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Abstract

Cuffless Blood Pressure Estimation

based on Deep Learning approach:

From Personalization to Generalization

Dongseok Lee
Interdisciplinary Program in Bioengineering

The Graduate School

Seoul National University

Blood pressure (BP) is one of the vital signs that provide fundamental health
information on the heart and cardiovascular system of a patient. An estimated 1.13
billion individuals worldwide have hypertension. It is known as a "silent killer"
because it is a risk factor for various diseases. Regular BP monitoring is important

for diagnosing hypertension and predicting heart disease. Various cuffless blood



pressure estimation methods using physiological signal such as electrocardiogram
and photoplethysmogram have been proposed.

In this study, I developed a cuffless BP estimation algorithm based on the deep
learning approach. In addition, ballistocardiogram (BCG) signal was used to
improve the performance of the model.

First, 1 developed a personalized BP estimation model based on the
convolutional neural network (CNN) with the attention mechanism. CNN is known
to show high performance in image learning. It exhibited the capability to extract
features to estimate BP. In addition, the attention mechanism was used in the model
to strengthen the importance of the feature in specific timesteps. The proposed
model displayed mean absolute error (MAE) values of 4.06 mmHg and 3.33
mmHg for systolic BP and diastolic BP estimation, respectively.

Second, I investigated a generalized BP estimation model without the
intermittent BP calibration. The calibration process is required to improve the
accuracy of BP estimation. However, the process is laborious for a patient
attempting to measure BP. The long short-term memory (LSTM) network model
was applied rather than the CNN. This was because the CNN model may include
noisy signal, which yields low performance. The model was investigated in terms
of reproducibility. A multi-day test was performed using multiple measurement
data. The results revealed that the proposed model showed performance higher than
that of the personalized model. The MAE values of the proposed model were 5.82

mmHg and 5.24 mmHg for SBP and DBP, respectively.
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In this study, I developed a cuffless BP estimation model based on the deep
learning approach involving CNN and LSTM. The CNN model with the attention
mechanism had the advantage of being applicable on the entire signal without the
feature extraction procedure. The results showed that the BP estimation model with
BCG signal displayed performance higher than that without the BCG signal. In
addition, the LSTM model was investigated to make a generalized BP estimation
model. The results showed that the proposed model displayed higher performance
in a multi-day test. This study attempted to establish a BP estimation model that is
both personalized and generalized. It enables continuous BP monitoring on a daily

basis using unobtrusively measured ECG, PPG, and BCG.

Keyword: Cuffless blood pressure estimation, convolutional neural network,

attention, long short-term memory network, personalization, generalization
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Chapter 1. Introduction

1.1. Introduction to blood pressure measurement

1.1.1. Present blood pressure measurement

Blood pressure (BP) is one of the vital signs that provide fundamental health
information on the heart and cardiovascular system of a patient. When the heart
beats, the blood-flow from the heart exerts pressure on the blood vessels. The BP
varies between systolic BP (SBP), which is an increase in pressure caused by the
systolic contraction of the heart, and diastolic BP (DBP), which is the low pressure
between instances of SBP. High BP (hypertension) is known as a "silent killer"
because it is a risk factor for various diseases such as arrhythmia, heart attack,
blindness, and brain stroke if it is not detected early nor treated appropriately. An
estimated 1.13 billion people worldwide have hypertension.

The gold standard for BP monitoring is the mercury sphygmomanometer. It is
generally used in the physician’s office. However, this method is not continuous
and generally requires frequent calibration. In addition, BP measurement in
medical circumstances may be incorrect because certain patients exhibit a higher
BP than usual in a clinical setting, which is known as the "white-coat effect."

Arterial BP (ABP) is considered as a gold standard for continuous BP
monitoring, which is performed in the intensive care unit. The BP is measured

directly by an intravascular cannula module inserted in the arterial vessel. Because



it is an invasive method, the measurement of ABP can cause side effects such as
bleeding and infection. Moreover, it is difficult to measure ABP in daily life
because it requires a clinical setting and professional knowledge.

Because regular BP monitoring is important for diagnosing hypertension and
predicting heart diseases, numerous devices have been developed to help patients
measure BP at home or during their daily lives. These devices are generally based
on the oscillometric method and use an inflatable upper-arm cuff (Figure 1-1) [1, 2].
However, although these methods provide noninvasive measurement in daily life,
these do not offer continuous measurement. Wearing the cuff whenever the patient
attempts to measure BP is a cumbersome task and can upset the patient. In addition,
the significance of beat-to-beat BP analysis has increased. It involves parameters

such as the blood pressure variability (BPV) [3].



Figure 1-1. Conventional BP measurement device using cuff.



1.1.2. Cuftless blood pressure measurement

Many researchers have investigated cuffless and continuous BP monitoring
methods based on the pulse wave velocity (PWV). The PWV can be measured
using physiological signals and can be expressed by the Moens—Korteweg (M—-K)

equation (1-1) and Hughes equation (1-2) [4]:

fEh
PWV = |— (1-1)
pd

E = Eye’” (1-2)

where E is the elastic modulus at the BP P; p denotes the density of the blood;

and 4 and d are the thickness and radius, respectively, of the blood vessel.

Furthermore, E; is the elastic modulus at zero BP, and y is the coefficient of the

blood vessel. When P increases, the elastic modulus increases, and thereby, the
PWYV increases.

PWYV is inversely related to the pulse transit time (PTT) as follows:

L
PWV = —, (1-3)

where L denotes the length from the heart to a certain peripheral site of the body,
e.g., the finger. The PTT is the time taken by the pulse to propagate between two
locations. The PTT can be calculated between the R-peak of the electrocardiogram
(ECG) and characteristic point of the photoplethysmogram (PPG) that is measured
at the finger. The ECG and PPG are measured using a noninvasive method and can

conveniently be used in long-term monitoring or daily life without a cuff. The PTT



is known to be negatively correlated with BP [5], and various models have been
developed to estimate BP with the PTT [6-8]. However, Payne et al. reported that
the PTT method is not a reliable marker for BP estimation [9].

Several studies have recommended the ballistocardiogram (BCG) as a substitute
for the PPG in the calculation of the PTT. The BCG is a measurement of the forces
exerted on the body by the blood ejected from the heart. The BCG can be acquired
by force sensors such as accelerometers, load cells, and film sensors including
polyvinylidene fluoride (PVDF) sensors. Shin et al. proposed a BP measurement
system using ECG and BCG on a weighing scale [10]. The BCG was measured on
the weighing scale, and the RJ interval (RJI) between the R-peak of the ECG and J-
peak of the BCG was measured. The results demonstrated that the RJI had a
negative correlation with BP. BP was estimated using the linear regression method.
Lee et al. recommended a BP monitoring chair using two-channel BCGs [11]. Two
BCGs were measured at the back of the chair and the cushion on the seat, and the
BP was estimated according to the phase difference between the two BCGs.

