creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation

Complex-valued Recurrent Neural

Networks with Memory Units

719 wHoZ 7Y 54 37 ARFT

February 2021

Interdisciplinary Program in Neuroscience
College of Natural Science

Seoul National University

Bon-Woong Ku

2 A &8t

SECRIL WATCeAL LIMNVERSTY

Complex-valued Recurrent Neural

Networks with Memory Units

719 w2 FAE 54 3 AR

‘I?]
'?;I %]. j—] H] Ooﬂ ?f’;/ 7 W
9 4 ol ot AT

P
e
N
ok
ok,
=

2 A &8t

SECRIL WATCeAL LIMNVERSTY

Abstract

Recurrent neural networks (RNNs) are deep network models created to deal
with sequence data. It is challenging to train RNNs to learn long-term
dependencies within sequences.

Among challenges for it, the vanishing and exploding gradient problems
have long been a major stumbling block to learning long-term dependencies.
In the past few years, orthogonal and unitary RNNs (ouRNNs) with the
unitary recurrent weight matrix were shown to resolve the problems since the
eigenvalues of the matrix only have unit absolute value.

After that, a study proposed the non-normal RNN (nnRNN) where the
recurrent matrix is parametrized using Schur decomposition. This
parameterization endows the network’s dynamics with higher expressivity.
At the same time, the parameterization makes it simple to impose the unit
absolute value constraint on the eigenvalues as with ouRNNs, thus addressing
the vanishing and exploding gradient problems.

Here, we extend this model to the complex-valued nnRNN with memory
units (mcnnRNN). The hidden state and parameters are set to have complex
values. Memory units are built in the network using a novel method, which is
different from that for the leaky integrator, a conventional memory unit. The
potential of the architecture is investigated by testing it on several tasks
involving long input sequences. The mcnnRNN achieves superior or

comparable performance to the nnRNN as well as the long short-term

memory (LSTM) network. The results suggest our strategy is effective in
improving the capability to learn long-term dependencies in sequential data.
In addition, we examine other characteristics of the mcnnRNN. First, we
find the architecture is more robust to noise than the nnRNN. Second, each
eigenvalue of the complex-valued recurrent weight matrix is not necessarily
conjugate to another in contrast with real-valued one. We demonstrate this is

a characteristics that helps the mennRN work better than the nnRNN.

Keywords : recurrent neural network (RNN); complex-valued neural
network; memory unit; non-normal RNN (nnRNN); Schur decomposition;
long-term dependency

Student Number : 2002-20617

Contents

Abstract ... 1
List Of Figures ... Y,
List Of Tables ... Vll
Chapter 1. IntrOduction .. 1
Chapter 2. Related Works and Background -« -------ocoooeeereeeeeeeees 5
2' 1 . Orthogonal and Unitary RNNS .. 5
2.2. Schur Decomposition and Normal and Non-normal Matrices - --- 6
2'3' Non_normal RNN (nnRNN) ... 7
Chapter 3. Methodology .. 11
3.1. Complex-valued nnRNN with Memory Units (mcnnRNN) ------ 11
32 Optllell’lg the Parameters .. 13

3 3 . MOdel Regularization ... 15
Chapter 4. Experiments and Results ----+++--=-+sererare 17
4' 1 . Benchmark Tests ... 17
411 Copy TaSk .. 19

4' 1 2 Addlng TaSk .. 22

4.1.3. Pixel—by-pixel IMINIST ccvvvrereeermmmmmmneeeeenniiiieeeeen. 24

Z-

i

4.1.4. Penn Treebank Character-level Language Modeling -+ - 26

42 Exploratory Experiments .. 27
421 Robustness to NOiSC ... 27

4.2.2. Contribution from the Complex-valued Recurrent Weight
Matrix ... 27
Chapter 5. Conclusion and DiscusSSion - :---c-corrrrrrrrrrmeaeeeeeean.. 33
References ... 35

Appendix A. Proof that if g'(0) = 1, then f'(0) =1 in Eq. (3.6)---41

]i% ... 43

List of Figures

Figure 4.1. An illustration of the copy task. Symbols randomly sampled from
{c1, 2, ..., c8} (cs, C1, ..., c5) are given in the input sequence. After T+1

time steps, the model should start to recall the same symbols in the same

Figure 4.2. Training loss on the copy task for time lag T=2000 and 4000. The
dotted line indicates baselines 0.010294 and 0.005172 which are
approximately the expected losses of a random guess strategy that
outputs symbol b for the first T+10 time steps and then symbols

randomly sampled from {ci, c2, ..., cg} in the remaining. ----------- 20

Figure 4.3. An illustration of the adding task. The model should produce the
target output (1.5) which is the sum of two numbers (0.9 and 0.6)
randomly sampled from within (0, 1) and marked by 1 in the first and

second half (in time) of the input sequence, respectively. «=««------ 22

Figure 4.4. Training loss on the adding task for time lag T=1000 and 2000.
The dotted line represents the baseline 0.167, which is approximately the
expected loss of a strategy that always predicts 1 as the output regardless
Ofthe input' ... 23

Figure 4.5. Change in accuracy on the pixel-by-pixel MNIST tasks with
increasing noise. The horizontal axis denotes the upper bound of the

uniform distribution from which noise is sampled. -« ---eooeeeeeeeeees 28

Figure 4.6. Comparison between two mennRNNs with and without conjugate
eigenvalue pairs in the recurrent weight matrix. The plot in the lower
panel shows the training curves of two mcnnRNNs trained on the copy
task with T=2000. The plots in the upper panel show eigenvalues for the
two models after training. The first mcnnRNN (blue) is the same as in
Section 4.1.1. The recurrent matrix of the second one (red) is constrained
to have the conjugate of every eigenvalue be an eigenvalue as well
(upper right). The first model does not have this constraint on the

eigenVahleS (upper leﬂ) .. 30

vi

List of Tables

Table 4.1. The number of hidden units and the value of hyperparameters. N
denotes the number of hidden units. For the mcnnRNN, cnnRNN and
nnRNN, learning rate 2 is used to optimize P (Eq. (3.10) & (3.11)), and
learning rate 1 to optimize the other parameters. In PTB language

modeling, learning rates decay depending on changes in training loss.

Table 4.2. Test accuracy on the pixel-by-pixel MNIST classification tasks. N

represents the number Of hldden units' 25

Table 4.3. Test loss (BPC) on the PTB character-level prediction task. N
denotes the number Of hldden units' 26

Table 4.4. Comparison between accuracy on the MNIST tasks for models
with and without conjugate eigenvalue pairs in the recurrent weight
matrix. Accuracy values in the third column come from Section 4.1.3.
The values of accuracy in the fourth column are obtained from models
whose recurrent matrices are constrained to have the conjugate of every

eigenvalue be an eigenvalue as Well 31

Vil

i @ M=d8w

SECRIL WATCeAL LIMNVERSTY

Chapter 1

Introduction

Recurrent neural networks (RNNs) are deep network models that are well-
suited to learning from sequence data. RNNs hold relevant information on its
input streams in the hidden state until it is reset to the initial state. In other
words, RNNs retain a short-term memory trace for its past inputs. Thanks to
this property, RNNs are able to learn temporal structures (Elman, 1990) such
as long-term dependencies in sequences.

