprocal bianisotropy, has a close relationship to 

the Lorentz transformation of moving media. i.e., objects moving with the 

velocity v feels bianisotropic parameter as 

2

2 2

1

1
ij ijk k

n

n
  




 


,   (2.14) 
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where β = v/c0, n is the refractive index of the reference media. In the 

nonreciprocal bianisotropic media, the wave feels a different refractive index 

along the propagation direction. In a 1-D system with 

0 0 0

, , 0 0 0

0 0

 



 
 

    
 
 

ε I μ I χ ,    (2.15) 

refractive indices for +x and –x directions are given by 

,f bn n n n     ,  (2.16) 

where n is the refractive index of the reference media.  

It is important to investigate the scattering properties of a bianisotropic slab 

for applications such as bianisotropic metasurface. For the reciprocal 

bianisotropic case, reflection coefficients could differ because of the 

directional impedances, while the transmittance should be identical. On the 

other hand, for the nonreciprocal bianisotropy, the transmittance is different 

by the different refractive index, while reflection coefficients are the same. I 

further generalize the above direction-wise scattering parameters in one-

dimensional bianisotropic media. When the wave propagates through the 

bianisotropic slab with thickness d and wave parameters, 

0 0 0 0 0 0

, , 0 0 0 , 0 0 0

0 0 0 0

 

 

   
   

      
   
   

ε I μ I κ χ ,   (2.17) 
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scattering parameters (S-parameters) are given by 

   

     

     

     
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     
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
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 


    


    


    

 


    

   (2.18) 

with direction-wise refractive indices and impedances in Eqs. (2.13) and 

(2.16). While in mirror-symmetric metamaterials which are non-bianisotropic, 

S-parameters are simply represented by reflection coefficient S11 = S22 and 

transmission coefficient S21 = S12, all four S-parameters have to be elaborated 

in bianisotropic media to extract wave parameters accurately. 
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2.2.2 Acoustic bianisotropy 

There exist an acoustic analogy of bianisotropy that describes the coupling 

between pressure and velocity field. Acoustic bianisotropy, also known as the 

acoustic Willis coupling, was originally anticipated by Willis et al. [79] in 

elastic waves. In bianisotropic acoustic media, constitutive relations are given 

by 

 
 

1 T Te B p i

i p

  

   

χ κ v

π ρ v χ κ
   (2.19) 

where ρ is the mass density dyadic tensor and κ and χ are reciprocal and 

nonreciprocal bianisotropic parameters, respectively, which are the first order 

dyadic. It is noted that as implicitly described in Eq. (2.19), due to the 

longitudinal nature of acoustic waves, acoustic bianisotropy must not be bi-

isotropic but bianisotropic. Therefore, acoustic bianisotropic media have a 

duality relation with the electromagnetic system with specific single-

polarization, and thus the characteristics are identical to the electromagnetic 

bianisotropic media such as omega media and moving media. 

To realize acoustic bianisotropy, it is required to break the mirror symmetry 

as analogous to electromagnetic bianisotropy. Considering the wave 

longitudinal nature of the acoustic wave, the asymmetry along the acoustic 

wave propagation direction lifts the reciprocal bianisotropy like omega media. 

In Fig. 2.1, reciprocal bianisotropy is demonstrated by breaking the mirror 

symmetry: Demonstration of acoustic bianisotropy utilizes asymmetrically 
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located resonating membranes along the propagation direction (Fig. 2.1a,b) 

[80,81]. By maximizing the asymmetry of the Helmholtz resonator, reciprocal 

bianisotropy close to the theoretical maximum was demonstrated (Fig. 2.1c) 

[82] 

For the nonreciprocal bianisotropy, asymmetric flow cause the nonreciprocal 

bianisotropy along the current direction, which can be written as, 
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M

M
  


,     (2.20) 

where M = v/c0 is the Mach number, v is the flow speed, and c0 is the speed 

of acoustic wave [83]. This result is similar to the Lorentz transformation in 

electromagnetics, while differences lie in the relativistic perspectives. Figure 

2.2 shows examples of nonreciprocal acoustic bianisotropic media realized 

by circulating fluid [84] and deriving speakers [85]. 

The recent realization of acoustic bianisotropy with an adequately designed 

inverse bulk modulus and mass density enables the exotic manipulation of 

acoustic waves. Figure 2.3 shows applications of bianisotropic acoustic 

metamaterials. Reciprocal bianisotropic media allows acoustic metagratings 

that manipulate acoustic wavefront with single unit cell structure (Fig. 2.3a) 

[86] and diffraction free metasurface, which enables 100% transmission of 

power without diffraction losses (Fig. 2.3b) [87]. Nonreciprocal bianisotropic 

media realizes acoustic circulator, which is analogous to optical Zeeman 

effect (Fig. 2.3c) [84], and directional wave manipulations (Fig. 2.3d) [83]. 
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Figure 2.1 | Acoustic reciprocal bianisotropic metamaterials using a,b, 

asymmetric membranes [80,81] and c, Helmholtz resonator [82]. 

 

Figure 2.2 | Acoustic nonreciprocal bianisotropic metamaterials using a, 

circulating fluid [84], b, resonator cascaded deriving speakers [85]. 

 
Figure 2.3 | Applications of acoustic bianisotropic metamaterials. a, Acoustic 

metagrating [86], b, diffraction free metasurface [87], c, Acoustic isolator 

[84], and d, nonreciprocal metalens [83]. 
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2.3 Experimental methods 

To characterize acoustic properties of metamaterials such as mass density, 

inverse bulk modulus, and bianisotropy, 4-point measurement with a National 

Instruments DAQ device and LabVIEW have been used with a properly 

designed impedance tube. The impedance tube, which is an acoustic 

waveguide with a small cross-section compared to the wavelength of interest 

to carry node-free one-dimensional acoustic waves, measures the specimen's 

scattering coefficients. As depicted in Fig. 2.4, the incident acoustic wave 

generated by the loudspeaker is scattered by the specimen, and four 

microphones - two of them are located on the upstream side, and the others 

are on the downstream side measure forward and backward propagating 

components at each side. Microphone detected signal can be expressed by 
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   (2.21) 

where M1, M2, M3, and M4 are microphone detected signal. The S-parameters 

of the specimen can then be given as follows. 
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1 11 12 1

2 21 22 2

p S S p

p S S p

 

 

    
    

    
.    (2.20) 

In non-bianisotropic media, the reciprocity constrains S11 = S22 and S12 = S21, 

and thus single measurement can determine S-parameters. However, 

bianisotropic media require at least two times measurements with 

independent incident waves. In this work, the scattering properties of the 

meta-atom were tested by means of incident waves coming from the forward 

and backward directions. In the experimental setup, I flipped the orientation 

of the meta-atom, while the waves were always incident from the same end 

of the impedance tube. 

 

 

Figure 2.4 | Schematics of 4-point measurement method in an impedance tube. 
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Chapter 3 

 

Top-down Design of Acoustic Metamaterials 

 

In this chapter, I introduce the top-down design approach, the strategy for the 

decoupling of fundamental oscillations, which allows independent control of 

wave parameters. Based on the separation of characteristic oscillations, the 

underwater design of one-dimensional bianisotropic meta-atom controlling 

mass density, the inverse of bulk modulus, and bianisotropy near zero-index 

point is presented. I also propose bianisotropic acoustic metasurfaces that 

manipulate reflection and transmission wavefront independently by 

extending the concept of generalized Snell’s law, which enables deterministic 

control of reflection and transmission coefficients. Lastly, I also present the 

design of two-dimensional acoustic metamaterials using a space-coiling 

structure that is readily applicable to other background acoustic media.  
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3.1 Introduction to a top-down approach to design 

metamaterials 

For the reconfigurable control of metamaterials, independent and decoupled 

access to each wave properties are desired. To this end, metamaterials have 

been demonstrated that allow independent adjustment of each wave 

parameter [56,88-90], while most of them consist of substructures that adjust 

only one of the fundamental resonances responsible for the wave parameters. 

These fundamental oscillations are basically monopole and dipole resonance, 

which is elucidated from the effective medium theory for electromagnetics 

[91], the acoustics [80], or the elastics [92]. These can also be found in the 

Dirac-like point in zero-index metamaterials, where fundamental modes for 

each wave parameters degenerate. Figure 3.1 shows the dispersion relation of 

zero-index metamaterial and three eigenmodes at triply degenerated Dirac-

like point of TE polarized electromagnetic waves in which permittivity and 

permeability are controlled by the monopolar and dipolar resonances. From 

this zero-index point, all signs of wave parameter space can be accessed by 

tuning these resonance modes. 

Therefore, to realize decoupled access to the wave parameters, the top-down 

design approach conceives the Lieb lattice-like cross-shaped meta-atom 

structure as depicted in Fig.3.2a. The unit cell consists of one central 

resonator resonating at ω1 and four side resonators resonating at ω2. And the 

coupling between the center to side resonator and side to side resonators is 
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given by κ12 and κ22, respectively. Then, the coupled-mode equations of the 

Lieb-like system can be summarized to eigenvalue problems as below, 

1 12 12 12 12

12 2 22

12 22 2

12 2 22

12 22 2

0 0

0 0

0 0

0 0

i i i i

i i

i i

i i

i i

 
 
 
   
 
 
   

    

  

   

  

  

.  (3.1) 

Eq. (3.1) has monopolar eigenmode ψ0 and degenerate dipolar eigenmodes 

ψx and ψy as shown in Fig. 3.2b, with resonance frequencies of each 

eigenmodes ω0, ωx, and ωy. The system requires to have proper resonance 

frequencies ω1 and ω2 and coupling constants κ12 and κ22, such that ω0 = ωx,y, 

to realize the zero-index property. These physical parameters can be realized 

with a variety of structures. For example, top-down acoustic metamaterials 

based on the mass loaded membrane resonator enables decoupled access to 

the bulk modulus and mass density by tuning the membrane mass [80]. The 

top-down approach can be used for different background media or different 

systems. 
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Figure 3.1 | Zero-index metamaterials and fundamental modes. a, Dirac-like 

dispersion near the zero-index frequency in the square lattice for TE 

electromagnetic waves. b, Fundamental modes at Dirac-like point for (left) z-

directional permittivity and (mid and right) permeabilities for y- and x- 

directions [93].  

 

 

Figure 3.2 | Lieb-like structure and fundamental modes. a, Schematics of 

coupled-mode analysis to design zero-index metamaterials. b, Fundamental 

modes of interests. c, Implementation of top-down acoustic metamaterials 

based on the mass loaded membrane resonator [80]. 
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3.2 Top-down design of bianisotropic acoustic 

metamaterials for underwater applications 

In this section, I provide a 1-D top-down bianisotropic meta-atom design for 

underwater background media. In the water, the design of acoustic 

metamaterials suffers from the low contrast of inverse bulk modulus and mass 

density compare to that in the air. This limits the design degree of freedom by 

reducing the possibility of mass adjustment and increasing the complexity of 

the flexural stiffness of the membrane as a plate. Therefore, to utilize the same 

approach used in Ref. [80], I reduce the dimension of meta-atom to 1-D and 

use the membrane material like copper, which has a density of 8960 kg/m3
, 

due to the shortage of mass tunability as depicted in Fig.3.3a. In this structure, 

inverse bulk modulus, mass density, and bianisotropy are controlled by the 

thickness of the inner membrane ti, outer membrane to, and the differences in 

inner membranes Δti. Figure 3.3b shows the frequency disperse on of the 

effective wave parameters retrieved from the S-parameters, which 

demonstrate the matched zero-index at a target frequency of 50 kHz when 

structural parameters of to = 2.2 mm and ti = 1.5 mm. Here, solid lines and 

dashed lines are depicted with and without structural analysis, which includes 

the bending stiffness of the plate. In Fig. 3.3c-e, numerical analysis 

demonstrates the decoupled control of mass density, inverse bulk modulus, 

and bianisotropy with control parameters to, ti, Δti, respectively.  
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Figure 3.3 | 1-D acoustic metamaterials with resonating membrane for 

underwater operation. a, Schematics of designed acoustic meta-atom. 