Although the PTT method showed remarkable performance in cuffless BP
estimation, generality issue occurred. The present PTT method is based on
personalized fitting. The accuracy of the model can be improved using a personal
coefficient because the variables that were regarded as constant (such as the density
of the blood, and thickness and diameter of the blood vessel) differ among
individuals. However, the calculation of the coefficients for each individual is

laborious and time-consuming. In addition, the personalized model requires



intermittent calibration with the cuff for an acceptable accuracy. This is because the
arterial dimensions of the subject can vary with time owing to the effect of the
autonomic nervous system and the vascular vasomotion.

Meanwhile, the generalized model requires more data than the personalized
model does and thereby, more initial training time. In addition, the performance of
the model may be lower than that of the personalized model. However, once the
generalized model is trained, the training time of the model can be saved, and it can
be applied rapidly to the subject in emergency scenarios. Furthermore, the
temporal-generality in a subject circumvents the need for cumbersome calibration

task.



Table 1-1. Comparison between personalized model and generalized model.

Personalized model Generalized model
Performance >
Initial training time <
Additional training time >
Intermittent calibration Yes No




1.2. Purpose of research

This study aimed to develop a cuffless BP estimation model using the deep
learning approach. The deep learning algorithm has shown high performance for
the classification problem and nonlinear regression in various areas including BP
estimation. The deep learning algorithm can model the nonlinear expression
between the physiological signals (ECG, PPG, and BCG) and target BP. In addition,
I intended to improve the BP estimation performance using BCG additionally. In
this study, two approaches of deep learning were applied according to the
characteristic of the network.

Moreover, the research was designed to overcome the limitations of previous
studies. Certain studies used a method to artificially vary the BP, such as the
Valsalva maneuver, which can affect abnormal BP variation unlike in a real
scenario. | intended to verify BP estimation without a specific BP variation
scenario.

In addition, a generalized BP estimation model without the intermittent BP
calibration was designed based on deep learning. The deep learning approaches are
known to be highly effective algorithms for abstraction and generalization. The
calibration process is required to improve the accuracy of BP estimation. However,
the process is laborious for patients attempting to measure BP. The model applying
the deep learning approach was investigated in terms of reproducibility, i.e., its

capability to guarantee consistent performance across days.



1.3. Dissertation outline

This dissertation consists of the following chapters:

Chapter 2 addresses the background information of the method used in this
study and prior works related to the study.

Chapter 3 addresses the waveform-based blood pressure estimation using
convolutional neural network and attention mechanism.

Chapter 4 describes the feature-based blood pressure estimation using
bidirectional long short-term memory network.

Chapter 5 presents the discussions and limitation of the preceding chapters,

and Chapter 6 presents the conclusion of the dissertation.

This dissertation is based on the following publications:

H. Eom, D. Lee, S. Han, Y. S. Hariyani, Y. Lim, I. Sohn, K. Park, and C.
Park, “End-to-End Deep Learning Architecture for Continuous Blood
Pressure Estimation Using Attention Mechanism,” Sensors (Basel), vol. 20,
no. 8, Apr. 2020 [12].

D. Lee, H. Kwon, D. Son, H. Eom, C. Park, Y. Lim, C. Seo and K. Park,
“Beat-to-Beat Continuous Blood Pressure Estimation Using Bidirectional
Long Short-Term Memory Network,” Sensors (Basel), vol. 21, no. 1, Dec.

2020 [13].



The author of this dissertation contributed to the above studies as follows:
conceptualization and design of the experiments; data acquisition, analysis, and

interpretation; and draft and revision of the manuscript.
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Chapter 2. Background and related studies

2.1. Cuffless blood pressure estimation based on deep
learning approaches

Several studies have proposed the use of machine learning (including deep
learning) algorithms to perform continuous BP estimation automatically without a
cuff. Chan et al. [14] and Kachuee et al. [15] proposed a model for estimating BP
based on features extracted from ECG and PPG using conventional machine
learning algorithms such as linear regression and AdaBoost. Su et al. proposed a
recurrent neural network (RNN)-based BP estimation model using features
extracted from ECG and PPG [16]. Kurylyak et al. [17], Lee et al. [11], and Wang
et al. [18] also proposed a simple artificial neural network (ANN) model that uses
features extracted from only one signal such as PPG or BCG. However, these
methods have problems in that the extraction of features is expensive and laborious.
In addition, if the signal is noisy, it may be difficult to obtain adequate data to train
the neural network.

In recent studies, a few authors attempted to estimate BP using raw signals
without feature engineering. Slapnicar et al. estimated BP with only raw PPG using
ResNet, a deep learning model that have displayed good performance in the field of
image classification [19]. Tanveer et al. also used ECG and PPG raw signals and
achieved good performance [20]. However, the length of the data used for BP

estimation was 16 s, which is excessively long for emergency scenarios.
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2.2. Deep learning network

2.2.1. Convolutional neural network (CNN)

Convolutional neural networks (CNNs) have achieved considerable success in
various challenging areas by extracting key features from a large amount of data
such as images. Recently, CNNs have achieved remarkable performance in signal
processing, particularly in biomedical areas [21-24].

The key concept underlying CNN is that it has a convolutional layer rather than
a classical perceptron layer. In image data training, the convolutional layer can
learn the spatial pattern of the image, whereas the perceptron layer can learn the
pattern through the pixels. A CNN generally has multiple convolutional layers. The
previous layer concentrates on low-level features, and the feature map is connected

to the next layer that can learn high-level features.
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2.2.2. Recurrent neural network

A recurrent neural network (RNN) is a network with a loop structure. RNN have
displayed higher performance than other networks for processing sequential time-
series data. It has been applied for sequential modeling in natural language
understanding and video processing. An RNN has a loop in the network, and the
output of a timestep is used as a state of the next timestep. A schematic diagram of
an RNN is shown in Figure 2-1. The network repeats the procedure in each
timestep according to the sequence.

However, the conventional RNN displays the vanishing gradient problem,
particularly while handling long time series data [25]. Two representative RNN-
based models have been proposed to solve this long-term dependency problem: the
long short term memory (LSTM) developed by Hochreiter et al. [26] and the gated

recurrent unit (GRU) introduced by Cho et al. [27].
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2.2.2.1. Long short-term memory network

The long short-term memory (LSTM) network replaces the RNN cell with
LSTM cells. The central concept underlying LSTM is that an LSTM cell has three
gates: forget gate, input gate, and output gate. The structure of LSTM is illustrated
in Figure 2-2a).

