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Abstract

Background: Previous observational studies suggested that a reduction in estimated glomerular filtration rate
(eGFR) or a supranormal eGFR value was associated with adverse cardiovascular risks. However, a previous
Mendelian randomization (MR) study under the linearity assumption reported null causal effects from eGFR on
myocardial infarction (MI) risks. Further investigation of the nonlinear causal effect of kidney function assessed by
eGFR on the risk of MI by nonlinear MR analysis is warranted.

Methods: In this MR study, genetic instruments for log-eGFR based on serum creatinine were developed from
European samples included in the CKDGen genome-wide association study (GWAS) meta-analysis (N=567,460).
Alternate instruments for log-eGFR based on cystatin C were developed from a GWAS of European individuals that
included the CKDGen and UK Biobank data (N=460,826). Nonlinear MR analysis for the risk of MI was performed
using the fractional polynomial method and the piecewise linear method on data from individuals of white British
ancestry in the UK Biobank (N=321,024, with 12,205 MI cases).

Results: Nonlinear MR analysis demonstrated a U-shaped (quadratic P value < 0.001) association between MI risk
and genetically predicted eGFR (creatinine) values, as MI risk increased as eGFR declined in the low eGFR range and
the risk increased as eGFR increased in the high eGFR range. The results were similar even after adjustment for
clinical covariates, such as blood pressure, diabetes mellitus, dyslipidemia, or urine microalbumin levels, or when
genetically predicted eGFR (cystatin C) was included as the exposure.

Conclusion: Genetically predicted eGFR is significantly associated with the risk of MI with a parabolic shape,
suggesting that kidney function impairment, either by reduced or supranormal eGFR, may be causally linked to a
higher MI risk.
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Background
The kidney is a vital organ for volume homeostasis,
uremic toxin clearance, maintenance of body electrolyte
balance, and various biological functions. A state of im-
paired kidney function, chronic kidney disease (CKD), is
an emerging comorbidity with a high prevalence and
large socioeconomic burden, thus, assessment of kidney
function with the estimated glomerular function rate
(eGFR) is commonly performed in diverse clinical condi-
tions [1].
The close linkage between myocardial infarction (MI)

and eGFR has been noted previously [2, 3]. CKD is one
of the most widely acknowledged risk factors for MI,
and reduced eGFR is associated with a poor prognosis in
MI patients. In addition, recent observational studies re-
ported that a state of supranormal eGFR, kidney hyper-
filtration, was associated with a higher risk of
cardiovascular diseases [4–7]. To further confirm that
the observational findings were from the causal effects
on eGFR on MI risks, Mendelian randomization (MR)
analysis, an analytical tool widely used in the recent med-
ical literature, can be helpful. MR analysis has strengths
in demonstrating causal estimates minimally affected by
reverse causation or confounding effects, as the method
implements inborn-fixed genetic instrument variables.
However, previous MR studies reported null causal ef-
fects of kidney function parameters on MI [8, 9], a find-
ing that was contradictory to previous observational
findings. Nevertheless, considering that a causal effect
may be nonlinear, conventional summary-level MR ana-
lysis would not capture the complex exposure-outcome
relation because it assumes linearity, particularly for a
suspected U-shaped relationship between eGFR and car-
diovascular risk [7, 10, 11]. Therefore, further nonlinear
MR analysis is warranted to investigate the shape of the
causal estimates on MI according to eGFR values.
In this study, we hypothesized that a causal effect of

eGFR on MI risk would be present with a nonlinear
exposure-outcome relationship. We performed a nonlin-
ear MR analysis utilizing the largest individual-level gen-
etic database that includes MI phenotyping and eGFR
measurements, the UK Biobank.

Methods
Ethical considerations
The study was performed in accordance with the Declar-
ation of Helsinki and approved by the Institutional Re-
view Boards of Seoul National University Hospital (No.
E-2006-043-1131). The usage of the UK Biobank data
was approved by the UK Biobank consortium (applica-
tion No. 53799). Acquisition of informed consent was
not required, as the study investigated anonymous public
databases and genetic summary statistics.

