
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학석사학위논문

Functionally and Temporally Correct

Simulation for ROS2 Cyber Systems of

Automotive Systems

ROS2기반의자동차사이버시스템을

위한기능적/시간적정확성을보장하는

실시간시뮬레이션기법

2021년 2월

서울대학교대학원

컴퓨터공학부

박성현



Functionally and Temporally Correct 

Simulation for ROS2 Cyber Systems of 

Automotive Systems 

ROS2기반의 자동차사이버 시스템을위한 
기능적/시간적 정확성을 보장하는 실시간 

시뮬레이션기법 
지도교수이창건 

이 논문을 공학석사 학위논문으로 제출함

2020년 11월 

서울대학교대학원 

컴퓨터공학부 

박성현 

박성현의 공학석사학위논문을 인준함 

2020년 12월 

위 원장 하순회 

부위원장 이창건 

위 원 김태현 頓



Abstract

Functionally and Temporally Correct

Simulation for ROS2 Cyber Systems of

Automotive Systems

Seonghyeon Park

Department of Computer Science and Engineering

The Graduate School

Seoul National University

This dissertation proposes an approach for functionally and temporally correct simu-

lation of cyber system based on ROS2 framework. In the previous work, the simula-

tion approach was proposed that overcomes the limitations, which only guaranteeing

the functional correctness of the existing simulation approach by guaranteeing the

temporal correctness and simultaneously performs the task efficiently by reordering

jobs. Recognizing that the ROS2 cyber system differs from the traditional automo-

tive cyber systems, this dissertation can be applied to the ROS2 cyber system while

maintaining the key idea of the previous simulation approach. In the proposed ap-

proach, a system model for ROS2 cyber system is defined. Based on this, the cyber

system’s schedule is predicted, and a precedence relationship graph is generated so

that the existing simulation technique can be applied. The proposed method mea-

sures the simulation capacity, together with other simulation algorithms, through a

i



randomly generated workload, and it is shown that the proposed approach has the 

highest simulation capacity in a single core simulator. Therefore, the existing func-

tional/temporally correct simulation approach can be applied to the cyber system of 

automotive system based on ROS2 framework, and by utilizing this, it is possible to 

correctly and effectively simulate the ROS2 cyber system.

keywords : Automotive System, Real-Time Simulation, ROS2 Framework 

Student Number : 2019-23556

ii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Backgrounds 4

2.1 Overview of Functionally and Temporally Correct Simulation . . . 4

2.2 ROS2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Proposed Approach 10

3.1 System Model for ROS2 Cyber System . . . . . . . . . . . . . . . 10

3.2 Offline Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Evaluation 18

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusion 21

References 23

iii



List of Figures

1 Gap between predicted performance and real performance of LKAS

[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Example cyber system of automotive system . . . . . . . . . . . . . 5

3 Execution scenario and simulation scenario of example automotive

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Executor’s execution behavior [2] . . . . . . . . . . . . . . . . . . 9

5 Example ROS2 cyber system of automotive system . . . . . . . . . 11

6 Execution scenario of ROS2 cyber system . . . . . . . . . . . . . . 12

7 Snapshots of Executor behavior . . . . . . . . . . . . . . . . . . . 13

8 Construction of offline guider . . . . . . . . . . . . . . . . . . . . . 14

9 Swapping scheduling algorithm AllSync to Ours . . . . . . . . . . 17

10 Simulation results of increasing transaction ratio . . . . . . . . . . . 19

11 Simulation results of increasing write ratio . . . . . . . . . . . . . . 20

12 Simulation results of increasing read ratio . . . . . . . . . . . . . . 21

iv



List of Tables

v



1 Introduction

1.1 Motivation

For automotive system developers, it is important to validate the system performance

at the design phase[3]. In the automotive industry, simulation approach is commonly

used for the validation of the automotive systems such as Simulink[4]. However,

if there is a gap between real performance and simulation result, they need to go

through the process of redesigning and implementing the system which increases the

cost for developing the system. For example, Figure 4 shows the difference between

the simulated results and real performance by Simulink[4], which cannot guarantee

temporal correctness. Therefore, we need a simulation approach that guarantees not

only functional correctness but also temporal correctness.

