

의학박사 학위논문

산모의 비스페놀 A(bisphenol A) 노출이 후성유전학적 기전을 통해 소아의 비만에 미치는 영향

Effect of prenatal bisphenol A exposure on child's obesity through epigenetic mechanism

2021년 2월

서울대학교 대학원

의학과 예방의학 전공

최 윤 정

A thesis of Degree of Doctor of Philosophy

Effect of prenatal bisphenol A exposure on child's obesity through epigenetic mechanism

산모의 비스페놀 A(bisphenol A) 노출이 후성유전학적 기전을 통해 소아의 비만에 미치는 영향

February 2021

Yoon-Jung Choi Department of Preventive Medicine Soeul National University College of Medicine

산모의 비스페놀 A(bisphenol A) 노출이 후성유전학적 기전을 통해 소아의 비만에 미치는 영향

지도교수 홍 윤 철

이 논문을 예방의학 박사학위논문으로 제출함 2020년 12월

서울대학교 대학원

의학과 예방의학 전공

최 윤 정

최윤정의 박사학위논문을 인준함

2021년 1월

A thesis of Degree of Doctor of Philosophy

Effect of prenatal bisphenol A exposure on child's obesity through epigenetic mechanism

by

Yoon-Jung Choi, M.D., M.Sc

A thesis submitted to the Department of Medicine in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Medicine (Preventive Medicine) at Seoul National University College of Medicine

January 2021

Approved by Thesis Committee

Professor See K. Pechairmen Professor Junktor Vice Charimen Professor Sang Min Park And Professor Ji-Yeob Choi 2/2192 Professor Supply Ban

Abstract

Effect of prenatal bisphenol A exposure on child's obesity through epigenetic mechanism

Yoon-Jung Choi Department of Preventive Medicine Seoul National University College of Medicine

BACKGROUND: *In utero* exposure to bisphenol A (BPA) has been indicated as an obesogen in children, and epigenetic regulations have been suggested as underlying mechanisms with limited evidence in humans.

OBJECTIVES: Differentially methylated CpG sites by prenatal BPA exposure were identified and evaluated for their association with DNA methylation and obesity in children by candidate gene analysis.

METHODS: DNA methylation profiles were investigated in whole blood from 59 children at ages 2 and 6 years longitudinally by Infinium HumanMethylation BeadChip, who are participating in Environment and Development in Children cohort study. Among 594 CpG sites reported from previous obesity-related epigenome-wide association studies, differentially methylated CpG sites by prenatal and postnatal BPA exposure (<80 vs. \geq 80 percentile) were identified. Differentially methylated CpG sites were then tested for the associations with body mass index (BMI) and BMI Z-score at ages 2, 4, 6, and 8 years in linear regression models after adjusting for several covariates.

RESULTS: Methylation at cg19196862, located at the 31^{st} exon of insulin-like growth factor 2 receptor (*IGF2R*) gene, differed by prenatal BPA exposure at age 2 (p-value 0.00030, false discovery rate corrected p-value <0.05) but not at age 6, and was positively associated with BMI Z-score at ages 2, 4, 6, and 8 years old. With 1 standard deviation increase of methylation at cg19196862, BMI Z-score increased by 0.253 (95% confidence interval (CI); 0.050, 0.456), 0.243 (95% CI; 0.030, 0.455), 0.251 (95% CI; 0.030, 0.472), and 0.322 (95% CI; 0.034, 0.610) at ages 2, 4, 6, and 8, respectively. DNA methylation levels at 594 CpG sites at age 2 and 6 were not associated with postnatal exposure to BPA at ages 2, 4, and 6.

CONCLUSION: Prenatal exposure to BPA may influence differential methylation of *IGF2R* at age 2, which could persistently affect BMI in children up to 8 years old. Prenatal exposure to BPA did not affect DNA methylation at age 6, which implies that prenatal BPA exposure may be more influential in earlier childhood. DNA methylation at 594 CpG sites were not different by postnatal exposure to BPA at ages 2, 4, and 6 years, suggesting that prenatal BPA exposure may be more important than postnatal exposure.

KEYWORDS: bisphenol A, prenatal, DNA methylation, epigenetics, obesity, BMI, BMI Z-score

Student ID: 2018-36285

Contents

Introduction 1
Methods 3
Study Participants3
Data collection3
DNA methylation assessment4
Quality control for methylation data6
Systematic review of literature
Selection of candidate CpG sites
Covariates13
Statistical analysis 14
Results 18
General characteristics of participants
Differential methylation levels in children at ages 2 and 6 years
according to prenatal BPA exposure
Differential methylation levels in children at ages 2 and 6 years
according to postnatal BPA exposure
Methylation status at age 2 years and child's BMI in early childhood41
Mediation analysis 44
Sensitivity analysis 47
Discussion
Conclusion 56
References 57
초록
Acknowledgment 86

List of Tables

Table 1. Previous epigenome-wide association studies for the association between methylation and obesity 10 Table 2. General characteristics of the sub-cohort according to prenatal Table 3. General characteristics of the sub-cohort according to prenatal BPA exposure level - child factors (n=59).21 Table 4. General characteristics of total EDC participants - parental Table 5. General characteristics of total EDC participants - child factors (N=657) ······ 23 Table 6. Mean DNA methylation levels at age 2 at each CpG site by prenatal bisphenol A exposure levels (high (n=8) vs. low (n=51)) (Top 25 Table 7. Mean DNA methylation levels at age 6 at each CpG site by prenatal bisphenol A exposure levels (high (n=8) vs. low (n=51)) (Top 25 Table 8. Mean DNA methylation levels at age 2 at each CpG site by prenatal bisphenol A exposure levels (high (n=8) vs. low (n=51))(Top 5 CpG sites sorted by p-values at CpG island or promoter regions) 32 Table 9. Mean DNA methylation levels at age 6 at each CpG site by prenatal bisphenol A exposure levels (high (n=12) vs. low (n=49))(Top 5 CpG sites sorted by p-values at CpG island or promoter regions) 32 Table 10. Threshold point estimation for the non-linear model for the association between log2(prenatal BPA) and DNA methylation levels at Table 11. Difference in methylation levels in cg19196862 (IGF2R) in 2-year children by high vs. low prenatal BPA exposures with different Table 12. Matching of ages at bisphenol A exposure and ages for DNA Table 13. Mean DNA methylation levels at age 2 at each CpG site by postnatal bisphenol A exposure at age 2 (high (n=6) vs. low (n=25)) (Top Table 14. Mean DNA methylation levels at age 6 at each CpG site by postnatal bisphenol A exposure at age 2 (high (n=6) vs. low (n=25)) (Top

Table 15. Mean DNA methylation levels at age 6 at each CpG site by postnatal bisphenol A exposure at age 4 (high (n=6) vs. low (n=53)) (Top Table 16. Mean DNA methylation levels at age 6 at each CpG site by postnatal bisphenol A exposure at age 6 (high (n=12) vs. low (n=47)) (Top 25 CpG sites sorted by p-values) ------ 40 Table 17. Association between methylation at cg19196862 (IGF2R) and BMI and BMI Z-score (n=59) ------ 42. Table 18. Mediation effect of methylation at cg19196862 (IGF2R body) on Table 19. Sensitivity analysis for the association between methylation at cg19196862 (IGF2R) in 2-year children and increase in BMI and BMI Z-score (n=59) ------ 48 Table 20. Sensitivity analysis: Association between methylation level (high 50 percentile vs. low 50 percentile) at cg19196862 (IGF2R) and BMI Supplementary Table 2. Association between methylation at cg19196862 (IGF2R) and BMI and BMI Z-score showing R^2 (n=59) $\cdots \cdots \otimes 83$ Supplementary Table 3. 23 Association between methylation level (upper 50 percentile vs. lower 50 percentile) at cg19196862 (IGF2R) and BMI and BMI Z-score adjusted for propensity scores showing R² (n=59) 84

List of Figures

Figure 1. Flow diagram of indentification of relevant studies
Figure 2. Process of selecting CpG sites
Figure 3. Causal mediation analysis16
Figure 4. Maternal urinary BPA at second trimester in the total cohort
vs. sub-cohort with methylation data
Figure 5. Child's urinary BPA at ages 2, 4, 6, and 8 years in total
cohort vs. sub-cohort with methylation data
Figure 6. Left: Distribution of methylation levels at cg19196862 (IGF2R),
Right: Violin plot showing the distribution of methylation levels at age 2
and 6 years at cg19196862 (<i>IGF2R</i>)29
Figure 7. Methylation levels at cg19196862 (IGF2R) by prenatal BPA
exposure at age 2 and 6 years
Figure 8. Generalized additive model for the association between
log2(prenatal BPA) and DNA methylation levels at cg19196862 (IGF2R)
adjusted for mother's age, BMI, education, and cell type fractions 35
Figure 9. Increase in BMI and BMI Z-score and 95% confidence interval
by 1 standard deviation increase of methylation levels at cg19196862
(<i>IGF2R</i>)
Figure 10. Mediation effect of methylation at cg19196862 (IGF2R) on the
association between prenatal BPA exposure and BMI Z-score in boys
and girls overall
Figure 11. Sensitivity analysis for the increase in BMI and BMI Z-score
and 95% confidence interval by 1 standard deviation increase of
methylation levels at cg19196862 (IGF2R) ······ 49
Supplemenaty Figure 1. 12 Batch effects by positions on the EPIC chips
before (left) and after (right) correction (methylation data at age 2,
within the selected 495 CpG sites)
Supplementary Figure 2. 13 Batch effects by positions on the 450K
chips before (left) and after (right) correction (methylation at age 6,
within the selected 495 CpG sites)

Introduction

Bisphenol A (BPA) is one of the world's most produced chemicals and has been used in manufacturing polycarbonate plastics, resins, thermal product receipts, food cans, dental fillings, and medical devices (Braun, 2017). BPA is widely detected in polycarbonate water bottles, food storage containers, and water supply lines. It is mainly exposed to humans by ingestion, inhalation of dust, or through skin contact (von Goetz et al. 2010). BPA is widely detected in human urine samples (Myridakis et al. 2015; Romano et al. 2015; Vandenberg et al. 2010), placenta (Balakrishnan et al. 2010), amniotic fluid and human breast milk (Vandenberg et al. 2007) suggesting intrauterine BPA exposure and continued postnatal exposure in childhood.

BPA has been indicated as an obesogen in pediatric epidemiological studies, but the results are not consistent regarding sex and ages. For boys, Vafeiadi et al. (2016) found a positive association between maternal BPA exposure and body mass index (BMI) Z-scores only in 4-year-old boys. Heopner et al. (2016) and Harley et al. (2013) reported that BPA had null effect on BMI or waist circumference (WC) in boys. For girls, Heopner et al. (2016) showed a positive relationship between maternal BPA exposure and fat mass index and WC in 7-year-old girls, whereas Vafeiadi et al. (2016) and Harley et al. (2013) found that maternal BPA exposure had negative effects on BMI Z-scores and percent body fat at 9 years old.

Animal experiments have shown the effects of maternal BPA exposure on DNA methylation and obesity in offspring in a sex-specific manner. DNA methylation patterns (high or low methylation) of offspring born to mothers exposed to BPA showed changes in DNA methylation at Fggy gene promoter region, and resulted in increased Fggy mRNA expression and weight gain only in male mice (Taylor et al. 2018). In utero exposure to BPA resulted in sex-specific changes in metabolic phenotypes in

- 1 -

mice; for example, the male mice showed a dose-dependent increase in body weight and liver weight, while female mice showed a dose-dependent decrease in body, liver, fat pad weight, and fat cell sizes (van Esterik et al. 2014). Since the association between maternal BPA exposure and obesity-related phenotypic changes was more prominent in female mice, the researchers further studied the methylation patterns in female mice. As a result, DNA methylation exhibited different patterns in the liver tissues of female offspring only (van Esterik et al. 2015).

In a children's cohort study, the second highest tertile of maternal urine BPA in second trimester of pregnancy is associated with higher *IGF2* methylation in 14-year-old children compared to the lowest tertile (Goodrich et al. 2016). Other epigenetic epidemiologic studies show that *in utero* exposure to BPA is associated with hypomethylation in *MEST* gene promoter and increased expression of *MEST* in cord blood, which is associated with an increase in the child's BMI Z-score in a sex-dependent manner (Junge et al. 2018). Changes in obesity-related methylation have been reported in epigenome-wide association studies (EWAS) in children (Huang et al. 2015; Rzehak et al. 2017; Sharp et al. 2017). However, it remains unknown whether such changes in methylation are related to prenatal environmental exposures.

The aim of this study is to determine whether DNA methylation differs according to maternal BPA exposure levels, and whether such differences in methylation leads to sex-specific BMI changes in early childhood using data from a prospective mother-child cohort study.

Methods

Study Participants

The data from the Children's Environment and Development (EDC) study was used, an ongoing prospective cohort study designed to assess the impact early environmental exposure physical and neurobehavioral of on development in children as previously described (Kim et al, 2018). Briefly, a total of 726 mother-child pairs were enrolled between 2012 and 2015 from the mothers who previously participated in the Congenital Abnormality Study. Children first visited at age 2 (n = 425) and age 4 (n = 301) and were followed up at 2-year intervals. The study included 59 children who visited at the ages of 2, 4, 6 and 8, repeatedly and whose blood DNA methylation was evaluated at ages 2 and 6. Informed consent was obtained according to the Institutional Review Board of Seoul National University School of Medicine (IRB No. 1201-010-392).

Data collection

The child's weight and height were measured by trained research staff. The height was measured on a Harpenden stadiometer (Holtain Ltd., Crymych, Wales, UK) and the weight was measured on a digital scale (150 A: Cas Co. Ltd., Seoul, Korea). BMI was calculated as weight/height² (kg/m²). The Z-scores for height, weight and BMI were assigned according to the 2007 national growth chart of Korea (Moon et al. 2008). The questionnaires including birth history, family history, past medical history, socioeconomic status, lifestyle factors including diet and physical activity, and environmental exposure were completed by parents at each visit.

Urine BPA was measured as introduced in a previous study (Lim et al. 2017). The first morning urine was collected in conical tubes (SPL Lifesciences, Pocheon, Gyunggii-do, Korea) after an 8-hour fasting in the mother and child. Maternal urine was collected during the midterm of pregnancy (14-27 weeks, average 20 weeks of gestation). The sample was stored at -20°C in the sample laboratory (Seegene Medical Foundation, Seoul, Korea). Total BPA concentration, including free and conjugated species, was measured, and conjugated BPA species were hydrolyzed from β -glucuronidase/sulfatase. BPA concentration quantified by was high performance liquid chromatography-tandem mass spectrometry (Agilent 6410 Triple Quad LCMS; Agilent, Santa Clara, CA, USA) (Yang et al. 2003). Standard BPA solutions were analyzed with preparation blanks at 50, 25, 12.5, 6.25, 3.125 and 1.5625µg/L to determine standard calibration curves $(r^2 > 0.999)$. If the measured concentration of the sample exceeded the maximum level of the standard BPA solution, the sample was diluted (1:1) and analyzed again. Samples were analyzed again if the detected concentration was not within 20% of the standard calibration curve. The detection limit (LOD) ranged from 0.031 to 0.212 µg/L depending on batches, and an LOD value of $0.212/\sqrt{2}$ was used. Throughout the entire analysis, creatinine-adjusted BPA values were used in the unit of µg/g creatinine (Calafat et al. 2005). Since the distribution of creatinine-adjusted BPA was skewed to the right, the log₂ transformed BPA was used for normalization.

DNA methylation assessment

DNA methylation was measured in blood samples obtained at ages 2 and 6. The quality of the DNA sample was confirmed by a

- 4 -

NanoDrop®ND-1000UV-Vis spectrophotometer. Samples containing whole genomic DNA were selected after electrophoresis on an agarose gel and diluted to 50 ng/µL according to the quantification of Quanti-iT Picogreen (Invitrogen). At least 500ng of gDNA was converted to weight sulfate according to the Zymo EZ DNA methylation kit. Bisulfite transformed DNA was amplified for use in a single BeadChip (x1000). The Ilumina Infinium HumanMethylation 450K BeadChip was used to obtain the 450,000 CpG locus sequence used in blood samples for 6 years of age (Illumina, San Diego, CA, USA). Since the HumanMethylation 450K BeadChip became unavailable at Illumina, Infinium HumanMethylation EPIC BeadChip was used to generate 850,000 CpG locus sequence from blood sample at 2 years of age (Illumina, San Diego, CA, USA). The amplified DNA was fragmented and hybridized by a 50mer capture probe at the CpG locus. In the allele-specific single nucleotide extension assay, primers were extended with a polymerase and labeled nucleotide mix (Two-Color Extension Master Mix), stained with staining and anti-staining reagents, then washed and coated. The image was read by Illumina BeadArray reader and the image intensity was extracted by Illumina's GenomeStudio software. Microarrays were processed at Macrogen (Seoul, Korea).

Raw data was extracted as the beta value of each CpG. The beta value was calculated by taking the ratio of the methylated signal intensity to the total of the methylated and unmethylated signals of the 5th carbon (% 5mC) ranging from 0 (no methylation) to 100 (fully methylated). Each signal was subtracted from the control as a background signal. Gene enrichment and functional annotation analysis of each probe list was performed using Database for Annotation, Visualization, and integrated Discovery (http://david.abcc.ncifcrf.gov/home.jsp).

Quality control for methylation data

The detection p-value <0.05 was applied as filtering criteria. Array CpG probes with a detection p-value of 0.05 or higher in samples of 25% or more were excluded from the filter because of the high probability of a high signal-to-noise ratio. The filtered data were standardized by the Beta Mixture Quantile (BMIQ) method (Teschendorff et al. 2013). For the HumanMethylation EPIC BeadChip (850K), 865,688 CpG sites were analyzed from a total of 866,297 CpG sites after excluding CpG sites with not available (NA) values for BMIQ normalization in at least one sample. For the HumanMethylation 450K BeadChip, CpG sites with NA values of at least one sample for BMIQ normalization were excluded. At the 485,577 CpG sites of the raw data, 460,960 CpG sites remained for analysis. In addition, non-CpG loci and CpG sites corresponding to X or Y chromosomes were excluded from further analysis. The removal of SNP-related CpG sites is described in the next step for CpG sites targeting. Samples from 59 study participants at ages 2 and 6 were analyzed in a single batch. The placement effect by chip and location was adjusted using R ComBat package (Johnson et al. 2007). We used unadjusted data since there was only one batch at each age, and the batch effects by positions were not significant (Supplementary Figure 1 and 2).

Systematic review of literature

Since the question of interest was whether DNA methylation plays a mediating role in the effects of maternal BPA exposure on childhood adiposity, candidate gene analysis was performed rather than EWAS. EWAS are widely performed for detecting phenotype-associated differentially

methylated positions (DMPs) or regions (DMRs) over the entire epigenome. However, in this study, hypothesis was established such as "epigenetic mechanisms are involved in the association between prenatal BPA exposure and child's BMI." Thus, CpG sites were targated to those that are already known to be associated with obesity or adiposity.

To target specific CpG sites that are known to be associated with obesity or adiposity, systematic review was performed to select previous EWAS. Pubmed and EMBASE were searched on February 7, 2019, using keywords such as ""Epigenome-wide association study" and (Obesity or "body mass index" or BMI or adiposity or adipose or fat or "waist circumference" or "fat mass index")". The selection criterion was EWAS conducted in relation with obesity or adiposity in healthy adult or children. EWAS conducted in patients with specific diagnoses such as leukemia or prostate cancer were excluded. To increase specificity, EWAS performed in relation with clinical traits that are related with obesity were not included such as insulin resistance, metabolic syndrome, diabetes, or dyslipidemia. In other words, the only studies that investigated the indices that represent adiposity or obesity were specifically included.

A total of 91 and 133 articles were found in Pubmed and EMBASE, respectively. After excluding 79 duplicated articles, a total of 148 articles were left for the review of abstracts (Figure 1). Among 148 articles, 121 articles were irrelevant, and 12 were additionally excluded due to insufficient information or irrelevance. Three articles were added after manual bibliographic search, ultimately leaving 15 articles for the selection of relevant CpG sites (Al Muftah et al. 2016; Aslibekyan et al. 2015; Campanella et al. 2018; Demerath et al. 2015; Dhana et al. 2018; Huang et al. 2015; Kvaloy et al. 2018; Lin et al. 2017; Rzehak et al. 2017; Sayols-Baixeras et al. 2017; Sharp et al. 2015; Sharp et al. 2017; Wahl et

- 7 -

al. 2017; Wilson et al. 2017; Xu et al. 2018) (Table 1).

