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Abstract

Indoor Localization Method Using
UWB Trilateration and
WiF1 Fingerprinting in Mixed
LOS/NLOS Environment

Song Woong Sup

Department of Computer Science and Engineering
The Graduate School

Seoul National University

Recently, indoor localization draws a lot of attention. Application examples of
indoor localization are smart factories, smart homes, etc., which are used for
user convenience or safety. Among several indoor localization technologies, the
indoor localization technology based on UWB ranging is receiving great interest
due to its high accuracy. However, in the case of UWB ranging, the indoor
localization error increases as the ranging error increases in the
Non-Line-of-Sight (NLOS) situation where obstacles exist. In order to improve
the localization accuracy in mixed environment of LOS / NLOS, we propose a
new positioning method that combines the UWB ranging-based localization
method and WiFi fingerprinting method. The proposed method reduces the
average and the worst localization error by utilizing the strengths of the
existing UWDB ranging-based localization method and WiFi fingerprinting
method. To calculate the localization error, the experiment is divided into two
environments where LOS is relatively well maintained and an environment that
is not. The localization accuracy of proposed method are compared to that of
existing methods. Experimental results show that the conventional positioning
method, UWB trilateration, has an average positioning error of 0.8m and WiFi
fingerprinting of 1.44m, whereas the proposed method shows a positioning error
of 0.64m. Additionally, the UWB trilateration is 3.7m for the worst positioning
error and 5.83m for WiFi fingerprinting, whereas the proposed method is 2.05m,
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showing that the positioning error has reduced. As a result, the experimental
results show that the proposed method is an effective method to improve
localization accuracy in a mixed LOS/NLOS environment.

keywords : Indoor localization, indoor positioning,
UWB, WikFi, Fingerprinting,
Trilateration, NLOS, LOS

Student Number : 2019-29949
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Chapter 1

Introduction

Recently, indoor positioning has received a lot of interest in various fields.
There are several use cases using indoor positioning information such as patient
tracking in hospitals, factory and logistics automation, indoor navigation for
customers in shopping malls, and emergency situation management such as fire
in smart buildings" ®. In each use case, a different level of localization accuracy
is required, and at most, a localization error of about 2 meters to 10 cm is
required. In this situation, indoor localization methods using various wireless
communication protocols such as WiFi, BLE, RFID, and UWB are used”. WiFi
uses protocols such as 802.11, the channel frequency is 2.4Ghz or 5Ghz, and the
bandwidth of each channel can be 20MHz 80MHz according to the user’'s
desired setting. WiFi fingerprinting is widely used for indoor localization by
characterizing the radio signal with respect to certain position."H!  WiFj
fingerprinting has two phases so called offline phase and online phase. In the
offline phase, the characteristics of the radio signal for a specific location are
stored and made into a database called a radio map. Additionally, in the offline
phase, a learning model such as DNN is trained with the radio map. In the
online phase, the characteristics of the measured radio signal and the radio map
are compared to predict where the radio signal with the most similar
characteristics is measured. Since the WiFi fingerprinting method uses WiFi
APs for communication, there is no additional AP installation cost, so it is
cost-effective and has the advantage of being robust against the influence of
Non-Line-of-Sight(NLOS) by indoor obstacles. The positioning error of WiFi
fingerprinting is within 2m.”™M?  Next, there is a BLE-based proximity
measurement method called iBeacon. Once, the i1Beacon receiving device
calculates the distances to the transmitting devices by calculating the RSS
values, the calculated distances are used by positioning algorithms such as
trilateration. The localization error using iBeacon is about 3 meters o8], However,
if the LOS environment is not maintained, the error of distance measurement
becomes large, resulting in a large positioning error. RFID is another positioning
method. In the case of positioning using RFID, it is cost-effective because RFID

communication equipment is inexpensive, but on the other hand, it has a high
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positioning error of several meters'”. Lastly, there is a positioning method using

the UWB 802.15.4z communication protocol.. In the case of positioning using

UWB, positioning error of about 10cm is shown, which is lower than that using

other communication protocols. In the case of distance measurement using UWB,

there is no interference from other communication media, but the distance
measurement error for people or steel structures increases."”" Therefore, when

UWB 1is used for indoor positioning, there is a problem that the localization

accuracy decreases in a complex structured environment such as a museum or a

factory rather than a general office like environment.