Study setting
The study was an MR analysis of the major findings
from the CKDGen and UK Biobank data (Fig. 1). The
CKDGen genome-wide association study (GWAS) meta-
analysis provides the largest-scale information to date on
single-nucleotide polymorphisms (SNPs) associated with
kidney function traits (URL: https://ckdgen.imbi.uni-
freiburg.de/) [12, 13], thus, it was utilized to develop the
genetic instruments for log-transformed eGFR. The UK
Biobank is a population-scale prospective cohort that in-
cluded > 500,000 participants aged 40–69 from diverse
regions in the UK from 2006 to 2010 (URL: https://
www.ukbiobank.ac.uk/) [14]. The database includes a
variety of clinicodemographic information and deep
genotyping data and thus has been widely used for gen-
etic studies, including MR analysis.
The main analysis was a two-sample MR analysis; gen-

etic instruments were developed for log-transformed
eGFR values calculated by the CKD-EPI equation using
creatinine values from the phase 4 CKDGen GWAS
meta-analysis [12], and MI outcomes in the UK Biobank
with no sample overlap between the two data. Avoiding
sample overlap in MR analysis has strength in a conser-
vative sense, as a potential bias, particularly in the case
of weak instruments, is toward false negative findings;
thus, the robustness of a positive finding by two-sample
MR analysis can be supported [15].
We also performed a secondary analysis using genetic

instruments for log-transformed eGFR values based on
serum cystatin C levels [13], as creatinine-based eGFR
values are more likely to be biased by dietary factors or
body shapes than cystatin C-based levels. Genetic instru-
ments were developed from a recent GWAS meta-
analysis that included both CKDGen studies and UK
Biobank data. As the UK Biobank provided > 90% of the
samples for the meta-analysis, the MR analysis is nearly
a one-sample setting. Despite the sample overlap-related
issues, the analysis has strength for replicative purposes,
including an alternate kidney function parameter which
is less affected from external factors.

MR assumptions
Three core assumptions should be attained to demon-
strate causal estimates by an MR analysis [16]. First, the
relevance assumption is that the genetic instrument
should be closely associated with the exposure pheno-
type, and as the instruments were associated with eGFR
with genome-wide significance, this assumption was
considered attained. We further tested the association
strength by calculating the explained variance by R2
values. The other two assumptions, the independence
and the exclusion-restriction assumptions, are regarded
as an absence of a pleiotropic pathway. The independ-
ence assumption means that an instrument should not
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be associated with a confounder, and the exclusion-
restriction assumption means that the causal effect
should occur through the exposure of interest. In MR
analysis under the linearity assumption, some
pleiotropy-robust MR analyses are usually performed to
address and test the pleiotropic effects (e.g., MR-Egger
regression). Alternatively, in the current study, non-
linear MR analysis directly adjusting the potential con-
founding covariates was performed to conduct a MR
analysis even controlling some measured pleiotropic ef-
fects. In addition, we trimmed the genetic instruments
to exclude the variants that are suspected to be weakly
associated with kidney function traits because of poten-
tial confounding associations.

Genetic instruments for log-transformed eGFR based on
creatinine levels
For the genetic instruments in the main two-sample MR
analysis, we used the results of individuals of European
ancestry (N=567,460) from the CKDGen data [12] to re-
strict our analysis to individuals of a single ancestry, as
in our previous studies [17–19]. The European partici-
pants had a median age of 54 years old, 91.4 mL/min/

1.73 m2 median eGFR values, and 9% prevalence of CKD
determined by eGFR < 60mL/min/1.73 m2, and 50% of
them were male.
The CKDGen GWAS meta-analysis reported 256 index