Effective wave parameters mass density, inverse bulk modulus, and 

bianisotropy are controlled by the thickness of the inner membrane, outer 

membrane, and the differences in inner membranes. b, Frequency dispersion 

of effective wave parameters for matched zero-index meta-atom retrieved 

from scattering parameters. Solid lines and dashed lines are numerical 

calculations with and without structural analysis, which includes bending 

stiffness of the plate. c-e, Decoupled control of wave parameters in 1-D 

acoustic meta-atom. (c) Mass density, (d) inverse bulk modulus, and (e) 

reciprocal bianisotropy numerically obtained by the scattering parameter 

retrieval method. 
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3.3 Extended generalized Snell’s law for 

independent manipulation of scattering wave-fronts 

In this section, I propose bianisotropic acoustic metasurfaces that manipulate 

reflection and transmission wave-front independently. Metasurfaces enable 

compact wave manipulation by forming abrupt phase shifts within extremely 

thin thickness, where the phase shift is delicately designed to perform proper 

operations. For the manipulation of the wavefront, the generalized law of 

reflection and refraction is utilized, which is given by [37] 
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    (3.2) 

where θi, θr, and θt are the angle of incidence, target reflection, and 

transmission angle, ni and nt are the refractive indices in the incident and 

transmitted side media, λ0 is the free space wavelength at operation frequency, 

and Φ is the required phase distribution on the metasurface. In this scheme, 

the phase shift is realized with the array of resonators that have an identical 

level of scattering amplitude but different phases covering all 2π range. In 

most cases, resonating structures are constructed by the bottom-up scenario, 

i.e., scanning the scattering amplitude and phase by sweeping structural 

parameters as shown in Fig. 3.4b,c.  
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For a more systematic manner, metasurfaces that controlling reflection and 

transmission wavefronts can be designed with the distribution of the 

bianisotropic wave parameters. For example, Huygens’ surface [94] is the 

design approach based on the control of electric and magnetic polarizabilities 

to induce transmission phase shift while matching the impedances to make 

reflectionless metasurface. While the Huygens’ surface can directly be used 

to control both wavefronts, it requires wave parameters of extremely high or 

non-passive values to cover all scattering range. Bianisotropic metasurface 

enables independent control of the reflection and transmission wave-front in 

a relived manner. 

For the target complex reflection and transmission coefficients, required wave 

parameters are inversely calculated from Eq. (2.18). Figure 3.5 shows 

complex reflection and transmission coefficient mapped into the lossless, 

reciprocal bianisotropic parameters space for different amplitude ratios. It is 

noted that for the non-bianisotropic media, which correspond to the ξ = 0 

surface in Fig. 3.5, extreme wave parameters away from the origin are 

required to cover the entire 2π phases of reflection and transmission. Utilizing 

bianisotropic meta-atom, we can deterministically design the metasurface 

demonstrating independent control of reflection and transmission wave. 
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Figure 3.4 | Generalized law of reflection and refraction in a metasurface. a, 

The illustration of generalized law of refraction in case of abrupt phase shift 

on the surface. b,c, The scattering amplitude and phase of V-shaped 

nanoantenna. 

 

Figure 3.5 | Reflection and transmission phases on the iso-magnitude surface 

in bianisotropic parameter space. For three different intensity ratio R : T (a) 

25% : 75%, (b) 50% : 50%, and (c) 75% : 25%, iso-phase contours (yellow 

to green for reflection and blue to red for transmission) are plotted on 

hyperbolic shaped iso-magnitude surface with the interval of π/4. 
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Figure 3.6 shows a numerical demonstration of a bianisotropic metasurface 

with selective control of reflection and/or transmission. The metasurface 

consists of a 48 × 1 array of meta-atoms and is designed to bend scattered 

waves with an intensity ratio between reflected and transmitted waves set to 

25% : 75%. Required bianisotropic wave parameters are calculated inversely 

from the target phase of reflection and transmission coefficients in Fig. 3.6a. 

Figure 3.6b shows the scattered fields of each meta-atom that makes up the 

metasurfaces, showing clear agreement with target phases. In Fig. 3.6c, full-

field simulations confirmed the operation of top-down bianisotropic 

metasurface with independent and deterministic control of the scattering 

wavefronts. 
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Figure 3.6 | Independent manipulation of reflection and/or transmission 

wavefronts in a bianisotropic metasurface. a, Target phase shift of each meta-

atom. b, 1-D Scattered fields distribution of each meta-atom consisting 

metasurfaces. c, Full-wave simulation of the metasurface. Wave incidents 

from the bottom left with a 45° incident angle are reflected and scattered at 

the metasurfaces. 
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3.4 Space-coiling acoustic metamaterials for two-

dimensional bianisotropic metamaterials 

In this section, I provide the design of space-coiling type acoustic 

metamaterials enabling 2-D bianisotropy, readily scalable to the other system. 

The top-down design in section 3.1 requires control of coupling constants 

(membrane and mass) between the resonators (cells). To effectively tune the 

coupling constants, I adopt the space-coiling metamaterial structure that 

offers an extended path length to the system, which results in high effective 

mass. The proposed top-down metamaterial structure is depicted in Fig. 3.7a: 

external four cells and inner cells are connected with the meander structure, 

which is characterized by effective width w and path length l. For the system 

symmetry and design feasibility, space-coiling structures are split into ns paths 

and nf-times folded, which make effective path length to be l = nd. In this 

structure, wave parameters mass density, inverse bulk modulus, and 

bianisotropy are independently controlled by outer path depth do = fodo0, inner 

path depth di = fidi0, and the asymmetry of inner path depth di± = fi(1 + fΔi)di0, 

where do0 and do0 are inner depth and outer depth of the zero index point, fo, 

fi, and fΔi are tuning parameters. Figure 3.7b,c depicts numerically 

demonstrated zero-index acoustic metamaterials. In Fig. 3.7b, frequency 

dispersion of mass density and inverse bulk modulus matched zero index 

point at frequency 2950 Hz. Figure 3.7c shows 2-D Dirac-like ω–k dispersion 

relations near the zero-index point. The Dirac-like point is the signature of 
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the zero index media where all three possible eigenmodes are degenerate at a 

specific frequency. The design parameters of a = 27.5 mm, wo = 1 mm, wi = 

0.25 mm, and wΔ = 0 are used in Fig. 3.7b,c. It is noted that zero-index 

frequencies in Fig. 3.7b,c are different because the numerical method utilized 

in Fig. 3.7b is wave parameter retrieval from scattering parameters, which 

integrate surface effects at the interface between the metamaterial and 

background media, on the other hand, Fig. 3.7c is obtained from eigenmode 

analysis assuming perfect periodicity. Figure 3.7d-f shows the decoupled 

control of wave parameters in the space-coiling structure. From the zero index 

point, tuning the control parameters fo, fi, and fΔi mostly control mass density, 

inverse bulk modulus, and bianisotropy. As space coiling metamaterials 

provide effective properties by not the material property but the structure 

geometry, metamaterials with the meander structure can directly be scaled to 

the other system, e.g., different frequencies and other background media. For 

example, the proposed space-coiling metamaterial structure here with a = 

0.275 mm = 0.24 λ at 3 kHz in the air, can be used underwater at 5 kHz by 

scaling to a = 7.2 mm, which again corresponds to 0.24 λ. 
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Figure 3.7 | Space-coiling top-down acoustic metamaterials. a, Schematics 

of designed space-coiling acoustic metamaterials. b, Numerically retrieved 

frequency dispersion of wave parameters. c, Dirac-like dispersion with triply-

degeneracy of zero-index media. d-f, Decoupled control of wave parameters 

in space coiling acoustic metamaterials. (d) Mass density, (e) inverse bulk 

modulus, and (f) reciprocal bianisotropy numerically obtained by the 

scattering parameter retrieval method. Each wave parameter is solely 

controlled by the width of the outer path and inner path, and asymmetry of 

inner path width.  

  



 

 36 

Figure 3.8 shows the plane wave propagation through the zero index 

metamaterials designed with space-coiling metamaterials. Metamaterials are 

composed of 5 × 10 arrays of matched zero index meta-atoms deigned in Fig. 

3.7 and plane waves incident from bottom to top direction. In Fig. 3.8a, 

reflections occur at the incident interface because of the finite length of the 

slab, breaking the periodicity and induces local effects as mentioned above. 

In Fig. 3.8b,c, design modification in outermost atoms in first and fifth rows 

compensate the surface effects, showing clear scattering-free and zero phase 

shift propagation, even under the arbitrary defects inside. 

 

 

Figure 3.8 | Wave propagation through the matched zero-index metamaterials. 

a, Metamaterial composed of an array of matched zero index meta-atoms 

utilized in Fig. 3.1c. b, Metamaterial compensating the surface effects show 

perfect tunneling effect, showing zero phase shift. c, Matched zero-index 

metamaterial showing robust scattering-free tunneling against defects. 

 



 

 37 

3.5 Conclusion 

In summary, I present the top-down design of bianisotropic acoustic 

metamaterials. Starting from the top-down design approach that decouples 

fundamental monopolar and dipolar oscillations, I design a 1-D bianisotropic 

meta-atom consists of three rooms divided by mass loaded membrane 

structure made of copper. The proposed meta-atom independently controls all 

wave parameters near the zero-index point in the water background at 50 kHz 

operating frequency. In addition, a design approach to a bianisotropic 

metasurface that manipulates the reflected and transmitted wavefronts has 

been proposed. In this extended generalized Snell's law, the required 

structural parameters of metasurface elements are calculated deterministically 

by inversely retrieving the bianisotropic wave parameters from the target 

transmission and reflection coefficients. Independent manipulations have 

been numerically demonstrated in the bianisotropic metasurface made with 

the proposed 1-D top-down meta-atom platform. Furthermore, a robust 2-D 

meta-atom design using the space-coiling structure is presented. Because the 

resonances of space-coiling structure originate from the geometry, the 

proposed structure can directly applicable to other background media or 

different systems by scaling to the wavelength. Scattering-free transmission 

in an array of meta-atom confirmed the zero-index operation of the designed 

meta-atom structure.  
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Chapter 4 

 

Virtualized metamaterials 

 

This chapter introduces the concept of virtualization of metamaterials and 

demonstrates its application in manipulating acoustic wave propagation. By 

replacing the frequency resonating response of a physical metamaterial 

structure with a mathematically designed frequency dispersion implemented 

by digital convolution in the time domain within a microprocessing unit, the 

impulse response and the form of atomic response of a metamaterial structure 

is virtualized using a software code for digital representation. In the absence 

of any physical resonating structure, the digital representation of the 

virtualized metamaterial permits a highly arbitrary specification of the desired 

resonating frequency response.  
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4.1 Introduction to the concept of virtualized 

metamaterials 

Polarizations and scattering process in nature media can be described in the 

following procedure as depicted in Fig. 4.1: When the external incident waves 

arrive at the microscopic scatterers, the local fields exerted on them create 

polarization distribution, and temporal oscillations of polarizations generate 

subsequent scattering. Total net radiation from the entire particle is the 

scattered field, and the mixture of these scattered fields and incident fields 

will be seen as the total fields. The polarization property depends on, and is 

thus limited by the physical properties such as the composite materials, the 

scatterer structure, and the frequency of waves in not only conventional 

materials but also metamaterials with physical structures. On the other hand, 

in a virtualized metamaterial, the entire polarization process is replaced by 

the digital signal processing technique: the effective local field is detected by 

the signal detector, the polarization is calculated by a programmable 

microprocessor, and the scattering field is generated by an external source 

that fires the calculated signal output. While the artificial physical structures 

of metamaterials mimic the working of natural atoms with engineering 

degrees of freedom, the concept of virtualization generalizes this analogy to 

a digital representation with tunability based solely on software modification, 

assigning another level of meaning to “meta.” 
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Figure 4.1 | a, Polarization process of the natural scatterer and b, its 

schematic diagram 
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4.2 Digitally virtualized acoustic polarizations 

4.2.1 Virtualization of the signal response of meta-

atom 

The concept of virtualized metamaterials conceives active metamaterials that 

utilize digital signal processing technique exactly mimicking this polarization 

process of natural materials. The virtualized acoustic metamaterial atom 

comprises a pair of circular microphones situated around two speakers (Fig. 