In this paper, we propose an indoor positioning method that combines UWDB

trilateration and WiFi fingerprinting. The proposed method has robustness to

NLOS environment, which is an advantage of WiFi fingerprinting, and high

positioning accuracy, which 1s an advantage of UWB ranging-based trilateration.

Through the experiment, the proposed method showed an effective positioning

method in an environment in which LOS/NLOS are mixed. The main

contributions of this paper are as follows:

* We present a indoor localization method that combines two well known
methods, UWB trilateration and WiFi fingerprinting, for mixed LOS/NLOS
environment.

* The proposed method has improved localization accuracy when it is compared
to traditional trilateration or fingerprinting. We show the experimental results
in real-world environment.

* The proposed method uses typical 4-layer DNN based WiFi fingerprinting to
show the generality of the method. However, we expect that the method
with different communication medium(.e., BLE, RFID) or different learning
model(i.e., CNN, Capsnet) be effective.

After this, this paper is composed as follows. In section 2, we present the

proposed system model.. Next, we explain an overview of the proposed method

and implementation details in section 3. In section 4, we introduce the metric
and experiment environment used in the experiment. In section 5, we analyzes
the results of localization in the previously introduced environment. Finally, we

conclude in section 6.
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Chapter 2

System model

UWB anchor #1 UWB anchor #m

E cee Q ........... & ----- UWB comm.

. Gateway =~ ceeee WiFi comm.
Tag device QOB .correeiiirrrrennnnaes E
- CE—
- Server
«Z» se- «im
WiFi AP #1 WiFi AP #n

Figure. 1. System model

The proposed system model is divided into a part connected using UWB and a
part connected using WiFi. In the case of parts connected by UWB, devices
capable of UWB communication are connected using the 802.15.4z protocol, and
are intended for indoor positioning using UWDB ranging. For the part connected
by WiFi, the 802.11b/g/n 2.4Ghz WiFi protocol is used, and it is intended for
indoor positioning using WiFi fingerprinting.

Each of the devices in the system model 1s as follows. In the case of UWB
anchors, m number of anchors are installed at known locations to perform UWB
ranging to tag, and the measured ranging values are transmitted to the
gateway. Gateway transmits the ranging values received from UWB anchors to
the server. There are n total WiFi APs installed and transmits beacon to tag.
Tag 1s a mobile device -capable of UWB communication and WiFi
communication, such as the Galaxy Note 20, iPhone 11, and iPhone 12, and is
the target of indoor positioning. Tag collects RSS values of beacons transmitted
by WiFi APs and transmits them to the server using WiFi communication. The
server locates the tag using the UWB ranging values and RSS values received

from the gateway and tag.



Chapter 3
Proposed Method

3.1 Overview of proposed method

RSS,.r= (RSS;, ... ,RSS,) Ranging; = (Is_LOS, Ranging;. ..., Ranging;)
! !
| 4-layer DNN I l SVMs l

Trained model
Accuracy per Trained models

reference point

<Offline phase>
<Online phase>

RS. Smeasured Rang i ng_,imeasured

A 4

‘ v
l 4-layer DNN I l SVMs I

Rangings in LOS

No |Rangings|
>2
Yes

Trilateration
with LOS
Rangings

Select one among two
predicted results

Figure. 2. Overview of proposed method

The proposed indoor localization method is divided into three parts. The three
parts are divided into a WiFi fingerprinting part, a UWB trilateration part, and a
selection part that combines two independent positioning methods. The WiFi
fingerprinting part delivers two pieces of information to the selection part. The
first information transmitted from the WiFi fingerprinting part is the accuracy of
prediction for each reference point calculated in the offline phase, to the selection
part. Then, in the online phase, the trained DNN model is used to predict the
position of the tag, and the positioning result is delivered to the selection part

