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Abstract

This paper treats the Merton problem that how to invest in safe assets and

risky assets to maximize an investor’s utility, given by investment oppor-

tunities modeled by a d-dimensional state process, whose dimension is ex-

tended from Guasoni and Robertson (2015). The problem is represented by

a partial differential equation with optimizing term: the Hamilton–Jacobi–

Bellman equation. The main purpose of this paper is to solve partial dif-

ferential equations derived from the Hamilton–Jacobi–Bellman equations

with a deep learning algorithm: the Deep Galerkin method, first suggested

by Sirignano and Spiliopoulos (2018). We then apply the algorithm to get

the solution of the PDE based on some model settings and compare with

the one from the finite difference method.

Key words: Merton problem, optimal investment, optimal portfolio, Hamilton–

Jacobi–Bellman equation, Deep Galerkin method, neural network approx-

imation

Student Number: 2018-20452

i



Contents

Abstract i

1 Introduction 1

2 Optimal Investment Problem 4

2.1 Market with the Merton Problem . . . . . . . . . . . . . . 4

2.2 The Hamilton–Jacobi–Bellman Equation . . . . . . . . . . 6

3 Deep Galerkin Method 10

3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Neural Network Approximation . . . . . . . . . . . . . . . 13

4 Numerical Test 15

4.1 Model Settings . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Comparing with the Finite Difference Method . . . . . . . 18

5 Conclusion 26

A Proof of Theorem 3.2.1 28

A.1 Convergence of the loss functional . . . . . . . . . . . . . . 28

A.2 Convergence of the DNN function to the solution of PDEs 32

Abstract (in Korean) 41

ii



List of Figures

4.1 Surface of solution by the Deep Galerkin method (p = 0.0005) 21

4.2 Surface of solution by the Deep Galerkin method (p = 0.5) 22

4.3 Surface of solution by the finite difference method (p = 0.0005) 23

4.4 Surface of solution by the finite difference method (p = 0.5) 24

4.5 Absolute errors between the Deep Galerkin method and the

finite difference method (p = 0.0005) . . . . . . . . . . . . 25

iii



Chapter 1

Introduction

Consider the following expected utility maximization problem:

max
(πu)u≥t

1

p
E [(Xπ

T )p |Xt = x, Yt = y] ,

where π is a portfolio, Xπ a wealth process and Y a state variable with

the utility function (1/p)xp =: U(x). This kind of problem is first sug-

gested by Merton (1969), which is the most fundamental and pioneering

in economics. The Merton problem has played as a key for an investor’s

wealth allocation in several assets under some market circumstances. Since

then there have been lots of studies about Merton problem under various

conditions. Benth et al. (2003) studied Merton problem under the Black-

Scholes setting by using the OU type stochastic volatility model. Kühn

and Stroh (2010) studied optimizing portfolio of Merton problem under

a limit-ordered market in view of a shadow price. The research on the

optimal investment based on inside information and drift parameter un-

certainty was conducted by Danilova et al. (2010). Nutz (2010) studied the

utility maximization in a semimartingale market setting with the oppor-

tunity process. Hansen (2013) suggested an optimal investment strategies

with investors’ partial and private information. Pedersen and Peskir (2017)

applied the Lagrange multiplier to solve nonlinear mean-variance optimal

portfolio selection problem. Also there was research on the optimal port-
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CHAPTER 1. INTRODUCTION

folio strategies using over-reaction and under-reaction by Callegaro et al.

(2017). Liang and Ma (2020) researched a robust Merton problem using the

constant relative/absolute risk aversion utility functions under the time-

dependent sets of confidence.

In this paper we follow the overall market setting in Guasoni and

Robertson (2015) and induce the so-called Hamilton–Jacobi–Bellman equa-

tion under time variable t, variable x representing wealth process and vari-

able y = (y1, . . . , yd) from the d-dimensional state variable. We can opti-

mize the portfolio by means of finding a solution to the HJB equation. By

using some properties including homotheticity and concaveness, we elim-

inate the optimizing term to change the HJB equation into a nonlinear

partial differential equation.

Under this circumstance we face with the problem of solving nonlinear

PDEs. Because in general most PDEs do not have analytic solutions, there

exists several well-known numerical tools. These classical approaches can

be found in Achdou and Pironneau (2005) and Burden et al. (2010).

At the same time there has been some studies about solving PDEs with

a deep neural network. Lee and Kang (1990), Lagaris et al. (2000) suggested

the neural network algorithm on a fixed mesh. Malek and Beidokhti (2006)

also suggested the numerical hybrid DNN optimizing method. However in

case of the higher dimension of PDEs, these grid-based methods would be

computationally inefficient: a curse of dimensionality.

Recently there have been several researches to get rid of the curse of

dimensionality using machine learning techniques. Han et al. (2018) and

Weinan et al. (2019) suggested a deep backward stochastic differential

equation method with the Feynman–Kač formula.

The deep learning algorithm mainly used in this paper is the Deep

Galerkin method suggested by Sirignano and Spiliopoulos (2018). It is

computationally efficient since there does not need to make any mesh or

grid. We define a loss functional to minimize L2-norm about the desired

differential operator and other conditions from the PDE. To make the

loss small enough as we want, we sample random points from the domain

2



CHAPTER 1. INTRODUCTION

and optimize by means of stochastic gradient descent. After deriving sur-

faces, we also apply the finite difference method(FDM) in order to compare

surfaces from both algorithms: DGM and FDM. For further research on

the Deep Galerkin method, see Al-Aradi et al. (2018) and Al-Aradi et al.

(2019).

