
Seoul Journal of Business
Volume 6, Number 112 (December 2000)

A Decision Support Tool for distributed
Database Design

Sangkyu Rho*
College of Business Administration

Seoul National University

Salvatore T. March
Carlson School of Management

University of Minnesota

Abstract

The efficiency and effectiveness of a distributed database depend
primarily on solving two interrelated design problems: data allocation,
specifying what data to replicate and where to store it, and operating
strategies, specifying where and how retrieval and update processes are
performed. We develop a distributed database design approach that
comprehensively addresses these problems, explicitly modeling their
interdependencies for both retrieval and update processing. We extend
earlier distributed database design models to include join order and
data reduction by semijoin, in addition to data replication, copy
identification, and join node selection. We demonstrate that join
ordering and data reduction by semijoin are important distributed
database design decisions that must be included in a distributed
database design algorithm if it is to determine an overall optimal
distributed database design.

I. Introduction

Geographically distributed organizations are faced with the

* This research was partially supported by Institute of management Research,
College of B u s i n e s s Admin is t ra t ion , Seou l Nat ional Univers i ty .
(Corresponding author)

72 Seoul Journal of Busirzess

challenge of developing information systems that efficiently
support local operations and enable information sharing across
the organization [Brancheau, et al., 19961. Distributed database
systems supply the underlying technology for such systems,
providing users with access to databases that are maintained at
different locations [Ricciuti, 1993; Richter, 1994; The, 19941.
They can yield significant cost and performance advantages over
centralized systems for geographically distributed organizations
[Ozsu and Valduriez, 199 1 a; 199 1 b] .

Given a computer network consisting of nodes containing
computers with processing and storage capabilities that are
connected by links with d a t a t r ansmis s ion speeds a n d
capaci t ies , judicious p lacement of d a t a a n d processing
capabilities can result in efficient and responsive systems.
However, inappropriate data replication and placement or
inappropriate processing of that data can result in high cost and
poor system performance [Ceri, et al., 19871.

There are two aspects to distributed database design, data
allocation and operating strategies. Data allocation includes the
determination of units of data to allocate, termed fragments, and
the placement of copies of those units on nodes in the network.
To enhance retrieval efficiency, the same fragment can be
redundantly allocated to multiple nodes, resulting in multiple
copies of the same data. Such redundancy results in more
complex update processes and increased data maintenance
costs.

Operating strategies include operation allocation, or query
optimization, and concurrency control strategies. Operation
allocation defines where, how, and in what order retrieval and
processing operations are performed [Yu and Chang, 19841. The
concurrency control strategy is responsible for ensuring that
update operations are performed correctly and consistently, a
particularly challenging task when there are multiple copies of
the data [Bernstein and Goodman, 198 11.

Retrieval operations must be performed at nodes that contain
the required data. Processing operations can be performed a t
any node; however, if the data are not located at the processing
node, they must first be sent there over the communication
network. The order in which operations are performed can have
a significant impact on performance. To reduce the amount of

A Decision Support Tool for distributed Databa.se Design 73

processing required, selection and projection operations are
always performed before join operations. The order in which join
operations a r e performed and the use of d a t a reduction
strategies, or semijoins, can also have significant impact on
performance [Yoo and Lafortune, 19891. Update operations must
eventually be done a t all nodes containing a copy of the affected
data.

Prior work h a s produced dis t r ibuted d a t a b a s e design
approaches that optimize either overall cost or average response
time [Apers, 1988; Blankinship et al., 1997; Cornell and Yu,
1989; Ram and Narasimhan, 1990; 1994; March and Rho, 1995;
Rho and March, 19951. These vary in the design decisions
considered and the optimization procedures used. The most
comprehensive work includes the generation and allocation of
fragment replicas, the selection of retrieval and join nodes for
retrieval queries , a n d the effects of concurrency control
mechanisms for update queries, optimizing performance
measures tha t include both local computer resources and
network resources. None have included join order or da ta
reduction strategies.

In this work we address the effects of join order and data
reduction strategies on the overall task of distributed database
design. Both have been shown to significantly affect
performance in the context of query optimization [Mishra and
Eich, 1992; Galindo-Legaria and Rosenthal, 1997; Yu and
Chang, 19841. Neither has been considered in distributed
database design approaches. Optimizing join order and utilizing
semijoins can significantly reduce the amount of processing that
must be done and the amount of data that must be transmitted
when performing distributed joins operations. Failure to
consider these a t design time overestimates the cost of join
operations involving distributed data. This can result in the
selection of more centralized designs and loss of the benefits
afforded by data distribution.

If a distributed database design approach fails to consider join
order or the utilization of semijoins, the cost of this query could
be significantly overestimated. As a result, the cost of the above
data allocation could be overestimated and it may be rejected,
even if it is, in fact, the overall optimal one for this system.

We extend earlier distributed database design approaches to

74 Seoul Journal of Business

include join order and data reduction by semijoins as well as
data replication, copy identification, and join node selection. No
current distributed database design approach includes all of
these components. Our cost model can be used to evaluate
operating cost or response time [Rho and March, 19951. In this
paper we focus on operating cost minimization. A response time
minimization model t h a t includes parallelism i s under
development [Johansson, 19991. We utilize a genetic algorithm-
based solution procedure to select d a t a a n d operat ion
allocations that minimize overall system operating cost within
node, network, and query response time constraints. We have
applied this procedure to a set of example problems. These
demonstrate that operating cost can be significantly reduced
when join order and data reduction by semijoin are considered.

The remainder of the paper is organized as follows. In the next
section we briefly overview distributed database design concepts
focusing on the effects of join order and da ta reduction
strategies. In the next section we present our cost model and
solution algorithm. Finally, we discuss the effects of data
replication, join node selection, and data reduction strategies on
the overall operating costs.

11. Distributed Database Design

In a dis t r ibuted da tabase system, d a t a from a single
conceptual database are maintained a t various nodes in a
computer network. The process of allocating data to nodes is
termed distribution design or data allocation [Ceri et al., 1987,
Ozsu and Valduriez, 199 la] . Given a data allocation, user
retrieval and update queries must be processed. Queries arise at
some node and may update or retrieve data stored at any node.
The process of determining how, when, and where queries are
processed is termed query optimization or operation allocation.
A concurrency control mechanism specifies update-processing
constraints.

Typically the data allocation and the concurrency control
mechanism a r e determined a t design time a n d change
infrequently, if at all. Although there are research efforts in data
migration strategies [Gavish and Sheng 19901, this aspect of

A Decision Support Tool for distributed Database Design 75

distributed system operation is beyond the scope of this paper.
Operation allocation is typically done by a query optimizer
within the distributed database management system either at
compile time [Lohman et al., 19851 or at run time [Epstein et al.,
19781. We argue that it is important to generate an efficient
operation allocation for each known query at design time. This
enables designers to estimate the system load and to pre-
compile query execution strategies. It also provides the
necessary estimates of system load to determine efficient data
allocations. Globally optimized query processing strategies may,
in fact, be more efficient than one-at-a-time query optimization.

For illustrative purposes, consider a bank having four
locations, headquarters and three regional offices. Suppose
further that each location has a computer system (node) in a
fully connected network. Each computer is described by its CPU
and disk capacities and their unit costs. Each link in the
network is described by its speed, capacity, and unit transfer
costs. Suppose that the database schema has three tables,
Customer, Account, and Transaction a s in Figure 1. Each
customer has some number of accounts against which deposit
and withdrawal transactions are made. Each customer has a
preferred regional office a t which the customer does most of
his/her banking, typically the office at which the accounts were
opened. Of course, each regional office must be able to process
t ransact ions for any customer. Regional offices and
headquarters require access to data about various customers,
accounts, and transactions.

