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Abstract 

Development of multi-dimensional diagnostic and 

prognostic models in epithelial ovarian cancer 

 

Se Ik Kim 

 Department of Obstetrics and Gynecology, 

Seoul National University College of Medicine 

 

Ovarian cancer, one of the deadliest female cancers, shows the lowest 5-year 

survival rate among gynecologic malignancies. Owing to the absence of cancer-

specific symptoms and effective screening tools, ovarian cancer tends to be 

diagnosed at an advanced-stage and thus has a high recurrence and mortality 

rate despite intensive treatment. Currently, cytoreductive surgery followed by 

taxane- and platinum-based chemotherapy is conducted as the primary 

treatment in patients with advanced-stage epithelial ovarian cancer. 

Nevertheless, 80% of patients who showed complete response after the primary 

treatment eventually experience the disease recurrence. 

In keeping with the era of precision medicine, discovery of precise diagnostic 

models for ovarian cancer and models predicting the exact prognosis of 

epithelial ovarian cancer is necessary as the first step of implementation of 

individualized treatment. Thus, we conducted a series of studies developing 

various models in epithelial ovarian cancer. 

 

In chapter 1, we developed a diagnostic model identifying ovarian cancer 

from benign ovarian tumors using metagenomic data from serum microbe-

derived extracellular vesicles (EVs).  

For women with adnexal masses, distinguishing ovarian cancer from benign 

ovarian tumors is an important issue, as it determines the treatment plan, 

including the surgical approach. The detection tools currently available for 
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ovarian cancer are serum cancer antigen 125 (CA-125) and imaging studies, 

such as ultrasonography, computed tomography (CT) scans, and magnetic 

resonance imaging (MRI). However, further improvements in differentiating 

adnexal masses are still needed.  

In this study, we obtained serum samples from 166 patients with 

pathologically confirmed OC and 76 patients with benign ovarian tumors. For 

model construction and validation, samples were randomly divided into 

training and test sets in the ratio 2:1. Isolation of microbial EVs from serum 

samples of the patients and 16S rDNA amplicon sequencing were carried out. 

Metagenomic and clinicopathologic data-based ovarian cancer diagnostic 

models were constructed in the training set and then validated in the test set. 

There were significant differences in the metagenomic profiles between the OC 

and benign ovarian tumor groups; specifically, genus Acinetobacter was 

significantly more abundant in the ovarian cancer group. More importantly, 

Acinetobacter was the only common genus identified by seven different 

statistical analysis methods. Among the various metagenomic and 

clinicopathologic data-based ovarian cancer diagnostic models, the model 

consisting of age, serum CA-125 levels, and relative abundance of 

Acinetobacter showed the best diagnostic performance with the area under the 

receiver operating characteristic curve (AUC) of 0.898 and 0.846 in the training 

and test sets, respectively. Thus, our findings establish a metagenomic analysis 

of serum microbe-derived EVs as a potential tool for the diagnosis of ovarian 

cancer. 

 

In chapter 2, we developed nomograms predicting treatment response and 

prognosis of epithelial ovarian cancer.  

To date, several prognostic indexes and predictive nomograms for the 

survival outcome of epithelial ovarian cancer have been developed based on 

pre-operative imaging such as CT scans, differential blood cell counts, tumor 

markers, operative findings, or pathologic results. However, these nomograms 

were developed in different disease settings, analyzed only fragments of 

clinicopathologic factors, and had a low or limited prediction ability making it 
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difficult for physicians to use them in clinical practice. Thus, this study aimed 

to develop more precise nomograms to predict treatment response and survival 

outcomes in patients with epithelial ovarian cancer from two high-volume 

tertiary institutional hospitals through a comprehensive review of medical 

records and statistical analyses. All previously published and possible 

prognostic factors were included as far as possible and investigated. 

In total, 866 patients diagnosed with and treated for epithelial ovarian cancer 

were included. To construct predictive nomograms for platinum sensitivity, 3-

year progression-free survival (PFS), and 5-year overall survival (OS), we 

performed stepwise variable selection by measuring AUC with leave-one-out 

cross-validation. For model validation, 10-fold cross-validation was applied.  

The median length of observation was 42.4 months (interquartile range, 25.7 to 

69.9 months), during which 441 patients (50.9%) experienced disease 

recurrence. The median value of PFS was 32.6 months and 3-year PFS rate was 

47.8%, while 5-year OS rate was 68.4%. The AUCs of the newly developed 

nomograms predicting platinum sensitivity, 3-year PFS, and 5-year OS were 

0.758, 0.841, and 0.805, respectively. We also developed predictive nomograms 

confined to the patients who underwent primary debulking surgery. The AUCs 

for platinum sensitivity, 3-year PFS, and 5-year OS were 0.713, 0.839, and 

0.803, respectively. In conclusion, we successfully developed nomograms 

predicting treatment response and prognosis of patients with epithelial ovarian 

cancer. These nomograms are expected to be useful in clinical practice and in 

designing clinical trials. 

 

In chapter 3, we investigated the impact of sarcopenia and body composition 

on survival outcomes in patients with advanced-stage high-grade serous 

ovarian carcinoma (HGSOC). 

Sarcopenia, characterized by loss of skeletal muscle mass and function, and 

its impact on cancer prognosis may vary by geographical regions and ethnicities. 

Recently, quantitative analysis of biomedical images, referred to as radiomics, 

is emerging as a promising approach to facilitate clinical decisions and improve 

patient stratification. A cross-sectional image of CT scans at the level of the 
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third lumbar vertebra (L3) is known to represent an individual’s body 

composition, such as total body skeletal muscle and adipose tissues and fat 

distribution. 

We retrospectively identified patients diagnosed with and treated for 

International Federation of Gynecology and Obstetrics stage III-IV HGSOC. 

Skeletal muscle index (SMI) was measured using pre-treatment CT scans at the 

level of L3 vertebral body. Sarcopenia was defined as SMI <39.0 cm2/m2. 

Patients’ clinicopathologic characteristics and survival outcomes were 

compared according to sarcopenia presence. For subgroup analysis, we also 

measured the total fat area from the same image. In total, 76 and 103 patients 

were assigned to the sarcopenia and control groups, respectively. Comorbidities, 

stage, serum CA-125 levels, and size of residual tumor after surgery were 

similar between both groups. After a median follow up of 42.7 months, both 

groups showed similar PFS and OS. In subgroup analysis confined to the 

sarcopenia group, patients with high fat-to-muscle ratio (FMR; ≥2.1, n=38) 

showed significantly worse OS than those with low FMR (<2.1, n=38) (5-year 

survival rate, 44.7% vs. 80.0%; P=0.046), whereas PFS was not different 

(P=0.365). Multivariate analyses identified high FMR as an independent poor 

prognostic factor for OS in this group (adjusted hazard ratio, 3.377; 95% 

confidence interval, 1.170–9.752; P=0.024). In conclusion, sarcopenia did not 

influence recurrence rates and survival in Korean patients with advanced-stage 

HGSOC. However, among the patients with sarcopenia, high FMR was 

associated with decreased OS. 

 

From these integrative analyses, we successfully developed multi-

dimensional diagnostic and prognostic models, consisting of individual’s 

clinicopathologic, metagenomics, and radiomics data, in epithelial ovarian 

cancer. The multi-dimensional approach in epithelial ovarian cancer improved 

the predictive ability of each model and was found to be critical in precision 

cancer medicine. This approach will provide us with a therapeutic strategy, 

thereby allowing us to take a giant leap forward for individualized treatment of 

ovarian cancer.  
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1. Introduction 

Ovarian cancer is the deadliest gynecologic cancer worldwide (1). In the 

United States, the number of new cases of ovarian cancer and cancer deaths 

from ovarian cancer in 2019 were estimated to be 22,530 (2.5% of all female 

cancers) and 13,980 (4.9% of female cancer deaths), respectively (2). In Korea, 

the incidence of ovarian cancer has been increasing gradually (3). Owing to a 

lack of specific symptoms and effective screening tools, the majority of ovarian 

cancer cases are diagnosed at an advanced stage, resulting in a high recurrence 

and mortality rate (4). Among the various histologic types of ovarian cancer, 

the majority (90%) are epithelial ovarian cancer. 

For women with adnexal masses, distinguishing ovarian cancer from 

benign ovarian tumors is an important issue, as it determines the treatment plan, 

including the surgical approach. The detection tools currently available for 

ovarian cancer are serum cancer antigen 125 (CA-125) levels, ultrasonography, 

computed tomography (CT) scans, and magnetic resonance imaging (MRI). 

Combinations of modalities provide better diagnostic performance for 

identifying ovarian cancer than each modality alone (5). The risk of malignancy 

index (RMI) scoring system, consisting of serum CA-125, menopausal status, 

and ultrasound features, as well as the risk of ovarian malignancy algorithm 

(ROMA), a biomarker-based algorithm consisting of serum CA-125 and human 

epididymis protein 4 (HE4), have been developed (6, 7). Both RMI and ROMA 

are reliable tools and perform equally well in differentiating ovarian cancer 

from adnexal masses (8, 9). However, considering that their diagnostic 
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performance and accuracy differ among the prospective cohort studies, further 

improvements in differentiating adnexal masses are still needed (10-12).  

Microbiota, a microbial environmental factor that we are constantly 

exposed to, has emerged as a link between the host and various cancer types. 

Human microbiome studies have revealed that significant differences in 

microbiota composition are associated with oral, esophageal, pancreatic, and 

colorectal cancers (13-16). Although the exact underlying mechanisms are still 

not well-understood, microbe-induced inflammation is thought to trigger 

changes in the tumor microenvironment, promoting tumorigenesis (17, 18). 

Advances in the sequencing technique of microbial genomes have expanded 

microbiome data and extended our understanding on microbiota-host 

interactions. Especially, 20–200 nanometer-sized extracellular vesicles (EVs), 

constitutively secreted by microbes and detectable in body fluids, are 

considered to play an important role in such interactions (19, 20). 

A recent study has compared the microbiome signature between fresh 

ovarian cancer tissues (n=25) and normal fallopian tube fimbria tissues (n=25) 

and suggested that changes in microbial composition might be related to the 

process of ovarian cancer development (21). However, the relationship between 

serum microbial EVs and ovarian cancer has yet to be investigated. The relative 

abundance of certain microbial EVs released in the blood might differ between 

benign and malignant ovarian tumors, and those differences could be utilized 

in the differential diagnosis of adnexal masses. Thus, this study aimed at 

developing diagnostic models to differentiate between ovarian cancer and 
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benign ovarian tumors through the metagenomic analysis of serum microbial 

EVs. 

 

2. Materials and Methods 

2.1 Study population 

Since June 2012, we have been collecting biological samples of patients 

scheduled to undergo surgery for adnexal masses for research purposes; under 

the patients’ written informed consent, blood samples and cancer tissues are 

obtained the day before surgery and at the time of surgery, respectively, and 

then stored at the Human Biobank of Seoul National University Hospital 

(SNUH). 

For the present study, we identified relevant patients and obtained their 

frozen serum samples from the Human Biobank. Inclusion criteria for the study 

population were as follows: (1) older than 18 years; (2) underwent surgery for 

an adnexal mass between June 2012 and February 2018; and (3) pathologically 

diagnosed with either epithelial ovarian cancer or benign ovarian tumor. 

Patients with the following conditions were excluded: (1) diagnosed with any 

malignancy other than ovarian cancer synchronously or before the surgery; (2) 

neoadjuvant chemotherapy (NAC) or targeted therapy before surgery; (3) 

borderline ovarian tumors; and (4) severe comorbidities, such as end-stage 

renal disease, uncontrolled diabetes mellitus, or long-term corticosteroid use. 

In total, 166 patients with ovarian cancer and 76 patients with benign ovarian 

tumors were included in this study. Through review of the medical records, we 



11 

 

collected baseline characteristics including the age at diagnosis, body mass 

index (BMI), comorbidities, and initial serum CA-125 levels. We also reviewed 

all patients’ pathology results and collected information on the International 

Federation of Gynecology and Obstetrics (FIGO) stage for the study group. 

Then, the patients’ clinicopathologic characteristics were compared between 

the ovarian cancer group and the benign ovarian tumor group. Metagenomic 

profiling was carried out with the patients’ frozen serum samples according to 

the procedures described below. 

 

2.2 EV isolation and DNA extraction from serum samples 

We isolated EVs from the serum samples using the differential centrifugation 

method, as described previously (22). In brief, serum samples were centrifuged 

at 3,000 rpm for 15 min at 4℃, and 100 ul of the supernatant was mixed with 

1 × PBS, pH 7.4 (ML 008-01, Welgene, Republic of Korea). The floating 

particles were sunk through centrifugation at 10,000 g for 1 min at 4℃. After 

centrifugation, bacteria and foreign particles were thoroughly eliminated by 

sterilizing the supernatant through a 0.22-um filter. 

To extract the DNA from the EVs’ membranes, EVs separated from serum in 

the previous steps were boiled for 40 min at 100℃. To eliminate the remaining 

floating particles and debris, the supernatant was collected after 13,000 rpm of 

centrifugation for 30 min at 4℃. EVs’ DNA was extracted using a DNA 

isolation kit according to the standard protocol (PowerSoil DNA Isolation Kit, 

MO BIO, Carlsbad, CA, USA). The DNA from EVs in each sample was 

quantified by using the QIAxpert system (QIAGEN, Hilden, Germany). 
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2.3 Microbial metagenomic analysis 

16S rDNA gene-based metagenomic analysis, bacterial genomic DNA was 

amplified with 16S_V3_f (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAG 

ACAGCCTACGGGNGGCWGCAG-3′) and 16S_V4_r (5′-GTCTCGTGGGC 

TCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′) 

primers, which are specific for the V3-V4 hypervariable regions of the 16S 

rDNA gene. The libraries were prepared using PCR products according to the 

MiSeq System guide (Illumina, San Diego, CA, USA) and quantified using a 

QIAxpert (QIAGEN, Hilden, Germany). Each amplicon was then quantified, 

and the equimolar ratio was set, pooled, and sequenced on a MiSeq (Illumina, 

San Diego, CA, USA) according to the manufacturer’s recommendations. 

