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Abstract

Recurrent neural networks (RNNs) are deep network models created to deal 

with sequence data. It is challenging to train RNNs to learn long-term 

dependencies within sequences.

Among challenges for it, the vanishing and exploding gradient problems 

have long been a major stumbling block to learning long-term dependencies.

In the past few years, orthogonal and unitary RNNs (ouRNNs) with the 

unitary recurrent weight matrix were shown to resolve the problems since the 

eigenvalues of the matrix only have unit absolute value. 

After that, a study proposed the non-normal RNN (nnRNN) where the 

recurrent matrix is parametrized using Schur decomposition. This 

parameterization endows the network’s dynamics with higher expressivity. 

At the same time, the parameterization makes it simple to impose the unit 

absolute value constraint on the eigenvalues as with ouRNNs, thus addressing 

the vanishing and exploding gradient problems.

Here, we extend this model to the complex-valued nnRNN with memory 

units (mcnnRNN). The hidden state and parameters are set to have complex 

values. Memory units are built in the network using a novel method, which is 

different from that for the leaky integrator, a conventional memory unit. The 

potential of the architecture is investigated by testing it on several tasks 

involving long input sequences. The mcnnRNN achieves superior or 

comparable performance to the nnRNN as well as the long short-term 
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memory (LSTM) network. The results suggest our strategy is effective in 

improving the capability to learn long-term dependencies in sequential data.

In addition, we examine other characteristics of the mcnnRNN. First, we 

find the architecture is more robust to noise than the nnRNN. Second, each 

eigenvalue of the complex-valued recurrent weight matrix is not necessarily 

conjugate to another in contrast with real-valued one. We demonstrate this is 

a characteristics that helps the mcnnRN work better than the nnRNN.

Keywords : recurrent neural network (RNN); complex-valued neural 

network; memory unit; non-normal RNN (nnRNN); Schur decomposition;

long-term dependency

Student Number : 2002-20617



iii

Contents

Abstract ·······································································i

List of Figures ··································································· v

List of Tables··································································· vii

Chapter 1. Introduction························································ 1

Chapter 2. Related Works and Background ······························· 5

2.1. Orthogonal and Unitary RNNs ········································ 5

2.2. Schur Decomposition and Normal and Non-normal Matrices····· 6

2.3. Non-normal RNN (nnRNN) ··········································· 7

Chapter 3. Methodology ······················································11

3.1. Complex-valued nnRNN with Memory Units (mcnnRNN) ······11

3.2. Optimizing the Parameters············································13

3.3. Model Regularization ·················································15

Chapter 4. Experiments and Results ·······································17

4.1. Benchmark Tests·······················································17

4.1.1. Copy Task ······················································19

4.1.2. Adding Task····················································22

4.1.3. Pixel-by-pixel MNIST ········································24



iv

4.1.4. Penn Treebank Character-level Language Modeling ······26

4.2. Exploratory Experiments··············································27

4.2.1. Robustness to Noise ···········································27

4.2.2. Contribution from the Complex-valued Recurrent Weight

Matrix ···························································27

Chapter 5. Conclusion and Discussion ·····································33

References ·····································································35

Appendix A. Proof that if ��(�) = �, then ��(�) = � in Eq. (3.6)···41

초록 ·····································································43



v

List of Figures

Figure 4.1. An illustration of the copy task. Symbols randomly sampled from 

{c1, c2, …, c8} (c8, c1, …, c5) are given in the input sequence. After T+1 

time steps, the model should start to recall the same symbols in the same 

order. ··········································································19

Figure 4.2. Training loss on the copy task for time lag T=2000 and 4000. The 

dotted line indicates baselines 0.010294 and 0.005172 which are

approximately the expected losses of a random guess strategy that 

outputs symbol b for the first T+10 time steps and then symbols 

randomly sampled from {c1, c2, …, c8} in the remaining. ··············20

Figure 4.3. An illustration of the adding task. The model should produce the 

target output (1.5) which is the sum of two numbers (0.9 and 0.6) 

randomly sampled from within (0, 1) and marked by 1 in the first and 

second half (in time) of the input sequence, respectively. ··············22

Figure 4.4. Training loss on the adding task for time lag T=1000 and 2000. 

The dotted line represents the baseline 0.167, which is approximately the 

expected loss of a strategy that always predicts 1 as the output regardless 

of the input.···································································23

Figure 4.5. Change in accuracy on the pixel-by-pixel MNIST tasks with 

increasing noise. The horizontal axis denotes the upper bound of the 

uniform distribution from which noise is sampled. ······················28



vi

Figure 4.6. Comparison between two mcnnRNNs with and without conjugate 

eigenvalue pairs in the recurrent weight matrix. The plot in the lower 

panel shows the training curves of two mcnnRNNs trained on the copy 

task with T=2000. The plots in the upper panel show eigenvalues for the 

two models after training. The first mcnnRNN (blue) is the same as in 

Section 4.1.1. The recurrent matrix of the second one (red) is constrained 

to have the conjugate of every eigenvalue be an eigenvalue as well 

(upper right). The first model does not have this constraint on the 

eigenvalues (upper left). ····················································30



vii

List of Tables

Table 4.1. The number of hidden units and the value of hyperparameters. �

denotes the number of hidden units. For the mcnnRNN, cnnRNN and 

nnRNN, learning rate 2 is used to optimize � (Eq. (3.10) & (3.11)), and 

learning rate 1 to optimize the other parameters. In PTB language 

modeling, learning rates decay depending on changes in training loss.

