

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

A Modeling Methodology for

Verification of 5G NR-Band

RF Transceiver

5G NR-밴드 무선 주파수 송수신기의

검증을 위한 모델링 방법

August 2021

Department of Electrical

and Computer Engineering

College of Engineering

Seoul National University

Chan Young Park

 i

Abstract

In mobile RF transceiver systems, the large number of digital

circuits employed to compensate or calibrate the non-idealities of

the RF circuits call for models that can work within the digital

verification platform, such as SystemVerilog. While baseband-

equivalent real-number models (RNMs) are the current state-of-

the-art for modeling RF transceivers in SystemVerilog, their

simulation speeds and accuracy are not adequate predicting

performance degradation. Since, its signals can only model the

frequency components near the carrier frequency but not the DC

offsets or high-order harmonic effects arising due to nonlinearities.

Therefore, the growing impacts of nonlinearities call for nonlinear

modeling of their key components to predict the overall system's

performance.

This dissertation presents the models for a multi-standard,

direct-conversion RF transceiver for evaluating its system-level

performance and verifying its digital controllers. Also, this work

demonstrates the Volterra series model for the nonlinear analysis of

a low-noise amplifier circuit in SystemVerilog, leveraging the

functional expression and event-driven simulation capability of

XMODEL.

 ii

 The simulation results indicate that the presented models,

including the digital configuration/calibration logic for the 5G sub-

6GHz-band and mmWave-band transceiver, can deliver 30–1800×

higher speeds than the baseband-equivalent RNMs while estimating

the quadrature amplitude modulation signal constellation and error

vector magnitude in the presence of non-idealities such as

nonlinearities, DC offsets, and I/Q imbalances. In addition, it

implements functionality checkers and parameter coverage analysis

to advance the completeness of system-level verification of the RF

transceivers model.

Keyword : 5G and beyond 5G RF transceiver, System-level

verification, Event-driven simulation, Digital and parameter

coverage analysis, and Modeling methodology for memory effects

Student Number : 2019-23662

 iii

Table of Contents

Abstract .. i

Table of Contents .. iii

List of Figures .. iv

Chapter 1. Introduction ... 1

1.1 Design and Verification Flow

1.2 5G NR Band RF Transceiver IC

1.3 Baseband-Equivalent and Passband Modeling

1.4 Thesis Organization

Chapter 2. Modeling and Simulation of RF Transceiver 11

2.1 Direct Conversion RF Transceiver

2.2 Proposed Transceiver Models

2.3 System and Simulation Performance

Chapter 3. Nonlinear RF System Modeling 28

3.1 Volterra / Perturbation Method

3.2 Low Noise Amplifier Example

3.3 Nonlinearity Analysis

Chapter 4. Coverage Analysis and Functional Verification 42

4.1 Model Parameter Coverage Analysis

4.2 Self-Checking Testbench

 iv

Chapter 5. Conclusion ... 54

Appendix ... 55

A.1 Trigonometric Equation for Non-Ideal Effects

A.2 RNM Baseband Equivalent Modeling

A.3 Parameter Coverage Analysis

A.4 List of Models

Bibliography .. 63

Abstract in Korean ... 65

 v

List of Figures

Figure 1.1. Design and Verification Flow .. 3

Figure 1.2. Baseband and passband signals in RF transceiver 5

Figure 1.3. RF signals in UCM/DCM mixer 5

Figure 1.4. RF signals in frequency domain 7

Figure 1.5. Signal representation (a)RNM and (b)XMODEL 9

Figure 2.1. Overall test bench organization 12

Figure 2.2. Block diagram of the proposed transceiver model 12

Figure 2.3. Describing the functional model of a mixer with gain

mismatch and DC offset calibration 14

Figure 2.4. Describing the functional model of an ABB circuit 16

Figure 2.5. Describing the functional model of a power amplifier

with digital pre-distortion .. 18

Figure 2.6. Describing the functional model of a TX BB circuit that

generates QAM or OFDM symbols (DAC)........................ 20

Figure 2.7. Describing the functional model of a RX BB circuit that

recovers data from received symbols(ADC) 23

Figure 2.8. The simulated QAM signal constellations with various

frequency bands, DC offsets, and I/Q imbalance conditions

 .. 24

Figure 2.9. Simulated waveforms and FFT analysis results 26

Figure 2.10. Simulation performances: run time and RMS error 27

Figure 3.1. Nonlinear system model design flow 29

Figure 3.2. Example of second-order nonlinear system 31

Figure 3.3. Nonlinear systems: complexity-performance 31

Figure 3.4. (a) Common-gate amplifier and (b) its equivalent

circuit model ... 33

Figure 3.5. System diagrams of (a) the overall system and (b) the

third-order nonlinearity .. 34

Figure 3.6. (a) CG amplifier with nonlinearity cancellation and (b)

its equivalent circuit model .. 36

Figure 3.7. Filter model of the (a) conventional and (b) cancellation

 vi

structure, and (c) system diagram of a third-order

nonlinearity ... 37

Figure 3.8. Linearity improvement .. 37

Figure 3.9. Testbenches for the nonlinear RF amplifiers (a) two-

tone test and (b) modulated-tone test 38

Figure 3.10. Time-domain simulation results with the event

markers ... 38

Figure 3.11. The measured output spectrums 39

Figure 3.12. The OIP3 measurement results 41

Figure 4.1. Design verification problems related to digital-to-

analog converter model .. 42

Figure 4.2. Design verification problems related to feedback loop

amplifier model ... 43

Figure 4.3. Pseudocode of the module that measures the coverage

results of weighted-sum models 44

Figure 4.4. Parameter coverage analysis example 45

Figure 4.5. Parameter coverage analysis process and results 46

Figure 4.6. Self-checking testbench organization for coverage

analysis and functionality check .. 48

Figure 4.7. Simulation results of parameter coverage analysis (a)

error-injection test, (b, c) coverage and detected errors

 .. 49

Figure 4.8. Testbench details and verification scenarios 51

Figure 4.9. Simulation results and error observability 52

Figure A.1. Describing the filter model in (a) s-domain and (b) z-

domain ... 57

Figure A.2. Pseudocode for the proposed filter model 57

Figure A.3. Block diagram of the complex baseband equivalent

channel .. 58

Figure A.4. Pseudocode of the module that measures the coverage

results of filter model ... 61

 １

Chapter 1. Introduction

1.1. Design and Verification Flow

Designing an IC chip is a series of highly arduous work, and it is

common for painstakingly crafted chips to end up with chunks of

silicon due to trivial design mistakes. Such failure may further lead

to disastrous waste of development cost and development time.

Therefore, for first-tape-out success, an efficient design flow and

adequate verification method in each step are required. However,

there is a difference in the design flow widely used when designing

analog and digital ICs. First, digital designers design ICs as a top-

down process from an RTL design to a physical geometric

representation, whereas analog designers typically design ICs as a

bottom-up process that constructs circuits using device

characteristics. Inconsistencies in design flow often lead to

embarrassing situations where analog and digital designers apply

different specifications. In addition, analog SPICE and digital HDL

models need to perform co-simulation, but it is challenging to

perform top-level verification due to the slow simulation speed [1].

Therefore, a unified design flow that can efficiently perform design

and verification, whether analog or digital, is required.

The design flow that effectively enables the design and

verification of mixed-signal systems is the top-down of the two

approaches. In the top-down flow, we first create a behavioral model

to determine the architecture and specifications from the higher-

level abstraction and complete the transistor-level design based on

it. This design flow has a clear advantage over bottom-up flow:

speed of simulation. In the bottom-up flow, simulations must be

performed with circuit-level simulators such as SPICE, and verifying

 ２

the behavior of hundreds of millions of transistors takes a

tremendous amount of time (a scalability issue). Consequently, it is

efficient to build a behavioral model for the analog circuit and check

the system-level functionality with the digital model on a single

platform using the logic simulator in the early design cycle.

The top-down design flow for a mixed-signal system is as

follows: First, the designer determines the system's behavior and

creates an analog behavioral model (real-number model or xmodel) and

a digital RTL model [2]. In this process, it is crucial to decide how to

partition into subsystems. The designer must determine each

partitioned block's specification to achieve the overall system's

performance goals. After that, digital RTL is converted into gate-

level netlist through synthesis (Design-compiler, Prime-time, Formality,

…) and verification (VCS, Xcelium, …) process. At the same time,

analog models are converted into physical libraries such as FRAM

(Milkyway, …) through schematic/layout generation (Virtuoso, …),

verification (HSPICE, FineSim, …), and abstraction (Abstract-Generator,

…) process. A top-level Verilog-based pre-netlist is created by

combining the netlists (digital gate-level netlist, analog model netlist,

FRAM), standard cells, and pads generated through the previous

process. Afterward, post-P&R top-level verification (VCS/XA with

SDF Annotate, …) is performed with the top-level post-netlist

created through the auto place-and-route process (IC compiler,

Custom compiler, …), and the final .gds file for production is generated

[3].

 ３

Figure 1.1. Design and verification flow.

module DSP (
 input in,
 input en,
 input clk,
 output out
};
 wire x, y;
 reg a, b;
 …
endmodule

analog.sp digital.v

(b) top.sp (tr-level sim.)

analog.sp digital.sp

 (a) top.v (co-sim.) Place & Route

module DSP (
 input in,
 input en,
 input clk,
 output out
};
 wire x, y;
 reg a, b;
 …
endmodule

model.sv digital.v

(d) top.sv (behavioral sim.)

module mixer (
 input if,
 input lo,
 output rf
};
 real x, y;
 xreal a, b;
 …
endmodule

Tape out
(.gds)

LVS test

Synthesis

Parasitic
extraction

(.pex)

(c) layout

checker

coverager

Functional
Verification

Coverage
Analysis

(e) tb.sv

Modeling

Verification
Scenarios

Verilog-A
Verilog-AMS
VHDL-AMS

wreal
SystemVerilog-RNM

Pure
Digital

FastSPICE

Event-driven
XMODEL

SPICE

SPICE
Fast
SPICE

Verilog-A
Verilog-AMS

Event-driven
XMODEL

ComplexitySimulation Performance

Accuracy Simulation Performance

(a) (b)

 ４

1.2. 5G NR-band RF Transceiver IC

With the growing interaction between the RF analog front-end

and the digital calibration/selection logic in 5G multi-standard RF

transceivers (TRX), an efficient simulation solution that is entirely

based on SystemVerilog is required to verify these transceivers’

functionality and to evaluate their performance. In RF transceivers

that support various legacy bands and carrier aggregation, over 5,000

configuration bus bits are controlled by large complex digital logic to

select a certain frequency band of operation, and various digital

calibration and signal processing techniques are employed to improve

their communication performance in the presence of non-idealities

[4, 5].

To verify the functionality and evaluate performance metrics,

such as error vector magnitude (EVM), fast time-domain simulations,

including analog/RF and digital subsystems, are necessary. In general,

the standard for analog block verification is a transistor-level

simulation using SPICE, which is very accurate using the ODE solver.