Figure 2 shows an example set of retrieval and update queries.
Each is expected to be executed from each location with a
specified selection criteria and frequency. For example, Retrieval
Query R1 could be executed from headquarters once per day,
selecting region 1 accounts. It could be executed once per hour
from region 2 selecting region 2 accounts, and so forth. A
distributed database system should allocate data and operations
for efficient execution of known queries. Based on the retrieval
queries R1, R2, and R3, for example, each relation in Figure 1
could be horizontally partitioned into three fragments, each
containing the instances for one region. Each fragment could be
allocated to each node at which the data are requested. This
design enables efficient processing of retrieval queries but has

76 Seoul .lollrrlnl o$ H~rsinr.s.s

Customer (1 0,000 instances, 960,000 characters)

c-id Text 5
c-name Text 20
ssn Text 9
c-address Text 30
c-city Text 20
c-state Text 2
c-zip Text 10

Account (15,000 instances, 1,350,000 characters)
acc-no Text 8
c-id Text 5
br -id Text 5
a-type Text 2
a-status Text 2
s-balance Numeric 15.2
s-date Date 8
c-balance Numeric 15.2
period-interest Numeric 15.2
ytd-interest Numeric 15.2

Transaction (3,000,000 instances, 23,400,000 characters)

t-id Text 10
acc-no Text 8
loc-id Text 5
t-date Date 8
t-time Time 8
t-amount Numeric 15.2
t-type Text 2
t-status Text 2
t-ref Text 20

Figure 1. Tables for an Example Distributed Database System

significant data redundancy, possibly resulting in poor update
query performance. Its overall performance depends on the
frequency with which retrieval and update queries are executed
and the response time requirements for each query.

Operation allocation, or distributed query processing, involves
three phases [Yu and Chang, 19841: copy identification,
reduction, and assembly. Copy identijkation is required if more
than one copy of a needed fragment exist. If so, the copy to use
for the query is determined in this phase. The copy identification

A Decision Support Toolfor distributed Database Desigrl 77

a. Retrieval Queries
R1. Customer Statements

SELECT c-id, c-name, c-address, c-city, c-state, c-zip, acc-
no, s-balance, c-balance, period-interest, ytd-
interest, t-id, t-type, t-amount

FROM Customer, Account, Transaction
WHERE Cust0mer.c-id = Acc0unt.c-id
AND Account. acc-no = Transaction. acc-no
AND Account. br -id = [region]

R2. Balance Inquiry
SELECT c-id, c-name, acc-no, c-balance
FROM Customer, Account
WHERE Cust0mer.c-id = Acc0unt.c-id
AND acc-no = [specified]

R3. Branch Status Report
SELECT br -id, acc-no, c-balance
FROM Account
WHERE br-id = [region]

b. Update Queries
U 1. Adjust Account balance

UPDATE Account
SET c-balance = [new balance]
WHERE acc-no = [specified]

U2. Maintain Customer Data
UPDATE Customer
SET c-address = [specified], c-city = [specified], c-state

= [specified], c-zip = [specified]
WHERE c-id = [specified]

U3. Record Transaction
INSERT INTO Transaction
VALUES ('t-id', . . . , 't-ref)

Figure 2. Retrieval and Update Queries for an Example Database
System

phase is also termed materialiiation because the data required
must be "materialized," or retrieved from a specific node.

Reduction applies only to join queries when the fragments to
be joined are stored at different nodes. In it, semijoins [Bernstein
and Chiu, 19811 are used to reduce the amount of data that
must be transferred to accomplish join operations. To join two
fragments stored at different nodes, the required data from one

of the fragments must be transmitted to the node a t which the
other is s tored, or t he required d a t a from both m u s t be
transmitted to a third node. If there are rows in one fragment
without corresponding rows in the other fragment, data can be
transmitted unnecessarily.

As discussed above, a semijoin can reduce the amount of data
transmitted by identifying rows that have matching join values.
I t does as follows. One fragment is selected a s the reducer and
the other as the reducee. The unique join attribute values are
projected from the reducer a n d t ransmit ted to t he node
containing the reducee. A row in the reducee is selected if its
join attribute matches one of the transmitted join values, i.e., a
join is performed between the unique join attributes of the
reducer and the reducee. The selected rows of the reducee are
transmitted to the reducer node where the join is performed. A
semijoin is effective, or beneficial, if its cost is less than the cost
of sending the entire reducee fragment to the reducer node and
performing the join there. Determining when semijoins are
beneficial i s a complex task , particularly when there a r e
multiple, possibly cyclic, joins in the same query task [Yoo and
Lafortune, 19891.

In assembly data are sent to the result node (if they are not
already there) and final processing is performed (e.g., sorting
and aggregations). Much of the research in distributed query
optimization assumes that all reduced fragments are sent to the
result node where all joins are performed. In this research the
solution algorithm determines the nodes a t which joins are
performed and the join order.

These three phases correspond to query steps [Cornell and Yu,
19891 or operations, some of which can be processed in parallel
and some of which must be processed sequentially [Rho, 19951.
As illustrated in Figure 3, each query has a start and an end
(designated by ovals), a s e t of operations (designated by
rectangles), and a set of synchronization points (designated by
circles). At a synchronization point, all previous operations must
be finished before subsequent operations can begin.

Retrieval queries require u p to six types of operations:
message, selection/projection (or restrict), join, projection of
semijoin a t t r i bu te va lues , join of semijoin, a n d d a t a
transmission [Rho, 1995). These operations are used during

A Decision Support Tool for distributed Database Design

table 1 I table 2 ' origination table 3
node ! node I node

copy 1 1 origination I copy 2
node : node : node '

a. A Remote 3 Table, 2 Join Retrieval Query

El selection
/projection join

projection join of

message
transmission E:E:ion

I I

b. A Remote lTable 2 Copy Update Query

Q lock request lock confurnation
message message

send update Q message 'fiak

Q
update release lock
confirmation message
messaee

Figure 3. Retrieval and Update Query Processing Models

distributed query processing a s follows. During the copy
identification phase, messages are sent from the query
origination node to the nodes from which data are retrieved.
During the reduction phase selection/projection operations and
semijoins, if any, are performed at these nodes. During the

assembly phase intermediate files are transmitted to join nodes
where joins are actually performed. If not already there, results
are transmitted to the query destination node.

Figure 3.a shows a possible execution plan for a three table,
two-join retrieval query, such as R1 in Figure 2. In this example,
each fragment (table) is retrieved from a different node, each of
which is remote from the query origination node, and the query
destination node is the same as the query origination node. It is
executed as follows. First, messages are sent to each node from
which a table is retrieved. Upon receiving these messages, the
appropriate selection/projection operations are performed a t
each node. A semijoin is used for tables 1 and 2 as follows. The
join attribute is projected from table 1 and transmitted to table
2's node where the reduction is performed. The reduced table 2
is transmitted to table 1's node where the join is performed. The
join result is transmitted to the query destination (origination)
node, where it is joined with table 3, which was transmitted
there after appropriate selection and projection operations were
performed at table 3's node. Join operations cannot begin until
the needed data are available a t the join node. Thus joins that
require data from different nodes have a synchronization point
prior to the join.

Assuming a 2PL concurrency control strategy, update queries
also require s ix operat ions: lock reques t message, lock
confirmation message, update message, local update, update
confirmation message, and release lock message. Figure 3.b
shows the execution plan for a remote update query where two
copies of the affected table are allocated to different nodes.
Synchronizat ion points a r e required before upda te s a r e
performed and before lock release messages are sent.

Many possible execution plans exist for each retrieval query
depending on the data allocation design. Update execution plans
are essentially fixed by the concurrency control strategy. A
distributed database design algorithm mus t determine a n
efficient, if not optimal, data allocation for all fragments and an
efficient, if not optimal, execution plan for each query. These
must conform to capacity and query response time constraints.

A Drc-i.sion Sltpport fio1,for di.strihilret1 Datrlh~zse Design

111. A Cost Model for Data and Operation Allocation

Given a set of fragments (tables) to be maintained in a given
network and a profile of retrieval and update queries that specify
a se t of min-term fragments [Apers, 19881, our approach
performs the following tasks:

(1) allocate fragment replicas to nodes (data allocation),
(2) for each retrieval query:

allocate query steps to nodes, identifying the appropriate
f ragment copies to u s e for retrieval quer ies (copy
identification),
identify beneficial semijoins for all join steps (reduction), and
determine join order for join queries involving more than one
join and a node at which each join is performed (assembly)

(3) for each update query, determine the update cost for the
specified data allocation,

to minimize total operating cost within specified network and
response time constraints.

In this section we summarize our operating cost model.
Problem definition and solution components and cost equations
are summarized in Appendix 1. Detailed equations are presented
in [Rho, 19951. In the following section we present a generic
algorithm to select efficient solution components based on this
cost model.

A Total Operating Cost Model

The allocation of costs to various operations in distributed
systems is a difficult problem. I t depends on such factors as
hardware utilization, the actual variable costs of operation such
a s electricity and personnel, and the recovery of investment.
Minimizing cost essentially results in a weighted minimization of
required system resources, a n important consideration in
establishing and conforming a distributed information system
budgetary requirements. Presumably, minimizing the computing
resources required by this distributed database makes those
resources available for other applications.