This paper is organized as follows. In chapter 2, we start by describing

the general setting of this paper, and induce the partial differential equa-

tion with optimizing term: the HJB equation. The Deep Galerkin method

algorithm and neural network approximation theorem from Sirignano and

Spiliopoulos (2018) are presented in chapter 3, with some part of code for

each step of DGM algorithm. Numerical test of the algorithm is presented

in chapter 4. Specifically, we model 2 dimensional state process by the OU

process and the CIR process, return process by the Heston model. Then

we use the calibrated parameters from Crisóstomo (2014) and Mehrdoust

and Fallah (2020). We display the solution surface at each fixed time in

some pre-determined domain of the state variable. We finally analyze sur-

faces from the Deep Galerkin method and those from the finite difference

method. Conclusions can be found in chapter 5, and proofs of neural net-

work approximation theorem are in appendix A.
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Chapter 2

Optimal Investment Problem

In the case that an economic agent is in time interval [0, T ], the problem

is that he or she has to decide how to invest in several risky assets or safe

assets as time goes by, starting with the initial wealth. This problem was

first suggested by Merton in the 1960s: Merton problem, known as a utility

maximization problem. The aim of the agent is to establish a portfolio

strategy in such a way of maximizing utility under some conditions. In this

chapter we describe the general setting of this paper, and induce the HJB

equation. We finally reach to a nonlinear PDE by using some properties.

The above problem is equivalent to a matter of finding a solution of the

equation.

2.1 Market with the Merton Problem

We first start by describing market with the following framework. Assume

that the market has n+ 1 assets S(0), S(1), . . . , S(n), where S(0) is safe and

S(1), . . . , S(n) are risky. One can make a decision to the investment by a

d-dimensional state variable Y = (Y (1), . . . , Y (d)) satisfying:

dYt = b(Yt) dt+ a(Yt) dWt, (2.1)

where W = (W (1), . . . ,W (d)) denotes a standard Brownian motion.

4



CHAPTER 2. OPTIMAL INVESTMENT PROBLEM

Let r be the interest rate, µ be the excess returns, and σ be the volatility

matrix. We also assume that the prices of the assets satisfy:

dS
(0)
t = rS

(0)
t dt, (2.2)

dS
(i)
t

S
(i)
t

= rdt+ dR
(i)
t 1 ≤ i ≤ n, (2.3)

where R = (R(1), . . . , R(n)) denotes the cumulative excess return satisfying:

dR
(i)
t = µi(Yt)dt+

n∑
j=1

σij(Yt) dZ
(j)
t 1 ≤ i ≤ n. (2.4)

ρ = (ρij) = d 〈Z, W 〉t /dt denotes the cross correlations between the n-

dimensional Brownian motion Z and W . Σ = σσT = d 〈R, R〉t /dt is the

matrix of quadratic covariance of returns, and Υ = σρaT = d 〈R, Y 〉t /dt
denotes the correlation between the return and the state process.

In the market, an investor buys the risky assets by a portfolio π =

(π
(1)
t , . . . , π

(n)
t )t≥0. The wealth process Xπ = (Xπ

t )t≥0 corresponding to the

portfolio satisfies

dXπ
t

Xπ
t

= r dt+ πTt dRt, Xπ
0 ≥ 0. (2.5)

Observe first that the portfolio process (πt)t≥0 is Ft-measurable, where the

filtration F = (Ft)t≥0 is generated by the return R and state variable Y . It

might be clear in light of the investor’s eyes: he or she has all informations

about state and asset return from time t = 0 to the current time. Note also

the portfolio process is integrable with respect to the return process R. By

the Merton problem, we assume the investors’ utility function is defined

by the following:

U(x) =
1

p
xp, 0 < p < 1.

For fixed wealth x and state y = (y1, . . . , yd) satisfying (2.1) and (2.5), our

aim is to maximize the conditional expectation of terminal wealth utility

given wealth and state at time t, that is

max
(πu)u≥t

1

p
E [(Xπ

T )p |Xt = x, Yt = y] .

5



CHAPTER 2. OPTIMAL INVESTMENT PROBLEM

2.2 The Hamilton–Jacobi–Bellman Equation

Now we substitute the problem of utility maximization to that of solving

the PDE, namely the Hamilton–Jacobi–Bellman equation. There needs to

be some definitions before approaching to the HJB equation.

Definition 2.2.1. A portfolio process π = (πt)t≥0 is called an admissible

portfolio if

• For every t ∈ [0, T ] and (x, y) ∈ D ⊂ R × Rd, π(t, x, y) ∈ U , where

U ⊂ R is a fixed subset.

• For any given initial points (t, x) and y = (y1, . . . , yd), the following

SDE has a unique solution:

dXπ
s = rXπ

s ds+ πTs dRs,

Xπ
t = x.

(2.6)

• For any given initial point (t, y) = (t, y1, . . . , yd), the following SDE

has a unique solution:

dYs = b(Ys) ds+ a(Ys) dWs,

Yt = y.
(2.7)

By now we assume the portfolio π is admissible.

Definition 2.2.2. Let U be an investor’s utility function.

• For each π, we define the expected value function Vπ as

Vπ(t, x, y) = E[U(Xπ
T )|Xt = x, Yt = y],

given (2.6) and (2.7).

• We define the optimal value function V as

V (t, x, y) = sup
π
Vπ(t, x, y).

6



CHAPTER 2. OPTIMAL INVESTMENT PROBLEM

The following theorem justifies a conversion from the way of finding

optimal portfolio to that of solving PDEs having optimizing term. Heuristic

process for deriving the HJB equation is in chapter 19, Björk (2009), in

the way of limiting procedures in dynamic programming.

Theorem 2.2.3. Assume the following.

• The market has a safe asset S(0) whose dynamics is expressed in

(2.2).

• The market has n risky assets satisfying (2.3), with the return process

R following the diffusion (2.4).

• There exists an optimal portfolio π̂ = (π̂
(1)
t , . . . , π̂

(n)
t )t≥0.

• The optimal value function V is regular, that is, V ∈ C1,2,2 with

respect to (t, x, y), y = (y1, . . . , yd).

Then the following hold:

1. V satisfies the Hamilton–Jacobi–Bellman equation

Vt + bT (∇yV ) +
1

2
tr[aT (∇2

yV ) a] + rxVx

+ sup
π

[
πT (µVx + Υ(∇yVx))x+

1

2
x2Vxxπ

TΣπ

]
= 0, (t, x, y) ∈ [0, T ]×D,

V (0, x, y) = U(x), (x, y) ∈ D.

2. An optimizing term in the above equation can be achieved by π = π̂:

sup
π

[
πT (µVx + Υ(∇yVx))x+

1

2
x2Vxxπ

TΣπ

]
= π̂T (µVx + Υ(∇yVx))x+

1

2
x2Vxxπ̂

TΣπ̂.

