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Abstract

Edge computing is currently actively used for the benefits of low latency, re-

duced bandwidth usage due to e�cient data processing, and improved security

compared to server-centric computing. This has become a more important study

as actively used to utilize deep learning applications that have recently brought

about a big paradigm shift. However, in mobile and automotive environments

where actual deep-running applications are applied, hardware resources and

power-supply are limited. Also, for edge embedded devices such as Jetson, the

resource contention caused by the integrated structure has an adverse e↵ect

on overall performance. We introduce RMED to adaptively adjust the resource

usage of the workloads used to mitigate these problems. RMED is a variant

of EdgeIso that applies isolation technology to mitigate existing resource con-

tention and optimizes power consumption while maintaining performance for

target workloads. RMED’s approach achieves more than 20% energy savings in

multitasking situations while successfully maintaining performance isolation of

target workloads.

Keywords: Edge Computing, Power Consumption, Resource Management,

Performance Isolation

Student Number: 2019-25497
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Chapter 1

Introduction

Edge Computing have been widely used in various fields such as Mobile Phone,

Wearable Device and Autonomus Driving[9, 10]. In particular, edge comput-

ing is used a lot in terms of low latency, network bandwidth reduction, and

security by conducting inferences near users, especially in the application of

deep learning workloads that perform real-time inferences using models learned

by big data. Figure 1.1 shows the brief architecture of Edge Computing. Edge

computing represents a lot of advantages by using edge devices that are close

to users, compared to the way in which a centralized cloud server is used.

Deep learning applications are carried out through the inference process

using models created through learning. At this time, the learning process, which

processes the vast amount of input data used as learning data, is commonly

performed on server computers with su�cient computing power. On the other

hand, edge devices with actual deep learning applications, which deduce models

created through learning, often have limited hardware resources and power

to supply compared to servers, failing to show the desired performance. Most
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Figure 1.1: Brief Structure for Edge Computing
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of the embedded devices used in edge computing recently have heterogeneous

architecture, combine cores with di↵erent computing capabilities on a single die.

This class of systems include CPU-GPU integrated systems, where the CPU and

GPU are fused together on a die, sharing a common memory-bandwidth. Fused

CPU-GPU platforms are presently found on mobile and embedded devices such

as Jetson series from NVIDIA[4]. These systems are designed to share a common

memory system to reduce transmission overhead between devices, but at the

same time create resource contention that degrades overall performance. Also,

high-speed communication technologies such as 5G, which have been in the

spotlight recently, provide fast latency, but at the same time, they consume a

lot of power. For these reasons, it is necessary to optimize resource management

while maintaining the performance of target deep learning workloads on edge

devices.

Dynamic Voltage and Frequency Scaling (DVFS) is a well-known method to

improve the energy e�ciency of computing systems. The voltage and frequency

levels are typically adjusted through the use of system-level software known

as frequency governors. The mechanism used by these governors to control

the frequency knobs tend not to be application aware, which leads to energy

ine�ciencies. In addition, this problem is aggravated by the fact that, on modern

SOCs such as the NVIDIA Jetson TX2 (which is used for this study), the

number of possible frequency combinations can be very large, rendering a brute-

force search for the energy-optimal point infeasible. In order to evaluate the

energy e�ciency of the Jetson TX2’s default DVFS system, we find a diverse set

of collaborative applications, and collect performance and power consumption

data.

There has been a lot of significant studies to reduce power consumption

in embedded or edge environments. Some studies have suggested reducing the

3



power consumption in multitasking environments, but there are restricted in

server-centric computing and need additional hardwares[8, 21, 20, 22].

In this paper, we propose an RMED model that adds power management

function to existing EdgeIso[11] scheduler designed to overcome performance

degradation caused by resource contention during multitasking in Edge envi-

ronment. At the profiling stage, RMED measures the amount of power required

to solo-run the target workload, and at the scheduling stage manages the min-

imum power required to maintain the performance of the target workload in a

multitasking environment.