Our performance model i s designed to minimize total

82 Seoul Journal of Business

operat ing cos t including communicat ion, d isk I/O, CPU
processing, and storage. Simply stated, its objective is:

Min Cost = CJk) C(COM(~, m) + IO(k, m) + CPU(k, m))
k rn

Where Jk) is the frequency of execution of query k per unit time,
COM(k, m), IO(k, m), and CPU(k, m) are the respective costs of
communication, disk I/O and CPU processing time for step m of
query k, and STO(t) is the cost of storage at node t per unit time.
Thus the objective is to minimize the cost of each query step,
times the frequency of i ts execution, plus the cost of data
storage at each node.

Define copy(i, t) as a 0- 1 decision variable representing the
allocation of fragment i to node t. That is, copy(i, t) is 1 if
fragment i is allocated to node t. It is 0 otherwise. Given a data
allocation, storage costs for node t are straightforward. They are
given by:

where Li is the length of fragment i, and s, is the unit storage
cost per unit time at node t. Li and st are problem parameters.

Communication, disk I / O and CPU processing costs a re
represented as per unit costs multiplied by the number of units
used. Let c, be the communication cost per character from node
t to node p and let H(k, m, t, p) be the amount of communication
on the link connecting these nodes due to step m of query k.
Then the overall communication cost for step m of query k is
given by,

COM(k, m) = ZC H(k, m, t, p) c,.
t p*t

Similarly, let d, be the cost per disk I/O at node t and let O(k,
m, t) be the disk I/O load at that node due to step m of query k.
Then the overall disk I/O cost for step m of query is given by,

A Decision Support Tool for distributed Database Design

Finally, let pt be the CPU processing cost per unit and let U(k,
m, t) be the number of CPU processing units expended at node t
for local processing and communication for step m of query k.
Then the total CPU processing cost for step m of query k is given

by,

Expressions for H(k, m, t, p), O(k, m, t) and U(k, m, t) depend
on the decisions made for the other s teps in the query.
Representing them analytically is extremely difficult [Rho, 19951.
The number of decision variables and constraints needed to do
so explodes combinatorically, as discussed below.

Each step in a retrieval query requires a set of fragments and
a se t of operations needed to restrict and combine them.
Message and selection/projection s teps require only one
fragment. Join steps require two fragments. First, consider
message or selection/projection steps. Let a(k , m) be the
fragment required by step m, of query k. Define op-a(k, m, t) as a
0-1 decision variable having a value of 1 if a copy of a(k, m) at
node t is used for this query step. The cost of this query step is
calculated as follows.

Messages must be transmitted from node t to node orig(k), the
query origination node, if they are different. These messages
result in communication as well as local CPU and I/O processing
costs a t orig(k) and a t t. Local selection/projection costs are
always incurred at node t. The amount of communication on the
link connecting t and orig(k) due to step m of query k is given by:

H(k, m, t, orig(k)) = 0 if t = orig(k)
H(k, m, t, orig(k)) = LP * op-a(k, m, t) otherwise,

where LP is the length of a message. O(k, m, t) and U(k, m, t) are
similarly calculated (see Appendix A). An op-a(k, m, t) decision
variable is needed for each node and each message and
selection/projection step in each query. Hence, the number of

decision variables for message and selection/projection is on the
order of

Nodes * (message steps + selection/projection steps),

where Nodes is the number of nodes in the network.
For join steps, a second fragment, b(k, m), must be included in

the query step specification. The join operation can be allocated
to any node in the network. Define node(k, m, t) a s a 0 - 1
decision variable having a value of 1 if join step m of' query k is
allocated to node t. As above, op-a(k, m, t) is used to specify the
copy to use for a(k, m); op-b(k, m, t) is used to specify the copy to
use for b(k, m). Messages must be sent if either fragment is
retrieved from a node other than orig(k) or if the join is not
performed at orig(k). Similarly, data transrnission costs are
incurred if ei ther or both fragments are located a t nodes
different from that specified by node(k, m, t). If a semijoin is
performed, one fragment must be assigned the role of reducer
and the other the role of reducee. Define red-a(k, m) as a 0-1
decision variable having a value of 1 if a(k, m) reduces b(k, m)
and a value of 0 if it does not. Similarly define red-b(k, m). At
most, one fragment can be the reducee. If neither is specified as
the reducee, then the join is processed without reduction by
semij oin.

If a query involves only one join, then the cost of each possible
strategy could be calculated and multiplied by the appropriate
combination of decision variables, e.g., the cost of executing step
m of query k by reducing a(k, m) from node t, by b(k, m) from
node t, at node t, must be multiplied by red-a(k, m) * op-a(k, m,
t,) * op-b(k, m, t,) * node(k, m, ti), itself a challenging non linear
representation. However, if the query has two or more joins, then
the cost of any join step also depends on the join order and on
how the other join s teps were processed. Hence a decision
variable would need to be generated for each possible node for
a(k, m) and b(k, m) and for each possible semijoin strategy for
each possible join order for each join in the query.

To alleviate these problems, we have taken a genetic algorithm
approach. Genetic algorithms work by generating, evaluating,
and selecting solutions represented by a gene structure. It is not
necessary to represent a solution space using decision variables

A Decisiorz Support Tool for distributed Database Design 85

as in traditional optimization methods, thus eliminating the
explosion of decision variables discussed above. Our gene
s t ruc tu re represents solution components including the
allocation of fragments and operations to nodes, the ordering of
join operations, and alternative semij oin strategies. Solutions
a r e genera ted a n d evaluated by t h e genet ic a lgor i thm
descriptively ra ther t han parametrically as in traditional
optimization techniques. Our gene s t ruc ture and genetic
algorithm are presented in the next section.

System Constraints

To be feasible a data and operation allocation must satisfy
certain intrinsic and capacity constraints. Furthermore, it may
be desirable to place additional constraints on query response
time, particularly in a cost minimization formulation. We enforce
two types of intrinsic constraints: (1) all fragments must be
allocated to at least one node and (2) each query step must be
allocated to some node. We also enforce resource capacity
constraints on each communication link and on disk 110, CPU,
and storage space on each node.

The intrinsic constraints a re specified as follows. Each
fragment must be assigned to at least one node (t represents
nodes, i represents fragments) :

for all i.

Each query step must be assigned to a fragment copy (t
represents nodes, k represents queries, m represents query
steps) :

for all k and m.

C op-b(k, m, t) = 1 for all k and m.
I

Each join step must be assigned to a node:

2 node(k, m, t) = 1 for all k and m.
I

86 Seoul Joumal o f Business

Furthermore, each message and selection/projection step
must be allocated to a node at which a copy of the needed data
exists, hence, the additional constraints:

op-a(k, m, t) 5 copy(a(k, m) , t) for all k, m and t.
op-b(k, m, t) 5 copy(b(k, m), t) for all k, m and t.

At most one fragment in a join query step can be the reducee:

red-a(k, m) + red-b(k, m) 5 1 for all k and m.

Note that if red-a(k, m) and red-b(k, m) are both 0 then the
join proceeds without reduction by semijoin.

Resource constraints are specified as follows. Communication
link capacity:

TL(t, p) 5 UUt, p) for each link (t , p) , t = 1 , 2 , ...,
number of nodes; p = 1 , 2 , ...,
number of nodes; and t # p.

Disk I /O capacity:

TlO(t) l UlO(t)

CPU capacity:

TCPU(t) l UCPU(t)

Storage capacity:

G(t) l US(t)

for each node t, t = 1 , 2 , ..., number
of nodes.

for each node t, t = 1 , 2 , ..., number
of nodes.

for each node t, t = 1 , 2 , ..., number
of nodes.

A response time constraint for query k can be specified as:

&,,(k) + R,(k) + &,,(k) I Required Response Time(k).

This represents a constraint on the sum of the response times

A Decision Support Tool for distributed Database Design 87

for each query step. Since it may be possible to process certain
query steps in parallel, it is an upper bound on the response
time of the query. Equations for the response time components
RcoM(k), Rlo(k), and Rcpu(k) are presented elsewhere [Rho and
March, 1995). The effects of parallelism on distributed database
design are currently under investigation [Johansson, 19991.