7



CHAPTER 2. OPTIMAL INVESTMENT PROBLEM

If we define the optimal value function as

V (t, x, y1, . . . , yd) = sup
(πu)u≥t

E
[

1

p
(Xπ

T )p |Xπ
t = x, Y

(1)
t = y1, . . . , Y

(d)
t = yd

]
,

(2.8)

by Theorem 2.2.3 with the Itô formula, one can derive the Hamilton–

Jacobi–Bellman equation from (2.8):

Vt + bT (∇yV ) +
1

2
tr[aT (∇2

yV ) a] + rxVx

+ sup
π

[
πT (µVx + Υ(∇yVx))x+

1

2
x2Vxxπ

TΣπ

]
= 0,

(2.9)

where the terminal condition of (2.9) is V (T, x, y) = (1/p)xp. ∇yV =

(Vy1 , . . . , Vyd) and ∇2
yV =

(
Vyiyj

)
1≤i,j≤d stand for the gradient and the

Hessian of V with respect to y = (y1, . . . , yd), respectively. Because of the

concaveness of V in x and supπ(πT b + 1
2
πTAπ) = −1

2
bTA−1b for negative

definite matrix A, (2.9) becomes

Vt + bT (∇yV ) +
1

2
tr[aT (∇2

yV ) a] + rxVx

−(µVx + Υ(∇yVx))
T Σ−1

2Vxx
(µVx + Υ(∇yVx)) = 0,

(2.10)

with the corresponding optimal portfolio is

π = π(t, x, y1, . . . , yd) = − 1

xVxx
Σ−1(µVx + Υ(∇yVx)).

Since the utility function is homothetic, we define the reduced value func-

tion u as

V (t, x, y1, . . . , yd) =
1

p
xp u(t, y1, . . . , yd). (2.11)

If we put (2.11) into (2.10) and divide each component by xp, (2.10) be-

comes

ut + (bT−qµTΣ−1Υ)∇yu+
1

2
tr[aT (∇2

yu) a]

+(pr − q

2
µTΣ−1µ)u− q

2u
(∇yu)TΥTΣ−1Υ(∇yu) = 0,

(2.12)

8



CHAPTER 2. OPTIMAL INVESTMENT PROBLEM

where the terminal condition of (2.12) is u(T, y1, . . . , yd) = 1. In (2.12), we

set q = p/(p− 1) for simplicity. Also the following is the reduced optimal

portfolio:

π(t, y1, . . . , yd) =
1

1− p

(
Σ−1µ+ Σ−1Υ(∇yu)

1

u

)
. (2.13)

9



Chapter 3

Deep Galerkin Method

Now we investigate how to solve the PDEs such as (2.12). Since only few

PDEs have analytic solutions, there are well-known numerical tools includ-

ing the Monte Carlo method exemplified by the Feynman–Kač theorem

and the finite difference method. However one of the most difficult facts is

a curse of dimensionality. In particular in grid-based numerical methods,

the number of mesh points grows explosively as the dimension goes higher,

so Sirignano and Spiliopoulos (2018) suggest a DNN-based algorithm for

approximating solution of PDEs: the Deep Galerkin method(DGM), such

that there is no need to make any mesh.

With the parametrized deep neural network, say f , a loss functional

f 7→ J(f) is defined to minimize L2-norm about the desired differential

operator and terminal condition. To make the loss small enough as we want,

the network samples random points from the pre-determined domain and

is optimized by means of the stochastic gradient descent. In this chapter

we first introduce the DGM algorithm. We then state the approximation

theorem in order to justify this new algorithm.

3.1 Algorithm

Let u = u(t, y) be an unknown function which satisfies the PDE:

10



CHAPTER 3. DEEP GALERKIN METHOD

∂tu(t, y) + Lu(t, y) = 0, (t, y) ∈ [0, T ]×D,
u(T, y) = uT (y), y ∈ D,

(3.1)

where D ⊂ Rd. Our aim is to express the solution of (3.1) as a neural

network function f = f(t, y; θ) in place of u. θ = (θ(1), · · · , θ(K)) denotes a

vector of network parameters.

Define a loss functional J := J1 + J2 with

J1(f) := ‖∂tf(t, y; θ) + Lf(t, y; θ)‖2
[0,T ]×D,ν1

J2(f) := ‖f(T, y; θ)− uT (y)‖2
D,ν2

Note that all above terms are expressed in terms of L2-norm, that is,

‖h(y)‖2
Y,ν =

∫
Y |h(y)|2ν(y)dy. Each functionals J1 and J2 determine that

how well the approximation has conducted in view of the PDE differential

operator and terminal condition. The aim is to find a parameter θ̂ in such

a way of minimizing J(f), equivalently,

θ̂ = arg min
θ

J(f(t, y; θ)).

As the error J(f) goes smaller, the approximated function f would get

closer to the solution u. Hence f(t, y; θ̂) might be the best approximation

of u(t, y).

The algorithm of DGM is as follows:

1. Set initial values of θ0 = (θ
(1)
0 , · · · , θ(K)

0 ) and determine the learning

rate βn.

2. Sample random points (tn, yn) in [0, T ]×D according to probability

density ν1. Likewise, pick random points wn from D with density ν2.

3. Calculate the L2-error for the randomly sampled points sn = {(tn, yn), wn}:

L(θn, sn) = ((∂t + L)f(tn, yn; θn))2 + (f(T,wn; θn)− uT (wn))2.

11



CHAPTER 3. DEEP GALERKIN METHOD

4. Use the stochastic gradient descent at sn:

θn+1 = θn − βn∇θL(θn, sn).