The forget gate (f;) controls the amount of information that would be forgotten
using the hidden state and input vector. The input gate (i;) decides which value
would be updated and updates the state of the cell. The output gate (o0;) controls the
amount of information that would be outputted. These gates can aid the network in
learning long time-series data or eliminating inconsequential data and thereby,
learn patterns with a long duration. The gates can be expressed by the following
equations:

fe= U(Wf “[he—1, xe] + bf)
ip = o(W; - [he—q, %] + by)
0 = o(W, - [he—1, x¢] + bo)
¢ = tanh(W, - [h¢_q, x¢] + b.)
Ct=frrca i x G
h; = tanh(c;) * o,
o, W, h, x, b, ¢, and o represent the sigmoid, weight matrix of each gate, hidden

state, input vector, bias of each gate, cell state, and output vector, respectively.

15 - 2



Bidirectional LSTM (Bi-LSTM) is an extension of LSTM in which the input
sequence is read forward and backward and both outputs are concatenated. Bi-
LSTM is more effective than LSTM because it can learn the pattern in both

directions.
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2.2.2.2. Gated Recurrent Unit

The gated recurrent unit (GRU) is a variation of LSTM. It has two gates: forget
gate and input gate (See Figure 2-2b)). A hidden state h; replaces c¢; and h; in
LSTM, and a reset gate vector z; controls two gates. When the output of z, is
one, the forget gate opens and input gate closes. When the output of z; is zero, the
forget gate closes and input gate opens.

Similar to bidirectional LSTM, GRU can be used bidirectionally. The
bidirectional GRU (Bi-GRU) has two layers: the forward and backward layers. The
outputs of both directions are concatenated. The structure of Bi-GRU is illustrated
in Figure 2-3.

GRU has less learning parameters than LSTM and requires less training time.
However, the expression capability may be lower than that of LSTM. In this study,
GRU was used with the CNN (Chapter 3), and LSTM was used independently

(Chapter 4).
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2.2.3. Attention Mechanism

The attention mechanism has recently been demonstrated to be efficient in
sequence modeling tasks such as image captioning, neural machine translation, and
signal processing [28-30]. The key concept underlying the attention mechanism is
that the model can pay “attention” to the specific timestep that is strongly related to
the target output, rather than applying an identical weight in each timestep [31].
Figure 2-4a) shows an example of an attention algorithm for sequence-to-sequence
(encoder—decoder network). The attention score is calculated as the dot product of
the hidden state in the encoder h; and that in the decoder s;. Then, the attention
weights a; are generated using the softmax function, with the sum of weights
equated to one. The final attention value (known as context vector) is calculated
with the weighted sum of the hidden state values and concatenated to calculate the
output vector.

Because sequential feature vectors from Bi-GRU in the proposed model may
contribute differently for estimating BP values, I added an attention layer to
automatically train how important the feature vectors were in each time step.
Larger weights can be assigned to significant information using the attention
mechanism, and various methods to apply the attention mechanism have been
proposed [32]. In this work, the feed-forward attention model was used [33]. The

structure of the attention layer used in this study is illustrated in Figure 2-4b).
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Given the Bi-GRU hidden state vector h; at each timestep i € [1,N], the
importance score s; was calculated through the score function score(:) as
follows:

s; = score(W;h; + b)

where the equation can be represented as a single-layer perceptron having a
trainable weight W; and a bias b. The score function can be set as an activation
function in the neural network. The tanh function was used in the proposed model.

After obtaining each importance score s; for the hidden state vector h;, the
attention weight a; was evaluated using the softmax function. It is expressed as

exp(s;)

a; = softmax(s;) = S exp(s)

Finally, the context vector ¢ was obtained by calculating the weighted sum of the

attention weight vector and the corresponding hidden state vector, as follows:

Cc = Zaihi

i
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Chapter 3. Waveform-based BP estimation using
CNN and attention mechanism

3.1. Methods

3.1.1. Data Acquisition

A total of 15 subjects (6 men, 9 women, age: 26.2 = 3.0) were recruited for this
study. The subjects had no reported medical conditions. Written informed consent
was obtained from the subjects. Furthermore, this study was approved by the
Institutional Review Board of Seoul National University Hospital (IRB No. 1801-
016-912).

The experimental setup is illustrated in Figure 3-1. Three Ag/AgCl electrodes
were attached to the subject’s left arm, right arm, and left leg according to
Einthoven’s triangle. ECG was acquired on Lead II using the electrodes with the
BIOPAC ECG100C module, and PPG was measured at the subject’s index finger
using a commercial module (PSL-iPPG2C) [34]. In addition, the BCG signals were
measured using a PVDF film sensor attached to the seat of the chair. The SBP and
DBP were also measured simultaneously using a continuous BP monitoring device
(Finometer Pro (Finapres Medical Systems, Enschede, The Netherlands)).
Finometer Pro is composed of a processing unit and two cuffs (a finger cuff and an
arm cuff). The reference BP is measured with the arm cuff at the beginning of the

measurement, and the beat-to-beat BP is measured at the finger cuff sensor. All the
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data were synchronized and sampled at 1000 Hz with a data acquisition device
(BIOPAC MP150 module (BIOPAC Systems Inc., Goleta, CA, USA)).

After the measurement device was attached, the subjects were asked to sit on the
armchair. The data were measured for 30 min while the subjects were in the resting
condition. The measured BP values are shown in Figure 3-3. The mean and
standard deviation (STD) of SBP and DBP were 115.04 + 14.64 mmHg and 70.01

+ 9.56 mmHg, respectively.

24 :|_= _'\-:_-I-!



|
ECG
electrode—

|
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3.1.2. Data Preprocessing

A second-order Butterworth bandpass filter was applied to the data to remove
baseline wandering and power-line noise. The cutoff frequency of each filter
applied to each signal is summarized in Table 3-1.

All the combinations of the raw signals (ECG, PPG, and BCG) were used as
input for the deep learning model to investigate the effect of each signal on the BP
estimation. To ensure information sufficiency, 5 s segments of the signals were
used as input to the model with an overlap of 1 ms. The data of the first 20 s and
final 5 s were excluded because of the noise in the data acquired. A total of
26,625,000 samples were generated.

Because a large amount of data was used as input, the data were resampled to
125 Hz for efficient learning. The target labels were set as the BP values (SBP,
DBP) corresponding to the end of each segment, as shown in Figure 3-2. The BP
values that were beyond the range (mean = 1.96-STD) were considered as outliers
and were eliminated. The BP distribution that was used in this study is illustrated in

Figure 3-3. The y-axis represents the number of sequences.
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Table 3-1. Cutoff frequency of bandpass filter applied to each signal.