as second information. In the UWB trilateration part, LOS/NLOS classification is

- A2 st



performed for UWB ranging, and trilateration is performed with the ranging
classified by LOS. LOS/NLOS classification uses a support vector machine
(SVM), a type of supervised learning ML model. The format of the value used
for training of the i-th SVM is Rangings; = {Is_LOS, Rangingi, .. , Rangingx}.
When training a total of m SVMs, the target value of each j-th SVM is
Is_LOS and its features are the mean, variance, kurtosis and skewness for k
range values of the j-th anchor and a tag. Next, in the online phase, the
Rangingsjmeasurea 1 used to determine whether the distance between the j-th
anchor and the tag is LOS, and the format of Rangingsjmeasurea is {Rangingi, ... ,
Ranging}. If the Rangingsjmeasurea 1S classified as LOS, the mean value of the
Rangingsjmeasurea 15 determined as the distance between the j-th anchor and tag.
When the number of distances classified as LOS is 3 or more, trilateration is
performed using only distances classified as LOS. Trilateration is not performed
when the number of LOS distance is less than 3. In the last part, the selection
part, the tag is localized with the information collected from the previous two

parts.

3.2 WiFi fingerprinting part of proposed method

Offline phase
Radio map

\ (X1, YD) RSS, RSS, ..., RSS,
\ RSSs at X5 Y,) RSS, RSS, ..., RSS, Learning
every RPs - model
/ (Xres Yres) RSS;, RSS, ..., RSS,

Trained model

AP,

Online phase

k: Trained Predicted
RSSs —_— learning T | coordinate
/ Model

AP,

Figure 3. Online and offline phase of WiFi fingerprinting



WiFi fingerprinting characterizes the radio signal with respect to certain
position. The fingerprinting in the proposed method uses the RSS of beacons
sent by n number of WiFi APs. WiFi fingerprinting is divided into offline phase
and online phase as shown in Figure 3. First, in the offline phase, a radio map
1s constructed by measuring the RSS wvalues of beacons received from APs at
known locations called reference points(RPs). The learning model is trained with
the constructed radio map. The accuracy per reference point is calculated with

trained model and the equation is shown below.

The number of correct prediction
The number of prediction at ome rvef. point

(2. 1)

Accuracy per ref. point =

The accuracy per reference point obtained using the above equation is
transferred to the selection part. In the online phase, the tag measures the RSS
value from APs and sends the measured value to the server. The server
predicts which reference point the tag location will be using the trained learning
model, and the coordinates of the predicted reference point become the tag
location using WiFi fingerprinting. The tag location predicted by WiFi
fingerprinting is also transferred to the selection part like accuracy per reference
point. In this paper, a typical 4-layer DNN used for fingerprinting is used. The
4-layer DNN has 512, 256, 128 and 64 nodes per layer, ReLu is used as the
activation function, and the dropout value is 0.3. DNN is trained using a radio
map where the target value is the index of the reference point, and the feature

is the RSS values measured per reference point.
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3.3 UWB trilateration part of proposed method

Anchor at (X,, Y,)

Location of tag
X, Y)

I

]
Anchor at (X, Yo)

Anchor at (X Yp)

Figure 4. UWB ranging based trilateration

UWB trilateration is an indoor positioning method based on UWB ranging as
shown in Figure 4. The trilateration method uses the distance between the tag
and the anchors installed in fixed locations. Trilateration calculates the position

of the tag by solving the system of equations shown below.

(X —X)*+(Y —Y)? =4
X —X, P +(Y -y, ) =7
(X —X)+(Y -Y)? =r (B 2)

The solution of equation 2 is the intersection of the circles in Figure 4.
Theoretically, it is possible to obtain accurate location of tag by solving the
system of equations above. However, due to the radio wave-based UWB
ranging characteristic, it may be difficult to get an intersected point of circles
due to an error in the ranging value. Therefore, the position of the tag is
calculated by using the Least-square sum(LSS) method. "1 The LSS method

predicts the optimal tag position by using the position of anchors and the
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distance measurement value of the anchors and the tag. The optimal position of

a tag using the LSS method is calculated by solving the following equation.