5. Repeat until ‖θn+1 − θn‖ is small enough.

The following is some part of code for each step of DGM algorithm:

# 1-1. Initializing the neural network parameter

oper_init = tf.global_variables_initializer()

# 1-2. Initializing the learning rate

lrn_rate = tf.train.exponential_decay(init_lrn_rate,

glob_step, dec_step, dec_rate, staircase=True)

optimizer = tf.train.AdamOptimizer(lrn_rate).minimize(

loss_tnsr)

# 2-1. Generating random samples : interior of the

domain

t_int = np.random.uniform(low=0, high=T, size=[nSim_int

,1])

y1_int = np.random.uniform(low=y1_low, high=y1_high, size

=[nSim_int,1])

y2_int = np.random.uniform(low=y2_low, high=y2_high, size

=[nSim_int,1])

# 2-2. Generating random samples : terminal condition

t_ter = T * np.ones(nSim_ter,1)

y1_ter = np.random.uniform(low=y1_low, high=y1_high, size

=[nSim_ter,1])

y2_ter = np.random.uniform(low=y2_low, high=y2_high, size

=[nSim_ter,1])

12



CHAPTER 3. DEEP GALERKIN METHOD

# 3. Calculating L^2-error of differential operator /

terminal condition

# differential operator

J1 = tf.reduce_mean(tf.square(diff_u))

# terminal condition

J2 = tf.reduce_mean(tf.square(fitted_ter - target_ter))

J = J1 + J2

# 4. Stochastic gradient descent step

for k in range(steps_per_sample):

loss, J1, J2, k = sess.run([loss_tnsr, J1_tnsr, J2_tnsr,

optimizer], feed_dict={t_int_tnsr:t_int, y1_int_tnsr:

y1_int, y2_int_tnsr:y2_int, t_ter_tnsr:t_ter,

y1_ter_tnsr:y1_ter, y2_ter_tnsr:y2_ter})

3.2 Neural Network Approximation

The following neural network approximation theorem is stated in Sirignano

and Spiliopoulos (2018). In other words, there exists a collection of approx-

imated neural network functions that converges to a solution of quasilinear

parabolic PDEs.

Theorem 3.2.1. Define Cn as a collection of DNN functions with n hid-

den neurons in a single hidden layer. Assume u = u(t, y) be an unknown

solution for (3.1). Under certain conditions in Sirignano and Spiliopoulos

(2018), there exists a neural network function fn with n hidden neurons

such that the following hold:

1. J(fn)→ 0 as n→∞,

2. fn
strongly−−−−→ u in Lρ([0, T ]×D) as n→∞, where ρ < 2.

Some part of proofs for our formulation in this paper is in appendix

13
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A. Further details including conditions and proofs are in section 7 and

appendix A in Sirignano and Spiliopoulos (2018).

14



Chapter 4

Numerical Test

The key purpose of this chapter is to solve (2.12) with the Deep Galerkin

method and compare the numerical solution with the one derived by the

well-known finite difference method.

4.1 Model Settings

We first set some specific settings of the market model. For our experi-

ment we assume that there are two ways of decision for trading, i.e., 2

dimensional state variable Y = (Y (1), Y (2)). Let Y (1) be the Ornstein-

Uhlenbeck(OU) process and Y (2) be the Cox-Ingersoll-Ross(CIR) process.

This state variable is expressed by the following matrix form:(
dY

(1)
t

dY
(2)
t

)
=

(
θ(1)(k(1) − Y (1)

t )

θ(2)(k(2) − Y (2)
t )

)
dt+

(
1 0

0

√
Y

(2)
t

)(
a(1,1) a(1,2)

a(2,1) a(2,2)

)(
dW

(1)
t

dW
(2)
t

)
.

We also assume that there is a risky asset S(1) in the market, that is:

dS
(1)
t = rS

(1)
t dt+ S

(1)
t dRt,

where the cumulative excess return R follows the diffusion:

dRt = Y
(1)
t dt+ σ

√
Y

(2)
t dZt, (σ ∈ R)

15



CHAPTER 4. NUMERICAL TEST

which is known as the Heston model. In this case the correlation matrix

between Z and W is of the form ρ = (ρ1, ρ2) satisfying:〈
Z, W (i)

〉
= ρi dt, 1 ≤ i ≤ 2.

4.2 Calibration

Now for the next step we need to set the value of parameters. Let P be a

vector of parameters to be determined given by

P =
{
θ(1), θ(2), k(1), k(2), a(1,1), a(1,2), a(2,1), a(2,2), σ, ρ1, ρ2

}
.

We shortly introduce the calibrating process using the nonlinear least

squares optimization from the market data. For more detail, see Crisóstomo

(2014) and Mehrdoust and Fallah (2020).

Define the Percentage Mean Squared Error (PMSE) between the price

Cmarket from the market and the model price Cmodel of the European call

option derived from the double Heston model in Mehrdoust and Fallah

(2020) and Lemaire et al. (2020):

PMSE :=
n∑
j=1

wj

(
Cmarket(S

(0), Kj, Tj, r)− Cmodel(S(0), Kj, Tj, r,P)

Cmarket(S(0), Kj, Tj, r)

)2

,

where the weights wj satisfies:

wj =
1√∣∣∣C(j)

ask − C
(j)
bid

∣∣∣ .
The optimal parameter vector P? is determined by the following nonlinear

least squares problem

P? = arg inf PMSE.

Table 4.1 shows the optimal parameters on the observed market data from

the S&P500 index at the close of the market in September 2010.
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Table 4.1: Calibrated parameters

θ(1) = 0.1646 k(1) = 0.1301 a(1,1) = −0.6594 a(1,2) = 0.7518

θ(2) = 0.2333 k(2) = 0.0958 a(2,1) = −0.6692 a(2,2) = 0.7431

ρ1 = −0.2949 ρ2 = −0.2919 σ = 0.0724

4.3 Implementation

Now let us solve (2.12) by the DGM algorithm under conditions from the

above setting. For the numerical test, we set the interest rate r = 1%,

the maturity time T = 1 and the power utility preference parameters

p = 0.0005 and p = 0.5. We sampled 1000 time-space points (t, y1, y2) in

the interior of the domain [0, T ]× [−10, 10]× [0, 10] and 100 space points

at terminal time T . We set 100 steps to resample new time-space domain

points. Before resampling, each stochastic gradient descent step is repeated

10 times. We set 50 hidden neurons in a hidden layer. From starting 0.001,

learning rate decreased with decay rate 0.96 as the step goes by.