4.2a) and is bonded on a small rectangular holder (lower inset of Fig. 4.2a). 

This virtualized atom is then placed on the inner side of the top cover of the 

one-dimensional hollow waveguide to interact but without blocking the sound 

waves traveling within. For operation, the microphones and speakers are 

further connected to an external single-board computer (Raspberry Pi 3B+ 

with analog-to-digital / digital-to-analog conversion module Waveshare 

ADS1256 / DAC8532). Sound waves arriving at the two microphones are 

detected, digitally sampled, and then processed in real-time by a software 

program running on the single-board computer. The resultant digital output 

signals are then converted back to analog and are feedback to the two speakers 

to generate the synthesized scattered waves. This combination of 

microphones, speakers, and software defines the atom’s generic scattering 

response. 
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Figure 4.2b shows a detailed representation of the software program. I 

construct a general linear operation from the signals at the two microphones 

M1 and M2 (Mj(t)) to the signals at the two speakers S1 and S2 (Si(t)) as 

Si(t) = – ∂t
2 (Ỹij (t – δt) * Mj(t)),   (4.1) 

 

Figure 4.2 | Schematics of the virtualized metamaterial. a, Virtualized 

metamaterial consisting of a structural atom of two circular microphones 

and two speakers (the two rectangular patches), connected to a small 

single-board computer for signal processing at a digital level. The 

virtualized metamaterial is embedded on the inner side of the top cover 

of a one-dimensional acoustic waveguide, not blocking the incident wave 

in a passive mode. b, Schematic representation of the virtualized 

metamaterial atom: signals detected at the two microphones (M1 and M2) 

are convoluted with a 2 × 2 matrix (Y), resulting in two signals to fire at 

the two speakers (S1 and S2) as secondary radiation from the atom. Y is 

also called the impulse response of the atom. The phase distance between 

the two speakers is 2δ (actual distance: 2 × 8.5 mm), and the phase 

distance between the two microphones is 2ϕ (actual distance: 2 × 2.6 cm) 

for present implementation. 
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where * denotes convolution operator, and δt represents an extra design time 

delay in the convolution operation. The whole operation comprises a matrix 

convolution and a differentiation in time to offset the result of convolution 

(kernel Ỹ to be designed later) as a driving voltage with zero averaged value 

for convenient handling within the program. A second time-derivative 

appears on this voltage since the speaker is actually driven by the voltage in 

a time-differential way. Finally, a time rate change of the voltage generates 

sound radiation by the speaker. In the frequency domain, the operation is 

summarized as 

Si(ω) = Yij(ω)Mj(ω),   (4.2) 

where Yij(ω) = ω2Ỹij(ω) e𝒾ωδt. Each orange arrow in the diagram connects a 

microphone to a speaker and is labeled as one of the matrix elements Yij of 

the above operation (hereafter, “convolution”). The main horizontal line (in 

blue) represents the waveguide direction, in which an incident wave (e.g., 

from the left) travels and interacts with the atom. The secondary sources at S1 

and S2 radiate symmetrically both forward and backward. These secondary 

radiations are added to the incident waves, finally becoming the reflected and 

transmitted waves within the waveguide. Having specified Yij(ω), it is 

possible to solve the overall response of the whole atom (Fig. 4.2b), yielding 

transmission/reflection coefficients and the polarizability matrix αij (or 

equivalently the scattering matrix sij) in terms of Yij. As the polarizability 

matrix in one-dimensional acoustics is generally 2 × 2, I chose to use two 
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microphones and two speakers to detect and generate both monopolar and 

dipolar incoming and outgoing waves. Note that all digital computations 

when performing the convolution can apply only to a finite length of digital 

signal samples from M1 and M2 before the current digital signal sample and 

must finish within one sampling period (133 μs) of the analog-to-digital 

conversion module. I also note that while Refs. [66-69] have set up the way 

to use electronic circuits to replace a physical structure, the further 

virtualization of the impulse response matrix in our case allows arbitrary 

specification of the atomic response (amplitude, center frequency, bandwidth, 

gain/loss, monopolar/dipolar type) and the frequency dispersion through 

program code without the need to set up different physical structures or 

different external circuits. 

In modeling the constitutive parameters (such as permittivity/permeability in 

electromagnetism and mass density/ inverse bulk modulus in acoustics) for 

both natural materials and metamaterials, a Lorentzian frequency dispersion 

is probably the most representative spectral lines-shape. This acts like an 

“alphabet,” both for analytical modeling and as a numerical measure to 

decompose an arbitrary frequency spectrum to the sum of Lorentzian 

components of different spectral parameters. Here, I sought to instruct our 

virtualized metamaterial to mimic a Lorentzian response as our first example 

of a virtualized metamaterial. For simplicity, I focus on the monopolar 

response only, corresponding to an acoustic metamaterial with resonating 
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bulk modulus; the relationship of the effective medium to atomic 

polarizability will be described later. A monopolar response of the virtualized 

atom is fulfilled by setting Ỹ11 = Ỹ12 = Ỹ21 = Ỹ22 = Ỹ/2 in the software. I 

consider the convolution kernel Ỹ(t) to have the following form: 

Ỹ(t) = a ω0
–2

 sin(ω0t + θ) e–γt (for t > 0) or 0 (for t ≤ 0). (4.3) 

This involves several model parameters, where ω0 is resonating frequency, γ 

is resonating bandwidth, and a is resonance strength. In the formula, these 

have units of radial frequency, and their values are specified in units of 

frequency by a factor of 1/2π for brevity. As an additional parameter to control 

the shape of frequency dispersion, I also defined θ as the “convolution phase.” 

The software then connects the microphone signals to the speaker signals as 

in Eq. (4.2), generating the monopolar polarizability of the atom as 
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 (4.4) 

where c0 is the speed of sound in air, and i is the unit imaginary number. All 

the other polarizability coefficients (α11, α01, and α10) should be zero in this 

case. For a conventional metamaterial atom, we would expect the monopolar 

polarizability α00, or the inverse of bulk modulus to have a positive imaginary 

part for a passive atom. Where θ = 0° and the convolution delay δt is set to 
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have arg(eiωδt) ≈ π/2 at resonating frequency ω0, the resultant α00 mimics the 

Lorentzian frequency dispersion of a passive acoustic metamaterial in the 

frequency regime around ω0. As an example, choosing ω0 at 1 kHz, γ at 15 

Hz and a resonating strength a at 7.85 Hz to implement a passive metamaterial 

(θ = 0°), Ỹ(t) in Eq. (4.3) is then programmed as the convolution kernel in the 

virtualized metamaterial atom. To calculate the α or the s matrix, I measured 

the transmission and reflection coefficients experimentally in both forward 

and backward directions within the waveguide. The blue curve in Fig. 4.3a 

represents the frequency trajectory from 750 to 1250 Hz of the experimentally 

extracted monopolar scattering coefficient see. It traces what is roughly a 

circle, starting near the origin from small frequencies, in a counter-clockwise 

direction. It falls into the passive regime (indicated by the blue region), with 

the dashed circle passing through the origin with the center at –0.5. The 

complex transmission and reflection coefficients (t and r) are simply related 

to see by t – 1 = r = see/2. In this case, the resonance causes a dip in the 

transmission spectrum (blue curve in Fig. 4.3b). The Lorentzian shape of both 

its real and imaginary parts of the monopolar polarizability α00 is shown in 

Fig. 4.3c (blue curves and symbols). The symbols representing the 

experimental results agree well with the theoretical Lorentzian shape (lines). 

This constitutes a conventional metamaterial that our virtualized metamaterial 

approach can mimic. 
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Figure 4.3 | Mimicking Lorentzian frequency dispersion and active acoustic 

medium with a resonating monopolar response. a, Frequency trajectories of 

the experimental monopolar scattering coefficient see on the complex plane 

for four configurations with convolution phase θ = 0° (blue), 90° (green), 180° 

(red), and 270° (black). The red/blue shaded area denotes the active/passive 

region. Arrows indicate the direction from small to large frequencies. b, 

Transmission amplitude spectrum for the four configurations. The 

convolution kernel Ỹ(t) for the four different cases of convolution phases are 

shown in the inset. c, The real part (solid symbols) and the imaginary part 

(empty symbols) of the complex monopolar polarizability α00. Solid and 

dashed lines denote the corresponding theoretical Lorentzian line shapes for 

both the real and imaginary parts, respectively. 
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Although Eq. (4.3) is only a specific class of frequency dispersions, we can 

now change it by adopting other values of the convolution phase θ to obtain 

a distinctly different virtual metamaterial. Without needing to design a new 

physical structure as in the conventional approach to designing metamaterials, 

the software takes on the role of a physical structure. When θ is changed to 

180°, Ỹ(ω) simply flips signs. It produces an “anti-Lorentzian” shape of α00 

(red curves and symbols in Fig. 4.3c). The imaginary peak then becomes 

negative, indicating a simulated material gain. More intuitively, in Fig. 4.3b, 

the transmission amplitude shows up as a peak beyond a value of one, with 

the additional power in the transmitted wave drawn directly from the external 

digital circuits. Figure 4.3a also shows the trajectory of see on the complex 

plane for the virtualized metamaterials at different convolution phases (e.g., 

θ = 90° and 270°); again, the trajectory is circular. In a geometric picture on 

the complex plane, the convolution phase θ actually rotates such circles about 

the origin by the same angle in a clockwise direction. This rotation on the 

complex plane moves part of the circular trajectory out of the passive zone, 

making the virtual atom unavoidably active. The virtualized metamaterial 

now takes on the original role of the swapped real and imaginary parts of the 

Lorentzian distribution. The real part of α00 shows up as a peak while the 

imaginary part shows up as an oscillation, respectively, shown as green and 

black in Fig. 4.3c. For conventional metamaterials, a Fano resonance is 

usually introduced to provide an asymmetric line-shape [95]. Here, we can 
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create an asymmetric line-shape (see θ = 90° and 270° in the |t| spectrum) by 

tuning the convolution phase value. 

The virtualized representation of the metamaterial in Eq. (4.3) provides a 

straightforward implementation of an active medium. One interesting point is 

that the anti-Lorentzian shape (effectively the same as a Lorentzian shape but 

with a negative resonating strength a) has to stand as an approximation in the 

frequency regime around the resonating frequency. If valid for the whole 

frequency axis, the poles of the complex function Y(ω) will occur entirely in 

the upper half complex plane, denying causal implementation of the 

convolution kernel. Our approach guarantees causality because it implements 

the virtual atom by convolution in the time domain. The approximation of the 

anti-Lorentzian shape around the resonating frequency is linked to the 

condition arg(eiωδt) ≈ π/2, which is only approximately satisfied. 
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4.2.2 On-demand tuning of dispersion 

The virtualized approach to constructing metamaterial allows us to freely 

reconfigure the frequency dispersion on-demand in a very flexible way. 

Conventionally, a physical metamaterial design provides both resonating 

strength and bandwidth at the same time. In principle, these two physical 

properties (or model parameters) can be reconfigured by two geometric 

parameters of the metamaterial. However, decoupled control of the two 

physical properties by two geometric parameters is highly non-trivial31. While 

varying a single geometric parameter often results in a simultaneous change 

in both physical properties, our approach means that resonating strength and 

bandwidth are simply two input parameters that can be specified 

independently, as the convolution kernel (Ỹ(t) in Eq. (4.3)) is defined simply 

as a mathematical function in the software code for digital representation. 