SNPs at least 1 Mbp apart with a genome-wide significant
association (P < 5 × 10−8) with log-transformed eGFR
values based on creatinine levels. Additional trimming of
the 256 SNPs was necessary, as in our previous MR
analyses [17–19], to remove genetic variants likely related
to creatinine metabolism instead of kidney function. We
performed an association analysis of eGFR based on cysta-
tin C levels with data from 337,138 individuals of white
British ancestry in the UK Biobank who passed genetic
quality control with the exclusion of those outliers for het-
erozygosity, missing rate, or with sex chromosome aneu-
ploidy. The variables for genetic quality control were
predefined by the UK Biobank consortium, and those who
were included in the principal component analysis and
those who reported white British ancestry were included.
The linear regression analysis of the 256 SNPs for the
cystatin C eGFR level was adjusted for age, sex, age × sex,
age2, and the first 10 genetic principal components by
PLINK 2.0 [20]. Other details of the genetic data structure

Fig. 1 Study flow diagram. eGFR, estimated glomerular filtration rate; GWAS, genome-wide association study; SNP, single-nucleotide
polymorphism; BUN, blood urea nitrogen; MR, Mendelian randomization
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and quality control process are available in the resources
provided by the UK Biobank consortium [14]. We disre-
garded 115 SNPs identified from the association analysis
in the UK Biobank data that showed different directions
of regressed betas or those not reaching the Bonferroni
adjusted significance level (P < 0.05/256) association with
cystatin C-based eGFR values. Finally, the remaining 141
SNPs and their summary statistics in the CKDGen data
were used as the genetic instrument for kidney function,
and the combined allele score explained 2.69% of the vari-
ance in creatinine-based eGFR values in the UK Biobank
data. When we calculated the F statistic, which should be
over 10 to avoid weak instrument bias, by the equation [(n
– k − 1)/(k)]*[R2/(1 − R2)], where n represents sample
size, k represents the number of instruments, and R2 rep-
resents explained variance of the exposure phenotype, the
F statistic was 66.1 [17]. The summary statistics for the in-
strumented SNPs are presented in Supplemental Table 1.

Genetic instruments for log-transformed eGFR based on
cystatin C levels
As serum creatinine levels are affected by muscle mass
or diet, the cystatin C-based eGFR value has certain ben-
efits when assessing kidney function [21]. Cystatin C-
based eGFR value was a superior biomarker in regard to
its power to predict cardiovascular diseases in the UK
Biobank data [22].
A recent GWAS meta-analysis incorporating CKDGen

studies and UK Biobank data reported 424 lead SNPs
with genome-wide significant association with log-
transformed eGFR based on creatinine levels. The study
included a GWAS meta-analysis for log-transformed
eGFR values based on cystatin C levels of samples from
individuals of European ancestry (N=460,826) [13]. To
include the SNPs consistently associated with kidney
function-related biomarker, a trimming was performed
similar to the aforementioned method and 348 SNPs
were validated to be significantly (P < 0.05) associated
with eGFR based on creatinine and blood urea nitrogen
levels with consistent direction. We used the informa-
tion of these 348 SNPs and the statistics of their associ-
ation with eGFR based on cystatin C levels as the
genetic instruments for the secondary analysis (Supple-
mental Table 2). Combined allele scores of the 348 SNPs
explained 3.47% of the variance in cystatin C-based
eGFR values in the data from individuals of white British
ancestry in the UK Biobank, yielding an F statistic of
34.8 [23].

MI outcome in the UK Biobank data
We used the UK Biobank data as the source of MI out-
come, as individual-level large-scale genetic data, includ-
ing information on both eGFR values and MI events, are
necessary for a nonlinear MR analysis [10, 17]. The UK

Biobank data defined MI events based on self-reports,
hospital admission records, and death registries through-
out the UK. Among the 337,138 individuals of white
British ancestry in the UK Biobank data used in this
study, 321,024 individuals had available creatinine- and
cystatin C-based eGFR values, including 12,205 people
with MI.