In practice, however, it is not a straightforward task to train RNNs to
learn long-term dependencies. Among challenges for it, the vanishing and
exploding gradient problems (Hochreiter, 1991; Bengio et al., 1994) have
long been a major stumbling block when working with the backpropagation-
through-time (BPTT) algorithm. Several architectures were developed to
tackle the problems. Gated units such as the long short-term memory (LSTM)
unit (Hochreiter & Schmidhuber, 1997) and the gated recurrent unit (GRU)

(Cho et al., 2014) have been successful and gained popularity in coping with
vanishing gradients.

Another line of studies on Elman-type RNNs (Elman, 1990) proposed
orthogonal or unitary RNNs (ouRNNs) with the unitary recurrent matrix
(Arjovski et al., 2016; Henaff et al., 2016; Wisdom et al, 2016; Hyland &
Gunnar, 2017; Jing et al., 2017; Mhammedi et al., 2017; Helfrich et al., 2018;
Lezcano-Casado & Martinez-Rubio, 2019). Vanishing and exploding
gradients are known to arise when the hidden-to-hidden matrix’s eigenvalues
deviate from unit absolute value (Bengio et al., 1994). The unitary recurrent
matrix, mathematically including real-valued orthogonal one, only has
eigenvalues with unit absolute value, and then resolve the problems (Arjovski
et al., 2016).

A study pointed out unitary recurrent matrices limit the expressivity of
ouRNNs’ hidden state dynamics (Kerg et al., 2019). To address this issue, the
authors proposed the non-normal RNN (nnRNN) whose hidden-to-hidden
matrix was parametrized using Schur decomposition (Section 2). This
parametrization enables the recurrent weight matrix to represent non-normal
matrices (Section 2.1), which are non-unitary. Non-normal recurrent matrices
equip RNNs with higher expressivity of network dynamics than normal
matrices (Section 2.1), which include all unitary matrices. Besides, it was
argued that non-normal recurrent matrices may endow with larger short-term
memory capacity (Ganguli et al, 2008) than normal ones. The
parametrization using Schur decomposition also makes it easy to set the
eigenvalues of the recurrent weight matrix to have unit absolute value like

those of unitary matrices.

To take one step further, we considered two additional architectural
features to incorporate into the nnRNN. First, the complex-valued hidden
state and parameters might have advantage over real-valued ones in dealing
with sequence data. In recent studies, complex-valued networks showed
improved performance in music transcription (Trabelsi et al., 2018), speech
spectrum prediction (Wisdom et al., 2016; Trabelsi et al., 2018) and speech
enhancement (Choi et al., 2019). Second, memory units are known to help
with learning long-term dependencies (Goodfellow et al., 2016). Leaky
integrator units, for example, as conventional memory units, remember
signals by integrating them with different time constants (Mozer, 1992; El
Hihi and Bengio, 1996).

In this work, we investigate the capability of the mecnnRNN to learn
long-term dependencies. The hidden state, recurrent weight matrix and input
weights of the network are set to have complex values. To add memory units
in the network, we introduce a new method customized to the nnRNN
(Section 3.1). The network is evaluated on four tasks: the copy problem
(Hochreiter & Schmidhuber, 1997), the adding task (Hochreiter &
Schmidhuber, 1997), MNIST pixel sequence classification (Le et al., 2015)
and character-level prediction on the Penn Treebank (PTB) corpus (Marcus
et al., 1993) (Section 4.1). We find the mcnnRNN beats the nnRNN, which is
real-valued and made up of memoryless units, as well as the LSTM model. In
addition, we test how robust to noise the mcnnRNN is, and examine an aspect
of the complex-valued recurrent matrix that contributes to the improved

performance (Section 4.2).

2 A &8t

SECRIL WATCeAL LIMNVERSTY

Chapter 2

Related Works and Background

2.1. Orthogonoal and Unitary RNNs

The vanishing and exploding gradient problems have long made it intractable
to train RNNs involving long input sequences. Arjovski et al., in their seminal
work (Arjovski et al., 2016), showed empirically that unitary recurrent weight
matrices are effective in overcoming the exploding and vanishing gradient
problems. They also proved analytically that orthogonal recurrent weight
matrices prevent exploding gradients on condition that the derivative of the
activation function has unit absolute value at the origin.

After that, several ouRNNs were proposed (Henaff et al., 2016; Wisdom
et al, 2016; Hyland & Gunnar, 2017; Jing et al., 2017; Mhammedi et al., 2017;
Helfrich et al., 2018; Lezcano-Casado & Martinez-Rubio, 2019). The method

Arjovski et al. (2016) used to parametrize the unitary hidden-to-hidden matrix

limited the expressiveness of the matrix and, therefore, the representational
capacity for the network. Wisdom et al. (2016) expanded the expressiveness
to include all unitary matrices by using a multiplicative update algorithm
based on the Cayley transform. Jing et al. (2016) and Mhammedi et al. (2017)
proposed parametrization methods for unitary and orthogonal matrices using
Givens rotations and Householder reflections, respectively. Helfrich et al.
(2018) introduced a simple update scheme for orthogonal matrices by
parametrizing them with a skew-symmetric matrix through the Cayley

transform.

2.2. Schur Decomposition and Normal and Non-normal
Matrices

For both the nnRNN and mcnnRNN, parametrization of the recurrent weight
matrix is based on Schur decomposition. To introduce Schur decomposition,

we state a lemma which was adapted from Strang (2006).

Lemma 1 Any matrix W € CV*V can be expressed as W = PWP* with

(CNXN (CNXN

unitary P € and triangular W e where * denotes the

conjugate transpose. The eigenvalues of W appear along the diagonal of W.

PWP* is the Schur decomposition of W . The recurrent matrix
parameterized using Schur decompostion is able to represent both unitary and
non-unitary matrices since Schur decomposition is applicable to any N X N
matrix. This parametrization also makes it simple to set the matrix’s
eigenvalues to have unit absolute value as they appear on the diagonal of W

making them directly accessible.

If a matrix has all its eigenvalues unitary with each other, it is called
normal, or otherwise non-normal. As a necessary and sufficient condition, if
W in Lemma 1 has only 0’s on the off-diagonal part (i.e. diagonal), W is
normal (Trefethen & Embree, 2005). In this case, PWP* is the eigen-
decomposition of W, a special case of Schur decomposition. Unitary
matrices are normal since any unitary matrix has an eigen-decomposition
(Strang, 2006). If W has any nonzero entry on its off-diagonal part, W is
non-normal (Trefethen & Embree, 2005).