Figure 4.5 (a) shows the virtualized metamaterial as specified schematically 

in Fig. 4.3. The resonating strength a is varied from 3.93, 7.85 to 11.78 Hz 

while the resonating bandwidth is fixed at γ = 15 Hz. The magnitude and 

spectral profile of both the real part (solid lines and filled symbols) and the 

imaginary part (dashed lines and empty symbols) of the monopolar 

polarizability increase and scale with a. Similarly, I reduced the resonating 

bandwidth γ from 30 to 15 and 7.5 Hz to obtain sharper resonance with a 

being kept at a constant value of 7.85 Hz. The results are shown in Fig. 4.4b; 

in both cases, the experimentally obtained frequency dispersions of 
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monopolar polarizability α00  (plotted in symbols) agree well with the 

theoretical model derived from Y(t), where the solid and dashed lines 

represent its real and imaginary parts, respectively. In fact, as the magnitude 

of Y(t) decays in time through exp(–γt), the smallest γ we can achieve is 

limited by the total convolution time (Tc) implemented in the software code. 

A smaller γ requires a larger Tc if the magnitude of Y(t) is to decay to a 

negligible value before truncation. For example, a requested 10dB decay in 

Y(t) before truncation was chosen for accurate implementation of the target 

Y(t) with γ as small as 3.4 Hz. In these cases, the resonating frequency was 

kept at 1 kHz. Finally, we fixed γ = 15 Hz and a = 7.85 Hz and then varied 

the resonating frequency ω0 from 0.8 to 1.2 kHz in steps of 100 Hz. Clear 

resonances were observed around the designated resonating frequencies, with 

a tunable range of resonating frequencies approaching almost 40% of the 

central frequency in the tunable range (Δω/ω), which is limited only by the 

speed of the electronics. Faster electronics can further increase the digital 

sampling frequency to achieve a higher frequency bound, while the 

convolution (accomplished digitally within one sampling period) can involve 

more samples. I also note that the tunability offered by our approach can 

become more flexible and generic. As Y(t) is a mathematical function freely 

encoded in the software, we can render the frequency dispersion to have a 

more general shape, for example, to capture multi-resonating frequencies, 

each with different strengths, bandwidths, and with either gain or loss. 
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Figure 4.4 | Decoupled tuning of resonance amplitude, bandwidth, and center 

frequency for the virtualized metamaterial. a, Three cases of resonating 

strength a = 3.93 (black), 7.85 (red) and 11.78 Hz (blue) with constant 

resonating bandwidth γ = 15 Hz and resonating frequency ω0 = 1 kHz. The 

real/imaginary part of monopolar polarizability α00 is plotted in solid/empty 

symbols for the experimental results. b, Three cases of resonating bandwidth 

γ = 30 (black), 15 (red) and 7.5 Hz (blue) with constant resonating strength a 

= 7.85 Hz. c, Resonating frequency ω0 varies from 800 to 1200 Hz in steps 

of 100 Hz with γ = 15 Hz and a = 7.85 Hz. Here an extra phase shift is 

inevitable because of the inherent time delay in electronic devices as the 

resonance frequency increases. The corresponding theoretical models are 

plotted in solid/dashed lines for the real/imaginary part in all panels. 

  



 

 53 

4.2.3 Independent control of monopolar and dipolar 

scattering 

Connecting monopolar incidence to monopolar scattered waves corresponds 

to an acoustic metamaterial with a resonating bulk modulus. Our virtualized 

approach can also be used to construct metamaterials with a more general 

response than monopolar scattering. As our atom has sufficient degrees of 

freedom when generating both monopolar and dipolar secondary radiations, 

the same virtualized metamaterial technique can be used to generate a dipolar 

scattering response, corresponding to an effective resonating density. In this 

case, I set Ỹ11 = –Ỹ12 = –Ỹ21 = Ỹ22 = Ỹ/2 and the dipolar scattering coefficient 

is then given by 

 

 
 0 0 0

11 11

2sin sin2 4
( ) sin sin

1 2 siniφ

φ δY ωc c c
α s ω φ δY ω

iω iω ie δY ω iω
  


. (4.5) 

Ỹ(t) and Y(ω) are still defined in Eq. (4.3) and in Eq. (4.4) (with subscript 1 

added to a and γ to indicate the dipolar nature of the model parameters). To 

demonstrate, I set a resonating frequency ω0 = 1.2 kHz, resonating strength 

a1 = 14.25 Hz and linewidth γ1 = 8 Hz; I also set the convolution phase θ = 

0°, corresponding to the passive case. The resultant real and imaginary parts 

of α11 are shown in Fig. 4.5a as the black solid and dashed curves with 

resonating behavior. This corresponds to a resonating mass density (in an 

effective medium of the virtualized metamaterial) with a positive resonating 
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peak in its imaginary part. On the other hand, if we change the convolution 

phase θ to 180° (with the same parameters for ω0, a1 and γ1), the resonating 

atoms are gain-dominating around the resonating frequency, showing a 

negative peak in the imaginary part of α11 in Fig. 4.5b. In the same Fig. 4.5a,b, 

the corresponding values of monopolar response α00 (shown in red) have 

much smaller amplitudes than the instructed dipolar response. 

By exploiting the virtualized metamaterial’s degrees of freedom, the 

monopolar resonance and dipolar resonance can be generated at the same time. 

More importantly, all of the resonating model parameters can be designed as 

highly arbitrary. For the implementation, I set Ỹ11 = Ỹ22 = (Ỹ0 + Ỹ1)/2 and Ỹ12 

= Ỹ21 = (Ỹ0 – Ỹ1)/2 where Ỹ0 and Ỹ1 are implemented by Eq. (4.3) with 

resonating strength a0 and a1 and resonating linewidth γ0 and γ1, with the 

resonating frequency commonly set at ω0 = 1.2 kHz. As shown in Fig. 4.5c, 

both s00 and s11 are now resonating. Model values are detailed in the caption 

to Fig. 4.5. The virtualized atom can also be immediately transferred to the 

gain regime by changing θ from 0° to 180°, as shown in Fig. 4.5d; the 

resonating peak of the imaginary part for both α00 and α11 goes negative as a 

dominating gain around resonance. I have been using polarizability to 

represent the atomic property. On the other hand, our 1-D metamaterial can 

be equivalently represented as an effective medium of thickness d (actual 

thickness of our atom = 6.5 cm), the relationship between the effective bulk 

modulus B and the effective mass density ρ can be related to the monopolar 

and dipolar polarizabilities as 
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Figure 4.5 | Decoupled control on the monopolar and dipolar scattering 

coefficients. a,b, Virtualized metamaterial with only dipolar response where 

the model parameters are set as γ1 = 8 Hz, a1 = 14.2 Hz, resonating frequency 

ω0 = 1.2 kHz and convolution phase θ = 0° (a) and 180° (b). c,d, Monopolar 

response is further added to configurations in (a,b) with model parameters γ0 

= 15 Hz, a0 = 6.3 Hz with the same ω0. e,f, Monopolar response is changed 

to a0 = 4 Hz while other model parameters are kept the same. For all results, 

the left/right panel shows the scattering coefficients for convolution phase θ 

= 0° (a,c,e) and 180° (b,d,f). 
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where B0 and ρ0 are the bulk modulus and the mass density of the air, 

respectively, while χ0 and χ1 refer to monopolar and dipolar. The ability to 

control both monopolar and dipolar polarizabilities is essential in order to 

control the transmission and reflection amplitudes simultaneously through t – 

1 = (See + Soo)/2 and r = (See – Soo)/2. I note that the near-field coupling (as 

there is no physical structure) if we periodically place identical atoms along 

the propagation direction, can be neglected. The effective medium parameters 

are still valid when we scale up the number of atoms. 

Unlike conventional metamaterials that require the design of a special kind of 

atom, the virtual implementation of metamaterials allows density and 

modulus to be independently tuned without affecting each other and without 

modifying any physical structures or external circuits. Figure 4e,f show the 

corresponding results for the model parameters in Fig. 4.5c,d (θ = 0° and 180°) 

but with the resonating strength a0 divided by a factor of 1.6. The results show 

that dipolar resonance is almost unaffected while monopolar resonance (e.g., 

the peak of Im(α00)) is divided by roughly the same factor. Our results confirm 

the advantages of the virtualization approach in designing tailor-made 

configurations, addressing some of the inherent limitations of conventional 

metamaterial approaches by allowing the model parameters to be tuned to any 
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desired value. This also contrasts with common approaches in which the 

resonating strength and bandwidth of active metamaterials are unlikely to be 

independently configurable because they depend on actual mechanisms to 

achieve gain. Moreover, while dipolar resonance is much sharper than 

monopolar resonance in conventional metamaterials, the virtualized approach 

can make the two resonances are similar in shape and bandwidth (see Fig. 

4.5e). This enables impedance matching (to achieve small reflectance) in a 

wide frequency regime. In short, the present virtualized approach offers great 

advantages for modifying metamaterial resonance. 

  



 

 58 

4.2.4 Transient response of the virtual metamaterial 

The response of a resonating metamaterial generally depends on the Q-factor, 

or equivalently the resonating linewidth, of the resonance. The response time 

can be measured experimentally by using a step function (with the carrier 

frequency, e.g., 1 kHz) as input to drive the incident wave. As an example, 

we shine such an incident wave on the metamaterial with different resonating 

linewidth γ = 7.5, 15, and 30 Hz. As shown in Fig. 4.6, the response time, 

defined as the time to get half of the steady-state amplitude, is found as 29, 

14, and 7 ms, which is roughly proportional to 1/γ. 

On the other hand, we can also fire a transient signal with a varying amplitude 

as a wave packet for the incident wave, instead of getting the monopolar 

response at separate frequencies by firing continuous waves at different 

frequencies. Here, the responses from 750 to 1250 Hz are measured in one 

single transient experiment by inverse Fourier transforming the measured 

signal at various microphones. Figure 4.7a shows the input pulse (quadratic 

spline) with a duration of 5.0 ms and 2.5 ms. The carrier frequency of the 

pulse is set as 1 kHz. Such an incident transient pulse is fired to the 

metamaterial, with the configuration in Fig. 4.3 with convolution phase θ = 

0° and resonating linewidth γ = 15 Hz. Figure 4.7b,c shows the corresponding 

experimental spectrum (solid/empty symbols for real/imaginary part) 

obtained for the monopolar polarizability. As we can see, the results follow 
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the theoretical spectrum (in lines) very well, even up to a pulse width as short 

as 5.0 ms, which is much shorter than the response time of 14 ms, indicating 

the metamaterial can work for transient excitations. When the pulse width is 

further reduced, we see higher noise as the total power of the incident wave 

is now spread across a wider range of frequencies. 

On the other hand, the response time (due to electronics and digital sampling) 

can be probed by firing a pulse to our metamaterial but with a non-resonating 

response (small resonating strength). Figure 4.8 shows a typical incident pulse 

(in black line) and the measured scattering from the metamaterial (red dashed 

line). It is found that the response time is around 500 ms, which includes all 

the physical and electronic delays between the microphones and speakers 

with feedback. 
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Figure 4.6 | Transient response for step-type input at a fixed frequency. 

Typical response time to approach steady-state with amplitude response 

agreeing to target spectrum for (a) resonating linewidth γ = 7.5 Hz, (b) 15 Hz, 

and (c) 30 Hz for same resonating frequency 1 kHz and the same incident step 

function with carrier frequency 1 kHz in experiments. Smaller γ has a shorter 

response time. The time constant for each bandwidth is given by 29 ms, 14 

ms, and 7 ms.  

 

Figure 4.7 | a, Transient response for finite pulses. The input (quadratic 

spline) pulses with a finite duration of 5.0 ms or 2.5 ms, and carrier 

frequency 1 kHz in driving the incident waves. b,c, The monopolar 

polarizability measured from the metamaterial in Figure 4.3 with 

convolution phase θ = 0° and resonating linewidth γ = 15 Hz. 
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Figure 4.8 | Response time for a non-resonating metamaterial. Incident 

(pi) and scattering (ps) waves of a non-resonating metamaterial in 

probing the ultimate response time, due to all physical and digital 

electronic delay. 
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4.3 Experimental setup 

The experimental set-up is schematically shown in Fig. 4.2a. A meta-atom 

consists of two speakers and two microphones with electric peripherals, 

including a microprocessor, analog-to-digital/digital-to-analog converter, and 

amplifying modules. For the digital convolution, the microprocessor is 

programmed to operate at a sampling frequency of 7.5 kHz and using 400 

sampling data to accomplish all calculation process within one cycle. 