The genetic algorithm enforces constraints by ascribing a large
cost to any solution that violates any constraint. This can be
easily done since the genetic algorithm generates and evaluates
complete designs.

A Genetic Algorithm Solution Procedure

Adequate representation of the solution space and tractability
of the solution approach are significant problems in distributed
database design [Dowdy and Foster, 1988; Blankenship, et al.,
1997). To accurately reflect the interdependencies between data
and operation allocation and to model the effects of semijoins
and join order on query processing performance in a traditional
optimization model, a large number of decision variables would
need to be generated. Furthermore, problem and solution
parameters interact in subtle and complex ways resulting in
nonlinear and discontinuous objective functions and constraints
(e.g., Temporary fragment sizes (La,,, or b,,,) depend on the join
order (See Rho and March [I9971 for detail) .). Therefore, it is
impractical, if not impossible, to develop solution procedures
based on traditional algorithms such as branch and bound.

To address these problems, we use a genetic algorithm-based
solution procedure [Goldberg, 1989; Davis, 199 11. A genetic
algorithm was chosen for several reasons . Firs t , genetic
algorithms work by generat ing a n d evaluat ing complete
solutions. Hence, it is not necessary to represent a solution
space or the interdependencies among problem and solution
components us ing decision var iables as in t radi t ional
optimization methods. Second, genetic algorithms are robust in
that they work well even in discontinuous, multimodal, noisy
search spaces. Genetic algorithm-based solution methods can
easily incorporate very complex and nonlinear cost models such
a s ours. Third, genetic algorithms result not only in a "best"
solution, b u t also in a pool of good solutions. The s e t of

solutions in the final pool provides significant intuition into the
effects of design alternatives. For example, if all solutions in the
final pool store a given file a t a particular node, the designer
would be reasonably confident that it is important to store that
file a t that node.

Our distributed database design algorithm contains a genetic
algorithm within a genetic algorithm. Its basic structure is
adapted from [March and Rho, 19951 and summarized in
Appendix 2. As in tha t work, the outer genetic algorithm
addresses data allocation while the inner genetic algorithm
addresses operation allocation. We augment the gene structure
and offspring generation algorithms to include join order and
semijoin strategies in addition to copy identification and join
node selection. These will be discussed after a brief overview of
the genetic algorithm itself.

The outer algorithm begins by randomly generating a pool of
feasible data allocations. The pool is "seeded" with heuristically
generated solutions, including complete replication of all
fragments a t all nodes and the allocation generated by the "most
beneficial s i tes" heuris t ic [Teorey, 19901. For each d a t a
allocation in the pool, the inner genetic algorithm is used to
determine a good, if not optimal, operation allocation for that
data allocation. The inner genetic algorithm begins by generating
a pool of feasible operation allocations including join order and
data reduction strategies for each query for the given data
allocation. I t then iterates through generations, choosing
operation allocations to be parents and combining them to
produce children operation allocations. The best operation
allocations are maintained in the pool a t each generation to
retain a fixed poolsize. After the specified number of iterations,
the operation allocation with the best performance is selected,
yielding a complete distributed database design including a n
efficient execution plan for each query.

After an efficient operation allocation has been produced for
each data allocation in the initial outer algorithm pool, the outer
algorithm similarly iterates through generations, choosing data
allocations to be parents and combining them to produce
children data allocations. The inner algorithm is executed for
each child data allocation generated by the outer algorithm,
yielding a complete design for it. After the specified number of

A I)c~.r.\ron S~rpr)or-r Tool for tlisrrih~rrecl I,)~lt~rh~l.\e I)e\ig~z 89

iterations, the complete solution with the best performance is
selected and the algorithm terminates. In this way, only feasible
data allocations are considered in the operation allocation
algorithm, and the final solution is the best from among a n
evolving pool of good solutions.

Using outer and inner genetic algorithms can make it easier to
handle the dependency between data allocation and operation
allocation than using a single genetic algorithm representing
both data and operation allocation. As discussed above. the
feasibility of an operation allocation is dependent on the data
allocation - each retrieval operation nu st be allocated to a node
containing the required data. Update operations must be applied
to all copies. I t i s very difficult to enforce these types of
constraints in a single generic algorithm. Furthermore, such a
nested approach allows u s to easily incorporate different
operation allocation models. Such flexibility is desirable in a
distributed database design approach since different distributed
database management systems utilize different query optimizers.

The genetic algorithm is written in C++ and runs in a UNIX
environment. Its run time depends on problern size and on
algorithm paranieters such a s the poolsize and number of
iterations for each algorithm.

In the res t of th is section we briefly describe the gene
structure by which solutions are represented and the offspring
generation processes used to search the solution space. Details
of the algorithm are presented in Rho [1995]. Specifically we
define a two-tiered gene structure. The first tier represents the
data allocation. I t corresponds directly to the decision variables
represented by copy(i. t). The second tier consists of four parts,
each representing one of the four types of decisions in our
operation allocation model: (1) copy identification, (2) beneficial
semijoin identification, (3) join order, and (4) join node selection.
March and Kho (19953 propose a similar gene s t ruc ture ,
however, they include only parts (1) and (4) since they do not
consider semijoins or join order. Figure 4 shows the complete
representation of a complete distributed database design
solution for the sample problem. Each part of the representation
is discussed below.

The data allocation is represented by sets of n bits, one set for
each fragment, where n is the number of nodes in the network.

90 Seoul Joilrnal of Business

a. Data Allocation Gene Representation for the Outer Genetic Algorithm

Fragment 1 Fragment Allocation 1

Customer 3

Customer 1

Customer 2

11 10

1010

Account 3

Account 1

Account 2

11 10

0010

Transaction 1

Transaction 2

b. Operation Allocation Gene Representation for the Inner Genetic
Algorithm

0100

0010

Transaction 3 000 1

Query

R1.3

R2.1

R2.1

R2.1

R2.2

R2.2

R2.2

R2.3

R2.3

R3.1

R3.1

R3.2

Figure 4. An Example Solution Representation for the Genetic
Algorithm

Origination
Node

R3.2

R3.3

Region 3

HQ
Region 1

Region 2

HQ
Region 1

Region 2

HQ

Region 3

HQ

Region 1

HQ

Copy Id.

Region 2

Region 3

0 1 1

0 0

1 1

2 2

0 2

2 2

2 2

0 3

3 3

0

1

0

2

3

Semi-join

01 00

00

00

00

10

00

00

01

00

Join Order Join Node

1 2 1 3

0

1

2

0

2

2

0

3

A Decision Support Tool for distributed Database Design 91

A bit has a value of 1 if the corresponding file fragment is
allocated to the corresponding node. It h a s a value of 0
otherwise. Thus, each bit corresponds to copy(i, t). The example
data allocation solution shown in Figure 4.a (1 110 10 10 100 1
11 10 0010 0001 0100 0010 0001) stores Customer 1 a t
Headquarters, Region 1, and Region 2 ; Customer 2 a t
Headquarters and Region 2; Customer 3 at Headquarters and
Region 3; Account 1 Headquarters, Region 1, and Region 2;
Account 2 only a t Region 2; Account 3 only a t Region 3;
Transaction 1 only at Region 1; Transaction 2 only at Region 2;
and Transaction 3 only at Region 3.

The operation allocation for each query is represented by four
sets of vectors corresponding to the four columns, Copy Id,
Semijoin, Join Order and Join Node illustrated in Figure 4.b.
Each row in that figure contains the solution for a single
variation of one of the retrieval queries in Figure 2. For example,
Retrieval Query R1 in Figure 2 requires data from three tables,
Customer, Account, and Transaction. Since there are three
regions, it has three variations based on the selection condition,
Account.br-id = [region]. These are designated Rl .i in Figure 4.b,
where i represents the Account. br -id selection condition. For
example, R1.l has Account.br-id = 1. Thus it requires the
fragments, Customer 1, Account 1, and Transaction 1.

The copy identification vector has a position for each fragment
referenced by a query. Each position holds the node from which
the corresponding fragment is accessed. For example, the copy
identification vector for R1.l has three entries, one for each
fragment. The selected copy identification for this query, when it
originates at Headquarters, is the vector (0 0 l), as illustrated in
the Copy Id column of the corresponding row in Figure 4.b. This
specifies the use of Customer 1 and Account 1 from Region 0
(Headquarters) and Transaction 1 from Region 1. The selected
copy identification for this query when it originates at Region 1,
(1 1 l), uses all three tables from Region 1. When executed from
Region 2, it uses Customer 1 and Account 1 from Headquarters
and Transaction 1 from Region 1 (0 0 1). Copy identification
decisions for the remaining queries are similarly represented.