 

2.4 Analysis of microbial composition in the microbiota 

Paired-end reads that matched the adapter sequences were trimmed by 

Cutadapt (version 1.1.6) (23). The resulting FASTQ files containing paired-end 

reads were merged with CASPER and then quality filtered with Phred (Q) 

score-based criteria described by Bokulich (24, 25). Any reads shorter than 300 

bp after merging were also removed. To identify the chimeric sequences, a 

reference-based chimera detection step was conducted with VSEARCH against 

the Greengenes database (26). Next, the sequence reads were clustered into 

operational taxonomic units (OTUs) using CD-HIT with a de novo clustering 

algorithm under a threshold of 97% sequence similarity. The representative 
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sequences of the OTUs were finally classified using the Greengenes database 

(version 13.8) with UCLUST (parallel_assign_taxonomy_uclust.py script on 

QIIME (version 1.9.1) under default parameters) (27). The Chao indices, an 

estimator of the richness of taxa per individual, were estimated to measure the 

diversity of each sample. 

 

2.5 Development of diagnostic models for ovarian cancer 

To construct and validate the diagnostic models for ovarian cancer, we 

randomly divided the samples from each group into training and test sets in the 

ratio 2:1, considering the ratio of ovarian cancer and benign ovarian tumors in 

the total 242 samples. The values of each training and test set were transformed 

to a centered log ratio. Discovery of microbiome biomarkers and construction 

of diagnostic models were performed in the training set (n=161), while 

validation of newly developed diagnostic models were performed in the test set 

(n=81).  

We filtered the genus if the zero proportion was more than 99%. To identify 

specific microbiome biomarkers that were differentially distributed between the 

ovarian cancer and benign ovarian tumor groups, we performed metagenomic 

analyses using eight statistical methods popularly used with the filtered count 

data: Wilcoxon, Metastats, EdgeR, DESeq2, zero-inflated Gaussian mixture 

model (ZIG), zero-inflated beta regression (ZIBSeq), analysis of composition 

of microbiomes (ANCOM), and centered log-ratio transformation and 

permutation logistic regression model (CLR Perm). We used the abundance of 

the OTUs as the algorithms were developed based on the abundance data. 
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Comparing the list of significant microbiome biomarkers identified by each 

statistical method, we chose biomarkers that overlapped as far as possible, 

because each method provides a different list of microbiome biomarkers, and 

most overlapped ones are expected to be highly plausible biomarkers. 

We constructed several diagnostic models identifying ovarian cancer from 

benign ovarian tumors by combining the microbiome biomarkers with patients’ 

ages and serum CA-125 levels, and these models were validated in the test set. 

To evaluate the diagnostic performance of the developed models, each model’s 

sensitivity, specificity, and area under the receiver operating characteristic 

curve (AUC) were calculated. 

 

2.6 Statistical analysis 

Statistical analyses were performed to evaluate differences in the 

clinicopathologic characteristics between the two groups. The Student’s t-test 

and Mann–Whitney U test were used to compare continuous variables, while 

the Pearson’s chi-square test and Fisher’s exact test were used to compare 

categorical variables. Shannon index was calculated to measure α-diversities of 

the microbiota. 

Summaries of the eight statistical methods that were applied to the 

metagenomic analyses are as follows: (1) The Wilcoxon rank sum test is the 

nonparametric type of the two-sample t-test, which uses the sum of ranks for 

observations. (2) Metastats compares the number of samples by group and the 

number of taxa. Welch’s t-test statistics were applied when the taxon count was 

larger than the number of samples. Otherwise, Fisher’s exact test was used. (3) 
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EdgeR and (4) DESeq2 methods are usually used in the analysis of RNA-

sequencing data. As metagenome data is extracted from 16S rDNA, application 

of these methods has been often tried. Both methods are the negative binomial 

models; however, the difference between the two methods is that EdgeR uses a 

trimmed mean of M-values normalization, whereas DESeq2 uses a relative log 

expression normalization. (5) ZIG uses the log normal mixture model for the 

taxon count, taking sparsity on the OTU table into account. To overcome high 

false-positive rates, we adopted empirical Bayes shrinkage of parameter 

estimates. (6) ZIBSeq uses the beta mixture model for relative abundance. 

Relative abundance after total sum-scaling normalization was performed owing 

to the large number of zeros and results with the skewed distribution. (7) 

ANCOM was used to compare relative abundance of the OTUs; Wilcoxon rank 

sum test was used in comparisons of the two groups after the log-ratio 

transformation of all pairwise taxa. The Kruskal-Wallis test was used in 

comparisons of the three groups, and the Freidman test was used in comparisons 

of repetitive data. (8) CLR Perm fits the logistic model after the centered log-

ratio transformation with count data to alleviate the sum to one constraint of 

relative abundance. The permutation test was adopted to decrease the false 

discovery rate. 

R statistical software (version 3.4.4; R Foundation for Statistical Computing, 

Vienna, Austria; ISBN 3-900051-07-0; http://www.R-project.org) was used for 

the statistical analyses. A two-sided P value below 0.05 was considered 

statistically significant. 

 

http://www.r-project.org/
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2.7 Ethical statement 

This retrospective case-control study using metagenomics was conducted 

after obtaining approval from the Institutional Review Board of Seoul National 

University Hospital (SNUH; No. 1612-102-816). 

 

3. Results 

3.1 Characteristics of the study population 

The overall study design is displayed in Figure 1. Table 1 presents the 

clinicopathologic characteristics of all patients. Although patients in the ovarian 

cancer group were significantly older than those in the benign ovarian tumor 

group (mean, 53.6 vs. 49.4 years; P=0.041), other characteristics such as BMI, 

menopausal status, and comorbidities were similar. After 2:1 random 

distribution of the patients into training and test sets, ovarian cancer patients 

were still older than those with benign ovarian tumors in the training set, 

whereas patients’ ages were similar in the test set. Both in the training and test 

sets, no differences in BMI, menopausal status, and comorbidities were 

observed between the ovarian cancer and benign ovarian tumor groups. 

In the training set, serum CA-125 levels were significantly higher in patients 

with ovarian cancer (median, 331.1 vs. 22.3 IU/mL; P<0.001). Among the 110 

patients with ovarian cancer, 39 (35.5%) and 71 (64.5%) were diagnosed with 

FIGO stage I-II and III-IV, respectively. The most common histologic type was 

high-grade serous carcinoma, which was observed in 54.5% of ovarian cancer 

patients. Among the 51 patients with benign ovarian tumor, mucinous 
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cystadenoma (47.1%) was the most common pathologic diagnosis, followed by 

serous cystadenoma (15.7%). 

In the test set, the ovarian cancer group also showed significantly higher 

serum CA-125 levels compared to the benign ovarian tumor group (median, 

432.3 vs. 20.6 IU/mL; P <0.001). FIGO stage I-II disease was observed in 41.1% 

of ovarian cancer patients. The most common histologic types in the ovarian 

cancer and benign ovarian tumor groups were high-grade serous carcinoma 

(50.0%) and serous cystadenoma (28.0%), respectively. 

 

3.2 Comparison of metagenomics profiles between the two 

groups 

Figure 2 depicts the landscape of the metagenomic profiles of all patients. 

Figure 2A shows all 31 phyla detected in ovarian cancer and benign ovarian 

tumor groups. In the genus-level composition, a total of 587 genera were 

detected in all patients. Among them, 110 significantly differentially distributed 

genera identified by at least two statistical methods are displayed with their 

relative abundance in Figure 2B. Herein, genus Acinetobacter showed high 

relative abundances both in ovarian cancer and benign ovarian tumor groups. 

In the training set, 107 of 110 ovarian cancer patients (97.3%) had 

Acinetobacter, while 50 of 51 benign ovarian tumor patients (98.0%) had 

Acinetobacter. In the test set, Acinetobacter was found in 98.2% (55/56) and 

100.0% (25/25) of ovarian cancer and benign ovarian tumor groups, 

respectively. 
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In general, “genus” is regarded as the lowest level of taxonomy, where 

unassigned or unclassified microbiome are relatively small. Most previous 

studies on microbiome analyses have reported metagenomic profiles up to the 

genus level. Therefore, we investigated further metagenomic profiles of the two 

groups in the genus level. 

In metagenomics, α-diversity and β-diversity are used to overview the 

distribution of the data composition: α-diversity refers to the richness, evenness, 

and dominance of taxa in a particular community, while β-diversity means 

taxonomic differences between the communities (28). Comparing the genus-

level α-diversity, the Shannon index was not different between the ovarian 

cancer and benign ovarian tumor groups in the training set (median, 3.294 vs. 

3.263; P=0.270), as well as in the test set (median, 3.210 vs. 3.238; P=0.810) 

(Figure 3). In order to compare β-diversity, we analyzed clustering at the genus 

level using multidimensional plots. However, these plots did not show 

distinguished clustering between the ovarian cancer and benign ovarian tumor 

groups in the training and test sets (Figure 4). 

 

3.3 Development of diagnostic models for ovarian cancer 

Through the metagenomic analyses using various statistical methods, we 

identified genus-level microbiome biomarkers that were differentially 

distributed between the ovarian cancer and benign ovarian tumor groups with 

statistical significance: Wilcoxon test, Metastats, EdgeR, DESeq2, ZIG, 

ZIBSeq, ANCOM, and CLR Perm identified 1, 98, 3, 8, 447, 56, 1, and 2 

biomarkers, respectively, at adjusted q values using a false discovery rate 
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(≤0.05). Table 2 shows the top 10 microbiome biomarkers identified by each 

statistical method, in order of overlap. 

Next, we examined the overlap of these genus-level microbiome biomarkers 

among the eight statistical methods (Figure 5). In total, 486 biomarkers were 

identified to be significantly differentially distributed by at least one statistical 

method. Among them, 110 and nine markers overlapped at least two and three 

statistical methods, respectively. Acinetobacter was the only common genus 

identified by seven different statistical analysis methods. Specifically, 

Acinetobacter was significantly more abundant in the ovarian cancer group than 

in the benign ovarian tumor group (median [interquartile range], 0.084 [0.037–

0.222] vs. 0.033 [0.008–0.075]; Wilcoxon rank sum test, P <0.001). Therefore, 

we selected Acinetobacter as the most potential and highly plausible genus-

level microbiome biomarker for differentiating ovarian cancer from benign 

ovarian tumors. 

Combining the relative abundance of Acinetobacter with patients’ 

clinicopathologic variables, we constructed several diagnostic models to 

differentiate ovarian cancer from benign ovarian tumors (Table 3). The model 

composed of age, serum CA-125 levels, and relative abundance of 

Acinetobacter showed 86.4% sensitivity and 78.4% specificity. This model 

showed a superior AUC (0.898) than any other models, with less than three of 

the following variables: age, serum CA-125 levels, and Acinetobacter. 

 

3.4 Validation of diagnostic models for ovarian cancer 

The developed diagnostic models were validated in the test set. Among the 
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various models, the model consisting of patients’ ages at diagnosis, initial serum 

CA-125 levels, and relative abundance of Acinetobacter yielded the best 

diagnostic performance for differentiating ovarian cancer from benign ovarian 

tumors as follows: sensitivity, 82.1%; specificity, 68.0%; and AUC, 0.846 

(Table 3 and Figure 6). 

 

4. Discussion  

In the present study, we successfully extracted microbe-derived EVs from 

the serum samples and characterized the metagenomic profiles of 242 patients: 

166 with ovarian cancer and 76 with benign ovarian tumors. Incorporating the 

relative abundance of specific microbiomes at the genus level with patients’ 

ages and serum CA-125 levels, we developed a new diagnostic model to 

differentiate ovarian cancer from benign ovarian tumors; this model even 

showed a better diagnostic performance than those without a microbiome 

biomarker. 

Recently, metagenomic analysis has been noticed as a new approach; it has 

opened new horizons in the diagnosis of human disease. The Human 

Microbiome Project, funded by the National Institutes of Health, triggered the 

broadening of our insights into the microbiome. The relative abundance of 

certain microbes varies in chronic diseases, such as diabetes, obesity, 

cardiovascular disease, inflammatory bowel disease, and chronic allergies (29, 

30). In various malignancies, disruption in the stability of microbiota or 

structural microbiome shifts have been reported (13-16). However, to date, few 

studies have examined microbiomes in ovarian cancer (21). 
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The current study provides new scientific evidence regarding different 

distributions of microbiomes in serum EVs between ovarian cancer and benign 

ovarian tumors. Unlike previous researchers who used samples obtained from 

female reproductive organs (21, 31), we used patients’ serum samples. 

Compared to the former, obtaining serum samples is much easier and less 

invasive; organ harvesting is not required. Considering the fact that an exact 

diagnosis is confirmed through surgery, a pre-operative diagnostic model using 

serum samples certainly has merit. Therefore, our study shows the potential of 

serum microbial EVs as a liquid biopsy for the diagnosis of ovarian cancer. 

Interestingly, we found that the genus Acinetobacter was significantly more 

abundant in the ovarian cancer group than in the benign ovarian tumor group. 

Moreover, Acinetobacter was the only commonly found genus through almost 

all available statistical analysis methods developed so far. In general, 

Acinetobacter baumannii (A. baumannii), a species of the genus Acinetobacter, 

is a pathogen related to human infections, such as pneumonia, blood stream 

infection, urinary tract infection, and meningitis (32). Infection with 

Acinetobacter is also common in cancer patients, and a relationship between A. 

baumannii and poor survival outcomes was also reported among patients with 

various cancer types(33, 34). Similar to our study, Zhou et al. showed that 

Acinetobacter, especially the Acinetobacter lwoffii species, was significantly 

enriched in ovarian cancer tissues compared to normal distal fallopian tube 

tissues (21). 

To explore the underlying mechanisms between Acinetobacter and epithelial 

ovarian cancer, the following two aspects should be considered: bacterial 
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factors and host responses against them. Bacterial products, such as 

lipopolysaccharide (LPS), can stimulate the tumor to produce proinflammatory 

cytokines that enhance tumor survival (LPS-induced tumor growth). On the 

host side, Toll-like receptors (TLRs) are transmembrane proteins known to play 

an important role in immunosurveillance and responses toward microorganisms 

(35). 

Previously, through in vitro and in vivo studies, researchers have 

demonstrated that LPS, as well as EVs, secreted by A. baumannii stimulate the 

TLR-4 signaling pathway and trigger the host’s immune response against an A. 

baumannii infection (36-39). In addition, EVs secreted by Acinetobacter 

nosocomialis, another important pathogen of various opportunistic infections, 

are also known to induce cytotoxicity of epithelial cells and host inflammatory 

responses (40). Interestingly, the expression of TLR-4 is observed in both the 

normal ovarian surface and epithelial ovarian tumor cell lines (41). In epithelial 

ovarian cancer, TLR-4 signaling has been demonstrated to promote tumor 

growth and to develop chemoresistance (42). Therefore, we suggest that 

products secreted by the Acinetobacter species may cause the development of 

epithelial ovarian cancer through the TLR-4 signaling pathway. 

