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In past decades there has been a tremendous growth in the 
literature on location problems. However, among the myriad of 
formulations provided, the simple plant location problem and 
the  k-median problem have played a centra l  role. This  
phenomenon is due to the fact that both problems have a wide 
range of real-world applicat ions,  a n d  a mathematical  
formulation of these problems as  an integer program has proven 
very fruitful in the derivation of solution methods. 

In this paper we investigate the k-median problem defined on 
a graph. That is, each point represents a vertex of a graph. 

1. Introduction 

In past few decades, there has been a tremendous growth in 
the literature on location problems. However, among the myriad 
of formulations provided, the simple plant location problem and 
the  k-median problem have played a centra l  role. This  
phenomenon is due to the fact that both problems have a wide 
range of real-world applicat ions,  a n d  a mathemat ical  
formulation of these problems as  an integer program has proven 
very fmitful in the derivation of solution methods. 

Consider an index set I = { 1, 2, . . . , n} of n points, and a positive 
integer k l n ,  and let C, be the shortest distance between two 
points i, jEI.  The k-median problem consists of identifying a 
subset SGI, I S I = k so as  to minimize ZiGI Minjts C, (Here I S I 
denotes the cardinality of the set S). 

We introduce integer variables. Let Y, = 1, if point j is selected 
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as a median, otherwise 0 and X, = 1; if point j is the closest 
median to point i, otherwise 0. With X, Y variables, the k-median 
problem is formulated as an  integer program as follows. 

Integer Program Formulation: 
ZP = Minx i.lZ j.~CijXij 

X j ~ 1  x.. = 1 
Y i E 1 

I Y j = k  
O<X,,Yj 5 1  i , j ~ l  

Xu, Yj integral i, j E 1 

A vast number of algorithms were proposed and probabilistic 
analyses were presented for the k-median problem. We refer 
readers to Ahn et al. [I] ,  Beasley (21, Boffey 131, Christofides [5], 
Christofides and Beasley[4], Cornuej 01s [6] [7] [B] , Even[9], 
Fisher and Hochbaum [ 101, Francis and White [ 1 11, Handler and 
Mirchandani [ 121, Jacobsen and Pruzan [ 131, Krarup and Pruzan 
[15], ReVelle [ 171, Rosing [18]. 

In this paper we investigate the k-median problem defined on 
a graph. That is, each point represents a vertex of a graph. 
Unless otherwise specified, it is assumed that Cii = 0, C, = Cji 
(symmetry of distance) and C, I Cil + Cy (triangular inequality). 

Kolen [14] proved that the linear programming relaxation of 
the simple plant location problem defined on graphs has  a n  
integer optimal solution when the underlying graph is a tree. 
However, this does not hold for the k-median problem. We state 
this observation as a proposition below. 

Proposition 1: When the underlying graph is a tree, the linear 
programming relaxation of the k-median problem on a graph can 
have a fractional optimal solution. 

ProoJ 
By an  example in Figure 1. 
Numbers on the edges in the following graph are the length of 

edges. 
For the following tree with k = 2, 
ZIP = 5 for with a n  optimal solution of Y3 = Yq = 1, 5 = 0 for j = 

1, 2, 5 and X,  is defined to satisfy (2) - (4). 
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Figure 1. Tree of Duality Gap 

Z, = 4.5 with a unique optimal solution of Yl = 0, Y, = 1/2 for 
j = 2, 3, 4, 5 and X12 = X13 = X22 = X23 = X32 = X33 = q3 = &4 = 
XS3 = X55 = 1 /2, all other X, =O.// 

2. A tree model 

Since the linear programming relaxation of the k-median 
problem on a tree can have a fractional optimal solution, here 
we further investigate a tree in which the optimal linear program 
solution is always fractional. 

We introduce a notion of a dominating set. 