After solving (2.12) by the DGM algorithm, investors can choose their

states (y1, y2) ∈ [−10, 10]× [0, 10] for fixed t ∈ [0, T ]. The optimal portfolio

can be constructed using (2.13) as:

πDGM(t, y1, y2) =
1

1− p

(
Σ−1µ+ Σ−1Υ(∇yuDGM)

1

uDGM

)
.

To sum up, one can get the value of u and the portfolio value π at every

time or state. The investor could buy or sell a risky asset S(1) based on the

value of the portfolio to maximize utility from terminal wealth.

Figure 4.1 shows surfaces of the solution uDGM of (2.12) using DGM

algorithm in different times, with the power utility preference parameter

p = 0.0005. We chose some part of domain [0, 1]× [0, 1] as a plot range for

convenience. Figure 4.2 shows surfaces of the solution of (2.12) in p = 0.5,

with the restricted plot range [0, 5] × [0, 5]. In both figures, for different

values of utility parameter p, we can easily notice the fact that the sur-

face tends to the plane u = 1 as time goes to the terminal time T : the
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terminal condition of (2.12). Note however Figure 4.1 is more regular than

Figure 4.2 in the sense that the value of L2-loss in p = 0.0005 was re-

markably smaller than that in p = 0.5. Hence we may infer the value of

market preference parameter p has played a significant role for using the

Deep Galerkin method algorithm.

4.4 Comparing with the Finite Difference

Method

Now we solve (2.12) using the finite difference method(FDM). The domain

has equally divided 40 grids satisfying:

0 = t0 < t1 < · · · < t40 = T,

−10 = y0
1 < y1

1 < · · · < y40
1 = 10,

0 = y0
2 < y1

2 < · · · < y40
2 = 10.

First of all, we discretize the solution u as

uni,j := u(tn, yi1, y
j
2), 0 ≤ i, j, n ≤ 40.

With this notation, we can substitute the equation (2.12) using the follow-

ing central difference formula:

ut =
un+1
i,j − uni,j

∆t
, uy1 =

uni+1,j − uni−1,j

2(∆y1)
, uy2 =

uni,j+1 − uni,j−1

2(∆y2)
.

Note that we used the forward difference for discretizing ut in order to

get the values of (uni,j)1≤i,j≤40 by using the values of (un+1
i,j )1≤i,j≤40, for

n = 0, . . . , 39. Also the central difference approximations of the second

derivative of u are given by:

uy1y1 =
uni+1,j − 2uni,j + uni−1,j

(∆y1)2
, uy2y2 =

uni,j+1 − 2uni,j + uni,j−1

(∆y2)2
,

uy1y2 =
uni+1,j+1 − uni+1,j−1 − uni−1,j+1 + uni−1,j−1

4(∆y1)(∆y2)
.
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Then the PDE (2.12) becomes a nonlinear system of equations with 1521(=39×39)

unknowns (uni,j)1≤i,j≤39 for each n = 0,. . .,39. The equation is of the form:

un+1
i,j − uni,j

∆t
+ C1

uni+1,j − uni−1,j

2(∆y1)
+ C2

uni,j+1 − uni,j−1

2(∆y2)
+ C3

uni+1,j − 2uni,j + uni−1,j

(∆y1)2

+ C4

uni+1,j+1 − uni+1,j−1 − uni−1,j+1 + uni−1,j−1

4(∆y1)(∆y2)
+ C5

uni,j+1 − 2uni,j + uni,j−1

(∆y2)2

+ C6u
n
i,j −

q

2uni,j

[
C7

(
uni+1,j − uni−1,j

2(∆y1)

)2

+ C8

uni+1,j − uni−1,j

2(∆y1)

uni,j+1 − uni,j−1

2(∆y2)

]

− q

2uni,j
C9

(
uni,j+1 − uni,j−1

2(∆y2)

)2

= 0,

(4.1)

where C1, . . . , C9 are constants. Note that the terminal condition u(T, y) =

u(T, y1, y2) = 1 also becomes

u40
i,j = 1 for all 0 ≤ i, j ≤ 40.

Since (2.12) has no boundary condition, we used the boundary data from

the DGM algorithm. Figure 4.3 shows surfaces of the solution of (4.1) using

the finite difference method in different times with p = 0.0005. We used

the Newton’s method since the equation (4.1) is nonlinear. For more detail,

see Remani (2013).

With the same value of p, the absolute errors between the solution from

the Deep Galerkin method and the one from the finite difference method

are displayed in Figure 4.5. Notice that the error between these algorithms

is getting slightly larger as the time t goes to zero. This may be due to the

time-reversely performed finite difference method algorithm, from t = T

to t = 0. In other words, the stability on the solution from the terminal

condition was gradually weakened as the time goes to zero.

In a different point of view, combining Figure 4.5 with Figure 4.1 and

Figure 4.3, we conclude the solution is well-estimated by the deep neural

network. It usually takes about 5 minutes to train the network. On the
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other hand, it only takes less than 30 seconds to find the surface of solution

by the FDM. One can deduce this traditional algorithm would be more

efficient for time-saving. However, it is not always true. Figure 4.4 shows

surfaces derived from the finite difference method algorithm with p = 0.5,

same domain with Figure 4.2. In Figure 4.4, the solution has extremely

large or small values. This singularity may have arised since the system of

equations (4.1) is nonlinear. In other words, the matter of finding inverse

matrix in the Newton’s method at each step n = 39, . . . , 0 would make the

value of solutions undesirable.
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(a) t = 0 (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Figure 4.1: Surface of solution by the Deep Galerkin method (p = 0.0005)
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(a) t = 0 (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Figure 4.2: Surface of solution by the Deep Galerkin method (p = 0.5)
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(a) t = 0 (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Figure 4.3: Surface of solution by the finite difference method (p = 0.0005)

23



CHAPTER 4. NUMERICAL TEST

(a) t = 0 (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Figure 4.4: Surface of solution by the finite difference method (p = 0.5)
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(a) t = 0 (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Figure 4.5: Absolute errors between the Deep Galerkin method and the

finite difference method (p = 0.0005)
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Chapter 5

Conclusion

In this paper we first modeled the market with a safe asset and some risky

assets whose dynamics satisfy the diffusion process with returns. We then

induced the HJB equation to maximize the expectation of an investor’s util-

ity, given by investment opportunities modeled by a d-dimensional state

process. Using some properties including homotheticity and concaveness,

we finally derived a nonlinear partial differential equation and approxi-

mated the solution with a deep learning algorithm.