In accordance with the era of precision medicine, it is obvious that reliable 

diagnostic tools are essential for detecting ovarian cancer. Our study results 

imply that adding the metagenomic data to the conventional diagnostic model 

might improve its performance in the detection of ovarian cancer. However, the 

diagnostic model composed of patients’ ages, serum CA-125 levels, and 

relative abundance of the genus Acinetobacter needs to be externally validated. 
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Nevertheless, this study tried to overcome this limitation by separating the test 

and training sets from the beginning and faithfully implementing the internal 

validation. 

Developing the diagnostic models for identifying ovarian cancer, we 

believed that it was the most important to reduce the false-negative rate 

considering its worse prognosis compared to any other malignancies. Therefore, 

during the model construction, we focused on achieving a high accuracy and 

maintaining the sensitivity, even if specificity was compromised. As the result, 

we reported our newly developed diagnostic model’s diagnostic performance 

as follows: sensitivity 86.4% and specificity 78.4% (AUC 0.898) in the training 

set; and sensitivity 82.1% and specificity 68.0% (AUC 0.846) in the test set. 

Diagnostic performance of our newly developed, microbiome biomarker-

based diagnostic model was not compared with the currently available tools, 

such as the ROMA and RMI scoring systems. At our institution, the serum HE4 

test is not routinely performed in women with adnexal masses. In our study 

population, only 53.3% (129/242) underwent the serum HE4 test, so that 

ROMA could be calculated. Owing to the retrospective study design, we were 

not able to retrieve all the pre-operative transvaginal ultrasonography images, 

so that RMI scoring system could not be applied. Moreover, if microbiome 

biomarkers are integrated with ROMA or RMI, there is the possibility that the 

diagnostic performance for identifying ovarian cancer might be much improved. 

Now, we are planning a prospective cohort study to validate the clinical 

usefulness of the serum-based metagenomic analysis in the diagnosis of ovarian 

cancer. In that study, every single subject will undergo both ROMA and RMI 
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for further investigation. 

The current study also has other limitations. First, the relationship between 

the microbiome and ovarian cancer should be further investigated. We do not 

know whether our findings could explain the pathogenesis of ovarian cancer or 

were just a phenomenon in this cohort. The cause-and-effect relationship 

between differing microbiome compositions and ovarian cancer should be 

investigated. Additional translational studies, such as hypothesis-proving cell-

line or animal studies, are warranted. Second, the current study is a single-

institution study requiring external validation in different study populations. 

For example, the proportion of clear cell carcinoma in the ovarian cancer group 

was relatively high: 16.4% and 19.6% in the training and test sets, respectively. 

In this study, all patients were Korean, and according to the literature on 

histologic types of epithelial ovarian cancer, ovarian clear cell carcinoma is 

more common in the East Asian population than in the Western population (43, 

44). Therefore, ovarian cancer groups from other regions or ethnicities with 

different proportions of histologic types might have different metagenomic 

profiles of serum EVs. Third, the FIGO stage of the ovarian cancer cases was 

not considered in developing the diagnostic models. Approximately 30% of 

ovarian cancer patients in our study population had FIGO stage I disease. The 

extent of disease might affect the composition of the serum microbe-derived 

EVs. Therefore, it is necessary to compare ovarian cancer patients’ 

metagenomic profiles by stages in a large-sized cohort. Lastly, the sample size 

for the benign ovarian tumor group was small, which resulted in quite different 

histologic types between the training and test sets, although we randomly 
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divided the samples. 

Despite these limitations, the current study was the first to characterize the 

metagenomic profiles of the serum microbial EVs in ovarian cancer. Through 

evaluation of the serum microbiomes, we were able to build a diagnostic model 

for ovarian cancer. The metagenomic analysis of serum microbiomes has 

several advantages, particularly the ease of sample collection, which suggests 

an increase of its usability. 

In conclusion, we found that 16S rDNA gene-based metagenomic analyses 

revealed differences in the metagenomic profiles of serum microbial EVs 

between patients with ovarian cancer and those with benign ovarian tumors. We 

also developed a microbiome biomarker-based diagnostic model differentiating 

ovarian cancer from benign ovarian tumors and found that the serum 

microbiome may play a role in the early detection of ovarian cancer. Further 

prospective studies are warranted to validate these results.
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Table 1. Patients’ clinicopathologic characteristics 

Characteristics 
All 

(n=242, %) 

Training Set Test Set 

Cancer 

(n=110, %) 

Benign 

(n=51, %) 
P 

Cancer 

(n=56, %) 

Benign 

(n=25, %) 
P 

Age, years        

  Mean ± SD 52.3 ± 13.4 53.8 ± 12.3 48.2 ± 15.9 0.031 53.4 ± 11.5 51.8 ± 15.7 0.658 

BMI, kg/m2        

  Mean ± SD 23.0 ± 3.4 22.6 ± 3.1 23.1 ± 3.6 0.387 23.1 ± 3.6 23.9 ± 4.2 0.370 

Menopause 141 (58.3) 68 (61.8) 26 (51.0) 0.194 34 (60.7) 13 (52.0) 0.463 

Comorbidities        

  Hypertension 55 (22.7) 27 (24.5) 8 (15.7) 0.205 11 (19.6) 9 (36.0) 0.115 

  Diabetes 21 (8.7) 11 (10.0) 6 (11.8) 0.735 1 (1.8) 3 (12.0) 0.085 

  Dyslipidemia 34 (14.0) 18 (16.4) 6 (11.8) 0.446 6 (10.7) 4 (16.0) 0.489 

Serum CA-125, IU/mL        

Median (range) 
126.3 

(2.3–10000.0) 

331.1 

(2.3–10000.0) 

22.3 

(3.5–1821.0) 
<0.001 

432.3 

(7.7–9909.0) 

20.6 

(5.7–1710.0) 
<0.001 

FIGO stage        

I 52 (21.5) 33 (30.0)   19 (33.9)   

II 10 (4.1)  6 (5.5)   4 (7.1)   

III 75 (31.0) 53 (48.2)   22 (39.3)   

IV 29 (12.0) 18 (16.4)   11 (19.6)   

Histologic type        

Epithelial ovarian cancer        

  High-grade serous  88 (36.4) 60 (54.5)   28 (50.0)   

Low-grade serous 8 (3.3) 6 (5.5)   2 (3.6)   

Mucinous 15 (6.2) 10 (9.1)   5 (8.9)   

Endometrioid 16 (6.6) 9 (8.2)   7 (12.5)   
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Clear cell 29 (12.0) 18 (16.4)   11 (19.6)   

Mixed 6 (2.5) 3 (2.7)   3 (5.4)   

Others 4 (1.7) 4 (3.6)   0   

Benign ovarian tumor        

 Mucinous cystadenoma 28 (11.6)  24 (47.1)   4 (16.0)  

   With fibroma 5 (2.1)  4 (7.8)   1 (4.0)  

   Without fibroma 23 (9.5)  20 (39.2)   3 (12.0)  

Serous cystadenoma 15 (6.2)  8 (15.7)   7 (28.0)  

  With fibroma 4 (1.7)  3 (5.9)   1 (4.0)  

  Without fibroma 11 (4.5)  5 (9.8)   6 (24.0)  

Seromucinous cystadenoma 6 (2.5)  4 (7.8)   2 (8.0)  

  With fibroma 2 (0.8)  1 (2.0)   1 (4.0)  

  Without fibroma 4 (1.7)  3 (5.9)   1 (4.0)  

Endometriotic cyst 8 (3.3)  4 (7.8)   4 (16.0)  

Mature cystic teratoma 8 (3.3)  6 (11.8)   2 (8.0)  

Fibroma/fibrothecoma 9 (3.7)  3 (5.9)   6 (24.0)  

Paratubal cyst   2 (0.8)    2 (3.9)   0  
Abbreviations: BMI, body mass index; CA-125, cancer antigen 125; FIGO, International Federation of Gynecology and Obstetrics; SD, standard 

deviation. 
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Table 2. Top 10 genus-level microbiome biomarkers significantly differentially distributed between the ovarian cancer and benign ovarian tumor groups 

Genus Wilcoxon Metastats EdgeR DESeq2 ZIG ZIBSeq ANCOM CLR Perm 

Acinetobacter <0.001 0.008 0.093 0.043 <0.001 <0.001 Acinetobacter <0.001 

Isoptericola 0.841 <0.001 0.487 1 0.046 <0.001 Not detected 0.855 

Terrisporobacter 0.841 0.023 0.600 1 <0.001 <0.001 Not detected 0.944 

SM1A02 0.989 0.008 0.528 1 <0.001 0.002 Not detected 0.935 

Candidatus 

Alysiosphaera 
0.841 <0.001 0.476 1 0.015 <0.001 Not detected 0.901 

Ralstonia 0.841 <0.001 0.462 1 <0.001 0.005 Not detected 0.913 

Hydrogenophaga 0.771 <0.001 0.872 1 <0.001 0.027 Not detected 0.809 

Pseudorhodoferax 0.921 0.024 0.811 1 <0.001 0.007 Not detected 0.779 

Bryobacter 0.841 0.023 0.420 1 0.007 0.999 Not detected 0.849 

Varibaculum 0.841 0.013 0.600 1 0.599 <0.001 Not detected 0.416 

Shown with the q values. 
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Table 3. Diagnostic models differentiating ovarian cancer from benign ovarian tumors 

Model 
Training Set Test Set 

Sensitivity Specificity AUC Sensitivity Specificity AUC 

Age 0.554 0.490 0.589 0.518 0.520 0.531 

Age, CA-125 0.773 0.686 0.809 0.768 0.560 0.816 

Age, Acinetobacter 0.827 0.529 0.770 0.839 0.440 0.667 

Age, CA-125, Acinetobacter 0.864 0.784 0.898 0.821 0.680 0.846 

Abbreviations: AUC, area under the receiver operating characteristic curve; CA-125, cancer antigen 125. 
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Figure 1. Flow diagram illustrating the overall study design. 
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Figure 2. Landscape of metagenomic profiles in all patients. (A) Phylum-level composition. (B) Genus-level composition. Below the plot, 

red and green horizontal bars indicate ovarian cancer patients and benign ovarian tumor patients, respectively.
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Figure 3. Comparisons of genus-level α-diversity between the two groups. 

(A) Training set. (B) Test set.  

 

Figure 4. Genus-level multidimensional plots. (A) Training set. (B) Test set.   
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Figure 5. Selection of genus-level microbiome biomarkers. Venn diagram 

depicts the overlapping of biomarkers among the eight statistical methods. 

 

 

Figure 6. Comparisons of performances among diagnostic models 

differentiating ovarian cancer from benign ovarian tumors.
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Chapter II: Development of nomograms to predict 

treatment response and prognosis of epithelial 

ovarian cancer 
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1. Introduction 

Ovarian cancer, one of the deadliest female cancers, shows the lowest 5-year 

survival rate (46.5%) among gynecologic malignancies (2). The absence of 

cancer-specific symptoms and effective screening tools has led to high rates of 

ovarian cancer diagnosis in late stages, recurrence, and mortality (45). The 

majority (90%) of ovarian cancers are epithelial ovarian cancers (46). Maximal 

cytoreductive surgery followed by taxane- and platinum-based chemotherapy 

is conducted as the primary treatment in patients with advanced stage epithelial 

ovarian cancer (47-49) . Nevertheless, 80% of patients who showed complete 

response after the primary treatment eventually experience the disease 

recurrence (50). 

In keeping with the era of precision medicine, discovery of models predicting 

the exact prognosis of epithelial ovarian cancer is necessary as the first step of 

implementation of individualized treatment. To date, several prognostic indexes 

and predictive nomograms for the survival outcome of epithelial ovarian cancer 

have been developed based on pre-operative imaging such as CT scans, 

differential blood cell counts such as platelet and neutrophil, tumor markers 

such as serum CA-125 levels, operative findings, or pathologic results (51-59). 

However, these nomograms were developed in different disease settings 

(primary or recurrent epithelial ovarian cancers), analyzed only fragments of 

clinicopathologic factors, and had a low or limited prediction ability making it 

difficult for physicians to use them in clinical practice. Moreover, the prediction 

of primary treatment response to divide patients into possible platinum-

sensitive recurrence (PSR) or platinum-resistant recurrence (PRR) groups 
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would be useful in clinical trials on first and second-line treatments, reducing 

the relevant time and cost. 

Thus, this study aimed to develop more precise nomograms to predict 

treatment response and survival outcomes in patients with epithelial ovarian 

cancer from two high-volume tertiary institutional hospitals through 

comprehensive review of medical records and statistical analyses. All 

previously published and possible prognostic factors were included as far as 

possible and investigated in the current study. 

 

2. Materials and Methods 

2.1 Study population 

From the Ovarian Cancer Cohort Databases of two tertiary institutional 

hospitals, we included patients who met the following inclusion criteria: (1) 

patients older than 18 years of age; and (2) those with epithelial ovarian cancer 

diagnosed and primarily treated at SNUH or Asan Medical Center (AMC) 

between January 2007 and August 2016. However, we excluded patients with 

the following conditions: (1) patients with any malignancy other than epithelial 

ovarian cancer; and (2) those with insufficient clinical data. As a result, we 

enrolled 866 patients who met these criteria; 570 from SNUH and 296 from 

AMC (Figure 7). 

 

2.2 Data collection 

We collected a vast amount of patients’ clinicopathologic data including 108 
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variables over 16 domains (Figure 8). Data acquisition included age, personal 

history, such as parity, familial history of breast cancer or gynecologic 

malignancies, and co-morbidities, such as hypertension or diabetes. Serum CA-

125 levels and differential blood cell counts including neutrophil, lymphocyte, 

monocyte and platelet at initial diagnosis were obtained. FIGO stage, histology 

and tumor differentiation, as well as details of primary treatment including the 

use of NAC, extent and individual procedures of debulking surgery, and 

administration and cycles of post-operative taxane- and platinum-based 

chemotherapy, were also obtained. Residual tumor size and sites after 

debulking surgery were investigated, and optimal debulking surgery was 

considered when the size of the residual tumor was less than 1 cm at the longest 

diameter. Pre-operative imaging studies and intra-operative surgical findings 

were also investigated. 

All patients underwent CT scans and measurement of serum CA-125 levels 

every 3 cycles during post-operative adjuvant chemotherapy, and every 3 

months for 1 year, then every 6 months for next 3 years during surveillance 

after primary treatment. Reponses to chemotherapy were evaluated by 

Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 (60). 