Nevertheless, the simulation is very slow, making it almost

impossible for system-level verification [6,7]. Most critical errors

encountered in practical designs are not immense, baffling errors

inside the analog block but minor, mild errors such as pin connection

errors, inverted polarity, incorrect bus order, or pins connected to

the incorrect power domain [8]. It seems like a waste of time to do

lengthy simulations with SPICE to find these cute errors. In this

dissertation, to address the slow simulation speed of SPICE or

SPICE-HDL co-simulation, multi-standard RF transceiver models

are proposed that can run entirely within SystemVerilog and deliver

30–1800× faster speeds than those of the baseband-equivalent real-

number models (RNMs) [9,10,11], leveraging the event-driven

simulation of XMODEL [12].

 ５

1.2. Baseband-Equivalent and Passband Modeling

Figure 1.2. Baseband and passband signals in RF transceiver.

When a signal is transmitted through a channel, it is modulated in

a high-frequency band in a wireless communication system. This

technique allows long-distance transmission with a small antenna

and increases signal bandwidth, making it more robust against noise

and interference. In this case, the original signal to be transmitted in

the low-frequency band is called a baseband signal. Furthermore,

transmission efficiency can be increased by applying a quadrature

amplitude modulation (QAM) method that sums two amplitude-

modulated baseband signals having the same frequency but different

phases of 90 degrees. In this case, when the in-phase component is

𝑠𝐼(𝑡), and the quadrature component is 𝑠𝑄(𝑡), the baseband signal is

expressed as 𝑠𝐵(𝑡) = 𝑠𝐼(𝑡) + 𝑗𝑠𝑄(𝑡) in the form of a complex number

and is referred to as a complex baseband equivalent signal [13,14].

LPF

LPF

(a) Up-conversion (b) Down-conversion

Figure 1.3. Baseband and passband signals in UCM/DCM mixer.

 ６

The baseband signal is mixed (upconverted) with the carrier

signal at the transmitter, and any modulated RF (passband or

bandpass) signal can be represented as:

𝑠𝑃(𝑡) = 𝑅𝑒[𝑠𝐵𝐵(𝑡) ∙ (√2 ∙ 𝑒𝑗2𝜋𝑓𝑐𝑡)]

= √2 𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 ∙ 𝑠𝐼(𝑡) − √2 𝑠𝑖𝑛 2𝜋𝑓𝑐𝑡 ∙ 𝑠𝑄(𝑡)
(1.1)

where 𝑓𝑐 is the carrier frequency. The amplitude of the carrier is

multiplied by √2 to match the power of the transmitted/received

signal. This signal is demodulated to a baseband signal at the receiver.

𝑠𝑃(𝑡) ∙ (√2 ∙ 𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡) = 𝑠𝐼(𝑡) + 𝑠𝐼(𝑡) ∙ 𝑐𝑜𝑠 4𝜋𝑓𝑐𝑡 − 𝑠𝑄(𝑡) ∙ 𝑠𝑖𝑛 4𝜋𝑓𝑐𝑡 (1.2)

Equation (1.1) describes the down-conversion process in the

in-phase path. The passband signal is mixed with the carrier signal

to produce the 𝑠𝐼(𝑡) signal and the 2𝑓𝑐 higher-order signal.

Removing only the high-frequency signal component with a low-

pass filter can be restored to an in-phase baseband signal.

Currently, there are mainly two approaches for modeling RF

systems using RNMs: fast-but-inaccurate baseband-equivalent

(BBEQ) modeling and accurate-but-slow passband modeling

[4,9,13]. To express high-frequency RF signals that are modulated

by low-frequency data, the baseband-equivalent models assume

that the RF signals have a fixed-frequency carrier and only express

its magnitude and phase information or, equivalently, the in-phase (I)

and quadrature-phase (Q) information with a small number of events

[14].

However, when these signals have to include the passband

information, for example, to model frequency tones far from the

carrier frequency such as the DC or high-order harmonic

components, signals must be sampled with a sufficiently fine time-

step to avoid aliasing, and the key benefits of the BBEQ modeling are

lost. In these cases, the passband models that express the RF signals

 ７

may as well be used for their direct computations. However, the

required large number of events typically slows down the simulations

and limits the duration of the simulation to a few symbols, which is

not sufficient to evaluate EVM and collect signal constellation,

requiring at least 1,000 symbols [14].

Figure 1.4. Baseband and passband signals in frequency domain.

In comparison, the event-driven signal representation and

simulation algorithm used by XMODEL [15] can be an effective

solution to address the aforementioned challenges. XMODEL is a

plug-in extension to SystemVerilog developed by Scientific Analog

[6,9,10] and can perform efficient event-driven simulations of

analog models by using functional expressions for their analog signals,

without incurring the overheads of AMS co-simulation. In other

words, an event in XMODEL does not indicate a change in value, but

a change in the functional expression, describing how the signal

changes over time. It expresses the continuous-time waveform of an

analog signal x(t) using the following functional expression, which

also has its counterpart X(s) in the Laplace domain [15]:

𝑥(𝑡) = ∑ 𝑐𝑖𝑡
𝑚𝑖−1𝑒−𝑎𝑖𝑡

𝑖

𝑢(𝑡) → 𝑋(𝑠) = ∑
𝑐𝑖

(𝑠 + 𝑎𝑖)
𝑚𝑖

𝑖

 (1.3)

In other words, each event during the simulation updates the

values of the coefficients ci’s, mi’s, and ai’s, which collectively

describe how the signal varies with time according to (1.3), thus

enabling an efficient, event-driven simulation. The key difference

between this approach and the RNM-based approaches is that the

 ８

former does not rely on a large number of events to express a time-

varying RF/analog signal. As the expression in (1.3) can contain an

arbitrary number of terms, it can include additional frequency

components without triggering additional events. Furthermore,

XMODEL offers a set of SystemVerilog primitives that can describe

the diverse functionalities of analog circuits, and the resulting model

is fully compatible with SystemVerilog. The XMODEL primitives,

such as sin_gen and multiply, each of which performs the operation

suggested by its name, make it easy to compose models simply by

connecting them together [15], and suitable for verifying mixed-

signal feedback loops including both the analog and digital models on

a single platform of SystemVerilog.

Fig. 1.5 compares the RNM and XMODEL models for generating

a sinusoidal signal of which amplitude is controlled by a digital code

(ctrl_amp). The RNM model in Fig. 1.5(a) needs to evaluate a $sin()

function at a constant time-step interval, which is set by the period

of the clock (clk). This time-step interval will greatly determine the

speed and accuracy of the simulation. On the other hand, the

XMODEL model in Fig. 1.5(b) is described using a set of primitives

and its simulation triggers events only when there is a change in the

digital code (ctrl_amp). It is because (1.1) can express a sinusoidal

function directly, without compromising accuracy.

(a) Example of the conventional RNM model.

module sin_gen #(
 parameter freq = 3.5e9, // frequency
 parameter tsp = 10e-9 // time step period
)(
 input reg clk, // sampling clock
 input reg [11:0] ctrl_amp, // control amplitude
 output real sin_out
);
real amp, t;
assign amp = 2 * (real’(ctrl_amp)) / 4096;

always @(posedge clk) begin
 t = $realtime;
 sin_out = amp * $sin(2*`M_PI*freq*t*tsp);
end
endmodule

 ９

(b) Example of the proposed XMODEL model.

Figure 1.5. Signal representation (a) RNM and (b) XMODEL.

As the nonlinearities in mobile radio-frequency (RF) transceiver

systems become prevalent, the SystemVerilog models that can

reflect the resulting harmonic distortions and system dynamics

without a significant loss in the simulation speed while accurately

representing high-frequency signals are required. In real-number

modeling (RNM), a sampling frequency of at least twice the maximum

signal frequency is required according to the Nyquist theorem to

accurately represent a high-frequency (~GHz) RF signal. It means

the simulations must run for a long RF frame time (~ms) with a very

small time-step, which can significantly impact the speed.

module sin_gen #(
 parameter freq = 3.5e9 // frequency
)(
 input reg [11:0] ctrl_amp, // control amplitude
 output real sin_out
);
xreal amp, sin_unit;

dac #(.num_bit(12), .min(0.0), .max(2.0))

XP0 (.in(ctrl_amp), .out(amp));
sin_gen #(.freq(freq)) XP1 (sin_unit);
multiply XP2 (.in(amp, sin_unit), .out(sin_out);

endmodule

 １０

1.3. Thesis Organization

This dissertation showcases a multi-standard 5G RF transceiver

model using XMODEL. First, chapter 2 addresses the key challenges

in modeling the direct-conversion RF transceiver and describes the

presented RF transceiver models. Furthermore, we discuss the

verification and simulation results for the 5G sub-6 GHz and

mmWave-band operations. Chapter 3 explains the Volterra-series

modeling with the perturbation method and details the process of

modeling the CG-LNA structure with and without the linearity-

improvement circuits. Chapter 5 reviews parametric coverage

analysis and explains how to achieve system-level verification with

functional checkers and coverage analysis. And finally, chapter 5

concludes the paper.

 １１

Chapter 2. RF Transceiver Model

2.1. Direct-Conversion RF Transceiver

 While the direct-conversion architecture has the lower

implementation costs and simpler frequency plan that can cater to

multiple standards when compared to its heterodyne counterparts

[16,17], it may be susceptible to the degradations in the

communication performance due to the DC offsets and I/Q imbalance

issues. For instance, the LO signal that leaks into the mixer input can

cause self-mixing and create a DC offset in the mixer output. On the

other hand, the gain/phase mismatch can cause an imbalance between

the I/Q phases, which can destroy the orthogonality of the quadrature

amplitude modulation (QAM) symbols. Consequently, most modern

transceivers employ digital calibration loops to compensate for such

imbalances.

As mentioned previously, as the baseband-equivalent models

are not suitable for expressing the DC offsets or high-order

harmonics in the RF signals, various performance degradations in the

direct-conversion RF transceivers are difficult to predict due to DC

offsets or I/Q imbalances [16,17,18]. This also implies that the

baseband-equivalent models are not suitable for verifying the digital

calibration loops that address these non-idealities. Nonetheless, the

passband models based on RNM cannot be used as an alternative

solution because the number of events required to express high-

frequency RF signals makes the simulation/verification impractical.

The next chapter presents a passband model of a multi-standard,

direct-conversion RF transceiver that utilizes the XMODEL event-

driven algorithm. While delivering faster speeds, the proposed

models can accurately model the DC offset and I/Q imbalance effects,

as well as verify the operation of their digital calibration loops.

 １２

2.2. Proposed Transceiver Models

Figure 2.1. Overall test bench organization.

This chapter describes the proposed SystemVerilog models for

the direct-conversion RF transceiver. Fig. 2.1 shows the overall

testbench configuration for the system. The system comprises

mainly an analog/digital transceiver model described in System

Verilog and Python scripts that can generate control codes (code_

gen.py) and compute system performance (measure.py) from the

simulated results. The analog parts of the transceiver are modeled

using XMODEL primitives, whereas the digital parts are described in

pure Verilog, which can be synthesized into gate-level descriptions

after their functionalities are verified.