A pair of bits represents each semijoin decision, one bit for
each fragment in the join. The first bit represents a(k, m), the
second represents b(k, m). The bit corresponding to the reducer

fragment is set to 1 . Hence, the hit pair 10 represents a(k, m)
reduces b(k, nl) and the pair 01 represents b(k, m) reduces a(k,
m). The bit pair 00 represents the decision not to use semijoins.
The bit pair 11 is not legal. For example, Query R. 1 (Figure 2)
specifies two joins, (Customer join Account) and (Account join
Transaction), extracted from the join specification Customer join
Account join Transaction. Hence i t needs two bit pairs to
represent its semijoin strategy. The selected sernijoin strategy for
this query. selecting accounts in Region 1, R 1 . l , and originating
a t Headquarters is the vector of' bit pairs (00 lo) , a s illustrated
in the Semijoin column of the corresponding row in Figure 4.b.
This specifies the use of the semijoin Account 1 reduces
Transaction 1. A semijoin is not used for the other join (it is
performed at the queiy origination node). Semijoins are not used
for this query when exec~lted from Region 1 since all data
needed are located a t that region. Hence, its semijoin strategy is
represented as (00 00).

Join order decisions are represented a s a list of joins, where
the sequence indicates the order in which joins are performed.
The join o rder decision for query R1.1 originat ing a t
Headquarters is the list (1 2) shown in the Join Order Column of
Figure 4.b. I t specifies that the join between Customer 1 and
Account 1 , the first join listed in the query definition, is

performed first and the join with Transaction 1, the second join
listed in the query.

Join node decisions are represented by a vector with a position
for each join in the query. Each position corresponds to a join
step of the qllery and contains the node a t which the join is

performed. The join node decision for query- R1.l originating a t
Headquarters, the vector (0 0) in the <Join Node colun-rn of Figure
4.b, specifies that both joins are performed at Headquarters.

Our genetic algorithm generates new solutions via standard
genetic operators, constrained to ensure feasibility. Uniform
crossover [Davis, 199 1 ; Syswerda, 19891 and mutation are used
for data allocation, beneficial semijoin identification, and join
node selection. In uniform crossover, child genes are randomly
selected from each parent. For example, consider the following
data allocation solutio~ls for the exanlple Customer, Account,
Transaction database:

A Decisio~l S~tpport Tool for distributed Database Design

Both solutions have the fragment Clustomer 1 stored a t nodes
1, 2 and 3 . Neither have it stored at node 4. In uniform
crossover, all of children solutions from these parents will also
have this fragment stored at nodes 1, 2 and 3. None will have it
a t node 4. Similarly, both parents have the fragment Customer 2
stored at node 1, but only the second parent has that fragment
stored a t node 2 and only the first parent has it stored at node
3. Neither have it stored at node 4. A,gain, in uniform crossover,
all their children would have that fragment at node 1. They
would have a .5 probability of having it at nodes 2 and 3. None
would have it a t node 4.

Uniform crossover is not viable for join order as it is very likely
to generate children representing infeasible solutions. Therefore,
we employ a unrorm order crossover operator [Davis, 19911 for
join order. In a uniform order crossover operator, gene positions
for which a child will inherit values from the first parent are
randomly determined. Values for the rest of the gene positions
are determined based on the gene value order in the second
parent, thus child solutions are always feasible. To illustrate
how a uniform order crossover operator works, consider the
following two join order solutions for a four join query:

In the first solution, join 2 is done first followed by joins 1, 3,
and 4. Recall that the join number is specified in the statement
of the query; joins can be performed in any sequence. In the
second solution, join 1 is done first followed by joins 3, 4, and 2.
When join order is generated for a child solution, gene positions
from the first parent a r e randomly determined, i.e., t h e
probability that a position is selected from the first parent is .5.
Suppose that the second and fourth gene positions are selected
from the first parent. We then have the following partial solution:
- 1 - 4. Joins 2 and 3 are unspecified. In the second parent join
3 precedes join 2, thus the child join order would be 3 1 2 4. A
second, complementary child could be generated with the

opposite selections. It would inherit 2 - 3 - from the first parent.
Thus it would be 2 1 3 4.

Standard mutation operators frequently generate infeasible
solutions for this type of representation since a s tandard
mutation operator changes one gene in the solution. Thus
inversion i s used in s t ead of mu ta t ion to incorporate
randomness. Inversion generates a new solution by reversing the
gene order of a n existing solution. Under inversion two cut
points a r e chosen a t random a n d a child i s produced by
switching the end points of the middle segment. To illustrate
how an inversion operator works, consider the first join order
representation above, 2 1 3 4. Suppose that the point between
the first and second genes and that between the third and last
genes are chosen a s cut points. The order of the two joins
between the cut points is reversed from 1, 3 to 3, 1, thus the
child join order would be 2 3 1 4.

To get a sense of how solution is represented and how its cost
is calculated, consider again a three- table, two-j oin retrieval
query, similar to R1, specified as,

SELECT Custorner.c-id, c-name, c-address, c-city, c-
s ta te , c-zip, Account.acc-no, s-balance, c-
balance, period-interest, ytd-interest, t-id, t-
type, amount, t-date

FROM Customer, Account, Transaction
WHERE Cust0mer.c-id = Acc0unt.c-id
AND Account.acc-no = Transact i0n.a~~-no
AND c-city = 'Minneapolis'
AND t-date 2 '12/ 1 /99' AND t-date 2 '12/3 1 /99';

One possible query execution plan for s u c h a query i s
illustrated in Figure 3a. Designating the query origination node
as node 0 and the other nodes for the tables used, the gene
structure for that solution is,

Where Customer is table 1, retrieved from node 1, Account is
table 2 , retrieved from node 2, and Transaction is table 3,

Join Node

1 0

Join Order

1 2
Copy Id

1 2 3

Semi-join

10 00

A Decision Support Tool for distributed Database Design 95

retrieved from node 3. The join of Customer and Account is
performed first, at node 1, using a semijoin with Customer as
the reducer and Account a s the reducee. The join with
Transaction is performed second a t node 0 , the query
origination and result node.

Consider the cost components of this query execution plan.
First, messages must be sent from node 0 to nodes 1, 2 and 3
requesting the needed data (query steps 1, 2 and 3). As
described in Appendix 1, the communication cost of these
message steps is simply 0 * (G, + G, + G,) where Ln is the size of
a message and c, is the unit cost of communication from node t
to node p. The CPU costs of these messages is (3 * So) * po + R, *
p, + R, * p2 + R3 * p3 where St is the CPU time required to send a
message from node t, Rt is the CPU time required to receive a
message at node t and p, is the cost of CPU time at node t.

Next the selection/projection operations and the join
operations must be performed. Selection and projection
operations reduce the size of the target tables by applying the
specified query selection and projection criteria to the
appropriate tables. Join operations combine the reduced tables,
perhaps using semijoins to further reduce the size of one of the
tables.

The above query, has three selection/projection operations
corresponding to query steps 4, 5, and 6. They are defined by
the following subqueries:

(4) SELECT c-id, c-name, c-address, c-city, c-state, c-zip,
FROM Customer
WHERE c-city = 'Minneapolis';

(5) SELECT c-id, acc-no, s-balance, c-balance, period-
interest, ytd-interest

FROM Account

(6) SELECT acc-no, t-id, t-type, amount, t-date
FROM Transaction
WHERE t-date2'12/1/99'ANDt-dateZ612/31/99';

Each reduces the size of the table to be used in further
operations. In this example, only relevant Customer and

Transaction rows are selected (c-city = 'Minneapolis' and t-date
2 '12/ 1 /99' AND t-date 5 '12/3 1 /99', respectively). All rows
are selected from the Account table. Only relevant attributes are
projected from each table.

The cost of selection/projection steps depends on the local
database designs. If indexes exist on the selection criteria (c-city
in the Customer table and t-date in the Transaction table) these
can be used to minimize the local processing costs. Otherwise,
the tables must be scanned. The I 0 costs for these steps are
designated, D,,, * d,, Dk5, * d,, D,, * d,, where k is the query
designator, assumed to be the current query, D,,,, is the number
of I 0 operations required to perform the select/project operation
for step rn of query k a t node t and d, is the cost per I 0 operation
a t node t. CPU costs are similarly calculated. Again, both depend
on the local database designs, particularly indexing schemes
a n d local query optimization strategies. Details of the i r
calculations for various database design options are discussed
in [Rho, 19951.

