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Major environmental factors and traits of
invasive alien plants determine their spatial
distribution: a case study in Korea
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Abstract

Background: As trade increases, the influx of various alien species and their spread to new regions are prevalent,
making them a general problem globally. Anthropogenic activities and climate change have led to alien species
becoming distributed beyond their native range. As a result, alien species can be easily found anywhere, with the
density of individuals varying across locations. The prevalent distribution of alien species adversely affects invaded
ecosystems; thus, strategic management plans must be established to control them effectively. To this end, this
study evaluated hotspots and cold-spots in the degree of distribution of invasive alien plant species, and major
environmental factors related to hot spots were identified. We analyzed 10,287 distribution points of 126 species of
alien plant species collected through a national survey of alien species using the hierarchical model of species
communities (HMSC) framework.

Results: The explanatory and fourfold cross-validation predictive power of the model were 0.91 and 0.75 as area
under the curve (AUC) values, respectively. Hotspots of invasive plants were found in the Seoul metropolitan area,
Daegu metropolitan city, Chungcheongbuk-do Province, southwest shore, and Jeju Island. Hotspots were generally
found where the highest maximum summer temperature, winter precipitation, and road density were observed. In
contrast, seasonality in temperature, annual temperature range, precipitation during summer, and distance to rivers
and the sea were negatively correlated to hotspots. The model showed that functional traits accounted for 55% of
the variance explained by environmental factors. Species with a higher specific leaf area were found where
temperature seasonality was low. Taller species were associated with a larger annual temperature range. Heavier
seed mass was associated with a maximum summer temperature > 29 °C.

Conclusions: This study showed that hotspots contained 2.1 times more alien plants on average than cold-spots.
Hotspots of invasive plants tended to appear under less stressful climate conditions, such as low fluctuations in
temperature and precipitation. In addition, disturbance by anthropogenic factors and water flow positively affected
hotspots. These results were consistent with previous reports on the ruderal and competitive strategies of invasive
plants, not the stress-tolerant strategy. Our results supported that the functional traits of alien plants are closely
related to the ecological strategies of plants by shaping the response of species to various environmental filters.
Therefore, to control alien plants effectively, the occurrence of disturbed sites where alien plants can grow in large
quantities should be minimized, and the waterfront of rivers must be managed.
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Background
As the economic costs of controlling and managing bio-
logical invasions have become increasingly severe in re-
cent decades (Diagne et al. 2021), the governments of
many countries have requested more efficient and prac-
tical management plans for invasive species. Thus, the
demand has increased for systematic analyses of the na-
tionwide distribution of alien plant species. Annually
collected data from nationwide surveys on invasive spe-
cies in South Korea provide an excellent opportunity to
address these demands.
The distribution of invasive species is typically mod-

eled using single species distribution models; however,
this approach is not as suitable for analyzing community
data containing multiple invasive species. Joint species
distribution models provides a great opportunity to
analyze such community data (Warton et al. 2015;
Abrego et al. 2017) and can be used to determine hot-
spot and cold-spot areal distributions of invasive alien
plants. Through identifying the hotspots of invasive alien
plants, risk maps for more efficient management can be
constructed. Local hotspot clusters may be associated
with certain combinations of relevant abiotic factors,
such as climate variables, topographic factors, and an-
thropogenic factors. The identification of these relation-
ships could strengthen our understanding on how alien
species invade new environments.
A key component of invasion science is understanding

how the functional traits of invasive species respond to
environmental filters or disturbances (Mouillot et al.
2013; Cadotte et al. 2015; Pearson et al. 2018). When
evaluating community datasets, species traits could be
used as essential predictors to provide insights on why
certain taxa are more abundant than others in the same
environment. Therefore, including the interaction be-
tween the environment and traits could improve the
power of the joint species distribution model.
Here, we aimed to analyze the nationwide distribution

of invasive alien plants (IAPs) systematically to identify
hotspots of occurrence and the environmental factors
associated with these sites. We included the functional
traits of the evaluated species to determine how these
traits affect their responses to the environment. We used
a spatial joint species distribution model with climatic
variables, topographic variables, and disturbance-related
variables, as well as functional traits and phylogenetic re-
latedness among species as predictors.