Speakers and microphones which are connected to the microprocessor and 

communicate through the serial peripheral interface, are assembled in an 

acrylic frame (width = 3.0 cm, length = 6.5 cm). This transducer module is 

mounted on top of a one-dimensional rectangular acoustic waveguide (width 

= 6.0 cm, height = 2.0 cm). For the measurement, I used the 4-points 

measurement method with the National Instrument DAQ device and Labview 

system. The scattering parameters spectra can also be obtained by doing a 

transient stimulus using a wave packet of finite duration and a carrier 

frequency. 
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4.4 Conclusion 

In conclusion, I have proposed and provided experimental support for the 

concept of virtualized metamaterials, removing the physical restrictions of 

traditional metamaterials. Using a convolution kernel function and digitally 

driven wave sources to synthesize the scattered wave directly, it was possible 

to freely access different frequency dispersion curves on demand, achieving 

decoupled control on different wave parameters and constitutive parameters. 

The software-controlled transition between Lorentzian, anti-Lorentzian, and 

asymmetric dispersion curves were experimentally confirmed within a single 

platform while independently addressing amplitude, center frequency, 

bandwidth, and convolution phase for all dispersion curves across a broad 

frequency range. The frequency dispersion, equivalently the impulse response 

function, can be programmed to other shapes to achieve optimal bandwidth 

for material constitutive parameters [66], material gain, zero-index, etc. In 

fact, the frequency dispersion of the material parameters can be further 

modulated in time slowly (comparing to the sampling period), we can then 

apply such dynamic modulation on individual atoms to construct time-

varying metamaterials [96]. For example, a modulation phase lag between 

different atoms can be used to generate an Aharonov–Bohm phase and non-

reciprocal transmission [97], which can now be readily achieved in acoustics. 

Furthermore, we can also use an ensemble of these virtualized atoms to realize 

Floquet topological phases with a temporally periodic Hamiltonian [98,99]. 
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For our platform, gain and loss can also be matched exactly and varied in the 

time domain due to the flexible tunability, allowing us to investigate non-

Hermitian systems [100,101] with exceptional points that can now be scanned 

through dynamically and without any physics structures. It should also be 

straightforward to inverse-derive the mathematical kernel for a virtualized 

metamaterial on demand for targeted applications and wave parameters. This 

approach is not limited to the acoustic platform, as the implementation of the 

convolution kernel function can also be envisaged in FPGA, for the faster 

convolution required in ultrasonic or microwave applications. 
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Chapter 5 

 

Extreme Acoustic Properties 

beyond the Passivity and Reciprocity Bounds 

 

This chapter discusses the feasibility of the virtualized metamaterials to 

provide extreme acoustic wave properties that hardly achievable. I assess the 

ultimate bound of Willis coupling and the conditions for nonreciprocity and 

implement ideas using virtualized metamaterials. By achieving selective 

excitation of the inverse bulk modulus, and the mass density, I demonstrate 

the ultimate Willis bound and extreme nonreciprocity within the same 

platform as a universal building block for future Willis applications. I further 

realize Willis atom operation with broadband and flat dispersion, in both the 

purely reciprocal and purely nonreciprocal regimes, from analytically 

constructed dispersion curve via the inverse design method.  
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5.1 Introduction to the limit of bianisotropic media 

Despite the great successes achieved thus far, the full potential of 

bianisotropic acoustic metamaterials has not been achieved. First, The 

maximum bound of Willis coupling and nonreciprocal operation, which are 

inherent to the passivity of the metamaterial structure, currently hinders the 

full exploitation of the advantages offered by Willis metamaterials in future 

applications. Although the breaking of the passive Willis bound or the tuning 

of nonreciprocity have been envisaged with the introduction of active 

metamaterials, the question of how to achieve selective excitation and flexible 

control of all four constitutive parameters to enable extreme bianisotropy and 

fully controllable nonreciprocity has yet to be answered.  
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5.2 Extreme acoustic properties 

5.2.1 Bianisotropy beyond the passivity bound 

To realize independent manipulation of all polarizability, I define a scattering 

matrix S having parity symmetry in the one-dimensional system as depicted 

in Fig. 5.1, for incident (a) and scattered (b) waves propagating in the forward 

(+) and backward (–) directions, which are decomposed into components of 

even (e) and odd (o) parity: ae = (a+ + a–)/2, ao = (a+ – a–)/2, be = (b+ + b–)/2, 

and bo = (b+ – b–)/2. The couplings between the incident fields and scattered 

fields are then written as (be bo)T = S (ae ao)T, with the scattering matrix S 

being defined as 

21

22

ee eo

oe oo

s s t t r r t t r r

s s t t r r t t r r

       

       

         
   

        
,      (5.1) 

where r and t are the reflection and transmission coefficients, respectively. 

Then the relation between the scattering matrix S and the normalized 

polarizability α becomes: 

0

1pp pv ee eo

vp vv oe oo

s s

s sik

   
   

  

 

 
,    (5.2) 

where k0 is the free space wavenumber. In this representation, the diagonal 

terms relating even-incident to even-scattering components (see) and odd-

incident to odd-scattering components (soo) correspond to the inverse bulk 
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modulus and mass density, respectively, while the coupling of the off-

diagonal components even to odd components (soe) and odd to even 

components (seo) are the acoustic bianisotropy or Willis coupling parameters. 

Although our consideration of Willis coupling does not assume passivity and 

reciprocity in general, it is worth mentioning that for a conventional passive 

and reciprocal metamaterial, reciprocity is equivalently represented by t+ = t– 

or seo = –soe, and the maximum Willis coupling corresponds to |seo| (or |soe|) = 

1, which is difficult to achieve while keeping the other components intact. 

To realize all these polarization responses with selective excitation and 

precise balancing between the cross-coupling terms, inverse bulk modulus, 

and mass density, we employ a platform of a virtualized meta-atom, which 

can directly mold the above parameters with the designer convolution 

function connecting the detectors and sources. As depicted in Fig. 5.2, the 

microprocessor returns output values to two speakers (Si) from the detected 

signals of two microphones (Mj) by means of the programmed convolution 

kernels (Ỹij). I.e., the output voltages of the sources are calculated in the time 

domain as follows: 

Si(t) = –∂t
2(Ỹij (t) * Mj(t)),  (5.3) 

where * is the convolution operator, and the subscripts i, j = 1 or 2 are the 

labels of the speakers and microphones. In Eq. (5.3), one derivative is given 

by the software for a zero averaged offset value, and the other derivative 
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appears in speakers when generating a pressure field in a time differential way. 

In the frequency domain, the entire operation is summarized as Si(ω) = 

Yij(ω)Mj(ω) where Yij(ω) = ω2Ỹij(ω). To achieve a connection between the 

speaker output Si and the microphone-detected signal Mj, similar to the 

polarization process in Eq. (5.1), we decompose the convolution kernel Yij by 

introducing a basis of convolution matrices: 

1 1 1 1 1 1 1 11 1 1 1
, , ,

1 1 1 1 1 1 1 12 2 2 2
ee eo oe oo

          
          

        
e e e e ,  (5.4) 

which satisfy Y = Yee eee + Yeo eeo + Yoe eoe + Yoo eoo. Eq. (5.3) can then be 

rewritten in terms of the symmetric (even) and antisymmetric (odd) 

components of the speakers and microphones as follows: 

  
1 2 1 2

2 1 2 1

e e e o

o e o o

Y YS S M M

Y YS S M M
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     
.  (5.5) 
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Figure 5.1 | The definition of the scattering matrix S in a one-dimensio

nal system. The incident and resultant scattered fields propagating in the

 forward and backward directions are decomposed into even and odd co

mponents. The even-to-even and odd-to-odd scattering parameters corres

pond to the inverse bulk modulus and density, respectively, while the ev

en-to-odd and odd-to-even scattering parameters are the Willis parameter

s. 
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Figure 5.2 | Bianisotropic virtualized metamaterial. A virtualized 

metamaterial consisting of two microphones and two speakers connected to a 

microprocessor embedded in the cover of an acoustic waveguide. The 

bottom-right inset shows a photograph of a transducer module of a virtualized 

meta-atom. The top inset shows an analytical representation of the virtualized 

metamaterial atom: two microphones (Mj) are convolved with a 2 × 2 matrix 

(Yij) returning signals to fire at the two speakers (Si) as secondary radiation. 

The distances between the two speakers and microphones are equally set to Δ 

= 50 mm. The scattering property of the meta-atom is tested by incident waves 

coming from the forward and backward directions to identify all four 

scattering parameters (r+, t+, r–, and t–). 
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It is important to note that in this representation, in terms of a basis of 

convolution matrices, each basis matrix ekl exclusively addresses one of the 

four polarizability parameters, including the two Willis parameters. In our 

atom configuration shown in Fig. 5.2, in the case of selective excitation (i.e., 

Y = Y0 eij), the polarizability parameters can then be written as follows: 

 

 
 

 

 

 

0

0

2

0 0

0 0

1

0 0 0

1

0 0 0

2

0 0

0 0

cos / 24
,

1 1

2 sin ,

2 sin ,

sin / 24
.

1 1

pp ik

pv

vp

vv ik

k Y

ik e Y

k k Y

k k Y

k Y

ik e Y












 

 

  




 









   (5.6) 

where Δ is the distance between the two speakers (and microphones). 

Therefore, decoupled control or balancing among all acoustic wave 

parameters can be realized with analytically constructed kernels Yij of the 

desired design. It is emphasized that the relationship derived in Eq. (5.6) is 

analogous to the effective medium theory expression that relates the 

constitutive parameters to the scattering parameters of composite scatterers. 
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5.2.2 Extreme nonreciprocity 

Figure 5.3 shows an experimental demonstration of the selective excitation of 

each polarizability parameter in the virtual Willis metamaterial. We set the 

program to have one of the basis convolution matrices eee, eeo, eoe, and eoo, 

given in Eq. (5.4) with the Lorentzian-form coefficient Ỹ0(ω). For time-

domain microprocessor signal processing, Ỹ0(ω) can then be expressed or 

implemented as the following impulse response function: 

     0 02

0

sin ta
y t t e u t   


,     (5.7) 

where u(t) is the Heaviside step function, a = 15 is the total scaling factor, ω0 

= 1.0 kHz is the resonance frequency, θ = –π/2 is the phase, and γ = 15 Hz is 

the resonance bandwidth. Figure 5.3a,b show the Lorentzian polarizations 

experimentally realized with even-to-even eee and odd-to-odd eoo excitations, 

which are responsible for inverse bulk modulus and mass density, respectively, 

and Fig. 5.3c,d show the implementation of bianisotropy achieved with odd-

to-even eeo and even-to-odd eoe convolutions. Each polarization component is 

exclusively excited, with the other components suppressed, in excellent 

agreement with the analytical results in Eq. (5.6). Since this approach enables 

simultaneous independent control of the four wave parameters, by balancing 

the even-to-odd and odd-to-even couplings, we can also easily realize the 

purely reciprocal and nonreciprocal Willis parameters κ = i(αpv – αvp)/2 and χ 
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= (αpv + αvp)/2 from the symmetric convolution kernels Y =Y0(eeo + eoe) for 

the reciprocal case (Fig. 5.3e) and the antisymmetric Y = Y0(eeo – eoe) in the 

nonreciprocal case (Fig. 5.3f). Our results are not subject to the strict 

restriction imposed by the geometry of the scatterers in physical 

metamaterials, in contrast with previous approaches, in which the resonance 

strengths and bandwidths of individual polarization components are unlikely 

to be independently configurable. It is further noted that because the 

virtualized Willis metamaterial can also handle complex polarizabilities, it is 

possible to achieve controllable gain and loss of the system as well as complex 

bianisotropy, enabling phenomena such as imaginary reciprocal and 

nonreciprocal coefficients, which are impossible with conventional 

bianisotropic media. 
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Figure 5.3 | Decoupled excitation of polarization components. a-d, 