·················································································18

Table 4.2. Test accuracy on the pixel-by-pixel MNIST classification tasks. �

represents the number of hidden units.····································25

Table 4.3. Test loss (BPC) on the PTB character-level prediction task. �

denotes the number of hidden units.·······································26

Table 4.4. Comparison between accuracy on the MNIST tasks for models 

with and without conjugate eigenvalue pairs in the recurrent weight 

matrix. Accuracy values in the third column come from Section 4.1.3. 

The values of accuracy in the fourth column are obtained from models 

whose recurrent matrices are constrained to have the conjugate of every 

eigenvalue be an eigenvalue as well. ······································31



viii



１

Chapter 1

Introduction

Recurrent neural networks (RNNs) are deep network models that are well-

suited to learning from sequence data. RNNs hold relevant information on its 

input streams in the hidden state until it is reset to the initial state. In other 

words, RNNs retain a short-term memory trace for its past inputs. Thanks to 

this property, RNNs are able to learn temporal structures (Elman, 1990) such 

as long-term dependencies in sequences.

In practice, however, it is not a straightforward task to train RNNs to 

learn long-term dependencies. Among challenges for it, the vanishing and 

exploding gradient problems (Hochreiter, 1991; Bengio et al., 1994) have

long been a major stumbling block when working with the backpropagation-

through-time (BPTT) algorithm. Several architectures were developed to

tackle the problems. Gated units such as the long short-term memory (LSTM)

unit (Hochreiter & Schmidhuber, 1997) and the gated recurrent unit (GRU) 
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(Cho et al., 2014) have been successful and gained popularity in coping with 

vanishing gradients.

Another line of studies on Elman-type RNNs (Elman, 1990) proposed 

orthogonal or unitary RNNs (ouRNNs) with the unitary recurrent matrix 

(Arjovski et al., 2016; Henaff et al., 2016; Wisdom et al, 2016; Hyland & 

Gunnar, 2017; Jing et al., 2017; Mhammedi et al., 2017; Helfrich et al., 2018; 

Lezcano-Casado & Martinez-Rubio, 2019). Vanishing and exploding 

gradients are known to arise when the hidden-to-hidden matrix’s eigenvalues 

deviate from unit absolute value (Bengio et al., 1994). The unitary recurrent

matrix, mathematically including real-valued orthogonal one, only has

eigenvalues with unit absolute value, and then resolve the problems (Arjovski 

et al., 2016).

A study pointed out unitary recurrent matrices limit the expressivity of 

ouRNNs’ hidden state dynamics (Kerg et al., 2019). To address this issue, the 

authors proposed the non-normal RNN (nnRNN) whose hidden-to-hidden

matrix was parametrized using Schur decomposition (Section 2). This 

parametrization enables the recurrent weight matrix to represent non-normal 

matrices (Section 2.1), which are non-unitary. Non-normal recurrent matrices 

equip RNNs with higher expressivity of network dynamics than normal 

matrices (Section 2.1), which include all unitary matrices. Besides, it was 

argued that non-normal recurrent matrices may endow with larger short-term 

memory capacity (Ganguli et al., 2008) than normal ones. The 

parametrization using Schur decomposition also makes it easy to set the 

eigenvalues of the recurrent weight matrix to have unit absolute value like 

those of unitary matrices.
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To take one step further, we considered two additional architectural 

features to incorporate into the nnRNN. First, the complex-valued hidden 

state and parameters might have advantage over real-valued ones in dealing 

with sequence data. In recent studies, complex-valued networks showed 

improved performance in music transcription (Trabelsi et al., 2018), speech 

spectrum prediction (Wisdom et al., 2016; Trabelsi et al., 2018) and speech 

enhancement (Choi et al., 2019). Second, memory units are known to help 

with learning long-term dependencies (Goodfellow et al., 2016). Leaky 

integrator units, for example, as conventional memory units, remember 

signals by integrating them with different time constants (Mozer, 1992; El 

Hihi and Bengio, 1996).

In this work, we investigate the capability of the mcnnRNN to learn 

long-term dependencies. The hidden state, recurrent weight matrix and input 

weights of the network are set to have complex values. To add memory units 

in the network, we introduce a new method customized to the nnRNN 

(Section 3.1). The network is evaluated on four tasks: the copy problem 

(Hochreiter & Schmidhuber, 1997), the adding task (Hochreiter & 

Schmidhuber, 1997), MNIST pixel sequence classification (Le et al., 2015) 

and character-level prediction on the Penn Treebank (PTB) corpus (Marcus 

et al., 1993) (Section 4.1). We find the mcnnRNN beats the nnRNN, which is 

real-valued and made up of memoryless units, as well as the LSTM model. In 

addition, we test how robust to noise the mcnnRNN is, and examine an aspect 

of the complex-valued recurrent matrix that contributes to the improved 

performance (Section 4.2).
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Chapter 2

Related Works and Background

2.1. Orthogonoal and Unitary RNNs

The vanishing and exploding gradient problems have long made it intractable 

to train RNNs involving long input sequences. Arjovski et al., in their seminal

work (Arjovski et al., 2016), showed empirically that unitary recurrent weight 

matrices are effective in overcoming the exploding and vanishing gradient 

problems. They also proved analytically that orthogonal recurrent weight 

matrices prevent exploding gradients on condition that the derivative of the 

activation function has unit absolute value at the origin.

After that, several ouRNNs were proposed (Henaff et al., 2016; Wisdom 

et al, 2016; Hyland & Gunnar, 2017; Jing et al., 2017; Mhammedi et al., 2017; 

Helfrich et al., 2018; Lezcano-Casado & Martinez-Rubio, 2019). The method 

Arjovski et al. (2016) used to parametrize the unitary hidden-to-hidden matrix
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limited the expressiveness of the matrix and, therefore, the representational 

capacity for the network. Wisdom et al. (2016) expanded the expressiveness 

to include all unitary matrices by using a multiplicative update algorithm

based on the Cayley transform. Jing et al. (2016) and Mhammedi et al. (2017) 

proposed parametrization methods for unitary and orthogonal matrices using 

Givens rotations and Householder reflections, respectively. Helfrich et al. 