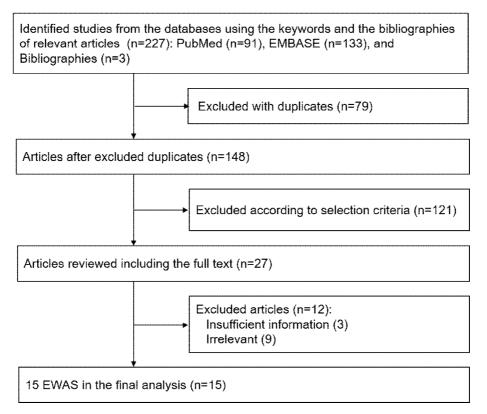


Figure 1. Flow diagram of indentification of relevant studies

Abbreviation: EWAS, epigenome-wide association studies

Study	Study population	Cohort (or case/control study)	Age for methylati on data (years)	Number of study participants	Adiposity measures	Tissue of methylation data	No. of associ ated cg sites	Cell type fraction adjusted	Refere nce tables
Aslibekyan et al. 2015	US adults	GOLDN	Mean 49	991 (Male 476/Female 515)	BMI, WC	CD4+ T-cells in blood	13	Not applicable	Table 2,3
Demerath et al. 2015	African American adults	ARIC, GOLDN study	Average 56	2,097 (Male 755/Female 1342)	BMI, WC	Blood leukocytes	45	Adjusted	Table 2,3
Huang et al. 2015	UK children seeking treatment for obesity at the tertiary pediatric hospital		Median 12.6	108 (54 cases/54 controls)	Obese vs. lean group	Whole blood	129	Compared between case and control but not adjusted	Table 2
Sharp et al. 2015	UK newborns	ALSPAC	0	1,018 mother-offsprin g pairs	Maternal obese vs. normal weight	Cord blood	110	Adjusted	Supp Table 2
Al Muftah et al. 2016	Arab and UK adults	Qatari family study (discovery), TwinsUK cohort (validation)	Mean 36.3 for men, 39 for women	123 (discovery), 877 (validation)	BMI	Whole blood	39	Adjusted	Table 2
Lin et al. 2017	Singapore neonates	GUSTO	0	987 mother-offsprin g pairs	Birthweight	Cord blood	8	Adjusted	Table 3
Rzehak et al. 2017	Germany, Belgium, Italy, and Spain preschool children	СНОР	5.5	374	BMI, FMI, FFMI	Whole blood	256	Adjusted	Supp Table 2

Table 1. Previous epigenome-wide association studies for the association between methylation and obesity

Sayols-Baixe ras et al. 2017	Spanish and US adults	REGICOR (discovery), Framingham Offspring Study (validation)	35-79	648 (discovery), 2,568 (validation)	BMI, WC	Whole blood	103	Not mentioned	Table 2,3
Sharp et al. 2017	European and hispanic newborns and adolescents	meta-analysis of 19 cohorts (PACE consortium)	0-18	9,340 mother-offsprin g paris	Maternal pre-pregnan cy BMI	Child's whole blood or cord blood	86	Mixed (meta-anal ysis)	Table 3
Wahl et al. 2017	European and Indian-Asian adults	EPICOR, KORA, LOLIPOP	Mean 51.0-61.0	5,347 (514 EPICOR, 293 KORA, 2,680 LOLIPOP)	BMI	Whole blood	187	Adjusted	Supp Table 3
Wilson et al. 2017	US white, non-Hispanic women	The Sister Study	35-74	871 (discovery), 187 (validation)	BMI	Whole blood	15	Adjusted	Table 3
Campanella et al. 2018	Italy, Netherlands, and Norweign adults	EPIC-Netherlands, NOWAC, EnviroGenoMarke rs, EPIC-Italy	Not specified (adults)	1,941 (discovery), 358 (validation)	BMI, WC, WHR, WHtR	Blood leukocytes	59	Adjusted	Table 1
Dhana et al. 2018	Netherlands adults	Rotterdam Study, ARIC study	45-64	1,450 (discovery), 2,097 (validation)	BMI, WC	Blood leukocytes	20	Adjusted	Table 2,3
Kvaloy et al. 2018	Norweign women	HUNT study	23-31	120 (60 cases/ 60 controls)	Obese vs. lean group	Whole blood	10	Adjusted	Table 2
Xu et al. 2018	US adults		18-50	510	BMI	Whole blood	20	Adjusted	Table 2

(Abbreviation; BMI, body mass index; WC, waist circumference; WHR, waist hip ratio)

Selection of candidate CpG sites

CpG sites for obesity-related parameters such as BMI, BMI Z-score, waist circumference, and fat mass index were extracted from the selected EWAS that examined the association between epigenome-wide DNA methylation and obesity in adults and children, which were added up to 1,100 CpG sites. Redundant CpG sites (210 CpG sites) reported in more than two studies were excluded, leaving 900 CpG sites (Figure 2). Among these, 135 CpG sites were located in the single base extension of the existing single nucleotide polymorphism (SNP), 49 CpG sites showed a minor allele frequency (MAF) \geq 0.05 in the SNP of the target region, and 25 CpG sites corresponded to the both criteria, adding up to 209 CpG sites. These CpG sites were excluded from the analysis as they could be confused by the effects of SNPs, thus leaving 681 CpG sites.

To compare DNA methylation status at ages 2 and 6, 430,101 overlapping CpG sites were selected from CpG sites at ages 2 (HumanMethylation EPIC BeadChip, 865,688 CpG sites) and 6 (HumanMethylation 450K BeadChip, 460,960 CpG sites). Finally, the overlapping 594 CpG sites were selected from 681 CpG sites from systematic review of literature and 430,101 CpG sites from the EDC data. The list of 594 CpG sites is shown in Supplementary Table 1.

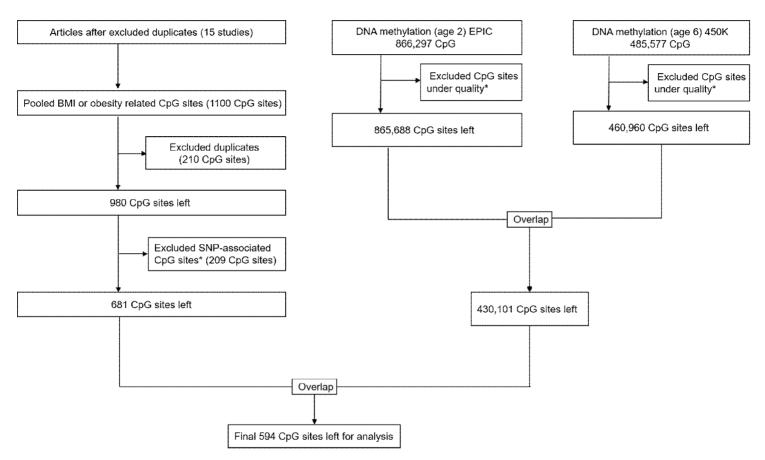


Figure 2. Process of selecting CpG sites

Covariates

To investigate the association between DNA methylation levels and BMI or BMI Z-scores at 2, 4, 6, and 8 years of age, the model included the following covariates: mother's age during pregnancy (years), mother's and father's BMI when the child was 2 years old (kg/m^2) (pre-pregnant BMI was unavailable), mother's education level (junior high school graduates, high school graduates, college graduates, or attending graduate school), premature birth (<37 or \geq 37 weeks), low birth weight (<2500 or \geq 2500g), duration of breastfeeding (<6 or \geq 6 months), caloric intake (kcal/day) in children aged 4, 6 and 8 (several missing values at age 2), and urine BPA (in $\mu g/g$ creatinine) in children aged 4, 6, and 8 years old (several missing values at age 2), which were adjusted at the corresponding ages. The child's urine BPA level was measured in the same method as in mothers. Maternal information obtained by questionnaires was confirmed by a trained research staff during face-to-face interview. Diet information was obtained from a food intake frequency questionnaire (FFQ) by a nutritionist. The proportions of cell types such as CD8+ T cells, CD4+ T cells, natural killer (NK) cells, B cells, monocyte, and neutrophils were adjusted.

For the sensitivity analysis, the following covariates were additionally adjusted: multiple births (singleton or twin/triplet), mother's smoking (smoking during pregnancy, smoked before pregnancy, and never smoked), and mother's alcohol consumption (drank during pregnancy, drank before pregnancy, and never drank).

Statistical analysis

To evaluate the general characteristics of the study participants (N = 59), we used Student's t-test for continuous variables and the Fisher's exact test for categorical variables. Student's t-test and chi-square test were applied to compare the general characteristics of participants between the entire EDC cohort participants and a subset of the EDC cohort where DNA methylation data were available. The characteristics of the study participants were analyzed using Student's t-test for the continuous variable, and chi-square test or Fisher's exact test for categorical variables to compare two groups.

CpG sites of which the methylation level differed depending on prenatal BPA levels were sought at ages 2 and 6. Prenatal BPA exposure groups were classified as low (<2.68 µg/g creatinine) vs. high (\geq 2.68 µg/g creatinine) according to the 80th percentile of maternal BPA levels in the second trimester of pregnancy in mothers from the entire EDC cohort. Sensitivity analysis was performed by using 75th percentile and 90th percentile.

The distribution of methylation at individual CpG site was inspected. Among 594 CpG sites, 565 CpG sites showed unimodal distribution while the other 29 cites showed bimodal (two peaks) or trimodal (three peaks) distributions. For unimodal CpG sites, Student's t-test was used to evaluate the differences in the mean levels of DNA methylation by prenatal BPA exposure groups. Bimodal or trimodal CpG sites were excluded from further analysis. Student's t-test was used again to test the differences in the mean levels of DNA methylation by prenatal BPA exposure groups within promoter regions (5' UTR, 3' UTR, TSS200, TSS1500) and CpG islands only. The differences in the mean level of DNA methylation at 565 CpG sites at age 2, 6, 6, and 6 years by postnatal BPA

- 14 -

exposure at ages 2, 2, 4, and 6 years, respectively, by using t-test. For multiple comparisons, the significance level was defined as false detection rate (FDR) corrected p-value <0.05 by the Benjamini and Hochberg method (Benjamini and Hochberg 1995).

Generalized additive model was used to inspect non-linearity in the association between prenatal BPA levels and methylation levels at cg19196862 (*IGF2R*), adjusting for mother's age, BMI, and education levels. Threshold point was determined by using threshpt function from R HEAT package.

Linear regression analysis was conducted to investigate the association between the level of methylation at the CpG site and BMI or BMI Z-scores at ages 2, 4, 6, and 8, adjusting for the covariates introduced earlier. The cell type fractions in blood samples were estimated by using the adult leukocyte reference panel by the method proposed by Houseman et al. (2012). The Minfi R package was used to estimate the cell type fraction of each blood sample (Aryee et al. 2014). The estimates from linear regression were multiplied by the standard deviation (SD) of each CpG site to produce a change in BMI or BMI Z-score with 1 SD change in methylation level. We analyzed sex-specific effects of DNA methylation on obesity in children by introducing an sex interaction term into the regression analysis. To evaluate the statistical significance of the regression analysis, a p-value <0.05 was used.

For sensitivity analysis, firstly, for the linear regression analysis for DNA methylationa and BMI or BMI Z-score, multiple birth (singleton or multiple), smoking, and drinking were additionally adjusted for the main model. Secondly, a propensity score was calculated for methylation levels at cg19196862 as a binary variable (upper 50 percentile vs. lower 50

- 15 -

percentile) by using the following covariates: mother's age at pregnancy, mother's and father's BMI, mother's education level, child's sex, preterm birth or not (<37 weeks), underweight at birth or not (<2500g), breastfeeding for ≥ 6 months or not, and cell type fraction. Then the propensity score was solely adjusted for the the linear regression analysis for DNA methylation and BMI or BMI Z-score.

Causal mediation analysis was performed to estimate the mediating effects of DNA methylation from prenatal BPA exposure to child's BMI or BMI Z-score. Causal mediation analysis is a method to dissect the total effect into direct and indirect effect. The indirect effect is transmitted through a mediator (Zhang et al, 2016).

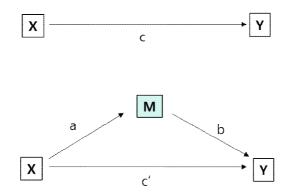


Figure 3. Causal mediation analysis

$$Y = i_1 + cX + e_1$$
 [1]

$$Y = i_2 + c'X + bM + e_2$$
 [2]

$$M = i_3 + aX + e_3$$
 [3]

where X, Y, and M denotes explanatory variable, outcome variable, and mediator, respectively (Zhang et al, 2016) (Figure 3). c is a coefficient for the association between X and Y, and association is defined as a total causal effect. c' is the coefficient for the effect of X on Y while adjusting

for M. b is the effect of M on Y. e_1 , e_2 , and e_3 are residuals and i_1 , i_2 , and i_3 are intercepts.

From the equations above, M from [3] can be substituted to M in [2], resulting in the equation below.

$$Y = i_2 + c'X + b(i_3 + aX + e_3) + e_2$$

= $i_2 + (c' + ab)X + bi_3 + be_3 + e_2$ [4]

where c' is defined as direct effect and ab is defined as indirect effect (mediation effect), which are added up to the total effect, c. R mediation package provides the estimation of these effects, and performs sensitivity analysis to examine the robustness of the analysis, thereby computing average direct effect (ADE) and average indirect effects. Average indirect effect is a subtraction of direct effect from the total effect, and defined as average causal mediating effect (ACME).

In this study, X denotes prenatal BPA exposure, Y denotes child's BMI or BMI Z-score, and M represents DNA methylation. Coefficients c' and ab were assessed by linear regression analysis adjusted by the same covariates as in the main analysis. Using the R mediation package, we applied nonparametric bootstrap by 1,000 simulations and estimated ACME and ADE. The mediated rate represents the average size of the mediated total effect (ACME + ADE). For statistical analysis, SAS (v9.4) (Cary, NC, software (v3.2.1)(R Development USA) and R Core Team https://cran.r-project.org/) were used.

Results

General characteristics of participants

Table 2 and 3 shows the comparison of general characteristics of participants between the two groups by prental BPA exposure (high vs. low). There was no significant differences in parental factors (mother's age at pregnancy, and mother's and father's BMI before pregnancy), child factors (gender, multiple births, preterm birth, underweight, breastfeeding duration, postnatal BPA exposure, total caloric intake, BMI, BMI Z-score), and overall cell type fraction between the two groups (excluding the fraction of B cells). The mean prenatal urine BPA levels in the low vs. high BPA exposure groups were $1.34 \pm 0.60 \mu g/g$ creatinine (up to $2.77 \mu g/g$ creatinine) and $7.92 \pm 4.97 \mu g/g$ creatinine (up to $18.38 \mu g/g$ creatinine), respectively.

Table 4 and 5 shows the clinical characteristics of all participants in the EDC cohort without missing clinical data (N = 657) and a comparison of clinical characteristics between 59 children with methylation data analyzed in this sub-study and the remaining 598 children without methylation data. Compared to the entire cohort (n=598), the children included in this sub-study had a greater mother's BMI, greater percentages of mother's current smoking and drinking, greater child's BMI and BMI Z-score at ages 4, 6, and 8, total caloric intake at age 2, and lower levels of postnatal BPA exposure at ages 4 and 8. Other maternal factors (prenatal BPA exposure, mother's age at pregnancy, mother's level of education) and child factors (gender, twin births, preterm birth, underweight, and duration of breastfeeding) did not differ between the two groups (Table 5).

Maternal urinary BPA level during the second trimester was $2.02 \pm 2.52 \mu g/g$ creatinine in the total cohort, and $2.23 \pm 2.91 \mu g/g$ creatinine in the

sub-study with the methylation data (Table 2 and Table 4). Child's urinary BPA was ranged from 3.34 to $6.32\mu g/g$ creatinine in the total cohort while it was ranged from 1.9 to $3.52\mu g/g$ creatinine in the sub-study during the ages of 4 to 8 (Table 3 and Table 5). According to the National Environmental Health Survey (Korea Ministry of Environment, 2019), geometric mean urinary BPA was $1.48\mu g/g$ creatinine (95% confidence interval (CI); 1.40, 1.57) in adults in 2014, and $2.83\mu g/g$ creatinine (95% CI; 2.41, 3.33) in preschool children in 2017. Distribution of prenatal (Figure 4) and postnatal BPA (Figure 5) are shown in the entire cohort and the sub-study with the methylation data available.

Participa Low maternal High maternal Variables p-value nts BPA (n=51)BPA (n=8) Age at pregnancy Mother 31.3 ± 3.8 29.5 ± 3.4 0.209 (years) Pre-pregnancy BMI (kg/m²) 22.7 ± 3.4 24.0 ± 6.6 0.594 Educational level Middle school 0 (0%) NA 0 (0%) graduate High school 7 (13.7%) 2 (25.0%) graduate College graduate 39 (76.5%) 3 (37.5%) Graduate school 5 (9.8%) 3 (37.5%) Urinary bisphenol Urinary BPA $1.34~\pm~0.60$ $7.92~\pm~4.97$ 0.007 A at second trimester (µg/g Maximum urinary creatinine) 2.77 18.38 **BPA** Smoking during Never smoker 27 (52.9%) 2 (25.0%) NA pregnancy Smoke tobacco 19 (37.3%) 5 (62.5%) before pregnancy Smoked tobacco 5 (9.8%) 1 (12.5%) during pregnancy Alcohol Never drinker NA 11 (26.2%) 0 (0%) consumption during pregnancy Consume alcohol 20 (47.6%) 3 (50%) before pregnancy Consumed alcohol 11 (26.2%) 3 (50%) during pregnancy Pre-pregnancy Father $25.5~\pm~3.4$ 0.692 $25.0~\pm~3.3$ BMI (kg/m^2)

Table 2. General characteristics of the sub-cohort according to prenatal BPA exposure level – parental factors (n=59).

Table 3. General characteristics of the sub-cohort according to prenatal BPA exposure level – child factors (n=59).

Variables		Low maternal BPA (n=51)	High maternal BPA (n=8)	p-value
Sex	Male	23 (45.1%)	5 (62.5%)	0.359
	Female	28 (54.9%)	3 (37.5%)	
Multiple birth	Singleton	46 (90.2%)	6 (75%)	0.238
	Multiple	5 (9.8%)	2 (25%)	
Preterm (<37 weeks)	No	46 (90.2%)	5 (62.5%)	0.059
	Yes	5 (9.8%)	3 (37.5%)	
Underweight at birth (<2500g)	No	46 (90.2%)	8 (100%)	0.469
(~2300g)	Yes	5 (9.8%)	0 (0%)	
Breastfeeding for ≥6	Yes	26 (51.0%)	4 (50%)	1.000
months	No	25 (49.0%)	4 (50%)	
BPA exposure level	4 years	$3.49~\pm~2.53$	$3.68~\pm~2.07$	0.841
(µg/g creatinine)	6 years	$3.82~\pm~3.26$	$4.13~\pm~2.63$	0.799
	8 years	$2.05~\pm~1.73$	$0.98~\pm~1.36$	0.101
Total calorie intake (kcal/day)	4 years	1464.3 ± 333.5	1664.2 ± 481.5	0.144
(Kcal/day)	6 years	1574.5 ± 372.9	1633.1 ± 533.7	0.699
	8 years	1583.5 ± 397.9	$1568.9\ \pm\ 493.7$	0.926
BMI (kg/cm2)	2 years	16.6 ± 1.2	16.5 ± 1.2	0.782
	4 years	$16.0~\pm~1.2$	$15.7~\pm~0.7$	0.502
	6 years	$16.4~\pm~1.8$	$16.3~\pm~1.3$	0.925
	8 years	$17.7~\pm~2.7$	$17.4~\pm~1.8$	0.745
BMI Z-score	2 years	$\textbf{-0.06}~\pm~0.79$	$\textbf{-0.18}~\pm~0.76$	0.699
	4 years	$0.23~\pm~0.88$	$0.06~\pm~0.62$	0.588
	6 years	$0.31~\pm~0.95$	$0.29~\pm~0.84$	0.972
	8 years	$0.40~\pm~1.08$	$0.31~\pm~0.82$	0.822
Cell type fraction	CD4 T cell	$0.20~\pm~0.04$	$0.21~\pm~0.04$	0.613
Cell type fraction	CD8 T cell	$0.15~\pm~0.05$	$0.18~\pm~0.03$	0.165
	NK cell	$0.04~\pm~0.04$	$0.05~\pm~0.05$	0.606
	B cell	$0.19~\pm~0.04$	$0.15~\pm~0.04$	0.020
	Monocyte	$0.05~\pm~0.02$	$0.04~\pm~0.02$	0.505
	Neutrophil	$0.35~\pm~0.09$	$0.36~\pm~0.08$	0.796

Particip ants	Variables		DNA methylation data unavailable (N=598)	DNA methylation data available (N=59)	p-value
	Age at pregnanc	y (years)	31.64 ± 3.57	31.07 ± 3.77	0.263
Mother	Pre-pregnancy B	MI (kg/m2)	21.75 ± 2.81	$22.86~\pm~3.92$	0.042
	Educational level	Middle school graduate	0	0	0.730
		High school graduate	58 (17.9%)	9 (15.3%)	
		College graduate	232 (71.6%)	42 (71.2%)	
		Graduate school	34 1 (10.5%)	8 (13.6%)	
	Urinary bisphenol A at second	Urinary BPA	$2.02~\pm~2.52$	2.23 ± 2.91	0.570
	trimester (ug/g creatinine)	Maximum urinary BPA	31.08	18.38	
	Smoking during pregnancy	Never smoker	256 (82.6%)	29 (49.2%)	<0.0001
		Smoke tobocco before pregnancy	50 (16.1%)	24 (40.7%)	
		Smoked tobacco during pregnancy	4 (1.3%)	6 (10.2%)	
	Alcohol consumption during	Nerver drinker	89 (33.5%)	11 (22.9%)	< 0.0001
	pregnancy	Consume alcohol before pregnancy	157 (59.0%)	23 (47.9%)	
		Consumed alcohol during pregnancy	20 (7.5%)	14 (29.2%)	
Father	Pre-pregnancy B	MI (kg/m2)	24.76 ± 2.91	25.44 ± 3.35	0.110

Table 4. General characteristics of total EDC participants – parental factors (N=657)

Particip ants	Variables		DNA methylation data unavailable (N=598)	DNA methylation data available (N=59)	p-value
Child	Sex	Male	174 (53.7%)	28 (47.5%)	0.377
		Female	150 (46.3%)	31 (52.5%)	
	Multiple birth	Singleton	301 (92.9%)	52 (88.1%)	0.210
		Multiple	23 (7.1%)	7 (11.9%)	
	Preterm (<37	No	302 (93.2%)	51 (86.4%)	0.075
	weeks)	Yes	22 (6.8%)	8 (13.6%)	
	Underweight at	No	305 (94.1%)	54 (91.5%)	0.447
	birth (<2500g)	Yes	19 (5.9%)	5 (8.5%)	
	Breatfeeding	Yes	220 (67.9%)	38 (64.4%)	0.599
	for ≥ 6 months	No	104 (32.1%)	21 (35.6%)	
	BPA exposure level (µg/g creatinine)	4 years	6.32 ± 18.84	$3.52~\pm~2.46$	0.002
		6 years	$3.7~\pm~7.89$	$3.86~\pm~3.16$	0.769
		8 years	$3.34~\pm~4.94$	$1.9~\pm~1.71$	0.000
	Total calorie	4 years	1424 ± 418.3	$1491.4\ \pm\ 358.6$	0.238
	intake	6 years	$1468.7\ \pm\ 360.9$	1582.4 ± 393.3	0.025
	(kcal/day)	8 years	$1491.6~\pm~292.6$	$1581.4\ \pm\ 407.9$	0.119
	DML (1/2)	2 years	$16.49~\pm~1.48$	$16.59~\pm~1.2$	0.614
	BMI (kg/cm2)	4 years	15.57 ± 1.29	$15.99~\pm~1.13$	0.017
		6 years	15.73 ± 1.81	16.37 ± 1.73	0.011
		8 years	16.75 ± 2.42	$17.68~\pm~2.56$	0.009
	BMI Z-score	2 years	$\textbf{-0.16}~\pm~0.96$	$\textbf{-0.08}~\pm~0.78$	0.529
	DIVIT Z-SCORE	4 years	$\textbf{-0.18}~\pm~1.08$	$0.21~\pm~0.85$	0.002
		6 years	-0.15 ± 1.05	$0.3~\pm~0.93$	0.002
		8 years	$\textbf{-0.03}~\pm~1.08$	$0.39~\pm~1.04$	0.008