For this, K.S. We et al. [5] already addressed this problem with a novel sim-

ulation approach which can guarantee both of functional correctness and temporal

correctness. By maintaining the same data and time as the real cyber system only

at the physical interaction point with the physical system, the approach can guaran-

tee not only correct simulation but also efficient simulation by reordering the jobs to

schedule more efficiently.

Since, the ROS(Robot Operating System)[6] and ROS2(the new released version

supporting real-time features)[7] have become popular in the automotive industry

because of its various libraries to develop robotic system and enormous community

to share information for system developers, we intend to use this simulation approach

for the automotive systems designed by ROS2 framework which is supporting the

real-time features.

1



Figure 1: Gap between predicted performance and real performance of LKAS [1]

However, we cannot apply the simulation approach directly to the cyber sys-

tem based on ROS2 because of different execution behaviors of functions. In the

ROS2 system, we need to consider one more layer that affect to the execution behav-

iors. Therefore, we propose extended simulation approach for ROS2 cyber-system

by considering the difference of execution behavior. Our contribution is to keep the

functional and temporal correct simulation approach to the ROS2 cyber system by

analyzing the execution behavior of ROS2 cyber system and defining new features

for adapting existing simulation algorithm.

Our Contributions:

• We propose a system model for the cyber systems based on the ROS2 frame-

work, and to simulate this, we analyze the execution behavior of the ROS2

cyber system.

• We show the highest simulation capacity in the simulator PC which has an

uniprocessor by the simulation results of synthetic workloads so that we keep

the existing simulation approach on the ROS2 cyber system.

2



1.2 Organization

This paper is organized as follows. In Section 2, we review the functionally and tem-

porally correct simulation approach and define new system model for cyber systems

based on ROS2 framework. Then, Section 3 explains our proposed approach. In Sec-

tion 4, we show our experiment results. Finally, Section 5 concludes the paper.

3



2 Backgrounds

In this section, we review functionally and temporally correct simulations[5] and

ROS2 scheduling[2].

2.1 Overview of Functionally and Temporally Correct Simulation

In the previous simulation approach, the cyber-systems consist of multiple ECUs

which have a specific preemptive fixed priority (i.e., RM[8]) scheduler. Those sched-

uler schedules periodic task τi, represented as five properties:

τi = (Fi,Φi,Pi,Cbcet
i ,Cwcet

i )

where Fi denotes the function of control algorithm which is executed by τi, Φi is the

offset from the system start time, Pi is the period of τi. Cbcet
i denotes the best execu-

tion time of τi, Cwcet
i denotes the worst case execution time of τi. The cyber system

of an automotive system can be given as Figure 2 shows. In the Figure 2(a), data read

interactions from the physical system are denoted by red dotted arrows and data write

interactions to the physical system are denoted by blue dotted arrows. For the data

producer consumer relations, we denoted the relation by black dotted arrows. For the

cyber system, tasks parameters are given as Figure 2(b). From the parameters, we

generate an execution scenario of the cyber system as shown in Figure 3(a). The Fig-

ure 3(a) shows the schedule of the real cyber system for a hyper period of tasks which

is 8. The upper arrows in physical system denote the incoming data and red arrows

denote the data interaction point for reading and blue arrows denote data interaction

point for writing. Ji j in the box denotes the j-th instance of τi. From the schedule, we

4



Figure 2: Example cyber system of automotive system

Figure 3: Execution scenario and simulation scenario of example automotive system

can know each job’s release time and start time range and finish time range. Using

the schedule, we construct a graph for representing precedence relation between the

jobs. As the above simulation scenario, we assume the following assumptions for the

5



simulation:

• Execution time mapping function: For the same function Fi of task τi, PC can

execute the function more faster than ECU. For the execution times, there is a

relation between real cyber system’s execution time and simulation execution

time. We call this mapping function and represent as ereal
i j = Mi(esim

i j ) where Mi

represents the execution time mapping function. ereal
i j represents the execution

time on the ECU and esim
i j represents the execution time on the simulation PC.