Virtualized Willis metamaterial for the four basis convolution matrices eee (a), 

eoo (b), eeo (c), and eoe (d) with the same Lorentzian convolution kernel Y0, 

where the model parameters are set to a = 15, θ = –π/2, γ = 15 Hz, and ω0 = 

1.0 kHz. The polarizabilities αpp, αvv, αpv, and αvp are depicted in black, green, 

blue and red, respectively, with solid/empty symbols representing the 

real/imaginary parts of the experimental results. The corresponding 
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theoretical models are plotted with solid/dashed lines for the real/imaginary 

parts. e,f, Purely reciprocal and purely nonreciprocal Willis couplings κ = 

i(αpv – αvp)/2 and χ = (αpv + αvp)/2, realized with a balanced eoe and eeo. The 

purely reciprocal Willis coupling satisfying αvp = –αpv is demonstrated by their 

summation, i.e., Y = Y0(eeo + eoe) (e), and the purely nonreciprocal term 

satisfying αvp = αpv is demonstrated by subtracting the two basis convolution 

matrices, Y = Y0(eeo – eoe) (f). 
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The ability to excite Willis coupling is known to be limited by the passivity 

condition, as discussed earlier. Following the derivation in Ref. [86] for two- 

and three-dimensional systems, for the one-dimensional passive system 

treated here, the maximum bianisotropy bound is dictated by the following 

two inequalities : 

2 2

2 2

1 1,

1 1.

oe ee
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s s
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or, equivalently in terms of polarizability, 
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Thus, the maximum bound of the Willis coupling is given by |αvp|(|αpv|)≤ k0
–1, 

where the equality is satisfied when αpp (αvv) = ik0
–1. If the systems are strictly 

reciprocal, e.g., in the case of a physically designed structure with curled 

channels, we can set t+ = t–, and then, the inequality is reduced to |r+ – r–| ≤ 2 

as an upper bound on the Willis coupling term for a reciprocal scatterer. In 

this passive case, one needs to design a system with t+ = t– = 0 and r+ = –r– = 

eiφ, where φ is the arbitrary real number needed to approach the equality in 

the inequality. However, with our implementation using a virtualized 

metamaterial, we need not be restricted by the reciprocity and maximum 

bound of the Willis coupling. Because the secondary radiation source in our 

virtualized metamaterial draws power from external digital circuits, it 
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becomes straightforward to overcome the maximum bound of the Willis 

coupling. 

Figure 5.4 shows the magnitudes of the Willis couplings |αpv| (Fig. 5.4a) and 

|αvp| (Fig. 5.4b) for Lorentzian convolution kernels with two different scaling 

factors (a = 15 and 30) at different resonance frequencies (f0 = 900 Hz, 1000 

Hz, and 1100 Hz) and with a fixed bandwidth (γ = 15 Hz). All cases show a 

central peak at the resonance frequency where the Willis coupling is 

maximized, in agreement with the analytical models in Eq. (5.6). In contrast 

to the maximum bianisotropy of a passive metamaterial (black dashed line), 

which is dictated by |αvp| (or |αpv|) = k0
–1, the newly established maximum 

bianisotropy for the virtualized Willis metamaterial (magenta dotted line) is 

now modified to |αvp| (or |αpv|) = 2k0
–1|sin(k0Δ)Y0| with |Y0| ≈ a/2γ at the 

resonance frequency, revealing the set of parameters for controlling the Willis 

coupling strength. It is worth mentioning that the presence of k0Δ in sin(k0Δ) 

reveals the required metamaterial geometry of the scatterer (or source) layout, 

while the amplitude a, bandwidth γ, and center frequency ω0 reveal the 

significance of the scatterer characteristics. At the values Δ = 50 mm and γ = 

15 Hz used in the experiment, Fig. 5.4 shows theoretical (lines) and 

experimentally realized (symbols) Willis parameters with the scaling factor 

of a = 15 and a = 30 respectively, each for below and above the passivity 

bound (black-dashed lines). In addition to the control parameter a, which 

represents the power drawn by the active devices, it is further noted that the 
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layout of the scatterers, represented by Δ, can also be used to control the 

strength of the polarizability. In our implementation, a small Δ ~ λ/7 was used, 

in the regime of metamaterials without further optimization. With the 

introduction of a resonance directly into the Willis coupling term, the system 

will draw the necessary power from the external source, i.e., become active, 

and the conventional Willis bound can intuitively be surpassed. 
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Figure 5.4 | Willis coupling beyond the passivity bound. Willis coupling 

beyond the passivity bound achieved by controlling the scaling factors. a, The 

magnitude of αpv for the odd-to-even convolution kernel eeo. The Lorentzian 

responses at three center frequencies, f0 = 900 Hz (red), 1000 Hz (green), and 

1100 Hz (blue), are demonstrated with two different scaling factors, a = 15 

(empty symbols) and 30 (filled symbols). The analytical results for each 

scaling factor are also plotted as solid and dashed lines, and the magenta 

dotted lines denote the theoretical values of the Lorentzian peaks at the 

resonance frequencies. The black dashed line represents the passivity limit of 

Willis coupling, i.e., |αpv| = k0
–1. b, Same as a except that |αvp| for the even-

to-odd convolution kernel eoe is demonstrated. 
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5.2.3 Broadband-, flat-frequency dispersion 

Recalling that there is no reason for the frequency response of Y to be limited 

to a Lorentzian response in our implementation, here, we address a 

metamaterial realization with an arbitrary target response function F0(ω) 

based on the notion of inverse design. To realize αpv(ω) (or αvp(ω)) = F0(ω), 

we utilize the relation in Eq. (5.6) and obtain the convolution function Yeo(ω) 

= F0(ω)k0 sin(k0Δ)–1/2 (or Yoe(ω) = –F0(ω)k0 sin(k0Δ)–1/2) for the target frequency 

response F0. By applying inverse Fourier transformation to Yeo(ω) (or Yoe(ω)), 

we can numerically obtain the required time-domain convolution function y(t). 

As metamaterials restrict k0Δ to be small, the resultant time-domain function 

of this inverse design process will be similar to the inverse Fourier transform 

of the original target frequency response F0(ω). For example, we consider an 

intriguing target frequency spectrum with a flat broadband response between 

ω1 and ω2, specifically, 
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which satisfies the Kramers-Kronig (KK) relation, along with its inverse 

Fourier transform, 
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When ω2 is set to be much larger than ω1, the above function F0(ω) with θ = 

0 (θ = π/2) provides a flat real (imaginary) spectrum over a broad frequency 

range while suppressing the imaginary (real) part, while peaks appear in the 

vicinity of ω1 and ω2. This F0(ω) could thus be used to design broadband 

Willis metamaterials offering purely real or purely imaginary polarizability.  

To demonstrate the purely reciprocal and nonreciprocal Willis couplings, also 

with broadband characteristics, we then program the convolution kernel to be 

Y = Y0(eeo + eoe) for the reciprocal case and Y = Y0(eeo – eoe) for the 

nonreciprocal case, as used in the narrowband demonstrations shown in Fig. 

5.3e,f. Figure 5.5 shows the experimental realization of the purely reciprocal 

Willis parameter κ = i(αpv – αvp)/2 and the purely nonreciprocal parameter χ = 

(αpv + αvp)/2, achieving a flat broadband spectrum over (ω1, ω2) = (800 Hz, 

1200 Hz) for θ = 0 (Fig. 5.5b,c) and θ = π/2 (Fig. 5.5a,d), with a = 0.225. It is 

important to note that while Fig. 5.5a,b each correspond to conventional 

Willis couplings for omega media and moving media, which have real 

components of κ and χ, respectively, the Willis couplings shown in Fig. 5.5c,d 

newly achieve imaginary κ and χ values, providing an additional degree of 

freedom in terms of energy, i.e., gain and loss in the Willis coupling. We note 

that while even more general frequency responses can be constructed beyond 

the Lorentzian resonance and flat dispersion demonstrated here, it is 

necessary to keep some reservations due to the causality restriction. For 

example, the required time-domain convolution function from the inverse 
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Fourier transform of the target frequency response could contain anti-causal 

components, i.e., y(t) ≠ 0 for t < 0. Nonetheless, we are open to the possibility 

of mitigating at least the condition of y(t < 0) ≠ 0 through some modification 

of the virtual metamaterial configuration, such as placing the microphones 

before the speakers. In essence, our virtualization scheme provides a one-step 

implementation, through the digitization of the impulse response as a 

software entity, to obtain any physically allowed broadband spectrum. The 

same approach can be readily applied in other applications requiring a 

broadband response. For example, it can also be applied to design causality-

optimal sound absorption media, with the advantage that once the causality-

optimal spectrum has been formulated, there is no need to formulate a strategy 

further to obtain the corresponding metamaterial structures. In other words, 

by adopting the virtualization approach, one does not need to be concerned 

with passivity and reciprocity, which are the usual starting points for 

formulating performance bounds, but rather can relax the necessary 

considerations to causality only. In our case, causality is considered 

automatically through the KK relation. 
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Figure 5.5 | Broadband frequency dispersion control of Willis couplings. 

Experimental demonstration of Willis coupling parameters inversely 

designed from a frequency dispersion response with broadband flat real 

values, while imaginary values are restricted in the vicinity of the band edges. 

By balancing αpv and αvp, a,c broadband purely reciprocal Willis coupling 

parameters κ = i(αpv – αvp)/2 and (b,d) broadband purely nonreciprocal Willis 

coupling parameters χ = (αpv + αvp)/2 are achieved. a and b correspond to 

conventional omega media and moving media with real κ and χ, while c and 

d show imaginary reciprocal and nonreciprocal Willis couplings, which are 

not naturally achievable. 
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5.3 Experimental setup 

The bianisotropic virtualized meta-atom consists of two MEMS microphones 

(INMP401) and speakers (SMT-1028-t-2-r) laterally located on each edge of 

the acrylic frame, which are connected to an external single-board computer 

(Raspberry Pi 4B+) with amplifiers and analog-to-digital/digital-to-analog 

converters (see Fig. 5.2). For digital processing, the input signals sampled by 

the microphones are digitally processed by the microprocessor and then fed 

to the speakers in real-time with a sampling frequency of fs = 7.5 kHz and a 

number of samples equal to N = 400. The convolution is calculated as 

        
0

1
N

V

i ij j j

j k

S n Y k M n k M n k


     , where the index n = t/Ts is 

the discrete-time with sampling period Ts = fs
 –1. The speakers and 

microphones, which communicate with the microprocessor through the SPI 

(Serial Peripheral Interface), are mounted in an acrylic frame (width = 3.0 cm, 

length = 6.5 cm). This transducer module is, in turn, mounted on the acoustic 

waveguide (width = 3.0 cm, height = 3.0 cm). 
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5.4 Conclusion 

In this chapter, I demonstrate active bianisotropic metamaterials offering 

Willis coupling beyond the passivity limit. The conditions for maximum 

Willis coupling and reciprocity in the passivity regime are revisited, and then, 

the new bound of the Willis parameter and the reciprocity with the 

introduction of an active metamaterial are analyzed. By employing a 

virtualized metamaterial platform that enables the flexible design of 

scattering properties by means of software convolution functions, Lorentzian 

resonances of all of the polarizability parameters are demonstrated, with 

exclusive access to each polarizability, including the Willis parameters, 

inverse bulk modulus, and mass density, independently. Using the fully 

independent excitation of each parameter as well as precise balancing 

between them, the operations of purely reciprocal and nonreciprocal Willis 

couplings are realized. We also demonstrate the breaking of the Willis bound 

in the passivity limit for the first time while isolating the control parameters 

involved with the newly established Willis bound in the active regime, such 

as the amplitude, bandwidth, and frequency of the active resonator that feeds 

in external power for the scattered fields. Finally, we achieve the inverse 

design of target Willis responses with identical, flat-amplitude Willis 

coupling strengths over a broad frequency range, for the reciprocal and 

nonreciprocal cases as well as the newly revealed case of nonconserved 

bianisotropy.  
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Chapter 6 

 

Conclusion 

 

In this Dissertation, the top-down design of acoustic metamaterials has been 

demonstrated for the decoupled and reconfigurable control of extraordinary 

wave properties. From the idea that decouples fundamental oscillations of 

wave parameters, a deterministic approach to provide target wave properties 

in a single platform is investigated. With the physical metamaterial structure, 

cross-shaped acoustic metamaterials using a mass on a membrane and space-

coiling resonator are proposed, which enable independent manipulation of 

bulk modulus, mass density, and bianisotropy. These metamaterial structures 

confirm deterministic operations of bianisotropic metasurface, manipulating 

both reflection and transmission wavefronts and scattering-free propagation 

in matched-zero index metamaterials. Extending the top-down approach of 

physical metamaterials, I propose the concept of virtualized metamaterials 

that mimics polarization process of natural media, offering reconfigurable and 



 

 88 

decoupled manipulation of wave properties. I fabricate one-dimensional 

acoustic virtualized metamaterials using the microprocessor with electric 

peripherals and the real-time digital convolution and show independent 

control of all entity of wave parameters based on the decoupling of 

fundamental wave parameters. Virtualized metamaterials could realize 

extraordinary physical properties such as non-Hermiticity, bianisotropy 

beyond the passivity bound, and extremely high nonreciprocity. It is 

confirmed that any dispersion satisfying causality would be realized from the 

software-controlled transition between Lorentzian, anti-Lorentzian, and 

broadband-, flat dispersion. 