Table 5. General characteristics of total EDC participants – child factors (N=657)

Total cohort (n=598)

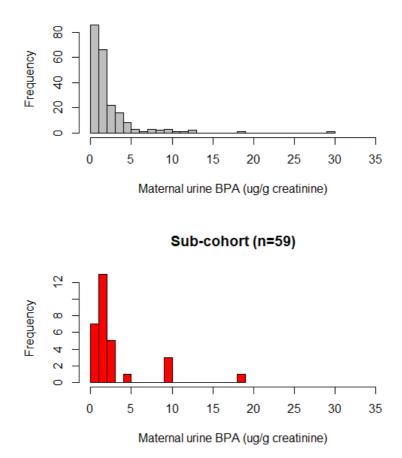


Figure 4. Maternal urinary BPA at second trimester in the total cohort vs. sub-cohort with methylation data

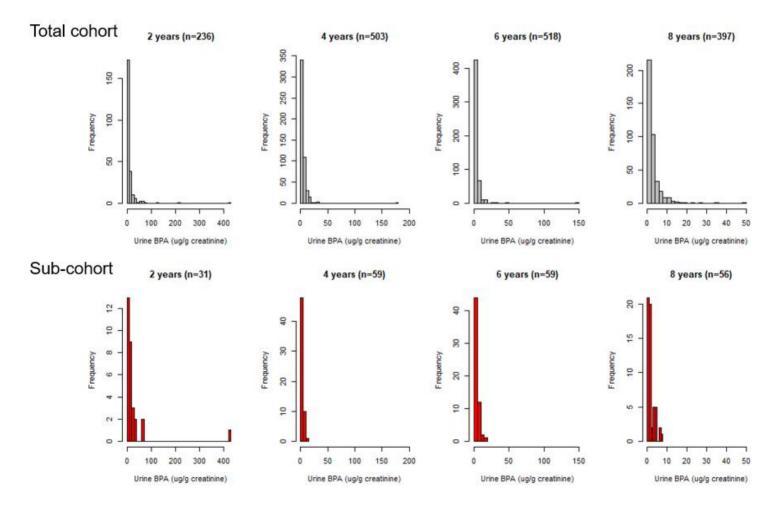


Figure 5. Child's urinary BPA at ages 2, 4, 6, and 8 years in total cohort vs. sub-cohort with methylation data

Differential methylation levels in children at ages 2 and

6 years according to prenatal BPA exposure

A total of 594 target CpG sites were compared between the prenatal high-exposure group (n = 8) and the low-exposure group (n = 51) analyzed in the blood of 2- and 6-year-old children. At age 2, cg19196862 was significantly different between the high vs. low BPA exposure group with an FDR-corrected p value <0.05 (Table 6). At 6 years of age, no CpG sites were significantly different between the two groups (Table 7).

Table 6. Mean DNA methylation levels at age 2 at each CpG site by prenatal bisphenol A exposure levels (high (n=8) vs. low (n=51)) (Top 25 CpG sites sorted by p-values)

		prenatal PA		prenatal PA	UCSC	UCS C Ref	Relatio n to	1	FDR corre
CpG site	Mean	SD	Mean	SD	Gene Name	Gene Grou p	UCSC CpG Island	p_value	cted p-val ue
cg19196862	0.9504	0.0112	0.9593	0.00416	IGF2R	Body		0.000302	0.045
cg26899718	0.6132	0.0293	0.5946	0.014	SMPD3	Body	N_Shor e	0.009515	0.942
cg15913725	0.9549	0.0106	0.9332	0.019	TSSC1	Body	Island	0.014242	0.993
cg20117675	0.8045	0.0308	0.821	0.0132	DHX16	TSS15 00	S_Shore	0.016109	0.993
cg13123009	0.4087	0.0249	0.3876	0.0262	LY6G6E	TSS200		0.030571	0.993
cg07822775	0.8543	0.0251	0.8651	0.01	PCSK6	Body		0.038812	0.993
cg15357118	0.5461	0.0374	0.5166	0.0354	UGGT1	Body		0.041254	0.993
cg24217948	0.8647	0.0439	0.8974	0.0242	SETBP1	5'UTR	S_Shore	0.045405	0.993
cg26666886	0.0845	0.0117	0.0937	0.0131	ANKRD11	TSS15 00	S_Shore	0.046472	0.993
cg27115863	0.5588	0.0212	0.5423	0.0256				0.051817	0.993
cg06690548	0.9354	0.0165	0.923	0.0167	SLC7A11	Body		0.053101	0.993
cg14017402	0.5045	0.0509	0.4677	0.0432				0.0583	0.993
cg00852675	0.8629	0.0265	0.8821	0.0237	LOC72874 3	Body	Island	0.058905	0.993
cg27267258	0.9439	0.0124	0.9531	0.0137	ANKRD11	Body		0.06044	0.993
cg10814005	0.1203	0.0243	0.1296	0.0096	GPR68	5'UTR		0.062934	0.993
cg01806722	0.9431	0.0103	0.9503	0.01	MAML2	Body		0.068761	0.993
cg09230763	0.8328	0.0461	0.8007	0.0434	MAP3K6	Body	Island	0.070708	0.993
cg24824917	0.0848	0.0159	0.0958	0.0145			N_Shelf	0.071163	0.993
cg10179300	0.8959	0.0231	0.9116	0.0185	TRIO	Body	S_Shelf	0.072717	0.993
cg02286155	0.6565	0.0214	0.671	0.0182			N_Shor e	0.07424	0.993
cg13781414	0.8025	0.0354	0.8257	0.0261	NACC2	5'UTR		0.081159	0.993
cg15059608	0.0783	0.0117	0.0706	0.0115	C3orf14	TSS15 00	S_Shore	0.085329	0.993
cg19358373	0.5599	0.043	0.5877	0.035			S_Shore	0.087457	0.993
cg02716826	0.4627	0.0362	0.4396	0.0271	SUGT1P1; AQP3	Body; Body	N_Shor e	0.090301	0.993
cg18330571	0.8502	0.0289	0.8311	0.0305	EBF3	Body	Island	0.09059	0.993

Table 7. Mean DNA methylation levels at age 6 at each CpG site by prenatal bisphenol A exposure levels (high (n=8) vs. low (n=51)) (Top 25 CpG sites sorted by p-values)

CpG site	High p Bl	prenatal PA	Low j B	orenatal PA	UCSC Gene	UCSC Ref	Relation to UCSC	p_val	FDR correct ed
	Mean	SD	Mean	SD	Name	Gene Group	CpG Island	ue	p-valu e
cg13139542	0.914	0.028	0.938	0.013				0.0012	0.190
cg04869770	0.797	0.033	0.824	0.016	PBX1	Body		0.0013	0.190
cg21186778	0.836	0.022	0.856	0.020	RCL1	Body		0.0200	0.956
cg03523676	0.599	0.036	0.630	0.025	CPNE6	TSS1500		0.0209	0.956
cg04984663	0.946	0.010	0.955	0.012				0.0228	0.956
cg14204100	0.960	0.008	0.967	0.007	KIFC1	Body	N_Shelf	0.0313	0.956
cg26093966	0.931	0.017	0.917	0.013			S_Shelf	0.0318	0.956
cg23827531	0.346	0.023	0.363	0.018	FAM107A	1stExon		0.0403	0.956
cg03862225	0.037	0.006	0.033	0.005	CTBP2	TSS1500	Island	0.0409	0.956
cg13084458	0.065	0.017	0.053	0.010	INTU	TSS1500		0.0420	0.956
cg10179300	0.876	0.030	0.899	0.022	TRIO	Body	S_Shelf	0.0439	0.956
cg18219562	0.818	0.036	0.845	0.031				0.0499	0.956
cg16151636	0.047	0.007	0.044	0.003	NR4A2	TSS1500	Island	0.0506	0.956
cg00094412	0.619	0.034	0.645	0.035	GABBR1	Body	N_Shelf	0.0556	0.956
cg27247382	0.964	0.008	0.970	0.008	PLEKHM3	3'UTR		0.0557	0.956
cg04292672	0.893	0.015	0.904	0.014	MORN1	Body	N_Shelf	0.0581	0.956
cg10746778	0.526	0.044	0.558	0.041	SORL1	Body		0.0583	0.956
cg11156132	0.779	0.017	0.792	0.018			S_Shelf	0.0612	0.956
cg19990182	0.045	0.005	0.041	0.006	WDR35	TSS200	Island	0.0654	0.956
cg11504355	0.855	0.026	0.873	0.019	KIRREL	3'UTR		0.0695	0.956
cg09204618	0.950	0.008	0.956	0.007	TSSK2	TSS1500	N_Shelf	0.0721	0.956
cg10814005	0.137	0.023	0.122	0.013	GPR68	5'UTR		0.0727	0.956
cg12470014	0.958	0.006	0.963	0.005			N_Shore	0.0793	0.956
cg18030453	0.585	0.036	0.609	0.033	LARS2	Body		0.0803	0.956
cg21525627	0.936	0.013	0.945	0.014				0.0806	0.956

The differentially methylated CpG site, cg19196862, corresponded to the body of the *IGF2R* gene. Cg19196862 (*IGF2R*) exhibited a single peak distribution showing hypermethylated state (Figure 6). The CpGs did not show significant differences in methylation status between 2 and 6 years old.

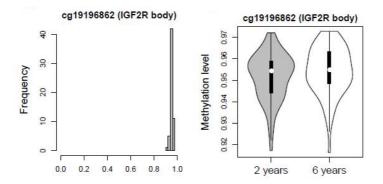
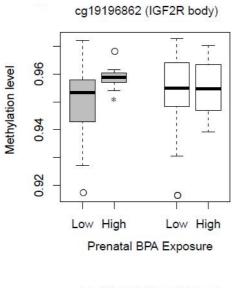



Figure 6. Left: Distribution of methylation levels at cg19196862 (IGF2R), Right: Violin plot showing the distribution of methylation levels at age 2 and 6 years at cg19196862 (IGF2R)

The cg19196862 (IGF2R) of 2-year-old showed a higher DNA methylation levels in the high BPA exposure group compared to the low BPA exposure group. However, this difference between the two groups was not significant at the age of 6 (Figure 7).

Methylation at 2 years
Methylation at 6 years

Figure 7. Methylation levels at cg19196862 (*IGF2R*) by prenatal BPA exposure at age 2 and 6 years Abbreviation: BPA, bisphenol A. *FDR corrected P-value <0.05 DNA methylation levels at cg19196862 (*IGF2R*) were not different by prenatal BPA exposure when CpG sites at CpG island, 5' untranslated region, transcription start site 200 (TSS200) or TSS1500 were inspected both at ages 2 (Table 8) and 6 (Table 9).

Table 8. Mean DNA methylation levels at age 2 at each CpG site by prenatal bisphenol A exposure levels (high (n=8) vs. low (n=51))(Top 5 CpG sites sorted by p-values at CpG island or promoter regions)

Classifi cation*	CpG site	prei	gh natal PA	Low F	prenatal 3PA	UCSC Gene	Classifi cation*	p_valu	FDR corrected
cation*		Mea n	SD	Mea n	SD	Name	cation*	e	p-value
Cg island	cg15913725	0.955	0.011	0.933	0.019	TSSC1	Body	0.014	0.9998
island	cg00852675	0.863	0.027	0.882	0.0237	LOC728743	Body	0.059	0.9998
$n=101^{\dagger}$	cg09230763	0.833	0.046	0.801	0.0434	MAP3K6	Body	0.071	0.9998
	cg18330571	0.850	0.029	0.831	0.0305	EBF3	Body	0.091	0.9998
	cg17111837	0.063	0.011	0.056	0.0102	NCRNA001 76	Body	0.111	0.9998
5'UTR	cg24217948	0.865	0.044	0.897	0.0242	SETBP1	S_Shore	0.045	0.8116
5011	cg10814005	0.120	0.024	0.130	0.0096	GPR68		0.063	0.8116
n=45	cg13781414	0.803	0.035	0.826	0.0261	NACC2		0.081	0.8116
	cg14286682	0.814	0.032	0.799	0.0266	TPD52L3		0.244	0.8292
	cg05845030	0.595	0.039	0.579	0.0389	DCN		0.272	0.8292
	cg13123009	0.409	0.025	0.388	0.0262	LY6G6E		0.031	0.9613
TSS200	cg11245333	0.048	0.010	0.054	0.00506	MOSC1	N Shore	0.101	0.9613
n=39	cg02244028	0.907	0.025	0.922	0.0188	SCN11A	-	0.116	0.9613
	cg21584983	0.040	0.006	0.042	0.00334	ECSIT	S Shore	0.200	0.9613
	cg10054641	0.398	0.047	0.376	0.0322	TMEM71	_	0.201	0.9613
	20117675	0.005	0.021	0.021	0.0122	DUVIC	0.01	0.016	0.7571
TSS1500	cg20117675	0.805	0.031	0.821	0.0132	DHX16	S_Shore	0.016	0.7571
60	cg26666886	0.085	0.012	0.094	0.0131	ANKRD11	S_Shore	0.046	0.9103
n=68	cg15059608	0.078	0.012	0.071	0.0115	C3orf14	S_Shore	0.085	0.9103
	cg03523676	0.620	0.041	0.644	0.0259	CPNE6		0.118	0.9103
	cg26687842	0.573	0.040	0.596	0.0523	LOC646982		0.158	0.9103

*UCSC reference gene group or relation to UCSC CpG Island

[†]Number of CpG sites out of the selected 565 CpG sites

Table 9. Mean DNA methylation levels at age 6 at each CpG site by prenatal bisphenol A exposure levels (high (n=12) vs. low (n=49))(Top 5 CpG sites sorted by p-values at CpG island or promoter regions)

Classifi cation*	CpG site	prei	igh natal PA	prei	ow natal PA	UCSC Gene	Classific ation*	p value	FDR corrected
cation	•	Mea n	SD	Mea n	SD	Name	ation	*-	p-value
Cg island	cg03862225	0.037	0.006	0.033	0.005	CTBP2	TSS1500	0.041	0.9638
$n=83^{\dagger}$	cg16151636	0.047	0.007	0.044	0.003	NR4A2	TSS1500	0.051	0.9638
	cg19990182	0.045	0.005	0.041	0.006	WDR35	TSS200	0.065	0.9638
	cg26317405	0.042	0.009	0.037	0.007	ATPGD1	Body	0.082	0.9638
	cg15913725	0.957	0.011	0.943	0.02	TSSC1	Body	0.087	0.9638
5' UTR	cg10814005	0.137	0.023	0.122	0.013	GPR68		0.073	0.8361
n=15	cg21282997	0.426	0.040	0.449	0.062	IL18RAP		0.163	0.8361
	cg17627898	0.510	0.091	0.553	0.07	ТАОКЗ		0.209	0.8361
	cg18568872	0.608	0.025	0.598	0.027	ZNF710	N Shelf	0.274	0.8361
	cg13781414	0.829	0.027	0.820	0.027	NACC2	-	0.376	0.8361
TSS200	cg08568550	0.882	0.022	0.894	0.021	C11orf16		0.140	0.8967
n=17	cg20587336	0.027	0.005	0.025	0.004	ARMC1	S_Shore	0.282	0.8967
	cg08339192	0.042	0.008	0.045	0.005	SIGLEC14		0.305	0.8967
	cg11245333	0.053	0.014	0.059	0.015	MOSC1	N_Shore	0.305	0.8967
	cg04219544	0.862	0.031	0.873	0.016	KRT24		0.337	0.8967
TSS1500	cg03523676	0.599	0.036	0.630	0.025	CPNE6		0.021	0.5735
n=34	cg13084458	0.065	0.017	0.053	0.01	INTU		0.042	0.5735
	cg16151636	0.047	0.007	0.044	0.003	NR4A2	Island	0.051	0.5735
	cg09204618	0.950	0.008	0.956	0.007	TSSK2	N_Shelf	0.072	0.5786
	cg02259997	0.042	0.006	0.038	0.006	FGF9	Island	0.093	0.5786

*UCSC reference gene group or relation to UCSC CpG Island

[†]Number of CpG sites out of the selected 565 CpG sites

The association between $\log_2(\text{prenatal BPA})$ and DNA methylation at cg19196862 (*IGF2R*) was inspected by generalized additive model (GAM) by adjusting for mother's age, BMI, education level, and child's blood cell type fractions, which showed non-linear pattern (J-shape) (Figure 8). The threshold analysis indicated that the first fit had a negative slope (β : -0.00175 (95% CI: -0.00647, 0.00297)) and the second fit had a positive slope (β : 0.00651 (95% CI: 0.000160, 0.0129)) with the threshold point 1.300 in log scale which is equal to 2.462µg/g creatinine (Table 10), which corresponds to between 75th and 80th percentile (Table 11).

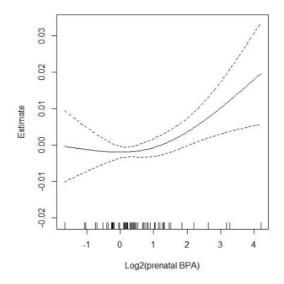


Figure 8. Generalized additive model for the association between log_2 (prenatal BPA) and DNA methylation levels at cg19196862 (IGF2R) adjusted for mother's age, BMI, education, and cell type fractions

Table 10. Threshold point estimation for the non-linear model for the association between log_2 (prenatal BPA) and DNA methylation levels at cg19196862 (IGF2R)

	Estimate (95% CI)	p-value	Threshold point	$2^{1.300}$
Fit 1	-0.00175 (-0.00647, 0.00297)	0.472	1.300	2.462
Fit 2	0.00651 (0.000160, 0.0129)	0.0446	1.300	2.402

Table 11. Difference in methylation levels in cg19196862 (IGF2R) in 2-year children by high vs. low prenatal BPA exposures with different cut off values (n=59)

D	Cut off value	Mean meth	ylation levels	p-value from the
Percentile	(µg/g creatinine)	Low prenatal BPA	High prenatal BPA	from the t-test
75th	2.354	0.950 (N=47)	0.957 (N=12)	0.0174
80th	2.678	0.950 (N=51)	0.959 (N=8)	0.0003
90th	4.244	0.951 (N=53)	0.961 (N=6)	0.0004

Differential methylation levels in children at ages 2 and

6 years according to postnatal BPA exposure

The effects of postnatal BPA on DNA methylation at the selected 594 CpG were also studied. Mean levels of DNA methylations at ages 2, 6, 6, 6 years were inspected by postnatal BPA expouse group at 2, 2, 4, 6 years, respectively (Table 12), in which none was significant (Table 13, 14, 15, and 16).

Table 12. Matching of ages at bisphenol A exposure and ages for DNA methylation in Table 13~16.