• Most Recent Data Use: Each data is updated in a single memory buffer. There-

fore, the memory buffer is overwritten by the most recent data which is pro-

duced by a job or physical systems.

• Entry Read and Exit Write: Each job read all the data at the entry of the

execution and write all the output at the exit of the execution.

• Tagged Data Read: Real cyber system keep only the most recent data, but the

simulation PC can log all the data history with tag which has timestamp and

producer information. Therefore, simulation PC can execute a job after data

logged.

• Delay Data Write: Real cyber system has to write output when execution is

done. But the simulation PC can delay write time of job’s output.

In the previous work, the simulation PC runs the jobs in the graph with effec-

tive EDF scheduling policy and Simulation PC has a single core. From the above

assumptions, it can delay data writing or read data with the same data with its real

instance in the real cyber system. For this, simulated job with red arrow must start

6



later than its real start time and the job with blue arrow must finish faster than its real

finish time. As a result, we can see that red arrow and blue arrow points same time as

shown. This means that we keep the same data and time with real cyber system with

enjoying the freedom of job scheduling. For keeping the functional and temporal cor-

rectness only at physical interaction points while enjoying the freedom of executing

job scheduling, we have to consider below constraints:

• Physical-read constraint: If a job Ji j which reads data from the physical sys-

tem, the simulation PC must run the job later than its actual start time on the

real cyber system, i.e.,

tS,sim
i j ≥ tS,real

i j (1)

where tS,sim
i j and tS,real

i j represent the simulated start time of Ji j on the simulation

PC and the actual start time on the real cyber system.

• Physical-write constraint: If a job Ji j which writes data to the physical sys-

tem, the simulation PC must finish the job before its actual finish time on the

real cyber system, i.e.,

tF,sim
i j ≤ tF,real

i j (2)

where tF,sim
i j and tF,real

i j represent the simulated finish time of Ji j on the simula-

tion PC and the actual finish time on the real cyber system.

• Producer/consumer constraint: If a pair of jobs, Ji′ j′ and Ji j, which Ji′ j′ is a

producer job of Ji j on the real cyber system, the simulation PC must finish Ji′ j′

7



before the actual start time of Ji j on the real cyber system, i.e.,

tF,sim
i′ j′ ≤ tS,real

i j (3)

2.2 ROS2 Scheduling

In the ROS2 cyber system, despite assuming to use the ECUs using the same sched-

uler, it is essential to consider that the function execution behavior is different than

traditional cyber systems of automotive systems. In the traditional cyber systems,

tasks was scheduled by OS scheduler so that we can regard task as process. How-

ever, in the ROS2 process, which is running on the OS scheduler, there is a scheduler

in the main thread called ‘Executor’ which is the charge of executing the functions

called callback[2]. There are two types of implementation of executor in the ROS2:

single-threaded, multi-threaded. Single threaded executor executes callbacks one by

one, in other words, it is non-preemptive scheduler. Executor has a set of callbacks

to run. For executing the functions on the executor, there are four types of callbacks:

Timer, Subscriber, Service, Client. Timer callback is periodically released by system

timer, but subscriber call-back is released by its publisher callback which writes data

to its subscriber callbacks. As shown in Figure 4, the executor is updated whenever

there are no callbacks to run in the executor by looking for ready callback in commu-

nication layer. However, timer callbacks are not managed by communication layer.

When the ready set is updated, any timer callback whose timer is expired is executed.