Nonlinear MR analysis
Conventional MR analysis (e.g., inverse variance
weighted method) assumes a linear exposure-outcome
relationship. As average causal estimates are calculated
for the total ranges of an exposure in such an analysis,
the causal estimates can be falsely attenuated if the true
exposure-outcome relationship is nonlinear [10]. In such
conditions, nonlinear MR analysis can be used.
In nonlinear MR analysis, the stratification of the

population is performed by instrument-free exposure,
the residual variation in the exposure conditioned for
the instruments [10]. This is because directly dividing
the study population according to exposure phenotype
would bias the results by invalidating the MR assump-
tions; thus, the nongenetic component of the exposure is
used to stratify the population. Next, localized averaged
causal estimates are calculated as the association be-
tween the outcome and genetically predicted exposure
divided by the association between the exposure and
genetically predicted exposure. Finally, meta-regression
of the localized causal estimates can be performed in
nonlinear MR analysis to estimate the exposure-
outcome relationship.
First, we plotted restricted cubic spline curves from

the instrument-free exposure on MI risks to present in-
terpretable MR estimates. The cubic spline curves based
on logistic regression analysis for MI outcome was plot-
ted with 10 knots determined based on decile values.
For non-linear MR analysis, we mainly used the frac-

tional polynomial model [10], one of the methods that
have been commonly used in recent non-linear MR stud-
ies [24, 25]. The degree 1 or degree 2 model is com-
monly used for nonlinear MR analysis, and whether the
degree 2 model fits better, particularly when the
exposure-outcome association is complex, can be tested.
In the current study, we used the flexible degree 2
model, as the model fit was better (P = 0.004) than that
of the degree 1 model, for the main two-sample MR
analysis with 100 strata [10]. Allele scores for genetically
predicted eGFR were calculated with PLINK 2.0 by
multiplying the gene dosage matrix with the regressed
betas from the GWAS summary statistics, which pro-
vided the genetic instruments [20]. Whether the scores
followed a normal distribution was assessed by histo-
grams, as a normal distribution supports the random al-
location of genotypes, which is necessary for MR
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analysis [26]. The main nonlinear MR analysis included
adjustments for the covariates age, sex, and the first 10
genetic principal components. The risks of MI according
to creatinine-based eGFR or cystatin C-based eGFR, cal-
culated by the CKD-EPI equation [27, 28], were investi-
gated by nonlinear MR analysis. To robustly control the
effects from clinical covariables, we additionally adjusted
for body mass index, systolic blood pressure, hyperten-
sion medication history, hemoglobin A1c, history of dia-
betes diagnosis, levels of triglycerides, high-density
lipoprotein, low-density lipoprotein, dyslipidemia medi-
cation history, and urine microalbumin levels in a sensi-
tivity analysis (Supplemental Methods). The sensitivity
analysis was performed on 245,398 individuals (9128 MI
patients) with complete information on the covariates.
We additionally presented the results by piecewise lin-

ear method from the same models constructed in the
above analysis by the fractional polynomial method.
The nonlinear MR analysis was performed by the

“nlmr” package in R [10], and a two-sided P value < 0.05
was considered a significant finding. The reference point
of the phenotypical eGFR value for the analysis was des-
ignated as 90 mL/min/1.73 m2, which was suggested by
the clinical guideline and was reported to be associated
with minimal cardiovascular risks in previous observa-
tional studies [7].

Conventional summary-level MR analysis
We performed supplemental summary-level MR analysis
by the inverse variance weighted method, weighted me-
dian method [29], and MR-Egger regression [30] to in-
spect causal estimates under the linearity assumption
[31]. The analysis was first performed against the out-
come data from individuals of white British ancestry in
the UK Biobank, and the summary statistics for MI risk
were generated by a GWAS adjusted for age, sex, age ×
sex, age2, and the first 10 genetic principal components
by PLINK 2.0 [20]. A replicative analysis was performed
on the summary statistics provided by the CARDIo-
GRAMplusC4D consortium, which was from a GWAS
meta-analysis including 43,676 MI cases and 128,199
controls of predominantly European ancestry samples
who were not included in the UK Biobank data [32].
The other details for the summary-level MR analysis are
presented in the Supplemental Methods.

Results
Characteristics of the UK Biobank outcome data
At the baseline visits, the median age of the 321,024 in-
dividuals of white British ancestry was 58 years, and 46%
of them were male (Table 1). The median creatinine-
based eGFR and cystatin C-based eGFR values were
92.50 (2.3% with < 60) and 88.89 (4.7% with < 60) mL/
min/1.73 m2, respectively (Supplemental Fig. 1). Four

percent (13,205 cases) had prevalent/incident MI events,
and the proportion was higher in males (7%) than in fe-
males (2%).