	Exposure (BPA)	Outcome (DNA methylation)
Table 11	Age 2	Age 2
Table 12	Age 2	Age 6
Table 13	Age 4	Age 6
Table 14	Age 6	Age 6

Table 13. Mean DNA methylation levels at age 2 at each CpG site by postnatal bisphenol A exposure at age 2 (high (n=6) vs. low (n=25)) (Top 25 CpG sites sorted by p-values)

CpG site	High p B	orenatal PA		prenatal PA	UCSC Gene	UCSC Ref	Relati on to UCSC	p value	FDR corre cted
	Mean	SD	Mean	SD	Name	Gene Group	CpG Island	1_	p-val ue
cg08568550	0.848	0.050	0.885	0.012	C11orf16	TSS200		0.0026	0.509
cg27267258	0.938	0.033	0.953	0.007	ANKRD11	Body		0.0414	0.602
cg12170787	0.475	0.124	0.529	0.014	SBNO2	Body		0.0420	0.602
cg17478979	0.493	0.120	0.440	0.023	ZC3H12D	Body	Island	0.0472	0.602
cg02716826	0.497	0.117	0.441	0.042	SUGT1P1	Body	N_Shore	0.0697	0.602
cg13641993	0.933	0.023	0.944	0.007	FBXO10	5'UTR		0.0708	0.602
cg17167536	0.805	0.186	0.875	0.016	XKR6	Body		0.0759	0.602
cg01706498	0.741	0.180	0.810	0.028	KLHL6	Body		0.0774	0.602
cg24217948	0.844	0.093	0.885	0.030	SETBP1	5'UTR	S_Shore	0.0802	0.602
cg26627956	0.922	0.064	0.945	0.007	CFLAR	Body		0.0853	0.602
cg11475880	0.876	0.105	0.924	0.040	IQSEC2	Body	Island	0.0876	0.602
cg17276103	0.930	0.045	0.946	0.005	DDAH1	Body		0.0883	0.602
cg01538605	0.742	0.183	0.813	0.042			N_Shore	0.0892	0.602
cg06882533	0.849	0.204	0.921	0.007				0.0898	0.602
cg03327570	0.828	0.169	0.889	0.020				0.0928	0.602
cg21960828	0.954	0.057	0.974	0.007	TADA2B	Body	Island	0.1012	0.602
cg06437396	0.124	0.131	0.080	0.007			N_Shore	0.1073	0.602
cg23166970	0.114	0.216	0.042	0.009	MCCC1	TSS1500	S_Shore	0.1091	0.602
cg14391148	0.925	0.041	0.938	0.003	C9orf167	3'UTR	Island	0.1101	0.602
cg07570055	0.145	0.233	0.068	0.011			Island	0.1126	0.602
cg10861407	0.947	0.059	0.966	0.004	FSD1L	TSS1500	N_Shore	0.1145	0.602
cg26284544	0.539	0.144	0.594	0.043	SNAPC2	TSS1500	Island	0.1147	0.602
cg02682525	0.643	0.088	0.613	0.017	ANKK1	TSS1500	N_Shore	0.1162	0.602
cg25685359	0.880	0.112	0.917	0.012				0.1180	0.602
cg01172150	0.203	0.193	0.138	0.028			S_Shore	0.1185	0.602

Table 14. Mean DNA methylation levels at age 6 at each CpG site by postnatal bisphenol A exposure at age 2 (high (n=6) vs. low (n=25)) (Top 25 CpG sites sorted by p-values)

CpG site	Hi pren BP Mean	atal		prenatal PA SD	UCSC Gene Name	UCSC Ref Gene Group	Relation to UCSC CpG Island	p_valu e	FDR corre cted p-val
cg06096336	0.535	0.157	0.649	0.046	PSMD1	Body	Island	0.0044	ue 0.651
cg01101459	0.768	0.041	0.720	0.037	1 500121	Douy		0.0134	0.707
cg15416179	0.137	0.073	0.096	0.025	MAP2K3	Body	S Shore	0.0287	0.707
cg02682525	0.676	0.079	0.635	0.023	ANKKI	TSS1500	N Shore	0.0304	0.707
cg25178683	0.472	0.111	0.534	0.040	LGALS3BP	TSS1500		0.0340	0.707
cg00585790	0.231	0.177	0.148	0.029	LIMS1	1 stExon		0.0354	0.707
cg04836151	0.794	0.076	0.722	0.054	Endor	TSTEACH		0.0389	0.707
cg17478979	0.414	0.147	0.337	0.049	ZC3H12D	Body	Island	0.0398	0.707
cg02426464	0.260	0.169	0.186	0.026	SLC43A2	Body	S_Shelf	0.0452	0.707
cg03725309	0.392	0.169	0.306	0.059	SARS	Body	S Shore	0.0480	0.707
cg10802680	0.563	0.153	0.635	0.041	DIABLO	TSS200;	_ S Shore	0.0499	0.707
cg05063895	0.239	0.191	0.162	0.019		,	_ N_Shelf	0.0573	0.707
cg03746015	0.807	0.041	0.770	0.044	CLEC16A	Body	_	0.0579	0.707
cg21584983	0.035	0.008	0.042	0.008	ECSIT	TSS200	S_Shore	0.0613	0.707
cg04232128	0.368	0.066	0.315	0.036	TMEM173	Body	_	0.0704	0.707
cg01172150	0.237	0.174	0.166	0.040			S_Shore	0.0719	0.707
cg04027757	0.914	0.028	0.891	0.020	POM121L1 P	TSS200	Island	0.0722	0.707
cg00134210	0.174	0.151	0.109	0.045	FAM107B	Body	N_Shore	0.0768	0.707
cg12170787	0.495	0.127	0.547	0.031	SBNO2	Body		0.0782	0.707
cg05659486	0.771	0.200	0.844	0.021				0.0853	0.707
cg17272620	0.154	0.093	0.115	0.031	LRG1	TSS1500	N_Shelf	0.0932	0.707
cg01538605	0.741	0.185	0.804	0.017			N_Shore	0.1034	0.707
cg17526229	0.219	0.090	0.186	0.023			Island	0.1065	0.707
cg08309687	0.518	0.150	0.573	0.037				0.1121	0.707
cg06376715	0.428	0.112	0.467	0.022	<i>TP73</i>	Body	Island	0.1154	0.707

Table 15. Mean DNA methylation levels at age 6 at each CpG site by postnatal bisphenol A exposure at age 4 (high (n=6) vs. low (n=53)) (Top 25 CpG sites sorted by p-values)

CpG site	High j B	prenatal PA	Low E	prenatal 3PA	UCSC Gene	UCSC Ref	Relatio n to UCSC	p_val	FDR correct
CpG site	Mean	SD	Mea n	SD	Name	Gene Group	CpG Island	ue	ed p-value
cg09152259	0.464	0.034	0.416	0.046			N_Shelf	0.0021	0.634
cg01936370	0.522	0.033	0.507	0.007			Island	0.0058	0.996
cg03046925	0.906	0.015	0.923	0.012	TRIM15	Body		0.0106	0.996
cg08877257	0.863	0.027	0.836	0.032	MAZ	Body	S_Shore	0.0262	0.996
cg13274254	0.092	0.017	0.108	0.011	GULP1	5'UTR	Island	0.0273	0.996
cg06372962	0.104	0.016	0.119	0.019	ANKRD45	5'UTR	Island	0.0327	0.996
cg26687842	0.639	0.039	0.674	0.042	LOC64698 2	TSS1500		0.0431	0.996
cg27115863	0.508	0.025	0.486	0.027				0.0478	0.996
cg20722088	0.931	0.013	0.941	0.008	DUSP6	3'UTR	N_Shelf	0.0738	0.996
cg11475880	0.935	0.022	0.952	0.020	IQSEC2	Body	Island	0.0821	0.996
cg25178683	0.511	0.057	0.553	0.041	LGALS3BP	TSS1500		0.0862	0.996
cg02286155	0.696	0.018	0.710	0.024			N_Shore	0.0884	0.996
cg10044470	0.384	0.029	0.362	0.021				0.0888	0.996
cg22352078	0.065	0.010	0.073	0.012			Island	0.1010	0.996
cg13123009	0.429	0.022	0.445	0.025	LY6G6E	TSS200		0.1037	0.996
cg22012981	0.791	0.025	0.773	0.026	ACOX2	5'UTR		0.1039	0.996
cg12917475	0.132	0.028	0.153	0.038	BCL2L2	TSS1500	S_Shelf	0.1042	0.996
cg19695507	0.107	0.026	0.125	0.037	BEND7	Body		0.1125	0.996
cg02716826	0.427	0.031	0.405	0.045	SUGT1P1	Body;Bo dy	N_Shore	0.1148	0.996
cg19202292	0.089	0.017	0.101	0.017			Island	0.1176	0.996
cg04292672	0.896	0.015	0.885	0.020	MORN1	Body	N_Shelf	0.1197	0.996
cg00585790	0.173	0.043	0.202	0.047	LIMS1	1stExon		0.1226	0.996
cg02729344	0.906	0.020	0.920	0.022			N_Shore	0.1260	0.996
cg07800670	0.905	0.028	0.887	0.034	DST	Body		0.1299	0.996
cg07950000	0.176	0.030	0.197	0.041	GRIK1	TSS200	S_Shore	0.1302	0.996

Table 16. Mean DNA methylation levels at age 6 at each CpG site by postnatal bisphenol A exposure at age 6 (high (n=12) vs. low (n=47)) (Top 25 CpG sites sorted by p-values)

CpG site		prenatal PA	pre	ow natal PA	UCSC Gene	UCSC Ref Gene	Relation to UCSC	p_val ue	FDR correcte d
	Mean	SD	Mea n	SD	Name	Group	CpG Island	ue	p-value
cg06898549	0.783	0.040	0.824	0.033			N_Shelf	0.0019	0.192
cg27038634	0.421	0.029	0.449	0.026			N_Shore	0.0046	0.263
cg09121516	0.960	0.008	0.967	0.008	TFAP4	Body	S_Shore	0.0053	0.263
cg25178683	0.526	0.051	0.476	0.060	LGALS3BP	TSS1500		0.0054	0.263
cg14524936	0.445	0.051	0.494	0.061	SLC6A5	Body		0.0066	0.280
cg22012981	0.785	0.024	0.806	0.026	ACOX2	5'UTR		0.0092	0.299
cg05596468	0.948	0.011	0.953	0.005	ARHGEF10	Body		0.0112	0.299
cg26164488	0.450	0.079	0.515	0.075				0.0124	0.299
cg02695873	0.594	0.026	0.615	0.022			N_Shelf	0.0134	0.299
cg24751284	0.957	0.009	0.964	0.007	APEX1	Body	S_Shore	0.0152	0.299
cg03012642	0.961	0.016	0.969	0.008				0.0156	0.299
cg19680332	0.256	0.035	0.284	0.036	BCO2	TSS200		0.0156	0.299
cg25001190	0.795	0.038	0.826	0.037	NFIA	Body		0.0156	0.299
cg22078907	0.959	0.006	0.964	0.004	USP22	Body		0.0156	0.299
cg00134210	0.128	0.037	0.157	0.031	FAM107B	Body	N_Shore	0.0168	0.312
cg00634542	0.625	0.030	0.650	0.036	SLC11A1	Body	N_Shore	0.0180	0.312
cg03615565	0.632	0.023	0.653	0.035	FAM65A	Body	Island	0.0187	0.312
cg05063895	0.176	0.021	0.193	0.022			N_Shelf	0.0189	0.312
cg21186778	0.835	0.022	0.852	0.024	RCL1	Body		0.0198	0.312
cg00673344	0.366	0.056	0.407	0.048			S_Shore	0.0243	0.328
cg09245901	0.791	0.028	0.813	0.031				0.0249	0.328
cg26470501	0.556	0.028	0.578	0.039	BCL3	Body	S_Shore	0.0259	0.335
cg15416179	0.119	0.034	0.143	0.032	MAP2K3	Body	S_Shore	0.0288	0.345
cg14524775	0.960	0.007	0.965	0.006	ARHGEF2	Body	Island	0.0294	0.345
cg27117792	0.378	0.068	0.426	0.063				0.0295	0.345
cg22820188	0.478	0.030	0.499	0.020	LMNA	Body	S_Shore	0.0325	0.345
cg03327570	0.773	0.034	0.800	0.050				0.0339	0.348
cg18219562	0.817	0.036	0.842	0.032				0.0348	0.348
cg15650694	0.070	0.010	0.064	0.006	SFRS12	TSS200	Island	0.0354	0.348

Methylation status at age 2 years and child's BMI in early childhood

One standard deviation (SD) change of methylation levels at cg19196862 (*IGF2R*) at age 2 was associated with 0.253 (95% CI; 0.050, 0.456), 0.243 (95% CI; 0.030, 0.455), 0.251 (95% CI; 0.030, 0.472), and 0.322 (95% CI; 0.034, 0.610) increase of BMI Z-score at ages 2, 4, 6, and 8 years (Table 17 and Figure 9), respectively, when adjusted for covariates mentioned in statistical analysis. This association showed interaction effect by sex, where the effect size for the association between methylation at cg19196862 (*IGF2R*) at age 2 years and BMI Z-scores in early childhood was greater in girls than in boys, although sex-difference was significant at only age 6 years. When stratified by sex, the association between methylation at cg19196862 (*IGF2R*) at age 2 years and BMI Z-scores from 2, 4, 6, to 8 years was significant in only girls, by 0.272 (95% CI; 0.011, 0.534) at age 2 years, 0.339 (95% CI; 0.060, 0.617) at age 4 years, 0.437 (95% CI; 0.165, 0.709) at age 6 years, and 0.543 (95% CI; 0.178, 0.908) at age 8 years, showing increasing effect sizes as age increases.

Obesity measure	Ag e	Overall		Boys†		Girls†		Sex difference (reference: boys)	
S	(Ye ars)	Estimate* (95% CI)	P-value	Estimate (95% CI)	P-value	Estimate (95% CI)	P-value	Estima te	P-value
	2	0.371 (0.070, 0.673)	0.020*	0.343 (133, 0.820)	0.165	0.395 (0.006, 0.785)	0.053	0.023	0.943
DMI	4	0.280 (005, 0.566)	0.061	0.081 (342, 0.504)	0.710	0.425 (0.051, 0.799)	0.032*	0.337	0.259
BMI	6	0.304 (120, 0.728)	0.168	283 (906, 0.339)	0.378	0.675 (0.157, 1.193)	0.015*	0.982	0.026*
	8	0.662 (055, 1.379)	0.079	144 (-1.16, 0.868)	0.782	1.245 (0.343, 2.146)	0.010*	1.401	0.053
	2	0.253 (0.050, 0.456)	0.019*	0.228 (092, 0.549)	0.170	0.272 (0.011, 0.534)	0.048*	0.025	0.909
BMI	4	0.243 (0.030, 0.455)	0.031*	0.111 (204, 0.427)	0.494	0.339 (0.060, 0.617)	0.022*	0.218	0.328
Z-score	6	0.251 (0.030, 0.472)	0.032*	041 (367, 0.286)	0.809	0.437 (0.165, 0.709)	0.003*	0.481	0.037*
	8	0.322 (0.034, 0.610)	0.035*	0.018 (392, 0.428)	0.932	0.543 (0.178, 0.908)	0.006*	0.523	0.073

Table 17. Association between methylation at cg19196862 (IGF2R) and BMI and BMI Z-score (n=59)

*Adjusted for mother's age at pregnancy, mother's and father's prepregnant BMI, mother's education level, child's sex, preterm birth or not (<37 weeks), underweight at birth or not (<2500g), breastfeeding for \geq 6 months or not, child's urinary BPA(ug/creatinine), child's total calorie intake (kcal), and cell type fraction.

†Estimates for boys and girls were obtained by inserting sex interaction term in the regression analysis.

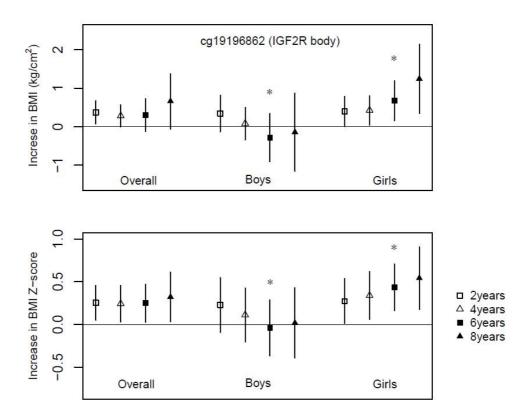


Figure 9. Increase in BMI and BMI Z-score and 95% confidence interval by 1 standard deviation increase of methylation levels at cg19196862 (*IGF2R*) *Sex difference was significant.

Adjusted by mother's age at pregnancy, mother's and father's BMI, mother's education level, child's sex, preterm birth or not (<37 weeks), underweight at birth or not (<2500g), breastfeeding for ≥ 6 months or not, child's urinary BPA(ug/creatinine), child's total calorie intake (kcal), and cell type fraction... Abbreviation: BMI, body mass index.

Mediation analysis

The average causal mediation effect of methylation at cg19196862 (*IGF2R*) on the association between prenatal BPA exposure and BMI Z-score in boys and girls overall was 0.064 (p-value 0.058) at age 2, 0.069 (p-value 0.040) at age 4, 0.061 (p-value 0.084) at age 6, and 0.092 (p-value 0.030) at age 8, showing the greatest effect at age 8 (Table 18, Figure 10). The average direct effects were mostly negative, while the total effects were mostly positive.

Age	Path	Effect	Estimate	p-value	
2 years	a*	Prenatal BPA - child methylation	0.003 (0.001, 2.219)	0.031*	
	b*	Methylation - BMI	0.253 (0.050, 0.456)	0.019*	
	c*	Average causal mediation effect	0.064 (-0.001, 0.17)	0.058	
		Average direct effect	-0.018 (-0.264, 0.23)	0.870	
		Total Effect	0.046 (-0.216, 0.32)	0.716	
		Proportion Mediated	0.305 (-7.535, 5.94)	0.710	
4	а	Prenatal BPA - child methylation	0.003 (0.001, 2.219)	0.031*	
	b	Methylation - BMI	0.243 (0.030, 0.455)	0.031*	
	c	Average causal mediation effect	0.069 (0.002, 0.17)	0.040*	
years		Average direct effect	-0.136 (-0.4, 0.12)	0.290	
		Total Effect	-0.067 (-0.338, 0.2)	0.630	
		Proportion Mediated	-0.242 (-9.377, 6.44)	0.650	
	а	Prenatal BPA - child methylation	0.003 (0.001, 2.22)	0.031*	
	b	Methylation - BMI	0.251 (0.030, 0.472)	0.032*	
6	c	Average causal mediation effect	0.061 (-0.004, 0.16)	0.084	
years		Average direct effect	-0.027 (-0.279, 0.24)	0.862	
		Total Effect	0.035 (-0.248, 0.31)	0.814	
		Proportion Mediated	0.186 (-7.969, 6.38)	0.806	
	а	Prenatal BPA - child methylation	0.003 (0.001, 2.353)	0.023*	
	b	Methylation - BMI	0.322 (0.034, 0.610)	0.035*	
8	c	Average causal mediation effect	0.092 (0.005, 0.22)	0.030*	
years		Average direct effect	0.083 (-0.304, 0.45)	0.650	
		Total Effect	0.176 (-0.206, 0.54)	0.370	
		Proportion Mediated	0.328 (-3.225, 4.36)	0.380	

Table 18. Mediation effect of methylation at cg19196862 (*IGF2R* body) on the association between prenatal BPA exposure and BMI Z-score.

*Defined as in Figure 14.

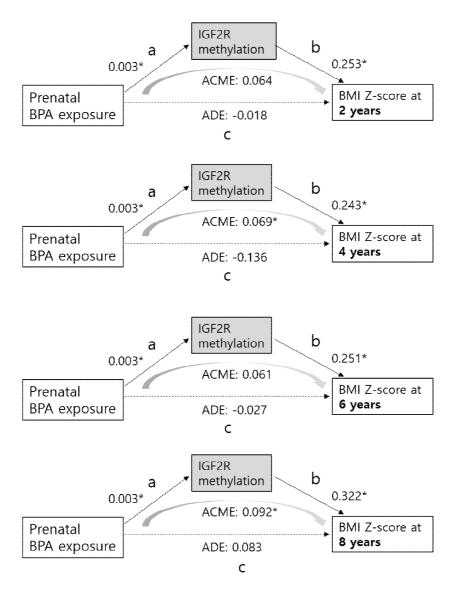


Figure 10. Mediation effect of methylation at cg19196862 (IGF2R) on the association between prenatal BPA exposure and BMI Z-score in boys and girls overall.

a: association between prenatal BPA exposure and methylation at cg19196862 (IGF2R). b: association between methylation at cg19196862 (IGF2R) and BMI Z-score

*P-value <0.05. Abbreviation: BMI, body mass index; BPA, bisphenol A.

Sensitivity analysis

In the sensitivity analysis, in addition to the covariates included in the main analysis, a linear regression analysis was performed on the methylation levels of cg19196862 (IGF2R) sites and their association with BMI and BMI Z-scores after additional adjustments for multiple birth, smoking, and drinking. Significance levels changed, but the patterns were similar for cg19196862 (Table 19, Figure 11).

To assess the risk of over-fitting due to adjusting for many covariates, R^2 was checked (Supplementary Table 2). Instaed, the propensity score was solely adjusted for the the linear regression analysis for DNA methylation and BMI or BMI Z-score. Although R^2 decreased (Supplementary Table 3), the patterns and significance level were similar as in the main analysis (Table 22).

Obesi ty	Ag e	Overall		Boys†		Girls†		Sex difference (reference: girls)	
meas ures	(Ye ars)	Estimate* (95% CI)	P-value	Estimate (95% CI)	P-value	Estimate (95% CI)	P-value	Estimate	P-value
BMI	2	0.404 (0.005, 0.804)	0.0577	0.699 (0.061, 1.337)	0.042*	0.255 (240, 0.751)	0.322	-0.502	0.246
	4	0.217 (162, 0.596)	0.2724	0.209 (377, 0.796)	0.4908	0.226 (281, 0.732)	0.3912	-0.001	0.998
	6	0.265 (270, 0.801)	0.3411	152 (998, 0.694)	0.728	0.523 (165, 1.210)	0.1499	0.687	0.249
	8	0.391 (522, 1.304)	0.4109	657 (-1.92, 0.611)	0.3219	1.224 (0.054, 2.394)	0.0537	1.935	0.0499*
	2	0.276 (0.004, 0.548)	0.0573	0.463 (0.027, 0.899)	0.048*	0.182 (157, 0.521)	0.3029	-0.320	0.278
BMI	4	0.198 (082, 0.477)	0.1782	0.198 (234, 0.630)	0.3786	0.201 (173, 0.574)	0.3033	-0.014	0.963
Z-sco re	6	0.239 (034, 0.511)	0.0986	0.048 (385, 0.481)	0.8309	0.359 (0.007, 0.711)	0.0578	0.307	0.313
	8	0.223 (148, 0.595)	0.2521	177 (700, 0.346)	0.5147	0.542 (0.060, 1.025)	0.040*	0.734	0.069

Table 19. Sensitivity analysis for the association between methylation at cg19196862 (IGF2R) in 2-year children and increase in BMI and BMI Z-score (n=59)

*Adjusted for mother's age at pregnancy, mother's and father's prepregnant BMI, mother's education level, child's sex, preterm birth or not (<27 weeks), underweight at birth or not (<2500g), breastfeeding for \geq 6 months or not, child's urinary BPA(ug/creatinine), child's total calorie intake (kcal), and cell type fraction. Additionally adjusted for twin (twin or not), smoking during pregnancy (smoked during pregnancy, did not smoke during pregnancy but smoked before pregnancy, never smoked), and drinking during pregnancy (drank during pregnancy, did not drink during pregnancy but drank before pregnancy, never drank)

†Estimates for boys and girls were obtained by inserting sex interaction term in the regression analysis.

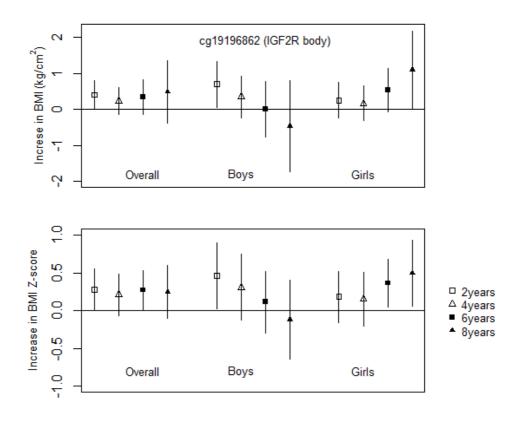


Figure 11. Sensitivity analysis for the increase in BMI and BMI Z-score and 95% confidence interval by 1 standard deviation increase of methylation levels at cg19196862 (*IGF2R*)

Adjusted for mother's age at pregnancy, mother's and father's BMI, mother's education level, child's sex, preterm birth or not (<37 weeks), underweight at birth or not (<2500g), breastfeeding for ≥ 6 months or not, child's urinary BPA(ug/creatinine), child's total calorie intake (kcal), and cell type fraction and additionally twin (or not), smoking during pregnancy (smoked, former smoker, never smoker) and alcohol.

