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Abstract 

The efficiency and effectiveness of a distributed database depend 
primarily on solving two interrelated design problems: data allocation, 
specifying what data to replicate and where to store it, and operating 
strategies, specifying where and how retrieval and update processes are 
performed. We develop a distributed database design approach that 
comprehensively addresses these problems, explicitly modeling their 
interdependencies for both retrieval and update processing. We extend 
earlier distributed database design models to include join order and 
data reduction by semijoin, in addition to data replication, copy 
identification, and join node selection. We demonstrate that  join 
ordering and data reduction by semijoin are important distributed 
database design decisions that must be included in a distributed 
database design algorithm if it is to determine an  overall optimal 
distributed database design. 

I. Introduction 

Geographically distributed organizations are faced with the 
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challenge of developing information systems that  efficiently 
support local operations and enable information sharing across 
the organization [Brancheau, et al., 19961. Distributed database 
systems supply the underlying technology for such systems, 
providing users with access to databases that are maintained at 
different locations [Ricciuti, 1993; Richter, 1994; The, 19941. 
They can yield significant cost and performance advantages over 
centralized systems for geographically distributed organizations 
[Ozsu and Valduriez, 199 1 a; 199 1 b] . 

Given a computer network consisting of nodes containing 
computers with processing and storage capabilities that are 
connected by links with d a t a  t r ansmis s ion  speeds  a n d  
capaci t ies ,  judicious p lacement  of d a t a  a n d  processing 
capabilities can result in efficient and responsive systems. 
However, inappropriate data  replication and  placement or 
inappropriate processing of that data can result in high cost and 
poor system performance [Ceri, et al., 19871. 

There are two aspects to distributed database design, data 
allocation and operating strategies. Data allocation includes the 
determination of units of data to allocate, termed fragments, and 
the placement of copies of those units on nodes in the network. 
To enhance retrieval efficiency, the same fragment can be 
redundantly allocated to multiple nodes, resulting in multiple 
copies of the same data.  Such redundancy results in more 
complex update processes and increased data maintenance 
costs. 

Operating strategies include operation allocation, or query 
optimization, and concurrency control strategies. Operation 
allocation defines where, how, and in what order retrieval and 
processing operations are performed [Yu and Chang, 19841. The 
concurrency control strategy is responsible for ensuring that 
update operations are performed correctly and consistently, a 
particularly challenging task when there are multiple copies of 
the data [Bernstein and Goodman, 198 11. 

Retrieval operations must be performed at nodes that contain 
the required data. Processing operations can be performed a t  
any node; however, if the data are not located at the processing 
node, they must  first be sent there over the communication 
network. The order in which operations are performed can have 
a significant impact on performance. To reduce the amount of 
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processing required, selection and projection operations are 
always performed before join operations. The order in which join 
operations a r e  performed and  the  use  of d a t a  reduction 
strategies, or semijoins, can also have significant impact on 
performance [Yoo and Lafortune, 19891. Update operations must 
eventually be done a t  all nodes containing a copy of the affected 
data. 

Prior work h a s  produced dis t r ibuted d a t a b a s e  design 
approaches that optimize either overall cost or average response 
time [Apers, 1988; Blankinship et al., 1997; Cornell and Yu, 
1989; Ram and Narasimhan, 1990; 1994; March and Rho, 1995; 
Rho and March, 19951. These vary in the design decisions 
considered and the optimization procedures used. The most 
comprehensive work includes the generation and allocation of 
fragment replicas, the selection of retrieval and join nodes for 
retrieval queries ,  a n d  the  effects of concurrency control 
mechanisms for update  queries,  optimizing performance 
measures tha t  include both local computer resources and 
network resources. None have included join order or da ta  
reduction strategies. 

In this work we address the effects of join order and data 
reduction strategies on the overall task of distributed database 
design.  Both have been shown to significantly affect 
performance in the context of query optimization [Mishra and 
Eich, 1992; Galindo-Legaria and Rosenthal, 1997; Yu and 
Chang, 19841. Neither has been considered in distributed 
database design approaches. Optimizing join order and utilizing 
semijoins can significantly reduce the amount of processing that 
must be done and the amount of data that must be transmitted 
when performing distributed joins operations. Failure to 
consider these a t  design time overestimates the cost of join 
operations involving distributed data. This can result in the 
selection of more centralized designs and loss of the benefits 
afforded by data distribution. 

If a distributed database design approach fails to consider join 
order or the utilization of semijoins, the cost of this query could 
be significantly overestimated. As a result, the cost of the above 
data allocation could be overestimated and it may be rejected, 
even if it is, in fact, the overall optimal one for this system. 

We extend earlier distributed database design approaches to 
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include join order and data reduction by semijoins as well as 
data replication, copy identification, and join node selection. No 
current distributed database design approach includes all of 
these components. Our cost model can be used to evaluate 
operating cost or response time [Rho and March, 19951. In this 
paper we focus on operating cost minimization. A response time 
minimization model t h a t  includes  parallelism i s  under  
development [Johansson, 19991. We utilize a genetic algorithm- 
based solution procedure to select  d a t a  a n d  operat ion 
allocations that minimize overall system operating cost within 
node, network, and query response time constraints. We have 
applied this procedure to a set of example problems. These 
demonstrate that operating cost can be significantly reduced 
when join order and data reduction by semijoin are considered. 

The remainder of the paper is organized as  follows. In the next 
section we briefly overview distributed database design concepts 
focusing on the  effects of join order and  da ta  reduction 
strategies. In the next section we present our cost model and 
solution algorithm. Finally, we discuss the effects of data 
replication, join node selection, and data reduction strategies on 
the overall operating costs. 

11. Distributed Database Design 

In a dis t r ibuted da tabase  system,  d a t a  from a single 
conceptual database are maintained a t  various nodes in a 
computer network. The process of allocating data to nodes is 
termed distribution design or data allocation [Ceri et al., 1987, 
Ozsu and Valduriez, 199 la ] .  Given a data allocation, user 
retrieval and update queries must be processed. Queries arise at 
some node and may update or retrieve data stored at  any node. 
The process of determining how, when, and where queries are 
processed is termed query optimization or operation allocation. 
A concurrency control mechanism specifies update-processing 
constraints. 

Typically the data allocation and the concurrency control 
mechanism a r e  determined a t  design time a n d  change 
infrequently, if at  all. Although there are research efforts in data 
migration strategies [Gavish and Sheng 19901, this aspect of 
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distributed system operation is beyond the scope of this paper. 
Operation allocation is typically done by a query optimizer 
within the distributed database management system either at  
compile time [Lohman et al., 19851 or at  run time [Epstein et al., 
19781. We argue that it is important to generate an  efficient 
operation allocation for each known query at design time. This 
enables designers to estimate the system load and to pre- 
compile query execution strategies. It also provides the  
necessary estimates of system load to determine efficient data 
allocations. Globally optimized query processing strategies may, 
in fact, be more efficient than one-at-a-time query optimization. 

For illustrative purposes, consider a bank having four 
locations, headquarters and three regional offices. Suppose 
further that each location has a computer system (node) in a 
fully connected network. Each computer is described by its CPU 
and disk capacities and their unit costs. Each link in the 
network is described by its speed, capacity, and unit transfer 
costs. Suppose that the database schema has three tables, 
Customer, Account, and Transaction a s  in Figure 1. Each 
customer has some number of accounts against which deposit 
and withdrawal transactions are made. Each customer has a 
preferred regional office a t  which the customer does most of 
his/her banking, typically the office at  which the accounts were 
opened. Of course, each regional office must be able to process 
t ransact ions  for any  customer. Regional offices and  
headquarters require access to data about various customers, 
accounts, and transactions. 