In experiments, we evaluate the three workloads, (SSD, PointPillars, Tail-

bench) on object detection and latency-critical workloads. Experiments are con-

ducted on NVIDIA Jetson TX2 with Dual Denver 2 + Quad ARM A57 and

256-core Pascal GPU.

The contributions of our work are as follows:

• We present an optimized power consumption technique for multitasking

in edge devices.

• We propose an online model that measures resource contention and power

consumption by profiling the status of processes.

• We evaluate the energy savings and performance benefits of RMED and

find that, on an average, we achieve about 20% reduction over the baseline

power manager.

The composition of this paper is as follows. Chapter 2 describes the back-

ground and motivation. Chapter 3 describes the EdgeIso which is underlying

this study and describes the architecture and algorithm of RMED. Chapter 4

describes the results of the experiment. Chapter 5 describes the relevant existing

research. Chapter 6 concludes the paper.
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Chapter 2

Background and Motivation

2.1 Edge Computing

Edge computing is a type of distributed computing that distributes comput-

ing tasks to devices close to users or uses the tasks by dividing them into

servers and edges[12]. Table 2.1 shows di↵erences between Edge Computing

and Server-centric Cloud Computing. Server-centric computing, the opposite

of edge computing, has the advantage of being able to use vast amounts of

cloud server resources without restrictions. Large companies such as Amazon[1],

Microsoft[2], and Google[3], which can provide these resources, are developing

and providing services related to cloud computing and making users pay for the

resources they use. However, this server-centric approach to cloud computing

has limitations: First, the non-deterministic latency that can occur in the com-

munication process between the server and the terminal makes it di�cult to

achieve the same results when the same initial conditions are given. Second, if

the connection between the server and the terminal becomes unstable, stability
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Cloud Computing Edge Computing

Adventages
-Large-scale data analytics and processing capabilities

-High-level computing can be provided to various terminals

- Provides fast service response speed

- Relieve the overload of communication infrastructure

- Reduce damage from cyber attacks

- Service stability against network failure

Disadvantages

- Service response speed decreased due to increase in number

of terminals and network instability

- Risk of communication infrastructure overload

- Increased security risks from cyber attacks, such as data leakage

- Di�culty in analyzing and processing large-scale data

Table 2.1: Di↵erences between Cloud Computing and Edge Computing

will be drastically reduced, causing problems in areas where user stability is

paramount, such as self-driving cars. Third, there are threats to data security

and the risk of contamination at the stage of transferring data collected from

user terminals.

Unlike common cloud computing, edge computing enables data locality and

data-driven networking and reduces application latency. Because of these fac-

tors, edge computing is leveraged for a variety of applications that require

real-time interaction, massive data storage and movement, improved security

and privacy, and multiple access networking. Also, by analyzing and utilizing

data directly without going through the server at the edge where the user’s

data is collected as terminal data, the user can respond more quickly compared

to waiting for the analyzed results in the cloud data center. Recently, the per-

formance of terminal edge devices has been able to operate workloads without

di�culty compared to the past, and in conjunction with these advantages, edge

computing has been actively studied and used in mobile phone, smart-watches,

and self-driving cars.

Edge hardware environments di↵er from the general development environ-

ments in terms of computational capacities, operating systems used, network

connectivity, and power specifications. In software domain, system libraries,
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available functions as well as the encoding can be di↵erent. These ambiguities

require extra e↵ort and attention during edge application development. The

embedded device we used in our research, the Jetson TX2, is an embedded AI

computing device, containing two Denver core CPUs and one NVIDIA Pascal

GPU. In such an embedded device, in order to perform an inference task in real

time, several sensors are attached and used. At this point, the additional power

consumption of sensors is not negligible, so optimizing the power consumed

within the edge device is an important research task.

2.2 Power Management Scheme

Dynamic Voltage and Frequency Scaling (DVFS)[23] is a power management

framework that allows a processors to change frequency and voltage status.

DVFS can help achieve power savings when the workload does not require the

highest performance (the highest frequency or voltage) of the processor. The

frequency and voltage pairs are related because a corresponding increase in

voltage is required to increase the frequency of the system. This is why the CPU

core has the voltage required by the specific frequency, which is stored in the

Frequency table generated by the Operating Performance Point (OPP) List. In

general, CPUs have two major clock domains, Core Clock and Memory Clock.