If there is no timer callback, executor searches subscriber callbacks in the set and

execute them all. If there is no subscriber callback, executor searches service call-

8



Figure 4: Executor’s execution behavior [2]

backs in the set and execute them all. For the last, client callbacks are also executed

by same way. Note that timer callback is always checked between the time of run-

ning callbacks. Therefore, there is a scheduling policy in the executor for executing

those callback types. Timer callback has highest priority, but we have to know how

we distinct the priority if callbacks to run are same callback type. For this, they have

registration order which means that when you add the callbacks to executor, regis-

tration time of the callbacks will be priority of the callbacks. Then we can conclude

there are two policies: callback types, registration order.

• Callback Type: ROS2 has four callback type: timer, subscriber, service, client.

Executor considers callback type first. And their priority is given in the order

listed above.

• Registration Order: In the ROS2, the nodes which is callback container are

registered by executor. Therefore, even for callbacks of the same type, the pri-

ority depends on the order in which they were registered first.

9



3 Proposed Approach

In this section, we first define the system model for ROS2 cyber system and adapt the

functionally and temporally correct simulation approach to the ROS2 cyber system.

3.1 System Model for ROS2 Cyber System

In this paper, we assume that each ECU runs only one ROS2 process and we use

single threaded executor. By assuming this, we can neglect OS scheduler and focus on

non-preemptive execution behavior. We use only timer, subscriber call-back for the

system model and assume that all the callback has fixed execution time. Therefore, we

can consider these precedence relations as a chain of callbacks called “transaction”.

Each transaction denoted by Ti consists of a timer callback denoted by τi,0 at the

beginning and subscriber callbacks denoted by τi, j at the rest as shown in Eq. 4.

Ti = {τi,0,τi,1,τi,2, . . . ,τi, j} (4)

Furthermore, we should consider the executor’s scheduling policy. In the execu-

tor, there is a ready queue for released jobs called “ready-set” [2]. A job instance of

every callback becomes ready state when their message arrived, or their timer ex-

pired. For those ready jobs, there are data structures for each of them to storing their

jobs. By inspecting those data structures, executor decide which job to execute first

with two scheduling policy: Hierarchical callback scheduling, Registration order pri-

ority assignment. By hierarchical callback scheduling, a timer call-back always has a

higher priority than a subscriber call-back. If the call-back type is same, priorities are

assigned according to the registration order by registration order priority assignment

10



Figure 5: Example ROS2 cyber system of automotive system

[2]. For the data exchanges between callbacks and physical interactions, we assume

that there are no transmission delay so that we do not consider the data transmission

delay in this paper.

3.2 Offline Phase

To represent the simulation steps, we design an example of ROS2 cyber system

which has two ECUs: {ECU1,ECU2} and three transactions T1 = {τ1,0,τ1,1,τ1,2},

T2 = {τ2,0,τ2,1} and T3 = {τ3,0,τ3,1}. For the example cyber system, Figure 5(a) is

given. In the Figure 5(b), for the timer callbacks, Φi is the task offset, Pi is the period

of τi,0, Ci is the constant execution time of τi,0 and ROi is the registration order. For

the subscriber callbacks, we only use Ci and ROi.

We can get the hyper period with the timer callbacks periods and in the exam-

ple case, it is 10. For this, we generate a schedule of real cyber system for 10-time

units as shown in Figure 6 before starting the simulation (offline phase). In the sched-

ule, we represent jobs denoted by Ji, j,k which means k-th instance of task τi, j in the

transaction Ti. As shown in Figure 6, we denote only timer callbacks release time

11



Figure 6: Execution scenario of ROS2 cyber system

as upper arrows. For detail executor’s behavior, we show snapshots of executor as

shown in Figure 7. We abstract executor’s callback queue as a box container, when

the job instance of the callback released, then a box for representing the instance

fill the mapped container. As we assume that we use single-threaded executor, the

current running job cannot be interrupted. At the time unit 0, there are two jobs J1,0,1

and J2,0,1 released, the executor runs higher priority job J1,0,1 as shown in Figure 7(a).