For the survival analyses, progression-free survival (PFS) was defined as the 

time that elapsed from the start of the primary treatment (the date of primary 

debulking surgery [PDS] or the date of the first cycle of NAC) to the date of 

disease progression as evaluated by RECIST version 1.1 in patients with 

measurable disease (60). In patients with unmeasurable disease, the 

Gynecologic Cancer InterGroup criteria using serum CA-125 levels were used 



38 

 

to confirm disease progression (61). Overall survival (OS) was defined as the 

time that elapsed from the date of initial diagnosis to the date of cancer-related 

death or end of the study. For all patients, the status of survival was investigated 

using both institutional medical records and the Social Security Death Index. 

For the assessment of platinum sensitivity, only the patients who actually 

received taxane- and platinum-based chemotherapy as primary treatment were 

included. Among them, those who showed recurrence were classified into 

either PSR, defined as relapsing 6 months or more after completion of primary 

treatment, or PRR, defined as relapsing in less than 6 months. In addition to 

PSR, those who completed taxane- and platinum-based chemotherapy and did 

not experience disease recurrence for at least 6 months of the follow-up period 

were also considered platinum-sensitive. 

 

2.3 Statistical analysis 

The overall work flow of statistical analysis is depicted in Figure 9. In total, 

there were 86 clinical variables that could play a role as predictors of platinum 

sensitivity, 3-year PFS, and 5-year OS. After excluding 17 variables that had 

missing data in more than 10% of the patients or had sparse occurrence with 

observed counts of less than 10, we performed statistical analysis on the 69 

remaining variables. 

Some variables, such as serum CA-125 levels, were log transformed to 

alleviate the skewness. For the eight variables that needed proper 

categorizations (age, histology, involvement of the spleen, omentum, small 

bowel and mesentery, colon except rectosigmoid, and liver surface, and residual 
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tumor size after PDS or interval debulking surgery [IDS]), we selected the most 

suitable categorizations showing high statistical significances in univariate 

analyses. For platinum sensitivity, a logistic regression univariate model was 

used and for PFS and OS, Cox regression univariate models were used. 

To exclude variables correlated with others, we selected a variable or a set of 

variables from the group as follows. Among weight, height, BMI, and 

categorized BMI, BMI was used in the analyses. Similarly, among hemoglobin, 

differential blood cell counts, and their calculated secondary values, including 

neutrophil to lymphocyte ratio, monocyte to lymphocyte ratio, and platelet to 

lymphocyte ratio, the following variables were selected: hemoglobin, platelet 

count, neutrophil count, lymphocyte count, and monocyte count. 

Before building the prediction models, univariate analysis was performed to 

screen for candidate clinical variables. First, P value was applied with 0.05 as 

the cutoff since a variable with high AUC can be an important predictor only 

when it is statistically significant. Then, AUC was computed using the 10-fold 

cross-validation procedure and 0.55 was applied as the cutoff value. After 

screening, 26, 25, and 23 variables remained for the construction of models 

predicting platinum sensitivity, 3-year PFS, and 5-year OS, respectively. 

To build the prediction models, a logistic regression model for platinum 

sensitivity and Cox regression models for PFS and OS were fitted in stepwise 

variable selection using the AUC. For Cox regression models, we constructed 

a time dependent receiver operating characteristic curve and calculated time-

dependent AUC (62). AUC was computed by leave-one-out cross-validation as 

follows: we estimated the parameters of a model on n-1 samples and got a 
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prediction on the remaining one with the estimated parameters from n-1 

samples, where n is the sample size. This was repeated on all the samples so 

that we had n predicted values based on n estimated models. We computed AUC 

using the predicted values and the observed values of the response variable. The 

reason why we used AUC rather than the P value, the Akaike's information 

criterion, or the Bayesian information criterion was that the aim of this study 

was to identify the model with the best prediction. 

In order to select the first variable, we fitted as many univariate models as 

the number of predictors. For each variable, we computed AUC and selected 

the one with the highest AUC value. To search for the model with the highest 

AUC, we employed forward and backward stepwise selections Let 𝑥(𝑚) be 

the variable to be selected at step m and 𝑆𝑚 be the set which consists of 

𝑥(1), … , 𝑥(𝑚) . Suppose AUC( 𝑆𝑚−1,  𝑥𝑖 ) represents AUC value using 

{𝑆𝑚−1 
, 𝑥𝑖 }.  

(1) Forward step: For each 𝑥𝑖 ∈ 𝑆𝑚−1
𝐶 , the complement set of 

𝑆𝑚−1 
, AUC( 𝑆𝑚−1,  𝑥𝑖 ) was computed. Then, we selected 𝑥𝑖 if 

AUC(𝑆𝑚−1,  𝑥𝑖 ) was the highest and larger than AUC(𝑆𝑚−1), and set 

𝑥(𝑚)= 𝑥𝑖  and 𝑆𝑚 =  𝑆𝑚−1 ∪ {𝑥(𝑚)}. If there was no further selection, 

we proceeded to Step 3. 

(2) Backward step: For each 𝑥𝑖 ∈  𝑆𝑚 , AUC(𝑆𝑚 \{𝑥𝑖 }) was computed, 

where 𝑆𝑚\{𝑥𝑖} represented the set 𝑆𝑚  without 𝑥𝑖 . We deleted 𝑥𝑖 if 

AUC(𝑆𝑚\ {𝑥𝑖 }) was the highest and larger than AUC(𝑆𝑚). If there was 

no further deletion, we proceeded to Step 3. 
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(3) Stop the stepwise method for variable selection. 

The final models were used to construct nomograms for platinum sensitivity, 

3-year PFS, and 5-year OS, respectively. To double-check the AUCs for the 

models, which were established from the stepwise selection by AUC using 

leave-one-out cross-validation, 10-fold cross-validation was applied. 

All the statistical analyses were performed using the R statistical software 

version 3.4.3 (The R Foundation for Statistical Computing, Vienna, Austria; 

ISBN 3-900051-07-0; http://www.R-project.org). A P value of <0.05 was 

considered statistically significant. 

 

2.4 Ethical statement 

The study was approved by the Institutional Review Board of both SNUH 

(No. 1609-132-798) and AMC (No. 2017-0199) and performed in accordance 

with the principles of the Declaration of Helsinki. The informed consent was 

waived. 

 

3. Results 

3.1 Characteristics of the study population 

The clinicopathologic characteristics of a total of 866 patients are presented 

in Table 4. The patients’ mean age was 53.5 years. Overall, 584 patients (67.4%) 

had FIGO stage III-IV disease, and the most common histologic type was 

serous type (61.1%). Details of primary treatment are also shown in Table 4. A 
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total of 712 patients (82.2%) received PDS, whereas the other 154 (17.8%) 

received NAC followed by IDS. The rate of optimal debulking surgery was 

90.3%. After surgery, 792 patients (91.5%) received post-operative taxane- and 

platinum-based chemotherapy. Among them, 616, 108 and 13 patients showed 

complete remission, partial remission and stable disease, respectively, whereas 

55 patients showed progressive disease. Table 5 depicts pre-operative and 

intraoperative findings according to the anatomic sites. Analysis for ascites of 

peritoneal washing cytology was performed in 785 patients (90.6%), and 

malignant cells were detected in 482 patients (55.7%). Meanwhile, 76 patients 

(8.8%) presented pleural effusion at the time of diagnosis. 

 

3.2 Patients’ survival outcomes and treatment response 

The median duration of follow-up for the 866 patients was 42.4 months 

(interquartile range, 25.7 to 69.9 months), during which 441 patients (50.9%) 

experienced disease recurrence. OS and PFS of the patients are displayed in 

Figure 10. The median OS was not reached, while the median PFS was 32.6 

months. The 5-year OS and 3-year PFS rates were 68.4% and 47.8%, 

respectively.  

Survival outcomes according to the FIGO stage are presented in Figure 11. 

Significant differences were observed in OS (P <0.001), as well as in PFS (P 

<0.001), according to the FIGO stage. The 5-year OS rates for FIGO stage I-II 

and stage III-IV were 91.9% and 55.8%, respectively, and the 3-year PFS rates 

were 84.9% and 30.6%, respectively. For stage III-IV, the median OS was 76.8 

months and the median PFS was 17.9 months. 
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We also performed survival analyses according to the primary treatment 

strategies. Patients in the PDS group showed significantly better OS (5-year 

survival rates, 73.3% vs. 45.6%; P <0.001) and PFS (median, 59.6 vs. 15.9 

months; P <0.001) compared to those in the NAC group (Figure 12).  

Among the recurred (n=441), 433 patients (98.2%) had received post-

operative taxane- and platinum-based chemotherapy: in all, 285 patients and 

148 patients were PSR and PRR, respectively. In the assessment of platinum 

sensitivity, 562 (64.9%) and 148 (17.1%) were classified as platinum-sensitive 

and -resistant patients, respectively (Table 4).  

 

3.3 Development of predictive nomograms 

Using the statistical method described above, the nomograms were 

developed. Figures 13, 14, and 15 depict the developed nomograms for 

platinum sensitivity, 3-year PFS, and 5-year OS, respectively.  

The nomogram for predicting platinum sensitivity included the following 

variables: log serum CA-125 levels at diagnosis, FIGO stage, histologic type, 

NAC, pleural effusion, ascites or peritoneal washing cytology, involvement of 

the omentum, uterus, colon except rectosigmoid, and liver surface, and residual 

tumor size after debulking surgery. The AUC of this model was 0.758.  

By the same algorithm, a nomogram for the prediction of 3-year PFS was 

developed. It was composed of hemoglobin, lymphocyte count, monocyte 

count, and log serum CA-125 levels at diagnosis, ascites or peritoneal washing 

cytology, NAC, involvement of the ovarian surface, tube, omentum, and small 
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bowel and mesentery, and residual tumor size after PDS/IDS, with an AUC 

value of 0.841.  

The newly developed nomogram for predicting 5-year OS consisted of 

lymphocyte count, monocyte count, log serum CA-125 levels, pleural effusion, 

ascites or peritoneal washing cytology, NAC, and involvement of the uterus, 

tube, omentum, colon except sigmoid, and small bowel and mesentery, with an 

AUC value of 0.805.  

We performed 10-fold cross-validation to compute the AUCs of the 

nomograms for platinum sensitivity, 3-year PFS, and 5-year OS from stepwise 

selection by AUC using leave-one-out cross-validation. The values of AUC of 

the proposed nomograms were 0.743, 0.841, and 0.810 for platinum sensitivity, 

3-year PFS, and 5-year OS, respectively. These values were similar to those we 

estimated by leave-one-out cross-validation.  

Finally, we fitted a user-friendly interface on the developed nomograms and 

posted them onto a website to facilitate clinical use (http://statgen.snu.ac.kr/ 

software/nomogramOvarian). These web-based nomograms consisted of an 

HTML file for the input of the risk factors and a CGI file for the output of the 

calculated results. 

 

3.4 Development of nomograms excluding patients who 

underwent NAC 

We also developed predictive nomograms using the same procedure confined 

to the patients who underwent PDS. For platinum sensitivity, the nomogram 
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consisted of hemoglobin, monocyte count, log serum CA-125 levels, pleural 

effusion, involvement of the uterus, omentum, and colon except rectosigmoid, 

and residual tumor size after PDS, with an AUC value of 0.713.  

For 3-year PFS, the nomogram consisted of hemoglobin, lymphocyte count, 

monocyte count, segmented neutrophil count, FIGO stage, ascites or peritoneal 

washing cytology, and involvement of the tube, omentum, small bowel and 

mesentery, and large bowel resection with an AUC value of 0.839. 

For 5-year OS, the nomogram included lymphocyte count, monocyte count 

at diagnosis, ascites or peritoneal washing cytology, and involvement of the 

tube, uterus, colon except sigmoid, and small bowel and mesentery with an 

AUC value of 0.803.  

 

4. Discussion  

In the present study, we successfully developed nomograms predicting 

platinum sensitivity, 3-year PFS, and 5-year OS of patients with epithelial 

ovarian cancer. The AUCs were calculated as 0.758, 0.841, and 0.805, 

respectively. To our knowledge, this is the first study developing predictive 

nomograms from two tertiary institutional hospitals in Korean patients with 

epithelial ovarian cancer.  

In accordance with the era of precision medicine, demands on such predictive 

nomograms are increasing, and utilization of them will facilitate individualized 

treatment. As a nomogram visualizes the risks or benefits intuitively, a 

clinically relevant nomogram will be a useful tool during consultation between 

physicians and patients in clinical practice. For example, if an epithelial ovarian 
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cancer patient was identified at high risk for recurrence or platinum resistance 

by our newly developed nomograms, she might undergo more aggressive 

treatments in addition to the standard treatment: intraperitoneal chemotherapy 

or bevacizumab maintenance treatment might be considered. Physicians might 

recommend her to receive germline BRCA1/2 testing as early as possible, so as 

to prescribe poly(ADP-ribose) polymerase (PARP) inhibitors based on the test 

results. Beside these aggressive treatments, more frequent surveillance 

schedule might be provided to the patients for earlier detection of recurrence 

than by usual methods.  

To date, several nomograms predicting survival prognosis of epithelial 

ovarian cancer have been developed in various disease settings. In 2007, a 

Japanese multicenter study proposed a prognostic index to predict OS in FIGO 

stage III-IV disease (51), while a Memorial Sloan-Kettering Cancer Center 

group published a nomogram predicting 5-year OS after PDS confined to bulky 

stage IIIC disease in 2008 (52). The same group further developed the 

nomogram, expanding it to the entire stage (54). A two-center study in the 

Netherlands proposed nomograms for PFS and OS in patients with advanced-

stage epithelial ovarian cancer (53). An Australia research group used data from 

the CALYPSO trial and developed prognostic nomograms to predict platinum-

sensitive recurrent epithelial ovarian cancer patients’ PFS and OS in 2011 and 

2013, respectively (55, 56). Previs et al. (57) performed a multicenter 

retrospective study and reported a nomogram predicting 5-year OS probability 

in recurrent epithelial ovarian cancer patients who received bevacizumab and 

chemotherapy. In their multivariate model, prior number of chemotherapy 
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regimens, treatment free interval, platinum sensitivity, and the presence of 

ascites were identified as prognostic variables (57). Recently, a nomogram for 

survival in PRR was also developed by reviewing medical records of 164 

patients retrospectively (59). As described in the studies above, nomograms for 

epithelial ovarian cancer have been developed in different disease settings or 

study populations. 

Compared to the previous studies, the current study had a different and more 

specific design. We confined the study population to those with epithelial 

ovarian cancer who received primary treatment in two tertiary institutional 

hospitals. We also collected a vast amount of patients’ clinic-pathologic data, 

trying to include all the previously published and possible prognostic factors as 

possible. Keeping in mind that the newly developed nomograms should be 

utilized in clinical practice or designing clinical trials, pre-operative and intra-

operative findings were systematically organized. At the time of statistical 

analyses, we tried to avoid analyzing only fragments of clinic-pathologic 

factors. Rather, we performed stepwise selection method to select variables.  