Figure 2.2. Block diagram of the proposed transceiver model.

 １３

The RF transceiver model is designed with a direct-conversion

structure, as shown in Fig. 2.2. The transmitter (TX) and receiver

(RX) models are composed of a baseband circuit block, analog

baseband blocks, mixer blocks, and amplifier blocks. The

performance of the system is predicted through the chain simulation

of sending modulated symbols, such as the QAM of OFDM on the

transmitter side and restoring the symbols to data on the receiver

side.

(a) Single-balanced mixer (b) Block diagram of the mixer model.

module mixer (
 input reg [11:0] ctrl_IN_AM_I, // IN_I gain mismatch
 input reg [11:0] ctrl_IN_PM_I, // IN_I phase m.
 input reg [11:0] ctrl_IN_AM_Q, // IN_Q gain m.
 input reg [11:0] ctrl_IN_PM_Q, // IN_Q phase m.
 input reg [11:0] ctrl_LO_AM_I, // LO_I amplitude
 input reg [11:0] ctrl_LO_PM_I, // LO_I phase (cos)
 input reg [11:0] ctrl_LO_AM_Q, // LO_Q amplitude
 input reg [11:0] ctrl_LO_PM_Q, // LO_Q phase (sin)
 input reg [11:0] ctrl_LOL_AM_I, // LO_I leakage mag.
 input reg [11:0] ctrl_LOL_PM_I, // LO_I leakage phase
 input reg [11:0] ctrl_LOL_AM_Q, // LO_Q leakage mag.
 input reg [11:0] ctrl_LOL_PM_Q, // LO_Q leakage phase
 input reg [11:0] DCOC_I, // I-path DC offset
 input reg [11:0] DCOC_Q, // Q-path DC offset
 input xreal IN_I, IN_Q, // input RF signals
 input xreal LO_I, LO_Q, // input LO signals
 output xreal OUT_I, OUT_Q // output RF signals
);
// Input RF and LO signals
xreal g_IN_I, g_IN_Q, g_LO_I, g_LO_Q; // gain
xreal s_IN_I, s_IN_Q, s_LO_I, s_LO_Q; // scaled signal
xreal p_IN_I, p_IN_Q, p_LO_I, p_LO_Q; // phase
xreal d_IN_I, d_IN_Q, d_LO_I, d_LO_Q; // delayed signal

dac #(.num_bit(12), .min(0.0), .max(2.0))

XD0 (.in(ctrl_IN_AM_I), .out(g_IN_I));
multiply XM0 (.in(g_IN_I,IN_I), .out(s_IN_I));
dac #(.num_bit(12), .min(0.0), .max(2.0))

XD1 (.in(ctrl_IN_PM_I), .out(p_IN_I));
delay XE1 (.delay(p_IN_I), .in(s_IN_I), out(d_IN_I));
… // same for d_IN_Q, d_LO_I, d_LO_Q

 １４

(c) Proposed pseudocode for the mixer model

(d) Gain mismatch calibration (e) DC offset calibration

Figure 2.3. Describing the functional model of a mixer

with gain mismatch and DC offset calibration.

The mixer block performs frequency conversion by multiplying

the RF and carrier signals in time domain, and the modeling aims to

reflect the nonlinear factors of the mixer that degrade the

performance of the system. Any mismatch and leakage can cause a

DC offset or gain/phase mismatch between the in-phase and

quadrature-phase paths [19]. The proposed method can simulate the

passband signal in a fully event-driven method; thus, the output

signal can be calculated by multiplying the actual RF/carrier signals

reflecting the amplitude/ phase error and leakage in the time domain.

Fig. 2.3 shows the pseudo code of the proposed mixer model and

illustrations of the calibration methods, respectively. First, for the RF

signals (INI/Q) and carrier signals (LOI/Q) applied to the mixer model,

// LO leakage signals added to input RF signals
xreal g_LOL_I, g_LOL_Q, s_LOL_I, s_LOL_Q; // scaled singal
xreal p_LOL_I, p_LOL_Q, d_LOL_I, d_LOL_Q; // delayed signal
xreal MIX_IN_I, MIX_IN_Q; // Mixer input signals

dac #(.num_bit(12), .min(0.0), .max(2.0))

XD8 (.in(ctrl_LOL_AM_I), .out(g_LOL_I));
multiply XM4 (.in(g_LOL_I,LOL_I), .out(s_LOL_I));
dac #(.num_bit(12), .min(0.0), .max(2.0))

XD9 (.in(ctrl_LOL_PM_I), .out(p_LOL_I));
delay XE3 (.delay(p_LOL_I), .in(s_LOL_I), out(d_LOL_I));
add XA0 (.in(d_IN_I,d_LOL_I), .out(MIX_IN_I));
… // same for MIX_IN_Q

// Mixing operation
xreal MIX_OUT_I, MIX_OUT_Q; // Mixer output signals
multiply XM6 (.in(MIX_IN_I,d_LO_I), .out(MIX_OUT_I));
multiply XM7 (.in(MIX_IN_Q,d_LO_Q), .out(MIX_OUT_Q));

// DC offset calibration
xreal DC_offset_I, DC_offset_Q; // gain
dac #(.num_bit(12), .min(0.0), .max(2.0))

XD12 (.in(DCOC_I), .out(DC_offset_I));
add XA3 (.in(MIX_OUT_I, DC_offset_I), .out(OUT_I));
… // same for OUI_Q
endmodule

 １５

the gain and phase values are distorted by means of externally

assigned control values, and any difference between these values

may reflect the gain/phase mismatch between paths I and Q. The 12-

bit gain/phase control codes are converted into an analog gain/phase

value using the dac primitive, and the input signals are amplified by

the gain value using the multiply primitive and delayed by the phase

value using the delay_var primitive thereafter. Furthermore, some

carrier signals (LO leakages) are leaked in the same manner and are

added to the input signal using the add primitive. The input signals of

the combined mixer are multiplied by the carrier signal, thus

multiplying the actual mixing behavior as well.

Figs. 2.3 (b) and (c) show the gain mismatch calibration (GMC)

method [20,21], DC offset calibration (DCOC) method [22], and

signal constellation diagrams before and after the calibration. When

the GMC calibration is turned on, the RX GMC block measures the

power of each down-converted signal in paths I and Q, and then

compares the magnitudes of the two signals. If the Q-path gain is

greater than the I-path gain, it is lowered through the feedback loop,

and vice versa. The DC offset value is calculated from the RX ADC’s

DCOC block and then assigned to the mixer through a feedback loop.

These 12-bit offset values are converted to analog offset values via

the adc primitive and then subtracted from each path using the add

primitive. The DCOC block uses a set of four clock phases to sample

the signals of the paths I and Q twice each, and searches for the offset

values that makes the absolute difference between the two sample

values equal to zero.

(a) Block diagram of the ABB model.

 １６

(b) Proposed pseudocode for the ABB model.

(c) Frequency response. (d) Signal constellation diagram.

Figure 2.4. Describing the functional model of an ABB circuit.

𝐻(𝑠/𝑘) = ∏ (1 +
𝑠

𝑘 ∙ 𝑧𝑗

)
𝑁𝑧

𝑗=1
∏ (1 +

𝑠

𝑘 ∙ 𝑝𝑖

)
𝑁𝑝

𝑖=1
⁄

(2.1)

The analog baseband model (ABB) filters the high-frequency

components that are generated during the modulation process on the

TX and RX sides and automatically controls the signal power to fit

within a defined range. As shown in Fig. 2.4, the ABB model consists

of a filter block and a variable-gain amplifier block. First, the filter

model is designed with a Chebyshev type-2 structure using the

channel bandwidth value as the cut-off frequency. As the

characteristics of the filter are determined by the parameters (gain,

module abb_filter (
 input reg [5:0] ctrl_pole, // control amplitude
 input reg [5:0] ctrl_gain, // control phase
 input xreal IN, // input RF signal
 output xreal OUT // output RF signal
);
// Initial filter’s parameters
int gain, polesN[10], zerosN[8]; // gain
int poles[10] = ‘{4002664.0, -11133886.0, 11798848.0,

-5631004.0, 11798848.0, 5631004.0, 4002664.0,
11133886.0, 1000000000.0, 0.0 };

int zeros[8] = ‘{ -0.0, -25312276.0, -0.0, -61109241.0,
0.0, 61109241.0, 0.0, 25312276.0};

assign gain = 0.1 * (real’(ctrl_gain)/63 – 1);

// Bandwidth variable filter’s parameters
genvar i, j;
generate
for(i=0; i<10; i=i+1) begin
assign polesN[i] = real’(ctrl_pole) * poles[i];

 end
for(j=0; j<8; j=j+1) begin
assign zerosN[i] = real’(ctrl_pole) * zeros[i];

 end
endgenerate

// Filter model
filter_var #(.num_poles(10), .num_zeros(8))
XF0 (.poles(polesN), .zeros(zerosN), .in(in), .out(out));

endmodule

 １７

poles, and zeros) of the filter primitives, the values of these

parameters must be changed according to the digital control code to

design a variable-bandwidth filter. Furthermore, the variable-gain

amplifier of the ABB maintains the amplitude of the output signal

within a certain range through a feedback loop that automatically

controls the amplifier gain. The input signals are amplified by the gain

that is determined by the 12-bit external bus (gain_dac) and the gain

generated through the AGC feedback loop (gain_agc). In the AGC

loop, first, the power is calculated from the output signal (out) as in

GMC, and this value is compared with a reference value (th) to

ensure that the level of the output signal is within the reference level.

(a) Block diagram of the PA model.

module dpd (
 input reg clk, // digital clock
 input reg [1:0] calib, // calibration mode
 input xreal IN, // PA output signal
 input xreal LO_I, LO_Q, // input LO signal
 output reg [11:0] DPD7, DPD5 // control phase
);
xbit clkx;
xbit [11:0] DPD_Ix, DPD_Qx;
reg [11:0] DPD_I, DPD_Q, delta;
xreal ins, dcm_I, dcm_Q, fil_I, fil_Q, smp_I, smp_Q;

initial begin
DPD7 = 12'b0000_0000_0000;

 DPD5 = 12'b0000_0000_0000;
 delta = 12'b0000_0000_0010;
end

bit_to_xbit XB0 (.in(clk), .out(clkx));
scale #(.scale(1.0/gain)) XP0 (.in(in), .out(ins));

 １８

(b) Proposed pseudocode for the PA model.

(c) Nonlinear characteristic. (d) Signal constellation diagram.

Figure 2.5. Describing the functional model of

a Power amplifier with digital predistortion.