2.3. Non-normal RNN (nnRNN)

The description of Elman-type RNNs (Elman, 1990), where the nnRNN
belongs, involves two equations:

h, = f(Wh_; + Ux; + b), (2.1

y¢ = Vh,+c (2.2)

with the hidden state h of dimension N, input x of dimension L, output y

of dimension M and the activation function f(-). The parameters are as

follows: N X N dimensional recurrent weight matrix W , N XL

dimensional input-to-hidden weight matrix U, M X N dimensional hidden-

to-output weight matrix V, N dimensional bias vector in the hidden layer b,
and M dimentional bias vector for the output layer c.

The nnRNN (Kerg et al. 2019) is comprised of Eq. (2.1)-(2.5). W in Eq.

(2.1) is parameterized as
W = PWPT, (2.3)

W = Wdiag + Wtr (24)

Ay O 0 0]
0 A, 0 0 |
Wdiag 0 0 : |
AN/2—1 0 J
0 0 0 AN/Z
0 0 0 O]
Ty 0 0 O|
Wtr =|T31 132 0 OI
1 Ty1 T2 Tyn-1 0
A = cos Hj —sin Hj 55
i = Vi sinf; cos6;] (2:5)

To avoid complex numbers in W, Kerg et al. (2019) used real Schur
decomposition instead of Schur decomposition in Lemma 1 for the
parametrization. In the real Schur decomposition of W (Eq. (2.3)-(2.5)),
matrix P € RV*¥ s orthogonal. W is represented as the sum of block
diagonal matrix Wdiag and strictly triangular matrix W, (Eq. (2.4)).
Wdiag contains 2X2 blocks A;’s along the diagonal. Each A; consists of
the real and imaginary parts, on the diagonal and off-diagonal entries,
respectively, of a complex conjugate eigenvalue pair of W (Eq. (2.5)). The
eigenvalues are reparametrized as y;(cos 6; £ isin6;) so that their absolute
value is y; independent of 6;. W,, contains Tj ‘s on the lower triangular
part and 0’s everywhere else. If any 7;, has a nonzero value, the matrix is
non-normal (Section 2.1). Non-normality is what makes the nnRNN more
expressive than ouRNNs by providing the hidden state dynamics with
stronger fluctuations.

In Kerg et al. (2019), each y; was encouraged to be close to 1 by a
regularization term 8|11 —yll5, with ¥ =[y; v, .. VN/z]T and § as a

Lagrange multiplier, added to the loss function. In our experiments for

comparison with the mcnnRNN, however, the absolute value y; of the
eigenvalues are kept constantly 1 as in the mecnnRNN (Eq. (3.3)). This is
essential to preventing vanishing and exploding gradients (Benjio et al., 1994;
Arjovski et al., 2016).

For the activation function f(-), we use the identity function,
exponential linear unit (ELU) and rectified linear unit (ReLU) while the
modReLU (Arjovski et al. 2016) was adopted by Kerg et al. (2019). These
functions are also selected as g(+) in Eq. (3.6) which is used for both the real
and imaginary parts of the activation function in the mcnnRNN. As an
important note, the derivative of f(-) at the origin f'(0) as well as all the
eigenvalues of W must have unit absolute value (i.e. |[f'(0)|=1) to avoid
vanishing and exploding gradients (Arjovski et al., 2016). This condition
means that the state coefficient matrix of the linear approximation to Eq. (2.1)
at the origin (Eq. (2.6)) must only have eigenvalues with unit absolute value.

h, = f'(0)(Wh,_; + Ux, + b) (2.6)

=+Wh,_; + Ux; t b. 2.7)

It is because, under the condition, the state coefficient matrix is +W (Eq.
(2.6) & (2.7)) whose eigenvalues all have unit absolute value. The derivative
at the origin of the identity function, ELU and ReLU have value 1 (i.e.
f'(0)=1 and therefore |f'(0)|=1) as is often the case with common activation

functions.

2 A &8t

SECRIL WATCeAL LIMNVERSTY

Chapter 3

Methodology

3.1. Complex-valued nnRNN with Memory Units (mcnnRNN)

The mennRNN is described by the following equations:

h. = Mh_, + f ((PWP" - M)h,_, + Ux,). (3.1)
[A 0o - 0 0 1
|T2,1 A‘Z cee O O |
W=|t3: 732 - :), (3.2)
: P e Ay, O J
T™wa Tz Tun-1 AN
Aj = cos6; +isin6;, (3.3)
[0 0 0 1
|0 m, O 0|
M=|0 0 m; 0 [, (3.4)
l 0 0 0o .- mNJ

11

_ v [Re(hy)
5=V iy * € (3-)
with input x € R, hidden state h € C¥ and output y € RL.

The activation function f(+) is defined as

f(2) = g(a) +ig(B) (3.6)
with z=a +if (a, B €R) and g(-) € R. Activation functions of this
kind were introduced in a study on complex-valued neural networks (Trabelsi
et al., 2018). Depending on the tasks, different g(-)'s are selected with the
best results being reported: : the identity function for the copy task (Section
4.1.1), the ReLU for the adding problem (Section 4.1.2) and PTB language
modeling (Section 4.1.3) and the ELU for the pixel-by-pixel MNIST task
(Section 4.1.4). These functions are also used as the activation function of the
nnRNN (Section 2.3) in our experiments. All of their derivatives have value
1 at the origin (i.e. g'(0) =1), letting the same hold for f(-) (ie. f'(0)=1)
(proofin Appendix A).

The coefficient matrix M € CV*N for h is associated with the units’
time constant. The complex-valued nnRNN with memoryless unit (cnnRNN)

is mathematically equivalent to the mcnnRNN with constant M = 0:
h, = f(PWP*h,_, + Ux,), (3.7)

. [Re(hy)
“‘4mma

] +cC. (same as Eq. (3.5))
The cnnRNN is tested and compared with other models in our experiments
for reference.

PWP* in Eq. (3.1) takes the form of Schur decomposition (Lemma 1).

Thatis, P € C¥*N jsunitary and W € C¥*N is triangular. W has diagonal

entries 4;'s which have unit absolute value (Eq. (3.3)). Unlike the nnRNN,

12

the hidden-to-hidden matrix here is set to PWP* — M so that the state
coefficient matrix of the linear approximation to Eq. (3.1) at the origin is
PWP* (Eq. (3.8)). As a caveat, therefore, each A;j is not an eigenvalue of
the recurrent matrix, but of the state coefficient matrix. This leads the
eigenvalues of the state coefficient matrix to have unit absolute value, which
is a requirement for addressing the vanishing and exploding gradient

problems as mentioned in Section 2.3.
h, ~ Mh,_, + f'(0) ((PWP* —Mh,_, + Uxt)
= Mh,_, + (PWP* — M)h_; + Ux,.
= PWP*h,_, + Ux,. (3.8)
UeCV*M (Eq. (3.1)) and V € RI*2N (Eq. (3.5)) are the input-to-
hidden and hidden-to-output matrices, respectively. ¢ € Ct (Eq. (3.5)) is the

bias parameters in the output layer. The biases for the hidden units are omitted

for the mennRNN and cnnRNN in contrast to the nnRNN.