Materials and methods
Survey
The nationwide survey for the alien plant species was
conducted by the National Institute of Ecology, South
Korea, from 2015 to 2019. During this period, 20 scien-
tists conducted convenient sampling in most provinces

(165 districts). At all survey points, the scientists set up
temporary plots of variable sizes. In each plot, all alien
plants were recorded. The scientists conducted a pilot
survey on Jeju Island in 2015 and divided the mainland
of Korea into three regions, surveying one region per
year.
A total of 10,287 sampling points were obtained after

cleaning the data. To analyze environmental factors, we
collected 19 bioclimatic variables at a resolution of 30
arcs/second from WorldClim version 2 (Fick and Hij-
mans 2017) and ASTER GDEM version 3 at a resolution
of 1 arc/second (NASA/METI/AIST/Japan Spacesystems
and U.S./Japan ASTER Science Team 2019). We also re-
corded distance to rivers, distance to the sea, and road
density within a 1-km circle of each plot. All environ-
mental variables were resampled to a resolution of 10 ×
10 km2.
All sample points were aggregated to a 10 × 10 km2

grid by pooling the recorded species to remove dupli-
cates within a pixel of an environmental variable. The
coordinates of the aggregated sampling points were re-
corded at the centroid of the original sampling points.
The values of environmental variables were extracted by
the aggregated sample points. Multicollinearity was re-
moved by a stepwise procedure using the threshold of
VIF ≤ 5 in R package version 1.1.18 (Naimi et al. 2014).
The selected variables were isothermality (bio 03),
temperature seasonality (bio 04), maximum temperature
of warmest month (bio 05), precipitation of driest month
(bio 14), precipitation of warmest quarter (bio 18), dis-
tance to river, distance to sea, and road density. We only
evaluated species that occurred at a frequency of more
than 1% to remove rare species.

Functional traits
According to the Leaf-Height-Seed model proposed by
Westoby (1998), functional traits related to leaf charac-
teristics, plant height, and seed characteristics are essen-
tial factors for defining plant ecology strategy schemes.
These traits are related to the efficiency of resource cap-
ture and utilization or competitive ability in various hab-
itats (Díaz et al. 2016). We selected specific leaf area
(SLA), leaf dry matter content (LDMC), plant height,
and seed dry mass. These characteristics were relatively
easy and largely obtainable from the functional trait
database. Although morpho-anatomical (soft) traits, such
as the variables we used, have lower predictive power
than physiological (hard) traits, they can be used in com-
bination to explain species responses along environmen-
tal gradients (Belluau and Shipley 2018).
We downloaded data on seed dry mass, SLA, and

LDMC traits from the TRY database (Kattge et al. 2020).
To summarize trait values among multiple measure-
ments from multiple references, we first averaged trait
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values per reference and species and calculated the me-
dian value per species. We inserted missing values using
the median values of a species congeners to reduce data
bias, where possible. Finally, 126 species were retained
after listwise deletion for missing trait values.

Statistical modeling
We adopted the hierarchical model of species communi-
ties (HMSC) framework as a spatial joint species distri-
bution model to explain which environmental factors
are related to the occurrence of IAPs and their joint spe-
cies richness (Fig. 1) (Ovaskainen et al. 2017; Tikhonov
et al. 2020). We included the functional traits per species
to analyze the contribution of functional traits to the
level of species responses to environmental factors. Focal
IAPs were phylogenetically related to each other; there-
fore, we incorporated phylogenies into the model to ac-
count for the non-independence of traits among taxa. A
phylogenetic tree was constructed using the V.Phylo-
Maker R package version 0.1.0, in which a mega-tree of
74,533 vascular plant species was provided (Jin and Qian
2019). The data were too spatially extensive to compute
Bayesian JSDM; therefore, we used nearest neighbor
Gaussian process (NNGP) approaches in the latent fac-
tor structure of HMSC (Tikhonov et al. 2019).
The HMSC framework used the following matrices to

model the spatial context: spatial coordinates of the
sampling unit, species occurrence at each sampling unit,
environmental variables at each sampling unit, phylogen-
etic covariance matrix of focal species, and trait values
of each species.

The sum of the predicted probability of all species rep-
resents the predicted species richness. For spatial cluster
analysis, local Moran’s I of predicted species richness
was calculated for each pixel using queen contiguity-
based weights (Anselin 1995) using the spdep R package
version 1.1.5 (Bivand and Wong 2018). All analyses were
performed in R 4.0.2 (R Core Team 2020).

Results
The explanatory power of the model was evaluated using
the AUC and Tjur’s R-squared (Tjur 2009). The AUC
was evaluated for each species (Table S1), and the aver-
age AUC was 0.910 ± 0.058 (mean ± SD). Tjur’s R
squared was 0.27 ± 0.16 (mean ± SD). The predictive
power of the model was calculated by fourfold cross-
validation, and the average AUC was 0.753 ± 0.101
(mean ± SD). Tjur’s R-squared was 0.12 ± 0.11.
The richness of IAPs was remarkably high in the Seoul

metropolitan area, Chungcheongbuk-do Province, south-
west shore, Daegu Metropolitan City, and Jeju Island
(Figs. 2 and 3). These hotspot areas for IAPs had 2.1
times more alien plants than non-hot spot areas and
were explained by a combination of environmental fac-
tors (Table 1). Climate-related variables and random
spatial variables were the major variables. The high
strength of spatial autocorrelation implied that IAPs
have not yet reached an equilibrium state and that their
range is still expanding.
We included functional traits in the model to increase

the explanatory power and predictive power based on
the assumption that the functional traits of species can