(2018) introduced a simple update scheme for orthogonal matrices by 

parametrizing them with a skew-symmetric matrix through the Cayley 

transform.

2.2. Schur Decomposition and Normal and Non-normal 

Matrices

For both the nnRNN and mcnnRNN, parametrization of the recurrent weight 

matrix is based on Schur decomposition. To introduce Schur decomposition, 

we state a lemma which was adapted from Strang (2006).

Lemma 1  Any matrix � ∊ ℂ�×� can be expressed as � = ����∗ with 

unitary � ∊ ℂ�×� and triangular �� ∊ ℂ�×� where ∗ denotes the 

conjugate transpose. The eigenvalues of � appear along the diagonal of �� .

����∗ is the Schur decomposition of � . The recurrent matrix 

parameterized using Schur decompostion is able to represent both unitary and 

non-unitary matrices since Schur decomposition is applicable to any � × �

matrix. This parametrization also makes it simple to set the matrix’s 

eigenvalues to have unit absolute value as they appear on the diagonal of ��

making them directly accessible.
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If a matrix has all its eigenvalues unitary with each other, it is called 

normal, or otherwise non-normal. As a necessary and sufficient condition, if 

�� in Lemma 1 has only 0’s on the off-diagonal part (i.e. diagonal), � is 

normal (Trefethen & Embree, 2005). In this case, ����∗ is the eigen-

decomposition of � , a special case of Schur decomposition. Unitary 

matrices are normal since any unitary matrix has an eigen-decomposition 

(Strang, 2006). If �� has any nonzero entry on its off-diagonal part, � is 

non-normal (Trefethen & Embree, 2005).

2.3. Non-normal RNN (nnRNN)

The description of Elman-type RNNs (Elman, 1990), where the nnRNN 

belongs, involves two equations:

�� = �(����� +��� + �), (2.1)

�� = ��� + � (2.2)

with the hidden state � of dimension �, input � of dimension �, output �

of dimension � and the activation function �(∙). The parameters are as 

follows: � × � dimensional recurrent weight matrix � , � × �

dimensional input-to-hidden weight matrix �, � ×� dimensional hidden-

to-output weight matrix �, � dimensional bias vector in the hidden layer �,

and � dimentional bias vector for the output layer �.

The nnRNN (Kerg et al. 2019) is comprised of Eq. (2.1)-(2.5). � in Eq. 

(2.1) is parameterized as

� = �����, (2.3)

�� = ������ +�� �� (2.4)
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������ =

⎣
⎢
⎢
⎢
⎡
�� 0 ⋯ 0 0
0 �� ⋯ 0 0
0 0 ⋯ ⋮ ⋮
⋮ ⋮ ⋯ ��/��� 0

0 0 ⋯ 0 ��/�⎦
⎥
⎥
⎥
⎤

�� �� =

⎣
⎢
⎢
⎢
⎡
0 0 ⋯ 0 0
��,� 0 ⋯ 0 0

��,� ��,� ⋯ 0 0

⋮ ⋮ ⋯ ⋮ ⋮
��,� ��,� ⋯ ��,��� 0⎦

⎥
⎥
⎥
⎤

�� = �� �
cos �� −sin ��
sin �� cos ��

�. (2.5)

To avoid complex numbers in �, Kerg et al. (2019) used real Schur 

decomposition instead of Schur decomposition in Lemma 1 for the 

parametrization. In the real Schur decomposition of � (Eq. (2.3)-(2.5)),

matrix � ∊ ℝ�×� is orthogonal. �� is represented as the sum of block 

diagonal matrix ������ and strictly triangular matrix �� �� (Eq. (2.4)). 

������ contains 2×2 blocks ��’s along the diagonal. Each �� consists of

the real and imaginary parts, on the diagonal and off-diagonal entries, 

respectively, of a complex conjugate eigenvalue pair of � (Eq. (2.5)). The 

eigenvalues are reparametrized as ��(cos �� ± � sin ��) so that their absolute 

value is �� independent of ��. �� �� contains ��,�‘s on the lower triangular 

part and 0’s everywhere else. If any ��,� has a nonzero value, the matrix is 

non-normal (Section 2.1). Non-normality is what makes the nnRNN more 

expressive than ouRNNs by providing the hidden state dynamics with 

stronger fluctuations.

In Kerg et al. (2019), each �� was encouraged to be close to 1 by a 

regularization term δ‖1 − �‖�
� , with � = [�

1
�
2
… �

�/2
]� and δ as a 

Lagrange multiplier, added to the loss function. In our experiments for 
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comparison with the mcnnRNN, however, the absolute value �� of the 

eigenvalues are kept constantly 1 as in the mcnnRNN (Eq. (3.3)). This is

essential to preventing vanishing and exploding gradients (Benjio et al., 1994; 

Arjovski et al., 2016).

For the activation function �(∙) , we use the identity function, 

exponential linear unit (ELU) and rectified linear unit (ReLU) while the 

modReLU (Arjovski et al. 2016) was adopted by Kerg et al. (2019). These 

functions are also selected as �(∙) in Eq. (3.6) which is used for both the real 

and imaginary parts of the activation function in the mcnnRNN. As an 

important note, the derivative of �(∙) at the origin ��(0) as well as all the 

eigenvalues of � must have unit absolute value (i.e. |��(0)|=1) to avoid 

vanishing and exploding gradients (Arjovski et al., 2016). This condition 

means that the state coefficient matrix of the linear approximation to Eq. (2.1) 

at the origin (Eq. (2.6)) must only have eigenvalues with unit absolute value.