Signal HPF (Hz) LPF (Hz)
ECG 0.5 35
BCG 4 15
PPG 0.5 15
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3.1.3. Deep learning architecture

The proposed end-to-end deep learning network consists of a CNN layer, a Bi-
GRU layer, and an attention layer, as shown in Figure 3-4. In the proposed model,
the CNN structure was designed by referring to the VGG-16 network structure [35].
The original VGG-16 has 13 convolutional layers and 3 fully connected layers.
However, the structure was modified to be applied to the proposed model. The
detailed structure of the model is presented in Table 3-2. The fully connected layers
in the VGG-16 network were changed to a Bi-GRU layer. In addition, the final
three convolutional blocks were excluded to leave an acceptable number of hidden
nodes in the sequences to be applied for Bi-GRU and the subsequent attention layer.

A total of 10 convolution layers with a rectified linear unit (ReLU) activation
function were used to extract spatial pattern vectors from signals. Each convolution
layer was followed by a batch normalization layer to reduce the internal covariate
shift. The final layer of each convolution module was set to a max-pooling layer to
reduce the length of the inputs. The same padding was applied to each convolution
operation. Both kernel and pooling size were set to three, and the output channel
size of the convolution layer was scaled up by a factor of 2 from 64 to 512 as it
passed through each convolution module.

In the Bi-GRU phase, 64 hidden nodes were set up in each of the forward and
backward layers, and 128 features were generated at each timestep. The Bi-GRU

layer can encode temporal information between features in the proposed model. In

¥ o 1| g
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addition, representative features can be acquired in the Bi-GRU layer by reducing
the feature dimensions from 512 to 128. The output of the Bi-GRU hidden state
vectors were weighted and summed. Then, the SBP and DBP values were output
through a one-layer perceptron. The detailed structure of the proposed model is

llustrated in Table 3-2.
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Table 3-2. Detailed structure of proposed model.

Network Layer ;Eggz (;ll:g;;t Padding Stride Kernel
Conv 625x3 625x64 Same 1 3
BN+ReLU
Conv 625x64 625x64 Same 1 3
BN+ReLU
Maxpool  cr5.64  209x64  Same 3 i
(size =3)
Conv 209x64  209x128 Same 1 3
BN+ReLU
Conv 209x128  209x128 Same 1 3
BN+ReLU
Maxpool 559,198 70x128  Same 3 i
(size =3)
Conv 70x128 70%x256 Same 1 3
BN+ReLU
CNN Conv 70%x256 70%256 Same 1 3
BN+ReLU
Conv 70%256 70%256 Same 1 3
BN+ReLU
Maxpool 5 756 24x256  Same 3 i
(size = 3)
Conv 24x256 24x512 Same 1 3
BN+ReLU
Conv 24x512 24x512 Same 1 3
BN+ReLU
Conv 24x512 24x512 Same 1 3
BN+ReLU
Maxpool =4 515 §x512 Same 3 i
(size = 3)
Forward 8x512 8x64 -
Bi-GRU  Backward 8x512 8x64 -
Concatenation (Forward + Backward)
Hayer =g, 10g 128 .
perceptron
Attention Activation tanh
Softmax
Weighted sum
Output -layer 128 2 -
perceptron




3.1.4. Training setting

Seventy percent of the dataset was used for training, 10% for validation, and 20%
for testing. The Adam optimizer [36] was used with a learning rate of 10~ and
decay of 10™ to optimize the hyperparameters of the model. The learning rate was
set to the optimal value empirically, and the initial weights were selected randomly.
The mean squared error (MSE) was used for the loss function. The model was
trained with the early stopping method with a patience of 10 in a maximum of 50
epochs. The batch size was set to 512. The Keras deep learning framework with
TensorFlow backend and NVIDIA GeForce RTX 2080Ti (NVIDIA corporation,
Santa Clara, CA, USA) (with 11 GB VRAM) was used as the computing
environment for network training. A sample of convergence curve is illustrated in

Figure 3-5.
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3.2. Results

Three types of results are presented in this section. First, the BP estimation
results are compared for each combination of signals. Second, the performances of
the models with and without attention are compared when all the signals were used
as inputs. Finally, the performance of the end-to-end deep learning model is
compared with that of the multiple linear regression (MLR) model that used
interval features from the characteristic point of each signal. The root-mean-square
error (RMSE) and mean absolute error (MAE) were used as metrics of the BP
estimation accuracy. In addition, the values of the coefficient of determination (R?)
between the reference and estimated BP were calculated for all the results.
Furthermore, the Bland—Altman plot [37] was presented to increase the reliability

of the results.
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3.2.1. Performance comparison by signal combination

A summary of the results from all the combinations of the three signals is shown
in Table 3-4. The model with ECG + PPG and ECG + PPG + BCG shows
performance higher than that of the other models in terms of BP estimation. In
addition, the proposed model with attention displays an error lower than that
without attention. The MAE value is 4.06 mmHg and 3.33 mmHg for SBP and
DBP, respectively.

The estimation accuracy when a combination of signals (ECG + PPG, ECG +
BCG, PPG + BCG, and ECG + PPG + BCG) was used as input was significantly
higher than those of the cases where a single signal (ECG, PPG, and BCG) was

used as the input. The detailed results are shown in Table 3-3.
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Table 3-3. Mean values of RMSE, MAE, and R* when the input was a single signal
and when it comprised multiple signals.

Input SBP (mmHg) DBP (mmHg)
RMSE MAE MeanR?> RMSE MAE Mean R’
Single signal 7.04 5.47 0.24 5.39 4.19 0.21
Multiple signals ~ 6.21 4.78 0.40 4.83 3.76 0.35
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A repeated measurement analysis of variance (ANOVA) test was used to
compare the performance with varied combinations as input. The differences
between models were significant in both SBP and DBP estimation (p < 0.01). In
addition, a paired t-test was performed between the results to compare each model.
As shown in Table 3-5 and Table 3-6, the proposed model statistically
outperformed the other methods regardless of the input, in both SBP and DBP

estimation.
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3.2.2. Attention Mechanism Performance

As shown in Table 3-4, the model with the attention mechanism showed lower
RMSE and MAE values than that without the attention mechanism. An example of
BP estimation results is presented in Figure 3-6. The model with the attention
mechanism estimated the fluctuation in BP more precisely than that without the
attention mechanism. The accuracy of the model can be improved with the
attention mechanism by learning more intensively in the timestep that contains

relatively important information in the 5 s input data.
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In addition, an investigation of the attention heat map revealed that the attention
weight was high at a specific time. The process of generating the attention heat
map was as follows: The length of the data was reduced from 625 to 8 by the CNN
pooling layer. Thereby, Bi-GRU generated eight hidden state vectors. Accordingly,
the original signal could be divided into eight sections. The attention heat map was
generated by assigning the attention weight obtained from the attention layer to
each section.