Abbreviation: BMI, body mass index

Obesit y measu res	Age	Overall		Boys†		Girls†		Sex difference (reference: boys)	
	(Ye ars)	Estimate* (95% CI)	P-value	Estimate (95% CI)	P-value	Estimate (95% CI)	P-value	Estimat e	P-value
BMI	2	0.467 (-0.255, 1.188)	0.201	-0.095 (-1.142, 0.954)	0.854	1.009 (-0.003, 2.020)	0.051	0.816	0.189
	4	0.584 (-0.076, 1.244)	0.082	0.133 (-0.750, 1.017)	0.758	1.117 (0.088, 2.146)	0.034*	0.661	0.263
	6	0.619 (-0.388, 1.626)	0.223	-0.181 (-1.733, 1.371)	0.812	1.413 (0.009, 2.817)	0.049*	1.400	0.125
	8	1.306 (-0.183, 2.795)	0.084	-0.179 (-2.628, 2.270)	0.881	2.623 (0.786, 4.459)	0.007*	2.274	0.092
BMI Z-scor e	2	0.328 (-0.917, 0.393)	0.429	-0.063 (-0.748, 0.623)	0.852	0.704 (0.025, 1.383)	0.043*	0.563	0.172
	4	0.517 (0.0247, 1.010)	0.040*	0.211 (-0.453, 0.876)	0.518	0.892 (0.130, 1.654)	0.023*	0.435	0.322
	6	0.483 (-0.947, 0.629)	0.076	0.038 (-0.736, 0.811)	0.621	0.933 (0.157, 1.709)	0.020*	0.763	0.112
	8	0.683 (0.087, 1.281)	0.026*	0.075 (-0.890, 1.041)	0.325	1.230 (0.502, 1.958)	0.002*	0.933	0.081

Table 20. Sensitivity analysis: Association between methylation level (high 50 percentile vs. low 50 percentile) at cg19196862 (IGF2R) and BMI and BMI Z-score adjusting for propensity scores (n=59)

*Adjusted for a propensity score created from mother's age at pregnancy, mother's and father's prepregnant BMI, mother's education level, child's sex, preterm birth or not (<37 weeks), underweight at birth or not (<2500g), breastfeeding for ≥ 6 months or not, child's urinary BPA(ug/creatinine), child's total calorie intake (kcal), and cell type fraction.

†Estimates for boys and girls were obtained by inserting sex interaction term in the regression analysis.

Discussion

DNA methylation in cg19196862, corresponding to the IGF2R gene body differed significantly by prenatal BPA exposure at 2 years of age, but not at 6 years of age. The association between methylation at cg19196862 (IGF2R) was positive only in girls at 2, 4, 6 and 8 years old and the effect sizes increased with age, but was not significant for boys of any age.

Epigenetic dysregulation has been suggested as one of the mechanisms of the Devlopmental Origin of Health and Disease (DOHaD) hypothesis. The DOHaD hypothesis shows that environmental stimuli affect growth pathways during critical periods of prenatal and postnatal mammalian development, leading to permanent changes in metabolism and disease susceptibility (Waterland and Michels 2007). In embryonic fertilized cells, DNA methylation is almost completely erased through epigenetic reprogramming in the early stages of the embryo (Kundakovic and Jaric 2017; Smith et al. 2014). Cell-specific DNA methylation is re-established according to the epigenetic profile inherited from parents (epigenetic programming). Epigenetic marks are stabilized in the later stages of development, but are still actively involved in gene expression in the later stages of cell differentiation.

Previous longitudinal methylation studies in children have shown that the methylation profile has changed more dramatically in early childhood than later ages. The methylation status of the 783,659 CpG sites in the blood changed at the 110,726 CpG sites from 0 to 5 years of age, but only 460 CpG sites changed from 5 to 10 years (Perez et al. 2019). Also, there may be a sensitive window period in which the methylation profile changes according to childhood adversity rather than continuous methylation changes over time. For example, changes in DNA methylation

- 51 -

was explained more effectively by adversity in infancy (under 2 years of age) rather than recent adversity (Dunn et al. 2019). In particular, this study showed that prenatal BPA had effects on DNA methylation at early childhood, but postnatal BPA exposure in early childhood had no effects on DNA methylation in children, suggesting that prenatal BPA exposure had a greater impact on DNA methylation than postnatal BPA exposure specifically in respect of *IGF2R*.

In this study, DNA methylation level at cg19196862 (*IGF2R*) varied with prenatal BPA levels at 2 years of age, but no difference was found at 6 years of age. This finding suggests that prenatal toxicity exposure may affect DNA methylation in infancy, but the effect is mitigated as the methylation profile becomes stabilized as the child grows. Additionally, this mitigation would be also due to the fact that more diverse biological and sociological factors come into play in determining obesity in children as they grow older. Nonetheless, it is important to point out that, since DNA methylation profiles become less labile as children grow older, the epigenetic profile set in infancy in regards with prenatal environmental exposure is likely to be sustained over children's growth. Permanent epigenetic changes induced by prenatal exposure would possibly lead to metabolic diseases in later life as in DOHaD hypothesis.

More importantly, epigenetic patterns set in the early developmental period are inherited to the next generation, because epigenetic reprogramming takes place by copying parental epigenetic profiles (Kundakovic and Jaric 2017). Previous studies showed that epigenetic marks induced by specific maternal environmental exposures during pregnancy were inherited to multiple generations of descendants even when the exposure was absent. For example, male rats born to mothers exposed to endocrine disruptor vinclozolin showed decreased spermatogenic capacity and raised male infertility, which was transferred to 4 subsequent generations (Anway et al. 2005). These effects were correlated with DNA methylation patterns. Thus, maternal exposure to environmental toxic chemicals may not only contribute to permanent epigenetic marks in children leading to effects on health and diseases in their later lives but also leave epigenetic marks on the next generations.

IGF2 genomic imprinting, which refers is known for to parent-of-origin-dependent allele-specific gene expression in which gene expression occurs only from mother (maternally imprinted) or from father (paternally imprinted). However, in human, IGF2R showed non-imprinted biallelic expression (Buckberry et al. 2012; Oudejans et al. 2001; Vu et al. 2006). Cg19196862 is located at the 31st exon of IGF2R. IGF2R regulates IGF2 by binding to it, internalizing and transporting it to the lysosome for degradation (Hassan 2003). Thus, IGF2R represses the expression of IGF2 by reducing its concentration. A previous study showed a negative association between methylation at IGF2 and BMI in children (Do et al. 2019). It could be postulated that the greater methylation at IGF2R results in a lesser degree of IGF2R expression, leading to an increased level of IGF2 increasing obese tendency. However, the specific direction of the relationship between methylation and gene expression should be confirmed by mRNA expression studies in the future.

The reasons for sex-specific obesogenic effects of BPA are not clear. The associations between prenatal BPA exposure and body size were null in previous studies (Braun et al. 2014; Philippat et al. 2014) but it was positive (Valvi et al. 2013) or negative in girls only (Harly et al. 2013). The differences among studies could be due to the timing of measurement, age at outcome assessment, or differences in population susceptibility (Buckley, 2016). Phenols, including BPA, are endocrine-disrupting chemicals that alter metabolism via estrogenic, antiestrogenic, or anti-androgenic acitivities and may interfere with hormone functions. Sex-specific effects of BPA could be due to different body composition of fat mass and lean body mass (Hoepner 2106), and/or different sensitivity to estrogenic activity of BPA between boys and girls (van Esterik et al. 2014).

The strength of this study is that it used longitudinal sets of methylation data of children at age 2 and 6 and longitudinal data of obesity measures including BMI and BMI Z-score at ages 2, 4, 6, and 8. This enabled the finding of a sensitive window period of prenatal effects on a child's methylation patterns in early childhood, and the temporal relationships between DNA methylation patterns and obesity outcomes. For example, DNA methylations at *IGF2R* were different by prenatal BPA exposure at age 2 but not at age 6, and DNA methylation status at *IGF2R* at age 2 was associated with BMI at ages 2, 4, 6, and 8 in a sex-dependent manner, reducing the possibility of reverse causation, thus inferring causality.

Second, the information on various covariates were available to control for the analysis of associations between methylation and child's phenotypes. Covariates such as a child's BPA exposure levels and child's dietary information (e.g. total calorie intakes) were available at age 4, 6, and 8, which were adjusted at each age correspondingly.

This study has several limitations. First, the sample size was small. Replication study with a larger sample size is warranted to confirm the epigenetic effects of *IGF2R*.

Second, covariates could not be considered in the t-test for comparisons of DNA methylation by prenatal BPA exposure level. However,

- 54 -

the association between prenatal BPA and methylation at cg19196862 (*IGF2R*) was non-linear when adjusted for mother's age, BMI, education level, and cell type fractions.

Third, for the association between DNA methylation at cg19196862 (*IFG2R*), postnatal BPA was not adjusted at ages 2 due to several missing values, while postnatal BPA were adjusted at ages 4, 6, and 8. Increase in methylation at cg19196862 (*IGF2R*) was associated with increased BMI at ages 2, 4, 6, and 8 with greater effect sizes as age increased. Since BMI at age 2 may not reflect the effects of DNA methylation at age 2, the association between DNA methylation at age 2 and BMI at ages 4, 6, and 8 may be more important.

Forth, information for IGF2R gene expression was unavailable. There are many other steps to consider the effect of methylation of CpG sites on obesity. Caution is needed when interpreting the result that IGF2R hypermethylation is associated with an increase in the BMI Z-score because the extent of IGF2R expression is unknown in this study. The assessment of the impact of IGF2R on growth and development through IGF2 and the effect of methylation of IGF2R on the level of IGF2 expression is necessary for future studies.

Fifth, tissue specificity was limited. Blood tissues are comprised of different types of cells, such as CD8+ T cells, CD4+ T cells, natural killer (NK) cells, B cells, monocytes, and neutrophils. Although the cell type fractions were estimated by Houseman's method (2012), the method is based on adult's samples; thus, it may not reflect child's cell type fractions.

Sixth, since candidate gene analysis was performed instead of EWAS, novel CpG sites related to BPA exposure or obesity could have been missed.

Conclusion

In utero exposure to BPA has been indicated as an obesogen in children. From previous obesity-related EWAS, 594 CpG sites were selected and inspected for the association with prenatal BPA exposure levels. The association between methylation at the *IG2R* and obesity were evaluated in children. Methylation at *IGF2R* differed by maternal BPA exposure at age 2 but not at age 6, and was positively associated with BMI Z-score at age 2, 4, 6, and 8 in a sex-dependent manner. DNA methylation levels at 594 CpG sites did not differ by postnatal BPA exposure.

References

- Al Muftah WA, Al-Shafai M, Zaghlool SB, Visconti A, Tsai PC, Kumar P, et al. 2016. Epigenetic associations of type 2 diabetes and BMI in an Arab population. Clinical Epigenetics 8:13.
- Anway MD, Cupp AS, Uzumcu M, Skinner MK. 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466-1469.
- Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. 2014. Minfi: A flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363-1369.
- Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L, et al. 2015. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring, Md) 23:1493-1501.
- Balakrishnan B, Henare K, Thorstensen EB, Ponnampalam AP, Mitchell MD. 2010. Transfer of bisphenol A across the human placenta. American Journal of Obstetrics and Gynecology 202:393.e391-397.
- Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57:289-300.
- Braun JM, Lanphear BP, Calafat AM, Deria S, Khoury J, Howe CJ, et al. 2014. Early-life bisphenol A exposure and child body mass index: A prospective cohort study. Environmental Health Perspectives 122:1239-1245.
- Braun JM. 2017. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nature Reviews Endocrinology 13:161-173.

- Buckberry S, Bianco-Miotto T, Hiendleder S, Roberts CT. 2012. Quantitative allele-specific expression and DNA methylation analysis of h19, igf2 and igf2r in the human placenta across gestation reveals h19 imprinting plasticity. PloS One 7:e51210.
- Buckley JP, Herring AH, Wolff MS, Calafat AM, Engel SM. 2016. Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai children's environmental health study. Environment International 91:350-356.
- Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. 2005. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environmental Health Perspectives 113:391-395.
- Campanella G, Gunter MJ, Polidoro S, Krogh V, Palli D, Panico S, et al. 2018. Epigenome-wide association study of adiposity and future risk of obesity-related diseases. International Journal of Obesity (2005) 42:2022-2035.
- Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou YH, et al. 2015. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Human Molecular Genetics 24:4464-4479.
- Dhana K, Braun KVE, Nano J, Voortman T, Demerath EW, Guan W, et al. 2018. An epigenome-wide association study of obesity-related traits. American Journal of Epidemiology 187:1662-1669.
- Do EK, Zucker, NL, Huang, ZY, Schechter, JC, Kollins, SH, Maguire, RL, et al. 2019. Associations between imprinted gene differentially methylated regions, appetitive traits and body mass index in children. Pediatric Obesity 14, e12454.
- Dunn EC, Soare TW, Zhu Y, Simpkin AJ, Suderman MJ, Klengel T, et al.

2019. Sensitive periods for the effect of childhood adversity on DNA methylation: Results from a prospective, longitudinal study. Biological Psychiatry 85:838-849.

- Goodrich JM, Dolinoy DC, Sanchez BN, Zhang Z, Meeker JD, Mercado-Garcia A, et al. 2016. Adolescent epigenetic profiles and environmental exposures from early life through peri-adolescence. Environmental Epigenetics 2:1-12.
- Harley KG, Aguilar Schall R, Chevrier J, Tyler K, Aguirre H, Bradman A, et al. 2013. Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMASCOS Cohort. Environmental Health Perspectives 121:514-520.
- Hassan AB. 2003. Keys to the hidden treasures of the mannose 6-phosphate/insulin-like growth factor 2 receptor. The American Journal of Pathology 162:3-6.
- Hoepner LA, Whyatt RM, Widen EM, Hassoun A, Oberfield SE, Mueller NT, et al. 2016. Bisphenol A and adiposity in an inner-city birth cohort. Environmental Health Perspectives 124:1644-1650.
- Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. 2012. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86.
- Huang RC, Garratt ES, Pan H, Wu Y, Davis EA, Barton SJ, et al. 2015. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood. Epigenetics 10:995-1005.
- Junge KM, Leppert B, Jahreis S, Wissenbach DK, Feltens R, Grutzmann K, et al. 2018. MEST mediates the impact of prenatal bisphenol A exposure on long-term body weight development. Clinical Epigenetics 10:58.
- Kim KN, Lim YH, Shin CH, Lee YA, Kim BN, Kim JI, et al. 2018. Cohort profile: The Environment and Development of Children (EDC)

study: A prospective children's cohort. International Journal of Epidemiology 47:1049-1050f.

- Korea Ministry of Environment. 2019. National Environmental Health Survey DB. https://www.data.go.kr/data/3075219/fileData.do. Accessed on Dec 10, 2020.
- Kundakovic M, Jaric I. 2017. The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes (Basel) 8:3.
- Kvaloy K, Page CM, Holmen TL. 2018. Epigenome-wide methylation differences in a group of lean and obese women - A HUNT Study. Scientific Reports 8:16330.
- Lim YH, Bae S, Kim BN, Shin CH, Lee YA, Kim JI, et al. 2017. Prenatal and postnatal bisphenol A exposure and social impairment in 4-year-old children. Environmental Health 16:79.
- Lin X, Lim IY, Wu Y, Teh AL, Chen L, Aris IM, et al. 2017. Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome. BMC Medicine 15:50.
- Miyawaki J, Sakayama K, Kato H, Yamamoto H, Masuno H. 2007. Perinatal and postnatal exposure to bisphenol A increases adipose tissue mass and serum cholesterol level in mice. Journal of Atherosclerosis and Thrombosis 14:245-252.
- Moon JS, Lee SY, Nam CM, Choi JM, Choe BK, Weo JW, et al. 2008. 2007 Korean national growth charts: Review of developmental process and an outlook. Korean Journal of Pediatrics 51:1-25.
- Myridakis A, Fthenou E, Balaska E, Vakinti M, Kogevinas M, Stephanou EG. 2015. Phthalate esters, parabens and bisphenol-A exposure among mothers and their children in Greece (RHEA Cohort). Environment International 83:1-10.
- Oudejans CB, Westerman B, Wouters D, Gooyer S, Leegwater PA, van

Wijk IJ, et al. 2001. Allelic *IGF2R* repression does not correlate with expression of antisense RNA in human extraembryonic tissues. Genomics 73:331-337.

- Perez RF, Santamarina P, Tejedor JR, Urdinguio RG, Alvarez-Pitti J, Redon P, et al. 2019. Longitudinal genome-wide DNA methylation analysis uncovers persistent early-life DNA methylation changes. Journal of Translational Medicine 17:15.
- Philippat C, Botton J, Calafat AM, Ye X, Charles MA, Slama R, et al. 2014. Prenatal exposure to phenols and growth in boys. Epidemiology 25:625-635.
- Romano ME, Webster GM, Vuong AM, Thomas Zoeller R, Chen A, Hoofnagle AN, et al. 2015. Gestational urinary bisphenol a and maternal and newborn thyroid hormone concentrations: The HOME Study. Environmental Research 138:453-460.
- Rzehak P, Covic M, Saffery R, Reischl E, Wahl S, Grote V, et al. 2017. DNA-methylation and body composition in preschool children: Epigenome-wide-analysis in the European childhood obesity project (CHOP)-Study. Scientific Reports 7:14349.
- Sayols-Baixeras S, Subirana I, Fernandez-Sanles A, Senti M, Lluis-Ganella C, Marrugat J, et al. 2017. DNA methylation and obesity traits: An epigenome-wide association study. The REGICOR Study. Epigenetics 12:909-916.
- Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A, Suderman M, et al. 2015. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: Findings from the AVON longitudinal study of parents and children. International Journal of Epidemiology 44:1288-1304.

Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM, et

- 61 -

al. 2017. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: Findings from the Pregnancy and Childhood Epigenetics (PACE) Consortium. Human Molecular Genetics 26:4067-4085.

- Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, et al. 2014. DNA methylation dynamics of the human preimplantation embryo. Nature 511:611-615.
- Taylor JA, Shioda K, Mitsunaga S, Yawata S, Angle BM, Nagel SC, et al. 2018. Prenatal exposure to bisphenol A disrupts naturally occurring bimodal DNA methylation at proximal promoter of *fggy*, an obesity-relevant gene encoding a carbohydrate kinase, in gonadal white adipose tissues of cd-1 mice. Endocrinology 159:779-794.
- Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. 2013. A beta-mixture quantile normalization method for correcting probe design bias in Ilumina Infinium 450K DNA methylation data. Bioinformatics 29:189-196.
- Vafeiadi M, Roumeliotaki T, Myridakis A, Chalkiadaki G, Fthenou E, Dermitzaki E, et al. 2016. Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environmental Research 146:379-387.
- Valvi D, Casas M, Mendez MA, Ballesteros-Gomez A, Luque N, Rubio S, et al. 2013. Prenatal bisphenol A urine concentrations and early rapid growth and overweight risk in the offspring. Epidemiology (Cambridge, Mass) 24:791-799.
- van Esterik JC, Dolle ME, Lamoree MH, van Leeuwen SP, Hamers T, Legler J, et al. 2014. Programming of metabolic effects in c57bl/6jxfvb mice by exposure to bisphenol A during gestation and lactation. Toxicology 321:40-52.

- van Esterik JC, Vitins AP, Hodemaekers HM, Kamstra JH, Legler J, Pennings JL, et al. 2015. Liver DNA methylation analysis in adult female c57bl/6jxfvb mice following perinatal exposure to bisphenol A. Toxicology Letters 232:293-300.
- Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. 2007. Human exposure to bisphenol A (BPA). Reproductive Toxicology (Elmsford, NY) 24:139-177.
- Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. 2010. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environmental Health Perspectives 118:1055-1070.
- von Goetz N, Wormuth M, Scheringer M, Hungerbuhler K. 2010. Bisphenol A: How the most relevant exposure sources contribute to total consumer exposure. Risk Analysis 30:473-487.
- Vu TH, Jirtle RL, Hoffman AR. 2006. Cross-species clues of an epigenetic imprinting regulatory code for the *IGF2R* gene. Cytogenetic and Genome Research 113:202-208.
- Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. 2017. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541:81-86.
- Waterland RA, Michels KB. 2007. Epigenetic epidemiology of the developmental origins hypothesis. Annual Review of Nutrition 27:363-388.
- Wilson LE, Harlid S, Xu Z, Sandler DP, Taylor JA. 2017. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the Sister Study Cohort. International Journal of Obesity (2005) 41:194-199.
- Xu K, Zhang X, Wang Z, Hu Y, Sinha R. 2018. Epigenome-wide association analysis revealed that *SOCS3* methylation influences the effect

of cumulative stress on obesity. Biological Psychology 131:63-71.

- Yang M, Kim SY, Lee SM, Chang SS, Kawamoto T, Jang JY, et al. 2003. Biological monitoring of bisphenol A in a Korean population. Archives of Environmental Contamination and Toxicology 44:546-551.
- Zaghlool SB, Al-Shafai M, Al Muftah WA, Kumar P, Gieger C, Waldenberger M, et al. 2016. Mendelian inheritance of trimodal CpG methylation sites suggests distal cis-acting genetic effects. Clinical Epigenetics 8:124.
- Zhang Z, Zheng C, Kim C, Poucke SV, Lin S, Lan P. Causal mediation analysis in the context of clinical research. Annals of Translational Medicine. 2016;4(21):425.