Finally, there are two join operations, Customer Join Account
corresponding to query step 7 and Account join Transaction
corresponding to query step 8. Since Customer is used in a
semijoin to reduce Account, the unique c-id values from the
selected Customer rows, i.e., those in Minneapolis must be
projected from that table. This can be done in the selection /
projection step. Call the result table, RedCustIDs (Reduced
Customer Identifiers). For the join operation to proceed, this
result table must be sent to node 2 at a cost of Size(RedCust1Ds)
* c,,, where Size(T) is the number characters in the table T. There
it is used to select rows from the Account table that have a c-id
value equal to one of those sent. That is, it executes the join

query,

SELECT Acc0unt.c-id, acc-no, s -balance , c-balance,
period-interest, ytd-interest

FROM RedCustIDs, Account
WHERE RedCust1Ds.c-id = Acc0unt.c-id;

Call the result of this join query, RedAccount (Reduced
Account). The cost of producing this result depends on the local
database design. Call it. CostRedAccount. This table is sent back

A Decision Support Tool for distributed Database Design 97

to node 1 a t a cost of Size(RedAccount) * c,,. There it is joined
with the Customer table as follows,

SELECT Cust0mer.c-id, c-name, c-address, c-city, c-state,
c-zip, acc-no, s -balance , c-balance, period-
interest, ytd-interest

FROM Customer, RedAccount
WHERE Customer. c-id = RedAccount. c-id

Call the result of this query JoinCustAcc (Joined Customer
and Account). Again, the cost of producing it depends on the
local database design. Call it CostJoinCustAcc. This table is sent
to node 0 at a cost of Size(JoinCustAcc) * c,,. There it is joined
with ResTrans (Restricted Transact ion) , the resul t of the
selection/projection operation performed on the Transaction
table in query step 6. ResTrans contains the columns acc-no, t-
id, t-type, amount, t-date from the Transaction table whose t-
date attribute is between '12/ 1 /99' and '12/3 1 /99' inclusive.
The cost to produce it was discussed above. It was sent to node
0 at a cost of Size(RedTrans) * c,,.

Hence, the overall cost of this query is given by the sum of
communication and local processing costs for messages,
selection/projection operations, and join operations. The
expressions used to calculate these costs depend on the order in
which the operations are performed, the size of the intermediate
r e su l t s (which depends partially on t h e order i n which
operations are performed and the data reduction by semijoin
strategy), the local database designs, and network and node
costing parameters.

IV. An Evaluation of Solution Components

In this section we discuss the effects of data replication, join
order, and data reduction by semijoin on distributed database
design solutions. The sample problem used in this section has
four relations: Salesperson, Customer, Order, and Product; and
ten types of retrieval queries and five types of update queries
executed with varying frequencies and selection criteria at
different nodes. We used the problem parameters in Table 1. We

Table 1. Cost Structure
-- -

Cost Component Capacity Cost

Link 5 Kbytes/sec $2.OO/Mbytes
Disk I 0 400 TOs/sec $2.50/M 10s

CPU 2u MIPS $0.00005/MIPS
Storage 1 Gbytes $1 O.OO/Mbytes/month

conclude that each can have significant effects on the overall
operating cost of a distributed database system. However, their
effects a re interdependent and different strategies a re
appropriate under different conditions. There are no simple
rules of thumb. Hence, it is important for a distributed database
design approach to consider their joint effects if it is to produce
efficient solutions.

In a series of experiments discussed in detail elsewhere [Rho
and March, 19951, we observe that replication alone is extremely
effective for retrieval intensive environments when the
proportion of rows required from any table in a query is "high."
This corresponds to an operational reporting system where
management requires detailed reports. In this environment
(Figure 5.a) replication alone improved performance by nearly 60
percent over the base case (single copy, fixed join order, no data
reduction). Join order and data reduction by semijoin yielded
virtually no incremental performance improvement over
replication alone. When replication was not considered, join
order selection and data reduction by semijoin, in combination,
yielded only a 33 percent performance improvement over the
base case. Clearly replication dominates in such an operating
environment.

This is reasonable since replication gains its efficiencies by
storing copies of data wherever they are used. It thus reduces or
even eliminates communication for retrieval processing, but
increases update and storage costs. In a retrieval intensive
environment, update costs are minimal and data storage costs
are typically dominated by retrieval costs. Data reduction by
semijoin only marginally improves performance since with high

1) Although it would be difficult to know all the queries in advance, we argue
that a small number of known queries account for most of the query
processing requirements in practice.

A Decision Support Tool for distributed Datubase Design

a. Retrieval Intensive Environment with High Proportion Selected

1 Without Replication With Replication 1
Improvement Cost 1 Improvement 1

over Base Case ($) I over Base Case 1

b. Update Intensive Environment with Low Proportion Selected

Join Order
and Semijoins

1 Without Replication 1 With Replication /

over Base Case over Base Case

7498

1 Base Case 4834 0.0% / 4245 1 12.2%

1 'Oin Order 1 2840 1 41.3% 1 2836 1 41.3% 1
and Semijoins

32.8%

c. Mixed Retrieval and Update Environment with High Proportion
Selected

4508

Base Case / 9650 1 0.0% / 6838 / 29.1% I

59.6%

--

d. Mixed Retrieval and Update Environment with Low Proportion
Selected

Join Order
and Semij oins

With Replication

cost F m e n t
($) over Base Case

Without Replication

Cost
($)

732 1

Without Replication

Cost I Improvement

Join Order
and Semijoins

1 3676 1

Improvement
over Base Case

With Replication

Cost Improvement

Base Case

Figure 5. Relative Performance Improvements of Replication and
Sophisticated Operation Allocation Strategies

24.1%

($)

7269

6274 35.0%

over Base Case

0.0%

($)

4549

over Base Case

17.1%

proportions of tables selected, there is little to reduce. Join order
can still be important, but only to reduce local processing costs.
In the extreme case when there are no updates and data storage
is relatively inexpensive, self-contained nodes, i.e., nodes that
contain a copy of all data needed a t that node, are, in fact,
optimal and distribution of operation allocation is irrelevant.

The opposite is true in update intensive environments when
the proportion of rows required from any table in a query is
"low." This corresponds to a transaction system with exception
reporting only (very small subset retrieval). In this environment
(Figure 5.b) join order selection and data reduction by semijoin
without replication improved performance by 41 percent over
the base case (single copy, fixed join order, no data reduction).
Replication yielded virtually no incremental performance
improvement over join order selection and data reduction by
semijoin alone. When join order selection and data reduction by
semijoin were not considered, replication yielded only a 12
percent performance improvement over the base case. Clearly
join order selection and data reduction by semijoin dominate in
such an operating environment.

Again, this is reasonable since join order selection and data
reduct ion by semijoin c a n reduce d a t a t ransmiss ion
requirements for both retrievals and updates, while replication
reduces data transmission requirements for retrievals bu t
increases it, and local processing costs, for updates.

Mixed retrieval and update environments show similar results.
Replication is more effective when retrieval queries require a
high proportion of rows (Figure 5.c). Jo in order and da ta
reduction by semijoin are more effective when retrieval queries
require a low proportion of rows (Figure 5.d). Of course, all of
these performance improvements are problem dependent. In
practice, what constitutes a "high" or "low" selectivity is difficult
to determine and depends on operating and costing parameters
such as network, CPU, and I 0 speeds and costs. This is the
benefit of a n algorithmic approach to distributed database
design - the algorithm determines the values of "low" and
"high" for each design environment and assesses the tradeoffs
between replication and sophisticated operation allocation
strategies.

Challenging distributed database design problems are rarely a t

A Decision Support Tool for distributed Database Design 101

the extremes where it is easy to characterize retrieval and
update frequencies and retrieval proportions as "high" or "low."
In those cases simple rules-of-thumb, such as, "replicate when
update frequency is low and retrieval proportions are high" and
"use semijoins when update frequency is high and retrieval
proportions are low" are sufficient for reasonable performance.
The challenge occurs when there is an arbitrary mix of retrieval
and update activities that must be efficiently supported. In such
situations the designer must evaluate the tradeoffs between
replication and the various operation allocation strategies for
each query. Here automated tools such a s described in this
paper become valuable design aids.