3.2. Optimizing the Parameters

If loss function F; is areal-valued function, the gradient of F; with respect
to a complex-valued matrix Z = X+ iY is given by

oF, OF, OF,
_ - 3.9
oz~ ox oy (3:9)

(Anemiiller et al., 2003). With respect to a complex-valued vector, the
gradient is given in the same way (Haykin, 2002, p.798). In the mcnnRNN
and cnnRNN, the gradients of F, with respectto P, W, U (Eq. (3.1)) and
V (Eq. (3.5)) are evaluated using Eq. (3.9).

13

Two optimizers are employed in training the mcnnRNN, cnnRNN and
the nnRNN. For unitary matrix P, we adopt a multiplicative update scheme
(Eq. (3.10) & (3.11)). A study in optimization (Tagare, 2011) presented a
gradient descent curve along the Stiefel manifold of all N X N unitary
complex-valued matrices. Wisdom et al. (2016) applied this result to training
their unitary RNN. A new solution P®**1) on the curve at iteration k + 1 is

the product of the Cayley transform of A% and the previous solution P,

PEHD = (147 AM)71 (1 - ZAW)P®), (3.10)

A® = gRrpla — plo+gl), (3.11)
n is the learning rate for this algorithm, and G is the gradient matrix of
the loss function with respect to P For all the other parameters than P,
the Adam optimization algorithm (Kingma & Ba, 2014) is chosen. In our
experiments, the algorithm’s parameters have Tensorflow’s default values.
The initialization of trainable parameters in Eq. (3.1)-(3.5) is as follows.
Unitary matrix P is initialized to the identity matrix. The initial value of 8;’s
(Eq. (3.3)) are uniformly sampled from within (-90°, 90°), except in
experiments on the copy problem (Section 4.1.1) for which from (-180°,
180°). 7j,’s in W (Eq. (3.2)) are initially set to 0. Each diagonal element

m; of M (Eq. (3.4)) s initialized to with PWP* = [Sjk] sothatall the

S.j
weights of self-connections for hidden units are O initially. Importantly,
initializing M in other way often leads to a numerical error while training
the network. The real and imaginary part matrices of U are respectively

initialized using Glorot uniform initialization except for the adding task

(Section 4.1.2), for which only the real part matrix is initialized by Glorot

14

uniform initialization, and the imaginary part matrix to 0. V and c are

intialized to 0

3.3. Model Regularization

We employ a regularization method for which noisy parameters of the
network are needed, differently from Kerg et al. (2019) (Section 2.3). Murray
and Edwards (1994) suggested multiplicative noise in the weights of the
multilayer perceptrons was effective in improving generalization
performance. Following this approach, we introduce multiplicative noise
into the elements of U,V and the off-diagonal part of W (i.e. Tjix's) (Eq.
(3.1), (3.2) & (3.9)).

w=[1+8w, (3.12)
Let w be any of those parameters. w is separated into two parts:
multiplicative noise 1+ ¢ and trainable parameter w; (Eq. (3.12)).
Random variable & follows a truncated Gaussian distribution with mean 0
and a standard deviation as a hyperparameter. The value of & changes every
iteration during training, and remains 0 when the model is evaluated. We use

this regularizer in PTB character-level language modeling (Section 4.1.4).

15

16

.'t-_#"J-':.-*
.g l; ﬁf‘

oLk AT

SECRIL WATCeAL LIMNVERSTY

Chapter 4

Experiments and Results

4.1. Benchmark Tests

The performance of the mcnnRNN is evaluated on the copy task (Hochreiter
& Schmidhuber, 1997), the adding problem (Hochreiter & Schmidhuber,
1997), pixel-by-pixel MNIST (Le et al. 2015) and PTB character-level
language modeling (Marcus et al., 1993). These problems have been used as
benchmarks in previous studies on RNNs (Martens & Sutskever, 2011;
Graves et al., 2014; Arjovski et al., 2016; Henaff et al., 2016; Wisdom et al,
2016; Hyland & Gunnar, 2017; Jing et al., 2017; Mhammedi et al., 2017;
Helfrich et al., 2018; Lezcano-Casado & Martinez-Rubio, 2019; Kerg et al.,
2019). Through the copy and adding tasks, we evaluate the short-term
memory capacity of models which is critical to learning long-term

dependencies within sequence data. Using the pixel-by-pixel MNIST and

17

Table 4.1. The number of hidden units and the value of hyperparameters. N
denotes the number of hidden units. For the mcnnRNN, cnnRNN and nnRNN,
learning rate 2 is used to optimize P (Eq. (3.10) & (3.11)), and learning rate

1 to optimize the other parameters. In PTB language modeling, learning rates

decay depending on changes in training loss.

Learning Learning Batch

Task Model N i
Rate 1 Rate 2 Size
mcnnRNN 64 2x10* 1x108 100
c cnnRNN 64 2x10* 1x108 100
by nmRNN 68 2x10% 1x108 100
LSTM 38 1x1073 - 50
mcnnRNN 64 1x1073 2x10712 100
Addi cnnRNN 64 1x1073 1x1071° 100

in
& mRNN 68 5x10% 1x101 100
LSTM 38 1x10* - 50
mcnnRNN 128 5x10* 5x107 100
MNIST cnnRNN 128 5x107* 2x107 100
nnRNN 130 5x10* 5x107 100
mcnnRNN 128 5x107* 2x107 100
Permuted

MNIST cnnRNN 128 5x10* 5x107 100
nnRNN 130 5x107* 2x107 100
PTR mcnnRNN 890 1x1073 1x1071? 100
cnnRNN 890 1x1073 1x1071? 100

18

10 T-1 1 10

Input g |l al|l...|l | & b b |...| & b d | & b |...| &

Target Output b b b b b |... b b b b b c g l|l...] &

T+10 10

Figure 4.1. An illustration of the copy task. Symbols randomly sampled from
{c1, c2, ..., cs} (cs, c1, ..., c5) are given in the input sequence. After T+1 time

steps, the model should start to recall the same symbols in the same order.

PTB character-level prediction problems, we test the ability of networks to
capture long-term dependencies.

Though our main goal here is to assess the mcnnRNN in comparison to
the nnRNN, other models such as the cnnRNN (Eq. (3.7) & (3.5)) and the
LSTM network are also included for reference. The LSTM model is trained
by Adam only. Gradient clipping is adopted for the LSTM, but not for the
others. Hyperparameters are tuned using grid search (Table 4.1). All

experiments are conducted using Tensorflow (Abadi et al., 2016).