The ANOVA test was conducted to interpret the attention weights of each
timestep. The results are summarized in Figure 3-7. The differences between
timesteps are statistically significant (p < 0.001), and the weights from Timestep 2
to Timestep 6 are significantly higher than those for the other timesteps. Timesteps
1-7 includes 648 ms of feature information, and Timestep 8 has 464 ms of feature
information. This implies that the data from Timestep 2 to Timestep 6 (from 1.112 s
to 3.704 s before the target BP) had information that is significant for BP
estimation.

Figure 3-8 shows the Bland—Altman plot between the estimated and reference
BP. The limits of agreement (LOA) at 95%-confidence intervals for DBP and SBP
are measured as [-9.50, 9.50] and [-11.24, 11.63], respectively. This implies that
95% of the error was within [lower LOA, upper LOA]. Moreover, the mean error
values between estimation and reference were 0.03 and 0.20 for DBP and SBP

estimation, respectively. This implies that the model displayed negligible bias.
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Figure 3-9 shows the BP estimation result from two subjects. Overall, the
estimated BP is similar to the reference BP, as shown in Figure 3-9a). However, as
shown in Figure 3-9b), the error is high in cases where BP rapidly varies in a short

time or if the overall range of BP is wide.
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3.2.3. Comparison with Multiple Linear Regression model

The results of the proposed model were compared with those of the multiple
linear regression (MLR) model. The characteristic points from ECG, BCG, and
PPG were detected to extract the features for the MLR model. The ECG R-peak
and the peak of the first derivative PPG were detected based on Pan and
Tompkins's algorithm [38]. The BCG J-peak was detected by identifying the
highest peak between 110 ms and 250 ms after each R-peak. False-positive peaks
were excluded manually. Then, the R-R interval (RRI), PTT, and RJI were
calculated from each cardiac cycle (Figure 3-10a)). In addition, 21 + 11% of the
cardiac cycles were excluded in cases where the peak was not detected because of
motion artifacts (Figure 3-10b)). The features were utilized as inputs of the MLR

model, and SBP and DBP were used as dependent variables of the MLR model.
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As summarized in Table 3-7, the MLR model showed a lower performance of
BP estimation than that for the proposed model. The input parameters of the MLR
model were RRI, RJI, and PTT that were calculated from ECG, PPG, and BCG.
Although the input signal for the MLR and proposed model were identical, the
MAE of the MLR model was statistically higher in both SBP and DBP estimation
(p <0.05).

The scatter plots between PTT and SBP of the two cases are presented in Figure
3-11. Although the values of the correlation coefficient (CC) between PTT and SBP
were high in both the cases, the R? value for the good and inferior cases were 0.29
and 0.05, respectively. The BP variation could not be explained by the interval
features alone (such as PTT). However, the proposed model could extract other

features as well as the interval feature.
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Table 3-7. Comparison between proposed model and MLR model.

SBP DBP
RMSE  MAE STD , RMSE  MAE STD R
(mmHg) (mmHg) (mmHg) (mmHg) (mmHg) (mmHg)

Proposed 5 4, 4.06 404 052 430 3.33 342 0.49

model

MLR 6.40 5.19 345 026 475 3.85 269 022
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3.3. Discussion

3.3.1. Interpretation of result using global standards

Two global standards of BP monitoring are used as performance indicators in
most studies: the Association for the Advancement of the Medical Instrumentation
(AAMI) standard [39] and the British Hypertension Society (BHS) standard [40].
Table 3-8 and Table 3-9 show the results of using the proposed model with
reference to these standards. The study population of this study was 15, which is
insufficient because the AAMI and BHS standards require at least 85 subjects.
Nonetheless, the results complied with the AAMI and satisfied BHS standards in

Grade A for both SBP and DBP.
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Table 3-8. Performance comparison with AAMI standard.

ME (mmHg) STD (mmHg)
AAMI standard <5 <8
SBP -0.20 5.83
Proposed model
DBP -0.02 491

Table 3-9. Performance comparison with BHS standard.

Cumulative absolute error percentage

Grade
< 5mmHg < 10mmHg < 15mmHg

60% 85% 95% A
BHS 50% 75% 90% B
standard 40% 65% 85% C
Worse than C D
Proposed ~ SBP 73% 93% 98% A
model DBP 80% 96% 99% A
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3.3.2. Comparison with related works

The performances of the models used in related studies are shown in Table 3-10.
Chan et al. proposed a linear regression model based on PTT [14]. Although the
study used mean error, the error was high and the data size unspecified. Kachuee et
al. [15], Kurylyak et al. [17], Su et al. [16], and Wang et al. [18] also proposed
feature-based approaches. The studies recommended various methods to extract the
features, which require a substantial amount of time. Meanwhile, the proposed
model used only bandpass filtering and did not require a complex feature extraction
process. Lee et al. proposed a BP estimation model using only two channels of
BCGs [11]. Although BP estimation using only BCG is effective, the evaluation
was conducted with a one-time BP measurement rather than a continuous one.
Tanveer et al. achieved remarkable performance using raw signals from ECG and
PPG [20]. However, the window length to estimate BP was excessively long (16 s),
whereas the window length of this study was 5 s. In addition, the authors observed
that the performance of their proposed model was highly dependent on an
appropriate division of ECG and PPG cycles. This implies that additional work
such as peak detection is required and that the signal quality affects the
performance of the model. Slapnicar et al. also proposed a deep learning model
using raw signals of PPG [19]. However, its performance was low compared to
those of other studies. In addition, it is difficult to evaluate the model accurately

because other evaluation metrics were not presented.
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Chapter 4. Feature-based generalized BP estimation
model based on LSTM Network

4.1. Methods

An overview of the proposed approach is depicted in Figure 4-1. First, measured
data was bandpass filtered to remove baseline noise, and the characteristic peaks of
the signal were detected. Thereafter, the features were extracted from the
characteristic points. The feature sequence vector was used as an input to the Bi-
LSTM model, and SBP and DBP were regressed. The methods are demonstrated in

the following subsections.
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Figure 4-1. Overview of proposed approach.
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4.1.1. Data Acquisition

A total of 18 subjects (male: 8, female: 10) with no reported medical conditions
were recruited for the experiment. Written informed consent was obtained from the
subjects, and the study was approved by the Institutional Review Board of Seoul
National University Hospital (IRB No. 1801-016-912).