For comparison with the Deep Galerkin method, we applied the finite

difference method to find an approximated solution. In case of the utility

parameter being quite small, p = 0.0005, we found that the solution has

estimated well by the neural network. However in the case of p = 0.5,

there were several singular points in solution surfaces approximated by

the finite difference method. Hence unlike the Deep Galerkin method, this

mesh-based algorithm showed some defects such as a singularity by a non-

linearity of discretized version of partial differential equations. This con-

cludes that the DGM algorithm is relatively stable and has less difficulties

to approximate the solution for PDEs.

Furthermore, all above procedures in chapter 4 were performed only

with the 2-dimensional state process. If the dimension d of state process

increases, since there would exist millions of grids, it would be more compu-
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tationally efficient to apply the DGM algorithm than the FDM algorithm.

Finally with the approximated solution from the relatively stable DGM

algorithm, the investor can decide how to allocate one’s wealth in several

risky assets by the optimal portfolio formula.

Also there has some further studies to be researched. the stability or

regularity of the solution is to be researched as the following are changed:

model or dimension of a state variable Y , value of calibrated parameters,

market preference parameter p and sampling domain. Also in the optimal

portfolio formula, the stability on a gradient term needs to be considered.

Meanwhile, Sirignano and Spiliopoulos (2018) proved the convergence of

the DGM algorithm only in a class of quasilinear parabolic PDEs. Although

Sirignano and Spiliopoulos (2018) refered that the algorithm can be applied

to other types of PDEs, there needs to be some researches for the stability

of hyperbolic, elliptic or fully nonlinear PDEs.
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Appendix A

Proof of Theorem 3.2.1

Here we now justify Theorem 3.2.1 by proving the following two theorems

in special cases. The main idea of proofs are from Sirignano and Spiliopou-

los (2018) and Hornik (1991) based on universal approximation arguments.

Note that the formulations in this chapter are not the same as the ones

from the above papers. For completeness, we display almost all computa-

tions in the following proofs. The first theorem shows the convergence of

J(f): there exists a deep neural network f such that the loss functional

J(f) tends to the arbitrary small. The latter one stands for the convergence

of the DNN function to the solution of PDEs.

A.1 Convergence of the loss functional

Assume D ⊂ Rd is bounded with a smooth boundary ∂D. Denote DT =

[0, T )×D. Consider the following form of quasilinear parabolic PDE:

G[u](t, y) := ∂tu(t, y)− div(α(t, y, u,∇u)) + γ(t, y, u,∇u) = 0, (t, y) ∈ DT ,

u(T, y) = uT (y), y ∈ D.
(A.1)
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Then the above differential operator G can be expressed as

G[u](t, y) = ∂tu(t, y)−
d∑

i,j=1

∂αi
∂uyj

∂uyj
∂yi
−

d∑
i=1

∂αi
∂u

∂yiu−
d∑
i=1

∂αi
∂yi

+ γ(t, y, u,∇u)

=: ∂tu(t, y)−
d∑

i,j=1

∂αi
∂uyj

∂uyj
∂yi

+ γ̂(t, y, u,∇u).

Theorem A.1.1. Let Cn(ψ) be a collection of DNN functions with n hid-

den neurons in a single hidden layer:

Cn(ψ) =

{
ζ : R1+d → R : ζ(t, y) =

n∑
i=1

βiψ

(
α1it+

d∑
j=1

αjiyj

)
+ ci

}
,

where ψ is an activation function and θ = (β1, · · · , βn, α11, · · · , αdn, c1, · · · , cn) ∈
R2n+n(1+d) is a vector of the neural network parameters. Assume the fol-

lowing:

• ψ is in C2(Rd), bounded and non-constant.

• [0, T ]×D is compact.

• supp ν1 ⊂ DT and supp ν2 ⊂ D.

• The above PDE (A.1) has a unique solution, where this solution be-

longs to both C(D̄T ) and C1+ η
2
,2+η(DT ) for 0 ≤ η ≤ 1, and

sup
DT

(
|∇yu|+

∣∣∇2
yu
∣∣) <∞.

• γ̂(t, y, u, p) and ∂αi(t,y,u,p)
∂pj

for 1 ≤ i, j ≤ d are locally Lipschitz con-

tinuous, where Lipschitz constant has a polynomial growth in u and

p.

• ∂αi(t, y, u, p)

∂uyj
is bounded, for 1 ≤ i, j ≤ d.
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Then there is a constant

K = K

(
sup
DT

|u| , sup
DT

|∇yu| , sup
DT

|∇2
yu|
)
> 0,

such that for arbitrary positive ε > 0, there is a DNN function f in C(ψ) =
∞⋃
n=1

Cn(ψ) satisfying J(f) ≤ Kε.

Proof. By Theorem 3 in Hornik (1991), for every ε > 0 and u ∈ C1,2([0, T ]×
Rd), there is a DNN function f = f(t, y; θ) in C(ψ) such that

sup
DT

|∂tu− ∂tf | + sup
D̄T ,0≤j≤2

|∂(j)
y u− ∂(j)

y f | < ε. (A.2)

Also we may assume for C > 0, nonnegative constants c1, c2, c3 and c4,

|γ̂(t, y, u, p)−γ̂(t, y, v, q)| ≤ C
(
|u|

c1
2 + |v|

c2
2 + |p|

c3
2 + |q|

c4
2 + 1

)
(|u−v|+|p−q|),

by the local Lipschitz continuity of γ̂(t, y, u, p) in u and p. We abbrevi-

ate u(t, y) and f(t, y; θ) for convenience. From the Hölder inequality with

exponents r1 and r2,∫
DT

|γ̂(t, y, f,∇yf)− γ̂(t, y, u,∇yu)|2 dν1

≤ C

∫
DT

(|f |c1 + |u|c2 + |∇yf |c3 + |∇yu|c4 + 1)(|f − u|2 + |∇yf −∇yu|2) dν1

≤ C

(∫
DT

(|f |c1 + |u|c2 + |∇yf |c3 + |∇yu|c4 + 1)r1 dν1

) 1
r1

×
(∫

DT

(|f − u|2 + |∇yf −∇yu|2)r2 dν1

) 1
r2

≤ C

(∫
DT

(|f − u|c1 + |∇yf −∇yu|c3 + |u|c1∨c2 + |∇yu|c3∨c4 + 1)r1 dν1

) 1
r1

×
(∫

DT

(|f − u|2 + |∇yf −∇yu|2)r2 dν1

) 1
r2

≤ C

(
εc1 + εc3 + sup

DT

|u|c1∨c2 + sup
DT

|∇yu|c3∨c4
)
ε2.
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Each constant C from the above inequalities may differ from each other.