산모의 비스페놀 A(bisphenol A) 노출이 후성유전학적 기전을 통해 소아의 비만에 미치는 영향

서울대학교 대학원

의학과 예방의학 전공

최 윤 정

배경: 비스페놀 A는 폴리카보네이트와 같은 열가소성 플라스틱 제조 시 사용되며 전세계에서 가장 많이 쓰이는 화학물질 중 하나로 내분비교란물 질로 알려져 있다. 산모의 비스페놀 A 노출이 소아 비만과 관련이 있다는 것은 많은 연구들을 통해 널리 알려져 있다. 이에 DNA 메틸레이션과 같 은 후성유전학적 기전이 관여할 것이라는 가설이 제기되었으나 사람 연구 에서 근거는 부족하다. 특히 비스페놀 A의 영향은 소아의 성별에 따라 다 르다고 알려져 있는데 이와 관련한 후성유전학적 근거는 아직 찾아보기 어렵다.

목표: 본 연구에서는 산모의 비스페놀 노출 및 출생 후 비스페놀 A 노출 에 따라 소아의 DNA 메틸레이션에 차이가 나는지 살펴보고, DNA 메틸레 이션이 소아의 비만과 관련성이 있는지, 또 성별에 따라 그 영향이 다른지 분석하고자 하였다.

방법: 어린이 환경과 건강(EDC) 코호트에 참여하고 있는 59명의 소아에서 2세와 6세에 반복하여 전혈에서 Infinium HumanMethylation BeadChip 을 이용한 전장유전체 수준의 DNA 메틸레이션 분석을 시행하였다. 비

만과 관련된 후성유전체 연관 분석 연구에 대한 문헌고찰을 통해 비만 관 련 CpG site 594개를 선별하였다. 산모의 비스페놀 A 노출(80 백분위수 이상 vs. 80 백분위수 미만)에 따라 자녀의 2세 및 6세 전혈 시료 중 594 개의 CpG site의 DNA 메틸레이션 수준에 차이가 나는지 분석하였다. 또 한 출생 후 2, 4, 6세 시의 비스페놀 A 노출이 2세 및 6세 DNA 메틸레 이션에 영향을 주는지 분석하였다. 다음으로 산모의 비스페놀 A 노출과 연관된 CpG site의 DNA 메틸레이션 수준이 소아의 2, 4, 6, 8세 시의 체 질량지수(BMI, BMI Z-score)와 관련이 있는지 분석하였다.

결과: 2세 소아 전혈 시료에서 산모의 비스페놀 A 고노출군에서 저노출군 에 비해 인슐린 유사 성장인자 2 수용체(*IGF2R*)의 코딩부위인 cg19196862의 메틸레이션 수준이 더 높았다(p-value 0.00030, 위발견율 (FDR) 보정 p-value <0.05). 6세에서는 이와 같은 차이가 발견되지 않았다. 2세와 6세 DNA methylation은 출생 후 2, 4, 6세 시의 비스페놀 A 노출 수준과 관련이 없었다. 2세에서 cg19196862의 메틸레이션 수준의 1 표준 편차(SD) 증가 시 소아의 2, 4, 6, 8세의 BMI Z-score는 다음과 같아 연 령 증가에도 지속적으로 체질량 지수에 영향을 미치는 것으로 나타났다: 2세 0.253 (95% 유의수준(CI): 0.050, 0.456), 4세 0.243 (95% CI: 0.030, 0.455), 6세 0.251 (95% CI: 0.030, 0.472), 8세 0.322 (95% CI: 0.034, 0.610). 성별에 따라 층화분석했을 경우 남아에서는 cg19196862의 메틸레이션에 따른 BMI Z-score의 변화가 유의하지 않았고 여아에서만 유의하였으며 성별간 차이는 유의했다.

결론: 산모의 비스페놀 A 노출은 자녀의 혈중 *IGF2R* 유전자의 메틸레이 션에 영향을 줄 가능성이 있으며 이 영향은 6세가 아닌 2세에서 나타나 자녀가 더 어릴 때 후성유전학적 영향을 미치는 것으로 보인다. 출생 후 비스페놀 A는 594개의 CpG site에서 DNA 메틸레이션에 영향을 주지 않 아 출생 전 노출이 더 중요함을 시사한다. 또한 2세 소아의 *IGF2R* 유전자 의 메틸레이션 변화는 4세, 6세, 8세까지 지속적으로 체질량지수에 영향을 미쳐 영유아에서 후성유전학적 변화가 학령전기 및 학령기까지 체질량지 수에 영향을 미칠 수 있음을 시사한다.

- 66 -

주요어 : 비스페놀 A, 후성유전학, DNA 메틸레이션, 소아, 비만 **학 번** : 2018-36285

Supplementary	Table	1.	List	of	594	CpG	sites
---------------	-------	----	------	----	-----	-----	-------