4.1.1. Copy Task

This task tests the model’s ability to recall the data seen many time steps
before. The task is arranged following the same setup as in Arjovski et al.
(2016) (Fig. 4.1). Input and output sequences involve 10 symbols: {ci, c2, ...,
cs, b, d } which are encoded in one-hot fashion. The input is a T+20 long
sequence of the symbols. The first 10 entries are sampled independently and

uniformly at random from {c1, c2, ..., cs}. These entries are to be recalled by

19

Copy Task, T=2000

0.014 y
0.012 ‘! m
|

PP T
a
& 001
= I i = = =mcnnRNN| |
LIC.I 0.008 ‘ cn;RNN
ry nnRNN
o 0006 14 LSTM
S
O 0.004
0.002 }
0 A
0 5000 10000 15000 20000
lteration
Copy Task, T=4000
0.014 [y . : .
= = =mcnnRNN
0.012 ‘ cnnRNN
- i nnRNN
g 0.01y LSTM
= \
C 0.008 |
- \
% 0.006 A
o \
= ‘
O 0004ty |
\
0.002 } \J \
0 “’ﬁ‘—! /" - ‘ L.
0 5000 10000 15000 20000
lteration

Figure 4.2. Training loss on the copy task for time lag T=2000 and 4000. The
dotted line indicates baselines 0.010294 and 0.005172 which are
approximately the expected losses of a random guess strategy that outputs
symbol b for the first T+10 time steps and then symbols randomly sampled

from {ci, c2, ..., cg} in the remaining.

y ;L) sh

the network. The next T-1 entries are b which can be thought of as the blank
symbol. The next entry is d, the delimiter indicating that in the next time step
the network should start to recall and output the initial 10 symbols in the input
sequence. The remaining 10 symbols are b. The output is also a T+20 long
sequence of the symbols. The target output consists of T+10 repeated entries
of b, and then the first 10 symbols in the input sequence in the exactly same
order. The loss function is the average cross-entropy of symbol predictions at
each time step in the output sequence.

The baseline loss is determined by considering a random guess strategy
(the dotted line in Fig. 4.2). This strategy outputs b for the first T+10 time
steps, and then outputs symbols sampled independently and uniformly at
random from {c1, ¢, ..., cg} in the remaining. This gives an expected average
cross-entropy of 10log8/(T+20) (Arjovski et al., 2016) which is chosen as the
baseline loss value.

We consider input sequences of length T=2000 and 4000. The latter is,
to the best of our knowledge, longer than in any previous studies. At each
iteration, a new batch of sequences for training the model are generated
randomly. The training process runs for 20000 iterations.

With g(-) (Eq. (3.6)) to be the identity function for this task (Section
3.1), f(*) is also the identity function. This leads Mh,_; in the linear and
nonlinear terms of Eq. (3.1) to cancel each other. In this case, the mcnnRNN
becomes equivalent to the cnnRNN (Eq. (3.7)). Thus, they show nearly same
loss curves.

The mennRNN and cnnRNN converge stably toward zero average cross-
entropy in about 8000 iterations for both T=2000 and 4000 (Fig. 4.2). When

T=2000, the nnRNN settles down to zero cross-entropy, but more slowly and

21

Input Target Output

07 0.1 0.9 0.5 0.2 . 01 0.4 0.8 0.6 0.3 1.5

&
v

Ti2 T/2

Figure 4.3. An illustration of the adding task. The model should produce the
target output (1.5) which is the sum of two numbers (0.9 and 0.6) randomly
sampled from within (0, 1) and marked by 1 in the first and second half (in

time) of the input sequence, respectively.

with a rather noisy loss curve. For T=4000, it bypasses the baseline, but never
converges to zero and remains near the baseline. The LSTM network gets
stuck at the baseline in either case, performing the worst, which was also

reported in previous studies (Arjovski et al., 2016; Henaff et al., 2016).

4.1.2. Adding Task

The network should remember two numbers marked in a long sequence and
output the sum of them. The setup for this task followed that in Arjovski et al.
(2016) (Fig. 4.3). Two sequences of length T comprise each input. The first
one consists of numbers sampled independently and uniformly at random
from [0, 1]. The second contains markers for the first one: two entries of 1
and the remaining entries of 0. The first 1 is within time steps [1, T/2] and the
second within [T/2+1, T]. The target output is the sum of the two entries in
the first sequence marked by the two 1’s located in the second.

The model is trained to minimize the mean squared error (MSE) between

the target and predicted outputs over each batch (Fig. 4.4). The length of input

22

0.3
0.25
0.2
L
@ 0.15
=

0.1

0.05

0.00

0.3

0.25

0.2

%)
0.15
-

017

0.05

0.00

Adding Task, T=1000

mcnnRNN
cnnRNN

0 5000

10000 15000 20000
lteration

Adding Task, T=2000

- - . "\

0 5000

10000 15000 20000
[teration

Figure 4.4. Training loss on the adding task for time lag T=1000 and 2000.
The dotted line represents the baseline 0.167, which is approximately the

expected loss of a strategy that always predicts 1 as the output regardless of

the input.

3 2 A
=y

sequences is chosen to be T=1000 and 2000, both of which are longer than in
any other studies. At each iteration, new sequences as a training batch are
generated randomly. The networks are trained for 20000 iterations.

The baseline MSE comes from a naive strategy (the dotted line in Fig.
4.4). This strategy always predicts 1 as the output regardless of the input. This
yields an expected MSE of 0.167 approximately. This value is the variance
of the sum of two independent uniform distributions (Arjovski et al., 2016),
and the baseline to beat for the task.

Both the mecnnRNN and nnRNN drop sharply far below the baseline
MSE, and then settle down to zero, being comparable in training loss. The
mcnnRNN, however, bypasses the baseline faster in about 1000 and 1500
iterations for T=1000 and 2000, respectively, whereas it takes the nnRNN
about 2000 and 2500 iterations. The cnnRNN also achieves zero MSE, but
with its loss curve rather noisy for T=2000. In contrast, the LSTM network
never converge to a solution with zero error. The model remains fluctuating
around the baseline, which is consistent with results from previous studies

(Arjovski et al., 2016; Henaff et al., 2016).

4.1.3. Pixel-by-pixel MNIST

The network is fed a sequence of pixels from an MNIST image (LeCun et al.,
1998), and are required to output the corresponding class label. Each MNIST
example as a 28x28 image results in a pixel-by-pixel input sequence of length
784. We consider two versions of the task, the unpermuted and permuted
pixel-by-pixel MNIST classification problems: the former with the input
pixels in order, and the latter with permuted input pixels where the same

randomly generated permutation matrix is applied to all the MNIST images.

24

Table 4.2. Test accuracy on the pixel-by-pixel MNIST classification tasks.

N represents the number of hidden units.

Permuted
MNIST MNIST
Model N
parameters Accuracy Accuracy
(%) (%)
mcnnRNN 128 = 27k 98.6 96.1
cnnRNN 128 =~ 27k 98.1 94.7
nnRNN 130 =~ 27k 97.8 939
LSTM
) 128 = 68k 97.8 91.3
(Wisdom et al., 2016)
LSTM
256 =270k 98.2 91.7

(Wisdom et al., 2016)

This shuffling creates many longer-term dependencies across pixels of each
input sequence than in the original pixel ordering where lots of local
dependencies exist, and therefore making the problem harder. The average
categorical cross-entropy is chosen as the loss function. We run the
optimization algorithms for 70 epochs. We test the network on the validation
dataset every epoch to select the parameters yielding the lowest mean cross-
entropy. 10000 of the 60000 training examples are used as the validation set.
The model with the selected parameters is evaluated on the test data set of
10000 samples (Table 4.2).