Nonlinear MR analysis
The distributions of the allele scores for eGFR values
followed a normal distribution (Supplemental Fig. 1).
We calculated localized averaged causal estimates by

stratifying the population according to instrument-free ex-
posure variables (Supplemental Table 3). The instrument-
free variable showed U-shaped association with the risk of
MI when we plotted cubic splines (Fig. 2). When genetic-
ally predicted creatinine-based eGFR was the exposure
variable (Fig. 3 and Table 2), nonlinear MR analysis by
fractional polynomial method demonstrated a quadratic,
or a U-shaped, association (quadratic P value < 0.001) with
MI risk, and the β1 (decreasing slope in low eGFR ranges)
and β2 (increasing slope in high eGFR ranges) estimates
were both significant. The results were similar even after
clinical covariates were adjusted, and the slope was steeper
in the low eGFR ranges where a higher genetically pre-
dicted eGFR was associated with a lower risk of MI.
When the allele score for cystatin C-based eGFR was

the exposure variable, a similar quadratic relation be-
tween genetically predicted eGFR and MI risk was iden-
tified, with both directions of causal estimates again
being statistically significant. The results were similar
when additional clinical covariates were adjusted for the
model.
The results by the piecewise linear method also dem-

onstrated a U-shaped association for the causal estimates
by eGFR on risks of MI (Fig. 4).

Conventional summary-level MR analysis
When the conventional inverse variance weighted
method under the linearity assumption was used to yield
causal estimates by summary-level MR, the causal esti-
mates remained null for both the creatinine- and cysta-
tin C-based eGFR exposures on MI risk in the UK
Biobank data (Table 3). Although no significant direc-
tional pleiotropy was suspected by MR-Egger intercept P
values, the pleiotropy-robust summary-level MR sensi-
tivity analyses also provided null causal estimates. The
results were similar when the independent summary sta-
tistics from the CARDIoGRAMplusC4D consortium
were used as the outcome data.

Discussion
In this MR study, we identified that genetically predicted
eGFR is significantly associated with MI risk with a
quadratic shape. Our results indicated that a reduction
in eGFR may be a causal factor for higher MI risk in in-
dividuals with an eGFR in the low range. In addition, the
results suggested that supranormal eGFR values,
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commonly known as kidney hyperfiltration, may causally
elevate the risk of MI.
Kidney function impairment is one of the most widely

recognized risk factors for cardiovascular diseases. Such a
close linkage raised suspicion that kidney function impair-
ment may causally increase the risk of MI. However, as
there are shared risk factors such as hypertension and dia-
betes for CKD and MI and the possibility of reverse caus-
ation remains, the causal effects of kidney function on MI
risk have been difficult to be confirmed by conventional
observational studies. To solve this issue, recent studies
have implemented MR analysis [8, 9]. In MR, causal esti-
mates can be yielded as genetically predicted exposure is
determined before birth; thus, the instrumental variable
approach is minimally affected by confounding effects or

reverse causation. However, previous MR results indicated
null causal effects from cystatin C- or creatinine-related
parameters and did not support that clinical interventions
targeting kidney function impairment would also be help-
ful for reducing the risk of MI [8, 9]. However, previous
MR analyses were based on the linearity assumption and
tested the causal estimates throughout the entire range of
kidney function exposure. As supranormal eGFR values
were reported to be associated with all-cause mortality or
atherosclerotic cardiovascular diseases, kidney function
could have a parabolic causal effect on MI risk [4–6, 33,
34]. We implemented nonlinear MR analysis methods to
investigate the issue and identified that genetically pre-
dicted eGFR was significantly associated with MI risk with
a quadratic shape of the exposure-outcome relation.