Core Clock controls the frequency of the core, and Memory Clock controls the

frequency of the main memory. E�cient DVFS schemes scale both of these

frequencies to ensure power e�cient execution of applications. The core clock

is independent for each core, allowing a multicore system to run di↵erent cores

at di↵erent frequencies.

Jetson devices provide NVPModel[6] that allows user to easily change CPU

core on/o↵ and frequency control and GPU frequency control to preset values.

7



Mode Mode Name Denver Core Number & Frequency ARM Core Number & Frequency GPU Frequency

0 Max-N (Maximum Performance) 2, 2.0GHz 4, 2.0GHz 1.3GHz

1 Max-Q 0 4, 1.2GHz 0.85GHz

2 Max-P Core-All 2, 1.4GHz 4, 1.4GHz 1.12GHz

3 Max-P ARM (ARM Core Only) 0 4, 2.0GHz 1.12GHz

4 Max-P Denver (Denver Core Only) 2 2.0GHz 0 1.12GHz

Table 2.2: NVPModel Mode Definition

There are a total of 5 basic presets, each having a di↵erence in whether the Den-

ver core is activated, whether the ARM core is activated, CPU frequency, and

GPU frequency (Table2.2). Users can create and use user-defined modes instead

of the presets provided, at which point they should create valid frequencies and

possible voltage pairs to avoid functional failures.

We first measured the amount of power consumed during the execution of

the workload to analyze the performance di↵erences due to allocation of re-

sources. We used Tegrastats[19] to know the energy consumption status of the

current workload. Tegrastats is NVIDIA-provided resource profiling technology

that allows user to read the resources of the corresponding workload every spe-

cific cycle. Figure 2.1 shows the amount of power used to perform the Single Shot

Multi-box Detector’s inference workload for each resource. The types of volt-

ages identified by tegrastats are Input, CPU, GPU, SystemOnChip, Wifi chip,

and DDR Memory. We change the mode of NVPModel provided by NVIDIA,

that is, gradually increase the frequency, and try to see the performance change

of the target workload accordingly. As shown in figure 2.2, the modes that use

Denver Core basically consume more power than using the general ARM Core.

In addition, the use of Denver Core does not have a significant impact on overall

workload performance, so it has been confirmed that not using Denver Core (if

it does not require the computing power of the Denver Core) is beneficial to

power management in typical situations. Disabling Denver Core on the Jetson

8



C
ur

re
nt

 p
ow

er
 c

on
su

m
pt

io
n 

(m
illi

w
at

ts
)

0

3000

6000

9000

12000

VDD_INPUT
VDD_CPU
VDD_GPU
VDD_SOC
VDD_WIFI
VDD_DDR

Figure 2.1: Power consumption of SSD Inference in Jetson TX2.

board as the default setting is the same reason. Also, figure 2.1 shows that

there is a phase where each power consumption rapidly increases according to

the execution time of the workload. This is to minimize power consumption

in the idle state due to DVFS, which is basically on, and maximize power ac-

cording to the required resource of the used workload. For the above reasons,

the advantage in power consumption was confirmed when the frequency of the

core allocated to the target workload was variably managed in a multitasking

environment. We tried to make a more e�cient resource management frame-

work by reflecting the characteristics of the workload compared to the power

consumption optimization due to DVFS application in Jetson.

2.3 Resource Contention

Resource contention occurs when the same resource is shared by multiple tasks.