(»,—np,,)" (P.—P,) = (Dstance,,,)
S(ng) = Z [ (D’sz‘arzc’eﬂm)2 - (Rangingj)z )2
=1
Ptag,optimal = argn]ian S<})tag) <EZI 3)

P; is a coordinate where the j-th anchor is installed, and Py is a coordinate
where the tag can be located. Assuming that the P, is located at an arbitrary
coordinate, the distance between the tag and the j—th anchor can be obtained by
the formula of the Euclidean distance. When the Ranging; is the actually
measured distance between the j-th anchor and the tag, equation 3 can be used
to calculate the sum of the errors between the Euclidean distance and the
measured distance. The LSS method calculates the Py, with the minimum sum
of errors and selects the its position as the position of the tag.

In this paper, trilateration using only the LOS ranging values is called
Filtered_LSS, and the method using both LOS and NLOS of the ranging values
i1s called LSS. Filtered_LSS distinguishes whether the measured ranging value is
LOS using SVM. Ranging value measured by j-th anchor in the offline phase is
Rangings; = {Is_LOS, Ranging;, Ranging», .. Rangingy}, and Is_LOS is set as 1
when k ranging values are LOS and set as O when NLOS. The target of SVM
1s Is_LOS, and mean, variance, skewness, and kurtosis are used from k number
of ranging values. The formulas that calculate skewness and kurtosis are

described in equation 4.

_ H&—p)]
Skewness|X] = AP ) 7
v EX—p)]
Kurtosis| X] = 510 @POLE (Fg. 4)

In the online phase, trained j-th SVM classifies whether Rangings;measureda =
{Ranging;, Rangings, .. Rangingy} is in LOS condition. If the Rangings;measured
1s LOS, the mean value of k ranging values becomes the distance between j—th
anchor and the tag. If there are three or more LOS anchor-tag pairs,

Filtered_LSS is performed with the mean value of ranging value in each pair.
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3.4 Selecting part of proposed method

" Algorithm of Proposed Method

Offline phase

- input : RSS, ., Rangings;

- output : Trained DNN model, Acc. of trained DNN model w.r.t ref. point, Trained SVM models

While DNN_traninging_done = false do
Training DNN model
end while
While SVM_traning_done = false do
Training SVM; for j-th anchor using Rangings;
end while
Calculate accuracy of trained DNN model w.r.t. reference point

Online phase

- inp“lt : RSSmea:weda Rm'gﬁ "gsj,meamrede T threshold
- output : predicted coordinate of tag

- initialize : LOS count « 0, LOS ranging set < @

For each Rangings, ,usureq 40
Is_LOS « SVM, (Rangings; yozsured)
ifIs LOS=1 then
LOS count « LOS_count + 1
LOS ranging set « LOS_ranging_set U Mean(Rangings; messured)
end if
end for
Predicted reference point « Trained DNN_model(RSS,,......s)

if accuracy at predicted reference point > T ,..q OR LOS count is smaller than 3 then
refurn coordinate of predicted reference point
else
UWRB trilateration result « Filtered_LSS{LOS_ranging_set)
return coordinate of UWB trilateration result
end if

Select part chooses between the results of two

Figure 5. Algorithm of proposed method

independent positioning

methods, WiFi fingerprinting and UWB trilateration. There are two pieces of

information to use when making a selection. The first information is the

accuracy per reference point measured after the learning model has trained in

the offline phase of WiFi fingerprinting. In the case of the classification method

using DNN like models, even if it is a single trained model, the classification

accuracy

is different for each class.