The power amplifier (PA) block amplifies large power input

signals outside of the linear region owing to the transconductance of

the transistor. Consequently, the non-linearities should be

compensated to avoid signal distortion. The gain-compression

relationship between the input and output signal can be defined by

// I-path DPD feedback loop
multiply XM0 (.in(ins, LO_I), .out(dcm_I));
filter #(.poles(pole)) XF0 (.in(ins, LO_I), .out(fil_I));
sample XS0 (.in(fil_I), .trig(clkx), .out(smp_I));

adc #(.num_bit(12), .min(9.0), .max(-9.0))

XA0 (.in(smp_I), .out(DPD_Ix));
bit_to_xbit #(.width(12)) XB0 (.in(DPD_Ix), .out(DPD_I));
… // same for Q-path
always @(posedge clk) begin
if(calib == 2'b10) begin // TX DPD (LV5)

 if(DPD_I > 12'b1100_0111_0001) begin
 if(DPD5 > 12'b0000_0000_0001) begin
 DPD5 <= DPD5 - delta;
 …
 else if (DPD_I < 12'b1100_0111_0001) begin
 if(DPD5 < 12'b1111_1111_1110) begin
 DPD5 <= DPD5 + delta;
 …
 else if(calib == 2'b11) begin // TX DPD (LV7)
 if(DPD_I > 12'b1110_0011_1000) begin
 if(DPD7 > 12'b0000_0000_0001) begin
 DPD7 <= DPD7 - delta;
 …
 else if (DPD_I < 12'b1110_0011_1000) begin
 if(DPD7 < 12'b1111_1111_1110) begin
 DPD7 <= DPD7 + delta;
 …
end
endmodule

 １９

the polynomial function (𝑦 = 𝑔𝑎𝑖𝑛 ∙ 𝑥 − 𝑔𝑎𝑖𝑛 ∙ 𝑘𝑥3) and it can be

modeled by assigning the coefficient of each term to the parameter

of the poly_func primitive, as shown in Fig. 2.5.

One method used to compensate the nonlinearity of the PA is the

digital predistortion (DPD) [23,24], which measures the distortion of

the output signal and pre-distorts the input signal from the DAC

model through a feedback loop so that the output signal achieves the

desired linearity. In the DPD model (dotted box), the output signal is

first scaled by the reciprocal of the gain value and then multiplied by

the LO signal to separate the paths I and Q. The harmonic components

of each signal are filtered, and the amplitude level of the remaining

baseband signal is converted into a 12-bit bus signal (DPDI/Q) using

the adc primitive. In digital DPD logic, this 12-bit measured

amplitude is compared to the reference level, and the offset

predistortion value is calculated and assigned to the DAC model. The

signal constellation diagrams show the symbol locations without and

with the DPD enabled [25, 26].

(a) OFDM signals in frequency/time-domain.

(b) Conventional QAM/OFDM symbol generation in digital model.

 ２０

(b) Block diagram of the QAM/OFDM symbol generation model.

(c) Proposed pseudocode for the QAM generation model.

Figure 2.6. Describing the functional model of a TX BB circuit

that generates QAM or OFDM symbols (DAC).

OFDM (Orthogonal-Frequency-Division-Multiplexing) is a

method of multiplexing a transmission signal by modulating it with

multiple orthogonal subcarriers. As shown in Figure 1, the OFDM

modulator divides a data stream with a high data rate into a plurality

of data streams with a low data rate, modulates and multiplexes each

module qam_gen (
 input reg clk, // digital clock
 input reg [1:0] calib, // calibration mode
 input reg [11:0] DPD7, DPD5 // control phase
 output real amp_I, amp_Q // input LO signal
);

reg [5:0] data; // transmitted data
reg [7:0] qam; // 64-QAM informs.
reg [11:0] qam_i, qam_q;

always @(posedge clk) begin // data generation

if(calib == 00) begin
 data[5:0] = prbs_data;
else if(calib == 11) begin
 data[5:0] = 6’b001100;
…

end

always @(posedge clk) begin // encode data to
QAM

case(data)
6’b000000 : qam <= 8’b1000_1000;
…

end

always @(posedge clk) begin // In-phase QAM

case(qam[3:0])
4’b0000 : qam_i <= 12’b0001_1100_0111 – DPD7;
4’b0010 : qam_i <= 12’b0011_1000_1110 – DPD5;
…
4’b1100 : qam_i <= 12’b1100_0111_0001 + DPD5;
4’b1111 : qam_i <= 12’b1110_0011_1000 + DPD7;

end
… // same for Quadrature-phase QAM

always @(posedge clk) begin // I/Q QAM level

amp_I = real’(qam_i) * 18/4095 – 9;
amp_Q = real’(qam_q) * 18/4095 – 9;

end

endmodule

 ２１

subcarrier, and transmits the subcarriers in parallel.

When 𝑑𝑘 = 𝑎𝑘 + 𝑗𝑏𝑘 is a complex QAM symbol in the k-th

subcarrier, the N-point IFFT OFDM symbol x(n) may be expressed

as a discrete signal as in (2.2). The resulting OFDM signal is in digital

form:

𝑥(𝑛) =
1

𝑁
∑ 𝑑𝑘

𝑁−1

𝑘=0

𝑒
𝑗2𝜋𝑘𝑛

𝑁 (2.2)

In general, RF symbols are digitally generated, as shown in the

preceding equation; however, these signals can be equivalently

denoted as analog signals as shown in (2.3) and can be implemented

only as one event in XMODEL.

𝑥(𝑡) =
1

𝑁
∑(𝑎𝑘 𝑐𝑜𝑠 2𝜋𝑓𝑘𝑡 + 𝑏𝑘 𝑠𝑖𝑛 2𝜋𝑓𝑘𝑡)

𝑁−1

𝑘=0

 (2.3)

The baseband circuit (BB) block models the function used in the

transceiver modem to process signals on both the TX and RX sides.

The TX side performs a DAC function that generates pseudo-random

binary sequence data and converts it to a QAM/OFDM symbol, and

the RX side performs the reverse function of the transmitter to

restore the data, that is, the ADC function.

Fig. 2.6 shows the block diagrams of the QAM and OFDM symbol

generation models. When the “qam_gen” block converts the 6-bit

data into I/Q QAM level which reflects the DPD information, the

“cosine” and “sine” signals, each consisting of a sub-carrier

frequency, are multiplied and sent to the TX side. In addition, the

OFDM generation block models the behavior of the inverse fast

Fourier transform, which then multiplies the signals generated from

12 QAM generation blocks by each sub-carrier signal and combines

all these signals [14].

 ２２

(a) Block diagram of the ADC and ADC unit model.

(b) Block diagram of the ADC and ADC unit model.

(c) Proposed pseudocode for the ADC model.

module adc #(
 parameter prd = 100e-9
)(
 input reg clk,
 input reg [1:0] calib, // calibration mode
 input xreal IN_I, IN_Q, // ADC input signal
 output reg [11:0] DCOC_I, DCOC_Q,
 output reg [5:0] data // received data
);
xbit clkx, clkq, clkb, clks;
xreal A_IP, A_IQ, A_IN, A_QN;

// 4-phase clock sampling
bit_to_xbit XB0 (.in(clk), .out(clkx));
delay_xbit #(.delay(prd/4)) XD0 (.in(clkx), .out(clkq));
delay_xbit #(.delay(prd/2)) XD1 (.in(clkx), .out(clkb));
delay_xbit #(.delay(3*prd/4))XD2 (.in(clkx), .out(clks));

sample XS0 (.trig(clkx), .in(IN_I), .out(A_IP));
sample XS1 (.trig(clkq), .in(IN_I), .out(A_QP));
sample XS2 (.trig(clkb), .in(IN_I), .out(A_IN));
sample XS3 (.trig(clks), .in(IN_I), .out(A_QN));

// ADC
adc_unit XD0 (.in_i(A_IP), .in_q(A_QP), .clk(clkx),

.data(data));
// DCOC
dcoc XC0 (.in_i(A_IP), .in_q(A_IN), .calib(calib)

.DCOC(DCOC_I));
dcoc XC1 (.in_i(A_QP), .in_q(A_QN), .calib(calib)

.DCOC(DCOC_Q));
endmodule

 ２３

(d) Bit-error detection.

Figure 2.7. Describing the functional model of a RX BB circuit

That recovers data from received symbols (ADC).

Fig. 2.7 describes the ADC model, which samples the output

signal of the RX ABB and restores this information to the original data

sequences. The QAM and DC offset information can be obtained by

sampling these two signals with a 4-phase clock. First, the “clk”

clock signal with period “time_sym” is delayed by T/4, T/2, and 3T/4

to generate clkq, clkb, and clks, respectively. When the clock (clkq

or clkb) is triggered, each input signal (BBI/Q) is sampled by the

sample primitive and converted into 4-bit QAM level information in

the “adc_unit” model. Finally, an 8-bit QAM signal (4 bits in each I/Q

path) is demapped to a 6-bit original data sequence.

 ２４

2.3. System and Simulation Performance

The EVM metric measures the distance of the QAM constellation

points from the reference locations and is computed as a root-mean-

squared magnitude of these error vectors normalized to the ideal

signal level. Fig. 2.8 shows the signal constellation diagrams and EVM

values, obtained by post-processing the simulated results in Python.

For each constellation diagram, the blue and red dots represent the

I/Q reference and I/Q received symbols, respectively.

𝐸𝑉𝑀 =
√1

𝑁
∙ ∑ 𝐼𝑒𝑟𝑟

2 (𝑛) + 𝑄𝑒𝑟𝑟
2 (𝑛)𝑁−1

𝑛=0

𝐸𝑉𝑀 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑓.
× 100%

(2.4)

(c) I-path 80% Gain

(d) I-path 120% Gain

(e) Q-path 80% Gain

(f) Q-path 120% Gain

(g) I-path Phase Mismatch

(h) Q-path Phase Mismatch

TX DATA RX DATA 20°Phase Mismatch 10° 0°

Q
u

a
d

ra
tu

re
-p

h
a

s
e

 A
m

p
li

tu
d

e

In-phase Amplit ude

(i) Leakage(a) Sub-6GHz / 64-QAM

(b) mmWave / 256-QAM (j) Random Conditions

TX Data I-path Leakage

I&Q-path LeakageQ-path Leakage

TX Data Case 1 Case 2

Figure 2.8. The simulated QAM signal constellations with various

frequency bands, DC offsets, and I/Q imbalance conditions.

Fig. 2.8(a) shows the 64-QAM signal constellation when the

transceiver model is operating at the 5G NR n78 band, with a 3.5-

GHz carrier frequency and a 300-Mbps data rate. Since the up-link

and down-link uses the same carrier frequency, the testbench

checks the error by running a 200-μs long simulation and comparing

the signals received by the receiver feedback path (RXFB) with the

transmitted signals. The simulated EVM was 0.78%. On the other

 ２５

hand, Fig. 2.8(b) shows the 256-QAM signal constellation when the

transceiver model is operating at the 5G NR n257 band, which is one

of the next-generation mmWave bands of 3GPP specification [14].

It supports a data rate of 1.6Gbps at a 28-GHz carrier frequency.

The simulated EVM after a 100-μs long simulation was 1.23%.