It occurs due to conflict over task access and oversubscription to a resources

within multi-tenant machines which can be exuberated within di↵erent sce-
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Figure 2.2: Power consumption of SSD Inference (NVPModel mode changing).

narios including: hardware heterogeneity, ine↵ective algorithm logic, additional

task clones requiring more resources and resource usage being higher than ac-

cepted threshold value. Among them, hardware heterogeneity is the main rea-

son of resource contention, which occurs due to a mismatch between hard-

ware specification and specified application constraints (e.g. budget, deadline,

etc.) leading to task performance degradation. Especially for edge embedded

devices such as Jetson, resource contention due to the integration structure

significantly reduces overall performance in multitasking situations. Also, the

resource contention has a negative e↵ect on power consumption in multitasking

situations[13]. Therefore, reducing resource contention through scheduling can

have a positive e↵ect on power management as well.
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Chapter 3

Design and Implementation

In this chapter, we propose a resource management framework available in

edge devices. We first briefly introduce EdgeIso, an edge scheduling framework

underlying this study. Second, we explain how the algorithm of resource man-

agement applied to the our framework. This approach is written in user-level

python on the Linux operating system.

3.1 Overview of EdgeIso

EdgeIso [11] profiles the resource contentions between tasks and isolates re-

sources for maintain performance for target workload. The purpose of EdgeIso

is to address the performance degradation caused by insu�cient allocation of

resources for latency-critical tasks in multitasking situations. EdgeIso consists

of two main parts: profiler and scheduler. The profiler measures the resource us-

age of the target task over a short period of time, comparing the resource usage

for each non-contention situation and multi-tasking situation. The comparison

11



values are used to identify contention for CPU, LLC, and memory bandwidth,

and to select the most important contention factors. It also observes changes in

the phase of the target workload for gradual resource allocation, which tracks

changes in the number of threads due to resource usage. The scheduler applies

the appropriate isolation technique according to the type of Dominant Resource

Contention (DRC) tracked by the Profiler. At this time, isolation techniques

are applied using pre-defined policies according to the type of DRC, which are

each core allocation, cycle throttling, and GPU frequency throttling. After the

scheduling step is over, the profiling step repeats the process of measuring the

degree of resource contention.

Dominant resource contention has a negative impact on the performance of

the target workload while also generating additional power consumption due to

resource redistribution time. Therefore, identifying and preventing DRCs can

be considered desirable for power saving. The resource management technique

proposed in this paper is a method of adding power optimization based on the

basic construction of EdgeIso. Considering the existing research aims to ensure

the performance of the target workload by reducing resource contention, this

research aims to optimize the power consumption that is important factor in

edge devices while minimizing performance loss while bringing the advantages

of EdgeIso.

3.2 RMED: Resource Management for Edge Devices

3.2.1 Overall Architecture

Figure 3.1 shows overall process of RMED briefly. Based on EdgeIso’s resource

profiling and scheduling, additional techniques for power optimization have been

added. The power consumption optimization step begins at the profiling stage,

12



Figure 3.1: RMED Overall Architecture.

which identifies the resource usage of the workload. Phase-detector has two

functions: first, it compares the resources used by solo-run of the target workload

with the resources used in multitasking to hand over the DRC to the scheduler,

and monitors the VDD values read as tegra-stat to track changes from CPU-

centric to GPU-centric tasks of the target workload. When looking at the trend

of power consumed in the process of inference deep learning-based workloads

(See figure 2.1), it can be seen that the utilization of CPU increases in the layer

loading stage, and then passes to GPU jobs. Considering this phenomenon, the

CPU frequency was overclocked in the layer model loading stage to speed up

the CPU job, and downclocked when the GPU job was transferred to reduce

the power consumed by the CPU.
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Since most embedded devices used in research fields such as self-driving or

mobile devices are co-run situations, they need to utilize the characteristics of

workloads identified during solo runs while also comparing them with resources

used for co-runs. For example, in the case of SSD (Single Shot Multi-box Detec-

tor), which is a kind of object detection framework based on deep learning, the

number of layers of the model used, the size of the model, and the size of the

input data a↵ect the resources consumed during the solo run[24]. These factors

apply not only to machine learning-based workloads, but also to the majority

of general-purpose workloads used by edge devices[25].

The purpose of the resource management framework is to provide reasonable

energy savings. Determining an appropriate frequency for the target workload

can depend on runtime information that is not available during static analysis,

so frequencies based on pre-written policies can generate erroneous predictions

for some applications and adversely a↵ect performance. Therefore, the solution

must be solved by gradually adjusting the frequency while analyzing the re-

source in real time. Therefore, RMED alone is not su�cient for energy e�cient

execution of CPU-GPU collaborative applications. This limitation of RMED is

solved by introducing a technology that gradually applies the isolator accord-

ing to the DRC applied by the existing EdgeIso. This technology uses run-time

feedback from performance counters and phase detection and other real-time

utilization metrics to reduce power consumed by resource contention, allowing

an e↵ective RMED to function as a more e↵ective framework.