�� ≈ ��(0)(����� + ��� + �) (2.6)

= ±����� ± ��� ± �. (2.7)

It is because, under the condition, the state coefficient matrix is ±� (Eq. 

(2.6) & (2.7)) whose eigenvalues all have unit absolute value. The derivative 

at the origin of the identity function, ELU and ReLU have value 1 (i.e. 

��(0)=1 and therefore |��(0)|=1) as is often the case with common activation 

functions.
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Chapter 3

Methodology

3.1. Complex-valued nnRNN with Memory Units (mcnnRNN)

The mcnnRNN is described by the following equations:

�� = ����� + � ������∗ −������ + ����, (3.1)

�� =

⎣
⎢
⎢
⎢
⎡
�� 0 ⋯ 0 0
��,� �� ⋯ 0 0

��,� ��,� ⋯ ⋮ ⋮

⋮ ⋮ ⋯ ���� 0
��,� ��,� ⋯ ��,��� ��⎦

⎥
⎥
⎥
⎤

, (3.2)

�� = cos�� + � sin ��, (3.3)

� =

⎣
⎢
⎢
⎢
⎡
�� 0 0 ⋯ 0
0 �� 0 ⋯ 0
0 0 �� ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ ��⎦

⎥
⎥
⎥
⎤

, (3.4)
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�� = ��
Re(��)
Im(��)

� + � (3.5)

with input � ∊ ℝ�, hidden state � ∊ ℂ� and output � ∊ ℝ� .

The activation function �(∙) is defined as

�(�) = �(�) + ��(�) (3.6)

with � = � + �� (�, � ∊ ℝ) and �(∙) ∊ ℝ . Activation functions of this 

kind were introduced in a study on complex-valued neural networks (Trabelsi 

et al., 2018). Depending on the tasks, different �(∙)′s are selected with the 

best results being reported: : the identity function for the copy task (Section 

4.1.1), the ReLU for the adding problem (Section 4.1.2) and PTB language 

modeling (Section 4.1.3) and the ELU for the pixel-by-pixel MNIST task 

(Section 4.1.4). These functions are also used as the activation function of the 

nnRNN (Section 2.3) in our experiments. All of their derivatives have value 

1 at the origin (i.e. ��(0) =1), letting the same hold for �(∙) (i.e. ��(0)=1) 

(proof in Appendix A).

The coefficient matrix � ∊ ℂ�×� for � is associated with the units’ 

time constant. The complex-valued nnRNN with memoryless unit (cnnRNN)

is mathematically equivalent to the mcnnRNN with constant � = �:

�� = ������∗���� + ����, (3.7)

�� = � �
Re(��)
Im(��)

� + �. (same as Eq. (3.5))

The cnnRNN is tested and compared with other models in our experiments 

for reference.

����∗ in Eq. (3.1) takes the form of Schur decomposition (Lemma 1). 

That is, � ∊ ℂ�×� is unitary and �� ∊ ℂ�×� is triangular. �� has diagonal 

entries ��'s which have unit absolute value (Eq. (3.3)). Unlike the nnRNN, 
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the hidden-to-hidden matrix here is set to ����∗ −� so that the state 

coefficient matrix of the linear approximation to Eq. (3.1) at the origin is 

����∗ (Eq. (3.8)). As a caveat, therefore, each �� is not an eigenvalue of 

the recurrent matrix, but of the state coefficient matrix. This leads the 

eigenvalues of the state coefficient matrix to have unit absolute value, which 

is a requirement for addressing the vanishing and exploding gradient 

problems as mentioned in Section 2.3.

�� ≈ ����� + ��(0) ������∗ −������ +����

= ����� + �����∗ −������ + ���.

= ����∗���� + ���. (3.8)

� ∊ ℂ�×� (Eq. (3.1)) and � ∊ ℝ�×�� (Eq. (3.5)) are the input-to-

hidden and hidden-to-output matrices, respectively. � ∊ ℂ� (Eq. (3.5)) is the 

bias parameters in the output layer. The biases for the hidden units are omitted 

for the mcnnRNN and cnnRNN in contrast to the nnRNN.

3.2. Optimizing the Parameters

If loss function �� is a real-valued function, the gradient of �� with respect 

to a complex-valued matrix � = � + �� is given by

∂��
∂�

=
∂��
∂�

+ �
∂��
∂�

(3.9)

(Anemüller et al., 2003). With respect to a complex-valued vector, the 

gradient is given in the same way (Haykin, 2002, p.798). In the mcnnRNN 

and cnnRNN, the gradients of �� with respect to �, �� , � (Eq. (3.1)) and 

� (Eq. (3.5)) are evaluated using Eq. (3.9).
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Two optimizers are employed in training the mcnnRNN, cnnRNN and

the nnRNN. For unitary matrix �, we adopt a multiplicative update scheme 

(Eq. (3.10) & (3.11)). A study in optimization (Tagare, 2011) presented a 

gradient descent curve along the Stiefel manifold of all � ×� unitary 

complex-valued matrices. Wisdom et al. (2016) applied this result to training 

their unitary RNN. A new solution �(���) on the curve at iteration � + 1 is 

the product of the Cayley transform of A(k) and the previous solution �(�).

�(���) = (� +
�

�
�(�))��(� −

�

�
�(�))�(�), (3.10)

�(�) = �(�)∗�(�) − �(�)∗�(�). (3.11)

� is the learning rate for this algorithm, and �(�) is the gradient matrix of 

the loss function with respect to �(�). For all the other parameters than �, 

the Adam optimization algorithm (Kingma & Ba, 2014) is chosen. In our 

experiments, the algorithm’s parameters have Tensorflow’s default values.