Fig. 2.8(c)-(j) show the simulated signal constellations for the

transceiver operating at the 5G NR n78 band with various non-

ideality conditions assumed. For instance, Fig. 2.8(c)-(f) show the

results with various gain mismatches between the I- and Q-paths,

leading to the distortion in the constellation diagram in the vertical or

horizontal direction. Fig. 2.8(g)-(h) show the results with the phase

mismatch between the I- and Q-paths, where the constellation

points are first rotated but then shaped into a rhombus by the AGC

loop.

Fig. 2.8(i) shows the results with various LO leakage conditions

causing DC offsets. The resulting DC offset shifts the constellation

points either horizontally or vertically. The dots color-coded in red,

blue, and turquoise in Fig. 2.8(i) indicate the simulated shifts in the

64-QAM constellations due to a 1-amplitude leakage into the I-

path input, Q-path input, and both, respectively.

The proposed model and testbench can also randomize these

non-ideality conditions and Fig. 2.8(j) shows the results for two

randomly-selected cases, giving the EVM of 1.81% and 4.56%,

respectively. Hence, it is possible to run a set of simulations each

with different non-ideality conditions and verify whether the

offset/gain calibration loops properly settle and whether the

transceiver yields an EVM within the desired specification.

Figs. 2.9(a) to (d) show the simulated waveforms assuming a

non-ideal case, where the DC offset of the I-path is -0.5, and the

gain of the Q-path is 20% greater than that of the I-path. Figs. 2.9(e)

and (f) show the FFT analysis results of OFDM symbols with 15 kHz

 ２６

spacing from 9 to 9.165 MHz and 3.5 GHz up/down-link: the OFDM

symbol, the up-converted signal, and RX signals with and without

DPD calibration in the PA. Without DPD, a spectral regrowth due to

the intermodulation components deteriorates the RX sensitivity.

Figure 2.9. (a-d) Simulated waveforms

and (e-f) FFT analysis results.

To evaluate the speed of simulation of the proposed model, we

created a baseband-equivalent RNM that could perform the same

operation. In RNM, only the frequency components of the baseband-

equivalent signal near the carrier frequency are modeled, and the

high-frequency harmonics and DC components are ignored. The

non-idealities and non-linearities, caused due to the mismatch

between the gain and phase, are equally reflected in the models. In

addition, the filters are modeled in the z-domain through bilinear

transformation. Both the RNM and XMODEL models share the same

pure Verilog digital control/calibration loop, thus creating a model

that performs exactly the equivalent operations [Appendix 2].

 ２７

Figure 2.10. Simulation performances:

(a) run time and (b) RMS error.

The RNM witnesses a trade-off between the simulation

performance and accuracy over time-step. The simulation speed and

accuracy of the RNM models are dependent on the simulation time-

step of SystemVerilog, which determines the time spacing between

the adjacent points on the RF signal waveforms. Figs. 2.10(a) and (b)

show the speed and accuracy of the simulation results when the

simulation is run for 1 s under various time-step conditions. For the

FR1 band (3.5 GHz carrier and 10 MHz bandwidth), the runtime of

the RNM decreases from 16,367 to 910 s when the simulation is

performed while sweeping time-steps from 250 ps to 4 ns, whereas

the RMS percentage error increases from 0.2 to 35.69%. Moreover,

for the FR2 band (28 GHz carrier and 200 MHz bandwidth), the

runtime decreases from 366,660 to 19,587 s, whereas the RMS error

increases from 0.7 to 34.25 with sweeping time-steps from 12.5 ps

to 200 ps. However, the proposed XMODEL-based model delivers a

constant runtime and accuracy regardless of the time-steps (27 s in

the FR1 band and 203 s in the FR2 band). For both FR1 and FR2

bands, the XMODEL-based model runs 30–1,800 times faster while

transmitting high-frequency passband signals without sacrificing the

accuracy, as shown in Fig. 2.10(b).

 ２８

Chapter 3. Nonlinear Model

3.1. Volterra / Perturbation Method

The Volterra series expansion is well known for modeling the

memory effects of weakly-nonlinear circuits such as the spectral

regrowth in LNAs [26,27]. The Volterra series is a comprehensive

method to model the nonlinear dynamics of the circuits with high

accuracy, where the output response 𝑦(𝑡) to an excitation 𝑠(𝑡) can

be expressed as a sum of multidimensional convolution integrals as

follows:

𝑦(𝑡) = ∑ 𝑦𝑛(𝑡)

∞

𝑛=1

= (ℎ1 ∗ 𝑠)(𝑡) + (ℎ2 ∗ 𝑠 ∗ 𝑠)(𝑡) + ⋯

 = ∑ ∫ …
∞

−∞

∫ ℎ𝑛(𝜏1, 𝜏2, … , 𝜏𝑛)
∞

−∞

∏ 𝑠(𝑡 − 𝜏𝑖)

𝑛

𝑖=1

∞

𝑛=1

𝑑𝜏𝑖

𝑦𝑛(𝑡) = ∫ … ∫ ℎ𝑛(𝜏1, … , 𝜏𝑛) ∙ 𝑠(𝑡 − 𝜏1) … 𝑠(𝑡 − 𝜏𝑛) ∙ 𝑑𝜏1 … 𝑑𝜏𝑛

∞

−∞

∞

−∞

(3.1)

where 𝑦𝑛(𝑡), the nth-order output of the system, is computed as n-

times repeated convolution with the nth-order Volterra-kernel

ℎ𝑛(𝜏1, 𝜏2, … , 𝜏𝑛). This kernel information and output response can be

Fourier transformed and expressed in the Laplace domain as follows:

𝐻𝑛(𝜔1, 𝜔2, … , 𝜔𝑛)

= ∫ … ∫ ℎ
𝑛

(𝜏1, … , 𝜏𝑛) ∙ exp(−𝑗(𝜔1𝜏1 + ⋯ + 𝜔𝑛𝜏𝑛)) ∙ 𝑑𝜏1 … 𝑑𝜏𝑛

∞

−∞

∞

−∞

𝑌(𝑗𝜔) = 𝐻1(𝑗𝜔) ∘ 𝑆 + 𝐻2(𝑗𝜔1, 𝑗𝜔2) ∘ 𝑆2 + 𝐻3(𝑗𝜔1, 𝑗𝜔2, 𝑗𝜔3) ∘ 𝑆3 + ⋯

(3.2)

where, “∘” means multiplication of the amplitude of each frequency

component, and shift of the phase with the appropriate value [ref].

 ２９

However, it is difficult to obtain the kernel information, so the

perturbation method is used to convert the Volterra series expansion

into a collection of multiple linear sub-systems [28,29]. This chapter

explains a method to model the Volterra-series system obtained via

perturbation method by combining the XMODEL functional primitives

and discusses their simulation results. For example, the models of

the common-gate (CG) amplifier presented in [29] demonstrate that

the technique proposed in [29] indeed improves the linearity of the

LNA.

Figure 3.1. Nonlinear system model design flow.

To model nonlinear circuits in SystemVerilog, we apply the

perturbation method to the Volterra series expansion and model it as

a composition of multiple linear subsystems over three steps, as

illustrated in Fig. 3.1. This chapter describes in detail the process of

deriving the Laplace-domain transfer functions from the Volterra

series model and expressing its system model using the XMODEL

primitives in SystemVerilog.

First, we assume a weakly-nonlinear system where the input is

x and the output is y, and this output can be expressed up to the third

order in the Volterra series expansion, as shown in Eq. (3.3).

𝑦(𝑗𝜔) = 𝐴1(𝑗𝜔)°𝑥(𝑗𝜔) + 𝐴2(𝑗𝜔1, 𝑗𝜔2)°𝑥2(𝑗𝜔) + 𝐴3(𝑗𝜔1, 𝑗𝜔2, 𝑗𝜔3)°𝑥3(𝑗𝜔) (3.3)

Then, we can convert this Volterra series expansions into

perturbation-series expansions by applying a small perturbation to

 ３０

the input around the DC operating point, i.e., 𝑥(𝑡) = 𝑥0 + 𝜖∆𝑥(𝑡), where

ϵ is an arbitrarily small scalar value [30]. The nth-order

perturbation-series expansion (n=1,2,3) is obtained by Eq. (3.4).

𝑦(𝑡) = 𝜖 ∙ 𝑦1(𝑡) + 𝜖2 ∙ 𝑦2(𝑡) + 𝜖3 ∙ 𝑦3(𝑡) (3.4)

Next, the nonlinear system is derived from the circuit equations

based on Kirchhoff’s laws and expressed in differential equations,

where q(.), g(.) and u(.) are nonlinear functions of the resistive,

dynamic, and input, respectively.

𝑑

𝑑𝑡
𝑞(𝑦(𝑡)) + 𝑔(𝑦(𝑡)) = 𝑢(𝑥(𝑡)) (3.5)

By substituting the perturbation input and the output of Eq. (3.4)

into Eq. (3.5), the responses of the system are classified according

to their orders, and each response is Laplace-transformed into an

s-domain transfer functions as follows, where the operator “⊗”

denotes the time-domain multiplication in the Laplace domain [4].

𝜖1 − 𝑡𝑒𝑟𝑚 ∶ 𝑌1(𝑠) = 𝐻1(𝑠) ∙ 𝑋(𝑠)

𝜖2 − 𝑡𝑒𝑟𝑚 ∶ 𝑌2(𝑠) = 𝐻2(𝑠) ∙ [𝑌1 ⊗ 𝑌1](𝑠)

𝜖3 − 𝑡𝑒𝑟𝑚 ∶ 𝑌3(𝑠) = 𝐻3(𝑠) ∙ [𝑌1 ⊗ 𝑌2](𝑠) + 𝐻4(𝑠) ∙ [𝑌1 ⊗ 𝑌1 ⊗ 𝑌1](𝑠)

(3.6)

The resulting equations can be easily implemented using the

XMODEL’s functional primitives, i.e., by combining the filter and

multiply primitives. First, the filter primitive describes a linear filter

of which transfer function is in the form of Eq. (3.7) with three design

parameters (DC gain, poles, and zeros). Therefore, the four transfer

functions (H1-H4) obtained in Eq. (3.6) can be modeled with four

filter primitives, each of which expresses the equivalent transfer

function in the following form:

𝐻(𝑠) = 𝐺𝑎𝑖𝑛 × ∏ (1 +
𝑠

𝑧𝑗

)
𝑁𝑧

𝑗=1
/ ∏ (1 +

𝑠

𝑝𝑖

)
𝑁𝑝

𝑖=1
 (3.7)

 ３１

H(s)

Y(s)
x(t) 2 H(s)Y(s)

Figure 3.2. Example of second-order nonlinear system.

Second, the time-domain multiplications in the Laplace domain

(“⊗”) expressing the high-order terms can be modeled with the

multiply primitives. For example, in a nonlinear system, if the output

response with respect to 𝑥2(𝑡) has a transfer function 𝐻(𝑠) (obtained

through the perturbation method), then it can be modeled using a

multiply primitive followed by a filter primitive, as shown in Fig. 3. In

the first stage, 𝑥(𝑡) is squared in the Laplace-domain, and the output

is 𝑌(𝑠) = [𝑥(𝑡) ⊗ 𝑥(𝑡)]. In this way, the response for each order of the

perturbation series can be obtained, and the entire nonlinear system

can be implemented through their linear combination. These

equations represent nonlinearities using a collection of linear

systems, so each system’s transfer function can be modeled with

the XMODEL’s functional primitives in SystemVerilog [31].