Figure 2 shows an example set of retrieval and update queries. 
Each is expected to be executed from each location with a 
specified selection criteria and frequency. For example, Retrieval 
Query R1 could be executed from headquarters once per day, 
selecting region 1 accounts. It could be executed once per hour 
from region 2 selecting region 2 accounts, and so forth. A 
distributed database system should allocate data and operations 
for efficient execution of known queries. Based on the retrieval 
queries R1, R2, and R3, for example, each relation in Figure 1 
could be horizontally partitioned into three fragments, each 
containing the instances for one region. Each fragment could be 
allocated to each node at  which the data are requested. This 
design enables efficient processing of retrieval queries but has 
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Customer (1 0,000 instances, 960,000 characters) 

c-id Text 5 
c-name Text 20 
ssn Text 9 
c-address Text 30 
c-city Text 20 
c-state Text 2 
c-zip Text 10 

Account ( 15,000 instances, 1,350,000 characters) 
acc-no Text 8 
c-id Text 5 
br -id Text 5 
a-type Text 2 
a-status Text 2 
s-balance Numeric 15.2 
s-date Date 8 
c-balance Numeric 15.2 
period-interest Numeric 15.2 
ytd-interest Numeric 15.2 

Transaction (3,000,000 instances, 23,400,000 characters) 

t-id Text 10 
acc-no Text 8 
loc-id Text 5 
t-date Date 8 
t-time Time 8 
t-amount Numeric 15.2 
t-type Text 2 
t-status Text 2 
t-ref Text 20 

Figure 1. Tables for an Example Distributed Database System 

significant data redundancy, possibly resulting in poor update 
query performance. Its overall performance depends on the 
frequency with which retrieval and update queries are executed 
and the response time requirements for each query. 

Operation allocation, or distributed query processing, involves 
three  phases  [Yu and  Chang,  19841: copy identification, 
reduction, and assembly. Copy identijkation is required if more 
than one copy of a needed fragment exist. If so, the copy to use 
for the query is determined in this phase. The copy identification 
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a. Retrieval Queries 
R1. Customer Statements 

SELECT c-id, c-name, c-address, c-city, c-state, c-zip, acc- 
no, s-balance, c-balance, period-interest, ytd- 
interest, t-id, t-type, t-amount 

FROM Customer, Account, Transaction 
WHERE Cust0mer.c-id = Acc0unt.c-id 
AND Account. acc-no = Transaction. acc-no 
AND Account. br -id = [region] 

R2. Balance Inquiry 
SELECT c-id, c-name, acc-no, c-balance 
FROM Customer, Account 
WHERE Cust0mer.c-id = Acc0unt.c-id 
AND acc-no = [specified] 

R3. Branch Status Report 
SELECT br -id, acc-no, c-balance 
FROM Account 
WHERE br-id = [region] 

b. Update Queries 
U 1. Adjust Account balance 

UPDATE Account 
SET c-balance = [new balance] 
WHERE acc-no = [specified] 

U2. Maintain Customer Data 
UPDATE Customer 
SET c-address = [specified], c-city = [specified], c-state 

= [specified], c-zip = [specified] 
WHERE c-id = [specified] 

U3. Record Transaction 
INSERT INTO Transaction 
VALUES ('t-id', . . . , 't-ref) 

Figure 2. Retrieval and Update Queries for an Example Database 
System 

phase is also termed materialiiation because the data required 
must be "materialized," or retrieved from a specific node. 

Reduction applies only to join queries when the fragments to 
be joined are stored at  different nodes. In it, semijoins [Bernstein 
and Chiu, 19811 are used to reduce the amount of data that 
must be transferred to accomplish join operations. To join two 
fragments stored at different nodes, the required data from one 



of the fragments must be transmitted to the node a t  which the 
other  is s tored,  or  t he  required d a t a  from both  m u s t  be  
transmitted to a third node. If there are rows in one fragment 
without corresponding rows in the other fragment, data can be 
transmitted unnecessarily. 

As discussed above, a semijoin can reduce the amount of data 
transmitted by identifying rows that have matching join values. 
I t  does as follows. One fragment is selected a s  the reducer and 
the other as the reducee. The unique join attribute values are 
projected from the  reducer  a n d  t ransmit ted  to t he  node 
containing the reducee. A row in the reducee is selected if its 
join attribute matches one of the transmitted join values, i.e., a 
join is performed between the unique join attributes of the 
reducer and the reducee. The selected rows of the reducee are 
transmitted to the reducer node where the join is performed. A 
semijoin is effective, or beneficial, if its cost is less than the cost 
of sending the entire reducee fragment to the reducer node and 
performing the join there. Determining when semijoins are 
beneficial i s  a complex task ,  particularly when there a r e  
multiple, possibly cyclic, joins in the same query task [Yoo and 
Lafortune, 19891. 

In assembly data are sent to the result node (if they are not 
already there) and final processing is performed (e.g., sorting 
and aggregations). Much of the research in distributed query 
optimization assumes that all reduced fragments are sent to the 
result node where all joins are performed. In this research the 
solution algorithm determines the nodes a t  which joins are 
performed and the join order. 

These three phases correspond to query steps [Cornell and Yu, 
19891 or operations, some of which can be processed in parallel 
and some of which must be processed sequentially [Rho, 19951. 
As illustrated in Figure 3,  each query has a start and an  end 
(designated by ovals), a s e t  of operations (designated by 
rectangles), and a set of synchronization points (designated by 
circles). At a synchronization point, all previous operations must 
be finished before subsequent operations can begin. 

Retrieval queries require u p  to six types of operations: 
message, selection/projection (or restrict), join, projection of 
semijoin a t t r i bu te  va lues ,  join of semijoin,  a n d  d a t a  
transmission [Rho, 1995). These operations are used during 
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table 1 I table 2 ' origination table 3 
node ! node I node 

copy 1 1 origination I copy 2 
node : node : node ' 

a. A Remote 3 Table, 2 Join Retrieval Query 

El selection 
/projection join 

projection join of 

message 
transmission E:E:ion 

I I 

b. A Remote lTable 2 Copy Update Query 

Q lock request lock confurnation 
message message 

send update Q message 'fiak 

Q 
update release lock 
confirmation message 
messaee 

Figure 3. Retrieval and Update Query Processing Models 

distributed query processing a s  follows. During the copy 
identification phase,  messages are sent  from the query 
origination node to the nodes from which data are retrieved. 
During the reduction phase selection/projection operations and 
semijoins, if any, are performed at  these nodes. During the 



assembly phase intermediate files are transmitted to join nodes 
where joins are actually performed. If not already there, results 
are transmitted to the query destination node. 

Figure 3.a shows a possible execution plan for a three table, 
two-join retrieval query, such as R1 in Figure 2. In this example, 
each fragment (table) is retrieved from a different node, each of 
which is remote from the query origination node, and the query 
destination node is the same as  the query origination node. It is 
executed as follows. First, messages are sent to each node from 
which a table is retrieved. Upon receiving these messages, the 
appropriate selection/projection operations are performed a t  
each node. A semijoin is used for tables 1 and 2 as follows. The 
join attribute is projected from table 1 and transmitted to table 
2's node where the reduction is performed. The reduced table 2 
is transmitted to table 1's node where the join is performed. The 
join result is transmitted to the query destination (origination) 
node, where it is joined with table 3, which was transmitted 
there after appropriate selection and projection operations were 
performed at table 3's node. Join operations cannot begin until 
the needed data are available a t  the join node. Thus joins that 
require data from different nodes have a synchronization point 
prior to the join. 

Assuming a 2PL concurrency control strategy, update queries 
also require s ix operat ions:  lock reques t  message,  lock 
confirmation message, update message, local update, update 
confirmation message, and release lock message. Figure 3.b 
shows the execution plan for a remote update query where two 
copies of the affected table are allocated to different nodes. 
Synchronizat ion points  a r e  required before upda te s  a r e  
performed and before lock release messages are sent. 

Many possible execution plans exist for each retrieval query 
depending on the data allocation design. Update execution plans 
are essentially fixed by the concurrency control strategy. A 
distributed database design algorithm mus t  determine a n  
efficient, if not optimal, data allocation for all fragments and an  
efficient, if not optimal, execution plan for each query. These 
must conform to capacity and query response time constraints. 
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111. A Cost Model for Data and Operation Allocation 

Given a set of fragments (tables) to be maintained in a given 
network and a profile of retrieval and update queries that specify 
a se t  of min-term fragments [Apers, 19881, our  approach 
performs the following tasks: 

(1) allocate fragment replicas to nodes (data allocation), 
(2) for each retrieval query: 

allocate query steps to nodes, identifying the appropriate 
f ragment  copies to u s e  for retrieval quer ies  (copy 
identification), 
identify beneficial semijoins for all join steps (reduction), and 
determine join order for join queries involving more than one 
join and a node at  which each join is performed (assembly) 

(3) for each update query, determine the update cost for the 
specified data allocation, 

to minimize total operating cost within specified network and 
response time constraints. 

In this section we summarize our operating cost model. 
Problem definition and solution components and cost equations 
are summarized in Appendix 1. Detailed equations are presented 
in [Rho, 19951. In the following section we present a generic 
algorithm to select efficient solution components based on this 
cost model. 