The initialization of trainable parameters in Eq. (3.1)-(3.5) is as follows. 

Unitary matrix � is initialized to the identity matrix. The initial value of ��’s 

(Eq. (3.3)) are uniformly sampled from within (-90°, 90°), except in 

experiments on the copy problem (Section 4.1.1) for which from (-180°, 

180°). ��,�’s in �� (Eq. (3.2)) are initially set to 0. Each diagonal element 

m� of � (Eq. (3.4)) is initialized to s�,� with ����∗ = [s�,�] so that all the 

weights of self-connections for hidden units are 0 initially. Importantly, 

initializing � in other way often leads to a numerical error while training

the network. The real and imaginary part matrices of � are respectively 

initialized using Glorot uniform initialization except for the adding task 

(Section 4.1.2), for which only the real part matrix is initialized by Glorot 
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uniform initialization, and the imaginary part matrix to 0. � and � are 

intialized to 0

3.3. Model Regularization

We employ a regularization method for which noisy parameters of the

network are needed, differently from Kerg et al. (2019) (Section 2.3). Murray 

and Edwards (1994) suggested multiplicative noise in the weights of the 

multilayer perceptrons was effective in improving generalization 

performance. Following this approach, we introduce multiplicative noise 

into the elements of �,� and the off-diagonal part of �� (i.e. ��,�′�) (Eq. 

(3.1), (3.2) & (3.5)).

ω = (1 + ξ)ω� (3.12)

Let ω be any of those parameters. ω is separated into two parts:

multiplicative noise 1 + ξ and trainable parameter ω� (Eq. (3.12)). 

Random variable ξ follows a truncated Gaussian distribution with mean 0 

and a standard deviation as a hyperparameter. The value of ξ changes every 

iteration during training, and remains 0 when the model is evaluated. We use 

this regularizer in PTB character-level language modeling (Section 4.1.4).
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Chapter 4

Experiments and Results

4.1. Benchmark Tests

The performance of the mcnnRNN is evaluated on the copy task (Hochreiter 

& Schmidhuber, 1997), the adding problem (Hochreiter & Schmidhuber, 

1997), pixel-by-pixel MNIST (Le et al. 2015) and PTB character-level 

language modeling (Marcus et al., 1993). These problems have been used as 

benchmarks in previous studies on RNNs (Martens & Sutskever, 2011; 

Graves et al., 2014; Arjovski et al., 2016; Henaff et al., 2016; Wisdom et al, 

2016; Hyland & Gunnar, 2017; Jing et al., 2017; Mhammedi et al., 2017; 

Helfrich et al., 2018; Lezcano-Casado & Martinez-Rubio, 2019; Kerg et al., 

2019). Through the copy and adding tasks, we evaluate the short-term 

memory capacity of models which is critical to learning long-term 

dependencies within sequence data. Using the pixel-by-pixel MNIST and 
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Table 4.1. The number of hidden units and the value of hyperparameters. �

denotes the number of hidden units. For the mcnnRNN, cnnRNN and nnRNN, 

learning rate 2 is used to optimize � (Eq. (3.10) & (3.11)), and learning rate 

1 to optimize the other parameters. In PTB language modeling, learning rates 

decay depending on changes in training loss.

Task Model �
Learning 

Rate 1

Learning 

Rate 2

Batch

Size

Copy

mcnnRNN 64 2x10-4 1x10-8 100

cnnRNN 64 2x10-4 1x10-8 100

nnRNN 68 2x10-4 1x10-8 100

LSTM 38 1x10-3 - 50

Adding

mcnnRNN 64 1x10-3 2x10-12 100

cnnRNN 64 1x10-3 1x10-10 100

nnRNN 68 5x10-4 1x10-10 100

LSTM 38 1x10-4 - 50

MNIST

mcnnRNN 128 5x10-4 5x10-7 100

cnnRNN 128 5x10-4 2x10-7 100

nnRNN 130 5x10-4 5x10-7 100

Permuted

MNIST

mcnnRNN 128 5x10-4 2x10-7 100

cnnRNN 128 5x10-4 5x10-7 100

nnRNN 130 5x10-4 2x10-7 100

PTB
mcnnRNN 890 1x10-3 1x10-12 100

cnnRNN 890 1x10-3 1x10-12 100
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PTB character-level prediction problems, we test the ability of networks to 

capture long-term dependencies.

Though our main goal here is to assess the mcnnRNN in comparison to 

the nnRNN, other models such as the cnnRNN (Eq. (3.7) & (3.5)) and the 

LSTM network are also included for reference. The LSTM model is trained 

by Adam only. Gradient clipping is adopted for the LSTM, but not for the 

others. Hyperparameters are tuned using grid search (Table 4.1). All 

experiments are conducted using Tensorflow (Abadi et al., 2016).

4.1.1. Copy Task

This task tests the model’s ability to recall the data seen many time steps 

before. The task is arranged following the same setup as in Arjovski et al. 

(2016) (Fig. 4.1). Input and output sequences involve 10 symbols: {c1, c2, …, 

c8, b, d } which are encoded in one-hot fashion. The input is a T+20 long

sequence of the symbols. The first 10 entries are sampled independently and 

uniformly at random from {c1, c2, …, c8}. These entries are to be recalled by

Figure 4.1. An illustration of the copy task. Symbols randomly sampled from 

{c1, c2, …, c8} (c8, c1, …, c5) are given in the input sequence. After T+1 time 

steps, the model should start to recall the same symbols in the same order.
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Figure 4.2. Training loss on the copy task for time lag T=2000 and 4000. The 

dotted line indicates baselines 0.010294 and 0.005172 which are

approximately the expected losses of a random guess strategy that outputs 

symbol b for the first T+10 time steps and then symbols randomly sampled 

from {c1, c2, …, c8} in the remaining.
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the network. The next T-1 entries are b which can be thought of as the blank 

symbol. The next entry is d, the delimiter indicating that in the next time step 

the network should start to recall and output the initial 10 symbols in the input 

sequence. The remaining 10 symbols are b. The output is also a T+20 long 

sequence of the symbols. The target output consists of T+10 repeated entries 

of b, and then the first 10 symbols in the input sequence in the exactly same 

order. The loss function is the average cross-entropy of symbol predictions at 

each time step in the output sequence.