Several devices were attached to the subject to measure the physiological signals.
Three Ag/AgCl electrodes were attached to the subject according to Einthoven’s
triangle, and the ECG was acquired on Lead II with the BIOPAC ECG100C
module. The PPG was measured from the index finger of the subject using a
commercial module (PSL-iPPG2C), whereas the BCG signal was measured from
the PVDF sensor installed on the chair seat. The reference SBP and DBP were
measured with a continuous BP monitoring device (Finometer® PRO, Finapres
Medical Systems). Once the devices were attached, the subject was asked to sit on
the chair with the PVDF sensor, and the signal was recorded for 30 min. All the
data were synchronized and digitized at 1000 Hz using a data acquisition device
(BIOPAC MP150). Furthermore, 15 subjects visited again after one to two weeks,
and the measurement procedure was repeated with an identical experimental setup.
After the measurement was completed, personal information (age, gender, height,
weight, body mass index (BMI)) was measured (where required) and recorded. The

information is summarized in Table 4-1.
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Table 4-1. Summary of personal information of participants.

Age Height (cm)  Weight (kg) BMI (kg/m?)
Mean 25.7 167.1 60.9 21.5
STD 3.1 9.3 14.9 32
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4.1.2. Signal preprocessing and feature extraction

A second-order Butterworth filter was applied to the signal to remove baseline
wandering and power-line noise (ECG: 0.5 to 35 Hz; BCG: 4 to 15 Hz; PPG: 0.5 to
8 Hz). The characteristic points from the ECG, BCG, and PPG were used to extract
the features. First, the R-peak of the ECG was detected using the Pan—Tompkins
algorithm. The J-peak of the BCG was detected by identifying the highest peak
between 110 and 250 ms after each R-peak. The PPG peak was detected after the
signal was differentiated. Once the false-positive peaks had been excluded
manually, the features were extracted. Thereafter, the features were standardized
with the mean and standard deviation values to be used as input for the neural
network model. The features are listed in Table 4-2, and the feature extraction
method is depicted in Figure 4-2. The features from 10 cardiac cycles were
regarded as a sequence. The number of cardiac cycles was determined empirically.
The sequences that included undetected peaks were excluded. The BP value
immediately after the final peak in the sequence was used as a reference. The SBP
and DBP distributions are illustrated in Figure 4-3. The average values are 111.2

and 67.7 mmHg for SBP and DBP, respectively.
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Table 4-2. List of features used as inputs in the proposed model.

Feature

Description

RRI
PTT
RIJI
IPI
ECGamp
BCGamp
PPGamp

ECG R peak to R peak interval
ECG R peak to PPG peak interval
ECG R peak to BCG J peak interval
BCG I notch to PPG peak interval
Amplitude of ECG R peak
Amplitude of BCG J peak
Amplitude of PPG peak interval

61



| ECG R-peak |

N

0 0:2 0.4 0.6 0.8 1

| BCG J-peak I

ECG

(O]
(&)
)
0 0:2 0.4 0.6 0.8 1
BCG I-notch
o |
o
o
N\ ¥ PPG lst
. derivative |
0 02 i 04 7 06 8 1
Time (s)
‘RJI o
PTT

Figure 4-2. Feature extraction from characteristic points of three signals: ECG,
BCG, and PPG.
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Figure 4-3. BP distributions in the data.
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4.1.3. Deep learning architecture

The proposed network architecture is summarized in Figure 4-4. Because 10
cardiac cycles with 7 features were used as the input, the shape of the input layer is
10 x 7. The number of hidden nodes of the Bi-LSTM network is empirically set to
128, and a total of 256 features were generated at each timestep. Tanh was used as
the activation function of the LSTM layer. The outputs of the forward and
backward LSTM cells were concatenated (10 x 256 neurons) and transformed into
a one-dimensional flattened layer (1 x 2560 neurons) for connecting to the fully
connected layer after the LSTM layer. In the case of the general model, personal
information including gender, age, height, weight, and body mass index (BMI) was
included in the first fully connected layer. The second fully connected layer was
used for the BP regression. ReLU and a linear activation function were utilized at
the first and second fully connected layer, respectively. The number of hidden

nodes in the first fully connected layer was set to 64.
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4.1.4. Experimental setup

The deep learning model was implemented in the Keras framework with a
TensorFlow backend. The data were shuffled and randomly selected to train the
deep learning model. In total, 60% of the data was used for training, 20% was used
for validation, and 20% was used for testing. The Adam optimizer was used to
optimize the model with a learning rate of 107, The initial value was randomly
determined, and the MSE was selected as the loss function. To overcome the
overfitting issue, a regularization method was applied with the dropout mask on
10% of the connection in the LSTM layer. The model was trained with the early
stopping method with a patience of 10 in a maximum of 100 epochs. The batch size
was set to 64.

Following the training process, the test set was used to estimate the SBP and
DBP. The model was trained three times with different random initial values, and
the regression result was averaged. The CC, MAE, and RMSE between the
estimated and reference BPs were calculated to evaluate the performance of the

algorithm.
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4.2. Results

4.2.1. Feature analysis

The performance of the model was evaluated with different inputs. The features
that were used as inputs are described in Table 4-3. As indicated in Table 4-4, the
model with all the three signals exhibits performance higher than those of the other
models. The MAEs are 2.62 and 2.03 mmHg and CCs are 0.77 and 0.76, for the
SBP and DBP estimations, respectively. The difference between the models is

statistically significant (p <0.01).
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Table 4-3. Feature list of different inputs.

Inputs Features
ECG RRI, ECGamp
ECG, BCG RRI, RJI, ECGamp, BCGamp
ECG, PPG RRIL, PTT, ECGamp, PPGamp
ECG, PPG, BCG RRI, PTT, RJI, IPI, ECGamp, BCGamp, PPGamp

Table 4-4. Mean values of MAE, RMSE, and CC for different inputs of the
personalized model.

SBP DBP
Inputs
MAE RMSE CC MAE RMSE CC
ECG 3.81 4.75 0.50 2.70 3.40 0.51
ECG, BCG 3.50 4.42 0.59 2.51 3.15 0.62
ECG, PPG 2.84 3.57 0.74 2.29 2.88 0.70

ECG, PPG, BCG 2.62 3.36 0.77 2.03 2.57 0.76
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4.2.2. General model analysis

Leave-one-subject-out (LOSO) analysis was performed to develop a general
model. The data of one subject were removed from the training set and those of the
other subjects were used as input to train the model. Moreover, a fine-tuning
approach was applied after each training run. The weight in the Bi-LSTM layer
was not trained, and the fully connected layer was trained with 20% of the data of
the excluded subject.