No.	CpG site	UCSC RefGene Name	UCSC RefGene Group	Relation to UCSC CpG Island	SNP dista nce†	Minor allele frequenc y‡	Study
1	cg00033213	TOP1MT	Body	Island	43	2E-04	Huang et al, 2015
2	cg00049616	CLYBL	Body	N_Shelf	6	2E-04	Rzehak et al, 2017
3	cg00094412	GABBR1	Body	N_Shelf	51	1E-03	Wahl et al, 2017
4	cg00119053			N_Shore	28	2E-04	Rzehak et al, 2017
5	cg00134210	FAM107B	Body	N_Shore			Sayols-Baixeras et al, 2017
6	cg00138407	KLHL18	3'UTR		14	6E-04	Wahl et al, 2017
7	cg00234616	TLX2	TSS1500	Island			Sayols-Baixeras et al, 2017
8	cg00238353	PTPRE	5'UTR				Wahl et al, 2017
9	cg00244001	FAM53B	Body		42	4E-04	Wahl et al, 2017
10	cg00285394	SQLE	Body	S_Shore	2	0.033	Sharp et al, 2017
11	cg00431050	ELOVL3	TSS1500	N_Shore			Wahl et al, 2017
12	cg00510507	ANK3	Body		4	2E-04	Lin et al, 2017
13	cg00526953			N_Shore	18	0.002	Sharp et al, 2015
14	cg00574958	CPTIA	5'UTR	N_Shore	4	2E-04	Aslibekyan et al, 2015
15	cg00577950	PDXK	3'UTR	N_Shore	30	4E-04	Rzehak et al, 2017
16	cg00585790	LIMS1	1stExon				Sayols-Baixeras et al, 2017
17	cg00634542	SLC11A1	Body	N_Shore	49	2E-04	Wahl et al, 2017
18	cg00673344			S_Shore			Wahl et al, 2017
19	cg00682263	MEGF11	3'UTR		50	1E-04	Huang et al, 2015
20	cg00696044				37	6E-04	Huang et al, 2015
21	cg00711896	ZNF48	Body	N_Shore	34	2E-04	Wahl et al, 2017
22	cg00729699	EPB49	5'UTR	S_Shelf	44	6E-04	Sharp et al, 2017
23	cg00851028				26	2E-04	Dhana et al, 2018
24	cg00852675	LOC728743	Body	Island	19	2E-04	Rzehak et al, 2017
25	cg00863378	BBS2	Body	N_Shelf	23	2E-04	Demerath et al, 2015
26	cg00905156	FAM13A	1stExon		17	4E-04	Rzehak et al, 2017
27	cg00968488				51	2E-04	Huang et al, 2015
28	cg00973118	AXINI	Body	N_Shore	29	2E-04	Wahl et al, 2017
29	cg01101459				3	2E-04	Wahl et al, 2017
30	cg01115923	KIFC3	Body	N_Shore	38	2E-04	Campanella et al, 2018
31	cg01172150			S_Shore	12	0.005	Sayols-Baixeras et al, 2017
32	cg01188578	HADHA	Body	N_Shelf	41	2E-04	Huang et al, 2015
33	cg01243823	NOD2	Body		30	2E-04	Wahl et al, 2017
34	cg01338599	TM9SF4	1stExon		2	0.001	Rzehak et al, 2017
35	cg01363869	TRIM39	Body	N_Shelf	29	2E-04	Rzehak et al, 2017
36	cg01385356	USP36	TSS1500	Island			Huang et al, 2015

		~~~~					
37	cg01428678	GPHN	TSS200	N_Shore	_		Sharp et al, 2017
38	cg01462036	TBL3	Body	S_Shore	7	2E-04	Rzehak et al, 2017
39	cg01517690				6	0.003	Sharp et al, 2017
40	cg01538605			N_Shore	23	0.011	Campanella et al, 2018
41	cg01565985	CHD5	Body		37	8E-04	Rzehak et al, 2017
42	cg01706498	KLHL6	Body		51	6E-04	Rzehak et al, 2017
43	cg01806722	MAML2	Body				Rzehak et al, 2017
44	cg01840740	AIRE	TSS1500	N_Shore			Rzehak et al, 2017
45	cg01936370			Island			Rzehak et al, 2017
46	cg01963618	LOC285768	TSS1500		16	0.001	Sharp et al, 2017
47	cg01965476	PAK6	5'UTR	N Shore			Rzehak et al, 2017
48	cg01997599	TRPM4	Body	S Shelf	14	0.001	Huang et al, 2015
49	cg02081925	DOK3	Body		51	3E-04	Rzehak et al, 2017
50	cg02088292						Huang et al, 2015
51	cg02162339	ING5	Body		8	0.002	Rzehak et al, 2017
52	cg02244028	SCN11A	TSS200				Rzehak et al, 2017
53	cg02259997	FGF9	TSS1500	Island	44	0.002	Rzehak et al, 2017
54	cg02286155			N Shore	21	2E-04	Wahl et al, 2017
55	cg02381820			Island	17	2E-04	Rzehak et al, 2017
56	cg02393428				10	0.013	Rzehak et al, 2017
57	cg02426464	SLC43A2	Body	S Shelf	2	2E-04	Sayols-Baixeras et al,
	-		-	_			2017
58	cg02518775	CNIH2	Body	S_Shore	49	6E-04	Rzehak et al, 2017
59	cg02560388	DUCCDUC	5.1	× 1 1	39	0.008	Wahl et al, 2017
60	cg02650017	PHOSPHO1	Body	Island			Wahl et al, 2017
61	cg02682525	ANKK1	TSS1500	N_Shore			Rzehak et al, 2017
62	cg02695873			N_Shelf	36	0.002	Rzehak et al, 2017
63	cg02716826	SUGT1P1	Body	N_Shore	5	6E-04	Wahl et al, 2017
64	cg02729344			N_Shore			Lin et al, 2017
65	cg02758870	LOC256880	TSS200	Island	27	2E-04	Sharp et al, 2015
66	cg02868338	EXOSC4	TSS1500	N_Shore			Rzehak et al, 2017
67	cg02942594	LOC148189	Body	Island			Rzehak et al, 2017
68	cg02997111	CYP2S1	TSS1500	Island	28	2E-04	Sharp et al, 2015
69	cg03012642				8	1E-03	Rzehak et al, 2017
70	cg03046925	TRIM15	Body		48	2E-04	Sharp et al, 2017
71	cg03050965	S1PR1	Body	S_Shelf	48	4E-04	Wahl et al, 2017
72	cg03159676				22	6E-04	Wahl et al, 2017
73	cg03174228	TTLL11	Body	N_Shore	9	2E-04	Rzehak et al, 2017
74	cg03221837				44	0.029	Sharp et al, 2017
75	cg03241388	SIM2	TSS1500	Island			Sharp et al, 2015
76	cg03258665	EPHA2	Body	N_Shelf	28	4E-04	Sharp et al, 2017
77	cg03314158	LOC652276	TSS200	Island	5	0.008	Huang et al, 2015
78	cg03318904	MAP3K7IP1	Body		46	0.002	Wahl et al, 2017
79	cg03327570				7	2E-04	Wahl et al, 2017
80	cg03393889	NTHL1	Body	N_Shelf	49	5E-04	Rzehak et al, 2017

81	cg03508235	JUB	5'UTR	N_Shelf	51	4E-04	Sayols-Baixeras et al, 2017
82	cg03523676	CPNE6	TSS1500		13	0.001	Wahl et al, 2017
83	cg03595286			Island			Sharp et al, 2015
84	cg03615565	FAM65A	Body	Island	40	2E-04	Rzehak et al, 2017
85	cg03619256	ATXN7L1	Body	N_Shore	31	0.002	Campanella et al, 2018
86	cg03719642			Island	20	1E-03	Sharp et al, 2017
87	cg03725309	SARS	Body	S_Shore	19	4E-04	Wahl et al, 2017
88	cg03737815	TPI1	TSS200	Island			Sharp et al, 2015
89	cg03746015	CLEC16A	Body		28	2E-04	Xu et al, 2018
90	cg03854564	WDR81	TSS1500	N_Shore	15	1E-03	Rzehak et al, 2017
91	cg03862225	CTBP2	TSS1500	Island	26	4E-04	Rzehak et al, 2017
92	cg03885055	Clorf144	3'UTR				Wahl et al, 2017
93	cg03957124			S_Shelf	30	2E-04	Wahl et al, 2017
94	cg04027757	POM121L1P	TSS200	Island			Sharp et al, 2017
95	cg04094751	HSPA12B	Body		42	2E-04	Rzehak et al, 2017
96	cg04126866	C10orf99	TSS1500		48	0	Wahl et al, 2017
97	cg04219544	KRT24	TSS200		49	1E-03	Rzehak et al, 2017
98	cg04232128	TMEM173	Body		14	7E-04	Wahl et al, 2017
99	cg04264638	CLOCK	5'UTR	N_Shore	10	8E-04	Sayols-Baixeras et al, 2017
100	cg04292672	MORN1	Body	N_Shelf	31	2E-04	Rzehak et al, 2017
101	cg04456492				37	2E-04	Huang et al, 2015
102	cg04458776	SLC22A6	TSS1500		47	2E-04	Rzehak et al, 2017
103	cg04556432	SETD3	Body				Rzehak et al, 2017
104	cg04577162	RFC2	Body	N_Shore			Wahl et al, 2017
105	cg04583842	BANP	Body	S_Shore	41	0.007	Campanella et al, 2018
106	cg04726013	LHPP	Body		7	0.002	Sayols-Baixeras et al, 2017
107	cg04836151				24	4E-04	Sharp et al, 2017
108	cg04869770	PBX1	Body		33	0.003	Demerath et al, 2015
109	cg04880874	CCNL2	3'UTR	N_Shore			Rzehak et al, 2017
110	cg04894009	PRKDC	Body		10	2E-04	Rzehak et al, 2017
111	cg04927537	LGALS3BP	TSS200		47	0.019	Demerath et al, 2015
112	cg04972348			Island	33	0.008	Sharp et al, 2017
113	cg04979599	AFAP1L1	TSS1500	N_Shore	47	2E-04	Rzehak et al, 2017
114	cg04984663						Rzehak et al, 2017
115	cg05003422	MCOLN3	5'UTR	Island	43	4E-04	Sharp et al, 2015
116	cg05063895			N_Shelf			Wahl et al, 2017
117	cg05086444	VIPR2	Body	Island	5	2E-04	Sharp et al, 2017
118	cg05095590	MAD1L1	Body		38	0.003	Wahl et al, 2017
119	cg05098566	KIAA1949	Body	N_Shelf	13	2E-04	Rzehak et al, 2017
120	cg05113927	UCN	TSS200	Island			Sharp et al, 2017
121	cg05176551				9	2E-04	Wilson et al, 2017

122	cg05233324				36	8E-04	Kvaloy et al, 2018
123	cg05241536	RGS10	Body	N_Shelf	7	2E-04	Sharp et al, 2015
124	cg05304729	MNDA	TSS1500		34	4E-04	Xu et al, 2018
125	cg05338731	RAB36	Body	S_Shore	38	0.002	Huang et al, 2015
126	cg05572003	GRK6	Body	S_Shelf	31	2E-04	Rzehak et al, 2017
127	cg05596468	ARHGEF10	Body		49	2E-04	Rzehak et al, 2017
128	cg05628049				4	0.003	Sayols-Baixeras et al, 2017
129	cg05635274	PRSS21	TSS1500	N_Shore			Sharp et al, 2017
130	cg05648472	PRDM11	Body	N_Shore	44	6E-04	Wahl et al, 2017
131	cg05659486						Sharp et al, 2017
132	cg05720226	ST7	Body		13	4E-04	Wahl et al, 2017
133	cg05809586	KRTAP27-1	1stExon		33	2E-04	Huang et al, 2015
134	cg05837990				11	4E-04	Sharp et al, 2017
135	cg05845030	DCN	5'UTR		2	0.002	Wahl et al, 2017
136	cg05881436			Island	10	0.002	Sharp et al, 2017
137	cg05899984			N_Shore			Dhana et al, 2018
138	cg05918312	PDE1A	Body		4	4E-04	Sayols-Baixeras et al, 2017
139	cg05979433	CUX2	Body				Rzehak et al, 2017
140	cg06007282			Island	40	2E-04	Rzehak et al, 2017
141	cg06019229	KIF2A	TSS1500	Island	7	0.005	Sharp et al, 2015
142	cg06096336	PSMD1	Body		24	4E-04	Dhana et al, 2018
143	cg06173626	ICOSLG	1stExon	Island	18	8E-04	Sharp et al, 2015
144	cg06192883	MYO5C	Body		38	2E-04	Demerath et al, 2015
145	cg06217450			N Shore	18	0.009	Rzehak et al, 2017
146	cg06322432			N Shore			Rzehak et al, 2017
147	cg06369443	KCNQ4	Body	N Shore	6	8E-04	Rzehak et al, 2017
148	cg06372962	ANKRD45	5'UTR	Island	12	2E-04	Sharp et al, 2015
149	cg06376715	<i>TP73</i>	Body	Island	48	2E-04	Rzehak et al, 2017
150	cg06392109	TTC15	Body		40	1E-03	Rzehak et al, 2017
151	cg06399427				19	4E-04	Sharp et al, 2017
152	cg06410191	LVRN	1stExon	Island	24	0.003	Rzehak et al, 2017
153	cg06437396			N Shore	50	0.02	Rzehak et al, 2017
154	cg06559575	IGFBP6	TSS1500	N Shore	9	2E-04	Wahl et al, 2017
155	cg06594770	TRIOBP	TSS200	-	46	4E-04	Rzehak et al, 2017
156	cg06690548	SLC7A11	Body				Wahl et al, 2017
157	cg06721796	DBNDD2	Body	S Shore	13	2E-04	Sharp et al, 2015
158	cg06734985		-	_	45	0.01	Sayols-Baixeras et al, 2017
159	cg06882533				2	4E-04	Rzehak et al, 2017
160	cg06898549			N_Shelf	5	0.004	Wahl et al, 2017
161	cg06940720			S Shelf	47	2E-04	Xu et al, 2018
162	cg06946797			_			Demerath et al, 2015
163	cg07021906	SLC7A5	Body		47	0.003	Wahl et al, 2017
164	cg07037944	DAPK2	Body		43	2E-04	Wahl et al, 2017
	-		-				

165	cg07044115				41	8E-04	Huang et al, 2015
166	cg07091220	ZNF827	Body			02.01	Huang et al, 2015
167	cg07136133	PRR5L	5'UTR				Demerath et al, 2015
168	cg07217499	CACNA1C	Body		17	2E-04	Sayols-Baixeras et al, 2017
169	cg07226193	SWAP70	1stExon	Island			Sharp et al, 2015
170	cg07268332	AMPD3	TSS200	S Shelf	18	2E-04	Sharp et al, 2015
171	cg07357021	PRICKLE2	Body		20	2E-04	Sharp et al, 2017
172	cg07504977			N_Shelf	50	0.003	Aslibekyan et al, 2015
173	cg07570055			Island	22	4E-04	Sharp et al, 2015
174	cg07573872	SBNO2	Body	S_Shelf	38	2E-04	Demerath et al, 2015
175	cg07664183	HAUS6	TSS1500	S_Shore	39	2E-04	Rzehak et al, 2017
176	cg07682160	UPF1	Body		30	0.01	Wahl et al, 2017
177	cg07700233			N_Shore			Huang et al, 2015
178	cg07719679	STEAP4	TSS200				Rzehak et al, 2017
179	cg07728579	FSD2	TSS1500	N_Shelf	2	1E-03	Wahl et al, 2017
180	cg07769588	ATG4D	Body	S_Shore			Wahl et al, 2017
181	cg07800670	DST	Body		2	2E-04	Sayols-Baixeras et al, 2017
182	cg07814318	KLF13	Body	S_Shelf	25	2E-04	Demerath et al, 2015
183	cg07822775	PCSK6	Body		19	0.002	Sharp et al, 2017
184	cg07831312	FAM188B	Body		29	2E-04	Rzehak et al, 2017
185	cg07879897			Island	46	8E-04	Huang et al, 2015
186	cg07918509	ICAM2	Body		20	4E-04	Wilson et al, 2017
187	cg07950000	GRIK1	TSS200	S_Shore	22	4E-04	Sayols-Baixeras et al, 2017
188	cg08008403	LHX9	Body	S_Shore			Rzehak et al, 2017
189	cg08120831	LRRC43	5'UTR	S_Shore			Sayols-Baixeras et al, 2017
190	cg08215255				47	2E-04	Sayols-Baixeras et al, 2017
191	cg08222662	ZC3HAV1	TSS1500	S_Shore			Sharp et al, 2015
192	cg08289937				47	0.014	Sharp et al, 2017
193	cg08305942				46	4E-04	Wahl et al, 2017
194	cg08309687						Wahl et al, 2017
195	cg08339192	SIGLEC14	TSS200		5	1E-03	Sharp et al, 2015
	cg08352032	MARK4	3'UTR	Island	25	2E-04	Rzehak et al, 2017
197	cg08390209	CDKN2BAS	Body	N_Shore	30	4E-04	Lin et al, 2017
198	cg08407524	~~~~		~	43	2E-04	Sharp et al, 2017
199	cg08443038	CBFA2T3	5'UTR	Island	46	2E-04	Wahl et al, 2017
200	cg08540100			S_Shelf			Sayols-Baixeras et al, 2017
201	cg08548559	PIK3IP1	Body	N_Shore	43	2E-04	Wahl et al, 2017
202	cg08568550	C11orf16	TSS200		19	0.001	Rzehak et al, 2017
203	cg08648047	Clorf127	Body		11	2E-04	Wahl et al, 2017
204	cg08857797	VPS25	Body		2	0.002	Demerath et al, 2015

205	cg08877257	MAZ	Body	S_Shore	44	4E-04	Sayols-Baixeras et al, 2017
206	cg08927006	HPSE2	Body	N_Shore			Sharp et al, 2015
207	cg08943374				16	2E-04	Rzehak et al, 2017
208	cg08972190	MAD1L1	Body		48	2E-04	Demerath et al, 2015
209	cg09018739	CPNE2	Body		47	2E-04	Xu et al, 2018
210	cg09047573	NME5	5'UTR				Sayols-Baixeras et al, 2017
211	cg09121516	TFAP4	Body	S_Shore	9	1E-03	Rzehak et al, 2017
212	cg09152259			N_Shelf			Wahl et al, 2017
213	cg09196346			N_Shore	47	0.003	Huang et al, 2015
214	cg09204618	TSSK2	TSS1500	N_Shelf	31	4E-04	Rzehak et al, 2017
215	cg09230763	MAP3K6	Body	Island			Sharp et al, 2017
216	cg09243648				29	0.019	Sharp et al, 2017
217	cg09245901				28	2E-04	Rzehak et al, 2017
218	cg09285795			S_Shore	49	2E-04	Sharp et al, 2017
219	cg09308608	CARHSP1	5'UTR	Island	46	2E-04	Sharp et al, 2015
220	cg09423599	ABCB9	Body	Island			Rzehak et al, 2017
221	cg09572125	SYNGAP1	Body		44	6E-04	Sayols-Baixeras et al, 2017
222	cg09613192				38	2E-04	Wahl et al, 2017
223	cg09636756	ATP9B	Body	Island	39	2E-04	Huang et al, 2015
224	cg09664445	KIAA0664	5'UTR	N_Shore	49	2E-04	Demerath et al, 2015
225	cg09712306	AURKA	Body				Huang et al, 2015
226	cg09719956	SNORA1	TSS1500		29	2E-04	Huang et al, 2015
227	cg09777883			N_Shelf	27	0.007	Wahl et al, 2017
228	cg09831562	SOX2OT	TSS1500				Campanella et al, 2018
229	cg09927637	KIAA0664	Body	N_Shore	6	0.021	Rzehak et al, 2017
230	cg09936845	NTRK1	Body		11	2E-04	Rzehak et al, 2017
231	cg09956615	ТТҮНЗ	Body	S_Shore	51	2E-04	Sayols-Baixeras et al, 2017
232	cg10044470						Xu et al, 2018
233	cg10054641	TMEM71	TSS200		7	0.003	Huang et al, 2015
234	cg10094443	UGDH	TSS1500	S_Shore	20	0.011	Sayols-Baixeras et al, 2017
235	cg10104810	NOTCH2	1stExon	Island	12	4E-04	Rzehak et al, 2017
236	cg10108042	MAPK8IP3	Body		5	2E-04	Rzehak et al, 2017
237	cg10161743	GRIN2D	Body	N_Shore	2	6E-04	Rzehak et al, 2017
238	cg10179300	TRIO	Body	S_Shelf	2	2E-04	Wahl et al, 2017
239	cg10187674	ABCA5	TSS1500	S_Shore			Sharp et al, 2017
240	cg10384133			N_Shore	23	0.001	Huang et al, 2015
241	cg10413089	CYFIP1	5'UTR		27	2E-04	Rzehak et al, 2017
242	cg10505902	PDE4DIP	3'UTR		9	4E-04	Wahl et al, 2017
243	cg10513161	ABCC5	Body		29	2E-04	Wahl et al, 2017
244	cg10549088				36	2E-04	Wahl et al, 2017
245	cg10601624			S_Shelf			Xu et al, 2018

246	cg10632209	PRDM6	Body	Island	24	2E-04	Rzehak et al, 2017
247	cg10671380	FAH	Body		30	4E-04	Sharp et al, 2015
248	cg10717869	SLC41A1	5'UTR	N Shore			Wahl et al, 2017
249	cg10746778	SORL1	Body	-			Huang et al, 2015
250	cg10788371	LRRC32	5'UTR	N Shore			Rzehak et al, 2017
251	cg10802680	DIABLO	TSS200	S Shore			Rzehak et al, 2017
252	cg10814005	GPR68	5'UTR	-	22	4E-04	Wahl et al, 2017
253	cg10861407	FSD1L	TSS1500	N Shore	10	4E-04	Rzehak et al, 2017
254	cg10922280	DPEP2	TSS1500	-	40	2E-04	Wahl et al, 2017
255	cg11024682	SREBF1	Body	S_Shelf	27	0.003	Demerath et al, 2015
256	cg11027140	GPR144	TSS1500	Island	42	2E-04	Rzehak et al, 2017
257	cg11080651	ROPN1L	Body	S_Shelf			Wahl et al, 2017
258	cg11156132			S_Shelf			Sharp et al, 2017
259	cg11202345	LGALS3BP	1stExon		28	2E-04	Wahl et al, 2017
260	cg11245333	MOSC1	TSS200	N_Shore	42	2E-04	Rzehak et al, 2017
261	cg11276053	RSPH6A	Body	Island	43	2E-04	Rzehak et al, 2017
262	cg11376147	SLC43A1	Body		35	6E-04	Wahl et al, 2017
263	cg11434973	GUCY2D	Body	Island	42	0.027	Rzehak et al, 2017
264	cg11475880	IQSEC2	Body	Island			Rzehak et al, 2017
265	cg11504355	KIRREL	3'UTR		3	2E-04	Rzehak et al, 2017
266	cg11557901			N_Shore			Huang et al, 2015
267	cg11614585	ANGPT4	TSS200		46	2E-04	Wahl et al, 2017
268	cg11650298				30	0.006	Wahl et al, 2017
269	cg11683482	DMAP1	TSS1500	N_Shore	48	0.001	Kvaloy et al, 2018
270	cg11746362	EP400	Body				Rzehak et al, 2017
271	cg11775828	STK39	Body	N_Shelf	16	0.002	Wilson et al, 2017
272	cg11918450	LTBP1	Body		44	4E-04	Huang et al, 2015
273	cg11927233	NPM1	Body	S_Shore	15	2E-04	Wahl et al, 2017
274	cg11969813	P4HB	Body	N_Shore	11	2E-04	Wahl et al, 2017
275	cg11986743	B4GALT6	3'UTR		44	2E-04	Huang et al, 2015
276	cg12155036			S_Shore			Sharp et al, 2017
277	cg12170787	SBNO2	Body		46	8E-04	Kvaloy et al, 2018
278	cg12213037	SLC35E2	Body	N_Shelf	45	6E-04	Huang et al, 2015
279	cg12342501				42	2E-04	Huang et al, 2015
280	cg12382557	MAEA	3'UTR	N_Shore	48	4E-04	Rzehak et al, 2017
281	cg12466610	MOSC2	Body		40	6E-04	Huang et al, 2015
282	cg12470014			N_Shore	45	8E-04	Rzehak et al, 2017
283	cg12717591	SFMBT2	3'UTR		50	0.04	Rzehak et al, 2017
284	cg12917475	BCL2L2	TSS1500	S_Shelf	42	0.001	Sayols-Baixeras et al, 2017
285	cg12921275	MRPL23	Body	S_Shore	14	8E-04	Rzehak et al, 2017
286	cg12975464	MAML3	TSS200	Island			Sharp et al, 2015
287	cg12978214	NCAM1	Body		51	4E-04	Sayols-Baixeras et al, 2017
288	cg13023210	PAX6	Body	S_Shore	28	2E-04	Rzehak et al, 2017
289	cg13074055				4	4E-04	Kvaloy et al, 2018

290	cg13084458	INTU	TSS1500		30	0.028	Sayols-Baixeras et al, 2017
291	cg13097800				5	2E-04	Wahl et al, 2017
292	cg13123009	LY6G6E	TSS200		24	6E-04	Demerath et al, 2015
293	cg13139542				41	2E-04	Dhana et al, 2018
294	cg13176454				39	2E-04	Sharp et al, 2017
295	cg13247668	MAD1L1	TSS200	Island	38	2E-04	Sharp et al, 2015
296	cg13274254	GULP1	5'UTR	Island			Rzehak et al, 2017
297	cg13274938	RARA	Body	N_Shelf	18	8E-04	Wahl et al, 2017
298	cg13298389						Rzehak et al, 2017
299	cg13367929	TSPAN17	Body	S_Shelf	5	4E-04	Rzehak et al, 2017
300	cg13403462	NECAB3	Body	S_Shore			Sharp et al, 2017
301	cg13557773	RASA3	Body	Island	30	0.004	Sharp et al, 2017
302	cg13591783	ANXA1	5'UTR				Wahl et al, 2017
303	cg13641993	FBXO10	5'UTR		29	2E-04	Rzehak et al, 2017
304	cg13708645	KDM2B	Body	N_Shore	13	4E-04	Demerath et al, 2015
305	cg13718870	BRD3	5'UTR	Island	31	2E-04	Rzehak et al, 2017
306	cg13758186						Sharp et al, 2017
307	cg13781414	NACC2	5'UTR		38	0.002	Wahl et al, 2017
308	cg13840239				19	2E-04	Sayols-Baixeras et al, 2017
309	cg13922488	PKN1	Body	S_Shore	48	2E-04	Wahl et al, 2017
310	cg13938098	LAMA4	TSS200	S_Shore	17	2E-04	Rzehak et al, 2017
311	cg14017402				11	0.01	Demerath et al, 2015
312	cg14020176	SLC9A3R1	3'UTR		35	4E-04	Wahl et al, 2017
313	cg14030674	ANK1	Body	N_Shore	43	0.017	Sharp et al, 2017
314	cg14085500	TRIM32	Body		50	4E-04	Rzehak et al, 2017
315	cg14184954				11	4E-04	Sharp et al, 2015
316	cg14204100	KIFC1	Body	N_Shelf			Rzehak et al, 2017
317	cg14229362	TRIB2	TSS200	Island	51	6E-04	Sharp et al, 2015
318	cg14240060				15	4E-04	Rzehak et al, 2017
319	cg14264316				47	2E-04	Wahl et al, 2017
320	cg14270612	ABL1	Body	Island			Rzehak et al, 2017
321	cg14286682	TPD52L3	5'UTR		2	2E-04	Sayols-Baixeras et al, 2017
322	cg14300531						Lin et al, 2017
323	cg14306650	RALGPS1	Body		6	0.002	Huang et al, 2015
324	cg14391016	CCR6	TSS1500		24	2E-04	Rzehak et al, 2017
325	cg14391148	C9orf167	3'UTR	Island	45	0.001	Rzehak et al, 2017
326	cg14401837	NPSR1	TSS1500		38	2E-04	Rzehak et al, 2017
327	cg14434213			S_Shore	44	0.001	Sharp et al, 2017
328	cg14476101	PHGDH	Body	S_Shore	41	0.007	Aslibekyan et al, 2015
329	cg14524775	ARHGEF2	Body	Island			Rzehak et al, 2017
330	cg14524936	SLC6A5	Body		5	6E-04	Huang et al, 2015
331	cg14528056	GBAP1	Body	N_Shelf			Sharp et al, 2017

332	cg14580085				13	2E-04	Huang et al, 2015
333	cg14660676	SQLE	Body	S Shore			Sharp et al, 2017
334	cg14699734			S Shore	3	2E-04	Rzehak et al, 2017
335	cg14795409			—	51	4E-04	Rzehak et al, 2017
336	cg14950834	SPTBN4	TSS1500	Island	8	0.004	Rzehak et al, 2017
337	cg15025089	TAPBP	Body	1010110	33	3E-04	Rzehak et al, 2017
338	cg15029089	1711 D1	Dody		40	6E-04	Sharp et al, 2017
330	cg13029473				40	0E-04	-
339	cg15059608	C3orf14	TSS1500	S_Shore	51	0.001	Campanella et al, 2018
340	cg15159104	MAPIA	5'UTR				Dhana et al, 2018
341	cg15240102			Island	45	2E-04	Sharp et al, 2017
342	cg15323828	TMEM63A	Body		15	4E-04	Wahl et al, 2017
343	cg15357118	UGGT1	Body		30	1E-03	Wahl et al, 2017
344	cg15416179	MAP2K3	Body	S Shore			Dhana et al, 2018
345	cg15439078	MYL3	Body	5_511010	37	6E-04	Rzehak et al, 2017
	•		Douy				Sayols-Baixeras et al,
346	cg15548101	DGKG	5'UTR	N_Shore	33	2E-04	2017
347	cg15557031	MRPL3	TSS200	S_Shore	13	8E-04	Sharp et al, 2015
348	cg15650694	SFRS12	TSS200	Island	33	0.005	Rzehak et al, 2017
349	cg15723028	RIPK2	Body		34	2E-04	Huang et al, 2015
350	cg15857470	SRPK2	Body	S_Shelf	26	6E-04	Sayols-Baixeras et al, 2017
351	cg15871086			N Shelf	19	8E-04	Demerath et al, 2015
352	cg15903032			Island	.,	02 01	Dhana et al, 2018
353	cg15903032	TSSC1	Body	Island	50	2E-04	Sharp et al, 2017
354	cg15914340	15501	Douy	Island	3	2E-04 2E-04	Rzehak et al, 2017
	-	CRAMDA		C C1			
355	cg15941159	GRAMD4	3'UTR	S_Shore	22	0.05	Rzehak et al, 2017
356	cg15971518	PRG2	TSS1500		8	2E-04	Huang et al, 2015
357	cg16003913	MPG	5'UTR	N_Shore	15	8E-04	Sayols-Baixeras et al, 2017
358	cg16151636	NR4A2	TSS1500	Island	31	4E-04	Rzehak et al, 2017
359	cg16163382				2	1E-03	Wahl et al, 2017
360	cg16174341	PFDN5	Body	S Shore			Rzehak et al, 2017
361	cg16191297	TRAPPC9	Body	—	46	0.001	Huang et al, 2015
	C			a a1			Campanella et al,
362	cg16246545	PHGDH	Body	S_Shore	50	0.014	2018
363	cg16436762	PIWIL4	Body		2	0.006	Huang et al, 2015
364	cg16531903	A1CF	TSS1500				Huang et al, 2015
365	cg16578636	PCGF5	Body				Wahl et al, 2017
366	cg16594806				2	0.015	Wahl et al, 2017
367	cg16599983	NOTCH4	Body		49	0.009	Sayols-Baixeras et al, 2017