The mcnnRNN achieves the best test accuracy. The cnnRNN also
performs over the nnRNN. The LSTM model falls short of the mecnnRNN in

accuracy. Notably, in the unpermuted case, the mennRNN outperforms the

25

LSTM network with 256 hidden units, even with an order of magnitude fewer

parameters and half the number of hidden units.

4.1.4. PTB Character-level Language Modeling

The model is trained on the PTB corpus (Marcus et al., 1993) to predict the
next character at each step, given a sequence of characters. Input sequences
have a length of 150 and 300 in two experiments, respectively. Each character
is embedded as a one-hot vector. We train the network for 400 epochs on the
training dataset (5017K characters), and select the model producing the
lowest bits-per-character (BPC) on the validation dataset (393K characters).
The selected model is evaluated on the test dataset (442K characters) (Table
4.3). During training, learning rates decay by a factor of 0.97 if average
training loss over an epoch is larger than over the previous epoch. The PTB

data is known to be prone to overfitting (Chang et al., 2017). Thus, we employ

Table 4.3. Test loss (BPC) on the PTB character-level prediction task. N
denotes the number of hidden units.

Input length Input length

#
Model N =150 =300
parameters
BPC BPC
mcnnRNN 890 ~1.32M 1.31 1.32
cnnRNN 890 ~1.32M 1.32 1.33
nnRNN
1024 =1.32M 1.47 1.49
(Kerg et al., 2019)
LST™M
1024 =4.20M 1.37 -

(Kerg et al., 2019)

26

the regularization scheme defined in Section 3.3. The standard deviation of §
for it (Eq. (3.12)) is 0.3.

The mcnnRNN shows significantly lower test BPC values than the
nnRNN (Table 4.3). The mcnnRNN also beats the LSTM model whereas the
nnRNN in Kerg et al. (2019) fell short of the LSTM network in performance.
The BPC values of the cannRNNN are slightly lower than for the mcnnRNN.

4.2. Exploratory Experiments

4.2.1. Robustness to Noise

We test the mennRNN’s robustness against noise as we often have to deal
with noisy data in real-world problems. To do this, we add noise to MNIST
images, and evaluate the accuracy of the model on the unpermuted and
permuted MNIST tasks (Fig. 4.5). The noise follows a uniform distribution
with lower bound 0 and an upper bound varied from 0 to 1.2 by 0.3. The larger
the upper bound is, the stronger the noise is.

The mennRNN is more robust to the noisy data compared to the nnRNN
(Fig. 4.5). As noise gets stronger, the accuracy of the mcnnRNN declines
more slowly than that of the nnRNN. Especially, for unpermuted MNIST, the
gap between the two models is quite significant. The cnnRNN also shows
accuracy that decreases more slowly than for the nnRNN as noise increases,

but faster than for the mecnnRNN.

4.2.2. Contribution from the Complex-valued Recurrent Weight Matrix

We investigate an aspect of the complex-valued hidden-to-hidden matrix that

may help complex-valued RNNs work better than the nnRNN. For the real-

27

Unpermuted MNIST

100
—&—mcnnRNN
X —&—cnnRNN
80 \ —&—nnRNN
> 60 B
o \—‘\.\\\
o 5,
8 40 I \\\\\
g - >
201 T ———
D
0]] i
0 0.3 0.6 0.9 1.2
Noise
Permuted MNIST
100 T .
4 —4&—mcnnRNN
—&—cnnRNN
80 r ~—&—nnRNN
&
> 60
o
@
5
o 40r 1
O h
< b
20 +
0] |]
0 0.3 0.6 09 1.2

Noise

Figure 4.5. Change in accuracy on the pixel-by-pixel MNIST tasks with

increasing noise. The horizontal axis denotes the upper bound of the uniform
distribution from which noise is sampled.

28 % A:f 2 E” sk

valued recurrent matrix, every eigenvalue has its conjugate as an eigenvalue
as well. Therefore, half the eigenvalues of the nnRNN are automatically
determined by the other half. The complex-valued recurrent matrix, on the
other hand, does not have this constraint on its eigenvalues. Thus, every
eigenvalue of it can be placed anywhere in the complex plane. This leads to
a higher diversity in the dynamics of complex-valued RNNs which may, in
part, help the network work better.

To demonstrate this idea, we constrain the complex-valued recurrent
matrix of the mcnnRNN or cnnRNN to have the conjugate of every
eigenvalue as an eigenvalue as well like the real-valued hidden-to-hidden
matrix of the nnRNN. The constrained models are trained and tested on the
copy and MNIST tasks. The value of hyperparameters and the batch size for
the models are the same as in Table 1.

The constrained models fall short of the unconstrained models in Section
4.1.1 and 4.1.3 in convergence rate or performance. For the copy problem,
the constrained mcnnRNN shows a training curve that converges more slowly
than without the constraint on the eigenvalues (Fig. 4.6). For the unpermuted
and permuted pixel-by-pixel MNIST tasks, the accuracy of the constrained

mcnnRNN and cnnRNN are lower than without the constraint (Table 4.4).

29

No Conjugate Eigenvalue Pair Conjugate Eigenvalue Pairs

1 acr" ®© ﬂ”%ﬁu 1 Od& o ®@o®0 ‘@,
5 o5 ¢ S os = 2
(1 E e 0o = Q
> 8 3 > g 8
E T § e ¢ 3 d
o 8 g o 8
(] ° 4] © o
£ -05) o £ -05 ?, o
= L o° = %
-1 ® @womw° -1 *Dago o®°
-1.5 -1 -05 0 05 1 15 -15 -1 -05 0 05 1 1.5
Real Part Real Part
Copy Task, T=2000
0.014 T ‘ ‘
00121 No c.onjugate.palr
Conjugate pairs
& 001}
o]
=
c 0.008
Lt
/)]
a 0.006
o
O 0.004
0.002
0 1 L
0 5000 10000 15000 20000

lteration

Figure 4.6. Comparison between two mcnnRNNs with and without
conjugate eigenvalue pairs in the recurrent weight matrix. The plot in the
lower panel shows the training curves of two mcnnRNNs trained on the copy
task with T=2000. The plots in the upper panel show eigenvalues in the
complex plane for the two models after training. The first mcnnRNN (blue)
is the same as in Section 4.1.1. The recurrent matrix of the second one (red)
is constrained to have the conjugate of every eigenvalue be an eigenvalue as
well (upper right). The first model does not have this constraint on the

eigenvalues (upper left).

- . H kl 1_'_” [

Table 4.4. Comparison between accuracy on the MNIST tasks for models
with and without conjugate eigenvalue pairs in the recurrent weight matrix.
Accuracy values in the third column come from Section 4.1.3. The values of
accuracy in the fourth column are obtained from models whose recurrent
matrices are constrained to have the conjugate of every eigenvalue be an

eigenvalue as well.