To be effective over the widest range of problems, a distributed
database design model must include both replication and a
comprehensive set of operation allocation strategies including
join order a n d d a t a reduction by semijoin. In t h a t way
replication can be selected when it is efficient, and appropriate
processing strategies can be used to determine a globally
efficient design.

V. Summary and Future Research

We present a comprehensive distributed database design
approach that treats data allocation and operating strategies in
a n integrated manner. Our model integrates and extends
existing models of distributed database design. It includes data
replication, a concurrency control mechanism, data reduction by
semijoin, join node selection, and join ordering, aspects of
distributed database design that are typically treated in isolation
in prior work. Our solution procedure uses a nested genetic
algorithm developed to solve this problem formulation. It
extends both the gene structure and offspring generation
components of prior algorithms. It i s implemented in a
workstation environment and solves realistic problems in a
reasonable amount of computer time.

Using variations of an example problem, we demonstrate that
replication, join node selection, reduction by semijoin and join
order selection can each have a significant impact on the
efficiency of a distributed database system. Replication is more

effective for retrieval intensive environments when a high
proportion of rows are retrieved. Join node selection, join order,
and reduction by semijoin are more effective for update intensive
environments when a low proportion of rows are retrieved. When
the user activities cannot be simply classified a s retrieval
intensive or update intensive, both replication and sophisticated
operation allocation strategies contribute to the efficiency of the
design. Hence we conclude t h a t , to be most effective, a
distributed database design tool is needed to support both.

Distributed database design tools such a s ours provide u s
with insights into the effects of different data and operation
allocation strategies under various conditions. Such insights can
be valuable for designers of distributed databases and for
organizations who must purchase or develop a distributed
database management system. If, for example, an application is
known to be update intensive, the designer may decide to avoid
replication. This reduces the complexity of the design process,
greatly simplifying the task. If a majority of applications are
update intensive, the organization may decide to purchase a
DBMS tha t supports a wide range of operation allocation
strategies in its query optimizer rather than one that supports
replication.

There are several areas for future research. First, the effects of
data and operation allocation strategies on the efficiency of
distributed database systems should be further analyzed under
various conditions using real business problems. These include
different types of networks with different performance
parameters such a s wide area networks (WAN), local area
networks (LAN), and asynchronous transfer mode (ATM)
networks and different types of concurrency control mechanisms
such as primary copy 2PL and asynchronous updates such as
store and forward. Second, although simulation was used to
validate the model, it must be evaluated and verified in a more
realistic environment. Selected solutions should be implemented
and their performance measured in real organizational settings.
Third, much work is needed to develop and compare alternative
solution algorithms. Possible candidates include simulated
annealing, partial enumeration techniques, and Lagrangian
relaxation. Finally, the model itself can be extended to be more
realistic. Possible extensions include the modeling of data

A Decision Support Tool for distributed Database Design 103

availability, dynamic system loads, parallel data access and
different processing priorities.

104 Seoul . I o ~ w z (~ l cf B L ~ s ~ I I ~ s . \

Appendix 1. Operating Cost Components

Following Cornell and Yu [I9891 and March and Rho [1995],
the following notation is used.

Problem components:
Nodes = the number of nodes in the network.

C ~ P = the communication cost per character from node t
to node p.

st = unit storage cost a t node t per unit time.
d, = the cost per disk I /O at node t.

Pt = the CPU processing cost per unit a t node t.
LC = the size of file fragment i in characters.
LiM = the size of a message.

j k) = the frequency of execution of query k per unit time.
a(k, m) = the file fragment used by step m of query k.
b(k, m) = the second file fragment used by step m of query k

for combine-fragment s teps s u c h a s join and
union.

orig(k) = the origination node of query k.

The size of each file fragment, L,, is calculated from the
problem description parameters. The size of each temporary file
is estimated from the selection and projection conditions,
semijoin and join operations that produces it (see, e.g., Gardy
and Peuch [19891).

Solution components:
copy(i, t) = 1 if fragment i is stored a t node t, otherwise it is

0.
op-a(k, m, t) = 1 if the file fragment copy used by step m of

query k is located a t node t, otherwise it is 0.
op-b(k, m, t) = 1 if the second file fragment copy used by step

m of query k for combine-fragment s teps is
located a t node t, otherwise it is 0.

node(k, m, t) = 1 if step m of query k is performed at node t,
otherwise it is 0.

red-a(k, m) = 1 if a(k, m) reduces b(k, m), otherwise it is 0.
red-b(k, m) = 1 if b(k, m) reduces a(k, m), otherwise it is 0.

A Decision Si~pport Go1 j?)r distrihutrd Datuhn.re llesign 105

Join order is represented in the gene structure used in our
genetic algorithm. I t is difficult to represent this solution
component using traditional decision variables.

For message steps of retrievals,

H(k, m, t, p) = 0 if t = orig(k)
H(k, m, t, p) = * op-a(k, m, p) otherwise

For join s teps of base fragments when data reduction by
semijoin is not used,

For joins of intermediate results and when semijoin strategies
a r e used , the calculation of H(k, m, t, p) is algorithmic,
depending on the join order and the semijoin strategy. It is
presented in [Rho, 19951.

For send-message steps of updates (lock request, send update,
release lock operations),

H(k, m, t , p) = 0 if t = orig(k)
H(k, m, t, p) = Lizf * cop y(a(k, m) , p) otherwise

For receive-message s teps of updates (lock confirmation,
update confirmation operations),

H(k, m, t, p) = 0 if t = orig(k)
H(k, m, t, p) = Dr * copy(a(k, m), p) otherwise.
IO(k, m) = C O(k, m, t) d,

I

For selection and projection steps,

106 S e o ~ ~ l Journal qf Business

where Dknlt is the number of disk I/Os required to process step m
of query k a t node t.

For join steps,

O(k, m, t) = (F , , n , t * op-a(k, m, t) + FbIk.,, * op-b(k, m, t)) * (1 -
node(kl m, 0) + (D,,, + E,,,,, * (1 - op-a(k, m, t)) +
EM,,, * (1 - op-b(k, m, t))) * node(k, m, t)

where F,,,, is the number of additional disk accesses needed at
node t in order to send a(k, m) from node t to another node after
having retrieved it and E,,,,,,,, is the number of disk access
required to receive and store a(k, m) at node t. Expressions to
evaluate Dkrnt, F a , k , r n , t , F b (k n,,,, Ea(k,mlt a n d Eb(k.rn,t depend o n t h e
reduction strategy selected for this query step, represented in
red-a(k, m) and red-b(k, m), and on join order and reduction
strategies selected for prior query steps. Detailed expressions for
these are presented in [Rho, 19951.

For update requests,

For message steps,

U(k, m, t) = St * (1 - op-a(k, m, t)) if t = orig(k)
U(k, m, t) = Rt * op-a(k, m, t) if t # orig(k)

where St and R, are the expected CPU units required to send and
receive a message.

For selection and projection steps,

where W,,,, is the number of CPU units required to process step
m of query k at node t.

For join steps,

* U(kl m, t)=(c(k ,m, t op-a(k, m, t) + E,,,,,, * op-b(k, m, t)) * (1 -
node(k, m, t)) + (W,,, + ELlk,,, * (1 - op-a(k, m, t)) + G

A Decision Support Tool for distributed Database Design

where E (, , , and &,,,, are the number of CPU operations required
to send and receive a(k, m) from and to node t, respectively.
Expressions to evaluate Wkrnt, c,,,, g, , , , Ed,,, and depend
on the reduction strategy selected for th i s query s tep ,
represented in red-a(k, m) and red-b(k, m), and on join order
and reduction strategies selected for prior query steps. Detailed
expressions for these are presented in [Rho, 19951.

For send-message steps of updates (lock request, send update,
release lock operations),

For receive-message steps of updates (lock confirmation,
update confirmation operations),

For update steps,

Appendix 2. A Nested Genetic Algorithm For
Distributed Database Design

Outer Genetic Algorithm:

1. Generate initial pool of solutions:
1.a. Randomly generate a feasible data allocation (to be

feasible, each file (fragment) must be allocated to at
least one node),

1.b. Use the (inner) operation allocation genetic algorithm
(see below) to allocate operations for th is da ta
allocation, thus producing a complete solution for this

data allocation,
1.c. Evaluate the cost of this solution,
1.d. Repeat until the initial solution pool is generated.