Predicted distribution of species

Statistical modeling

Prediction

Response curves

Environmental variables

Trait and phylogenetic tree

Occurrence data

Fig. 1 Schematic summary of the statistical modeling
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explain the magnitude and the signs of response of the
species to environmental variables. Of the total variance
explained by environmental variables, 55% was
accounted for by traits. Therefore, functional traits were
an important predictor of the response of species to en-
vironmental factors, as we expected.
We also checked whether the importance of variables

changed with family (Fig. S1). We found that major en-
vironmental variables differed slightly among families.
Most of these differences seemed to be rooted in the dif-
ferent traits of families; therefore, we analyzed the rela-
tionship between traits and environmental factors.
The species richness of invasive alien plants was posi-

tively correlated with isothermality (bio 3), maximum
temperature of the warmest month (bio 5), precipitation
of the driest month (bio 14), and road density (Fig. 4). In
contrast, it was negatively correlated with the seasonality
of temperature (bio 4), precipitation of the warmest
quarter (bio 18), and distance to rivers and the sea.
Figure 5a shows how traits affected the responses of

IAPs to environmental variables when the 95% credible
interval did not contain zero (level of absolute value of
support ≥ 0.95 or ≤ − 0.95). Species with higher SLA
were associated with lower temperature seasonality (Fig.
5b). Taller species were associated with low isothermal-
ity (Fig. 5c). In contrast, seed mass traits were positively
associated with the high maximum temperature of the
warmest month, but exhibited a threshold-like pattern
(Fig. 5d). The community weighted mean of seed mass
was monotonic until the maximum temperature of the

warmest month reached 29 °C, and increased above that
temperature.

Discussion
Environmental conditions under which the species rich-
ness of IAPs was high were determined by plotting esti-
mated species richness with changes in each
environmental variable. We confirmed that the species
richness of IAPs had a linear relationship with the se-
lected environmental variables.
In general, hotspots of invasive species were observed

in less stressful climate conditions, where fluctuations in
annual temperature were low (bio 3 and bio 4). The
higher species richness of IAPs was accompanied by
higher temperature in summer (bio 5), which is when
plant growth peaks, and higher precipitation in winter
(bio 14), which is when water stress is severe. In con-
trast, IAP richness tended to slightly increase when pre-
cipitation in summer (bio 18) decreased, which was
attributed to rainfall being concentrated in summer in
Korea, with heavy rainfall adversely affecting IAP
growth.
To sum up the responses of invasive alien plants to cli-

mate variables, the hotspots of invasive plants were lo-
cated in less stressful climate conditions characterized
by low variability in both temperature and precipitation.
This result was consistent with the ruderal and competi-
tive strategies of IAPs (Guo et al. 2018). The increasing
richness of IAPs with greater proximity to rivers

Seoul

Fig. 2 Predicted IAP richness in South Korea. The sum of all the
predicted probabilities of IAP occurrence indicates predicted
IAP richness

Fig. 3 Spatial clusters and outliers of predicted IAP richness. High-
high clusters represent hotspot areas and the low-low clusters
represent cold-spot areas. The other groupings represent
spatial outliers
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corresponded to a previously reported phenomenon that
riparian wetlands are more susceptible to the invasion of
alien species than other ecosystems (Pysek and Prach
1994; Hood and Naiman 2000).
Disturbances caused by anthropogenic factors and

water flow positively affected hotspots. These results
were consistent with previous reports on the ruderal and
competitive strategies of invasive plants. Dawson et al.
(2017) stated that coastal regions tend to have higher
species richness at a global scale. Our study also showed
that the richness of IAPs closer to the sea was higher.
The presence of ports, which are typical pathways of in-
vasion, might explain the high richness of IAPs in
coastal regions (Hulme 2009; Kaluza et al. 2010). The
high richness of IAPs in areas with high road density
was also supported by the results of Benedetti and Mor-
elli (2017). This positive relationship between roads and
IAPs might be attributed to roads acting as pathways for
the spread of invasive species (Joly et al. 2011; Meunier
and Lavoie 2012).