Demonstrating full control and top-down tailoring of all wave 

parameters within the same platform, this work would achieve the full 

potential of acoustic metamaterials and their diverse applications beyond 

conventional bound of passivity and nonreciprocity. 
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Appendix A 

 

Supplements for Chapter 4 

 

A.1 Monopolar and dipolar model of the virtualized atom 

For a one-dimensional (1-D) system (along x-direction), we express the total 

pressure and the velocity (in the propagating direction in x) by 

     

     

0 1 0 1

0 0 1 0 1

cos sin sgn ,

sin cos sgn ,

ik x ik x

ik x ik x

x

p a kx a kx b e b x e

c v a i kx a kx b x e b e

   

   
  (A.1) 

where p and vx are the pressure and velocity fields, respectively, ρ and c0 are 

the density and the sound speed in air. The monopolar (dipolar) incident 

waves are denoted by a0 (a1), while the monopolar (dipolar) scattered waves 

are denoted by b0 (b1) in generating symmetric (antisymmetric) waves, see 

Figure A.1 for the schematic representation. The response of the artificial 
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atom can be denoted by the scattering matrix S: 

00 010 0 0

10 111 1 1

s sb a a

s sb a a

      
        

      
S    (A.2) 

which can also be written in terms of transmission (t) and reflection (r) 

coefficients in the forward (subscript f) and backward (subscript b) directions: 

21

22

f b f b f b f b

f b f b f b f b

t t r r t t r r

t t r r t t r r

       
  

       
S    (A.3) 

The response of the system can be equivalently described by Y(ω) matrix for 

convolution operation (in Fig. 4.2b) or the scattering matrix S(ω). They are 

related to each other by 

1 11

2 2

1 11

2 2

cos sin cos cos

cos sin sin sin

M S

M S

S Si

S Si i i

   

   





   
   

   

       
       

      

Y

S G

 (A.4) 

where G is the structure factor in describing the propagation from two 

speakers S1, S2 to microphones M1, M2 and is defined by 

i i

i

i i

e e
e

e e

 


 





 
  

 
G ,   (A.5)  
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Figure A.1 | The schematic diagram for monopolar and dipolar models of the 

virtualized atom. The scattering process is defined as a monopolar response 

when the symmetric input generates the symmetric scattering field (upper). 

On the contrary, an anti-symmetric input generates an anti-symmetric 

scattering field (lower) is defined as a dipolar response. Here a0,1 and b0,1 

represent amplitudes of the incident and scattered waves, respectively. The 

center of the virtualized atom is set at the origin.  

where 2ϕ is the phase distance between two microphones and 2δ is the phase 

distance between two speakers (see Fig. 4.2b). G modifies the response 

matrix Y since microphones detect incoming waves plus the secondary 

radiation generated by speakers. Such a “renormalization” from the circuit 

response to the overall atomic response is common. It also occurs in the 

effective medium theory for an ensemble of isolated dipoles: the macroscopic 

and local fields are different so that susceptibility is proportional to 

polarizability in the dilute limit but goes to the Maxwell-Garnett formula as 

filling fraction increases due to a similar renormalization.  
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From the relationship between S and Y, we can solve S from given Y. For 

example, the scattering matrix for the monopolar atom in Figs. 4.3 and 4.4 

can be obtained by substituting Y11 = Y12 = Y21 = Y22 = Y/2 to obtain 

 
 

 

cos 02

0 0sec 2 i

Y

Y e 




 

 
  

  
S    (A.6) 

Similarly, we can also readily obtain a virtualized metamaterials with dipolar 

scattering response by redesigning the [𝑌] matrix as Y11 = –Y12 = –Y21 = Y22 

= Y/2.  Then the scattering matrix [Ɗ](ω) becomes  

 
 

 

0 02

0 sincsc 2 i

Y

iY e 




 

 
  

  
S    (A.7) 

Theoretically, only the dipolar scattering coefficient S11 is nonzero in S matrix, 

but the discrepancy between two speakers of the atom inevitably generates 

small amounts of monopolar secondary radiation in the experiment. 

Therefore, the monopolar scattering coefficient S00 becomes nonzero, but is 

very small compared to the dipolar scattering coefficient S11, as shown in Fig. 

4.5a,b. In a more conventional way to describe the response of the atom, we 

can use the polarizability α, which is related to the S matrix by 

 
   

   
 00 00 0

00 00

c

i

   
 

    

 
  
 

α S    (A.8) 
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A.2. Power gain of active metamaterials 

Figure A.2 plots the power gain |r|2 + |t|2 for configurations in Fig. 4.3, 

confirming the outgoing power is larger than the input power. 

 

Figure A.2 | Metamaterial power gain. The spectrum for the sum of 

transmission intensity and reflection intensity for the 4 configurations (in 

Fig. 2) with convolution phase θ = 0° (blue), 90° (green), 180° (red) and 

270° (black), where symbols and lines denote the experimental and 

theoretical results respectively. Here |r|2 + |t|2 is the power gain for one-

side incidence. 
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A.3 Effective medium parameters and impedance matching 

As shown in Fig. 4.5, the monopolar and dipolar response of the virtualized 

metamaterial can be controlled independently. Therefore, we can readily 

realize the decoupled control on the effective medium parameters since the 

system can be regarded as an effective medium, which breaks through those 

limitations inherent to the physical structures. The spectrum of the effective 

medium parameters is determined by Eq. (4.6), as shown in Fig. A.3. For the 

virtualized metamaterial with dipolar response only (Fig. A.3a,b, the 

monopolar resonance strength a0 = 0), the dipolar susceptibility χ1, which is 

associated with the effective mass density ρ, is dominated over the monopolar 

susceptibility χ0 for both the case of convolution phase θ = 0° and 180°. When 

the monopolar resonance strength a0 increases from 0 to 6.3 Hz, the 

monopolar susceptibility χ0 emerges (Fig. A.3c,d). The virtualized 

metamaterial behaves like an ensemble of isolated dipolar and monopolar 

resonance. Therefore, we can further adjust the dipolar and monopolar 

resonance independently to realize the impedance matching. Readjust the 

resonance strength a0 to 4.0 Hz, only the monopolar susceptibility χ0 

decreases while the dipolar susceptibility χ1 keeps the same (Fig. A.3e,f).  In 

this case, the inverse of effective bulk modulus B–1 and the effective mass 

density ρ are almost equivalent, which represents the realization of impedance 

matching (Z = (ρ/B–1)1/2 ≈ 1). As a result, we can adjust the reflection and 

transmission amplitudes and achieve small reflectance in a wide frequency 
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regime as shown in Fig. A.4.  

On the other hand, the connection from the single-atom polarizabilities to the 

bulk property (multiple atoms) can be obtained from Eq. 4.6. In our 

metamaterial atom in a 1D system, the near field in coupling the neighboring 

unit cells (along the propagating direction) is not significant. The following 

simulation shows that the wavefront quickly goes to plane wave within 5 cm, 

which is comparable to the size of each atom (6.5 cm), and much smaller than 

the wavelength of acoustic wave (34 cm). 
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Figure A.3 | The effective medium parameters of the virtualized 

metamaterial. The monopolar and dipolar susceptibilities χ0 (red) and χ1 

(black) for the convolution phase of θ = 0° and 180°. (a,b) When the 

virtualized metamaterial has a dipolar response only, the dipolar 

susceptibility χ1, associated with the effective density ρ, is dominated in 

this case. (c,d) The monopolar susceptibility χ0 which is associated with 

the effective bulk modulus B of the virtualized metamaterial emerges after 

adding the monopolar response. (e,f) The monopolar susceptibility χ0 

decreases while χ1 keeps the same when we lower the resonance strength 

a0. For all results, lines and symbols represent the theoretical and the 

experimental results, respectively. The left and right panels show the 

scattering coefficients for the convolution phase of θ = 0° and 180°.  
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Figure A.4 | The reflection and transmission amplitudes. The reflection 

amplitude |r| (black) and transmission amplitudes |t| (red) the convolution 

phase of θ = 0° and 180°, when the virtualized metamaterial has a dipolar 

response only (a,b), the monopolar response is added (c,d), and the 

monopolar resonance strength a0 is decreased to realize the impedance 

matching (e,f). For all the cases of convolution phase θ = 180° (right panel), 

the virtualized atom is working in the active regime and the peak of the 

transmission amplitudes beyond the unity 
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Figure A.5 | The plane wave generation from meta-atom speakers. a,b, 

Numerical simulations of meta-atom sources generating (a) monopolar 

(symmetric) and (b) dipolar (anti-symmetric) scattering fields. c, Pressure 

field profiles measured at y = 0 (solid line) and y = 0.02 m (dashed line) for 

monopolar (blue) and dipolar (red) sources, where the wavefront goes to 

plane wave within 0.05 m. Speakers modeled by 1 × 1.5cm flat rectangular 

structure are 1.7 cm away from each other and mounted in 2 × 6 cm 

rectangular waveguide. 

This is in the so-called transmission-line metamaterial regime in which the 

near-field coupling between neighboring unit cells becomes negligible 

while the coupling between the neighboring unit cells is only through far-

field. With this background, the single-atom property also represents the 

bulk property when atoms are cascaded in the propagating direction. Figure 



 

 99 

A.6a shows the more traditional representation of effective medium 

parameters of the same type of atoms in Fig. 4.3 (with a smaller resonance 

strength and convolution phase 180°), now in terms of an anti-Lorentzian 

resonating reciprocal bulk modulus and a unit density (not shown here). 

Solid lines/symbols are the extracted model/experimental values. 

Black/blue represents the real/imaginary part. Then, by using these 

effective single-atom medium properties, we can calculate the expected 

two-atoms and three-atoms properties, transmission amplitude and phase 

spectra are shown in Fig. A.6b,c, as solid lines, which also agree to the 

experimental results shown in symbols, showing the validity in using single 

atom property in scaling up to the situation of multiple atoms. 
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Figure A.6 | Response from multiple atoms. a, Effective medium 

parameters extracted from a single atom with convolution phase θ = 180°. 