Definition 1: A subset DGl, ( Dl = k is a dominating set if for 
every node that does not belong to D, there exists at  least one 
edge which connects it to any node in D. If the length of each 
edge, C,> 1 for all i+j, then we must have 

Lemma 2: 
If there exists a dominating set in a graph, then ZIP = ZLP = n- k 

ProoJ 
If a dominating set exists in a graph, ZIP = I n 1 - k. Hence Lemma 

2 follows (6). / /  
We derive the dual of the linear programming relaxation of k- 

median problem. Let Vi, U, Wg, t, be the dual variables associated 
with the following LP relaxation constraints set (7)-(11) respectively. 
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C .  ~ € 1  Y , = k  

x.. < y. 
Y -  J 

Yj < 1 

x,, Yj r 0 

The dual formulation is: 

2, = ~ a x x  iEIVi - k  * U - xjEI t j  

vi - w.. < c.. 
Y -  Y i , j ~ I  

iEIWy - Utj < 0 j ~ 1  
W,, t j  2 0 i , j ~ I  

Vi and U : unrestricted 

We present a tree where linear programming relaxation always 
has  fractional optimal solution. Consider following a graph 
where p is the number of spokes and each spoke consists of two 
nodes except node 0. 

Theorem 3 
For 2 1  k 6 p ,  the optimal solution to the above tree is, 
Yo = (p - k ) / ( p  - l ) ,  Y,, = ( k  - 1 - l), 5, = 0 for each spoke, 
ZLdk) = ( 3 9  - 2pk - p  + k  - l ) / ( p  - I ) .  

Pro03 
Let V,, W y ,  U, t, be dual variables and we construct a dual 

feasible solution as follows. 

Figure 2. The Tree with unit edge cost 
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Vo = 1, V,, = 1, = 2 + 1 - I), til = tD = 0 for each spoke, U = 
2+l/(p - 1). 

Woo = I ,  Wojl = WOj2 = 0, Wjlo =O, WjU1 = 1, Wjlj2 = 0, and 

%0 - 1 j 1  = 1 - 11, WJ2j2 = 2+l/ (p  - 1) 
The value of the above solution, which is dual feasible, is: 
Zp(D) = ziE1vi - kU = (39 - 2pk - p+ k- 1 / (P - 1) , which is ZLP. 
By strong duality theorem, both primal and dual solutions are 

optimal. / / 

Proposition 4 
For 2 < k < p, a n  optimal integer solution is Yo = 1, TI = 1 for 

any k- 1 spokes. 

Roo$ 
The value of above solution ZLp = (k - 1)+3(p - k +1) = 3p - 2k + 

2, and 
ZIP - Z p  = (k - l)/(p -1)<1.// 

Proposition 4 implies that even though a duality gap, Zlp - ZLP, 
always exists for the tree given in Figure 2, the duality gap is 
less than 1 and goes to 1 when p goes to infinity for k = p - 1. 
One interesting feature of the above tree is that for k = p, there 
is no duality gap. 

Proposition 5 
For k = p, duality vanishes for the above tree. That is, ZIP = Zp 

Roo$ 
Let J* be a set of jl of each spoke. Then SX is a dominating set, 

so ZIP = ZLP = p + 1 with TI - 1 = 1 for each spoke. / /  

Since dual feasible region is independent of the value of k, we 
have the following results. 

Theorem 6 
Let S* = {V, V, W ) be an optimal LP solution of 2 1  k = k* - p. 

Then S* is also an optimal LP solution of 2 - k = K" + a - p. and 
ZLP(K" + a) = ZlddK") - a V .  



Pro03 
Since dual feasible region does not depend on the value of k, S* 

is a feasible LP solution to k = k* + a. The value of this solution S* 
to k = k* + a is {3$ - 2p(k*+ a) - p + (k* + E)  - 1 - 1) = ZLP(k) - 
aV, which is optimal value according to theorem 3. / /  

Consider a random tree T, with node set I = (1, 2, . .., n} where 
each of the n,-, different trees is equally likely to occur. The 
distance d, is the number of edges in the unique path from i to j 
in T,. Then we have random trees on n nodes, the number of 
values of k such that zlp#zLp is almost surely a t  least cn, for 
some constant o 0. 