A Total Operating Cost Model 

The allocation of costs to various operations in distributed 
systems is a difficult problem. I t  depends on such factors as 
hardware utilization, the actual variable costs of operation such 
a s  electricity and personnel, and the recovery of investment. 
Minimizing cost essentially results in a weighted minimization of 
required system resources, a n  important consideration in 
establishing and conforming a distributed information system 
budgetary requirements. Presumably, minimizing the computing 
resources required by this distributed database makes those 
resources available for other applications. 

Our  performance model i s  designed to minimize total  
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operat ing cos t  including communicat ion,  d isk  I/O, CPU 
processing, and storage. Simply stated, its objective is: 

Min Cost = CJk) C(COM(~, m) + IO(k, m) + CPU(k, m)) 
k rn 

Where Jk) is the frequency of execution of query k per unit time, 
COM(k, m), IO(k, m), and CPU(k, m) are the respective costs of 
communication, disk I/O and CPU processing time for step m of 
query k, and STO(t) is the cost of storage at node t per unit time. 
Thus the objective is to minimize the cost of each query step, 
times the frequency of i ts  execution, plus the cost of data 
storage at each node. 

Define copy(i, t) as a 0- 1 decision variable representing the 
allocation of fragment i to node t. That is, copy(i, t) is  1 if 
fragment i is allocated to node t. It is 0 otherwise. Given a data 
allocation, storage costs for node t are straightforward. They are 
given by: 

where Li is the length of fragment i, and s, is the unit storage 
cost per unit time at node t. Li and st are problem parameters. 

Communication, disk I / O  and  CPU processing costs a re  
represented as per unit costs multiplied by the number of units 
used. Let c, be the communication cost per character from node 
t to node p and let H(k, m, t, p) be the amount of communication 
on the link connecting these nodes due to step m of query k. 
Then the overall communication cost for step m of query k is 
given by, 

COM(k, m) = ZC H(k, m, t, p) c,. 
t p*t 

Similarly, let d, be the cost per disk I/O at node t and let O(k, 
m, t) be the disk I/O load at that node due to step m of query k. 
Then the overall disk I/O cost for step m of query is given by, 
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Finally, let pt be the CPU processing cost per unit and let U(k, 
m, t) be the number of CPU processing units expended at  node t 
for local processing and communication for step m of query k. 
Then the total CPU processing cost for step m of query k is given 

by, 

Expressions for H(k, m, t, p), O(k, m, t) and U(k, m, t) depend 
on the  decisions made for the  other s teps  in the  query. 
Representing them analytically is extremely difficult [Rho, 19951. 
The number of decision variables and constraints needed to do 
so explodes combinatorically, as  discussed below. 

Each step in a retrieval query requires a set of fragments and 
a se t  of operations needed to restrict and combine them. 
Message and  selection/projection s teps  require only one 
fragment. Join steps require two fragments. First, consider 
message or selection/projection steps. Let a(k ,  m) be the 
fragment required by step m, of query k. Define op-a(k, m, t) as a 
0-1 decision variable having a value of 1 if a copy of a(k, m) at  
node t is used for this query step. The cost of this query step is 
calculated as follows. 

Messages must be transmitted from node t to node orig(k), the 
query origination node, if they are different. These messages 
result in communication as  well as  local CPU and I/O processing 
costs a t  orig(k) and a t  t. Local selection/projection costs are 
always incurred at node t. The amount of communication on the 
link connecting t and orig(k) due to step m of query k is given by: 

H(k, m, t, orig(k)) = 0 if t = orig(k) 
H(k, m, t, orig(k)) = LP * op-a(k, m, t) otherwise, 

where LP is the length of a message. O(k, m, t) and U(k, m, t) are 
similarly calculated (see Appendix A). An op-a(k, m, t) decision 
variable is  needed for each node and  each message and  
selection/projection step in each query. Hence, the number of 



decision variables for message and selection/projection is on the 
order of 

Nodes * (message steps + selection/projection steps), 

where Nodes is the number of nodes in the network. 
For join steps, a second fragment, b(k, m), must be included in 

the query step specification. The join operation can be allocated 
to any node in the network. Define node(k, m, t) a s  a 0 - 1  
decision variable having a value of 1 if join step m of' query k is 
allocated to node t. As above, op-a(k, m, t) is used to specify the 
copy to use for a(k, m); op-b(k, m, t) is used to specify the copy to 
use for b(k, m). Messages must be sent if either fragment is 
retrieved from a node other than orig(k) or if the join is not 
performed at orig(k). Similarly, data  transrnission costs are 
incurred if ei ther or both fragments are  located a t  nodes 
different from that specified by node(k, m, t). If a semijoin is 
performed, one fragment must be assigned the role of reducer 
and the other the role of reducee. Define red-a(k, m) as a 0-1 
decision variable having a value of 1 if a(k, m) reduces b(k, m) 
and a value of 0 if it does not. Similarly define red-b(k, m). At 
most, one fragment can be the reducee. If neither is specified as 
the reducee, then the join is processed without reduction by 
semij oin. 

If a query involves only one join, then the cost of each possible 
strategy could be calculated and multiplied by the appropriate 
combination of decision variables, e.g., the cost of executing step 
m of query k by reducing a(k, m) from node t, by b(k, m) from 
node t, at  node t, must be multiplied by red-a(k, m) * op-a(k, m, 
t,) * op-b(k, m, t,) * node(k, m, ti), itself a challenging non linear 
representation. However, if the query has two or more joins, then 
the cost of any join step also depends on the join order and on 
how the other join s teps were processed. Hence a decision 
variable would need to be generated for each possible node for 
a(k, m) and b(k, m) and for each possible semijoin strategy for 
each possible join order for each join in the query. 

To alleviate these problems, we have taken a genetic algorithm 
approach. Genetic algorithms work by generating, evaluating, 
and selecting solutions represented by a gene structure. It is not 
necessary to represent a solution space using decision variables 
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as in traditional optimization methods, thus  eliminating the 
explosion of decision variables discussed above. Our gene 
s t ruc tu re  represents  solution components  including the  
allocation of fragments and operations to nodes, the ordering of 
join operations, and alternative semij oin strategies. Solutions 
a r e  genera ted  a n d  evaluated by t h e  genet ic  a lgor i thm 
descriptively ra ther  t han  parametrically as in traditional 
optimization techniques.  Our gene s t ruc ture  and  genetic 
algorithm are presented in the next section. 

System Constraints 

To be feasible a data and operation allocation must satisfy 
certain intrinsic and capacity constraints. Furthermore, it may 
be desirable to place additional constraints on query response 
time, particularly in a cost minimization formulation. We enforce 
two types of intrinsic constraints: (1) all fragments must  be 
allocated to at least one node and (2) each query step must be 
allocated to some node. We also enforce resource capacity 
constraints on each communication link and on disk 110, CPU, 
and storage space on each node. 

The intrinsic constraints  a re  specified as follows. Each 
fragment must be assigned to at least one node ( t  represents 
nodes, i represents fragments) : 

for all i. 

Each query step must  be assigned to a fragment copy ( t  
represents nodes, k represents queries, m represents query 
steps) : 

for all k and m. 

C op-b(k, m, t) = 1 for all k and m. 
I 

Each join step must be assigned to a node: 

2 node(k, m, t) = 1 for all k and m. 
I 
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Furthermore, each message and selection/projection step 
must be allocated to a node at which a copy of the needed data 
exists, hence, the additional constraints: 

op-a(k, m, t) 5 copy(a(k, m) , t) for all k,  m and t. 
op-b(k, m, t) 5 copy(b(k, m),  t) for all k,  m and t. 

At most one fragment in a join query step can be the reducee: 

red-a(k, m) + red-b(k, m) 5 1 for all k and m. 

Note that if red-a(k, m) and red-b(k, m) are both 0 then the 
join proceeds without reduction by semijoin. 

Resource constraints are specified as follows. Communication 
link capacity: 

TL( t, p) 5 UUt, p) for each link ( t ,  p ) ,  t = 1 ,  2 ,  ..., 
number of nodes; p = 1 ,  2 ,  ..., 
number of nodes; and t # p. 

Disk I /O capacity: 

TlO(t) l UlO(t) 

CPU capacity: 

TCPU(t) l UCPU(t) 

Storage capacity: 

G(t) l US(t) 

for each node t, t = 1 ,  2 ,  ..., number 
of nodes. 

for each node t, t = 1 ,  2 ,  ..., number 
of nodes. 

for each node t, t = 1 ,  2 ,  ..., number 
of nodes. 