The results are summarized in Table 4-5. The MAE values of the LOSO model
are 10.01 and 5.64 mmHg for the SBP and DBP, respectively. This model exhibited
a higher error than that of the personal model (p < 0.01). The tuned LOSO model
yielded MAE values of 2.56 and 2.06 mmHg for the SBP and DBP, respectively. It
exhibited a marginally lower error than that for the personal model in the case of
SBP and a higher error in the case of DBP. The difference was not statistically

significant.
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Table 4-5. Mean values of MAE, RMSE, and CC for each model.

SBP DBP
Model
MAE RMSE CC MAE RMSE CC
Personal 2.62 3.36 0.77 2.03 2.57 0.76
LOSO 10.01 11.26 0.40 5.64 6.52 0.40
2.05 2.61 0.76

Tuned LOSO 2.56 3.25 0.80
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A comparison of the personal and tuned LOSO models is illustrated in Figure
4-5. Although the difference is not statistically significant, the tuned LOSO model
exhibits higher performance than that of the personal model when the reference BP
is exceptionally high or low. Moreover, the tuned LOSO model requires fewer
parameters to be trained, thereby the model can be trained with a smaller amount of
data. This, in turn, results in lesser time-consumption.

The Bland—Altman plot is illustrated in Figure 4-6. The bias is not significant in
any of the three models, and the limits of agreement at a 95%-confidence interval
of the tuned LOSO model are [-6.08, 6.26] and [-4.87, 5.00] for SBP and DBP,

respectively.
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4.2.3. Reproducibility analysis

The model reproducibility was investigated to evaluate the model generalization.
A multi-day test was performed using second-visit data in addition to a one-day test.
The model was trained with the data of the one visit, and the data of the other visit
was used as a test set. The results are presented in Table 4-6. The error is higher
than that of the test results with only the first visit, for the personal and tuned
LOSO models. The MAE values of the tuned LOSO model are 5.82 and 5.24
mmHg for the SBP and DBP estimation, respectively. Although the difference
between the personal and tuned LOSO models presented in Section 4.2.2 is not
significant, the reproducibility of the tuned LOSO model is higher than that of the
personal model (p < 0.05). This is because the personal model was overfitted with

the one-day condition of the subject.
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Scatter plots for the model results are presented in Figure 4-7. The R? values are
presented therein. The personal model tends to underestimate the BP, and the R?
values are 0.51 and 0.40 for SBP and DBP, respectively. The R? values of the tuned
LOSO models are 0.63 and 0.49 for SBP and DBP, respectively. This implies that
the model learned more general patterns to estimate the BP than the personal model

did, with high reproducibility.
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4.3. Discussion

4.3.1. Evaluation using global standards

The proposed model of one-day and multi-day tests was evaluated using two
international standards of BP estimation: the British Hypertension Society (BHS)
standard [40] and the Association for the Advancement of Medical Instrumentation
(AAMI) standard. The evaluation results are presented in Table 4-7. The BHS
standard evaluates the BP estimation device based on the cumulative percentage of
absolute errors under thresholds of 5, 10, and 15 mmHg. According to the BHS
standard, the proposed model is consistent with Grade A in the one-day test and
Grade B in the multi-day test, for SBP and DBP.

The evaluation results using the AAMI standard are described in Table 4-8. The
AAMI standard requires mean error (ME) values lower than 5 mmHg and STD
values lower than 8 mmHg. According to the AAMI, the number of populations
should be at least 85. Although this study did not satisfy the population criterion,

both the models satisfied the ME and STD values in the SBP and DBP estimation.

¥ o 1| g
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Table 4-7. Performance evaluation using BHS standard.

Cumulative absolute error percentage

Grade
< 5mmHg < 10mmHg < 15mmHg
60% 85% 95% A
50% 75% 90% B
BHS standard
40% 65% 85% C
Worse than C D
Proposed model SBP  89.3% 99.4% 100.0% A
(one-day test)  pgp 94.7% 99.8% 100.0% A
Proposed model SBP  51.6% 81.4% 96.3% B
(multi-day test) pgp  56.1% 87.9% 98.3% B
Table 4-8. Performance evaluation using AAMI standard.
ME (mmHg) STD (mmHg)
AAMI standard <5 <38
Proposed model SBP -0.09 3.15
(one-day test) DBP -0.07 2.52
Proposed model SBP -0.07 7.30
(multi-day test) DBP -0.17 6.4
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4.3.2. Average BP analysis

The model was based on beat-to-beat BP estimation, which implies that the
model can express the high frequency variation of the BP. Most of the reference BP
values are based on the measurement of the average BP. The average BP analysis is
also discussed in this section.

The reference BP was averaged using moving average filter. Two numbers of
points (5 and 10) were selected to perform averaging. Figure 4-8 shows a sample of
BP with moving average filter. As the number of points of the moving average
increases, the high frequency variation of the BP is attenuated.

The results are illustrated in Figure 4-9. The error in average BP estimation is
lower than that in beat-to-beat BP estimation. The MAE values are 5.72 and 4.95
mmHg for SBP and DBP, respectively. In addition, the error is smaller when a
larger number of points are used to perform average BP estimation. The MAE
values are 5.54 and 4.84 mmHg for SBP and DBP estimation, respectively. The
difference is not significant for SBP estimation, whereas it is so for DBP estimation.

In many health-care applications, BP is classified using numerical values.
According to the guideline for BP classification for adults, BP can be classified into
four: normal, prehypertension, Stage 1 hypertension, and Stage 2 hypertension [41].
The performance in terms of hypertension classification was evaluated using the

average BP estimation model. The result is shown in Table 4-9.
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Figure 4-9. Result of average BP analysis.
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Table 4-9. Accuracy of hypertension classification for SBP and DBP.