No conjugate Conjugate
Task Model Eigenvalue Pair Eigenvalue Pairs
Accuracy (%) Accuracy (%)
mcnnRNN 98.6 98.5
MNIST
cnnRNN 98.1 98.0
Permuted mcnnRNN 96.1 95.9
MNIST cnnRNN 94.7 94.5

31

2 A &8t

SECRIL WATCeAL LIMNVERSTY

Chapter 5

Conclusion and Discussion

We introduced a new method to build memory units in the nnRNN, also
changing the hidden state and the input and recurrent weight matrices into
complex ones. The method was customized to the nnRNN to keep the unit
absolute value constraint on the eigenvalues of the state coefficient matrix for
the linearized mennRNN. In terms of performance and robustness to noise,
the complex-valued setting alone could augment the nnRNN. The memory
units along with it added further improvement. The mecnnRNN also won out
over the LSTM model in all of the benchmarks. The results suggest the
mcnnRNN is effective in learning long-term dependencies.

The weight of self-connections for the mcnnRNN were initialized to 0
(Section 3.2). Otherwise, it often caused a numerical error while training the
network. This is reminiscent of some studies on the autapse in neuroscience.

An experimental work (Jiang et al., 2012) found that the autapse of fast-

33

spiking neurons in neocortical tissues of intractable epilepsy patients tend to
show a different release property than in non-epileptic tissues. A
computational study (Fan et al., 2018) suggested autapses can promote
synchronization significantly which is believed to cause epileptic seizures.
We speculate similar principles may, at least in part, underlie self-connections
in both artificial and biological RNNs. It would be interesting to study more
closely how the self-connections of the mcnnRNN influence on its activity
and performance referring to researches in neuroscience.

Complex-valued neural networks have been studied in the past (Hirose,
2013), but their success and adoption were limited (Arjovski et al., 2016).
Elman-type RNNs with memory units also have not been widely used in the
neural network community ever since they were proposed more than two
decades ago (Mozer, 1992; El Hihi and Bengio, 1996). We hope our findings
will be a step forward to change this. Applying complex-valued neural
networks and Elman-type RNNs with memory units in real-world problems
may help to draw attention to them, but is yet to be more investigated. In
future work, we will study further to test the utility of the mcnnRNN in real-

world applications.

34

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, 1., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2016) Tensorflow:
Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467.

Anemiiller, J., Sejnowski, T. J., & Makeig, S. (2003). Complex independent
component analysis of frequency-domain electroencephalographic
data. Neural Networks, 16(9), 1311-1323.

Arjovsky, M., Shah, A., & Bengio, Y. (2016). Unitary evolution recurrent
neural networks. In International Conference on Machine Learning (pp.

1120-1128).

35

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term
dependencies with gradient descent is difficult. [EEE Transactions on
Neural Networks, 5(2), 157-166.

Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., Cui, X., Witbrock,
M., Hasegawa-Johnson, M. & Huang, T. S. (2017). Dilated recurrent
neural networks. In Advances in Neural Information Processing

Systems (pp. 77-87).

Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations
using RNN Encoder—Decoder for Statistical Machine Translation.

In Conference on Empirical Methods in Natural Language

Processing (pp. 1724-1734).

Choi, H. S., Kim, J. H., Huh, J., Kim, A., Ha, J. W., & Lee, K. (2018). Phase-
Aware Speech Enhancement with Deep Complex U-Net. In International

Conference on Learning Representations.

El Hihi, S., & Bengio, Y. (1996). Hierarchical recurrent neural networks for
long-term dependencies. In Advances in Neural Information Processing

Systems (pp. 493-499).

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-
211.

Fan, H., Wang, Y., Wang, H., Lai, Y. C., & Wang, X. (2018). Autapses
promote synchronization in neuronal networks. Scientific reports, 8(1), 1-
13.

Ganguli, S., Huh, D., & Sompolinsky, H. (2008). Memory traces in dynamical
systems. Proceedings of the National Academy of Sciences, 105(48),
18970-18975.

36

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning.
Cambridge, MA: The MIT Press.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing
machines. arXiv preprint arXiv:1410.5401.

Haykin, S. (2002). Adaptive Filter Theory (4th ed.). Upper Saddle River, NJ:
Prentice Hall.

Helfrich, K., Willmott, D., & Ye, Q. (2018). Orthogonal Recurrent Neural
Networks with Scaled Cayley Transform. In International Conference on

Machine Learning (pp. 1969-1978).

Henaff, M., Szlam, A., & LeCun, Y. (2016). Recurrent orthogonal networks
and long-memory tasks. In International Conference on International
Conference on Machine Learning (pp. 2034-2042).

Hirose, A. (2013). Complex-valued Neural Networks: Advances and
Applications. Hoboken, NJ: John Wiley & Sons.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen

Netzen. Diploma, Technische Universitdt Miinchen, 91(1).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8), 1735-1780.

Hyland, S. L., & Rétsch, G. (2017). Learning unitary operators with help from
u(n). In A4A1I Conference on Artificial Intelligence (pp. 2050-2058).

Jaeger, H., LukoSevi¢ius, M., Popovici, D., & Siewert, U. (2007).
Optimization and applications of echo state networks with leaky-

integrator neurons. Neural Networks, 20(3), 335-352.

Jiang, M., Zhu, J., Liu, Y., Yang, M., Tian, C., Jiang, S., Wang, Y., Guo, H.,
Wang, K., & Shu, Y. (2012). Enhancement of asynchronous release from

37

fast-spiking interneuron in human and rat epileptic neocortex. PLoS
Biology, 10(5), €1001324.

Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., ... &
Soljaci¢, M. (2017). Tunable efficient unitary neural networks (eunn) and
their application to rnns. In [International Conference on Machine
Learning (pp. 1733-1741).

Kerg, G., Goyette, K., Touzel, M. P., Gidel, G., Vorontsov, E., Bengio, Y., &
Lajoie, G. (2019). Non-normal Recurrent Neural Network (nnRNN):
learning long time dependencies while improving expressivity with
transient dynamics. In Advances in Neural Information Processing
Systems (pp. 13591-13601).

Kingma, D. P.,, & Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Le, Q. V., Jaitly, N., & Hinton, G. E. (2015). A simple way to initialize
recurrent networks of rectified linear units. arXiv preprint

arXiv:1504.00941.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 86(11), 2278-2324.

Lezcano-Casado, M., & Martiinez-Rubio, D. (2019). Cheap Orthogonal
Constraints in Neural Networks: A Simple Parametrization of the

Orthogonal and Unitary Group. In International Conference on Machine

Learning (pp. 3794-3803).

Martens, J., & Sutskever, 1. (2011). Learning recurrent neural networks with
hessian-free optimization. In International Conference on Machine

Learning (pp. 1033-1040).

38

Mhammedi, Z., Hellicar, A., Rahman, A., & Bailey, J. (2017). Efficient
orthogonal parametrisation of recurrent neural networks using

householder reflections. In International Conference on Machine

Learning (pp. 2401-2409).