WIS Therefore, the —accuracy

of

fingerprinting prediction is different for each reference point. In order to use

only the results of fingerprinting with high accuracy for the final positioning,

the pre-determined threshold and the accuracy per reference point of the



predicted reference point are compared. If accuracy of the predicted reference
point is lower than the threshold, the fingerprinting result is not used for final
positioning. The second information is the number of LOS anchor-tag pairs,
which are classified through SVM. The tag position is calculated using the
Filtered_LSS method when there are 3 or more LOS ranging values. In the
selection part, when the number of LOS ranging values is less than 3 or the
accuracy of the predicted reference point through the trained model is higher
than the threshold value, the positioning result of fingerprinting is selected as
the position of the tag. In other cases, the tag location is determined using the
Filtered_LSS method.
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Chapter 4

Experimental environment

4.1 LOS environment

1, 4, 5, 8
8 32
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Figure 7. The floorplan of 1% case

® Ref
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The experimental environment is divided into an environment in which LOS is

well maintained and an environment in which it is not. Figure 6

shows

environment of the first case where LOS i1s well maintained. This place is the
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entrance to the 2" floor of Seoul National University 302 building, and the size
of the place is 14m x 9m. The place is selected for a place with few obstacles
to simulate a similar office environment. There is a stair in the center of the
experiment site and a few people pass by during the experiment. In Figure 7,
reference points are designated at 1.2m intervals, and the total number of

reference points is 44. Eight UWB anchors are installed across the area.

4.2 NLOS environment

Figure 8. Experimental site in 2™ case
14 4
13 1 *4 Se
® Ref.
121 3 ‘ 3.3 . . . . s e . . . . 045 ® UWB
11 4 ‘6
10 4 * .
g 9 . .
‘E 81 . Stair .
£ 71 . .
g 6
; 5 4 . . 50
4 2 27. . . . . . . . . . . . . 1 5
3¢ O O 7
2 1 * 8 ® 8 & = 8 e = s = = =
14 1 13
_0 b 1 . - 8

-10 12 3 4 5 6 7 8 9 10111213 14 1516 17 18 19
x-axis in meters

Figure 9. The floorplan of 2" case
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The second experimental site is where the LOS is not well maintained. The
place is the lobby on the 1st floor of Seoul National University Building 302 and
the size of the place is 21m x 15m. This is a place that simulates environments
where LOS maintenance is difficult such as factory and warehouse. In the
second experiment, a greater number of people pass by than in 1% environment.
The size of the stairs in the center is larger than the 1% case and ATM
machine and other items are loaded under the stairs. In addition, there are two
concrete pillars size of 0.8m x 0.8m each. There are 50 reference points at 1.2m

intervals and the number of installed UWB anchors is 8.
4.3 Experimental metric

Localization 1is performed 30 times for each reference point in the two
experimental sites and the FEuclidean distance error resulting from the
localization is called the Euclidean distance error per reference point. The mean
value is the average value of Euclidean distance errors for all reference points,
and the variance is the variance of Euclidean distance errors for all reference
points. In the worst case, it refers to the largest value among FEuclidean
distance error value per reference point. The experimental results in different

experimental sites are analyzed using mean, variance and worst value.
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Chapter 5

Experimental Results

5.1 Experimental results in LOS environment

1.0 1

0.8 4

0.6 4

0.4

02+

0.0 1

— LSS5{1,2,7)

— 155(1,2,7.8)

— 155(1,2,3,7.8)
L55(1,2,3,4.5.6.7.8)

0.0

0.2 0.4 0.6 0.8 1.0
CDF of mean Euclidean distance error in meter

Figure 10. CDF of Euclidean error for all RPs when LSS is applied with

different anchor sets in 1% case

Table I. Mean, variance, worst value when LSS is applied with different anchor

sets in 1% case

Anh:::r?:c/lex Mean Variance Worst

(1%3?7) 0.2779 0.0535 1.0438

(15;,3) 0.2099 0.0212 0.7048

(1,2L.§,S7,s) 0.2086 0.0204 0.5995

“ ,2,3,5?:,6,7,8) 0.139 0.0056 0.3939
- 14 -
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0.6
0.4 1
Proposed
(1.2.3,7.8)
H5i — DNN
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0.0 " (1,2,3,7.8)
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CDF of mean Euclidean distance error in meter