During stepwise variable selection, we also computed AUCs by 10-fold 

cross-validation, which were utilized for selecting variables, and obtained 

prediction models. When we repeated these processes, we observed a big 

variation in the selected models. This might originate from the existence of 

variables with similar prediction abilities. To solve such big variations among 

the selected models, we applied leave-one-out cross-validation when we 

computed AUCs in variable selection. As a result, we were able to provide 

prediction models which do not depend on random partitioning. Such a clear 
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statistical method has contributed to increase the robustness and prediction 

accuracy of the developed model. 

Interestingly, components of differential blood cell counts, as well as 

hemoglobin, were included in the nomograms as prognostic factors. In the 

nomogram for predicting 3-year PFS, hemoglobin, lymphocyte count, and 

monocyte count were included and in the nomogram for predicting 5-year OS, 

lymphocyte count and monocyte count were included. Among the previous 

studies on development of nomograms predicting prognosis of epithelial 

ovarian cancer, Gerestein et al. (53) reported that pre-operative platelet count 

was one of the prognostic factors for PFS, while pre-operative platelet count 

and serum hemoglobin concentration were prognostic factors for OS. In the 

retrospective study by Paik et al. (58), lymphocyte count and monocyte count 

were included in their nomogram for platinum sensitivity, while platelet count 

and neutrophil count were included in the nomograms for 3-year PFS and 5-

year OS, respectively. It is well known that neutrophilic differentiation is 

induced by tumors through various chemokines, and is associated with 

angiogenesis and cell proliferation (63). However, the scientific evidence 

underlying differential blood cell counts and its impact on the prognosis of 

epithelial ovarian cancer still remains unclear. 

The current study had several limitations. Firstly, owing to the retrospective 

study design, inevitable issues, such as selection bias, may exist. Secondly, the 

developed nomograms were only validated internally using cross-validation 

methods. Although the cross-validation is well-known and reasonable, external 

validation processes in large-sized cohorts are still warranted. Lastly, use of 
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targeted agents, such as bevacizumab, a monoclonal antibody targeting vascular 

endothelial growth factor A, and PARP inhibitors was not considered in this 

study because of very low proportions among the study population. In Korea, 

the National Health Insurance System (NHIS) started to cover bevacizumab in 

platinum-resistant relapsed epithelial ovarian cancer in August 2015 based on 

the results of the AURELIA trial (64), and in May 2018, started to cover 

bevacizumab in patients with PSR based on the OCEANS and GOG-0213 trials 

(65, 66). Meanwhile, although three recent randomized trials on maintenance 

therapy with three types of PARP inhibitors reported significantly improved 

PFS in platinum-sensitive relapsed epithelial ovarian cancer with BRCA1/2 

mutation, only olaparib has been covered by NHIS since October 2017 (67). If 

clinical data on these drugs accumulate, it would be worth developing a 

predictive nomogram for prognosis in epithelial ovarian cancer considering use 

of such drugs as variables. 

Despite the study’s limitations, strengths of this study are as follows: (1) the 

specific study design and statistical methodology allowed us to integrate and 

analyze epithelial ovarian cancer patients’ clinicopathologic characteristics 

comprehensively, yielding valuable findings. (2) Compared to previously 

published studies, the sample size and the number of collected variables were 

larger in the current study. Especially, patients from two highest volume tertiary 

hospitals in Korea were included. Each hospital operates its own 

comprehensive cancer center. (3) Because we determined each patient’s 

survival status by querying the Korean government’s Social Security Death 

Index, survival data are very accurate. (4) Professional statisticians of the 
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research team analyzed vast amount of patients’ data. Although policy for 

treatment of epithelial ovarian cancer is same, patients’ data might be somehow 

heterogeneous. However, the statisticians combined them well and successfully 

performed statistical analyses. (5) Predictive nomograms for the patients who 

will undergo PDS were also developed. 

In conclusion, we have successfully developed nomograms for predicting 

platinum sensitivity, 3-year PFS, and 5-year OS of patients with epithelial 

ovarian cancer. By providing the exact prognosis of epithelial ovarian cancer to 

the individual patients, the nomograms are expected to be useful in clinical 

practice and in conducting prospective cohort studies or designing clinical trials. 

Furthermore, if the multi-omics data of epithelial ovarian cancer patients are 

added onto the predictive models, we expect that the predictive ability of the 

model will increase.
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Table 4. Patients’ clinicopathologic characteristics 

Characteristics 
All  

(n=866, %) 

Age, years 53.5 ± 11.2 

BMI, kg/m2 23.4 ± 3.4 

Co-morbidities  

  Hypertension  

   No 698 (80.6) 

   Yes  168 (19.4) 

  Diabetes  

   No 797 (92) 

   Yes  69 (8) 

  Dyslipidemia  

   No 803 (92.7) 

   Yes  61 (7.0) 

   Unknown 2 (0.2) 

Pretreatment CBC  

  Hemoglobin, g/dL 12.3 ± 1.3 

  Platelets, 103/uL 327.5 ± 104.2 

  WBC, 103/uL 7.1 ± 2.5 

Segmented neutrophils, % 66.3 ± 10.1 

Count, 10/uL 478.4 ± 215.3 

Lymphocytes, % 24.3 ± 9.0 

Count, 10/uL  160.2 ± 56.2 

Monocytes, % 6.9 ± 2.3 

Count, 10/uL 47.5 ± 23.4 

Ln(CA-125), IU/ml 5.8 ± 1.9 

FIGO stage  

I 220 (25.4) 

II 62 (7.2) 

III 441 (50.9) 

IV 143 (16.5) 

Histologic type  

Serous 529 (61.1) 

Endometrioid 96 (11.1) 

Mucinous 79 (9.1) 

Clear cell 85 (9.8) 

Others 77 (8.9) 

Primary treatment strategy  

PDS 712 (82.2) 

NAC 154 (17.8) 
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Residual tumor after PDS/IDS  

No gross  638 (73.7) 

<1 cm 144 (16.6) 

1 - 2 cm 44 (5.1) 

>2 cm 31 (3.6) 

Unknown 9 (1.0) 

Post-operative taxane- and platinum-based chemotherapy  

  No 74 (8.5) 

  Yes 792 (91.5) 

    CR* 616 (71.1) 

    PR 108 (12.5) 

    SD 13 (1.5) 

    PD 55 (6.4) 

Recurrence  

  No 425 (49.1) 

  Yes  441 (50.9) 

    No post-operative chemotherapy   8 (0.9) 

    PSR† 285 (32.9) 

    PRR 148 (17.1) 

Platinum sensitivity  

  Platinum-sensitive‡ 562 (64.9) 

  Platinum-resistant  148 (17.1) 

Values are presented as mean ± standard deviation or number (%). 

Abbreviations: BMI, body mass index; CA-125, cancer antigen 125; CBC, complete blood 

count; WBC, white blood cell; FIGO, International Federation of Gynecology and 

Obstetrics; PDS, primary debulking surgery; NAC, neoadjuvant chemotherapy; IDS, 

interval debulking surgery; CR, complete remission; PR, partial remission; SD, stable 

disease; PD, progressive disease; PSR, platinum-sensitive recurrence; PRR, platinum-

resistant recurrence. 
*Reponses to chemotherapy were evaluated by Response Evaluation Criteria in Solid 

Tumors (RECIST) version 1.1. 
†PSR was defined as relapse ≥6 months after completion of taxane- and platinum-based 

chemotherapy, whereas PRR as relapse <6 months. 
‡In addition to PSR, the patients who completed taxane- and platinum-based chemotherapy 

and did not experience disease recurrence during at least 6 months of follow-up period 

were considered platinum-sensitive. 
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Table 5. Pre-operative and intra-operative findings 

Characteristics 
All  

(n=866, %) 

Pleural effusion  

No 790 (91.2) 

Yes 76 (8.8) 

  Cytology not performed 29 (3.3) 

  Negative for malignant cell 9 (1) 

Positive for malignant cell 38 (4.4) 

Ascites or peritoneal washing cytology  

Negative for malignant cell 303 (35.0) 

Positive for malignant cell 482 (55.7) 

Ovarian surface  

No involvement 245 (28.3) 

Yes 581 (67.1) 

Fallopian tube  

No involvement 451 (52.1) 

Yes 391 (45.2) 

Uterus  

No involvement 477 (55.1) 

Yes 344 (39.7) 

Colon except rectosigmoid colon  

No involvement  631 (72.9) 

Yes 233 (26.9) 

Omentum  

No involvement  439 (50.7) 

≤ 2 cm 162 (18.7) 

> 2 cm 263 (30.4) 

Small bowel and mesentery  

No involvement  619 (71.5) 

≤ 2 cm 194 (22.4) 

> 2 cm 47 (5.4) 

Liver surface  

No involvement  719 (83) 

≤ 2 cm 108 (12.5) 

> 2 cm 36 (4.2) 
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Figure 7. Flow diagrams depicting the selection of the study population.
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Figure 8. A scheme of data acquisition. Patients’ clinicopathologic data included 108 variables over 16 domains.
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Figure 9. Overall work flow of statistical analysis. 

 

 

Figure 10. Survival outcomes of the study population. (A) Overall survival. 

(B) Progression-free survival. 
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Figure 11. Survival outcomes according to the FIGO stage. (A) Overall 

survival. (B) Progression-free survival. 

Figure 12. Survival outcomes according to the primary treatment strategy. 

(A) Overall survival. (B) Progression-free survival.
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Figure 13. The developed nomogram predicting platinum sensitivity. 
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Figure 14. The developed nomogram predicting 3-year progression-free survival. 
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Figure 15. The developed nomogram predicting 5-year overall survival.
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Chapter III: Body composition analysis in patients 

with advanced-stage high-grade serous ovarian 

carcinoma 
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1. Introduction 

Ovarian cancer is one of the deadliest gynecologic malignancies (1). The 

incidence of ovarian cancer is higher among high Human Development Index 

countries, and it is gradually increasing in Korea (3). Owing to the absence of 

cancer-specific symptoms and effective screening tools, ovarian cancer tends 

to be diagnosed at an advanced-stage and thus has a high recurrence rate and 

poor 5-year survival rate despite intensive treatment (45). 

Sarcopenia, characterized by loss of skeletal muscle mass and function, does 

not occur exclusively in the elderly but is also commonly observed in cancer 

patients (68). Previous studies have suggested sarcopenia as a prognostic factor 

associated with poor survival and increased resistance and toxicity to 

chemotherapy in patients with various malignancies, including breast, small 

cell lung, urothelial, and gastric cancers (69-72). In ovarian cancer, conflicting 

results have been reported: while some studies concluded that sarcopenia 

adversely affected patients’ PFS or OS (73, 74), others could not determine a 

significant association of sarcopenia with survival outcomes (75, 76). There 

were differences in study design, population, disease setting, and definition of 

sarcopenia among the studies; therefore, careful attention is required to 

interpret the study results. Moreover, considering the fact that body 

composition is different among the Organisation for Economic Co-operation 

and Development (OECD) member countries (77), sarcopenia and its impact 

on cancer prognosis may vary by geographical regions and ethnicities. 

To determine sarcopenia, recent studies have suggested utilization of CT 

scans. A cross-sectional image of CT scans at the level of the third lumbar 
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vertebra (L3) is known to represent an individual’s body composition, such as 

total body skeletal muscle and adipose tissues and fat distribution (78, 79). 

Moreover, CT scans are acquired routinely as part of cancer patients’ care, so 

quantification of body composition using CT scans is quite possible. 

To our knowledge, clinical significance of sarcopenia in Korean ovarian 

cancer patients has not been explored. Thus, we aimed to investigate impact of 

sarcopenia on survival outcomes in Korean patients with advanced-stage high-

grade serous ovarian carcinoma (HGSOC), which is the predominant histologic 

type of ovarian cancer. In this study, sarcopenia was determined based on the 

pre-treatment CT scan; the fat composition was also measured considering the 

fact that the Asian population generally has a higher body fat percentage than 

the Western population at the same BMI (80). 

 

2. Materials and Methods 

2.1 Study population 

From the Ovarian Cancer Cohort Database, we searched patients who met 

the following inclusion criteria: (1) patients older than 18 years of age, (2) those 

with HGSOC diagnosed and primarily treated at SNUH between January 2010 

and December 2017, and (3) those with FIGO stage III-IV disease. However, 

patients with the following conditions were excluded: (1) patients with any 

malignancy other than HGSOC, (2) those with insufficient clinical data, (3) 

those who did not undergo pre-treatment CT scans, and (4) those who were 

underweight based on pre-treatment BMI (<18.5 kg/m2). In total, 179 patients 

who met these criteria were included in this analysis. 
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2.2 CT image analysis and definition of sarcopenia 

For the evaluation of sarcopenia, a cross-sectional area of the muscle at the 

level of L3 vertebral body was measured using baseline CT scans. Applying 

previously validated boundaries of -190 to -30 Hounsfield unit (HU) for fat 

tissue and -29 to 150 HU for skeletal muscle (81), an experienced radiologist 

(5 years of genitourinary imaging experience) who was blinded to the clinical 

outcome measured total abdominal muscle area (cm2), intramuscular fat area 

(cm2), visceral fat area (cm2), and subcutaneous fat area (cm2). This CT image 

analysis was conducted by semi-automatic technique using AsanJ-

Morphometry software (Asan Image Metrics, Seoul, Korea) (Figure 16AC). 

Total abdominal muscle area (cm2) was normalized for height (m2) and 

reported as lumbar skeletal muscle index (SMI). To date, the sex-specific cutoff 

values of SMI for sarcopenia have not been validated in Korean healthy 

individuals. Adoption of the cutoff values suggested by Japanese study groups 

was deterred because they were developed in different study populations (e.g., 

patients with liver disease, (82)) or had age limitations (e.g., <50 years, (83)). 

In addition, proportions of populations with overweight-obesity are even 

different between Korea and Japan according to the OECD Health Statistics 

2019 (77). Therefore, we defined sarcopenia as SMI of <39.0 cm2/m2 according 

to the proposed cutoff value by an international consensus, and divided patients 

into sarcopenia group (<39.0 cm2/m2) and no sarcopenia group (control group; 

≥39.0 cm2/m2) (84). We also calculated other body composition indices, such 

as fat-to-muscle ratio (FMR), visceral-to-subcutaneous fat ratio (VSR), and 
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skeletal muscle mass-to-visceral fat ratio (SVR). 