Then, J1,0,1 creates J1,1,1, and J2,0,1 starts. At this time, J1,1,1 cannot enter readySet

because J2,0,1 is running as shown in Figure 7(c). At time unit 3, when J2,0,1 finished,

J2,1,1 is generated, but generated in ECU2. At this time, ECU1 is in the idle state, and

the executor moves J1,1,1 to readySet, and because there is only one job in readySet,

it is executed immediately. When J1,1,1 finishes the execution, J1,2,1 is created, but

J2,0,2 is released at the same time, and J2,0,2 is executed immediately because timer

callbacks always take precedence over subscriber callbacks. On the other hand, in

ECU2, since J3,0,1 is executed up to time unit 4, J2,1,1 cannot enter readySet and must

12



Figure 7: Snapshots of Executor behavior

be pending. When J3,0,1 is finished, J3,1,1 is created, and ECU2 becomes idle, so J3,1,1

and J2,1,1 enter readySet at the same time. Comparing the ROi of J2,1,1 and J3,1,1,

J2,1,1 is higher, so J2,1,1 is executed first, followed by J3,1,1. Since we assume that a

fixed execution time for the tasks, the schedule for one hyper period will be repeated

infinitely. Therefore, we can get all the jobs Ji, j,k’s release time, start time, finish time

by generating the schedule.

By the schedule in Figure 6, we have all jobs’ release time, start time and finish

time. for the functionally and temporally correct simulation, we need to know actual

start time and finish time for the physical read constraint and physical write constraint

respectively. However we already have these values so we don’t have to consider the

jobs which can affect the actual start time and finish time. For the producer consumer

constraint, the jobs in the same transaction can only be producer. Thus, the prece-

dence graph only consider the producer consumer relation of the transaction. Re-

garding this, we construct the job precedence graph G=V, E called “Offline guider”

as DAG(Directed Acyclic Graph). V is the set of nodes which represent the jobs and

E is the set of directed edges which represents precedence relation between jobs. In

the offline guider, “R” mark in the upper left side of the nodes denote read constrained

13



Figure 8: Construction of offline guider

jobs, and “W” mark in the lower right of side of the nodes denote write constrained

jobs. As above mentioned, we already know the actual start time and finish time so

that there are no the other precedence edges for representing affection for start time

and finish time. Thus, in the ROS2 system with fixed execution time tasks, there are

no precedence edges are connected only for same transaction or its next period job

instances as shown in Figure 8.

3.3 Online Phase

To simulate the jobs in the offline guider, first we assign new deadlines for the jobs

in offline guider to keep the write constraint which simulated job should be finished

before the actual finish time. For assigning effective deadline we set the effective

deadline as their actual finish time for write constrained jobs, while setting other

jobs’ deadline as infinite. Then, we back-trace write constrained jobs predecessors

14



and set their deadline as effective deadline as shown in Eq. 5, 6.

tD,sim
i, j,k =


tF,real
i, j,k for write constrained job

∞, otherwise

(5)

tD,sim
i, j,k = min(tD,sim

i, j,k , min
∀JS

i,l,k∈Ti

(tD,sim
i,l,k )) (6)

Then, we push the jobs without any precedence edge to the simulation ready queue.

However, if the job has read constraint, we first check whether the job satisfy its read

constraint. If the simulation time has not yet reached the real start time of the job,

pushing to the ready queue is suspended. For executing the ready jobs, we use three

simulation approaches: AllSync, Ours, TrueTime [5]. Considering these simulation

approaches, we generate a job of next hyper period whenever a job is finished on

simulation PC.

• Ours: Ours is to execute the jobs in the ready queue by effective EDF schedul-

ing policy. Note that the optimal job scheduling algorithm for the jobs with

precedence constraints and effective deadline on uniprocessor is the preemp-

tive EDF scheduling [5, 9].

• AllSync: The AllSync approach is the easiest simulation approach and follows

the execution order of the real cyber system as much as possible while keeping

its real start time for all jobs. In this case, it cannot have job scheduling freedom

and hard to simulate enormous task set.