A response time constraint for query k can be specified as: 

&,,(k) + R,(k) + &,,(k) I Required Response Time(k). 

This represents a constraint on the sum of the response times 
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for each query step. Since it may be possible to process certain 
query steps in parallel, it is an  upper bound on the response 
time of the query. Equations for the response time components 
RcoM(k), Rlo(k), and Rcpu(k) are presented elsewhere [Rho and 
March, 1995). The effects of parallelism on distributed database 
design are currently under investigation [Johansson, 19991. 

The genetic algorithm enforces constraints by ascribing a large 
cost to any solution that violates any constraint. This can be 
easily done since the genetic algorithm generates and evaluates 
complete designs. 

A Genetic Algorithm Solution Procedure 

Adequate representation of the solution space and tractability 
of the solution approach are significant problems in distributed 
database design [Dowdy and Foster, 1988; Blankenship, et al., 
1997). To accurately reflect the interdependencies between data 
and operation allocation and to model the effects of semijoins 
and join order on query processing performance in a traditional 
optimization model, a large number of decision variables would 
need to be generated. Furthermore, problem and  solution 
parameters interact in subtle and complex ways resulting in 
nonlinear and discontinuous objective functions and constraints 
(e.g., Temporary fragment sizes (La,,, or b,,,) depend on the join 
order (See Rho and March [I9971 for detail) .). Therefore, it is 
impractical, if not impossible, to develop solution procedures 
based on traditional algorithms such as branch and bound. 

To address these problems, we use a genetic algorithm-based 
solution procedure [Goldberg, 1989; Davis, 199 11. A genetic 
algorithm was  chosen for several reasons .  Firs t ,  genetic 
algorithms work by generat ing a n d  evaluat ing complete 
solutions. Hence, it is not necessary to represent a solution 
space or the interdependencies among problem and solution 
components  us ing  decision var iables  as in  t radi t ional  
optimization methods. Second, genetic algorithms are robust in 
that they work well even in discontinuous, multimodal, noisy 
search spaces. Genetic algorithm-based solution methods can 
easily incorporate very complex and nonlinear cost models such 
a s  ours. Third, genetic algorithms result not only in a "best" 
solution, b u t  also in a pool of good solutions. The s e t  of 



solutions in the final pool provides significant intuition into the 
effects of design alternatives. For example, if all solutions in the 
final pool store a given file a t  a particular node, the designer 
would be reasonably confident that it is important to store that 
file a t  that node. 

Our distributed database design algorithm contains a genetic 
algorithm within a genetic algorithm. Its basic structure is 
adapted from [March and  Rho, 19951 and  summarized in  
Appendix 2. As in tha t  work, the  outer genetic algorithm 
addresses data allocation while the inner genetic algorithm 
addresses operation allocation. We augment the gene structure 
and offspring generation algorithms to include join order and 
semijoin strategies in addition to copy identification and join 
node selection. These will be discussed after a brief overview of 
the genetic algorithm itself. 

The outer algorithm begins by randomly generating a pool of 
feasible data allocations. The pool is "seeded" with heuristically 
generated solutions,  including complete replication of all 
fragments a t  all nodes and the allocation generated by the "most 
beneficial s i tes"  heuris t ic  [Teorey, 19901. For each d a t a  
allocation in the pool, the inner genetic algorithm is used to 
determine a good, if not optimal, operation allocation for that 
data allocation. The inner genetic algorithm begins by generating 
a pool of feasible operation allocations including join order and 
data reduction strategies for each query for the given data 
allocation. I t  then iterates through generations, choosing 
operation allocations to be parents and combining them to 
produce children operation allocations. The best operation 
allocations are maintained in the pool a t  each generation to 
retain a fixed poolsize. After the specified number of iterations, 
the operation allocation with the best performance is selected, 
yielding a complete distributed database design including a n  
efficient execution plan for each query. 

After an  efficient operation allocation has been produced for 
each data allocation in the initial outer algorithm pool, the outer 
algorithm similarly iterates through generations, choosing data 
allocations to be parents  and combining them to produce 
children data allocations. The inner algorithm is executed for 
each child data allocation generated by the outer algorithm, 
yielding a complete design for it. After the specified number of 
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iterations, the complete solution with the best performance is 
selected and the algorithm terminates. In this way, only feasible 
data allocations are considered in the operation allocation 
algorithm, and the final solution is the best from among a n  
evolving pool of good solutions. 

Using outer and inner genetic algorithms can make it easier to 
handle the dependency between data allocation and operation 
allocation than using a single genetic algorithm representing 
both data and operation allocation. As discussed above. the 
feasibility of an  operation allocation is dependent on the data 
allocation - each retrieval operation   nu st be allocated to a node 
containing the required data. Update operations must be applied 
to all copies. I t  i s  very difficult to enforce these types of 
constraints in a single generic algorithm. Furthermore, such a 
nested approach allows u s  to easily incorporate different 
operation allocation models. Such flexibility is desirable in a 
distributed database design approach since different distributed 
database management systems utilize different query optimizers. 

The genetic algorithm is written in C++  and runs in a UNIX 
environment. Its run time depends on problern size and on 
algorithm paranieters such a s  the poolsize and number of 
iterations for each algorithm. 

In the res t  of th is  section we briefly describe the  gene 
structure by which solutions are represented and the offspring 
generation processes used to search the solution space. Details 
of the algorithm are presented in Rho [1995]. Specifically we 
define a two-tiered gene structure. The first tier represents the 
data allocation. I t  corresponds directly to the decision variables 
represented by copy(i. t).  The second tier consists of four parts, 
each representing one of the four types of decisions in our 
operation allocation model: (1) copy identification, (2) beneficial 
semijoin identification, (3) join order, and (4) join node selection. 
March and  Kho (19953 propose a similar gene s t ruc ture ,  
however, they include only parts (1) and (4) since they do not 
consider semijoins or join order. Figure 4 shows the complete 
representation of a complete distributed database  design 
solution for the sample problem. Each part of the representation 
is discussed below. 

The data allocation is represented by sets of n bits, one set for 
each fragment, where n is the number of nodes in the network. 
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a. Data Allocation Gene Representation for the Outer Genetic Algorithm 
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A bit has a value of 1 if the corresponding file fragment is 
allocated to the  corresponding node. It h a s  a value of 0 
otherwise. Thus, each bit corresponds to copy(i, t). The example 
data allocation solution shown in Figure 4.a (1 110 10 10 100 1 
11 10 0010 0001 0100 0010 0001) stores Customer 1 a t  
Headquarters,  Region 1,  and  Region 2 ;  Customer 2 a t  
Headquarters and Region 2; Customer 3 at  Headquarters and 
Region 3; Account 1 Headquarters, Region 1, and Region 2; 
Account 2 only a t  Region 2; Account 3 only a t  Region 3; 
Transaction 1 only at  Region 1; Transaction 2 only at Region 2; 
and Transaction 3 only at  Region 3. 

The operation allocation for each query is represented by four 
sets of vectors corresponding to the four columns, Copy Id, 
Semijoin, Join Order and Join Node illustrated in Figure 4.b. 
Each row in that  figure contains the solution for a single 
variation of one of the retrieval queries in Figure 2. For example, 
Retrieval Query R1 in Figure 2 requires data from three tables, 
Customer, Account, and Transaction. Since there are three 
regions, it has three variations based on the selection condition, 
Account.br-id = [region]. These are designated Rl  .i in Figure 4.b, 
where i represents the Account. br -id selection condition. For 
example, R1.l has Account.br-id = 1. Thus it requires the 
fragments, Customer 1, Account 1, and Transaction 1. 

The copy identification vector has a position for each fragment 
referenced by a query. Each position holds the node from which 
the corresponding fragment is accessed. For example, the copy 
identification vector for R1.l has three entries, one for each 
fragment. The selected copy identification for this query, when it 
originates at Headquarters, is the vector (0 0 l), as illustrated in 
the Copy Id column of the corresponding row in Figure 4.b. This 
specifies the use of Customer 1 and Account 1 from Region 0 
(Headquarters) and Transaction 1 from Region 1. The selected 
copy identification for this query when it originates at  Region 1, 
(1 1 l), uses all three tables from Region 1. When executed from 
Region 2, it uses Customer 1 and Account 1 from Headquarters 
and Transaction 1 from Region 1 (0 0 1). Copy identification 
decisions for the remaining queries are similarly represented. 