Theorem 7. 
(a) For k = 1 or k 2  [(n- 1) /2], Zip = ZLp for every tree on n nodes. 
(b) For 2 1 k <[(n- 1)/2], and n+8, there is a tree on n nodes 

such that ZIP+ ZLP. 

Pro03 
For the 1-median problem, it is well known that ZIP = ZLp for 

every choice of do, 1 i i, j 5  n. For example, this result appears in 
Mukendi [ 161. 

When k 2  [n/2], zip = ZIdP = n - k follows from the fact that every 
tree on n nodes has  a dominating set of cardinality a t  most 
[n/21. 

To complete the proof of Theorem 7(a), it suffices to consider 
the case where n is even and k = n/2 - 1. By induction, one can 
show that the only trees which do not have a dominating set of 
size k are constructed inductively from a path with 4 nodes by 
adding paths Pi = (vli, v,~, v33 where vl i  is one of the non-leaf 
nodes of the current tree and yi, v3i are two new nodes. (See 
Figure 3-a) From the construction Zlp = n - k + 1 = n/2 + 2. 
Using the dual values u, = 2 if X, is a leaf, 1 if not, Z,, = n/2+ 2. 
Therefore Zrp = ZlJP 

To prove Theorem 7(b) when n is odd, consider the tree of 
Figure 3-b. Let p = (n - 1)/2. An optimal solution of the k-median 
problem is to take S = (1, 2, 4, 6, . . . , 2(k - 1)). Then ZIP = 3p - 2(k 
- 1). We get a feasible solution of the LP relaxation by setting xl = 
( p  - k)/(p - 1) and x~~ = (k - 1) / (  p - 1) for i = 1, . . . , p. This yields 
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Figure 3-a. 

Figure 3-b. 

Z,,< ( 3 9  - 2pk - p  + k - l ) / ( p  - 1). Therefore 2, - Z,2 ( k  - I ) /  (p - 
1)>0 

To prove Theorem 7(b) when n is even, n f 8 ,  we first consider 
the case k 2 3 .  Add a node p2+l adjacent to pz to the tree of 
Figure 3-b. Then it is optimum to choose p, in S, and we can 
also choose p1 = 1  in the LP solution. Removing pl ,  p2 and p2+ 1, 
we are back to the case where n is odd and k 2 2 .  Now consider 
the case n l  10 even and k = 2. Add three nodes to the graph of 
Figure 3-b, namely il+l adjacent to il for i = 1, 2,  3. Then Zp = 
3 p  + 3 ,  but there is a better LP solution, namely y,  = 1 and y2 = 
y4 = &/6= 1 / 3 .  This yields ZLp =3p + 1.  / / 
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3. Conclusion 

In this paper we investigated the k-median problem defined on 
graphs  whose linear programming relaxation can  have a 
fractional optimal solution. We further presented the k-median 
problem on graphs whose linear programming relaxation always 
has  fractional optimal solution even though the underlying 
graph is a tree. 

We conclude with following observat ion.  The l inear  
programming relaxation of the k-median problem defined on 
graphs can have fractional optimal solution even when the 
underlying graph is a perfect graph. 

Proposition 8: 
When the underlying graph is a tree, line graphs, or claw-free 

and triangulated graphs (perfect graph), the linear programming 
relaxation of the k-median problem can have fractional optimal 
solution. 

ProoJ 
Consider the following graph. The length of three edges 

connecting nodes 1 , 2,, 3 ,  is 4, and the length of other edges is 
1 where length of each edge is 1. The unique optimal linear and 
integer solution for k = 2 is the same as that of Figure 2 with 
p=2.// 

Figure 4. Graph of Duality Gap 
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