The baseline loss is determined by considering a random guess strategy 

(the dotted line in Fig. 4.2). This strategy outputs b for the first T+10 time 

steps, and then outputs symbols sampled independently and uniformly at 

random from {c1, c2, …, c8} in the remaining. This gives an expected average 

cross-entropy of 10log8/(T+20) (Arjovski et al., 2016) which is chosen as the 

baseline loss value.

We consider input sequences of length T=2000 and 4000. The latter is, 

to the best of our knowledge, longer than in any previous studies. At each 

iteration, a new batch of sequences for training the model are generated 

randomly. The training process runs for 20000 iterations.

With �(∙) (Eq. (3.6)) to be the identity function for this task (Section 

3.1), �(∙) is also the identity function. This leads ����� in the linear and 

nonlinear terms of Eq. (3.1) to cancel each other. In this case, the mcnnRNN 

becomes equivalent to the cnnRNN (Eq. (3.7)). Thus, they show nearly same 

loss curves.

The mcnnRNN and cnnRNN converge stably toward zero average cross-

entropy in about 8000 iterations for both T=2000 and 4000 (Fig. 4.2). When 

T=2000, the nnRNN settles down to zero cross-entropy, but more slowly and 
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with a rather noisy loss curve. For T=4000, it bypasses the baseline, but never 

converges to zero and remains near the baseline. The LSTM network gets 

stuck at the baseline in either case, performing the worst, which was also 

reported in previous studies (Arjovski et al., 2016; Henaff et al., 2016).

4.1.2. Adding Task

The network should remember two numbers marked in a long sequence and 

output the sum of them. The setup for this task followed that in Arjovski et al. 

(2016) (Fig. 4.3). Two sequences of length T comprise each input. The first 

one consists of numbers sampled independently and uniformly at random 

from [0, 1]. The second contains markers for the first one: two entries of 1 

and the remaining entries of 0. The first 1 is within time steps [1, T/2] and the 

second within [T/2+1, T]. The target output is the sum of the two entries in 

the first sequence marked by the two 1’s located in the second.

The model is trained to minimize the mean squared error (MSE) between 

the target and predicted outputs over each batch (Fig. 4.4). The length of input

Figure 4.3. An illustration of the adding task. The model should produce the 

target output (1.5) which is the sum of two numbers (0.9 and 0.6) randomly 

sampled from within (0, 1) and marked by 1 in the first and second half (in 

time) of the input sequence, respectively.
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Figure 4.4. Training loss on the adding task for time lag T=1000 and 2000. 

The dotted line represents the baseline 0.167, which is approximately the 

expected loss of a strategy that always predicts 1 as the output regardless of 

the input.
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sequences is chosen to be T=1000 and 2000, both of which are longer than in 

any other studies. At each iteration, new sequences as a training batch are

generated randomly. The networks are trained for 20000 iterations.

The baseline MSE comes from a naïve strategy (the dotted line in Fig. 

4.4). This strategy always predicts 1 as the output regardless of the input. This 

yields an expected MSE of 0.167 approximately. This value is the variance 

of the sum of two independent uniform distributions (Arjovski et al., 2016), 

and the baseline to beat for the task.

Both the mcnnRNN and nnRNN drop sharply far below the baseline 

MSE, and then settle down to zero, being comparable in training loss. The 

mcnnRNN, however, bypasses the baseline faster in about 1000 and 1500 

iterations for T=1000 and 2000, respectively, whereas it takes the nnRNN 

about 2000 and 2500 iterations. The cnnRNN also achieves zero MSE, but 

with its loss curve rather noisy for T=2000. In contrast, the LSTM network 

never converge to a solution with zero error. The model remains fluctuating 

around the baseline, which is consistent with results from previous studies 

(Arjovski et al., 2016; Henaff et al., 2016).

4.1.3. Pixel-by-pixel MNIST

The network is fed a sequence of pixels from an MNIST image (LeCun et al., 

1998), and are required to output the corresponding class label. Each MNIST 

example as a 28x28 image results in a pixel-by-pixel input sequence of length 

784. We consider two versions of the task, the unpermuted and permuted 

pixel-by-pixel MNIST classification problems: the former with the input 

pixels in order, and the latter with permuted input pixels where the same 

randomly generated permutation matrix is applied to all the MNIST images.
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This shuffling creates many longer-term dependencies across pixels of each 

input sequence than in the original pixel ordering where lots of local 

dependencies exist, and therefore making the problem harder. The average 

categorical cross-entropy is chosen as the loss function. We run the 

optimization algorithms for 70 epochs. We test the network on the validation 

dataset every epoch to select the parameters yielding the lowest mean cross-

entropy. 10000 of the 60000 training examples are used as the validation set. 

The model with the selected parameters is evaluated on the test data set of 

10000 samples (Table 4.2).

The mcnnRNN achieves the best test accuracy. The cnnRNN also 

performs over the nnRNN. The LSTM model falls short of the mcnnRNN in 

accuracy. Notably, in the unpermuted case, the mcnnRNN outperforms the 

Table 4.2. Test accuracy on the pixel-by-pixel MNIST classification tasks. 

� represents the number of hidden units.