A pair of bits represents each semijoin decision, one bit for 
each fragment in the join. The first bit represents a(k, m), the 
second represents b(k, m). The bit corresponding to the reducer 



fragment is set to 1 .  Hence, the hit pair 10 represents a(k, m) 
reduces b(k, nl) and the pair 01 represents b(k, m) reduces a(k, 
m). The bit pair 00 represents the decision not to use semijoins. 
The bit pair 11 is not legal. For example, Query R. 1 (Figure 2) 
specifies two joins, (Customer join Account) and (Account join 
Transaction), extracted from the join specification Customer join 
Account join Transaction. Hence i t  needs two bit pairs to 
represent its semijoin strategy. The selected sernijoin strategy for 
this query. selecting accounts in Region 1,  R 1 . l ,  and originating 
a t  Headquarters is the vector of' bit pairs (00 lo) ,  a s  illustrated 
in the Semijoin column of the corresponding row in Figure 4.b. 
This specifies the  use  of the  semijoin Account 1 reduces 
Transaction 1. A semijoin is not used for the other join (it is 
performed at the queiy origination node). Semijoins are not used 
for this query when exec~lted from Region 1 since all data  
needed are located a t  that region. Hence, its semijoin strategy is 
represented as  (00 00). 

Join order decisions are represented a s  a list of joins, where 
the sequence indicates the order in which joins are performed. 
The  join o rder  decision for query  R1.1 originat ing a t  
Headquarters is the list (1 2) shown in the Join Order Column of 
Figure 4.b. I t  specifies that the join between Customer 1 and 
Account 1 ,  the  first join listed in the query definition, is 

performed first and the join with Transaction 1, the second join 
listed in the query. 

Join node decisions are represented by a vector with a position 
for each join in the query. Each position corresponds to a join 
step of the qllery and contains the node a t  which the join is 

performed. The join node decision for query- R1.l originating a t  
Headquarters, the vector (0 0) in the <Join Node colun-rn of Figure 
4.b, specifies that both joins are performed at Headquarters. 

Our genetic algorithm generates new solutions via standard 
genetic operators, constrained to ensure feasibility. Uniform 
crossover [Davis, 199 1 ; Syswerda, 19891 and mutation are used 
for data allocation, beneficial semijoin identification, and join 
node selection. In uniform crossover, child genes are randomly 
selected from each parent. For example, consider the following 
data allocation solutio~ls for the exanlple Customer, Account, 
Transaction database: 
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Both solutions have the fragment Clustomer 1 stored a t  nodes 
1, 2 and  3 .  Neither have it  stored at node 4. In uniform 
crossover, all of children solutions from these parents will also 
have this fragment stored at nodes 1, 2 and 3. None will have it 
a t  node 4. Similarly, both parents have the fragment Customer 2 
stored at node 1, but only the second parent has that fragment 
stored a t  node 2 and only the first parent has it stored at node 
3. Neither have it stored at node 4. A,gain, in uniform crossover, 
all their children would have that fragment at node 1. They 
would have a .5 probability of having it at nodes 2 and 3. None 
would have it a t  node 4. 

Uniform crossover is not viable for join order as it is very likely 
to generate children representing infeasible solutions. Therefore, 
we employ a unrorm order crossover operator [Davis, 19911 for 
join order. In a uniform order crossover operator, gene positions 
for which a child will inherit values from the first parent are 
randomly determined. Values for the rest of the gene positions 
are determined based on the gene value order in the second 
parent, thus child solutions are always feasible. To illustrate 
how a uniform order crossover operator works, consider the 
following two join order solutions for a four join query: 

In the first solution, join 2 is done first followed by joins 1, 3, 
and 4. Recall that the join number is specified in the statement 
of the query; joins can be performed in any sequence. In the 
second solution, join 1 is done first followed by joins 3, 4, and 2. 
When join order is generated for a child solution, gene positions 
from the  first  parent  a r e  randomly determined,  i.e.,  t h e  
probability that a position is selected from the first parent is .5. 
Suppose that the second and fourth gene positions are selected 
from the first parent. We then have the following partial solution: 
- 1 - 4. Joins 2 and 3 are unspecified. In the second parent join 
3 precedes join 2, thus the child join order would be 3 1 2 4. A 
second, complementary child could be generated with the 



opposite selections. It would inherit 2 - 3 - from the first parent. 
Thus it would be 2 1 3 4. 

Standard mutation operators frequently generate infeasible 
solutions for this  type of representation since a s tandard  
mutation operator changes one gene in the solution. Thus  
inversion i s  used  in s t ead  of mu ta t ion  to  incorporate  
randomness. Inversion generates a new solution by reversing the 
gene order of a n  existing solution. Under inversion two cut  
points a r e  chosen a t  random a n d  a child i s  produced by 
switching the end points of the middle segment. To illustrate 
how an  inversion operator works, consider the first join order 
representation above, 2 1 3 4. Suppose that the point between 
the first and second genes and that between the third and last 
genes are chosen a s  cut  points. The order of the two joins 
between the cut points is reversed from 1, 3 to 3, 1, thus the 
child join order would be 2 3 1 4. 

To get a sense of how solution is represented and how its cost 
is calculated, consider again a three- table, two-j oin retrieval 
query, similar to R1, specified as, 

SELECT Custorner.c-id, c-name, c-address, c-city, c- 
s ta te ,  c-zip, Account.acc-no, s-balance, c- 
balance, period-interest, ytd-interest, t-id, t- 
type, amount, t-date 

FROM Customer, Account, Transaction 
WHERE Cust0mer.c-id = Acc0unt.c-id 
AND Account.acc-no = Transact i0n.a~~-no 
AND c-city = 'Minneapolis' 
AND t-date 2 '12/ 1 /99' AND t-date 2 '12/3 1 /99'; 

One possible query execution plan for s u c h  a query i s  
illustrated in Figure 3a. Designating the query origination node 
as node 0 and the other nodes for the tables used, the gene 
structure for that solution is, 

Where Customer is table 1, retrieved from node 1, Account is 
table 2 ,  retrieved from node 2, and Transaction is table 3, 

Join Node 

1 0  

Join Order 

1 2  
Copy Id 
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retrieved from node 3. The join of Customer and Account is 
performed first, at node 1, using a semijoin with Customer as 
the reducer and Account a s  the reducee. The join with 
Transaction is performed second a t  node 0 ,  the query 
origination and result node. 

Consider the cost components of this query execution plan. 
First, messages must be sent from node 0 to nodes 1, 2 and 3 
requesting the needed data (query steps 1, 2 and 3). As 
described in Appendix 1, the communication cost of these 
message steps is simply 0 * (G, + G, + G,) where Ln is the size of 
a message and c, is the unit cost of communication from node t 
to node p. The CPU costs of these messages is (3 * So) * po + R, * 
p, + R, * p2 + R3 * p3 where St is the CPU time required to send a 
message from node t, Rt is the CPU time required to receive a 
message at node t and p, is the cost of CPU time at node t. 

Next the selection/projection operations and  the join 
operations must  be performed. Selection and projection 
operations reduce the size of the target tables by applying the 
specified query selection and projection criteria to the  
appropriate tables. Join operations combine the reduced tables, 
perhaps using semijoins to further reduce the size of one of the 
tables. 

The above query, has three selection/projection operations 
corresponding to query steps 4, 5, and 6. They are defined by 
the following subqueries: 

(4) SELECT c-id, c-name, c-address, c-city, c-state, c-zip, 
FROM Customer 
WHERE c-city = 'Minneapolis'; 

(5) SELECT c-id, acc-no, s-balance, c-balance, period- 
interest, ytd-interest 

FROM Account 

(6) SELECT acc-no, t-id, t-type, amount, t-date 
FROM Transaction 
WHERE t-date2'12/1/99'ANDt-dateZ612/31/99';  

Each reduces the size of the table to be used in further 
operations. In this example, only relevant Customer and 



Transaction rows are selected (c-city = 'Minneapolis' and t-date 
2 '12/ 1 /99' AND t-date 5 '12/3 1 /99', respectively). All rows 
are selected from the Account table. Only relevant attributes are 
projected from each table. 