Figure 11. CDF of Euclidean error for all RPs when different methods are

applied in 1°' case

Table II. Mean, variance, worst value when different methods are applied in 1%

case
ptrontec|  Mean | variance | wors
argpso;e; 0.2093 0.0508 0.7567
DNN 0.9001 1.6282 5.3198
F'(i:ezresdii'ss)s 0.2216 0.0263 0.6647
(1,2%3,57,3) 0.2086 0.0204 0.5995

In the 1st case environment, two experiments are conducted. Firstly, the
localization accuracy with different number of anchors when using LSS is
shown in Figure 10 and Table I. Figure 10 shows the FEuclidean errors
measured at all reference points in CDF when using LSS for different anchor
sets. Table I shows the mean, variance, and worst value of Euclidean error
values measured at all reference points. From the experimental results, it is
shown that the Euclidean error decreases as the number of anchor increases.
When the use case requires high localization accuracy at the cm level“—”, it 1is
suitable for installing more anchors to obtain better localization accuracy in such

environment. In the second experiment, the positioning accuracy of the different

- 15 - ) _H *: L'.]'| 'tﬂr ITu



positioning methods is compared. The results of 2™ experiment is shown in
Figure 11 and Table II. When the fingerprinting method is executed, the result
shows that mean is 09m, the variance is 1.6m and the worst is 5.3m. The
remaining three positioning methods have similar level of mean and variance
values. When looking at the worst, the error of the propose method increases by
0.1Im compared to the Filtered_ LSS method. When looking at the results of the
experiment conducted in an environment where LOS 1is relatively well
maintained, the three methods proposed, LSS, and Filtered_ LSS are better than
WiFi fingerprinting.

5.2 Experimental results in NLOS environment

1.0 1

0.8 1

0.6 1

0.4 1

0.2 — 155(1,3,7)
—— 155(1,2,7.8)
— 155(1,2,3,6,7,8)

0.0 - 155(1,2,3,4,5,6,7,8)

T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
CDF of mean Euclidean distance error in meter

Figure 12. CDF of Euclidean error for all RPs when LSS is applied with

different anchor sets in 2" case

Table III. Mean, variance, worst value when LSS is applied with different

anchor sets in 2™ case

An'::ﬂ:;??:éex Mean Variance Worst
a3 11196 | 05571 | 32626
(1,&2??,3) 1.1051 0.4002 27177

“ ,2,13?27,3) 0.9055 0.1648 1.9468

(1,2,3,:-5;6,7,8) 0.9956 0.1862 1.8609
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Figure 13. CDF of Euclidean error for all RPs when LSS and Filtered_LSS are

applied in 2™ case

Table IV. Mean, variance, worst value when LSS and Filtered_LSS are applied

in 2" case
Ann::;??:éex Mean Variance Worst
s 0.9956 0.1862 1.8609
(1,2,3,4,5,6,7,8) : : .
Filtered_LSS
1.2345678| 08089 0.2963 3.7024
LSS
(1,2,3,6,7.8) 0.9055 0.1648 1.9468
Filtered_LSS
(1,2,3,6,7.8) 0.7918 03273 34758

According to the experimental results of 1% case, where the LOS was well
maintained, both the LSS method and the Filtered_ LSS method showed high
positioning accuracy. However, as a result of applying both methods in 2" case
where the LOS is not well maintained, there is a limit to the improvement of
positioning accuracy. According to the experimental results of Figure 12 and
Table III, even if the same LSS method as in the 1% case is applied, the mean
value does not improve as the number of installed anchors increases unlike the
1%' case. When the number of anchors installed is 6 to 8, the mean value even
increases. The Filtered_LSS method shows that the mean value is improved

than that of the LSS method, but in the case of worst value, the accuracy

1
T
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decreases very much in Table IV. The reason for the drop in the positioning
accuracy of the Filtered_ LSS method is when the LOS/NLOS classification of
the SVM makes wrong decision. Therefore, according to the positioning results
of LSS and Filtered_LSS, there is a disadvantage that the mean value does not

sufficiently decreases or the worst value increases.