Marcus, P. M., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a
large annotated corpus of English: The Penn Treebank. Computational
linguistics, 19(2):313-330.

Mozer, M. C. (1992). Induction of multiscale temporal structure. In Advances

in Neural Information Processing Systems (pp. 275-282).

Murray, A. F. & Edwards, P. J. (1994). Enhanced MLP performance and fault
tolerance resulting from synaptic weight noise during training. /EEE

Transactions on neural networks, 5(5), 792-802.

Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2017). Recent

advances in recurrent neural networks. arXiv preprint arXiv:1801.01078.

Strang, G. (2006) Linear Algebra and lIts Applications. Belmont, CA:

Thomson, Brooks/Cole.

Tagare, H. D. (2011). Notes on optimization on stiefel manifolds.

In Technical report, Yale University.

Trabelsi, C., Bilaniuk, O., Zhang, Y., Serdyuk, D., Subramanian, S., Santos,
J. F., Mehri, S., Rostamzadeh, N., Bengio, Y., & Pal, C. J. (2018). Deep
Complex Networks. In [International Conference on Learning

Representations.

Trefethen, L. N., & Embree, M. (2005). Spectra and Pseudospectra: the
Behavior of Nonnormal Matrices and Operators. Princeton University

Press.

39

Wisdom, S., Powers, T., Hershey, J., Le Roux, J., & Atlas, L. (2016). Full-
capacity unitary recurrent neural networks. In Advances in Neural

Information Processing Systems (pp. 4880-4888).

40 | = Y

Appendix A

Proof that if g’'(0) = 1, then f'(0) =
1 in Eq. (3.6)

Given z=a + i, a and B can be expressed in terms of z and its

conjugate Z.

_zZ+z
a=—
z—z
P==
Then, it is trivial to derive their partial derivatives with respect to z.
da 1
R A.l
oz 2 &.1)
0 1
_ﬁ = (A.2)
0z 2i

Based on the chain rule and Eq. (A.1) and (A.2), the derivative of f(z) is

expressed as follows.

41

df(z) _ogla)oa .0d9(E)ap
dz _ da 0z ' ' 9B 0z
@1, 9 1
~Toa 208 2i

1 (ag(a) N ag(ﬁ)>

-2\ Oa ap (A-3)

Using Eq. (A.3), f'(0) is calculated given that g'(0) = 1.

1 (ag(a) N ag(ﬁ)>

=0 2\ da B

df (z)

f1(0) ==

1
=>(g'(0 +g'(0)

1
=-1+1D =1 O

42

= 2 ofee
-9 Tz o]},

IR
Mﬁ ° ﬂﬂﬂ EK =
i _ : .
X0 mru,A —_— ﬂ AT ZT o) ZT _r_H O#E
woE L e AT AR %0 NS
J _ %o N
mﬂu_.mqo = JU_o — LT}OOtI
w oF ujn o _5 il = AF "o o =
= e T HIL O qn ¢ s o m %0
oo BT TR - 1 o < T o=
o o 5 afo + T T bl o g 0
e P =z T T wb_n%cqma
S P =t e o B o o o =
Lo LAY i - nf W B
X = —_ ™ Jl _ —_— o
o WMo T oy = 3 o WM) T N T = 1 o2
Mo v dp Bow T Lo o
TP 3 " LN o G-
F ox D FG MJ%QW%M%H
TR {F @waTﬁ@mmﬂLw
maﬂ%aa ogomﬁoviaa RO _zﬂulrﬂ?
W ot T m Z mﬁ — @ o oo N T
m_xu.u%_n_on ﬂomoﬂ%_@n_/iﬁimﬁ
_ ok _ m s o - S TR JE 0| g)
< = P x £ o BT ol wm
& 3 P . Mo - 50— o 03 _ar %o T olJ o]
e =3 N = ay < np — do afj
o7 oF m & RO o m 7otﬂrwﬂ
B o ol o T 3 off ﬂ]ﬂ e e L = G
ﬁo%ﬂzgﬂ o mﬂn}\noﬁamq
d&%ﬂ@ i ovm_x%,ma%ﬁmﬁw
Egﬁ%%ﬁgwwzgwm@%ﬂﬂx L
zfoﬁmmo;o@l.;nmo Hi?ﬁox mm&u..
SR moﬁoa_,Mﬂ@@;%o .
R 41@EE
B{ B T GG N o
r J_,mﬁ ,Aluﬂ ,_NOT bo
70

43

mcnnRNN & & SAELE AdHEY. 34, o] 230 nnRNN
woh gge] BTG A2 wad B4, B4 #7 A9 A5
g4 FE= @ Zy ko]l HEEA] e ke A

424+ ofdy, oA mennRNN ©] nnRNN HUt} ¢ &

o] : A AAY Hax AW 719w, wgqt I

44

80 8 5
1 I

	Chapter 1. Introduction
	Chapter 2. Related Works and Background
	2.1. Orthogonal and Unitary RNNs
	2.2. Schur Decomposition and Normal and Non-normal Matrices
	2.3. Non-normal RNN (nnRNN)

	Chapter 3. Methodology
	3.1. Complex-valued nnRNN with Memory Units (mcnnRNN)
	3.2. Optimizing the Parameters
	3.3. Model Regularization

	Chapter 4. Experiments and Results
	4.1. Benchmark Tests
	4.1.1. Copy Task
	4.1.2. Adding Task
	4.1.3. Pixel-by-pixel MNIST
	4.1.4. Penn Treebank Character-level Language Modeling

	4.2. Exploratory Experiments
	4.2.1. Robustness to Noise
	4.2.2. Contribution from the Complex-valued Recurrent Weight Matrix

	Chapter 5. Conclusion and Discussion
	References
	Appendix A. Proof that if g'(0)=1, then f'(0)1 in Eq. (3.6)

<startpage>14
Chapter 1. Introduction 1
Chapter 2. Related Works and Background 5
 2.1. Orthogonal and Unitary RNNs 5
 2.2. Schur Decomposition and Normal and Non-normal Matrices 6
 2.3. Non-normal RNN (nnRNN) 7
Chapter 3. Methodology 11
 3.1. Complex-valued nnRNN with Memory Units (mcnnRNN) 11
 3.2. Optimizing the Parameters 13
 3.3. Model Regularization 15
Chapter 4. Experiments and Results 17
 4.1. Benchmark Tests 17
 4.1.1. Copy Task 19
 4.1.2. Adding Task 22
 4.1.3. Pixel-by-pixel MNIST 24
 4.1.4. Penn Treebank Character-level Language Modeling 26
 4.2. Exploratory Experiments 27
 4.2.1. Robustness to Noise 27
 4.2.2. Contribution from the Complex-valued Recurrent Weight Matrix 27
Chapter 5. Conclusion and Discussion 33
References 35
Appendix A. Proof that if g'(0)=1, then f'(0)1 in Eq. (3.6) 41
</body>