Table 1 Characteristics of the outcome dataset of individuals of white British ancestry in the UK Biobank

Total Female Male

N (N=321,024) (N=172,289) (N=148,735)

Age (years) 58 [51;63] 58 [50;63] 59 [51;64]

Sex

Female 172,289 (54%) 172,289 (100.00%) 0 (0%)

Male 148,735 (46%) 0 (0.0%) 148,735 (100%)

Body mass index (kg/m2) 26.7 [24.1;29.8] 26.1 [23.4;29.6] 27.3 [25.0;30.0]

Obesity (> 30 kg/m2) 77,051 (24%) 39,635 (23%) 37,416 (25%)

Hypertension medication 66,676 (21%) 29,946 (17%) 36,730 (25%)

Systolic BP (mmHg) 136.5 [125;149.5] 133.5 [121.5;147.5] 139.5 [129;152]

Diastolic BP (mmHg) 82 [75.5;89] 80 [73.5;87] 84 [77.5;90.5]

Diabetes mellitus 15,368 (5%) 5830 (3%) 9538 (6%)

Hemoglobin A1c (mmol/L) 35.1 [32.7;37.7] 35.1 [32.7;37.6] 35.2 [32.7;37.9]

Dyslipidemia medication 55,731 (17%) 21,609 (13%) 34,122 (23%)

Triglycerides (mmol/L) 1.49 [1.05;2.16] 1.34 [0.97;1.90] 1.70 [1.19;2.45]

LDL cholesterol (mmol/L) 3.53 [2.96;4.13] 3.59 [3.02;4.20] 3.47 [2.88;4.06]

HDL cholesterol (mmol/L) 1.40 [1.18;1.68] 1.56 [1.33;1.83] 1.24 [1.07;1.46]

eGFR (creatinine, mL/min/1.73 m2) 92.50 [82.61;99.54] 92.86 [82.59;99.79] 92.16 [82.62;99.25]

< 30 301 (0.1%) 127 (0.1%) 174 (0.1%)

≥ 30 and < 60 7063 (2.2%) 3781 (2.2%) 3282 (2.2%)

≥ 60 and < 90 126,376 (39.4%) 66,615 (38.7%) 59,761 (40.2%)

≥ 90 and < 120 186,747 (58.2%) 101,584 (59.0%) 85,163 (57.3%)

≥ 120 537 (0.2%) 182 (0.1%) 355 (0.2%)

eGFR (cystatin C, mL/min/1.73 m2) 88.89 [77.13;100.48] 89.85 [77.48;100.92] 87.88 [76.72;99.73]

< 30 519 (0.2%) 214 (0.1%) 305 (0.2%)

≥ 30 and < 60 14,365 (4.5%) 7602 (4.4%) 6763 (4.6%)

≥ 60 and < 90 153,403 (47.8%) 78,858 (45.8%) 74,545 (50.1%)

≥ 90 and < 120 151,157 (47.1%) 84,976 (49.3%) 66,181 (44.5%)

≥ 120 1580 (0.5%) 639 (0.4%) 941 (0.6%)

Myocardial infarction 13,205 (4%) 3111 (2%) 10,094 (7%)

Continuous values are presented as medians [interquartile ranges], and categorical values are presented as N (%)
BP blood pressure, LDL low-density lipoprotein, HDL high-density lipoprotein, eGFR estimated glomerular filtration rate
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Therefore, this MR study supports that kidney function
impairment would be a causal factor for a higher MI risk,
and the linkage would not be from external confounding
or reverse causal effects.
A reduction in eGFR, usually below 60mL/min/1.73m2

where stage 3 chronic kidney disease is defined [35], has
been reported to be an independent risk factor for coronary
artery disease. The observational associations remained sig-
nificant even after adjustment for known traditional risk fac-
tors such as hypertension or diabetes [2]. Recent findings
suggested the clinical significance of fibroblast-growth factor
23-mediated pathways or calcium-phosphate metabolism in
regard to the risk of CKD progression and MI [36, 37]. A
platelet-related mechanism has also been suggested to medi-
ate the linkage between CKD and MI, as a reduction in
eGFR was associated with higher thrombotic activity and
poor responses to antiplatelet agents [38–40]. There have
been other pathophysiologic mechanisms, such as the
induction of inflammation, vascular calcification, or endothe-
lial dysfunction, that may explain the close association be-
tween CKD and MI [41]. With the current MR findings, a
decrease in eGFR below the reference range < 60mL/min/
1.73m2, may be considered a “causal” factor that elevates the
risk of MI. Further, the identified causal effects imply that
clinical interventions targeting kidney function impairment
may also be beneficial for preventing MI.
Kidney hyperfiltration has been reported to be associated