• TrueTime: In this paper, we use an extended version of TrueTime approach[5].

In the approach, only jobs with physical interaction points are executed later

15



than or equal to the real start time. Thus, it has a small freedom to ordering jobs

with no physical interaction points. Note that if all the task in the task set are

timer callback, then TrueTime approach become same with AllSync approach.

We show our approach’s and AllSync execution scenario with the above example

case of ROS2 cyber system by showing the two schedules of a hyper period: AllSync

approach, our approach as shown in Figure 9(a) and Figure 9(b). In the Figure 9(a),

we represent the deadline miss of J1,2,1 which is 7 at the Figure 9(b) as its real finish

time. Thus, we can say that this task set cannot have a feasible schedule with the All-

Sync approach. On the other hand, we swap the scheduling approach to ours which

is based on effective EDF scheduling policy and we represent there are no deadline

miss in the schedule as shown in the Figure 9(b). Therefore, we show that our ap-

proach can keep the functionally and temporally correct simulation approach on the

ROS2 cyber system.

In summary, the simulation algorithm consists of offline phase and online phase.

For the offline phase:

• Generate Real Cyber System Schedule: From the cyber system design and

task parameters, we generate a real cyber system schedule for a global hyper

period.

• Construct Offline Guider: From the generated schedule, we construct a job

precedence graph called offline guider.

Note that we generate a schedule and offline guider for a global hyper period before

the simulation start. After the simulation start, whenever a job simulated, next hyper

period job instance is generated and update the offline guider. For online phase:

16



Figure 9: Swapping scheduling algorithm AllSync to Ours

• Run Simulated Jobs: From the offline guider, we start the simulation by

scheduling jobs pushed from the offline guider with effective EDF scheduling

policy.

• Update Offline Guider and Generate Next Hyper Period Job Instance:

Whenever a job finished on the simulation PC, we generate next hyper pe-

riod job instance and update the offline guider considering removed jobs and

directed edges.

17



4 Evaluation

In this section, we explain our exeperimental setup and the results of simulation.

4.1 Experimental Setup

We conduct our simulation with 1000 synthetic workloads. We first use simple map-

ping function for execution time which simulation PC is 3.3 times faster than ECU.

We set the period of timer callbacks with uniform [10ms, 100ms], and execution time

of timer callbacks with 0.2*Pi,0 and the subscribers in the same transaction follows

the timers. The number of ECUs is uniform [3,10], and each ECU has tasks with

uniform [1,5]. The transaction ratio is basically 50%. The read and write constrained

jobs ratios are basically 30% respectively. The transaction ratio determines how many

of all tasks are designated as timer callbacks. If the ratio is 0%, then there are only one

timer callback so that the entire task set become one chain. The read ratio determines

how many transactions can have read constrained timers. The write ratio determines

how many transactions can have a write constrained subscriber. We run the simu-

lation with Ours, AllSync, TrueTime approaches with increasing three parameters:

transaction ratio, read ratio, write ratio from 0 to 100%. We measure the simulation

capacity called “simulatability” by measuring “Simulatable” case of 1000 synthetic

workloads. If there is a deadline miss for the schedule, then we call it “Not Simulat-

able”. If the approach generates feasible schedule, then we call it “Simulatable”.

18



Figure 10: Simulation results of increasing transaction ratio

4.2 Simulation Results

As shown in Figure 10, we increase transaction ratio from 0 to 100%. If the transac-

tion ratio is 0%, the number of transaction is one. In this case, all the simulation ap-

proach’s simulatability is 100%. However, as the transaction ratio approaches 100%,

the number of tasks and the number of transactions become the same, that is, all tasks

become timer callbacks. If the number of transactions is one, the write ratio is mean-

ingless. On the other side, if the number of transactions is the same as the number

of tasks, the write ratio is critical because we assign the write constraint to the tasks

30% of the number of transactions.