Solid lines (symbols) represent theoretical (experimental) results. The real 

(imaginary) part is shown in black (blue) color. b,c, Transmission from 

cascading 2 or 3 atoms of the same configuration. Experimental results, (b) 

for two atoms and (c) 3 atoms, are shown in symbols, while solid lines 

represent the theoretical results that are obtained from the previous single-

atom property shown in (a). 
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Appendix B 

 

Supplements for Chapter 5 

 

B.1 Derivation of the relationship between the polarizability and the 

scattering matrix 

It is well known that the fundamental resonances affecting the bulk modulus 

and mass density are monopolar and dipolar, while bianisotropy corresponds 

to monopolar-to-dipolar or dipolar-to-monopolar responses. This section 

discusses the details of the polarization process in terms of the scattering 

matrix in Eq. (5.1), which expresses the relations between even and odd 

incident and scattered fields. We first derive the scattered field generated from 

a small scatterer that satisfies the following constitutive relations [102]: 

1

0

0

,e B p M



 

 π v D,
     (B.1) 
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where e and π are the strain and momentum fields, respectively, and 

0

1
M dV

V
  




 and t dV

V


  D r  are monopolar and dipolar 

polarizations, respectively. Rewriting the acoustic wave equations with time 

harmonics e–iωt in terms of polarizations yields 
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.       (B.2) 

Therefore, the acoustic Helmholtz equation can then be written as 

   2 2

0 0 0 0k p i ik c M   D  .  (B.3) 

Since the Green’s function of the 1D Helmholtz equation 
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s
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s

Dp  at r = L/2 << 1 induced by a monopole 

M and a dipole D = Dx located at the center (r’ = 0) are written as 
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
       (B.4) 

The polarizations M and D can be written in terms of the normalized 

polarizability, by definition, as follows: 
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where ploc and vloc are local fields representing the sum of the external fields 

exerted on the scatterers and the field induced by the geometry. When an 

incident wave is propagating in forward (+) or backward (–) direction, the 

scattered fields adjacent to the center are given by 
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where the superscripts r and t denote the reflected and transmitted scattered 

fields, respectively. When the contributions of other unit cells to the local field 

are negligible, the local fields are determined simply by the external fields. 

Therefore, the scattering coefficients and polarizability can be written as 
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  (B.7) 

The polarizability can then be described in terms of the forward and backward 

scattering parameters, 
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with the following relationship between the polarizability α and the scattering 

matrix S: 
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where the normalized polarizability is related to the effective wave 

parameters as follows: 
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B.2 Derivation of the maximum Willis coupling in a one-dimensional 

passive system 

In this section, I develop a passivity condition for a one-dimensional 

bianisotropic system, following 2-D and 3-D cases by Quan et al. [86]. In a 

1-D system, the incident and total pressure and velocity fields (propagating 

along the x-direction) can be written as 
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   

   

     

     

  (B.11) 

The passivity of the system, meaning that the absorption power is always 

nonnegative, can be expressed as 

 * *1
Re 0.

2
i i t tp p d   v v A    (B.12) 

where the subscript i and t denote incident and total fields, respectively. This 

inequality can then be rewritten in terms of aj and bi as follows: 

    * * * * * * 0.e e o o e e o o e e o oa b a b b a b a b b b b       (B.13) 

By rewriting Eq. (B.13) in the matrix form, the left-hand side can be 

simplified to b†b + a†b + b†a = a†(S†S + S + S†)a. Since the input a is an 
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arbitrary vector, the Hermitian matrix S†S + S + S† is a negative semidefinite 

matrix, which necessitates that the diagonal components must be nonpositive: 

2 2

2 2

1 1,

1 1,

oe ee

eo oo

s s

s s

  

  
   (B.14) 

or equivalently, in terms of the polarizability α, 

      

2 2

0 0

2 2

0 0

1 1,

1 1.

vp pp

pv vv

k α ik α

k α ik α

  

  
   (B.15) 

These results for a one-dimensional system are consistent with the two- and 

three-dimensional derivations are given by Ref. [86].  

The scattering matrix S depends on the choice of the reference plane. In the 

main text, we define the reference plane that lies at the middle position 

between the two speakers S1 and S2 as an obvious choice. However, when we 

choose a reference plane that is shifted by Δφ (in terms of phase), we have rf 

→ rf e–2iΔφ and rb → rb e2iΔφ. This corresponds to a unitary transformation of 

the matrix S as follows: 

      
c o s s i n c o s s i n

s i n c o s s i n c o s

φ i φ φ i φ
ω ω

i φ φ i φ φ

       
    

       
S S .  (B.16) 

Such a unitary transformation will not change the eigenvalues of S†S + S + 

S†; therefore, the passivity condition is invariant against the choice of 

reference plane, as expected, and the reciprocity condition seo + soe = 0 is also 
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invariant. Therefore, the lower bound is invariant with respect to a shift of the 

reference plane.  
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B.3 Derivation of the scattering matrix in the virtual meta-atom structure 

In this section, we discuss the exact scattering process of our virtual meta-

atom structure, focusing on the generation of the local fields. The speakers 

(S1, S2) and microphones (M1, M2) are located at (–Δs/2, Δs/2) and (–Δm/2, 

Δm/2), respectively, where both Δm and Δs > 0, and are assumed to be 

omnidirectional, detecting pressure fields and generating acoustic waves 

propagating along both sides. Then, the total pressure field in the steady-state 

is given by 

   0 0/2 /2

1 2

ik x s ik x s
p x S e S e I x

 
   ,   (B.17) 

where I(x) = I+ exp(ik0x) + I– exp(–ik0x) is the incident field. The microphones 

detect these steady-state total fields, i.e., M1 = p(–Δm/2) and M2 = p(Δm/2). 

The reflection and transmission coefficients are derived by setting the 

incident field I(x) to I0exp(ik0x) and I0exp(–ik0x) for forward and backward 

incidence, respectively: 

     0 0ik L ik L
r p L e e

 

   ,   0ik L
t p L e



   , (B.18) 

where L is an arbitrarily long far-field distance satisfying L ≫ Δs and Δm, 

which will not affect these coefficients. In our virtual meta-atom structure, 

where Δs = Δm = Δ, the scattering coefficients are explicitly written as 
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     
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ik ik
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r
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.
1

ik ik
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  (B.19) 

where Q = Y11Y22 – Y12Y21. Thus, the elements of the scattering matrix S are 

   

    
 

  

 
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2cos / 2 2 e 1
,

1

sin
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1

sin
,

1

2s

ik

ee ikik

eo ik ik

oe ik ik

oo

k Y Y Y Y Q
s

Y Y Q Y Y e Qe

i k Y Y Y Y
s

Y Y Q Y Y e Qe

i k Y Y Y Y
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Y Y Q Y Y e Qe

s
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

 

 

     


      

   

      

    
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      




    
 

0

0 0

2

0 11 12 21 22

2

11 22 12 21

in / 2 2 e 1
.

1

ik

ik ik

k Y Y Y Y Q

Y Y Q Y Y e Qe



 

      

      

  (B.20) 

Equivalently, by applying Y = YeeYee + YeoYeo + YoeYoe + YooYoo, one can 

rewrite Eq. (B.20) as 
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 (B.21) 

It is noted that since Y ≪ 1 in our case, the higher-order term YeeYoo – YeoYoe 

is negligible, and the denominator can simply be 1. Therefore, the virtualized 

atom exclusively excites the corresponding scattering components sij as 

follows: 

 

 

 

 

2

0

0

0 0

2

0

4cos / 2 ,

2 sin ,
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ee ee

eo eo

oe oe

oo oo

s k Y

s i k Y

s iY k Y

s k Y

 

 

  

  

     (B.22)  
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B.4 Causality conditions in the inverse design of the frequency dispersion 

The virtual meta-atom concept can enable the design of wave parameters over 

a broad frequency domain by virtue of its arbitrary software-defined 

frequency dispersion. Here, we remark on the possible issue of causality when 

inversely engineering the dispersion. The wideband flat dispersion in Eqs. 

(5.10) and (5.11) can be used to design a broadband, near-zero index by 

designing Y(ω) = Yee(ω)eee + Yoo(ω)eoo with 

 
   

   

   

   

2

0 /2

2

/2

2cos / 2

1 2 cos / 2

2sin / 2

1 2 sin / 2

ee

ik

ee

oo

ik

oo

k Y
F

e k Y

k Y

ie k Y

















 


 

 

.    (B.23) 

Then, the required time-domain functions for the coefficients yee(t) and yoo(t) 

can be inversely designed from Yee and Yoo, either analytically or numerically. 

Figures B.1a,c show the required time-domain functions for a wideband zero 

inverse bulk modulus and mass density, which are calculated from the discrete 

inverse Fourier transforms of Yee(ω) and Yoo(ω). Since the inverse design 

incurs anti-causal components (red shaded regions), which cannot be 

achieved, the realized polarizability must necessarily differ from the initially 

designed frequency response. In Fig.B.1b,d, the effective inverse bulk 

modulus and mass density reconstructed from only the causal components 

(green shaded regions) are depicted, showing severe deformation from a flat 
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dispersion. The discrepancy is more significant in the case of yoo because 

sensing a dipole-like incident signal requires more time steps in practice.  

 

Figure B.1 | Causality analysis for the inverse bulk modulus and mass density. 

a, Required time-domain convolution function yee(t) obtained from the 

discrete-time inverse Fourier transform of Yee for the wideband flat dispersion 

in Eq. (5.10). b, Numerically calculated inverse bulk modulus based on only 

the causal components of yee(t), i.e., yee(t)u(t), where u(t) is the Heaviside step 

function. The real/imaginary parts are plotted as solid black/red lines, while 

the analytical results reconstructed from yee(t) are plotted as dotted lines. c,d 

Same as a,b but for yoo(t) and the mass density. 
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국문 초록 

 

최근 20 년간 메타 물질은 파동제어 기법에 있어 혁신을 가져왔다. 메타

물질은 단위 구조체에서의 공진 모드를 인공적으로 설계함으로써 자연 

물질이 나타낼 수 없는 파동 물성의 구현을 가능케 한다. 모든 파동 현

상은 파동이 전파되는 공간의 파동 물성 분포에 의해 결정되므로, 전자

기파, 음파, 그리고 탄성파 등, 다양한 파동 영역에서 파동 물성의 완전

한 제어는 음굴절, 클로킹과 같은 많은 흥미로운 현상을 가능하게 한다. 

이와 같이 파동 물성의 극한적 제어를 위한 다양한 구조체가 제시되어 

왔음에도 불구하고 기존의 메타 물질 설계 방식은 다음과 같은 근본적인 

한계점을 갖는다. 

대부분의 실용적인 목적의 메타 물질 응용을 위해서는 메타 물질의 재구

성 가능성을 필요로 한다. 이를 위해 각 파동 물성에 대한 독립적인 제

어가 가능한 구조체가 재구성 가능성에 적합한 구조로써 제시되어 왔으

나, 파동 매개 변수의 분리가 가능한 대부분의 메타 물질은 하나의 기본 

공진 모드를 제어하는 하위 구조의 조합으로 구성되므로, 하향식 제어를 

제공하는 통합된 플랫폼에 대한 연구를 필요로 한다. 특히, 재구성 가능

한 메타 물질의 경우 구성 매개 변수를 조정하는 능력은 메타 물질과 결

합된 물리적 구조를 수정하는 능력에 따라 달라지므로, 실시간 동작에 

있어 재구성 가능성에서 제어 가능한 영역의 범위에 근본적인 한계를 갖
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는다. 따라서 유연한 제어를 달성하고 극한 물성을 구현하기 위한 방법

에 대한 연구가 필요하다. 

본 학위 논문에서는 기존의 한계를 극복하고 결정론적으로 설계 가능한 

파동 물성을 구현하기 위한 음향 메타 물질의 하향식 설계에 대해 분석

한다. 기본 공진모드의 디커플링 원리를 기반으로, 파동 매개 변수를 독

립적으로 제어 할 수 있는 음향 메타 물질 단위 구조체를 제안한다. 또

한, 메타 물질의 물리적 구조에 의한 경계를 벗어나 디지털 신호 처리 

기술을 기반으로 인공적인 분극을 구현하는 가상화 메타 물질의 개념을 

제안한다. 가상화 메타 물질은 재구성 가능한 메타 물질로써, 가능한 모

든 복소 파동 매개 변수를 분리 제어 할 수 있을 뿐만 아니라 극한 파동 

물성을 구현할 수 있다. 본 연구는 모든 파동 물성을 독립적으로 구현할 

뿐만 아니라, 설계 가능한 주파수 분산 특성을 실현함으로써 메타 물질 

설계에 돌파구를 제공하고 음향 메타 물질의 전체 기능을 실현할 수 있

는 유연한 플랫폼을 제공할 것으로 기대한다. 
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