1.0 - —

_(_/——-—'_"
d_—--""f'_'_

0.8 -

0.6 1

0.4 1
Proposed

0.2 1 — (1,2,3,45.6,7.8)

—— DNN

Filtered_LSS

0.0 1 (1,2,3,4,5,6,7,8)

0 1 2 3 4 5 6
CDF of mean Euclidean distance error in meter

Figure 14. CDF of Euclidean error for all RPs when different methods are

applied in 2™ case

Table V. Mean, variance, worst value when different methods are applied in 2™

case
An'\cnf:::"?:éex Mean Variance Worst
(1,:,?2,?2:17,8) 0.6423 0.2532 2.0509
DNN 14402 25482 583
Amered %S| 08089 | 02963 | 37004

—
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Figure 15. Proposed method using differently trained DNNs in 2°¢ case

Table VI. Mean, variance, worst value when proposed method using differently

trained DNN models in 2™ case

Method Mean Variance Worst
Better
trained DNN 1.0656 1.5436 5.0
Proposed
with better 0.4793 0.2003 1.6815
trained DNN
Highly
o o | 0372 04204 2.96
Proposed
with highly 0.2875 0.3344 34
trained DNN

Figures 14 and Table V show the positioning errors of the proposed method,
DNN and Filtered_LSS method in 2 environment. DNN represents the learning
model in WiFi fingerprinting. The proposed method in Table V used the DNN
and Filtered_ LSS methods in the same table. The proposed method has
improved mean value compared to the LSS method in Table IV, the
Filtered_LSS method, and the DNN method in Table V. Worst value is
improved over DNN and Filtered_LSS and becomes similar to LSS. It is shown
that proposed method improves the mean and worst value compared to LSS,
DNN, Filtered_LSS according to the experimental results in both cases. Even if

the proposed method uses a DNN with different positioning capabilities instead,
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the same result is obtained. The better trained DNN in Figures 15 and Table VI
has the same structure as the DNN in Table V. However, it is a model that
improves positioning accuracy by increasing the number of training epochs. In
particular, in the case of highly trained DNN, it is a model in which the number
of epochs is trained until the positioning accuracy is no longer improved, which
means the most ideal training result that can be obtained from a given DNN
structure and data. The higher the positioning performance of the DNN, the
higher the positioning performance with proposed method tends to be improved,
which can be seen in the experimental results in Figure 15 and Table VI. The
reason why the positioning performance of the propose method is improved is
that the fingerprinting method is a classification problem that predicts an
appropriate reference point for the input radio signal. Classification problems
using DNN have different classification accuracy for each class which is
reference point. In the proposed method, only the class with high prediction
accuracy per class i1s used for positioning, so the positioning accuracy 1is
improved. Therefore, the proposed method can be applied even if it has a
different model structure like CNN instead of a DNN structure, or other

communication media such as BLE instead of WiFi are used.
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Chapter 6

Conclusion

Indoor localization has attracted great interest recently. Indoor localization has
various use cases from hospitals, factories, and warehouse environments that
require positioning errors within few meters to smart cities that require cm level
positioning errors. The UWB ranging-based positioning method which has a
high localization accuracy of the order of cm has drawn attention among the
indoor localization methods using various communication media. The positioning
method using UWB ranging has a positioning error of about 10cm in an ideal
situation such as an LOS environment. However, LOS and NLOS environments
are mixed in general indoor environment due to obstacles. Since UWB ranging
error increases as the more obstacles exist, the localization error as increases. In
particular, it 1s difficult to iImprove positioning accuracy by increasing the
number of UWB anchors or by classifying LOS/NLOS of rangings in
environment with large impact of NLOS. Therefore, there is a need for a way
to improve the positioning error in the LOS/NLOS situation. In this paper, we
improved the positioning accuracy in LOS/NLOS environment by using WiFi
fingerprinting method and UWB trilateration. The experimental results shows
that the proposed method improves positioning accuracy in mixed LOS/NLOS
environment. Additionally, the proposed positioning method is expected to be
applicable to a fingerprinting method using other communication protocols (i.e.,
BLE, UWB).
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