3.2.2 Algorithm

Algorithm 1 shows the pseudo-code of RMED, which is combine of EdgeIso

framework and Power management technique. In a multitasking situation, pro-

filing is performed in the background, and selects the main resources that a↵ect

14



resource contention (line 2). The DRC selection uses specific threshold com-

pared to the idle resource usage data for each resource type, which can be

observed to determine whether a contention has occurred (line 4). The resource

contention is mitigated by gradually applying the isolator according to the se-

lected DRC (line 5). After application of the isolator, resource contention is

continuously observed to determine whether to apply additional isolation, and

switch to idle state if there is no competition (line 6-12).

While applying isolation technology to alleviate resource contention, power

optimization techniques are simultaneously performed. In order to detect switch-

ing phases from CPU Jobs to GPU Jobs, the target workload’s VDD CPU

value is tracked to recognize phase where energy consumption is soaring (line

13). After the transition of the target workload to the GPU Job is confirmed, a

predefined policy is used to underclock the frequency of the CPU core assigned

to the target workload to reduce overall power consumption (line 14-21). If a

DRC is detected due to a bottleneck light on the CPU that can occur when the

frequency is lowered, it can be returned to the previously set frequency (line

22-23).

Going back to the profiling step, the result after applying the scheduling is

observed, feedback is received, and the entire process is repeated.
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Algorithm 1: Pseudo-code of the RMED Algorithm

1 while True do

2 resource contention = resource contention detect()

3 if resource contention then

4 target resource = compare threshold()

5 isolator = set appropriate isolator(target resource)

6 switch target resource do

7 case strengthen

8 isolator.set strengthen()

9 case weaken

10 isolator.set weaken()

11 case idle

12 isolator.set idle()

13 phase transition = phase detection()

14 if phase transition then

15 switch current phase do

16 case CPU centric

17 frequency.overclock()

18 stable status = status check()

19 case GPU centric

20 frequency.underclock()

21 stable status = status check()

22 if !stable status then

23 frequency.idle()

16



3.3 Implementation

With the method suggested above, in order to ensure the performance of the

target workload and optimize power consumption during multitasking, the code

was added to the Profiler and Scheduler parts of the existing EdgeIso platform.

The whole code was implemented based on Python, and the system call func-

tion was additionally implemented in online profiler to parse and get the power

consumption of the currently running process based on tegra-stat, and to adap-

tively control CPU core frequency in Scheduler. Since the code is written at

the user level, there may be overhead in terms of performance, but there is

an advantage that it can be used universally in linux-based embedded devices

using ARM cores such as Jetson series.
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Chapter 4

Evaluation

4.1 Experimental Setup

We evaluate our strategy on NVIDIA Jetson TX2 with the considering the

Edge Computing environment. NVIDIA Jetson TX2 has a Dual Denver 2 +

Quad ARM A57 and a 256-core Pascal GPU. The Jetson TX2 can use a total

of 8GB of memory and the bandwidth of the memory is 50GB/s. We set up

the experimental environment on linux ubuntu 16.04, and installed basic Jetson

related packages such as JetPack. The workloads selected for the experiment

were source-built on an additional external SSD, Samsung 860 Pro 512GB was

used.

We evaluate di↵erent combination of workloads considering the general edge

environment where multitasking occurs. As for the workload combination, an

experiment was performed on the assumption of a situation in the recognition

part that simultaneously detects and classifies objects after receiving images

through various sensors in an autonomous vehicle, which is being actively stud-
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ied recently. Assuming the process of recognizing an image through a camera,

we used Single Shot MultiBox Detector (SSD) [14] for 2D object detection task.

We used the pre-trained VGG models for SSD inference job, and in order to put

the load on the CPU and GPU as much as possible, preparations were made to

select the image that goes into the input data.