The last inequality holds because of (A.2).

Also we may assume∣∣∣∣∂αi(t, y, u, p)∂pj
− ∂αi(t, y, v, q)

∂qj

∣∣∣∣ ≤ C
(
|u|

c1
2 + |v|

c2
2 + |p|

c3
2 + |q|

c4
2 + 1

)
(|u−v|+|p−q|),

by the local Lipschitz continuity of ∂αi(t,y,u,p)
∂pj

in u and p. For convenience,

we denote

ξ(t, y, h,∇h,∇2h) =
d∑

i,j=1

∂αi(t, y, h,∇h)

∂hyj
∂yiyjh(t, y).

In spirit to the above procedure we used the Hölder inequality with expo-

nents p and q:∫
DT

|ξ(t, y, u,∇yu,∇2
yu)− ξ(t, y, f,∇yf,∇2

yf)|2 dν1

≤
∫
DT

∣∣∣∣∣
d∑

i,j=1

(
∂αi(t, y, f,∇f)

∂fyj
− ∂αi(t, y, u,∇u)

∂uyj

)
∂yiyju(t, y)

∣∣∣∣∣
2

dν1

+

∫
DT

∣∣∣∣∣
d∑

i,j=1

∂αi(t, y, f,∇f)

∂fyj
(∂yiyjf(t, y; θ)− ∂yiyju(t, y))

∣∣∣∣∣
2

dν1

≤

C
d∑

i,j=1

(∫
DT

|∂yiyju(t, y)|2p dν1

) 1
p

(∫
DT

∣∣∣∣∂αi(t, y, f,∇f)

∂fyj
− ∂αi(t, y, u,∇u)

∂uyj

∣∣∣∣2q dν1

) 1
q

+C
d∑

i,j=1

(∫
DT

∣∣∣∣∂αi(t, y, f,∇f)

∂fyj

∣∣∣∣2p dν1

) 1
p (∫

DT

|∂yiyjf(t, y; θ)− ∂yiyju(t, y)|2q dν1

) 1
q

≤

C

d∑
i,j=1

(∫
DT

|∂yiyju(t, y)|2p dν1

) 1
p
(∫

DT

(|f − u|2 + |∇yf −∇yu|2)qr2 dν1

) 1
qr2

×
(∫

DT

(|f − u|c1 + |∇yf −∇yu|c3 + |u|c1∨c2 + |∇yu|c3∨c4 + 1)qr1 dν1

) 1
qr1
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+C
d∑

i,j=1

(∫
DT

∣∣∣∣∂αi(t, y, f,∇f)

∂fyj

∣∣∣∣2p dν1

) 1
p (∫

DT

|∂yiyjf(t, y; θ)− ∂yiyju(t, y)|2q dν1

) 1
q

≤ Cε2.

To sum up, we finally obtain the following inequality:

J(f) = ‖G[f ]‖2
DT ,ν1

+ ‖f(T, y; θ)− uT (y)‖2
D,ν2

= ‖G[f ]− G[g]‖2
DT ,ν1

+ ‖f(T, y; θ)− uT (y)‖2
D,ν2

≤
∫
DT

(
|∂tu− ∂tf |2 + |ξ(t, y, u,∇u,∇2u)− ξ(t, y, f,∇f,∇2f)|2

)
dν1

+

∫
DT

|γ̂(t, y, f,∇yf)− γ̂(t, y, u,∇yu)|2 dν1 +

∫
D

|f(T, y; θ)− uT (y)|2 dν2

≤ Kε2

for some constant K > 0.

A.2 Convergence of the DNN function to

the solution of PDEs

As we done in section A.1, consider the quasilinear parabolic PDE (A.1)

and the following loss functional

J(f) = ‖G[f ]‖2
DT ,ν1

+ ‖f(T, y; θ)− uT (y)‖2
D,ν2

.

By Theorem A.1.1, there is a neural network fn such that J(fn) tends to

0. Each fn satisfies the following:

G[fn](t, y) = hn(t, y), (t, y) ∈ DT ,

fn(T, y) = unT (y), y ∈ D,
(A.3)

and

‖hn‖2
DT ,ν1

+ ‖unT − uT‖2
D,ν2
→ 0 as n→∞.

Theorem A.2.1. Assume the following:
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• ‖α(t, y, u, p)‖ ≤ µ(‖p‖ + κ(t, y)) for all (t, y) ∈ DT , with µ > 0 and

κ ∈ L2(DT ) being positive.

• α is continuously differentiable in (y, u, p).

• Both α and γ are Lipschitz continuous, uniformly on the following

form of compact sets:{
(t, y, u, p) : t ∈ [0, T ], y ∈ D̄, 0 ≤ |u| ≤ C, 0 ≤ ‖p‖ ≤ C

}
.

• 〈p, α(t, y, u, p)〉 ≥ ν‖p‖2 for some ν > 0.

• 〈p1 − p2, α(t, y, u, p1)− α(t, y, u, p2)〉 > 0 for some ν > 0, for every

p1, p2 ∈ Rd with p1 6= p2.

• |γ(t, y, u, p)| ≤ ‖p‖λ(t, y) for all (t, y) ∈ DT , with λ ∈ Ld+2(DT )

being positive.

• uT (y) ∈ C0,2+ξ(D̄) for some ξ > 0. Note that

‖u(y)‖C0,β(D̄) = sup
y∈D̄
|u(y)|[β] + sup

y1,y2∈D̄,y1 6=y2

|u(y1)− u(y2)|
|y1 − y2|β−[β]

.