with the risk of cardiovascular diseases [7, 11], even in a
report where direct measurements of GFR were performed
[42]. Specifically, a previous systematic meta-analysis includ-
ing 24 observational cohorts of 637,315 individuals showed

that eGFR ≥ 105mL/min/1.73m2 was significantly associ-
ated with higher risks of adverse cardiovascular risks [7]. Our
results suggested that MI risk was higher in higher ranges of
genetically predicted eGFR values, similar to previous obser-
vational findings, independent of major comorbidities, sug-
gesting that kidney hyperfiltration may be another “causal”
factor for MI similarly as the state of reduced eGFR below
60mL/min/1.73m2. This interpretation should be made
carefully because eGFR is an estimated value and even cysta-
tin C may be affected by nonkidney factors [43, 44]. How-
ever, as kidney hyperfiltration is considered another state of
impaired kidney function associated with future rapid eGFR
decline [45], it may be acceptable that early kidney function
impairment represented as supranormal eGFR may affect
MI risk. Upregulation of the renin-angiotensin-aldosterone
system and increased proximal tubular sodium-glucose re-
absorption are reasons for glomerular hyperfiltration as they
affect tubuloglomerular feedback [46]. Considering that
renin-angiotensin aldosterone system blockade or sodium-
glucose cotransporter inhibitors 2 reduce both glomerular
hyperfiltration and cardiovascular risk [47–50], the linkage
may be explained by the mediating mechanism. A future
study is warranted to validate our findings and confirm the
mechanism of supranormal eGFR in regard to the risk of
MI. In addition, a study may test the potential benefits of
identifying the cause of kidney hyperfiltration or clinical in-
terventions to reverse supranormal eGFR.
On the other hand, the parabolic shape of the associ-

ation between genetically predicted eGFR and MI risk
explained the null causal estimates reported by previous
MR studies [8, 9] and our summary-level MR analysis.

Fig. 2 Restricted cubic spline curves. We used the instrument-free exposure as the exposure variable and the MI outcome as the outcome
variable in logistic regression analysis. The cubic spline curves were plotted with 10 knots defined by deciles (black arrows). The left curve shows
the results with eGFR values based on creatinine levels and the right curve shows the results with eGFR values based on cystatin C levels. The y-
axes indicate the log odds ratios for MI
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Fig. 3 Results from the nonlinear Mendelian randomization investigation by fractional polynomial model. We used the fractional polynomial
model of the degree 2 model with 100 strata. The base model included the adjusted covariates of age, sex, and the first 10 genetic principal
components. The risk of MI according to creatinine-based eGFR or cystatin C-based eGFR, calculated by the CKD-EPI equation, was investigated in
321,024 individuals (12,205 MI cases). The clinical covariate-adjusted model was adjusted for body mass index, systolic blood pressure values,
hypertension medication history, hemoglobin A1c level, history of diabetes diagnosis, levels of triglycerides, high-density lipoprotein, low-density
lipoprotein, dyslipidemia medication history, and urine microalbumin. The sensitivity analysis was performed in 245,398 individuals (9128 MI cases)
with complete information for the covariates. The black dots indicate the reference eGFR values (eGFR: 90.0 mL/min/1.73 m2)

Table 2 Meta-regression results of the causal estimates from nonlinear MR analysis by fractional polynomial method

Genetically
predicted
exposure

Adjusted covariates Quadratic
P value

β Fractional
polynomial
model power

Estimated
beta

Estimated
standard
error

Estimated
P value

Creatinine-based
eGFR

Age, sex, and 10 PCs < 0.001 β1 1 − 5.36E−2 1.61E−3 < 0.001

β2 3 2.31E−6 6.53E−7 < 0.001

Age, sex, 10 PCs, clinical covariates (e.g., BMI,
hypertension, diabetes, dyslipidemia, and
albuminuria)