Also, assuming the process of recognizing an object through LIDAR, we

used PointPillars [15], the point clouds bounding box detection for 3D objects.

PointPillars uses a pillars representation based on SECOND[16] voxelisation

with infinite height. Compared to 2D object detection, 3D object detection

is more di�cult because higher position accuracy of the 3D boundary box is

required in the space. It also causes more resource consumption in terms of

the size of input data used in training and reasoning. The KITTI benchmark

dataset [5] was employed to evaluate our proposed method. It contains 7481

training and 7518 testing point clouds, including three categories: car, cyclist,

and pedestrian. The training dataset was divided into a training set (3712)

and a validation set (3769), since the ground truth of the testing dataset is

not publicly available. The proposed framework was trained for 200k iterations

using the Adam optimizer. The initial learning rate was 0.002, the exponential

decay rate was 0.8, and there was a decay every 18,750 iterations.

We compared our method with using the basic DVFS manager as a baseline,

and obtained results in terms of power consumed in performing the workload

and the mitigation of resource contention in multitasking situations.
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Figure 4.1: RMED with Single Shot MultiBox Detector

4.2 Performance Results

4.2.1 Deep-Learning Workloads

Figure 4.1 shows the power consumed per second by the Single Shot Multi-box

Detection inference task. Compared to the basic DVFS is applied, the amount

of power consumed by the CPU in the GPU-centric phase is reduced by RMED.

As the voltage applied to the CPU decreases, the overall input power is reduced,

resulting in about 22% power reduction compared to the baseline. In addition,

since the CPU frequency is reduced while maintaining the GPU frequency in the

GPU-centric phase, it shows that the overall execution time is not significantly

a↵ected.

Figure 4.2 shows the performance in a multitasking situation using both

SSD and PointPillars inference. In a multitasking situation, as in the case of

performing a single workload, the total power consumed is reduced by adjusting

the frequency of the CPU core in the GPU-centric part. Specifically, It shows

that the total input power consumption in GPU-centric phase is reduced by

about 20% compared to the baseline.
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Figure 4.2: RMED with Single Shot MultiBox Detector + PointPillars

(Power consumption aspect)

Figure 4.3: RMED with Single Shot MultiBox Detector + PointPillars

(Resource contention aspect)
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In addition, to see how much RMED mitigates resource contention in a

multitasking situation, we determine and compare the Service Level Objetives

(SLOs) relative to a single performance of each workload. Figure 4.3 (a) shows

the SLO violation ratio when threshold is set to 10%, and 20%, respectively.

Baseline is a basic state where isolation technology is not applied, and CoreIso

means when a core is directly assigned to a workload using cgroup, a linux kernel

feature that limits and isolates the use of resources by processes. RMED violates

SLOs less than 20% regardless of the threshold. When the SLO threshold is 10%,

the ratio of SLO violation can become around 10%. Figure 4.3 (b) shows the

normalized throughput of background task. We conducted the experiment using

instruction rate (IPS; instruction per second) to measure the throughput of non-

target workload. When RMED is applied, it shows the lowest throughput for

non-target workload because RMED limits the execution of non-target workload

to reduce memory contention. However, this non-target workload performance

degradation can be acceptable in a prioritized multitasking edge environment

without a↵ecting the performance of the target workload.

These results show that RMED is e↵ectively distributing resources in re-

source contention and minimizing performance degradation for concurrent work-

loads.

4.2.2 Latency-Critical Workloads

Considering the edge environment where latency-critical work is focused, we

experimented with a multitasking environment that simultaneously executes

the deep learning inference task and the Tailbench[17] benchmark.