For the write ratio, as shown in Figure 11, we increase the write ratio from 0 to

100%. If the write ratio is 0%, it means that the deadline for all jobs is infinite so that

simulatability is 1 for every approach. However, if the write ratio is close to 100%, it

is hard to simulate for AllSync and TrueTime. Because, in the case of AllSync, the

19



Figure 11: Simulation results of increasing write ratio

same execution order as the real cyber system, so the more write constrained jobs, the

more difficult it is to finish at their actual finish times. In the case of TrueTime, due

to a small freedom of scheduling, it shows a little higher simulatability than AllSync.

Finally, Ours shows the highest simulatability because we run the jobs with the EDF

scheduling policy.

For the read ratio, Figure 12 shows the simulation results with increasing read

ratio from 0 to 100%. In this case, for the AllSync approach the read ratio is an

irrelevant parameter. This is because the AllSync approach starts later than the start

time for all jobs. Therefore, it has lowest simulatability. In the case of TrueTime, it

shows better simulatabilty than the AllSync when the read ratio is low. However, as

the read ratio becomes 100%, its simulatability getting closer to AllSync approach

because its small scheduling freedom is limited to the non read constrained jobs.

20



Figure 12: Simulation results of increasing read ratio

5 Conclusion

This paper proposes an extended simulation approach that can guarantee functional

and temporal correctness on the ROS2 cyber system. We show the existing simulation

approach still works on the ROS2 cyber system by showing the simulation results

based on synthetic workloads. However, our approach still has practical issues for

the future work:

• Data Transmission Delay: In this paper, we assume that there is no data trans-

mission delay for the physical interactions and data exchanges between call-

backs. However, we need to consider those transmission time to ensure that

we can receive the same data with real cyber system from the physical sys-

tem and we can transmit the same data to the physical system. In the previous

work[5], the cyber system consists ECUs connected by CAN(Controller Area

21



Network) with TDMA bus[10] and proposed the data receive time as sum of its

actual finish time, waiting time for its dedicated slot of TDMA bus and constant

transmission time. However, in the ROS2 cyber system, we need to consider

that ROS2 cyber system uses DDS(Data Distribution Service)[11] for the data

transmissions. In the future, we plan to consider those data transmission delay.

• Fixed Execution Time: In this paper, we assume that all the tasks have fixed

execution time for executing its function. However, if we use fixed execution

time, we can not consider timing behavior caused by varying execution time.

Therefore, we need to extend the approach for the varing execution time for

the tasks. In the future, we expect to improve the practicality by considering

varing execution time.

• Uniprocessor: In this paper, we assume that the simulation PC has uniproces-

sor so that we can keep the existing simulation approach on the ROS2 cyber

system. However, in practice, there are ECUs more than 80 in the automotive

systems. In the future, we plan to extend the approach to multi-core simulation

based on ROS2 cyber system[12].

22



References

[1] Hyejin Joo, Kyoung-Soo We, Seunggon Kim, and Chang-Gun Lee. An end-to-

end tool for developing cpss from design to implementation. 2016.

[2] D. Casini, T. Blaß, I. L¨utkebohle, and B. B. Brandenburg. Responsetime analy-

sis of ros2 processing chains under reservation-based scheduling. In Euromicro

Technical Committee on Real-Time Systems (ECRTS), 2019. Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2019.

[3] Kancheepuram Kattankulathur. Systematic approach in v-model development

cycle for an automotive embedded control system.

[4] Simulink. R2019a. MathWorks Inc., Natick, Massachusetts, 2019.

[5] Kyoung-Soo We, Seunggon Kim, Wonseok Lee, and Chang-Gun Lee. Func-

tionally and temporally correct simulation of cyber-systems for automotive sys-

tems. In Real-Time Systems Symposium (RTSS), 2017 IEEE, pages 68–79.

IEEE, 2017.

[6] ROS Overview. http://wiki.ros.org/ROS/Introduction. 2020.