Model �
#  

parameters

MNIST

Accuracy 

(%)

Permuted

MNIST

Accuracy 

(%)

mcnnRNN 128 ≈ 27k 98.6 96.1

cnnRNN

nnRNN

128

130

≈ 27k

≈ 27k

98.1

97.8

94.7

93.9

LSTM

(Wisdom et al., 2016)
128 ≈ 68k 97.8 91.3

LSTM

(Wisdom et al., 2016)
256 ≈270k 98.2 91.7
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LSTM network with 256 hidden units, even with an order of magnitude fewer 

parameters and half the number of hidden units.

4.1.4. PTB Character-level Language Modeling

The model is trained on the PTB corpus (Marcus et al., 1993) to predict the 

next character at each step, given a sequence of characters. Input sequences 

have a length of 150 and 300 in two experiments, respectively. Each character 

is embedded as a one-hot vector. We train the network for 400 epochs on the 

training dataset (5017K characters), and select the model producing the 

lowest bits-per-character (BPC) on the validation dataset (393K characters). 

The selected model is evaluated on the test dataset (442K characters) (Table 

4.3). During training, learning rates decay by a factor of 0.97 if average 

training loss over an epoch is larger than over the previous epoch. The PTB 

data is known to be prone to overfitting (Chang et al., 2017). Thus, we employ 

Table 4.3. Test loss (BPC) on the PTB character-level prediction task. �

denotes the number of hidden units.

Model �
#  

parameters

Input length 

= 150

BPC

Input length 

= 300

BPC

mcnnRNN 890 ≈1.32M 1.31 1.32

cnnRNN 890 ≈1.32M 1.32 1.33

nnRNN 

(Kerg et al., 2019)
1024 ≈1.32M 1.47 1.49

LSTM

(Kerg et al., 2019)
1024 ≈4.20M 1.37 -
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the regularization scheme defined in Section 3.3. The standard deviation of ξ

for it (Eq. (3.12)) is 0.3.

The mcnnRNN shows significantly lower test BPC values than the 

nnRNN (Table 4.3). The mcnnRNN also beats the LSTM model whereas the 

nnRNN in Kerg et al. (2019) fell short of the LSTM network in performance. 

The BPC values of the cnnRNNN are slightly lower than for the mcnnRNN.

4.2. Exploratory Experiments

4.2.1. Robustness to Noise

We test the mcnnRNN’s robustness against noise as we often have to deal 

with noisy data in real-world problems. To do this, we add noise to MNIST 

images, and evaluate the accuracy of the model on the unpermuted and 

permuted MNIST tasks (Fig. 4.5). The noise follows a uniform distribution 

with lower bound 0 and an upper bound varied from 0 to 1.2 by 0.3. The larger 

the upper bound is, the stronger the noise is.

The mcnnRNN is more robust to the noisy data compared to the nnRNN

(Fig. 4.5). As noise gets stronger, the accuracy of the mcnnRNN declines 

more slowly than that of the nnRNN. Especially, for unpermuted MNIST, the 

gap between the two models is quite significant. The cnnRNN also shows 

accuracy that decreases more slowly than for the nnRNN as noise increases,

but faster than for the mcnnRNN.

4.2.2. Contribution from the Complex-valued Recurrent Weight Matrix

We investigate an aspect of the complex-valued hidden-to-hidden matrix that 

may help complex-valued RNNs work better than the nnRNN. For the real-
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Figure 4.5. Change in accuracy on the pixel-by-pixel MNIST tasks with 

increasing noise. The horizontal axis denotes the upper bound of the uniform 

distribution from which noise is sampled.
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valued recurrent matrix, every eigenvalue has its conjugate as an eigenvalue 

as well. Therefore, half the eigenvalues of the nnRNN are automatically 

determined by the other half. The complex-valued recurrent matrix, on the 

other hand, does not have this constraint on its eigenvalues. Thus, every 

eigenvalue of it can be placed anywhere in the complex plane. This leads to 

a higher diversity in the dynamics of complex-valued RNNs which may, in 

part, help the network work better.

To demonstrate this idea, we constrain the complex-valued recurrent 

matrix of the mcnnRNN or cnnRNN to have the conjugate of every 

eigenvalue as an eigenvalue as well like the real-valued hidden-to-hidden 

matrix of the nnRNN. The constrained models are trained and tested on the 

copy and MNIST tasks. The value of hyperparameters and the batch size for 

the models are the same as in Table 1.

The constrained models fall short of the unconstrained models in Section 

4.1.1 and 4.1.3 in convergence rate or performance. For the copy problem, 

the constrained mcnnRNN shows a training curve that converges more slowly

than without the constraint on the eigenvalues (Fig. 4.6). For the unpermuted 

and permuted pixel-by-pixel MNIST tasks, the accuracy of the constrained 

mcnnRNN and cnnRNN are lower than without the constraint (Table 4.4).
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Figure 4.6. Comparison between two mcnnRNNs with and without 

conjugate eigenvalue pairs in the recurrent weight matrix. The plot in the 

lower panel shows the training curves of two mcnnRNNs trained on the copy 

task with T=2000. The plots in the upper panel show eigenvalues in the 

complex plane for the two models after training. The first mcnnRNN (blue) 

is the same as in Section 4.1.1. The recurrent matrix of the second one (red) 

is constrained to have the conjugate of every eigenvalue be an eigenvalue as 

well (upper right). The first model does not have this constraint on the 

eigenvalues (upper left).
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Table 4.4. Comparison between accuracy on the MNIST tasks for models 

with and without conjugate eigenvalue pairs in the recurrent weight matrix. 

Accuracy values in the third column come from Section 4.1.3. The values of 

accuracy in the fourth column are obtained from models whose recurrent 

matrices are constrained to have the conjugate of every eigenvalue be an 

eigenvalue as well.