Functional traits are important predictors of how each
taxon responds to different environments. In a single
species distribution model, the functional traits of the
focal species provide no surplus information; however,
in community datasets, the coefficient of environmental
variables can be fine-tuned by the functional traits of
each taxon. Therefore, functional traits can be used to
explain the distribution of all invasive species in a uni-
fied single framework. Efforts to predict the response of
IAPs to the environment or their invasiveness based on
their traits are ongoing; however, the context depend-
ence characteristic of invasion has hampered predictions
(Moravcová et al. 2015; Pearson et al. 2018; Novoa et al.
2020). Few studies have attempted to include functional
traits in species distribution models (Regos et al. 2019;
Vesk et al. 2021), with systematic studies being required
to generalize the role of functional traits.
Our study showed that plants living in a stressed en-

vironment (such as a high standard deviation of
temperature) tend to have a stress-tolerant strategy,

Table 1 Importance of environmental and anthropogenic variables and the variance explained by traits for each variable

Variable Relative importance %Var explained by traits

Bio 3 (isothermality) 3% 44%

Bio 4 (temperature seasonality) 10% 30%

Bio 5 (max temperature of warmest month) 11% 67%

Bio 14 (precipitation of driest month) 5% 22%

Bio 18 (precipitation of warmest quarter) 3% 22%

Distance from river 4% 67%

Distance from sea 3% 29%

Road density 3% 39%

Random: sample 60% –

Fig. 4 Predicted IAP richness across environmental gradients
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which is represented by low SLA values and long leaf
lifespan (Reich et al. 1992; Reich et al. 1997). In contrast,
plants living in more stable climates tend to have ru-
deral/competitive strategies, which are represented by
high SLA values (Lambers and Poorter 1992; Reich et al.
1997) and short leaf lifespan (Grime 1994). Thus, SLA
values indicate the strategy of IAPs in relation to
temperature seasonality.
Moles et al. (2009) suggested that plant height and iso-

thermality are positively correlated, with a relatively high
explanatory power (R2 = 0.222). Thus, when the annual
temperature range becomes smaller relative to the mean
diurnal range, the dominance of taller species increases
in the plant community. Shorter species are associated
with stressed conditions caused by large temperature
fluctuations. In contrast, taller species, which are more
competitive for light resources (Westoby 1998; Aan
et al. 2006; Vojtech et al. 2008), are associated with more
stable conditions, with low temperature fluctuations.
This trade-off in investment in height documented by
Falster and Westoby (2003). In other words, shorter
IAPs are associated with more stressed conditions (due
to greater environmental fluctuations), whereas taller
IAPs are associated with less stressed conditions.
Under more stressed conditions, plants tend to have

larger and heavier seeds than under more stable condi-
tions, which is partially attributed to the positive influ-
ence of seed weight on establishment success (Harper
et al. 1970; Smith and Fretwell 1974; Pluess et al. 2005).
Temperature stress is one factor causing seed weight to
increase. For example, Pluess et al. (2005) found that the
seed weight of alpine plant species increased with in-
creasing elevation. Both cold and heat stress can inhibit
plant development, growth, and yield (Lobell and Asner
2003; Lobell and Field 2007). Our study showed that
plants with heavier seed traits prevailed when the max-
imum temperature in summer exceeded 29 °C.
This study located the hotspots of IAPs throughout

Korea, and identified relevant environmental and

anthropogenic factors. We confirmed that functional
traits are relevant and important factors in determining
the responses of IAPs to the environment. In the future,
this fundamental research could be used to build a risk
map by considering the expansion rate of IAPs and
socio-environmental impact. The risk map would sup-
port the development of more efficient and practical
management plans for IAPs.

Conclusions
In this study, we systematically analyzed the nationwide
distribution patterns of IAPs in Korea to locate hotspots
and to identify associated abiotic and/or disturbance-
related factors. We also analyzed the interaction between
the environment and functional traits. The predicted
species richness of IAPs was high in the Seoul metropol-
itan area (suburbs), southwest shore, and Jeju Island.
This distribution map developed here could be used to
create a risk map. The hotspots of invasive plants are ex-
pected to appear in more stable climates, where fluctua-
tions in temperature and precipitation are low. Hotspots
might also be associated to high road density and prox-
imity to rivers or the sea. Functional traits are closely re-
lated to the ecological strategies of plants, shaping how
species respond to various environmental filters, with
our results supporting this. In less stressed conditions,
IAPs with a higher SLA and plant height prevailed. In
heat stress environments, IAPs with heavier seed masses
were increasingly present. These results were consistent
with previous reports on ruderal and competitive strat-
egies of invasive plants, rather than the stress-tolerant
strategy. The relationship between traits and environ-
mental factors could also be used to predict invasion
success based on functional traits.

Abbreviations
IAPs: Invasive alien plants; AUC: Area under curve; JSDM: Joint species
distribution model; HMSC: Hierarchical model of species communities;
NNGP: Nearest neighbor Gaussian process

Fig. 5 Effect of traits on the response of IAPs to environmental variables. Only significant relationships between traits and environmental variables
are shown (a). Positive support level indicates positive relationships and negative support level indicates negative relationships. For each
relationship, the predicted community trait mean over the environmental gradient is shown (b–d)
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