0.02 β1 0.5 − 8.87 3.57 0.013

β2 log 0.5 1.38 0.55 0.013

Cystatin C-based
eGFR

Age, sex, and 10 PCs 0.01 β1 2 − 1.48E−3 5.51E−4 0.007

β2 log 2 2.96E−4 1.11E−4 0.008

Age, sex, 10 PCs, clinical covariates (e.g., BMI,
hypertension, diabetes, dyslipidemia, and
albuminuria)

0.02 β1 0 − 1.44 0.67 0.03

β2 3 8.85E−7 3.60E−7 0.01

Clinical covariates included in the adjusted model were body mass index, systolic blood pressure, hypertension medication history, diabetes mellitus diagnosis,
hemoglobin A1c, medication history for dyslipidemia, triglycerides, high-density lipoprotein and low-density lipoprotein cholesterols, and urine
microalbumin levels
eGFR estimated glomerular filtration rate, PC principal components, BMI body mass index
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This study emphasizes that nonlinear MR analysis
should be considered when a U-shaped causal estimate
according to the exposure variable is suspected, as con-
ventional summary-level MR analysis relies on the lin-
earity assumption and can be attenuated for such
quadrative relations. In addition, the overall effect size of
the localized averaged causal estimates was relatively
small compared to the findings in observational studies
[7]. This finding may imply that the previously reported
observational association between eGFR and MI risks

might have been overestimated due to residual con-
founding effects.
There are some limitations of this study. First, MR analysis

cannot prove the clinical utility of modifying an exposure to
affect an outcome [51]. Although this study suggests the
causal linkage between kidney function impairment and MI
risk, a result based on a clinical trial is necessary to suggest
the clinical implications of our findings. In addition, as it is
difficult to provide interpretable effect sizes of the causal esti-
mates in non-linear MR analysis, the degree of the suggested

Fig. 4 Results from the nonlinear Mendelian randomization investigation by piecewise linear method. We used the piecewise linear method with
100 strata. The base model included the adjusted covariates of age, sex, and the first 10 genetic principal components. The risk of MI according
to creatinine-based eGFR or cystatin C-based eGFR, calculated by the CKD-EPI equation, was investigated in 321,024 individuals (12,205 MI cases).
The clinical covariate-adjusted model was adjusted for body mass index, systolic blood pressure values, hypertension medication history,
hemoglobin A1c level, history of diabetes diagnosis, levels of triglycerides, high-density lipoprotein, low-density lipoprotein, dyslipidemia
medication history, and urine microalbumin. The sensitivity analysis was performed in 245,398 individuals (9128 MI cases) with complete
information for the covariates. The red dots indicate the reference eGFR values (eGFR: 90.0 mL/min/1.73 m2)
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causal effects could not be determined herein. Second, MR
analysis cannot provide a direct mechanistic explanation for
the identified causal effects. In particular, as eGFR values are
as an estimated value and cystatin C levels could also be af-
fected by external factors, the mechanism of supranormal
kidney hyperfiltration and its clinical significance should be
validated in future studies. Third, the possibility of selection
bias remains. Although the UK Biobank dataset is the largest
genetic dataset where nonlinear MR analysis was possible,
the UK Biobank cohort has a healthy volunteer bias [52].
Additional studies may be necessary to retest the causal esti-
mates in a population with characteristics that are closer to
those of the general population. Last, nonlinear MR studies
rely on allele score-based analysis. Although we adjusted
clinical covariates to support the attainment of the independ-
ence assumption, potential unmeasured pleiotropic effects
should be considered.

Conclusions
In conclusion, genetically predicted eGFR is significantly
associated with the risk of MI with a parabolic shape,
suggesting that kidney function impairment may causally
elevate MI risk. Clinicians may pay attention to the mea-
sures to prevent kidney function impairment to reduce
the risk of MI. Future study is warranted to investigate
the clinical implications of the findings and the clinical
significance of supranormal eGFR in regard to coronary
artery disease risk.
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