SBP DBP
BP Class Range Range
(mmHg) Accuracy (mmHg) Accuracy
Normal BP < 120 849,
BP < 80 90%
Prehypertension 120 <BP <130 829%
Hyizigeeniion 130 < BP < 140 97% 80 < BP <90 89%
HYEZ?Tgeengion BP =140 98% BP > 90 100%
Total 81% 89%,
83 1



4.3.3. Comparison with related works

To evaluate the performance of the proposed method, the algorithm was
compared with the representative BP estimation methods. Chen et al

recommended the use of an SBP estimation equation based on linear regression

with PTT [6]:

SBP = SBP, —

PTT — PTT,
yPTT, ( 0)

In addition, Poon et al. investigated an algorithm with the initially calibrated BP

as follows [7]:

SBP = MBP +21 (PTT°)+2 PP (PTT")Z
— MR M ) T30y

DBP = MBP, + 1 (PTT°> L pp (PTTO)Z
— MR prr ) T3 T UprT
Meanwhile, Ding et al. recommended the pulse intensity ratio (PIR) as a

reflection of the variation in the arterial diameter. In addition, they estimated BP

with PIR and PTT [8]:

SBP = DBP, PIR + PP, (PTT")Z
- ° PpIR O \pTT
PIR,
DBP = DBP, -
PIR

The model was compared with these three methods. Furthermore, a conventional
multiple linear regression (MLR) method with the features that were used in the

model was compared with proposed method. The comparison result is presented in
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Table 4-10. The PIR model shows the lowest error among the previous methods.
The difference between the PIR model and MLR model without BCG features is
not significant. However, the performance is improved with the BCG features. The
MAE values of the MLR model with BCG features are 4.17 mmHg and 3.12
mmHg for SBP and DBP, respectively. In addition, the use of the features of the
previous 10 cardiac cycles yielded a large improvement in BP estimation compared
with that of the model with only one cardiac cycle. Proposed model shows the
lowest error because the previous cycles are utilized as inputs and the deep learning
could obtain a nonlinear expression that related the features and the target BP.

The scatter plots of PTT model 2, the PIR model, the MLR model with BCG
features, and proposed model are presented in Figure 4-10. As shown in the plots,
when the relationship between PTT and BP is not significant, the PTT-based model
cannot yield a meaningful fitting equation. In addition, the DBP estimation in the
MLR model is improved with the BCG features, compared with that for the PIR

model.
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In addition, comparisons of the proposed method with related works are
summarized in Table 4-11. It was difficult to perform an unbiased comparison with
other studies because the datasets used in the studies may have differed
significantly. In addition, the validation methods varied. Kachuee et al. [15],
Slapnicar et al. [19], and Hsu et al. [42] used an online database named “Medical
Information Mart for Intensive Care unit (MIMIC)” [43]. This database contains a
large number of clinical data including those of ECG, breathing, PPG, and BP.
However, the data may not be compatible for normal individuals because these
were obtained from patients in intensive care units, and the patients could have
been influenced by drugs that could affect BP variation. Kachuee et al.
recommended a continuous BP estimation algorithm based on AdaBoost. However,
the error was relatively higher than that in other studies [15]. Slapnicar et al.
implemented a network architecture using ResNet and a spectro-temporal block,
and performed LOSO analysis with the data [19]. Hsu et al. [42] and Wu et al. [44]
proposed DNN models, in which the error was lower than that in other studies.
However, these applied 10-fold cross-validation, which is different from the LOSO
analysis. Su et al. proposed a long-term BP prediction model using a Bi-LSTM
network [16]. A multi-day analysis was performed on the second and fourth days,
and at six months. The MAE values were 5.81 and 5.21 mmHg for SBP and DBP,
respectively. Although the error value was lower than that of proposed model, the

validation was performed with only a personalized model. Furthermore, The BP
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estimation performance was enhanced compared with that of previous work that

utilized a CNN and an attention mechanism [12].
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Chapter S. Discussion

Two types of deep learning networks (waveform-based and feature-based) were
discussed in the previous chapters. The comparison of the two networks follows.
The waveform-based model discussed in Chapter 3 does not require a feature
extraction process. However, the mean training time was long (48 min for a subject)
because the CNN has a significantly larger number of parameters. Meanwhile, the
feature-based model addressed in Chapter 4 requires feature engineering. However,
the model consumed a shorter training time (1 min for a subject), and the
performance was better than that of the waveform-based model. This is because the
model concentrates on the signal without noise. In addition, the model consumes
20 ms per sequence and therefore, can be applied in real-time BP estimation.
However, the coverage was 60 % when the sequence length was 10 because the
sequences with undetected peaks were excluded owing to the noise. As shown in
Figure 5-1, when the sequence length is one, the MAE values of SBP and DBP are
3.88 mmHg and 3.20 mmHg, respectively. These are marginally higher than those
of the waveform-based model. However, the coverage is 81 %.

In addition, the generalized model was discussed in Chapter 4. Although the
inter-subject generalized model was designed as the LOSO model, the performance
was significantly lower than that of the personalized model. However, the model
was improved with a fine-tuning method that uses a smaller number of data.

Thereby, it showed performance similar to that of the personalized model.
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Moreover, the tuned LOSO model showed performance higher than that of the

personalized model in the multi-day test.
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Finally, the limitation of this study is discussed briefly. The data was measured
in a short time (30 min). Hence, the performance of the method while predicting
long-term BP should be considered. In addition, the data of patients with
hypertension were not included in the study. However, approximately 8 % and 2 %
of the BP data were in Hypertension stages 1 and 2, respectively, although no
subject was diagnosed as a hypertension patient.

Moreover, the number of subjects was small. However, the inputs in the
waveform-based model had a length of 5 s. In addition, the total sample size was
approximately 27,000,000, which was adequate to evaluate the model. The
comparison between feature-based models with different numbers of subjects is
presented in Figure 5-2, and the MAE, RMSE, mean CC values are summarized in
Table 5-1. The model with 30 subjects was generated with the data of both the
visits. This model shows enhanced performance with a larger number of datasets,
although it was trained with the same individual as the model with 15 subjects. In
further work, the model can be improved with the data of more subjects including

patients with hypertension.
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Table 5-1. MAE, RMSE, and mean CC values of the models with different
numbers of subjects.

SBP DBP

MAE RMSE Mean CC  MAE RMSE Mean CC

N=1

(personal) 6.67 8.29 0.43 5.71 6.94 0.40
N=15 5.82 6.82 0.53 5.24 6.06 0.50
N=30 5.66 6.69 0.56 5.14 5.96 0.51
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Chapter 6. Conclusion

In this study, I developed a cuffless BP estimation model based on the deep
learning approaches. Two types of deep learning algorithm were applied:
waveform-based learning and feature-based algorithm. The results showed that the
BP estimation model displayed higher performance with the BCG signal. The
waveform-based model was designed with CNN and the attention mechanism. The
model had the advantage of being applied on the entire signal without the feature
extraction procedure. In addition, the bi-LSTM model was investigated to develop
a feature-based BP estimation model. Although the LSTM model could not be
applied for noisy signal, it showed performance higher than that of the waveform-
based model. In addition, the feature-based model was designed to ensure
generality. It was evaluated in terms of reproducibility and showed good
performance in a multi-day test.

This study is significant because it attempted to establish both personalized and
generalized BP estimation model. The model enables continuous BP monitoring in
daily life using unobtrusively measured ECG, PPG, and BCG. The signal used in
this study can be measured unobtrusively and therefore, can result in unobtrusive

BP monitoring. It can be applied widely with a ubiquitous healthcare platform.
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