 

2.3 Data collection 

We collected patients’ clinicopathologic characteristics including age, co-

morbidities such as hypertension or diabetes, American Society of 

Anesthesiologists score, FIGO stage, NAC, residual tumor size after PDS or 

IDS, and regimens and cycles of adjuvant chemotherapy. Patients treated with 

NAC received 3–4 cycles of taxane- and platinum-based chemotherapy before 

surgery, and optimal debulking surgery was considered when no gross residual 

tumor was achieved.  

Patients’ pre-treatment BMI was calculated as body weight (kg) divided by 

height squared (m2), which were measured at the time of diagnosis. All patients 

were classified into three groups based on the following BMI criteria suggested 

by the World Health Organization for the Asian population: normal 

(≥18.5 kg/m2 and <23.0 kg/m2), overweight (≥23.0 kg/m2 and <25.0 kg/m2), 

and obese (≥25.0 kg/m2) (80). 

Data acquisition also included serum CA-125 levels, hemoglobin, albumin, 

and differential blood cell counts including neutrophils, lymphocytes, 

monocytes, and platelets at initial diagnosis, less than a month prior to either 

PDS or the start date of NAC. As systemic inflammatory indices, we calculated 

the neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio 

(MLR), and platelet-to-lymphocyte ratio (PLR). As a pre-treatment nutritional 

index, we calculated the prognostic nutritional index (PNI) as follows: 10 × 

serum albumin (g/dL) + 0.005 × peripheral blood lymphocyte count (/uL) (85).  
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In terms of survival data, OS was defined as the time interval between the 

date of diagnosis and the date of cancer-related death or the end of the study. 

During the surveillance, patients received CT scanning routinely every three to 

four months for the first two years, every six months for the next two years, and 

thereafter, every year or when symptoms or examination findings were 

suspicious for recurrence. Therefore, we defined PFS as the time interval 

between the start date of primary treatment and the date of image-confirmed 

disease progression, which was assessed based on the RECIST version 1.1 (60). 

 

2.4 Statistical analysis 

We compared the patients’ clinicopathologic characteristics and survival 

outcomes between the sarcopenia and control groups. We used Student’s t-test 

and the Mann-Whitney U test for comparisons of continuous variables and 

Pearson’s chi-squared and Fisher’s exact test for categorical variables. For 

survival analysis, we conducted the Kaplan-Meier methods with log-rank test. 

Multivariate analysis was performed using a Cox proportional-hazards model, 

and adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) were 

calculated. We used IBM SPSS Statistics software (version 25.0; SPSS Inc., 

Chicago, IL, USA) for these analyses. Correlation values were calculated by 

the Pearson’s correlation coefficient test using the GraphPad Prism 5 software 

(GraphPad Inc., La Jolla, CA, USA). A P value <0.05 was considered 

statistically significant. 
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2.5 Ethical statement 

This retrospective cohort study was approved by the Institutional Review 

Board of SNUH (No. H-1911-171-1082) which waived the requirement to 

obtain informed consent. 

 

3. Results 

3.1 Analysis in all patients 

Patients’ clinicopathologic characteristics are presented in Table 6. The 

sarcopenia group (n=76) had significantly lower pre-treatment BMI (mean, 

22.1 vs. 24.7 kg/m2; P <0.001) and received NAC less frequently (17.1% vs. 

30.1%; P=0.046), compared to the control group (n=103). Other characteristics 

showed no significant difference between two groups. The patients’ initial body 

composition and laboratory results are presented in Table 7. The sarcopenia 

group showed less skeletal muscle area (median, 88.1 vs. 106.1 cm2; P <0.001) 

and total fat area (median, 188.5 vs. 230.7 cm2; P <0.001). Among the various 

calculated body composition indices, all others except SMI were similar 

between the sarcopenia and control groups. There were no differences in the 

laboratory results, inflammatory indices, and nutritional index between the 

groups.  

The median length of observation was 42.7 months, and it was not different 

between both groups (45.9 vs. 41.5 months; P=0.497). During this period, 140 

patients (78.2%) experienced disease recurrence, and 57 patients (31.8%) died 

of disease. Patients in the sarcopenia and control groups showed similar PFS 

(median, 18.3 vs. 18.7 months; P=0.450; Figure 17A) and OS (5-year survival 
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rate, 64.1% vs. 59.3%; P=0.287; Figure 17B).  

Multivariate analyses adjusting patients’ age, FIGO stage, serum CA-125 

levels, primary treatment strategy, residual tumor size after surgery, and BMI 

revealed that pre-treatment sarcopenia status did not influence patients’ PFS 

and OS (Table 8). Instead, age ≥58 years (aHR, 1.458; 95% CI, 1.0242.077; 

P=0.037) and gross residual tumor (aHR, 1.504; 95% CI, 1.0682.119; 

P=0.020) were identified as independent poor prognostic factors for PFS. For 

OS, NAC rather than PDS (aHR, 2.000; 95% CI, 1.0963.649; P=0.024) and 

gross residual tumor (aHR, 2.142; 95% CI, 1.2583.647; P=0.005) were the 

poor prognostic factors. 

 

3.2 Subgroup analysis in sarcopenia patients 

Because we focused on patients’ relative fat mass, we adopted FMR among 

the calculated body composition indices. As the median FMR of all patients 

was 2.1, we subdivided the patients into FMR low (<2.1) and high (≥2.1) groups. 

Among the patients without sarcopenia (n=103), no differences in PFS and OS 

were observed between the FMR low and high groups (P=0.453 and P=0.975, 

respectively) (Figure 18A,B). 

Next, we performed subgroup analysis confined to the sarcopenia group 

(n=76). Patients’ clinicopathologic characteristics are presented in Table 9. 

Compared to patients with low FMR, patients with high FMR were 

significantly older (mean, 60.1 vs. 54.0 years; P=0.006), and had higher pre-

treatment BMI (mean, 23.6 vs. 20.7 kg/m2; P <0.001) and prevalence of 

dyslipidemia (15.8% vs. 0%; P=0.025). Other characteristics were similar 
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between the FMR high and low groups. Sarcopenia patients’ initial body 

composition and laboratory results are presented in Table 10. Compared to the 

FMR low group, the FMR high group showed higher total fat area (median, 

228.1 vs. 141.5 cm2; P <0.001) and VSR (median, 0.6 vs. 0.3; P=0.001), and 

lower SVR) median, 1.1 vs. 2.5; P <0.001). However, skeletal muscle area as 

well as SMI were similar between both groups. There were no differences in 

the laboratory results, inflammatory indices, and nutritional index between the 

two groups. 

In the sarcopenia group, patients with FMR showed significantly worse OS 

than those with low FMR (5-year survival rate, 44.7% vs. 80.0%; P=0.046), 

whereas PFS was not different (P=0.365) (Figure 18C,D). Multivariate 

analyses identified high FMR as an independent poor prognostic factor for OS 

in this group (aHR, 3.377; 95% CI, 1.1709.752; P=0.024), whereas high FMR 

did not influence patients’ PFS (P=0.825) (Table 11). Other poor prognostic 

factors for OS were NAC rather than PDS (aHR, 3.310; 95% CI, 1.09610.000; 

P=0.034) and gross residual tumor after surgery (aHR, 4.377; 95% CI, 

1.65511.578; P=0.003). 

 

3.3 Correlations between body composition and systemic 

inflammatory indices 

We investigated the correlations between SMI and the three systemic 

inflammatory indices, NLR, MLR, and PLR. While SMI was significantly 

associated with BMI (Pearson’s correlation coefficient r=0.478; P <0.001), 

there were no correlations between SMI and either NLR, MLR, or PLR (Figure 
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19AD). 

To elucidate the underlying mechanisms of high FMR and poor survival 

outcome in sarcopenia patients, correlations between FMR and the three 

systemic inflammatory indices—NLR, MLR, and PLR—were also investigated. 

While FMR was significantly associated with BMI (Pearson’s correlation 

coefficient r=0.778; P <0.001), significant correlations were not observed 

between FMR and NLR, between FMR and MLR, and between FMR and PLR 

(Figure 19EH). 

 

4. Discussion 

In this study, we investigated the impact of pre-treatment sarcopenia on 

survival outcomes in patients with advanced-stage HGSOC and revealed that 

there was no significant association between sarcopenia and recurrence rate or 

survival. However, further subgroup analysis identified high FMR as a poor 

prognostic factor for OS in sarcopenia patients. 

Unlike other malignancies in which sarcopenia is associated with decreased 

OS and increased post-operative morbidity (86, 87), inconsistent results on the 

relationship between sarcopenia and survival outcome are observed among the 

studies regarding ovarian cancer. There are two representative retrospective 

studies: while Bronger et al. reported the baseline sarcopenia is an independent 

poor prognostic factor for PFS and OS in advanced-stage serous ovarian cancer 

(74), Rutten et al. demonstrated that sarcopenia was not a prognostic factor for 

OS or major complications in ovarian cancer patients undergoing PDS (75). 

Most studies were conducted in Western populations whose body composition 
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is different from that of Asians. Recently, a Japanese retrospective study 

showed results similar to those of our study; pre-treatment SMI was not 

associated with ovarian cancer patients’ PFS and OS (88). However, that study 

included early-stage disease and histologic types other than HGSOC, which is 

definitely different compared to our study. 

To date, researches on sarcopenia in cancer patients have been conducted in 

the context of cancer cachexia. Patients with HGSOC are at high risk of 

sarcopenia and cachexia. First, as the disease is often detected in a much-

progressed state, the patients might already have cachexia at the time of 

diagnosis. Second, an enlarging tumor mass induces metabolic dysfunction 

towards catabolism, while bowel obstructions during disease progression cause 

anorexia or reduced food intake (89). Third, newly diagnosed patients undergo 

aggressive cytoreductive surgery followed by taxane- and platinum-based 

chemotherapy as an established standard of care, which further aggravate 

anorexia and loss of body weight (47). Consequently, poor nutritional status 

and loss of muscle mass and strength is highly expected in patients with ovarian 

cancer. Previously, our research team reported that underweight status, one of 

the representative features of cachexia, was a poor prognostic factor in patients 

with advanced-stage ovarian cancer (90). In the current study, rather than cancer 

cachexia, we focused on sarcopenia itself which may be incidentally discovered 

at the time of diagnosis of ovarian cancer. For this purpose, we excluded pre-

treatment underweight patients in whom cancer cachexia could already be 

dominant. 

CT scans are known to distinguish fat and muscle tissue accurately with high 
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reproducibility by using specific attenuation of each tissue (91). The most 

commonly used and validated HU range for adipose tissue is -190 to -30. 

However, there is an inconsistency between the literature with the HU range for 

muscle tissue, which starts from either 0 or -29 and ends at 100 or 150. 

Exclusion of the area ranging from -29 to 0 HU may result in significant loss 

of the total muscle area. Instead, we used -29 to 150 HU for muscle tissue so as 

not to miss the low attenuation muscle, same as that used in previous studies 

(92, 93). 

Although there was no statistical difference in PFS and OS between the 

sarcopenia and control groups, we found that high FMR is an independent 

prognostic factor for OS in the sarcopenia group. The coexistence of sarcopenia 

and obesity (sarcopenic obesity) seems to affect patients’ survival outcomes 

equal to or greater than the sum of the respective risks of obesity and sarcopenia 

alone (94). A previous study has reported that the presence of sarcopenic 

obesity increased patients’ mortality in colorectal cancer (95). In the current 

study, we focused on amount of the fat relative to the muscle, rather than BMI, 

considering the fact that Asians have a higher body fat percentage than 

Westerners at the same BMI (80), and similar results were found with the 

previous studies. 

One remarkable observation in the current study is that we tried to elucidate 

the mechanisms underlying the relationship between high FMR and decreased 

survival in sarcopenic patients with advanced-stage HGSOC. Previously, our 

research team reported that adipose stem cells from visceral and subcutaneous 

fat facilitated the growth and migration of ovarian cancer cells via IL-
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6/JAK2/STAT3 pathway (96). Adding to this, other researchers have reported 

that visceral obesity is associated with a chronic inflammatory state, which 

leads to adverse metabolic consequences (97). The relationship between 

sarcopenia and systemic inflammation has been also reported (98). In this 

context, we hypothesized that systemic inflammatory indices (NLR, MLR, and 

PLR) would be different between the high and low FMR groups. However, 

there were no differences between both groups, and correlations were not 

observed between FMR and the three systemic inflammatory indices. Similar 

correlations were also observed between SMI and the inflammatory indices. 

These findings might be related to the small sample size or exclusion of 

underweight patients. Moreover, investigation of other systemic inflammatory 

markers and adipose tissue-derived cytokines, such as leptin, IL-6 and TNF-α, 

may answer our hypothesis exactly.  

In keeping with the era of precision medicine, early identification of adverse 

body composition which might influence patients’ survival outcome would be 

one of the important issues. For patients who have high FMR, aerobic exercises 

may be recommended to reduce adipose tissue. To date, intervention studies to 

prevent sarcopenia or maintain skeletal muscle mass in patients with ovarian 

cancer is still insufficient. Nevertheless, as recommended by various societies, 

prescription of resistance-type exercise training and a protein-rich diet or 

protein supplement should be also considered for HGSOC patients with 

sarcopenia. Hormone replacement therapy or vitamin D may be given, but more 

evidence is needed (99-101). For those who have chemotherapy-induced 

nausea and vomiting, adequate anti-emetics as well as parenteral nutrition 
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should be provided. If patients suffer from dyspepsia or abdominal distention 

owing to large amount of ascites, drainage of ascitic fluid may improve patients’ 

symptoms as well as nutritional status. If there is long persistent seeding ileus, 

procedures such as stoma formation may be considered as well. Prior to 

administering these interventions, all HGSOC patients should be screened for 

sarcopenia and adiposity at the time of diagnosis. As pre-treatment or baseline 

CT scans are commonly performed to determine the severity of disease and to 

establish a treatment plan in most patients, routine screening for body 

composition would be available and practical. 

The current study has several limitations. First, a small sample size with 

possible selection bias that originates from the retrospective study design might 

be problematic. Second, the sequential change of body composition in each 

individual was not considered. Third, associations between sarcopenia and 

surgery or chemotherapy-related complications were not investigated. Finally, 

although muscle mass was successfully measured by using CT scans, muscle 

quality was hard to know by this imaging modality. Decreased muscle quality 

is known to be associated with the fatty degeneration or fatty infiltration of the 

muscle (i.e., myosteatosis). Currently, MRI is the best modality to evaluate the 

muscle quality and myosteatosis. In addition, MRI may also provide 

information on inflammation, edema, fibrosis, and atrophy in the muscle (102-

104). 