Task Model

No conjugate 

Eigenvalue Pair 

Accuracy (%)

Conjugate 

Eigenvalue Pairs

Accuracy (%)

MNIST
mcnnRNN 98.6 98.5

cnnRNN 98.1 98.0

Permuted 

MNIST

mcnnRNN 96.1 95.9

cnnRNN 94.7 94.5
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Chapter 5

Conclusion and Discussion

We introduced a new method to build memory units in the nnRNN, also 

changing the hidden state and the input and recurrent weight matrices into 

complex ones. The method was customized to the nnRNN to keep the unit 

absolute value constraint on the eigenvalues of the state coefficient matrix for

the linearized mcnnRNN. In terms of performance and robustness to noise, 

the complex-valued setting alone could augment the nnRNN. The memory 

units along with it added further improvement. The mcnnRNN also won out 

over the LSTM model in all of the benchmarks. The results suggest the 

mcnnRNN is effective in learning long-term dependencies.

The weight of self-connections for the mcnnRNN were initialized to 0 

(Section 3.2). Otherwise, it often caused a numerical error while training the 

network. This is reminiscent of some studies on the autapse in neuroscience. 

An experimental work (Jiang et al., 2012) found that the autapse of fast-



３４

spiking neurons in neocortical tissues of intractable epilepsy patients tend to 

show a different release property than in non-epileptic tissues. A 

computational study (Fan et al., 2018) suggested autapses can promote 

synchronization significantly which is believed to cause epileptic seizures.

We speculate similar principles may, at least in part, underlie self-connections

in both artificial and biological RNNs. It would be interesting to study more 

closely how the self-connections of the mcnnRNN influence on its activity 

and performance referring to researches in neuroscience.

Complex-valued neural networks have been studied in the past (Hirose, 

2013), but their success and adoption were limited (Arjovski et al., 2016). 

Elman-type RNNs with memory units also have not been widely used in the 

neural network community ever since they were proposed more than two 

decades ago (Mozer, 1992; El Hihi and Bengio, 1996). We hope our findings 

will be a step forward to change this. Applying complex-valued neural 

networks and Elman-type RNNs with memory units in real-world problems 

may help to draw attention to them, but is yet to be more investigated. In 

future work, we will study further to test the utility of the mcnnRNN in real-

world applications.
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Appendix A

Proof that if ��(�) = �, then ��(�) =

� in Eq. (3.6)

Given � = � + �� , � and � can be expressed in terms of � and its 

conjugate �.

� =
� + �

2
,

� =
� − �

2�
.

Then, it is trivial to derive their partial derivatives with respect to �.

∂�

∂�
=
1

2
, (A.1)

∂�

∂�
=
1

2�
. (A.2)

Based on the chain rule and Eq. (A.1) and (A.2), the derivative of �(�) is 

expressed as follows.
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�. (A.3)

Using Eq. (A.3), ��(0) is calculated given that ��(0) = 1.

��(0) ≔
��(�)

�� z =0
=
1

2
�
��(�)

��
+
��(�)

��
�

z =0

=
1

2
���(0) + ��(0)�

=
1

2
(1 + 1) = 1.



４３

초록

회귀 신경망 (RNN) 은 서열 데이터를 다루도록 고안된 심층망

모형이다. 회귀 신경망에 서열 데이터의 장기 의존성을

학습시키는 것은 어려운 문제이다.

특히 경도의 소실 및 폭발 문제는 오랫동안 장기 의존성 학습의

주요 난관이었다. 유니터리 회귀 가중치 행렬은 절대값이 1 인

고유값들만을 가지기 때문에, 직교 회귀 신경망과 유니터리 회귀

신경망이 그 문제들을 해결할 수 있음을 보인 연구들이 지난 몇

년 동안 발표되었다.

이어서, 회귀 가중치 행렬을 슈어 분해를 이용하여 모수화한

비정규 회귀 신경망 (nnRNN) 이 제안되었다. 이 모수화는 회귀

신경망에서 더욱 다양한 동역학적 궤적이 나타나도록 해준다.

또한, 직교 회귀 신경망과 유니터리 회귀 신경망처럼 회귀

행렬에서 고유값들의 절대값을 1 로 설정하는 것을 쉽게끔 해주어,

경도의 소실 및 폭발 문제를 해결할 수 있다.

본 연구에서는 nnRNN 을 기억 뉴런으로 구성된 복소 비정규

회귀 신경망 (mcnnRNN) 으로 확장한다. 은닉 상태와 모수들을

복소수로 설정하고, 기억 뉴런을 기존의 기억 뉴런인 누수

적분기와는 다른 새로운 방법으로 추가한다. 이 모형을 시험하기

위해, 긴 입력 서열을 사용하는 몇 가지 학습 과제를 mcnnRNN 이

수행하도록 한다. mcnnRNN 은 nnRNN 과 LSTM 모형보다 더 나은

성능을 보인다. 실험 결과들은 본 연구에서 제안한 방법이 장기

의존성 학습 능력을 향상하는 데 효과적임을 시사한다.
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mcnnRNN 의 다른 특성들도 살펴본다. 첫째, 이 모형이 nnRNN 

보다 잡음에 강하다는 것을 보인다. 둘째, 복소 회귀 행렬은 실수

회귀 행렬과는 달리 각 고유값이 반드시 다른 고유값의 켤레

복소수는 아닌데, 이것은 mcnnRNN 이 nnRNN 보다 더 나은

결과를 나타내는 데 도움이 됨을 보인다.

주요어 : 회귀 신경망; 복소 신경망; 기억 뉴런; 비정규 회귀

신경망; 슈어 분해, 장기 의존성

학번 : 2002-20617
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