[7] ROS2 Overview. https://index.ros.org/doc/ros2/. 2020.

[8] Chung Laung Liu and James W Layland. Scheduling algorithms for multi-

programming in a hard-real-time environment. Journal of the ACM (JACM),

20(1):46–61, 1973.

23

http://wiki.ros.org/ROS/Introduction
https://index.ros.org/doc/ros2/


[9] M. Spuri and J. A. Stankovic. How to integrate precedence constraints and

shared resources in real-time scheduling. In Transactions on Computers (TC),

1994, pages 1407–1412. IEEE, 1994.

[10] Thomas Fuhrer. Time triggered communication on can (time triggered can-

ttcan). In Proceedings 7th International CAN Conference, 2000, 2000.

[11] Gerardo Pardo-Castellote. Omg data-distribution service: Architectural

overview. In 23rd International Conference on Distributed Computing Systems

Workshops, 2003. Proceedings., pages 200–206. IEEE, 2003.

[12] Wonseok Lee, Jaehwan Jeong, Seonghyeon Park, and Chang-Gun Lee. Practi-

cal multicore extension of functionally and temporally correct real-time simula-

tion for automotive systems. In Cyber Physical Systems. Model-Based Design,

pages 127–152. Springer, 2019.

24



요약(국문초록)

본논문은 ROS2를기반으로설계된자동차사이버시스템을기능적/시

간적으로 정확하게 시뮬레이션하는 방법론을 제안한다. 앞선 연구에서는

기존의 시뮬레이션 기법들의 기능적인 정확성만 보장하는 문제에서 발생

하는 한계점을 극복하고 동시에 효율적으로 작업을 수행하는 시뮬레이션

기법이 제안되었다. ROS2 기반의 자동차 사이버 시스템에서는 기능 수행

의 행태가 기존의 자동차 사이버 시스템과는 다르다는 것을 인지하여 본

논문에서는 앞선 연구에서 제안하는 시뮬레이션 기법의 핵심 아이디어가

유지되면서 ROS2기반의자동차사이버시스템에적용이될수있도록시

뮬레이션기법을제안한다.제안하는방법에서는 ROS2스케줄링을고려한

시스템모델을정의하고이를기반으로실제사이버시스템의스케줄을예

측하고선행관계그래프를생성하여기존의시뮬레이션기법이그대로적

용될수있도록한다.제안하는방법은임의적으로생성된워크로드를통해

다른 시뮬레이션 알고리즘과 함께 시뮬레이션 용량을 측정하고, 제안하는

방법이 싱글코어 시뮬레이터에서 가장 높은 시뮬레이션 용량을 가지는 것

을 보인다. 따라서, 기존의 기능적/시간적으로 정확한 시뮬레이션 기법이

ROS2 기반의 자동차 사이버 시스템에서도 적용이 가능하며, 이를 활용하

여 기존의 자동차 사이버 시스템뿐만 아니라 ROS2 기반의 자동차 사이버

시스템을효과적으로시뮬레이션할수있다.

주요어 :자동차시스템,실시간시뮬레이션, ROS2프레임워크

학번 : 2019-23556

25


	1 Introduction
	1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	2 Backgrounds
	2.1 Overview of Functionally and Temporally Correct Simulation . . .
	2.2 ROS2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . .

	3 Proposed Approach
	3.1 System Model for ROS2 Cyber System . . . . . . . . . . . . . . .
	3.2 Offline Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.3 Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	4 Evaluation
	4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . .

	5 Conclusion
	References


<startpage>9
1 Introduction 1
 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Backgrounds 4
 2.1 Overview of Functionally and Temporally Correct Simulation . . . 4
 2.2 ROS2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Proposed Approach 10
 3.1 System Model for ROS2 Cyber System . . . . . . . . . . . . . . . 10
 3.2 Offline Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
 3.3 Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Evaluation 18
 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Conclusion 21
References 23
</body>