However, because of its high cost, limited availability, and long image 

acquisition time, MRI-based body composition assessment is not a routine 

clinical practice. Most of our study population did not undergo pre-treatment 
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MRI, so accurate assessment of muscle quality was unavailable. Despite this 

study’s limitations, the current study is the first study to adopt CT-based body 

composition measurement techniques to identify prognostic factors in Korean 

ovarian cancer patients. 

In conclusion, we investigated the clinical significance of sarcopenia in 

Korean patients with advanced-stage HGSOC and found that sarcopenia did 

not influence patients’ recurrence rates and survival. However, among the 

sarcopenia patients, those who had relatively high levels of fat compared to 

muscle mass showed worse OS. Further translational researches and 

prospective studies are warranted. 
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Table 6. Patients’ clinicopathologic characteristics 

Characteristics 
All 

(n=179, %) 
No Sarcopenia 

(n=103, %) 
Sarcopenia  

(n=76, %) 
P 

Age, years     

Mean ± SD 57.5 ± 10.6 57.8 ± 11.1 57.0 ± 9.9 0.615 

BMI*, kg/m2      

Mean ± SD 23.6 ± 3.2 24.7 ± 3·3 22.1 ± 2.3 <0.001 

Normal (18.522.9) 81 (45.3) 35 (34.0) 46 (60.5) <0.001 

Overweight (23.024.9) 52 (29.1) 30 (29.1) 22 (28.9)  

Obesity (≥25.0) 46 (25.7) 38 (36.9) 8 (10.5)  

Comorbidities     

Hypertension 48 (26.8) 28 (27.2) 20 (26.3) 0.897 

Diabetes 15 (8.4) 10 (9.7) 5 (6.6) 0.455 

Dyslipidemia 21 (11.7) 15 (14.6) 6 (7.9) 0.171 

ASA score    0.080 

1 63 (35.2) 31 (30.1) 32 (42.1)  

2 104 (58.1) 67 (65.0) 37 (48.7)  

3 12 (6.7) 5 (4.9) 7 (9.2)  

FIGO stage    0.653 

IIIA1 8 (4.5) 5 (4.9) 3 (3.9)  

IIIA2 6 (3.4) 4 (3.9) 2 (2.6)  

IIIB 17 (9.5) 9 (8.7) 8 (10.5)  

IIIC 91 (50.8) 50 (48.5) 41 (53.9)  

IVA 10 (5.6) 4 (3.9) 6 (7.9)  

IVB 47 (26.3) 31 (30.1) 16 (21.1)  

CA-125, IU/ml     

Median (range) 
801.0 

(5.124720) 

833.0 

(710000) 

793.0 

(5.124720) 
0.829 

Primary treatment strategy    0.046 

PDS 135 (75.4) 72 (69.9) 63 (82.9)  

NAC 44 (24.6) 31 (30.1) 13 (17.1)  

Residual tumor after PDS/IDS    0.336 

No gross 114 (63.7) 67 (65.0) 47 (61.8)  

<1 cm 44 (24.6) 26 (25.2) 18 (23.7)  

1–2 cm 10 (5.6) 3 (2.9) 7 (9.2)  

≥2 cm 11 (6.1) 7 (6.8) 4 (5.3)  

Regimen of first-line chemotherapy    0.368 

Paclitaxel-Carboplatin 161 (89.9) 93 (90.3) 68 (89.5) 0.393 

Docetaxel-Carboplatin 14 (7.8) 9 (8.7) 5 (6.6)  

Paclitaxel-Carboplatin-Bevacizumab 4 (2.2) 1 (1.0) 3 (3.9)  

Main cycles of first-line chemotherapy     

Median (range) 6 (412) 6 (412) 6 (412) 0.438 

4–6 123 (68.7) 70 (68.0) 53 (69.7)  

7–9 50 (27.9) 31 (30.1) 19 (25.0)  

10–12 6 (3.4) 2 (1.9) 4 (5.3)  

Recurrence 140 (78.2) 78 (75.7) 62 (81.6) 0.349 

PSR† 95 (53.1) 47 (45.6) 48 (63.2) 0.031 

PRR 45 (25.1) 31 (30.1) 14 (18.4)  

Platinum sensitivity    0.075 

Platinum-sensitive‡ 134 (74.9) 72 (69.9) 62 (81.6)  

Platinum-resistant 45 (25.1) 31 (30.1) 14 (18.4)  

Abbreviations: ASA, American Society of Anesthesiologists; BMI, body mass index; CA-125, 

cancer antigen 125; FIGO, International Federation of Gynecology and Obstetrics; IDS, interval 

debulking surgery; NAC, neoadjuvant chemotherapy; PDS, primary debulking surgery; PRR, 



77 

 

platinum-resistant recurrence; PSR, platinum-sensitive recurrence; SD, standard deviation.  
*In this study, underweight patients (BMI <18.5 kg/m2) were excluded in analysis.  
†PSR was defined as relapse ≥6 months after completion of taxane- and platinum-based 

chemotherapy, whereas PRR as relapse <6 months. 
‡In addition to PSR, the patients who completed taxane- and platinum-based chemotherapy and 

did not experience disease recurrence during at least 6 months of follow-up period were 

considered platinum-sensitive. 
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Table 7. Body composition and laboratory results of all patients 

Characteristics 
All  

(n=179, %) 

No Sarcopenia 

(n=103, %) 

Sarcopenia 

(n=76, %) 
P 

Body composition at diagnosis*     

Skeletal muscle area, cm2 98.0 (64.1209.8) 106.1 (84.8209.8) 88.1 (64.1109.0) <0.001 

Total fat area, cm2 211.8 (42.2612.5) 230.7 (78.8612.5) 188.5 (42.2458.2) <0.001 

Subcutaneous fat 131.7 (34.4310.8) 154.0 (55.8310.8) 119.8 (34.4252.0) <0.001 

Visceral fat 70.4 (6.6289.4) 81.5 (11.2289.4) 59.6 (6.6213.0) 0.001 

Muscle fat 6.2 (0.736.2) 6.5 (0.736.2) 5.3 (1.231.6) 0.103 

Calculated body composition index*     

Skeletal muscle index (SMI), cm2/m2 40.3 (27.179.2) 42.6 (39.079.2) 36.3 (27.139.0) <0.001 

Fat-to-muscle ratio (FMR) 2.1 (0.56.5) 2.1 (0.86.5) 2.1 (0.54.9) 0.508 

Visceral-to-subcutaneous fat ratio (VSR) 0.5 (0.12.9) 0.5 (0.11.4) 0.4 (0.12.9) 0.212 

Skeletal muscle mass-to-visceral fat ratio (SVR) 1.4 (0.314.2) 1.3 (0.38.7) 1.5 (0.514.2) 0.178 

Laboratory test at diagnosis*     

Hemoglobin, g/dL  12.2 (8.314.9) 12.2 (9.114.9) 12.4 (8.314.6) 0.491 

WBC count, 103/uL  7.0 (1.517.0) 6.9 (1.514.7) 7.1 (3.517.0) 0.417 

Neutrophil (%)  68.9 (28.092.0) 68.9 (28.092.0) 68.9 (47.083.0) 0.734 

Lymphocyte (%) 21.7 (5.057.0) 22.2 (5.057.0) 21.2 (9.442.9) 0.772 

Monocyte (%) 6.8 (0.720.9) 6.8 (0.720.9) 6.9 (3.716.0) 0.335 

Platelet count, 103/uL 316.5 (95.0698.0) 312.0 (95.0698.0) 323.0 (159.0634.0) 0.355 

Albumin, g/dL 3.9 (2.35.1) 3.8 (2.34.6) 4.0 (2.45.1) 0.128 

Calculated inflammatory index*     

Neutrophil-to-lymphocyte ratio (NLR) 3.2 (0.518.4) 3.1 (0.518.4) 3.2 (1.28.8) 0.945 

Monocyte-to-lymphocyte ratio (MLR) 0.3 (0.10.9) 0.3 (0.10.9) 0.3 (0.10.9) 0.378 

Platelet-to-lymphocyte ratio (PLR) 204.9 (71.6768.5) 208.3 (71.6768.5) 204.7 (77.2628.1) 0.923 

Calculated nutritional index     

Prognostic nutritional index (PNI)     

Mean ± SD 46.0 ± 7.0 45.3 ± 7.0 47.0 ± 6.9 0.100 
*Median (range). Abbreviations: SD, standard deviation; WBC, white blood cell. 
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Table 8. Factors associated with patients’ survival outcomes 

Characteristics 

(A) Progression-Free Survival (B) Overall Survival 

Univariate Analysis Multivariate Analysis Univariate Analysis Multivariate Analysis 

HR 95% CI P aHR 95% CI P HR 95% CI P aHR 95% CI P 

Age, years             

<58 1   1   1   1   

≥58 1.558 1.1162.175 0.009 1.458 1.0242.077 0.037 1.551 0.9192.618 0.101 1.213 0.6922.127 0.500 

FIGO stage             

III 1   1   1   1   

IV 1.342 0.9441.908 0.101 1.216 0.8201.805 0.330 1.490 0.8612.579 0.154 1.256 0.6902.288 0.456 

CA-125, IU/ml             

<800 1   1   1   1   

≥800 1.164 0.8351.622 0.370 1.140 0.8111.602 0.451 1.110 0.6601.867 0.695 0.964 0.5601.660 0.894 

Primary treatment strategy             

PDS 1   1   1   1   

NAC 1.669 1.1512.419 0.007 1.380 0.9022.113 0.138 2.376 1.3924.057 0.002 2.000 1.0963.649 0.024 

Residual tumor after 

PDS/IDS 
            

No gross 1   1   1   1   

Gross 1.568 1.1192.198 0.009 1.504 1.0682.119 0.020 2.169 1.2863.658 0.004 2.142 1.2583.647 0.005 

BMI, kg/m2              

Normal (18.522.9) 1   1   1   1   

Overweight (23.024.9) 0679 0.4491.029 0.068 0.656 0.4291.004 0.052 0.728 0.3661.450 0.367 0.707 0.3471.437 0.338 

Obesity (≥25.0) 1.184 0.7991.755 0.399 1.132 0.7421.726 0.564 1.638 0.9092.951 0.100 1.261 0.6612.405 0.481 

Sarcopenia             

No 1   1   1   1   

Yes 0.879 06291.228 0.451 1.292 0.9061.843 0.157 0.747 0.4361.280 0.289 0.870 0.4881.550 0.636 

Abbreviations: aHR, adjusted hazard ratio; BMI, body mass index; CA-125, cancer antigen 125; CI, confidence interval; FIGO, International Federation of Gynecology and Obstetrics; 

HR, hazard ratio; IDS, interval debulking surgery; NAC, neoadjuvant chemotherapy; PDS, primary debulking surgery. 
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Table 9. Clinicopathologic characteristics of sarcopenia patients 

Characteristics 
FMR Low 

(n=38, %) 
FMR High  

(n=38, %) 
P 

Age, years    

Mean ± SD 54.0 ± 8.2 60.1 ± 10.6 0.006 

BMI*, kg/m2     

Mean ± SD 20.7 ± 1.5 23.6 ± 1.9 <0.001 

Normal (18.522.9) 33 (86.8) 13 (34.2) <0.001 

Overweight (23.024.9) 5 (13.2) 17 (44.7)  

Obesity (≥25.0) 0 8 (21.1)  

Comorbidities    

Hypertension 7 (18.4) 13 (34.2) 0.118 

Diabetes 3 (7.9) 2 (5.3) >0.999 

Dyslipidemia 0 6 (15.8) 0.025 

ASA score   0.466 

1 16 (42.1) 16 (42.1)  

2 20 (52.6) 17 (44.7)  

3 2 (5.3) 5 (13.2)  

FIGO stage   0.613 

III 28 (73.7) 26 (68.4)  

IV 10 (26.3) 12 (31.6)  

CA-125, IU/ml    

Median (range) 
793.0 

(1324720) 

712.5 

(5.17821) 
0.949 

Primary treatment strategy   0.361 

PDS 33 (86.8) 30 (78.9)  

NAC 5 (13.2) 8 (21.1)  

Residual tumor after PDS/IDS   0.533 

No gross 23 (60.5) 24 (63.2)  

<1 cm 11 (28.9) 7 (18.4)  

1–2 cm 2 (5.3) 5 (13.2)  

≥2 cm 2 (5.3) 2 (5.3)  

Regimen of first-line chemotherapy   0.306 

Paclitaxel-Carboplatin 36 (94.7) 32 (84.2)  

Docetaxel-Carboplatin 1 (2.6) 4 (10.5)  

Paclitaxel-Carboplatin-Bevacizumab 1 (2.6) 2 (5.3)  

Main cycles of first-line chemotherapy    

Median (range) 6 (412) 6 (412)  0.374 

4–6 28 (73.7) 25 (65.8) 0.725 

7–9 8 (21.1) 11 (28.9)  

10–12 2 (5.3) 2 (5.3)  

Recurrence 30 (78.9) 32 (842) 0.554 

PSR† 24 (63.2) 24 (63.2) 0.638 

PRR 6 (15.8) 8 (21.1)  

Platinum sensitivity   0.554 

Platinum-sensitive‡ 32 (84.2) 30 (78.9)  

Platinum-resistant 6 (15.8) 8 (21.1)  

Abbreviations: ASA, American Society of Anesthesiologists; BMI, body mass index; CA-125, 

cancer antigen 125; FIGO, International Federation of Gynecology and Obstetrics; IDS, interval 

debulking surgery; NAC, neoadjuvant chemotherapy; PDS, primary debulking surgery; PRR, 

platinum-resistant recurrence; PSR, platinum-sensitive recurrence; SD, standard deviation.  
*In this study, underweight patients (BMI <18.5 kg/m2) were excluded in analysis.  
†PSR was defined as relapse ≥6 months after completion of taxane- and platinum-based 

chemotherapy, whereas PRR as relapse <6 months. 
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‡In addition to PSR, the patients who completed taxane- and platinum-based chemotherapy and 

did not experience disease recurrence during at least 6 months of follow-up period were 

considered platinum-sensitive. 
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Table 10. Body composition and laboratory results of sarcopenia patients 