Tailbench aggregates a set of interactive benchmarks from web servers and

databases, to speech recognition and machine translation systems, and proposes

a new methodology to analyze their performance. We used img-dnn, sphinx, and
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Figure 4.4: Power consumption of Tailbench benchmarks

xapian among several benchmarks included in the tailbench, and performed

each workload and deep learning inference job at the same time. Since each

workload of the tailbench only needs CPU computation, we experimented on

how e↵ectively reducing resource contention without lowering the frequency of

the CPU core (figure 4.4). Figure 4.5 shows the normalized latency of each

Tailbench benchmark. Because img-dnn is a memory-intensive task that con-

sumes a lot of memory bandwidth, it causes performance degradation of target

workloads in multi-tasking situation. As shown in figure 4.5(a), RMED achieves

much lower latency than other schemes by mitigating memory contention. In

the case of sphinx(b), RMED shows a latency that is not significantly di↵er-

ent from the alternative methods, but generally shows a reduction in resource

contention. In the case of xapian(c), latency in multi-tasking situations is signif-

icantly di↵erent compared to the other two workloads, because xapian requires
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Figure 4.5: The normalized latency of Tailbench benchmarks with Single Shot

MultiBox Detector (SSD) and PointPillars (PP).

a tighter resource occupancy, which is a benchmark that is heavily a↵ected by

hardware performance.

4.3 Overheads

Since RMED brings advantages in power consumption by lowering CPU core

frequency in the GPU-centric phase of the deep learning workload, some over-

heads exist in terms of performance such as execution time. In addition, in

multitasking situations, isolation schemes that reduce resource contention have

an overhead in processing data across the profile and scheduler, but this does

not have a significant impact on overall resource utilization. Figure 4.6 shows

the slowdown ratio from various combinations. The ratio of overhead varies

depending on the nature of the workload being used (e.g. memory-intensive,

compute-intensive, latency-intensive, etc). Compared to the basic conditions of

solorun and corun, we can see that there is a slow down of an average of less than
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Figure 4.6: Slowdown Ratio Comparison of RMED with Single Shot MultiBox

Detector + PointPillars and Tailbench Benchmarks

6%. Given the overall benefits of RMED, this overhead does not significantly

a↵ect overall performance.
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Chapter 5

Related Work

While several recent works have been done on optimizing latency and energy

simultaneously in multicore systems, not much research targets Edge Com-

puting environments and explores their unique characteristics in performance

optimization.

Hardware-based power management consists largely of DVFS or other tech-

niques for power capping. Zhang and Ho↵mann[7] present a online hybrid co-

ordination technique that sets hardware power capping using RAPL and then

iteratively uses a binary search mechanism to find proper processor performance

state, core count, and socket count in each dimension.

You et al. [8] researched the resource allocation problem for multiuser MEC

system, and minimized the mobile devices’ energy consumption with the com-

putation latency constraint. They jointly considers the o✏oading and the com-

munication resource allocation in a TDMA model. However, the work above

neglects the competition for bandwidth (impacts the overall application perfor-

mance) among the users at the wireless access points or base station.
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Qasaimeh et al. [21] conducted a study of energy consumption when using

deep learning frameworks for object detection in joint design platforms such

as CPU, GPU, and FPGA. According to their experiment results, energy con-

sumption compared to performance is the most e↵ective when using FPGA,

but this method is di�cult to apply to other general platforms.

Mishra and Nikita[20] combines machine learning and control theories to

schedule CPU resources on heterogeneous multicores. For a given application,

their scheme uses control-theoretic methods to dynamically adjust the resource

allocation, and machine learning to estimate the application’s latency and power

for a given resource allocation plan.

Zhang et al. [22] designed an energy-e�cient computation o✏oading scheme

with the purpose of minimizing the energy consumption. However, due to the

nature characteristic of o✏oading, there is a disadvantage in latency rather than

running the workload on the edge device itself.
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Chapter 6

Conclusion

Resource management in integrated-architecture devices has become a major

concern in edge computing research. To solve this problem, the scientific com-

munity and the industry have proposed several approaches to reduce the re-

source consumption and contention of computing systems, but are limited to

HPC or Cloud server based. In this paper, we present RMED, a resource man-

agement scheduler for edge devices. RMED mitigates the resource contention

on the edges and savings power consumption in multitasking situations. The ex-

perimental results show that when a variety of deep learning-based workloads

and latency-critical tasks are combined, RMED save about 20% of the total

input power and e↵ectively perform resource isolation.
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