The cost of selection/projection steps depends on the local 
database designs. If indexes exist on the selection criteria (c-city 
in the Customer table and t-date in the Transaction table) these 
can be used to minimize the local processing costs. Otherwise, 
the tables must be scanned. The I 0  costs for these steps are 
designated, D,,, * d,, Dk5, * d,, D,, * d,, where k is the query 
designator, assumed to be the current query, D,,,, is the number 
of I 0  operations required to perform the select/project operation 
for step rn of query k a t  node t and d, is the cost per I 0  operation 
a t  node t. CPU costs are similarly calculated. Again, both depend 
on the local database designs, particularly indexing schemes 
a n d  local query optimization strategies.  Details of the i r  
calculations for various database design options are discussed 
in [Rho, 19951. 

Finally, there are two join operations, Customer Join Account 
corresponding to query step 7 and Account join Transaction 
corresponding to query step 8. Since Customer is used in a 
semijoin to reduce Account, the unique c-id values from the 
selected Customer rows, i.e., those in Minneapolis must  be 
projected from that table. This can be done in the selection / 
projection step. Call the result table, RedCustIDs (Reduced 
Customer Identifiers). For the join operation to proceed, this 
result table must be sent to node 2 at  a cost of Size(RedCust1Ds) 
* c,,, where Size(T) is the number characters in the table T. There 
it is used to select rows from the Account table that have a c-id 
value equal to one of those sent. That is, it executes the join 

query, 

SELECT Acc0unt.c-id,  acc-no,  s -balance ,  c-balance,  
period-interest, ytd-interest 

FROM RedCustIDs, Account 
WHERE RedCust1Ds.c-id = Acc0unt.c-id; 

Call the  result  of this  join query, RedAccount (Reduced 
Account). The cost of producing this result depends on the local 
database design. Call it. CostRedAccount. This table is sent back 
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to node 1 a t  a cost of Size(RedAccount) * c,,. There it is joined 
with the Customer table as follows, 

SELECT Cust0mer.c-id, c-name, c-address, c-city, c-state, 
c-zip, acc-no,  s -balance ,  c-balance,  period- 
interest, ytd-interest 

FROM Customer, RedAccount 
WHERE Customer. c-id = RedAccount. c-id 

Call the result of this query JoinCustAcc (Joined Customer 
and Account). Again, the cost of producing it depends on the 
local database design. Call it CostJoinCustAcc. This table is sent 
to node 0 at a cost of Size(JoinCustAcc) * c,,. There it is joined 
with ResTrans (Restricted Transact ion) ,  the  resul t  of the  
selection/projection operation performed on the Transaction 
table in query step 6. ResTrans contains the columns acc-no, t- 
id, t-type, amount, t-date from the Transaction table whose t- 
date attribute is between '12/ 1 /99' and '12/3 1 /99' inclusive. 
The cost to produce it was discussed above. It was sent to node 
0 at  a cost of Size(RedTrans) * c,,. 

Hence, the overall cost of this query is given by the sum of 
communication and  local processing costs  for messages,  
selection/projection operations, and  join operations. The 
expressions used to calculate these costs depend on the order in 
which the operations are performed, the size of the intermediate 
r e su l t s  (which depends  partially on t h e  order  i n  which 
operations are performed and the data reduction by semijoin 
strategy), the local database designs, and network and node 
costing parameters. 

IV. An Evaluation of Solution Components 

In this section we discuss the effects of data replication, join 
order, and data reduction by semijoin on distributed database 
design solutions. The sample problem used in this section has 
four relations: Salesperson, Customer, Order, and Product; and 
ten types of retrieval queries and five types of update queries 
executed with varying frequencies and selection criteria at 
different nodes. We used the problem parameters in Table 1. We 



Table 1. Cost Structure 
-- - 

Cost Component Capacity Cost 

Link 5 Kbytes/sec $2.OO/Mbytes 
Disk I 0  400 TOs/sec $2.50/M 10s 

CPU 2u MIPS $0.00005/MIPS 
Storage 1 Gbytes $1 O.OO/Mbytes/month 

conclude that each can have significant effects on the overall 
operating cost of a distributed database system. However, their 
effects a re  interdependent  and  different strategies a re  
appropriate under different conditions. There are no simple 
rules of thumb. Hence, it is important for a distributed database 
design approach to consider their joint effects if it is to produce 
efficient solutions. 

In a series of experiments discussed in detail elsewhere [Rho 
and March, 19951, we observe that replication alone is extremely 
effective for retrieval intensive environments when the  
proportion of rows required from any table in a query is "high." 
This corresponds to an  operational reporting system where 
management requires detailed reports. In this environment 
(Figure 5.a) replication alone improved performance by nearly 60 
percent over the base case (single copy, fixed join order, no data 
reduction). Join order and data reduction by semijoin yielded 
virtually no incremental performance improvement over 
replication alone. When replication was not considered, join 
order selection and data reduction by semijoin, in combination, 
yielded only a 33 percent performance improvement over the 
base case. Clearly replication dominates in such an operating 
environment. 

This is reasonable since replication gains its efficiencies by 
storing copies of data wherever they are used. It thus reduces or 
even eliminates communication for retrieval processing, but 
increases update and storage costs. In a retrieval intensive 
environment, update costs are minimal and data storage costs 
are typically dominated by retrieval costs. Data reduction by 
semijoin only marginally improves performance since with high 

1) Although it would be difficult to know all the queries in advance, we argue 
that  a small number of known queries account for most of the query 
processing requirements in practice. 
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proportions of tables selected, there is little to reduce. Join order 
can still be important, but only to reduce local processing costs. 
In the extreme case when there are no updates and data storage 
is relatively inexpensive, self-contained nodes, i.e., nodes that 
contain a copy of all data needed a t  that  node, are, in fact, 
optimal and distribution of operation allocation is irrelevant. 

The opposite is true in update intensive environments when 
the proportion of rows required from any table in a query is 
"low." This corresponds to a transaction system with exception 
reporting only (very small subset retrieval). In this environment 
(Figure 5.b) join order selection and data reduction by semijoin 
without replication improved performance by 41 percent over 
the base case (single copy, fixed join order, no data reduction). 
Replication yielded virtually no incremental performance 
improvement over join order selection and data reduction by 
semijoin alone. When join order selection and data reduction by 
semijoin were not considered, replication yielded only a 12 
percent performance improvement over the base case. Clearly 
join order selection and data reduction by semijoin dominate in 
such an  operating environment. 

Again, this is reasonable since join order selection and data 
reduct ion by semijoin c a n  reduce  d a t a  t ransmiss ion  
requirements for both retrievals and updates, while replication 
reduces data  transmission requirements for retrievals bu t  
increases it, and local processing costs, for updates. 

Mixed retrieval and update environments show similar results. 
Replication is more effective when retrieval queries require a 
high proportion of rows (Figure 5.c). Jo in  order and da ta  
reduction by semijoin are more effective when retrieval queries 
require a low proportion of rows (Figure 5.d). Of course, all of 
these performance improvements are problem dependent. In 
practice, what constitutes a "high" or "low" selectivity is difficult 
to determine and depends on operating and costing parameters 
such as network, CPU, and I 0  speeds and costs. This is the 
benefit of a n  algorithmic approach to distributed database 
design - the algorithm determines the values of "low" and 
"high" for each design environment and assesses the tradeoffs 
between replication and sophisticated operation allocation 
strategies. 

Challenging distributed database design problems are rarely a t  
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the extremes where it is easy to characterize retrieval and 
update frequencies and retrieval proportions as  "high" or "low." 
In those cases simple rules-of-thumb, such as, "replicate when 
update frequency is low and retrieval proportions are high" and 
"use semijoins when update frequency is high and retrieval 
proportions are low" are sufficient for reasonable performance. 
The challenge occurs when there is an arbitrary mix of retrieval 
and update activities that must be efficiently supported. In such 
situations the designer must evaluate the tradeoffs between 
replication and the various operation allocation strategies for 
each query. Here automated tools such a s  described in this 
paper become valuable design aids. 

To be effective over the widest range of problems, a distributed 
database design model must include both replication and a 
comprehensive set of operation allocation strategies including 
join order a n d  d a t a  reduction by semijoin. In t h a t  way 
replication can be selected when it is efficient, and appropriate 
processing strategies can be used to determine a globally 
efficient design. 

V. Summary and Future Research 

We present a comprehensive distributed database design 
approach that treats data allocation and operating strategies in 
a n  integrated manner. Our model integrates and extends 
existing models of distributed database design. It includes data 
replication, a concurrency control mechanism, data reduction by 
semijoin, join node selection, and join ordering, aspects of 
distributed database design that are typically treated in isolation 
in prior work. Our solution procedure uses a nested genetic 
algorithm developed to solve this problem formulation. It 
extends both the gene structure and offspring generation 
components of prior algorithms. It i s  implemented in  a 
workstation environment and solves realistic problems in a 
reasonable amount of computer time. 