Figure 3.3. Nonlinear system model design flow.

LUT
Memoryless
Polynomial

Performance

Complexity

Hammerstein

Wiener

Envelope
Memory

Polynomial Memory
Polynomial

Volterra-based
Models

Volterra/
Perturbation

Nested NUT

 ３２

3.2. Low-noise Amplifier Example

This chapter describes the application of the method introduced

in chapter 3.1 to create a nonlinear model of the conventional and

nonlinearity-canceled common-gate low-noise amplifier (CG-LNA)

introduced in [29]. In both types of LNAs, the output of the system

is a small-signal drain current (iout) and gate-to-source voltage

(vgs), which have the nonlinear characteristics owing to the nonlinear

transconductance of the MOSFET. They can be expressed as a

Volterra series, as in step 1, and converted to Eq. (3. 8) by applying

the perturbation method.

𝑣𝑔𝑠(𝑗𝜔) = 𝐴1(𝑗𝜔)°𝑖𝑖𝑛 + 𝐴2(𝑗𝜔1, 𝑗𝜔2)°𝑖𝑖𝑛
2 + 𝐴3(𝑗𝜔1, 𝑗𝜔2, 𝑗𝜔3)°𝑖𝑖𝑛

3

→ 𝑣𝑔𝑠(𝑡) = 𝜖 ∙ 𝑣𝑔𝑠1(𝑡) + 𝜖2 ∙ 𝑣𝑔𝑠2(𝑡) + 𝜖3 ∙ 𝑣𝑔𝑠3(𝑡)

𝑖𝑜𝑢𝑡(𝑗𝜔) = 𝐵1(𝑗𝜔)°𝑖𝑖𝑛 + 𝐵2(𝑗𝜔1, 𝑗𝜔2)°𝑖𝑖𝑛
2 + 𝐵3(𝑗𝜔1, 𝑗𝜔2, 𝑗𝜔3)°𝑖𝑖𝑛

3

→ 𝑖𝑜𝑢𝑡(𝑡) = 𝜖 ∙ 𝑖𝑜𝑢𝑡1(𝑡) + 𝜖2 ∙ 𝑖𝑜𝑢𝑡2(𝑡) + 𝜖3 ∙ 𝑖𝑜𝑢𝑡3(𝑡)

(3.8)

Furthermore, since their relationship is expressed by the Taylor

series expansion, i.e., 𝑖𝑜𝑢𝑡 = 𝑔𝑚1𝑣𝑔𝑠1 + 𝑔𝑚2𝑣𝑔𝑠2
2 + 𝑔𝑚3𝑣𝑔𝑠3

3 , substituting Eq.

(3.8) into this relationship gives the solution for each order as follows.

𝜖1 − 𝑡𝑒𝑟𝑚 ∶ 𝑖𝑜𝑢𝑡1(𝑡) = 𝑔𝑚1𝑣𝑔𝑠1(𝑡)

𝜖2 − 𝑡𝑒𝑟𝑚 ∶ 𝑖𝑜𝑢𝑡2(𝑡) = 𝑔𝑚1𝑣𝑔𝑠2(𝑡) + 𝑔𝑚2𝑣𝑔𝑠1
2 (𝑡)

𝜖3 − 𝑡𝑒𝑟𝑚 ∶ 𝑖𝑜𝑢𝑡3(𝑡) = 𝑔𝑚1𝑣𝑔𝑠3(𝑡) + 𝑔𝑚2𝑣𝑔𝑠1(𝑡)𝑣𝑔𝑠2(𝑡) + 𝑔𝑚3𝑣𝑔𝑠1
3 (𝑡)

(3.9)

where gm1 is the transistor’s small-signal transconductance, and the

higher-order coefficients (gm2, gm3) indicate the corresponding

nonlinearities:

𝑔𝑚1 =
𝜕𝑖𝑜𝑢𝑡

𝜕𝑣𝑔𝑠

= 𝑔𝑚 𝑔𝑚2 =
1

2

𝜕2𝑖𝑜𝑢𝑡

𝜕𝑣𝑔𝑠
2

=
1

2
𝑔′

𝑚

𝑔𝑚1 =
1

6

𝜕3𝑖𝑜𝑢𝑡

𝜕𝑣𝑔𝑠
3

=
1

6
𝑔′′𝑚

(3.10)

 ３３

A. Conventional CG Amplifier Model

Figure 3.4. (a) CG amplifier and (b) its equivalent circuit model.

From the equivalent circuit of the conventional CG amplifier

shown in Fig. 3.4, we can derive the equation below by applying the

Kirchhoff’s current law at node A:

𝑖𝑖𝑛(𝑡) + 𝑖𝑜𝑢𝑡(𝑡) +
𝑣𝑔𝑠(𝑡)

𝑍
+ 𝐶𝑔𝑠

𝑑𝑣𝑔𝑠(𝑡)

𝑑𝑡
= 0 (3.11)

Substituting Eq. (3.9) into Eq. (3.11), we can obtain a set of three

differential equations by separately equating each coefficient of

power of ϵ to zero.

𝜖1 − 𝑡𝑒𝑟𝑚 ∶ 𝑖𝑖𝑛(𝑡) + 𝑖𝑜𝑢𝑡1(𝑡) +
𝑣𝑔𝑠1(𝑡)

𝑍
+

𝑑

𝑑𝑡
(𝐶𝑔𝑠𝑣𝑔𝑠1(𝑡)) = 0

𝜖2 − 𝑡𝑒𝑟𝑚 ∶ 𝑖𝑜𝑢𝑡2(𝑡) +
𝑣𝑔𝑠2(𝑡)

𝑍
+

𝑑

𝑑𝑡
(𝐶𝑔𝑠𝑣𝑔𝑠2(𝑡)) = 0

𝜖3 − 𝑡𝑒𝑟𝑚 ∶ 𝑖𝑜𝑢𝑡3(𝑡) +
𝑣𝑔𝑠3(𝑡)

𝑍
+

𝑑

𝑑𝑡
(𝐶𝑔𝑠𝑣𝑔𝑠3(𝑡)) = 0

(3.12)

The following partial responses can be obtained by transforming

the equations in Eq. (3.12) to the Laplace domain.

𝜖1 − 𝑡𝑒𝑟𝑚 ∶ 𝑉𝑔𝑠1(𝑠) = 𝐻1(𝑠) ∙ 𝐼𝑖𝑛(𝑠)

𝜖2 − 𝑡𝑒𝑟𝑚 ∶ 𝑉𝑔𝑠2(𝑠) = 𝑔𝑚2 ∙ 𝐻1(𝑠) ∙ [𝑣𝑔𝑠1 ⊗ 𝑣𝑔𝑠1](𝑠)

𝜖3 − 𝑡𝑒𝑟𝑚 ∶ 𝑉𝑔𝑠3(𝑠) = 𝑔𝑚2 ∙ 𝐻1(𝑠) ∙ [𝑣𝑔𝑠1 ⊗ 𝑣𝑔𝑠2](𝑠)

+𝑔𝑚3 ∙ 𝐻1(𝑠) ∙ [𝑣𝑔𝑠1 ⊗ 𝑣𝑔𝑠1 ⊗ 𝑣𝑔𝑠1](𝑠)

(3.13)

Cgs Cgsiout iout

A A

Vin

RS

RS RSiin
=Vin/ RS

iin
=Vin/ RS

RD

LS CS ω 2ωΔω

Z'(ω)

ω 2ωΔω

Clarge Clarge

Z'(ω)

Vgs Vgs

(a) (b) (c)

 ３４

𝜖1 − 𝑡𝑒𝑟𝑚 ∶ 𝐼𝑜𝑢𝑡1(𝑠) = 𝐻1(𝑠) ∙ 𝐼𝑖𝑛(𝑠)

𝜖2 − 𝑡𝑒𝑟𝑚 ∶ 𝐼𝑜𝑢𝑡2(𝑠) = 𝑔𝑚2/𝑔𝑚1
2 ∙ 𝐻2(𝑠) ∙ [𝑖𝑜𝑢𝑡1 ⊗ 𝑖𝑜𝑢𝑡1](𝑠)

𝜖3 − 𝑡𝑒𝑟𝑚 ∶ 𝐼𝑜𝑢𝑡3(𝑠) = 𝑔𝑚2/𝑔𝑚1
2 ∙ 𝐻2(𝑠) ∙ [𝑖𝑜𝑢𝑡1 ⊗ 𝑖𝑜𝑢𝑡2](𝑠)

+ (
𝑔𝑚2

2

𝑔𝑚1
4 −

𝑔𝑚3

𝑔𝑚1
3) ∙ 𝐻2(𝑠) ∙ [𝑖𝑜𝑢𝑡1 ⊗ 𝑖𝑜𝑢𝑡1 ⊗ 𝑖𝑜𝑢𝑡1](𝑠)

(3.14)

where,

𝐻1(𝑠) = −
1

𝑔𝑚1 + 1/𝑍 + 𝑠𝐶𝑔𝑠

 𝐻2(𝑠) =
1/𝑍 + 𝑠𝐶𝑔𝑠

𝑔𝑚1 + 1/𝑍 + 𝑠𝐶𝑔𝑠

. (3.15)

Now we can express the LNA output signals, the gate-to-

source voltage (Vgs), and output current (Iout), by summing the partial

responses in the perturbation series:

∴ 𝑉𝑔𝑠(𝑠) = 𝑉𝑔𝑠1(𝑠) + 𝑉𝑔𝑠2(𝑠) + 𝑉𝑔𝑠3(𝑠)

∴ 𝐼𝑜𝑢𝑡(𝑠) = 𝐼𝑜𝑢𝑡1(𝑠) + 𝐼𝑜𝑢𝑡2(𝑠) + 𝐼𝑜𝑢𝑡3(𝑠)
(3.16)

Figure 3.5. System diagrams of (a) the overall system and

(b)the third-order nonlinearity.

In Eq. (3.14), each term in the partial responses is basically a

response of a linear filter to a product between the lower-order

 ３５

partial responses or input. Therefore, each term can be modeled

using a pair of multiply and filter primitives, and the parameters used

for each filter (gain, poles, and zeros) are summarized in Table 1.

With the nonlinear system models for the CG-LNAs described

so far, as shown in Fig. 3.5(b), we can analyze for the key factors

affecting the nonlinear output response, by dividing it into two

pathways: one is for the effect of the third-order intermodulation

(IM3) and the other is for effects of the second-order harmonic term.

We can see that the IM3 is directly influenced by the third-order

nonlinear term via the gm3 value in H4(s) and suppressing gm3 is the

key to improve linearity. Also, the second-order effect creates

unwanted harmonics and intermodulation components, which are

converted in the multiplier to produce IM3 components and cause

long-term memory effect. This effect is modeled in H2(s) and H3(s).