2. Iterate through successive generations:
2.a. Probabilistically select two parent solutions from the

solution pool,
2.b. Produce a new data allocation (child) by applying

crossover or mutation,
2. c. Use the (inner) operation allocation genetic algorithm

(see below) to allocate operat ions for th i s d a t a
allocation (child), thus producing a complete solution
for this data allocation,

2.d. Evaluate the cost of this solution,
2.e. If the new solution is better than the worst solution in

the solution pool, add it to the pool and remove the
worst solution,

2.f. Repeat for N generations, where N is a maximum
number of iterations.

Inner Genetic Algorithm:

3. Generate initial pool of operation allocations:
3.a. Randomly generate a feasible operation allocation for

the given data allocation (to be feasible, all retrieval
operations must be assigned to nodes a t which the
required data is stored),

3.b. Evaluate the cost of this solution,
3.c. Repeat until the initial operation allocation pool is

generated.
4. Iterate through successive generations:

4.a. Probabilistically select two parent solutions from the
operation allocation pool,

4.b. Produce a new operation allocation (child) by applying
crossover or mutation,

4.c. Evaluate the cost of this solution,
4.d. If the new solution is better than the worst in the

operation allocation pool, add it and remove the worst,
4.e. Repeat for M generations, where M is a maximum

number of iterations.

A Decision Support Tool for distributed Database Design

References

Apers, P. M. G., "Data Allocation in Distributed Database Systems,"
ACM Transactions on Database Systems, Vol. 13, No. 3, September
1988, pp. 263-304.

Apers, P. M. G., Hevner, A. R., and Yao, S. B., "Optimization Algorithms
for Dis t r ibuted Quer ies ," IEEE Transactions on Software
Engineering, Vol. SE-9, No. 1, January 1983, pp. 57-68.

Bernstein, P. A. and Chiu, D. W., "Using Semi-Joins to Solve Relational
Queries," Journal of the ACM, Vol. 28, No. 1, Januaiy 198 1, pp. 25-
40.

Bernstein, P. A. and Goodman, N., "Concurrency Control in Distributed
Database Systems," ACM Computing Surveys, Vol. 13, No. 2, June
1981, pp. 185-222.

Blankinship, R., Hevner, A. R., and Yao, S. B., "An Iterative Method for
Distr ibuted Database Optimization," Data and Knowledge
Engineering, (21), 1997, pp. 1-30.

Brancheau, J . C., J anz , B. D., & Wetherbe, J. C., "Key Issues in
Information Systems Management: 1994-95 SIM Delphi Results,"
MIS Quarterly, vol. 20, no. 2, pp. 225-42, 1996.

Ceri, S., Pernici, B., and Wiederhold, G., "Distributed Database Design
Methodologies," Proceedings of the IEEE, Vol. 75, No. 5, May 1987,
pp. 533-546.

Cornell, D. W. and Yu, P. S., "On Optimal Site Assignment for Relations
in the Distributed Database Environment," IEEE Transactions on
Software Engineering, Vol. 15, No. 8, August 1989, pp. 1004- 1009.

Davis, L., ed., Handbook of Genetic Algorithms, Van Nostrand Reinhold,
New York, 199 1.

Dowdy, L. W. a n d Foster,D. V., "Comparative Models of the File
Assignment Problem," ACM Computing Surveys, Vol. 14, No. 2,
June 1982, pp. 287-3 14.

Eswaran, K. P., "Placement of Records in a File and File Allocation in a
Computer Network," in Information Processing '74, Stockholm,
1974, pp. 304-307.

Epstein, R., Stonebraker, M., and Wong, E., "Query Processing in a
Distributed Relational Database System," Proceedings of ACM
SIGMOD, Austin, T X , May 1978.

Gardy, D. and Puech, C., "On the Effects of Join Operations on Relation
Sizes," ACM Transactions on Database Systems, Vol. 14, No. 4,
December 1989, pp. 574-603.

Gavish, B. and Sheng, 0 . R. L., "Dynamic File Migration in Distributed

Sroiil Journal of Bu.sinc~.s.\

Computer Systems," Communications of the ACM, Vol. 33, No. 2.,
February 1990, pp. 177-189.

Goldberg, D. E., Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

Hevner, A. R., The Optimization of Query Processing on Distributed
Database Systems, Ph.D. Thesis, Purdue University, 1979.

Hevner, A. R. and Yao, S. B., "Query Processing in Distributed Database
Systems," IEEE Transactions on Software Engineering, Vol. SE-5,
No. 3, May 1979, pp. 177-187.

Johansson, J. M., "Impact of High-Speed Wide Area Network Response
Time Dynamics on Distributed Database Design," PhD dissertation
in Information and Decision Sciences Dept. Minneapolis: University
of Minnesota, 1999.

Kleinrock, L., Queuing Systems: Theory, John Wiley & Sons, 1975.
Lee, H. and Sheng, 0 . R. L., "A Multiple Criteria Model for the Allocation

of Data Files in a Distributed Information Systems," Computers and
Operations Research, Vol. 2 1, 1992, pp. 2 1-33.

Lohman, G. M., Mohan, C., Haas, L. M., Daniels, D., Lindsay, B. G.,
Selinger, P. G.. and Wilms, P.F., "Query Processing in R*," in Kim,
W. et al. (eds.) Query Processing in Database Systems, Spring-
Verlag, Berlin, 1985, pp. 31-47.

March, S. T. and Rho, S., "Allocating Data and Operations to Nodes in
Distributed Database Design," IEEE Transactions on Knowledge
and Data Engineering, Vol. 7, No. 2, April 1995, pp. 305-317.

Mishra, P. and Eich, M. H., "Join Processing in Relational Databases,"
ACM Computing Surveys, Vol. 24, No. 1. March 1992, pp. 63- 1 13.

Ozsu, M. and Valduriez, P., "Distributed Database Systems: Where Are
We Now?" IEEE Computer, August 1991a, pp. 68-78.

Ozsu, M. and Valduriez, P., Principles of Distributed Database Systems,
Prentice-Hall, Inc., Englewood Cliffs, N J , 199 1 b.

Ram, S. a n d Marsten, R. E. , "A Model for Database Allocation
Incorporat ing a Concurrency Control Mechanism," IEEE
Transactions on Knowledge and Data Engineering, Vol. 3, 199 1, pp.
389-395.

Ram, S. and Narasimhan, S., "Allocation of Databases in a Distributed
Database System," Proceedings of the 1 1 th International Conference
on Information Systems, December 1990, pp. 2 15-230.

Ram, S. and Narasimhan, S., "Database Allocation in a Distributed
Environment: Incorporating a Concurrency Control Mechanism
and Queuing Costs," Management Science, Vol. 40, No. 8, August
1994, pp. 969-983.

Rho, S., Distributed Database Design: Allocation o f Data and Operations
to Nodes in Distributed Database Systems, Unpublished Ph.D.

A Decision Support Tool for distributed Database Design 111

Thesis, University of Minnesota, May 1995.
Rho, S. and March, S. T. "Designing Distributed Database Systems for

Efficient Operation," Proceedings of the 16th International
Conference on Information Systems, December 1995, pp. 237-253.

Rho, S. and March, S. T., "Optimizing Distributed Join Queries: A
Genetic Algorithm Approach," Annals of Operations Research, Vol.
71, 1997, pp. 199-228.

Ricciuti, M., "DBMS Vendors Chase Sybase for Client/Server,"
Datamation, Vol. 39, July 1, 1993, pp. 27-28.

Richter, J., "Distributing Data," Byte, June 1994, pp. 139- 148.
Syswerda, G., "Uniform Crossover in Genetic Algorithm," Proceedings of

the 3rd International Conference on Genetic Algorithms, 1989, pp. 2-
9.

The, L., "Distribute Data Without Choking the Net," Datamation, Vol.
40, January 7, 1994, pp. 35-36.

Teorey, T. J., Database Modeling and Design, Morgan Kaufmann, San
Mateo, CA, 1990.

Yoo, H. and Lafortune, S., "An Intelligent Search Method for Query
Optimization by Semij oins, " IEEE Transactions on Know ledge and
Data Engineering, Vol. 1, No. 2, June 1989, pp. 226-237.

Yu, C. T. and Chang, C. C., "Distributed Query Processing," ACM
Computing Surveys, Vol. 16, No. 4, December 1984, pp. 399-433.