Using variations of an example problem, we demonstrate that 
replication, join node selection, reduction by semijoin and join 
order selection can each have a significant impact on the 
efficiency of a distributed database system. Replication is more 



effective for retrieval intensive environments when a high 
proportion of rows are retrieved. Join node selection, join order, 
and reduction by semijoin are more effective for update intensive 
environments when a low proportion of rows are retrieved. When 
the user activities cannot be simply classified a s  retrieval 
intensive or update intensive, both replication and sophisticated 
operation allocation strategies contribute to the efficiency of the 
design. Hence we conclude t h a t ,  to be most effective, a 
distributed database design tool is needed to support both. 

Distributed database design tools such a s  ours provide u s  
with insights into the effects of different data and operation 
allocation strategies under various conditions. Such insights can 
be valuable for designers of distributed databases and for 
organizations who must  purchase or develop a distributed 
database management system. If, for example, an  application is 
known to be update intensive, the designer may decide to avoid 
replication. This reduces the complexity of the design process, 
greatly simplifying the task. If a majority of applications are 
update intensive, the organization may decide to purchase a 
DBMS tha t  supports  a wide range of operation allocation 
strategies in its query optimizer rather than one that supports 
replication. 

There are several areas for future research. First, the effects of 
data and operation allocation strategies on the efficiency of 
distributed database systems should be further analyzed under 
various conditions using real business problems. These include 
different types of networks with different performance 
parameters such a s  wide area networks (WAN), local area 
networks (LAN), and  asynchronous transfer mode (ATM) 
networks and different types of concurrency control mechanisms 
such as  primary copy 2PL and asynchronous updates such as  
store and forward. Second, although simulation was used to 
validate the model, it must be evaluated and verified in a more 
realistic environment. Selected solutions should be implemented 
and their performance measured in real organizational settings. 
Third, much work is needed to develop and compare alternative 
solution algorithms. Possible candidates include simulated 
annealing, partial enumeration techniques, and Lagrangian 
relaxation. Finally, the model itself can be extended to be more 
realistic. Possible extensions include the modeling of data 
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availability, dynamic system loads, parallel data access and 
different processing priorities. 
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Appendix 1. Operating Cost Components 

Following Cornell and Yu [I9891 and March and Rho [1995], 
the following notation is used. 

Problem components: 
Nodes = the number of nodes in the network. 

C ~ P  = the communication cost per character from node t 
to node p. 

st = unit storage cost a t  node t per unit time. 
d, = the cost per disk I /O  at  node t. 

Pt = the CPU processing cost per unit a t  node t. 
LC = the size of file fragment i in characters. 
LiM = the size of a message. 

j k )  = the frequency of execution of query k per unit time. 
a(k, m) = the file fragment used by step m of query k. 
b(k, m) = the second file fragment used by step m of query k 

for combine-fragment s teps  s u c h  a s  join and  
union. 

orig( k) = the origination node of query k. 

The size of each file fragment, L,, is calculated from the 
problem description parameters. The size of each temporary file 
is  estimated from the selection and projection conditions, 
semijoin and join operations that produces it (see, e.g., Gardy 
and Peuch [ 19891). 

Solution components: 
copy(i, t) = 1 if fragment i is stored a t  node t, otherwise it is 

0. 
op-a(k, m, t) = 1 if the file fragment copy used by step m of 

query k is located a t  node t, otherwise it is 0. 
op-b(k, m, t) = 1 if the second file fragment copy used by step 

m of query k for combine-fragment s teps is 
located a t  node t, otherwise it is 0. 

node(k, m, t) = 1 if step m of query k is performed at node t, 
otherwise it is 0. 

red-a(k, m) = 1 if a(k, m) reduces b(k, m), otherwise it is 0. 
red-b(k, m) = 1 if b(k, m) reduces a(k, m), otherwise it is 0. 
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Join order is represented in the gene structure used in our 
genetic algorithm. I t  is difficult to represent this  solution 
component using traditional decision variables. 

For message steps of retrievals, 

H(k,  m, t, p) = 0 if t = orig(k) 
H(k, m, t, p) = * op-a(k, m, p) otherwise 

For join s teps of base fragments when data reduction by 
semijoin is not used, 

For joins of intermediate results and when semijoin strategies 
a r e  used ,  the  calculation of H(k, m, t, p) is algorithmic,  
depending on the join order and the semijoin strategy. It is 
presented in [Rho, 19951. 

For send-message steps of updates (lock request, send update, 
release lock operations), 

H(k, m, t ,  p) = 0 if t = orig(k) 
H(k, m, t, p) = Lizf * cop y(a(k, m) , p) otherwise 

For receive-message s teps of updates (lock confirmation, 
update confirmation operations), 

H(k, m, t, p) = 0 if t = orig(k) 
H(k, m, t, p) = Dr * copy(a(k, m), p) otherwise. 
IO(k, m) = C O(k, m, t) d, 

I 

For selection and projection steps, 
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where Dknlt is the number of disk I/Os required to process step m 
of query k a t  node t. 

For join steps, 

O(k, m, t) = ( F , , n , t  * op-a(k, m, t) + FbIk.,, * op-b(k, m, t)) * (1 - 
node(kl m, 0) + (D,,, + E,,,,, * (1 - op-a(k, m, t)) + 
EM,,, * (1 - op-b(k, m, t))) * node(k, m, t) 

where F,,,, is the number of additional disk accesses needed at 
node t in order to send a(k, m) from node t to another node after 
having retrieved it and  E,,,,,,,, is the  number of disk access 
required to receive and store a(k, m) at node t. Expressions to 
evaluate Dkrnt, F a , k , r n , t ,  F b ( k  n,,,, Ea(k,mlt a n d  Eb(k.rn,t depend o n  t h e  
reduction strategy selected for this query step, represented in 
red-a(k, m) and red-b(k, m), and on join order and reduction 
strategies selected for prior query steps. Detailed expressions for 
these are presented in [Rho, 19951. 

For update requests, 

For message steps, 

U(k, m, t) = St * (1 - op-a(k, m, t)) if t = orig(k) 
U(k, m, t) = Rt * op-a(k, m, t) if t # orig(k) 

where St and R, are the expected CPU units required to send and 
receive a message. 

For selection and projection steps, 

where W,,,, is the number of CPU units required to process step 
m of query k at node t. 

For join steps, 

* U(kl m, t )=(c(k ,m, t  op-a(k, m, t) + E,,,,,, * op-b(k, m, t)) * (1 - 
node(k, m, t)) + (W,,, + ELlk,,, * (1 - op-a(k, m, t)) + G 
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where E ( , , ,  and &,,,, are the number of CPU operations required 
to send and receive a(k, m) from and to node t, respectively. 
Expressions to evaluate Wkrnt, c,,,, g, , , ,  Ed,,, and depend 
on the  reduction strategy selected for th i s  query s tep ,  
represented in red-a(k, m) and red-b(k, m), and on join order 
and reduction strategies selected for prior query steps. Detailed 
expressions for these are presented in [Rho, 19951. 

For send-message steps of updates (lock request, send update, 
release lock operations), 

For receive-message steps of updates (lock confirmation, 
update confirmation operations), 

For update steps, 

Appendix 2. A Nested Genetic Algorithm For 
Distributed Database Design 

Outer Genetic Algorithm: 

1. Generate initial pool of solutions: 
1.a. Randomly generate a feasible data allocation (to be 

feasible, each file (fragment) must be allocated to at 
least one node), 

1.b. Use the (inner) operation allocation genetic algorithm 
(see below) to allocate operations for th is  da ta  
allocation, thus producing a complete solution for this 



data allocation, 
1.c. Evaluate the cost of this solution, 
1.d. Repeat until the initial solution pool is generated. 

2. Iterate through successive generations: 
2.a. Probabilistically select two parent solutions from the 

solution pool, 
2.b. Produce a new data allocation (child) by applying 

crossover or mutation, 
2. c. Use the (inner) operation allocation genetic algorithm 

(see below) to allocate operat ions for th i s  d a t a  
allocation (child), thus producing a complete solution 
for this data allocation, 

2.d. Evaluate the cost of this solution, 
2.e. If the new solution is better than the worst solution in 

the solution pool, add it to the pool and remove the 
worst solution, 

2.f. Repeat for N generations, where N is  a maximum 
number of iterations. 