 ３６

B. CG Amplifier Model with the Nonlinearity-Cancellation Technique

Figure 3.6. (a) CG amplifier with nonlinearity cancellation

 and (b) its equivalent circuit model

The CG amplifier with the nonlinearity-cancellation technique

introduced in [29] uses an RF current source with a capacitor and

inductor in parallel to maximize the impedance at the resonance

frequency (ω) and minimize the impedance at Δω and 2ω, as shown

in Fig. 3.6. This technique can reduce the overall nonlinearity arising

from the second-order distortion effect. The differential equation

below describes the relationship between the input iin and the output

iout in node B:

𝑖𝑖𝑛(𝑡) + 𝑖𝑜𝑢𝑡(𝑡) + (𝐶𝑔𝑠 + 𝐶𝑠)
𝑑𝑣𝑔𝑠(𝑡)

𝑑𝑡
+

1

𝐿𝑠
∫ 𝑣𝑔𝑠(𝜏)

𝑡

0

𝑑𝜏 = 0 (3.15)

Again, by substituting Eq. (9) derived from the Volterra/

perturbation-series expansion method into Eq. (15), the partial

responses of Vgs and Iout of the circuit can be computed, where the

Volterra/perturbation-series expansion is obtained in the same

manner as in section A. The only difference is with the transfer

functions describing each filter. Therefore, the diagram for the

resulting system model is almost identical to that for the conventional

CG LNA as shown in Fig. 3.4, and the parameter values of the filters

are summarized in Table 2, where fp1,2 = 1/𝜋(𝑔𝑚1𝐿 ± √(𝑔𝑚1𝐿)2 − 4𝐿𝐶).

 ３７

Figure 3.7. Filter model of the (a) conventional and (b) cancellation

structure, and (c) system diagram of a third-order nonlinearity.

In this LNA with the nonlinearity-cancellation technique, the

employed RF current sources create additional poles and zeros in the

transfer function, which serves the roles of suppressing the second-

order nonlinearity term. Fig. 3.7 illustrates how it works. In the

conventional CG-LNA, the single-pole low-pass filter cannot

sufficiently suppress the second-order nonlinearity term and the

resulting intermodulation component. On the other hand, in the CG-

LNA with the nonlinearity-cancellation technique, the corresponding

filter has a band-pass characteristic due to the additional poles and

zeros and can suppress the intermodulation components. This

reduction in the second-order nonlinear terms leads to the lower

intermodulation distortion (IMD), lower interference, and better

linearity.

Figure 3.8. Linearity improvement.

 ３８

3.3. Nonlinearity Analysis

(a) Two-tone test (b) Modulated-tone test

Figure 3.9. Testbenches for the nonlinear RF amplifiers.

Figure 3.10. Time-domain simulation results with event markers.

Fig. 3.9(a) shows a testbench that feeds a two-tone signal to the

two CG-LNA models. The two sinusoidal signals (3.45 and 3.55 GHz)

with the same power of 16 dB are added and fed into the amplifiers.

This two-tone test is a widely-used method to assess the

nonlinearity of the circuits by measuring the power of the second and

third intermodulation components generated in response to the two-

tone input. For both amplifiers, the circuit parameters Cgs, L, and C

are assumed to be 153-fF, 8.2-pF, and 0.25-nH, respectively. Fig.

3.9(b) shows a testbench that feeds the RF signals that are up-

converted from 64-QAM baseband signals. First, the quadrature

amplitude modulated signals centered at DC (BBI, BBQ) are generated

with 50 MHz symbol rates, and they are up-converted to a carrier

frequency of 3.5 GHz. The modulated RF signal (RFI, RFQ) can be

expressed as:

 ３９

RFI = 𝐴𝐼 ∙ cos(𝜔50𝑀𝐻𝑧𝑡) ∙ cos(𝜔3.5𝐺𝐻𝑧𝑡)

RFQ = 𝐴𝑄 ∙ sin(𝜔50𝑀𝐻𝑧𝑡) ∙ sin(𝜔3.5𝐺𝐻𝑧𝑡).
(3.16)

Figure 3.11. The measured output spectrums.

Fig. 3.10 shows the simulated waveforms with the two-tone

input, along with the event markers that indicate where the actual

computations were performed. The output waveforms have events

only when the input waveforms have events, demonstrating the

event-driven simulation discussed earlier. Yet, the intermodulation

 ４０

components embedded in the signals can be analyzed accurately,

thanks to the functional expressions used by XMODEL. For this

particular simulation, the input and output signals in fact have only

one event, performing a 100-μs simulation in only 0.40 seconds.

Even with the modulation RF signals, the 100-μs simulation

transmitting 5,000 symbols takes only 8.55 seconds.

Another way to analyze the simulated results is to plot the

frequency-domain spectrum of the signal via FFT. Figs. 3.11(a) and

(b) plot the second and third harmonics and intermodulation

components in a two-tone test, respectively. Comparing the output

spectrum of the nonlinearity-cancellation amplifier with the

conventional amplifier, the second-order distortion components are

reduced by 20 dB, and consequently, the third-order distortion

components are greatly reduced. The magnitude of the IMD (the

difference between the fundamental power and IM3 power) is

improved from -45 dBc to -70 dBc with the nonlinearity cancellation

technique.

The spectral regrowth analysis is also possible by applying a

multi-tone signal. Figs. 3.11(c) and (d) shows the output spectrum

when four sinusoidal inputs with the same amplitude and equal

frequency spacing are applied to each amplifier. When these

multiple-frequency tones are processed at once in a channel, the

resulting IMD terms form a band, which can degrade the performance.

After the nonlinearity cancellation, the power of the spectral

regrowth is reduced by 30 dB. The power of the fundamental signal

(the purple line, ω3.5GHz ± ω50MHz) and IM3 signal (the red line) for the

QAM-modulated signal are shown in Figs. 3.11(e) and (f). When

comparing the IM3 components in the output spectrums of the

conventional and nonlinearity-cancellation amplifiers, the amount of

the IM3 component suppressed by the nonlinearity-cancellation

technique is significant.

 ４１

Figure 3.12. The OIP3 measurement results.

Fig. 3.12 plots the powers of the fundamental and IM3 signals

measured while increasing the input power from -20 dBm to 50 dBm.

At the point where the input power is 35 dBm, the output signal starts

getting saturated. The third-order output intercept point (OIP3) was

measured in both amplifiers and the nonlinearity-cancellation

technique achieves a 16 dB improvement.

The proposed modeling method has several advantages in the

design and verification of nonlinear RF systems. First, fast

simulations are possible without compromising accuracy as both the

low-frequency baseband signals and high-frequency RF and

harmonic signals can be expressed in equations. An event is triggered

only when the coefficients of these equations change. Second, the

presented models can run on a digital simulation platform

(SystemVerilog) suitable for verifying RF systems enclosed by

various digital feedback loops and digital control logic. Finally, the

process of breaking a nonlinear system into a set of linear sub-

systems can identify factors that degrade the performance of the

system and gain design insights.

 ４２

Chapter 4. Coverage Analysis

and Functional Verification

 The previous chapters described the behavioral modeling method

of RF transceivers to speed up performance estimation and functional

verification. This chapter introduces a testbench using a parameter

coverage analysis technique and a functionality checker for complete

verification.

4.1. Model Parameter Coverage Analysis

din<11>

din<10>

din<9>

din<0>

din<1>

din<2>

... 12

ERROR !!
...

ctrl1<3:0>

ctrl2<3:0>

ctrl3<3:0>

ctrl10<3:0>

Control
Block

D-to-A
Converter

ERROR !!

OUT

Checker

ctrl1<3:0> ctrl10<3:0>... REF
COMPARE

PASS / FAIL

4'b1111

4'b0010

4'b0000

4'b1111

DAC

10

30

...

...

...

.........

(a)

(b)

Scenario 1 Scenario 5 Scenario 12 Scenario 13Scenario 16...

PASS PASS PASS PASSPASS...

Checker Results :

Test Scenarios :

(c)

Simulation Time

Figure 4.1. Design verification problem related to

digital-to-analog converter (DAC) model.

 The example in Fig. 4.1 shows the limitations of checker-only

verification. Even if there are errors in the LSB 2-bit of the DAC

model, the control codes (din[11:0]) corresponding to these bits are

rare, and the checker may not find the error. These errors are

 ４３

detected only by running the simulation “long enough” for the checker

to find them. However, since it is difficult to figure out how long the

verification designer must simulate to ensure that the parameters are

error-free, a technique must quantify whether the simulation has

sufficiently verified the parameters.

Feedback

10

5

DAC

REF
Checker

Error < 1%

1

99

100

0.2

100100

PASS

OUT

ctrl
<5:0>

Feedback

10

5

DAC

REF
Checker

Error < 1%

0.1

99

99.1

0.2

99.1100

PASS

OUT

ctrl
<5:0>

Feedback

10

5

DAC

REF
Checker

Error < 1%

10

50

60

20

60150

FAIL

OUT

ctrl
<5:0>

(a) (b) (c)

Figure 4.2. Design verification problem related to

feedback loop amplifier model.

 Figure 4.2 shows that if the checker is not sensitive to small

signals, it may not detect errors. When the gain of the feedback loop

amplifier has a value of ‘0.5’ instead of ‘5’ as an error and the value

generated through the feedback loop is small enough, the checker will

not be able to find any errors. Therefore, to find the parameter error

of these amplifiers, it is necessary to “sufficiently” simulate various

scenarios and check the case where the value generated in the

feedback loop is large enough, as shown in Fig. 4.2 (c). Again, a

verification method is needed to quantify whether the simulation has

sufficiently checked the parameters during simulation.

Therefore, this chapter introduces parameter coverage analysis

[32] and functionality checker, which are methods to check whether

test scenarios are suitable for verifying that the TRX model has the

appropriate design parameters such as gain, bandwidth, etc. First, the

testbench's coverage measurement (meas_cov) module calculates

the sensitivity and threshold. Sensitivity is a value that indicates how

sensitive the output to the input is when the parameter value changes

and the threshold is a value that determines whether the sensitivity

is enough or not. This value is chosen as the optimal value based on

 ４４

the information theory when defining the stochastic input signal space

[Ref, Appendix]. Next, the meas_cov module compares the

sensitivity to the threshold and, if the sensitivity is greater than the

threshold, concludes that the parameter is covered.