368	cg16611352	P2RX1	1stExon		40	2E-04	Sayols-Baixeras et al, 2017
369	cg16658008				3	0.022	Rzehak et al, 2017
370	cg16730716	IL32	TSS1500		43	2E-04	Huang et al, 2015
			Body	S Shalf			Xu et al, 2018
371	cg16755922	FOXK2	Боау	S_Shelf	9	2E-04	Au et al, 2018

372	cg16777782	CDH13	Body		4	8E-04	Rzehak et al, 2017
373	cg16815882	KIAA0319L	Body		34	2E-04	Wahl et al, 2017
374	cg16877087				22	2E-04	Sharp et al, 2017
375	cg16885113				28	2E-04	Huang et al, 2015
376	cg17061862			N_Shelf			Campanella et al, 2018
377	cg17111837	NCRNA0017 6	Body	Island	21	0.005	Rzehak et al, 2017
378	cg17167536	XKR6	Body		51	4E-04	Rzehak et al, 2017
379	cg17209188	IGF2BP3	Body		47	2E-04	Huang et al, 2015
380	cg17213381	AGPAT1	5'UTR				Huang et al, 2015
381	cg17260706	BCL9L	TSS1500	S_Shore			Wahl et al, 2017
382	cg17272620	LRG1	TSS1500	N_Shelf	9	6E-04	Sharp et al, 2015
383	cg17276103	DDAH1	Body		33	6E-04	Rzehak et al, 2017
384	cg17287155	AHRR	Body		17	2E-04	Aslibekyan et al, 2015
385	cg17287326	AVPI1	5'UTR	Island	4	0.002	Rzehak et al, 2017
386	cg17429424	DUSP1	1stExon	Island	3	2E-04	Rzehak et al, 2017
387	cg17459290	LGALS8	Body		40	2E-04	Rzehak et al, 2017
388	cg17478979	ZC3H12D	Body	Island			Sayols-Baixeras et al, 2017
389	cg17514558	PCDHB19P	Body	Island	22	6E-04	Sharp et al, 2017
390	cg17526229			Island	10	0.001	Sayols-Baixeras et al, 2017
391	cg17546649	KIF15	TSS1500	N_Shore	2	2E-04	Sharp et al, 2015
392	cg17560136	EPB49	5'UTR	S_Shore	36	2E-04	Demerath et al, 2015
393	cg17627898	TAOK3	5'UTR		51	1E-03	Huang et al, 2015
394	cg17644856				42	1E-03	Rzehak et al, 2017
395	cg17782974	TRIM8	Body	S_Shelf	9	2E-04	Sharp et al, 2017
396	cg17810765	ANO7	TSS200		12	2E-04	Rzehak et al, 2017
397	cg17822325	SERINC2	Body		17	4E-04	Sayols-Baixeras et al, 2017
398	cg17886162	SMG7	TSS1500	N_Shore			Sharp et al, 2015
399	cg17901584	DHCR24	TSS1500	S_Shore	6	2E-04	Demerath et al, 2015
400	cg17935297	CILP2	Body	Island	18	2E-04	Rzehak et al, 2017
401	cg17936495	SCAMP3	TSS1500	S_Shore	46	4E-04	Rzehak et al, 2017
402	cg17989572	RAB5C	5'UTR	N_Shore		<b>AT</b> 0.4	Rzehak et al, 2017
403	cg18030453	LARS2	Body	a at 10	33	2E-04	Dhana et al, 2018
404	cg18051668	1001001222		S_Shelf			Rzehak et al, 2017
405	cg18120259	LOC1001323 54	Body		4	2E-04	Wahl et al, 2017
406	cg18156417	MAP2K2	Body	N_Shore	15	2E-04	Sharp et al, 2017
407	cg18181703	SOCS3	Body	N_Shore	28	0.002	Al Muftah et al, 2016
408	cg18217136	BLCAP	TSS1500	S_Shore	24	0.006	Wahl et al, 2017
409	cg18219562				11	6E-04	Wahl et al, 2017
410	cg18268562	FOXR1	TSS200	Island	3	0.03	Sharp et al, 2017
411	cg18307303	IL12B	1stExon	N_Shore			Demerath et al, 2015

412	cg18330571	EBF3	Body	Island			Sharp et al, 2017
413	cg18499001			Island			Sharp et al, 2017
414	cg18500988			S_Shore			Sayols-Baixeras et al, 2017
415	cg18513344	MUC4	Body				Wahl et al, 2017
416	cg18568872	ZNF710	5'UTR	N_Shelf	51	2E-04	Demerath et al, 2015
417	cg18608055	SBNO2	Body		24	8E-04	Wahl et al, 2017
418	cg18618432			N_Shelf	36	6E-04	Huang et al, 2015
419	cg18649745	ZNF350	TSS200		23	2E-04	Sharp et al, 2015
420	cg18699524	TBCD	Body	Island	41	2E-04	Rzehak et al, 2017
421	cg18704658			N_Shelf			Rzehak et al, 2017
422	cg18787246	ZNF490	1stExon	Island	39	2E-04	Rzehak et al, 2017
423	cg18862566	RUNX2	Body	S_Shore	3	2E-04	Sayols-Baixeras et al, 2017
424	cg18995031	RASA3	Body	Island	45	0.008	Sharp et al, 2017
425	cg19196862	IGF2R	Body		19	2E-04	Rzehak et al, 2017
426	cg19202292			Island	24	0.004	Rzehak et al, 2017
427	cg19217955	DLG4	TSS1500	S_Shore	23	2E-04	Wahl et al, 2017
428	cg19249811	SVIL	Body		31	6E-04	Campanella et al, 2018
429	cg19274401	PEPD	3'UTR	N_Shore	40	0.002	Rzehak et al, 2017
430	cg19358373			S_Shore	37	2E-04	Rzehak et al, 2017
431	cg19373347				34	0.004	Huang et al, 2015
432	cg19377703				14	0.001	Rzehak et al, 2017
433	cg19382175	PDE6A	TSS1500		47	2E-04	Rzehak et al, 2017
434	cg19419146	STK32A	TSS200	Island	38	2E-04	Rzehak et al, 2017
435	cg19586698	OTUD6B	3'UTR		32	2E-04	Huang et al, 2015
436	cg19589396				17	0.001	Wahl et al, 2017
437	cg19615711				13	2E-04	Rzehak et al, 2017
438	cg19680332	BCO2	TSS200				Sharp et al, 2015
439	cg19695507	BEND7	Body		26	0.024	Wahl et al, 2017
440	cg19699682						Huang et al, 2015
441	cg19750657	UFM1	3'UTR				Wahl et al, 2017
442	cg19762797			N_Shelf	10	8E-04	Sharp et al, 2017
443	cg19881557				50	2E-04	Wahl et al, 2017
444	cg19922435	LOC285419	Body				Rzehak et al, 2017
445	cg19926144	DIP2C	Body		14	2E-04	Rzehak et al, 2017
446	cg19935471	MATN2	3'UTR		23	0.002	Huang et al, 2015
447	cg19936757				10	2E-04	Sayols-Baixeras et al, 2017
448	cg19990182	WDR35	TSS200	Island	43	8E-04	Sharp et al, 2015
449	cg19992450	EIF2C2	Body		45	2E-04	Rzehak et al, 2017
450	cg19998073	ZC3H14	3'UTR		29	6E-04	Wahl et al, 2017
451	cg20117675	DHX16	TSS1500	S_Shore	34	2E-04	Wilson et al, 2017
452	cg20118717	SYNGAP1	Body		16	6E-04	Sayols-Baixeras et al, 2017
453	cg20312012	FER1L5	Body		25	2E-04	Huang et al, 2015

	2050(210		<b>D</b> 1		10	25.04	D 1 1 1 1 2017
454	cg20586210	BDH1	Body	G G1	48	2E-04	Rzehak et al, 2017
455	cg20587336	ARMC1	TSS200	S_Shore	12	2E-04	Sharp et al, 2015
456	cg20594982	AGRN	Body	Island			Sharp et al, 2017
457	cg20722088	DUSP6	3'UTR	N_Shelf		<b>2-</b> 0.4	Xu et al, 2018
458	cg20779019	CCNH	Body	Island	32	2E-04	Sharp et al, 2015
459	cg20981127	NR2F6	TSS1500	S_Shore	5	2E-04	Sayols-Baixeras et al, 2017
460	cg21108085	CD82	5'UTR	S_Shelf	2	6E-04	Wahl et al, 2017
461	cg21126338	FARP1	Body		7	0.001	Rzehak et al, 2017
462	cg21186778	RCL1	Body		26	2E-04	Sharp et al, 2017
463	cg21282997	IL18RAP	5'UTR				Wilson et al, 2017
464	cg21307484	IL2RB	TSS1500				Campanella et al, 2018
465	cg21429551	GARS	Body	S_Shore	9	0.002	Wahl et al, 2017
466	cg21445553	GGTLC1	5'UTR	Island	5	0.001	Sharp et al, 2017
467	cg21486834	RHBDF2	Body	S_Shelf	20	2E-04	Wahl et al, 2017
468	cg21525627				8	0.002	Rzehak et al, 2017
469	cg21584983	ECSIT	TSS200	S_Shore	21	2E-04	Rzehak et al, 2017
470	cg21778193			Island	28	0.002	Sharp et al, 2017
471	cg21814615	KNTC1	Body		25	8E-04	Sharp et al, 2017
472	cg21960828	TADA2B	Body	Island	26	0.002	Rzehak et al, 2017
473	cg22000984	IRGM	1stExon		12	4E-04	Huang et al, 2015
474	cg22012981	ACOX2	5'UTR				Wahl et al, 2017
475	cg22078907	USP22	Body		4	2E-04	Rzehak et al, 2017
476	cg22103219	SH2B2	Body	N Shore	43	0.04	Wahl et al, 2017
477	cg22243918			S Shore	46	2E-04	Rzehak et al, 2017
478	cg22259293	PLEC1	TSS1500	_ Island			Sharp et al, 2015
479	cg22264170				40	2E-04	Rzehak et al, 2017
480	cg22318872	GNAL	Body	S Shore	46	2E-04	Rzehak et al, 2017
481	cg22352078		2	_ Island			Sharp et al, 2015
482	cg22373079	SPRED2	1stExon	Island			Sharp et al, 2015
483	cg22383874	CACNA1G	Body		3	4E-04	Lin et al, 2017
484	cg22503047	BAT2	Body	S Shore			Rzehak et al, 2017
485	cg22534374		2	S Shelf			Wahl et al, 2017
486	cg22545168	LAIR1	3'UTR	_	19	2E-04	Sharp et al, 2017
487	cg22590032	FLT4	Body	S Shore	7	2E-04	Wahl et al, 2017
488	cg22695339	CHD3	Body	S_Shelf	36	4E-04	Wahl et al, 2017
489	cg22726039	SLC30A6	TSS1500	 Island	27	0.001	Rzehak et al, 2017
490	cg22788657				37	4E-04	Sharp et al, 2015
491	cg22820188	LMNA	Body	S Shore			Sharp et al, 2017
492	cg23032421	IL5RA	5'UTR	—	6	8E-04	Wahl et al, 2017
493	cg23080818				51	2E-04	Sharp et al, 2017
494	cg23111106						Sharp et al, 2017
495	cg23131355	STAB2	TSS1500		30	2E-04	Sharp et al, 2015
496	cg23166970	MCCC1	TSS1500	S Shore	51	6E-04	Sharp et al, 2017
497	cg23172671			_	39	2E-04	Campanella et al,
	~						•

							2018
498	cg23232188	EAF2	Body	S Shelf			Wahl et al, 2017
499	cg23371707	C10orf18	TSS200	 Island	15	0.013	Rzehak et al, 2017
500	cg23416307	GAK	Body		48	4E-04	Rzehak et al, 2017
501	cg23483886	LPCAT1	Body				Rzehak et al, 2017
502	cg23577562	RGS12	Body		27	2E-04	Rzehak et al, 2017
503	cg23671997	IGDCC4	Body		5	4E-04	Lin et al, 2017
504	cg23679085	AP2M1	5'UTR	Island			Wilson et al, 2017
505	cg23687103	MIIP	5'UTR	Island	5	2E-04	Rzehak et al, 2017
506	cg23827531	FAM107A	1stExon		3	0.004	Rzehak et al, 2017
507	cg23884217	APBB2	5'UTR		40	6E-04	Sayols-Baixeras et al, 2017
508	cg23892028			N_Shelf	24	8E-04	Huang et al, 2015
509	cg23893346	NOTCH4	Body				Sayols-Baixeras et al, 2017
510	cg23918315	PCDHB3	TSS1500	N_Shelf	47	2E-04	Huang et al, 2015
511	cg23998749			N_Shelf	5	2E-04	Demerath et al, 2015
512	cg24035595	DLGAP2	Body	N_Shelf	17	1E-03	Rzehak et al, 2017
513	cg24067118			N_Shore	14	4E-04	Rzehak et al, 2017
514	cg24074783			Island	44	0.025	Rzehak et al, 2017
515	cg24102266	KIAA1522	Body	Island			Rzehak et al, 2017
516	cg24174557	TMEM49	Body				Wahl et al, 2017
517	cg24217948	SETBP1	5'UTR	S_Shore	46	2E-04	Kvaloy et al, 2018
518	cg24332767	C3orf70	TSS1500	Island	43	1E-03	Rzehak et al, 2017
519	cg24340572						Sayols-Baixeras et al, 2017
520	cg24531955	LOXL2	3'UTR		36	2E-04	Wahl et al, 2017
521	cg24665113	DTNB	Body		2	6E-04	Rzehak et al, 2017
522	cg24673769	CHCHD6	Body	S_Shelf	25	0.005	Rzehak et al, 2017
523	cg24679890	MYO9B	Body		12	2E-04	Wahl et al, 2017
524	cg24751284	APEX1	Body	S_Shore	36	0.001	Rzehak et al, 2017
525	cg24824703	GNA12	Body	N_Shore	17	0.002	Rzehak et al, 2017
526	cg24824917			N_Shelf			Sayols-Baixeras et al, 2017
527	cg24851651	CCS	Body	S_Shelf			Huang et al, 2015
528	cg24921943	SH3PXD2B	Body		27	0.003	Huang et al, 2015
529	cg25001190	NFIA	Body	NL 61 16	42	4E-04	Wahl et al, 2017
530	cg25096107		TCC1 500	N_Shelf	48	2E-04	Wahl et al, 2017
531	cg25178683	LGALS3BP	TSS1500		17	4E-04	Demerath et al, 2015
532	cg25185429	ITPR1	Body	T 1 1	46	2E-04	Sharp et al, 2017
533	cg25213362	TMPRSS12	TSS200	Island	2	6E-04	Sharp et al, 2017
534	cg25217710			N_Shelf	7	2E-04	Wahl et al, 2017
535 526	cg25228737			C C1	38	2E-04	Rzehak et al, 2017
536	cg25312229			S_Shore	49	0.019	Sharp et al, 2015
537	cg25349939	GTDC1	Body				Aslibekyan et al, 2015 Deskals et al. 2017
538	cg25371332						Rzehak et al, 2017

539	cg25432807	POM121L1P	TSS200	Island			Sharp et al, 2017
540	cg25435714				34	0.019	Wahl et al, 2017
541	cg25453122	CHERP	Body	Island	7	2E-04	Rzehak et al, 2017
542	cg25535435	TREML4	TSS1500				Rzehak et al, 2017
543	cg25554998			N Shore	31	2E-04	Rzehak et al, 2017
544	cg25574849	UBE4A	3'UTR	N Shelf	-		Huang et al, 2015
545	cg25639557	FURIN	Body				Rzehak et al, 2017
546	cg25649826	USP22	Body		50	0.008	Wahl et al, 2017
547	cg25685359		2		19	0.028	Lin et al, 2017
548	cg25734624	CNGA3	Body		47	1E-03	Rzehak et al, 2017
549	cg25799109	ARHGEF3	5'UTR		49	0.026	Campanella et al, 2018
550	cg25830182	NKX6-1	Body	N Shore			Sharp et al, 2015
551	cg26093966			S Shelf	36	4E-04	Rzehak et al, 2017
552	cg26140475			—	22	0.008	Aslibekyan et al, 2015
553	cg26164488						Aslibekyan et al, 2015
554	cg26220185	MAD1L1	Body	N Shore	31	0.002	Sharp et al, 2017
555	cg26261358		•	-	25	0.033	Huang et al, 2015
556	cg26284544	SNAPC2	TSS1500	Island			Sharp et al, 2017
557	cg26317405	ATPGD1	Body	Island	27	4E-04	Sharp et al, 2015
558	cg26354221	ADORA2A	TSS1500	S_Shore	2	2E-04	Demerath et al, 2015
559	cg26357885	HSPA2	TSS1500	N_Shore	35	4E-04	Wahl et al, 2017
560	cg26403843	RNF145	Body	N_Shelf			Demerath et al, 2015
561	cg26470501	BCL3	Body	S_Shore	31	2E-04	Campanella et al, 2018
562	cg26542660	CEP135	TSS1500	N_Shore	37	2E-04	Wahl et al, 2017
563	cg26542892	C7orf50	Body	S_Shore	8	2E-04	Huang et al, 2015
564	cg26618041	CILP2	Body	Island	38	2E-04	Rzehak et al, 2017
565	cg26627956	CFLAR	Body		46	0.008	Rzehak et al, 2017
566	cg26642774	IL12RB1	3'UTR		22	2E-04	Huang et al, 2015
567	cg26662102	AJAP1	Body		36	0.006	Rzehak et al, 2017
568	cg26663590			S_Shore	36	1E-03	Wahl et al, 2017
569	cg26666886	ANKRD11	TSS1500	S_Shore			Rzehak et al, 2017
570	cg26680760			N_Shore	45	2E-04	Aslibekyan et al, 2015
571	cg26687842	LOC646982	TSS1500		38	0.016	Wahl et al, 2017
572	cg26710983				25	0.031	Rzehak et al, 2017
573	cg26846943	FYN	5'UTR		49	4E-04	Huang et al, 2015
574	cg26879644				22	1E-03	Rzehak et al, 2017
575	cg26891210	CTSS	3'UTR				Huang et al, 2015
576	cg26899718	SMPD3	Body	N_Shore	49	2E-04	Wilson et al, 2017
577	cg26908356	ABCD3	Body		23	2E-04	Huang et al, 2015
570	U U						
578	cg26916936	LOC399959	Body	N Shore	24	2E-04	Huang et al, 2015

580	cg26995653				27	4E-04	Rzehak et al, 2017
581	cg27038634			N_Shore			Rzehak et al, 2017
582	cg27050612	NFE2L1	Body	N_Shelf	33	4E-04	Wahl et al, 2017
583	cg27087650	BCL3	Body	N_Shore	44	0.001	Wahl et al, 2017
584	cg27102629			N_Shore	43	2E-04	Sharp et al, 2017
585	cg27115863				33	2E-04	Wahl et al, 2017
586	cg27117792				39	2E-04	Wahl et al, 2017
587	cg27179375	POM121L1P	TSS200	Island			Sharp et al, 2017
588	cg27247382	PLEKHM3	3'UTR		48	2E-04	Rzehak et al, 2017
589	cg27267258	ANKRD11	Body		6	2E-04	Rzehak et al, 2017
590	cg27285599	TBCD	Body		26	4E-04	Rzehak et al, 2017
591	cg27388983	ZNF256	TSS200	S_Shore	7	2E-04	Sharp et al, 2015
592	cg27577928			Island			Sayols-Baixeras et al, 2017
593	cg27596172			S_Shelf	15	2E-04	Huang et al, 2015
594	cg27601906	GEM	Body	N Shelf			Rzehak et al, 2017

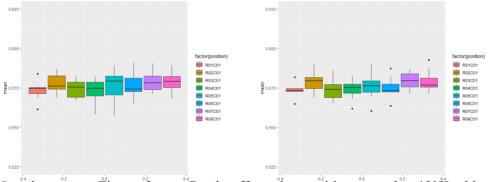
Supplementary Table 2. Association between methylation at cg19196862 (IGF2R) and BMI and BMI Z-score showing  $R^2$  (n=59)

Obesit y measur es	Age	Overall		Boys†		Girls†	Sex difference (reference: boys)		
	(Yea rs)	Estimate* (95% CI)	P-value (adjusted R ² )	Estimate (95% CI)	P-value (adjusted R ² )	Estimate (95% CI)	P-value (adjusted $R^2$ )	Estimat e	P-value
BMI	2	$\begin{array}{c} 0.371 \\ (0.070, \ 0.673) \end{array}$	0.020* (0.3086)	0.343 (133, 0.820)	0.165 (-0.010)	$\begin{array}{c} 0.395\\ (0.006, \ 0.785)\end{array}$	0.053 (0.2608)	0.023	0.943
	4	0.280 (005, 0.566)	0.061 (0.3304)	0.081 (342, 0.504)	0.710 (0.3192)	0.425 (0.051, 0.799)	0.032* (0.219)	0.337	0.259
	6	0.304 (120, 0.728)	0.168 (0.2433)	283 (906, 0.339)	0.378 (0.4114)	$\begin{array}{c} 0.675\\ (0.157, \ 1.193)\end{array}$	0.015* (0.2367)	0.982	0.026*
	8	0.662 (055, 1.379)	0.079 (0.2484)	144 (-1.16, 0.868)	0.782 (0.5442)	$\begin{array}{c} 1.245\\ (0.343, \ 2.146)\end{array}$	0.010* (0.2535)	1.401	0.053
	2	$\begin{array}{c} 0.253\\ (0.050, \ 0.456)\end{array}$	0.019* (0.2602)	0.228 (092, 0.549)	0.170 (-0.0123)	$\begin{array}{c} 0.272\\ (0.011, \ 0.534)\end{array}$	0.048* (0.2264)	0.025	0.909
BMI Z-score	4	$\begin{array}{c} 0.243\\ (0.030, \ 0.455)\end{array}$	0.031* (0.3465)	0.111 (204, 0.427)	0.494 (0.3258)	$\begin{array}{c} 0.339 \\ (0.060, \ 0.617) \end{array}$	0.022* (0.2514)	0.218	0.328
	6	$\begin{array}{c} 0.251 \\ (0.030, \ 0.472) \end{array}$	0.032* (0.2883)	041 (367, 0.286)	0.809 (0.5813)	$\begin{array}{c} 0.437\\ (0.165, \ 0.709)\end{array}$	0.003* (0.2828)	0.481	0.037*
	8	$\begin{array}{c} 0.322\\ (0.034, \ 0.610)\end{array}$	0.035* (0.2499)	0.018 (392, 0.428)	0.932 (0.5162)	$\begin{array}{c} 0.543 \\ (0.178, \ 0.908) \end{array}$	0.006* (0.3075)	0.523	0.073

*Adjusted for mother's age at pregnancy, mother's and father's prepregnant BMI, mother's education level, child's sex, preterm birth or not (<37 weeks), underweight at birth or not (<2500g), breastfeeding for  $\geq$ 6 months or not, child's urinary BPA(ug/creatinine), child's total calorie intake (kcal), and cell type fraction.


†Estimates for boys and girls were obtained by inserting sex interaction term in the regression analysis.

Supplementary Table 3. Association between methylation level (upper 50 percentile vs. lower 50 percentile) at cg19196862 (*IGF2R*) and BMI and BMI Z-score adjusted for propensity scores showing  $R^2$  (n=59)


Obesity measur es	Age	Overall	Boys†		Girls†	Sex difference (reference: boys)			
	(Yea rs)	Estimate* (95% CI)	P-value (adjusted R ² )	Estimate (95% CI)	P-value (adjusted R ² )	Estimate (95% CI)	P-value (adjusted R ² )	Estimat e	P-value
BMI	2	0.467 (-0.255, 1.188)	0.201 (0.007)	-0.095 (-1.142, 0.954)	0.854 (-0.063)	1.009 (-0.003, 2.020)	0.051 (0.072)	0.816	0.189
	4	0.584 (-0.076, 1.244)	0.082 (0.021)	0.133 (-0.750, 1.017)	0.758 (-0.729)	$\begin{array}{c} 1.117\\ (0.088, \ 2.146)\end{array}$	0.034* (0.094)	0.661	0.263
	6	0.619 (-0.388, 1.626)	0.223 (-0.003)	-0.181 (-1.733, 1.371)	0.812 (-0.057)	$\begin{array}{c} 1.413 \\ (0.009, \ 2.817) \end{array}$	0.049* (0.070)	1.400	0.125
	8	1.306 (-0.183, 2.795)	0.084 (0.055)	-0.179 (-2.628, 2.270)	0.881 (-0.039)	2.623 (0.786, 4.459)	0.007* (0.220)	2.274	0.092
BMI Z-score	2	0.328 (-0.917, 0.393)	0.429 (0.008)	-0.063 (-0.748, 0.623)	0.852 (-0.064)	$\begin{array}{c} 0.704\\ (0.025, \ 1.383)\end{array}$	0.043* (0.082)	0.563	0.172
	4	0.517 (0.0247, 1.010)	0.040* (0.041)	0.211 (-0.453, 0.876)	0.518 (-0.061)	$\begin{array}{c} 0.892\\ (0.130, \ 1.654)\end{array}$	0.023 (0.116)	0.435	0.322
	6	0.483 (-0.947, 0.629)	0.076 (0.022)	0.038 (-0.736, 0.811)	0.621 (-0.071)	$\begin{array}{c} 0.933\\ (0.157,\ 1.709)\end{array}$	0.020 (0.121)	0.763	0.112
	8	0.683 (0.087, 1.281)	0.026* (0.079)	0.075 (-0.890, 1.041)	0.325 (-0.042)	1.230 (0.502, 1.958)	0.002* (0.005)	0.933	0.081

*Adjusted for a propensity score created from mother's age at pregnancy, mother's and father's prepregnant BMI, mother's education level, child's sex, preterm birth or not (<37 weeks), underweight at birth or not (<2500g), breastfeeding for  $\geq 6$  months or not, child's urinary BPA(ug/creatinine), child's total calorie intake (kcal), and cell type fraction.

†Estimates for boys and girls were obtained by inserting sex interaction term in the regression analysis.



Supplemenaty Figure 1. Batch effects by positions on the EPIC chips before (left) and after (right) correction (methylation data at age 2, within the selected 495 CpG sites)



Supplementary Figure 2. Batch effects by positions on the 450K chips before (left) and after (right) correction (methylation at age 6, within the selected 495 CpG sites)

## Acknowledgment

First and foremost I am extremely grateful to my esteemed supervisor, Prof. Yun-Chul Hong for his tutelage and patience during my study. I would like to express immense gratitude to Prof. Youn-Hee Lim for her dedicated teaching and support. My gratitude extends to Prof. Sue K. Park for her invaluable mentorship, Prof. Sang Min Park for his priceless advice, and Prof. Ji-Yeob Choi, and Prof. Sanghyuk Bae for their worthy comments. I would like to thank Prof. Young Ah Lee for the inspiring collaboration, and Prof. Choong Ho Shin, Prof. Bung-Nyun Kim, and Prof. Inhyang Kim for providing access to the mother-child cohort. I would like to appreciate Prof. Hans Bisgaard and Prof. Klaus Bønnelykke for their helpful comments and discussion. I would particularly like to thank Kyung-Shin Lee and Jinwoo Cho for their sincere help and support. I would like to appreciate Yumi Choi and Hyun-ji Lee for their assistance in data collection and Hyundong Jin at Macrogen for his technical support.

I would like to appreciate Prof. Youg-Sung Juhnn and Prof. Ock Joo Kim for their treasured advice and encouragement for the long period of time. I am also thankful to Prof. Hong Gwan Seo, Prof. Seung-Kwon Myung, Prof. Yeol Kim, Prof. Min Seon Park, Prof. Jin Ho Park, Prof. Ho Chun Choi, and Prof. Jae Moon Yun for their invaluable teaching in medicine. I would like to thank Prof. Belong Cho and Prof. Soong Deok Lee for their kind help and encouragement during the difficult times. I am grateful to my academic inspirer back at University of Toronto from 2000 to 2003: Prof. Arturas Petronis and Prof. Zachary Kaminsky for introducing me to epigenetics and influencing me to pursue a research career. I owe Prof. Randall Pyke for his help and inspiration, which has continuously enriched my ongoing research.

It was a great honor and pleasure to have learned the core of epidemiology and preventive medicine from Prof. Byung-Joo Park, Prof. Jong-koo Lee, Prof. Daehee Kang, Prof. Aesun Shin, Prof. Kyoung-Bok Min, Prof. Joong-Yub Lee, Prof. Seokyung Hahn, and Prof. Kyoung Nam Kim at the Department of Preventive Medicine, and Prof. Yoon Kim and Prof. Young Kyung Do at the Department of Health Policy and Management during the coursework and residency. I would also like to appreciate Dr. Mi-jeong Park for the passionate teaching in public health. I would also like to thank Tae-geun Koo, and SeungRan Hong for their help during the residency.

I would also like to thank my lab members and colleagues, Nam-kyung Song, Prof. Chang Woo Han, Woo-Seok Lee, Dong-Wook Lee, Donghee Seo, Yoonyoung Jang, Sungji Moon, Sohyae Lee, and Dongui Hong for a cherished time spent together in the lab and during my residency. Lastly, I am thankful for my friends, especially, Soo Jin Park, and my family, husband, daughter, and parents for their tremendous support and encouragement all through my studies.

This study was partially supported by grants from the Environmental Health Center funded by the Korean Ministry of Environment, an R&D Research program funded by the Ministry of Food and Drug Safety of Korea (#15162MFDS046), and Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2018R1D1A1B07043446 and 2018R1D1A1B07049806).