Inner Genetic Algorithm: 

3. Generate initial pool of operation allocations: 
3.a. Randomly generate a feasible operation allocation for 

the given data allocation (to be feasible, all retrieval 
operations must be assigned to nodes a t  which the 
required data is stored), 

3.b. Evaluate the cost of this solution, 
3.c. Repeat until the initial operation allocation pool is 

generated. 
4. Iterate through successive generations: 

4.a. Probabilistically select two parent solutions from the 
operation allocation pool, 

4.b. Produce a new operation allocation (child) by applying 
crossover or mutation, 

4.c. Evaluate the cost of this solution, 
4.d. If the new solution is better than the worst in the 

operation allocation pool, add it and remove the worst, 
4.e. Repeat for M generations, where M is  a maximum 

number of iterations. 



A Decision Support Tool for distributed Database Design 

References 

Apers, P. M. G., "Data Allocation in Distributed Database Systems," 
ACM Transactions on Database Systems, Vol. 13, No. 3, September 
1988, pp. 263-304. 

Apers, P. M. G., Hevner, A. R., and Yao, S. B., "Optimization Algorithms 
for Dis t r ibuted  Quer ies ,"  IEEE Transactions on Software 
Engineering, Vol. SE-9, No. 1, January 1983, pp. 57-68. 

Bernstein, P. A. and Chiu, D. W., "Using Semi-Joins to Solve Relational 
Queries," Journal of the ACM, Vol. 28, No. 1, Januaiy 198 1, pp. 25- 
40. 

Bernstein, P. A. and Goodman, N., "Concurrency Control in Distributed 
Database Systems," ACM Computing Surveys, Vol. 13, No. 2, June  
1981, pp. 185-222. 

Blankinship, R., Hevner, A. R., and Yao, S. B., "An Iterative Method for 
Distr ibuted Database  Optimization," Data and Knowledge 
Engineering, (21), 1997, pp. 1-30. 

Brancheau, J .  C., J anz ,  B. D.,  & Wetherbe, J. C., "Key Issues in 
Information Systems Management: 1994-95 SIM Delphi Results," 
MIS Quarterly, vol. 20, no. 2, pp. 225-42, 1996. 

Ceri, S., Pernici, B., and Wiederhold, G., "Distributed Database Design 
Methodologies," Proceedings of the IEEE, Vol. 75, No. 5, May 1987, 
pp. 533-546. 

Cornell, D. W. and Yu, P. S., "On Optimal Site Assignment for Relations 
in the Distributed Database Environment," IEEE Transactions on 
Software Engineering, Vol. 15, No. 8, August 1989, pp. 1004- 1009. 

Davis, L., ed., Handbook of Genetic Algorithms, Van Nostrand Reinhold, 
New York, 199 1. 

Dowdy, L. W. a n d  Foster,D. V., "Comparative Models of the  File 
Assignment Problem," ACM Computing Surveys, Vol. 14, No. 2, 
June  1982, pp. 287-3 14. 

Eswaran, K. P., "Placement of Records in a File and File Allocation in a 
Computer Network," in Information Processing '74, Stockholm, 
1974, pp. 304-307. 

Epstein, R., Stonebraker, M., and Wong, E., "Query Processing in a 
Distributed Relational Database System," Proceedings of ACM 
SIGMOD, Austin, T X ,  May 1978. 

Gardy, D. and Puech, C., "On the Effects of Join Operations on Relation 
Sizes," ACM Transactions on Database Systems, Vol. 14, No. 4, 
December 1989, pp. 574-603. 

Gavish, B. and Sheng, 0 .  R. L., "Dynamic File Migration in Distributed 



Sroiil Journal of Bu.sinc~.s.\ 

Computer Systems," Communications of the ACM, Vol. 33, No. 2., 
February 1990, pp. 177-189. 

Goldberg, D. E.,  Genetic Algorithms in Search, Optimization, and 
Machine Learning, Addison-Wesley, 1989. 

Hevner, A. R., The Optimization of Query Processing on Distributed 
Database Systems, Ph.D. Thesis, Purdue University, 1979. 

Hevner, A. R. and Yao, S. B., "Query Processing in Distributed Database 
Systems," IEEE Transactions on Software Engineering, Vol. SE-5, 
No. 3, May 1979, pp. 177-187. 

Johansson, J. M., "Impact of High-Speed Wide Area Network Response 
Time Dynamics on Distributed Database Design," PhD dissertation 
in Information and Decision Sciences Dept. Minneapolis: University 
of Minnesota, 1999. 

Kleinrock, L., Queuing Systems: Theory, John Wiley & Sons, 1975. 
Lee, H. and Sheng, 0 .  R. L., "A Multiple Criteria Model for the Allocation 

of Data Files in a Distributed Information Systems," Computers and 
Operations Research, Vol. 2 1, 1992, pp. 2 1-33. 

Lohman, G. M., Mohan, C., Haas, L. M., Daniels, D., Lindsay, B. G., 
Selinger, P. G.. and Wilms, P.F., "Query Processing in R*," in Kim, 
W. et al. (eds.) Query Processing in Database Systems, Spring- 
Verlag, Berlin, 1985, pp. 31-47. 

March, S. T. and Rho, S., "Allocating Data and Operations to Nodes in 
Distributed Database Design," IEEE Transactions on Knowledge 
and Data Engineering, Vol. 7, No. 2, April 1995, pp. 305-317. 

Mishra, P. and Eich, M. H., "Join Processing in Relational Databases," 
ACM Computing Surveys, Vol. 24, No. 1. March 1992, pp. 63- 1 13. 

Ozsu, M. and Valduriez, P., "Distributed Database Systems: Where Are 
We Now?" IEEE Computer, August 1991a, pp. 68-78. 

Ozsu, M. and Valduriez, P., Principles of Distributed Database Systems, 
Prentice-Hall, Inc., Englewood Cliffs, N J ,  199 1 b. 

Ram, S. a n d  Marsten,  R. E. ,  "A Model for Database  Allocation 
Incorporat ing a Concurrency Control  Mechanism,"  IEEE 
Transactions on Knowledge and Data Engineering, Vol. 3, 199 1, pp. 
389-395. 

Ram, S. and Narasimhan, S., "Allocation of Databases in a Distributed 
Database System," Proceedings of the 1 1  th International Conference 
on Information Systems, December 1990, pp. 2 15-230. 

Ram, S. and Narasimhan, S., "Database Allocation in a Distributed 
Environment: Incorporating a Concurrency Control Mechanism 
and Queuing Costs," Management Science, Vol. 40, No. 8, August 
1994, pp. 969-983. 

Rho, S., Distributed Database Design: Allocation o f  Data and Operations 
to Nodes in Distributed Database Systems, Unpublished Ph.D. 



A Decision Support Tool for distributed Database Design 111 

Thesis, University of Minnesota, May 1995. 
Rho, S. and March, S. T. "Designing Distributed Database Systems for 

Efficient Operation," Proceedings of the 16th International 
Conference on Information Systems, December 1995, pp. 237-253. 

Rho, S. and March, S. T., "Optimizing Distributed Join Queries: A 
Genetic Algorithm Approach," Annals of Operations Research, Vol. 
71, 1997, pp. 199-228. 

Ricciuti, M., "DBMS Vendors Chase Sybase for Client/Server," 
Datamation, Vol. 39, July 1, 1993, pp. 27-28. 

Richter, J., "Distributing Data," Byte, June 1994, pp. 139- 148. 
Syswerda, G., "Uniform Crossover in Genetic Algorithm," Proceedings of 

the 3rd International Conference on Genetic Algorithms, 1989, pp. 2- 
9. 

The, L., "Distribute Data Without Choking the Net," Datamation, Vol. 
40, January 7, 1994, pp. 35-36. 

Teorey, T. J., Database Modeling and Design, Morgan Kaufmann, San 
Mateo, CA, 1990. 

Yoo, H. and Lafortune, S., "An Intelligent Search Method for Query 
Optimization by Semij oins, " IEEE Transactions on Know ledge and 
Data Engineering, Vol. 1, No. 2, June 1989, pp. 226-237. 

Yu, C. T. and Chang, C. C., "Distributed Query Processing," ACM 
Computing Surveys, Vol. 16, No. 4, December 1984, pp. 399-433. 