• uT and u′T are bounded in D̄.

• D ⊂ Rd is bounded and open with boundary ∂D ∈ C2.

• (fn)n∈N ∈ C1,2(D̄T ) and (fn)n∈N ∈ L2(DT ).

Then

1. the PDE (A.1) has a unique bounded solution

u ∈ C0,δ, δ
2 (D̄T ) ∩W (1,2),2

0 (D?
T ) ∩ L2

(
0, T ;W 1,2

0 (D)
)
, δ > 0,

for any interior subdomain D?
T ⊂ DT .

2. fn → u strongly in Lρ(DT ) for every ρ < 2.

33



APPENDIX A. PROOF OF THEOREM 3.2.1

Note that in case of the class of quasilinear parabolic PDEs with bound-

ary conditions, we should also consider the limiting process in the weak

formulation of PDEs and use the Vitali’s theorem. For more detail, see

Appendix A in Sirignano and Spiliopoulos (2018). See also Boccardo et al.

(2009), Magliocca (2018), Di Nardo et al. (2011) and Debnath (2011).

Proof. Existence, regularity and uniqueness for (A.1) follows from Theo-

rem 2.1 in Porzio (1999) and Theorem 6.3 to 6.5 of chapter V.6 in La-

dyzhenskaia et al. (1968). Boundedness holds by Theorem 2.1 in Porzio

(1999). See also chapter V.2 from Ladyzhenskaia et al. (1968).

Let fn be the solution of (A.3). By Lemma 4.1 of Porzio (1999), {fn}n∈N
is uniformly bounded in both L∞(0, T ;L2(D)) and L2

(
0, T ;W 1,2

0 (D)
)
.

Then we can pick a subsequence from the sequence of neural networks

{fn}n∈N, where we denote also by {fn}n∈N for convenience, satisfying

• fn w∗−→ u in L∞(0, T ;L2(D)),

• fn → u, weakly in L2
(
0, T ;W 1,2

0 (D)
)
,

• fn(·, t)→ v(·, t), weakly in L2(D), for every fixed t in [0, T ),

for some functions u, v. Since the norm of f in a Banach space L2
(
0, T ;W 1,2

0 (D)
)

is defined as

‖f‖L2(0,T ;W 1,2
0 (D)) =

(∫ T

0

‖f‖2
W 1,2

0 (D)
dt

) 1
2

,

where

‖f‖2
W 1,2

0 (D)
=
∑
|α|≤2

‖Dαf‖2
L2(D) = ‖f‖2

L2(D) + ‖Df‖2
L2(D) + ‖D2f‖2

L2(D),

{∇yf
n}n∈N is uniformly bounded in L2(0, T ;W 1,2

0 (D)).

34



APPENDIX A. PROOF OF THEOREM 3.2.1

Let q = 1 +
d

d+ 4
∈ (1, 2). By the Hölder inequality with exponents

r1, r2 > 1,∫
DT

|γ(t, y, fn,∇yf
n)|q dtdy ≤

∫
DT

|λ(t, y)|q|∇yf
n(t, y)|q dtdy

≤
(∫

DT

|λ(t, y)|r1q dtdy
) 1

r1

(∫
DT

|∇yf
n|r2q dtdy

) 1
r2

.

Choose r2 =
2

q
. Then we get r1 =

2

2− q
and hence r1q = d + 2. Since

λ ∈ Ld+2(DT ) and {∇yf
n}n∈N is uniformly bounded,∫

DT

|γ(t, y, fn,∇yf
n)|q dt dy ≤ C,

for some C > 0.

The growth assumption on α and the above argument imply that

{∂tfn}n∈N is uniformly bounded in L1+ d
d+4 (DT ) and L2 (0, T ;W−1,2(D)).

Let δ1, δ2 be the conjugate exponents satisfying δ2 > max {2, d}. By the

Gagliardo–Nirenberg–Sobolev inequality and the Rellich–Kondrachov com-

pactness theorem(for further details, see chapter 5 in Evans (2002)), the

following embeddings hold:

W−1,2(D) ⊂ W−1,δ1(D), Lq(D) ⊂ W−1,δ1(D), and L2(D) ⊂ W−1,δ1(D),

and hence {∂tfn}n∈N is uniformly bounded in L1(0, T ;W−1,δ1(D)).

By Corollary 4 in Simon (1986) and the following embedding

W 1,2
0 (D) ⊂⊂ L2(D) ⊂ W−1,δ1(D),

{fn}n∈N is relatively compact in L2(DT ), in other words,

fn → u strongly in L2(DT ) as n→∞.

Thus

fn → u almost everywhere in DT up to subsequences. (A.4)
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Note that from the Theorem 3.3 of Boccardo et al. (1997), we get

∇fn → ∇u almost everywhere in DT . (A.5)

Hence fn → u strongly in Lρ
(
0, T ;W 1,ρ

0 (D)
)

and so in Lρ(DT ) for every

ρ < 2, by (A.4) and (A.5).
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국문초록

본 논문은 투자자의 효용을 극대화하고자 안전 자산과 위험 자산의 투자 문

제인 Merton 문제를 다룬다. 투자 기회는 Guasoni와 Robertson의 단일 상

태변수의차원을확장한 d차원상태변수로주어진다. Merton문제는최적화

항을 포함한 편미분방정식인 Hamilton–Jacobi–Bellman(HJB) 방정식으로

표현된다.본논문의주요목적은 Hamilton–Jacobi–Bellman방정식으로도

출한 편미분방정식의 해를 Sirignano와 Spiliopoulos가 처음 제안한 딥러닝

알고리즘인 심층 Galerkin 방법으로 구하는 것이다. 특정 조건으로 설정한

모델 하에서 알고리즘을 적용해 편미분방정식의 해를 구하고 유한차분법으

로 구한 해와 비교한다.

주요어휘: Merton 문제, 최적 투자, 최적 포트폴리오, Hamilton–Jacobi–

Bellman 방정식, 심층 Galerkin 방법, 신경망 근사

학번: 2018-20452
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