Characteristics 
FMR Low 

(n=38, %) 
FMR High  

(n=38, %) 
P 

Body composition at diagnosis*    

Skeletal muscle area, cm2 89.8 (74.5109.0) 86.4 (64.1104.8) 0.094 

Total fat area, cm2 141.5 (42.2199.3) 228.1 (166.0458.2) <0.001 

Subcutaneous fat 97.1 (34.4165.4) 138.3 (54.6252.0) <0.001 

Visceral fat 35.2 (6.679.4) 82.1 (30.1213.0) <0.001 

Muscle fat 3.8 (1.215.2) 7.8 (2.331.6) <0.001 

Calculated body composition index*    

Skeletal muscle index (SMI), cm2/m2 36.0 (27.139.0) 37.4 (28.739.0) 0.228 

Fat-to-muscle ratio (FMR) 1.6 (0.52.1) 2.6 (2.14.8) <0.001 

Visceral-to-subcutaneous fat ratio (VSR) 0.3 (0.11.3) 0.6 (0.22.9) 0.001 

Skeletal muscle mass-to-visceral fat ratio (SVR) 2.5 (1.014.2) 1.1 (0.52.6) <0.001 

Laboratory test at diagnosis*    

Hemoglobin, g/dL  12.1 (8.314.6) 12.5 (9.214.3) 0.569 

WBC count, 103/uL  7.4 (3.515.3) 6.9 (4.117.0) 0.971 

Neutrophil (%)  69.7 (47.083.0) 68.4 (49.781.2) 0.646 

Lymphocyte (%) 21.5 (9.437.0) 21.2 (9.742.9) 0.893 

Monocyte (%) 7.2 (3.716.0) 6.5 (4.513.5) 0.557 

Platelet count, 103/uL 323.5 (159.0634.0) 3225 (202.0564.0) 0.383 

Albumin, g/dL 3.9 (2.85.0) 4.0 (2.45.1) 0.521 

Calculated inflammatory index*    

Neutrophil-to-lymphocyte ratio (NLR) 3.2 (1.48.8) 3.3 (1.28.4) 0.884 

Monocyte-to-lymphocyte ratio (MLR) 0.3 (0.10.8) 0.3 (0.10.9) 0.771 

Platelet-to-lymphocyte ratio (PLR) 201.0 (77.2547.0) 211.2 (97.3682.1) 0.633 

Calculated nutritional index    

Prognostic nutritional index (PNI)    

Mean ± SD 46.7 (34.559.1) 48.2 (27.764.0) 0.357 
*Median (range). Abbreviations: SD, standard deviation; WBC, white blood cell. 
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Table 11. Factors associated with sarcopenia patients’ survival outcomes 

Characteristics 

(A) Progression-Free Survival (B) Overall Survival 

Univariate Analysis Multivariate Analysis Univariate Analysis Multivariate Analysis 

HR 95% CI P aHR 95% CI P HR 95% CI P aHR 95% CI P 

Age, years             

<58 1   1   1   1   

≥58 1.934 1.1583.229 0.012 1.905 1.0653.407 0.030 1.593 0.6693.795 0.293 1.041 0.4172.598 0.932 

FIGO stage             

III 1   1   1   1   

IV 1.063 0.6121.845 0.829 0.917 0.4841.739 0.791 1.394 0.5573.488 0.487 0.947 0.3452.594 0.915 

CA-125, IU/ml             

<800 1   1   1   1   

≥800 0.933 0.5631.546 0.787 0.863 0.4921.514 0.608 0.999 0.4242.354 0.998 1.171 0.4143.314 0.766 

Primary treatment strategy             

PDS 1   1   1   1   

NAC 1.456 0.7732.742 0.245 1.254 0.5942.644 0.553 2.933 1.1777.309 0.021 3.310 1.09610.000 0.034 

Residual tumor after 

PDS/IDS 
            

No gross 1   1   1   1   

Gross 2.274 1.3633.795 0.002 2.270 1.3343.861 0.003 3.587 1.4428.922 0.006 4.377 1.65511.578 0.003 

BMI, kg/m2              

Normal (18.522.9) 1   1   1   1   

Overweight (23.024.9) 0.921 0.5171.641 0.780 0.846 0.4401.624 0.615 1.024 0.3832.740 0.962 0.783 0.2442.517 0.682 

Obesity (≥25.0) 1.407 0.6483.051 0.388 0.937 0.3702.376 0.892 1.726 0.4826.178 0.401 0.356 0.0651.935 0.232 

Fat-to-muscle ratio (FMR)             

<2.1 1   1   1   1   

≥2.1 1.262 0.7622.092 0.366 1.073 0.5761.999 0.825 2.476 0.9896.199 0.053 3.377 1.1709.752 0.024 

Abbreviations: aHR, adjusted hazard ratio; BMI, body mass index; CA-125, cancer antigen 125; CI, confidence interval; FIGO, International Federation of Gynecology and Obstetrics; 

HR, hazard ratio; IDS, interval debulking surgery; NAC, neoadjuvant chemotherapy; PDS, primary debulking surgery. 
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Figure 16. Evaluation of body composition using CT image. Preoperative 

axial CT image at the level of L3 vertebral body level. (A) A 52-year old woman 

with newly diagnosed high-grade serous ovarian carcinoma. Total abdominal 

muscle area (purple), visceral fat area (green), and subcutaneous fat area (red) 

are segmented by the semi-automatic technique; (B) A 73-year old woman with 

sarcopenia and high fat-to-muscle ratio (4.6); (C) A 53-year old woman with 

sarcopenia and low fat-to-muscle ratio (1.5). 
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Figure 17. Survival outcomes of patients. (A) Progression-free survival. (B) 

Overall survival.
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Figure 18. Survival outcomes of patients by fat-to-muscle ratio. (Upper) 

Control group; (Lower) Sarcopenia group. (A,C) Progression-free survival; 

(B,D) Overall survival. 
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Figure 19. Correlations between body composition and systemic inflammatory indices. (Upper) Analyses according to skeletal muscle 

index in all patients; (Lower) Analyses according to fat to muscle ratio in sarcopenia patients. (A,E) Body mass index; (B,F) Neutrophil-to-

lymphocyte ratio; (C,G) Monocyte-to-lymphocyte ratio; (D,H) Platelet-to-lymphocyte ratio.
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국문 초록 

상피성 난소암의 진단 및 예후 예측을 위한 다차원 모

델 개발 연구 

 

김 세 익 

서울대학교 대학원 

의학과 산부인과학 전공 

 

난소암은 여성에서 발생하는 암종 중 사망률이 높은 치명적인 암

종으로, 부인암 중 가장 낮은 5년 생존률을 보인다. 암 특이적인 증

상과 효과적인 스크리닝 도구가 없는 까닭에 난소암은 진행성 병기

에 진단되는 경향이 있고, 이로 인해 치료에도 불구 높은 재발률과 

사망률을 보인다. 현재, 진행성 병기의 상피성 난소암의 1차 치료는 

종양감축수술과 백금 기반 항암화학요법으로 정립되어 있다. 그럼에

도 불구하고, 80%의 환자는 결국 난소암의 재발을 겪게 된다. 

정밀의학 시대에 발맞춰 난소암에 대한 정확한 진단 모델과 예후 

예측 모델의 발굴이 난소암 환자에 있어 맞춤 치료 구현의 첫 걸음

이라 할 수 있겠다. 따라서 상피성 난소암에 대한 다양한 모델을 개

발하는 일련의 연구들을 수행하였다. 

 

먼저, 챕터 1 에서는 혈액 내 마이크로비옴 유래 세포밖 소포체의 

메타지놈 데이터를 이용하는 난소암과 양성난소종양 감별 진단 모

델을 개발하였다. 

자궁 부속기 종괴가 발견된 여성에서 난소암과 양성난소종양을 구

분하는 것은, 수술의 방법 등 치료 계획을 결정하는데 있어 매우 중

요한 문제다. 현재 난소암 진단을 위한 도구로는 혈액 종양표지자인 

CA-125와 초음파, 컴퓨터단층촬영(CT) 스캔, 자기공명영상(MRI) 
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등의 영상 검사가 있다. 하지만, 정확도 측면에서 보다 높은 정확도

의 난소암 진단 도구 개발이 절실한 실정이다. 

본 연구에서는 병리학적으로 확인된 난소암 환자 166명과 양성난

소종양 환자 76명의 혈액 샘플을 이용하였다. 모델 개발 단계와 검

증 단계로 표본들을 2:1 무작위 배정하였다. 환자의 혈청으로부터 

마이크로비옴 유래 세포밖 소포체를 분리하고 16S rDNA amplicon 

sequencing을 수행하였다. 메타지놈 분석 결과, 난소암 환자 그룹

과 양성난소종양 환자 그룹은 유의하게 다른 조성을 보였다. 양성난

소종양 환자 그룹 대비 난소암 환자 그룹에서 아시네토박터 속

(genus) 균이 더 풍부하게 확인되었다. 메타지놈과 임상병리학적 변

수들을 조합하여 만든 여러 난소암 진단 모델 중 나이와 혈액 종양

표지자인 CA-125, 그리고 아시네토박터의 상대존재비로 구성된 모

델이 가장 높은 진단 성능을 보였다. 해당 모델의 수신기 작동 특성 

곡선 아래 영역 (AUC) 값은 모델 개발 단계와 검증 단계에서 각각 

0.898 과 0.846으로 확인되었다. 따라서, 본 연구 결과는 난소암 진

단을 위한 잠재적인 도구로서 혈청 마이크로비옴 유래 세포밖 소포

체의 메타지놈 분석의 가능성을 확인하였다. 

 

챕터 2 에서는 상피성 난소암 환자의 치료반응과 예후를 예측하

는 노모그램들을 개발하였다. 

현재까지 CT 스캔, 혈액 종양표지자, 수술소견, 병리학적 검사결

과 등을 기반으로 상피성 난소암의 생존을 예측하는 여러 모델들이 

개발된 바 있다. 하지만, 선행 모델들은 각기 다른 연구 대상 집단

에서 개발되었으며, 여러 임상병리학적 요인 중 단편만을 분석하였

으며, 예측 능력이 낮거나 제한적이어서 임상의사가 실제 진료 현장

에서 활용하기 어려웠다. 따라서, 본 연구는 국내 두 3차 의료기관

으로부터 다량의 임상병리학적 데이터를 획득하고 통합적인 통계 

분석을 통해 보다 정밀한 치료반응 및 생존 예후를 예측하는 노모
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그램을 개발하는 것을 목적으로 하였다. 이전에 발표된 바 있는, 그

리고 잠재적 가능성이 있는 모든 예후 요인들을 포함하여 분석하였

다. 

백금 민감성, 3년 무진행생존률 및 5년 전체생존률을 예측하는 새

로 개발된 노모그램의 AUC 값은 각각 0.758, 0.841, 0.805 이었다. 

난소암 치료 시 선행항암화학요법을 시행한 환자들을 제외하고 1차 

종양감축수술을 받은 환자들에게만 국한된 예측 노모그램도 개발하

였다. 이 경우 백금 민감성, 3년 무진행생존률 및 5년 전체생존률을 

예측하는 새로 개발된 노모그램의 AUC 값은 각각 0.713, 0.839, 

0.803 이었다. 결론적으로 상피 난소암 환자의 치료 반응과 생존 

예후를 예측하는 노모그램 개발에 성공하였다. 각각의 노모그램들은 

실제 진료 현장과 임상시험 설계 등에서 유용하게 활용될 것으로 

예상된다. 

 

챕터 3 에서는 진행성 병기의 고등급 장액성 난소암 환자를 대상

으로 근감소증과 신체 구성이 생존 예후에 미치는 영향을 탐색하였

다. 

골격근의 질량과 기능의 상실로 정의되는 근감소증이 암질환의 

예후에 미치는 영향은 지역과 인종에 따라 다를 수 있다. 최근에는 

라디오믹스로 불리는 영상 검사를 이용한 정량적 분석 방법이 임상 

결정 및 환자 층화에 있어 유용한 접근법으로 떠오르고 있다. 세 번

째 요추(L3) 레벨의 CT 스캔 단면 영상은 골격근육과 지방조직, 지

방분포 등 개인의 신체 구성을 잘 반영하여 나타내는 것으로 알려

져 있다. 

본 연구에서는 한국인 FIGO 병기 III-IV 기의 고등급 장액성 난

소암 환자의 진단 당시 촬영한 CT 스캔으로 붙어 L3 레벨의 골격

근 지수 (skeletal muscle index, SMI)를 측정하였다. 근감소증은 

SMI 값이 39.0 cm2/m2 미만 일 때로 정의하였을 때 76명은 근감소
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증 그룹, 103명은 대조군으로 확인되었다. 근감소증 존재 유무에 따

라 두 군 간 환자의 임상병리학적 특성과 생존 결과를 비교하였다. 

두 군 간 동반질환, 병기, CA-125, 수술 후 잔존종양의 크기는 차

이가 없었다. 두 군은 또한 유사한 무진행생존기간과 전체생존기간

을 보였다. 근감소증 그룹 내에서 같은 단면영상에서 측정한 지방 

대 근육 비 (fat-to-muscle ratio, FMR) 에 따라 FMR 이 높은 (2.1 

이상, 38명) 과 낮은 (2.1 미만, 38명) 두 그룹으로 세분화 하여 분

석을 하였다. 그 결과, 높은 FMR 그룹이 낮은 FMR 그룹 대비 통

계적으로 유의하게 불량한 5년 전체생존률을 보였다 (44.7% vs. 

80.0%; P=0.046). 하지만 무진행생존기간은 차이가 없었다 

(P=0.365). 다변량분석 결과 높은 FMR 값이 전체생존기간에 대한 

통계적으로 유의하게 불량한 예후 인자임을 확인하였다 (보정 위험

비, 3.377; 95% 신뢰구간, 1.170–9.752; P=0.024). 결론적으로, 한국

인 진행성 병기의 고등급 장액성 난소암 환자에서 근감소증 자체는 

재발률이나 생존률에 영향을 주지 않았으나, 높은 지방 대 근육 비

가 불량한 생존률과 연관이 있음을 확인할 수 있었다. 

 

상기 기술한 바와 같이, 상피성 난소암에서 각 개인의 임상병리학

적, 메타지노믹스, 그리고 라디오믹스 데이터를 통합 분석함으로써 

다양한 진단 및 예측 모델을 성공적으로 개발하였다. 다차원적 분석 

방법으로 상피성 난소암에서의 각 모델의 예측 능력을 향상시킴으

로써 암 정밀의학 분야에 있어 중요한 접근 방법임을 확인할 수 있

었다. 이러한 접근방식을 통해 난소암 환자에게 개별화된 맞춤 치료

를 구현할 수 있을 것으로 기대된다. 

---------------------------------- 

주요어: 난소암, 진단, 예후, 치료 반응, 생존, 세포밖 소포체, 마이크로

비옴, 메타지놈 분석, 근감소증, 신체 구성 
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