Figure 4.3. Pseudocode for the module that measures

the coverage results of weighted-sum models.

module meas_cov #(
 `parameter_integer(num_in, 1), // number of inputs
 `parameter_real(scale[num_in-1:0],'{num_in{1.0}}) // input scale factors
)(
 `input_xreal out, // output
 `input_xreal [num_in-1:0] in // input
);
 xreal [num_bit-1:0] sen; // sensitivity
 xreal thr; // threshold
 xbit [num_bit-1:0] cov; bit [num_in-1:0] coverage; // coverage
 // (1) Calculate Optimum Threshold
 calc_thr #(.num_in(num_bit), .scale(scale)) thr_calc (thr);
 genvar i_gen;
 generate
 for (i_gen=0;i_gen<num_bit;i_gen=i_gen+1) begin: genblock
 // (2) Calculate Signal Sensitivity
 calc_cov calc(.in_ref(out), .in_pert(in[i_gen]), .sen(sen[i_gen]));
 // (3) Decide Parameter Coverage
 slice cov_result (.in(sen[i_gen]), .in_ref(thr), .out(cov[i_gen]));
 end
 endgenerate
 xbit_to_bit #(.width(num_bit)) xtb_cov (.in(cov), .out(coverage));
 covergroup cg;
 // (4) Report Coverage Result
 cover_point : coverpoint coverage;
 endgroup
 cg cg_inst = new();
 always @(posedge clk) begin
 cg_inst.sample();
 end
endmodule

module calc_cov (
 `input_xreal in_ref, in_pert,
 `output_xreal sen
);
 xreal e_ref, e_pert;
 real e_rreal, e_preal, sensitivity;
 calc_ene #(.scaler(scaler)) icalc1(.in(in_ref), .out(e_ref));
 calc_ene #(.scaler(scaler)) icalc2(.in(in_pert), .out(e_pert));
 xreal_to_real xtr_er (.in(e_ref), .out(e_rreal));
 xreal_to_real xtr_ep (.in(e_pert), .out(e_preal));
 assign sensitivity = e_preal/e_rreal;
 real_to_xreal rtx (.in(sensitivity), .out(sen));
endmodule

module calc_thr #(
 `parameter_integer(num_in, 2), // number of inputs
 `parameter_real(scale[num_in-1:0],'{num_in{1.0}}) // input scale factors
)(
 `output_xreal thr
);
 integer sum, i;
 real threshold;
 initial begin
 sum = $rtoi(scale[0]);
 for (i=1; i<num_in; i=i+1) begin
 sum = sum + $rtoi(scale[i]);
 end
 end
 assign threshold = 1.0 / (sum * sum);
 real_to_xreal rtx (.in(threshold), .out(thr));
endmodule

 ４５

Fig. 4.3 introduces the pseudo-code of the meas_cov module that

measures the coverage results of weighted-sum (𝑦 = ∑ 𝑤𝑖𝑥𝑖
𝑁
𝑖=1)

blocks such as ADD and DAC. Adder blocks can combine multiple

paths in the RF transceiver to support multi-band/multi-standard

operations, such as phased array structure, beamforming MIMO, or

carrier aggregation. Also, the digital-to-analog conversion block can

convert externally applied control codes into the model's parameter

or codes generated in a digital loop into the calibration value.

𝑆𝑘(𝒘𝒌, 𝑥) = 𝑤𝑘
2 ∙

∫ 𝑥2(𝑡)
𝑇𝑝𝑒𝑟𝑖𝑜𝑑

0
𝑑𝑡

∫ 𝑦2(𝑡)
𝑇𝑝𝑒𝑟𝑖𝑜𝑑

0
𝑑𝑡

=
𝐸𝑖𝑛

𝐸𝑜𝑢𝑡

Figure 4.4. Parameter coverage analysis example.

 The meas_cov module performs 4 main functions: threshold

value calculation (calc_thr), sensitivity value calculation (calc_cov),

coverage determination and coverage report. The calc_cov module

uses the calc_ene module to measure the energy of the input signal

(in_pert) and the output signal (in_ref) and then calculates the

sensitivity value as a ratio of these values. After that, the slice

primitive compares the sensitivity value to the threshold value,

outputting 1'b1 if the sensitivity value is high and 1'b0 if the threshold

value is high. When testbench specifies this value as a coverage point,

 ４６

VCS measures the coverage and reports it to the dashboard using

features such as coverage metrics, assertions, and coverage groups.

Similarly, the meas_fcov module can measure coverage results for

other analog blocks such as filter, slicer, comparator, and scaler

[Appendix 3].

100

80

60

40

20

0

Coverage [%]

Coverage [%] Coverage [%]# of Detected Errors

of Detected Errors

of Detected Errors

100

80

60

40

20

0

100

80

60

40

20

00

10

20

30

40

0

10

20

30

40

0

10

20

30

40

No Error Detected No Error Detected

Not Covered

0 100 200 300 400

Not Covered
50

50 50

Simulation Time (ns)

0 100 200 300 400

Simulation Time (ns)

0 100 200 300 400

Simulation Time (ns)

(a)

(b) (c)

After Error
Correction

After Error
Correction

Verification
Completed !!

Need to add
checkers

Figure 4.5. Parameter coverage analysis process and results.

 Fig. 4.5 (a) shows the results of the parameter coverage analysis

for each verification process, where the red line represents the

coverage results, and the green line represents the number of

detected errors. As the simulation runs longer, both values gradually

increase and then saturate to a certain value when the checker no

longer finds any errors. Suppose all found errors are corrected, and

the verification engineer performs the same verification process. In

that case, the coverage reaches 100%, as shown in Fig. 4.5 (b), which

means that all parameters have been sufficiently verified without

errors.

 ４７

 However, if the checker is not sufficient to verify the model's

functionality, the coverage will not reach 100% even if no errors are

detected, as shown in Fig. 4.5 (c). In such a case of insufficient

coverage, the verification engineer must add explicit checkers to the

testbench and repeat the error finding process until the coverage

reaches 100%.

 ４８

4.2. Self-checking Testbench

Figure 4.6. Self-checking testbench configuration

for coverage analysis and functionality check

The self-checking testbench "top" is composed of the RF

transceiver model "dut_top" introduced in chapter 2 and the sub-test

benches "TB" for verifying test scenarios [7]. The dut_top performs

TX-to-RX chain simulation under various test conditions, and the

values of each sub-block parameter set determine these test

conditions. Testbench top randomly generates these parameters

under certain constraints. Both TX and RX have UHB, MHB, and LB

operating paths depending on the carrier frequency range and can

work in 64/256/1024-QAM modulation mode. The TB consists of

checkers that perform functional verifications and checkers that

perform digital/analog parameter coverage analysis. The test

benches in TB are instantiated into dut_top using SystemVerilog's

bind construct, allowing access to the signal inside dut_top without

modifying the source code of the RFIC top model [33]. The TB

consists of test benches that can check the functionality of each block,

the connection between blocks, and system performance.

 ４９

Coverage [%] Coverage [%] Coverage [%]# of Detected Errors # of Detected Errors # of Detected Errors

of Injected Errors Simulation Time (ns) Simulation Time (ns)

(a) (b) (c)

No Error Detected

Not Covered

84

97

100

Figure 4.7. Simulation results of parameter coverage analysis

(a) error-injection test, (b, c) coverage and detected errors.

Fig. 4.7 shows the coverage results (red line) and the number of

detected errors (green line) in the RFIC model with 4000 parameters.

First, Fig. 4.7 (a) illustrates the simulation result after injecting an

arbitrary number of errors into the model. When the error was not

injected, the parameter coverage result strikes 100%. Yet, as the

number of injected errors increased, the coverage gradually declined

as the number of non-covered parameters increased.

 Figure 4.7(b) shows the number of errors found in the checker

and the parameter coverage results as the simulation time increases

when verifying the model with 100 errors injected. Although the

checker quickly found dozens of errors at the beginning of the

simulation, long simulations are needed to find the last 1-5 errors

afterward. By correcting all the detected errors, the coverage

reaches 100% without errors, as shown in Fig. 4.4 (c)

Fig. 4.8 illustrates the testbench configuration for the six key

sub-blocks of the RFIC model: LO, DAC, filter, mixer, amplifier, and

ADC.

 ５０

TB 1: Verification scenarios of LO model.

(1) Compare the frequency of the I/Q-carrier signals with the

reference frequency.

(2) Compare the frequency band of the LO output signals with the

frequency band determined by the band selection code.

(3) Measure digital and parameter coverage in 12-bit control code,

control code-to-frequency model, and band selection model.

TB 2: Verification scenarios of DAC model.

(1) Compare the frequency of the clock with the reference frequency

(symbol rate).

(2) Compare the QAM mode/level with the reference mode/level.

(3) Measure digital and parameter coverage in 12-bit control code,

control code-to-QAM level model, and QAM mode selection model.

TB 3: Verification scenarios of filter model.

(1) Compare the pole value with the reference bandwidth.

(2) Calculate the gain from the input and output signal power and

check that the value is similar to the filter gain (default DC gain = “1”

and gain for each frequency is previously stored in the LUT).

(3) Measure digital and parameter coverage in 12-bit control code

and filter model.

TB 4: Verification scenarios of mixer model.

(1) Check that the input I/Q signals are multiplied by the I/Q signals

of the appropriate bands, respectively.

(2) Measure digital and parameter coverage in selection code and

path connection model.

TB 5: Verification scenarios of amplifier model.

(1) Compare the gain of the amplifiers with the reference gain.

(2) Measure digital and parameter coverage in selection code and

path connection model.

 ５１

ct
rl

_f
re

q
<1

1:
0>

C
A

LC
FR

EQ

R
EF

FR
EQ

ER
R

C
O

V

P
as

s/
Fa

il

%
 R

es
u

lt

M
EA

S
FR

EQ

ER
R

P
as

s/
Fa

il

co
s

si
n

fr
eq

TB
 1

-1
TB

 1
-2

D
U

T

co
s_

U
H

B

si
n

_U
H

B

co
s_

M
H

B

si
n

_M
H

B

co
s_

LB

si
n

_L
B

M
EA

S
P

W
R

M
EA

S
P

W
R

ER
R

P
as

s/
Fa

il

TB
 1

-3

C
O

V

%
 R

es
u

lt

C
O

D
E

G
EN

TB

P
as

s/
Fa

il

D
U

T

C
O

D
E

G
EN

%
 R

es
u

lt

D
.C

O
V

TB

ct
rl

_f
re

q
<1

1
:0

>
C

A
LC

FR
EQ

R
EF

FR
EQ

ER
R

C
O

V

P
as

s/
Fa

il

%
 R

es
u

lt

M
EA

S
FR

EQ

ER
R

P
as

s/
Fa

il

cl
k

fr
eq

TB
 2

-1
TB

 2
-2

D
U

T

Q
A

M
G

EN R
EF

Q
A

M

ER
R

C
O

V

P
as

s/
Fa

il

%
 R

es
u

lt

TB
 2

-3

q
am

C
O

D
E

G
EN

%
 R

es
u

lt

D
.C

O
V

TB

ct
rl

_B
W

<1
1

:0
>

C
A

LC
FR

EQ

R
EF

FR
EQ

ER
R

C
O

V

P
as

s/
Fa

il

%
 R

es
u

lt

M
EA

S
P

W
R

G
A

IN
 ≈

 1
 ?

P
as

s/
Fa

il

B
W

TB
 3

-1
TB

 3
-2

D
U

T

C
O

D
E

G
EN

%
 R

es
u

lt

D
.C

O
V

TB

M
EA

S
P

W
R

C
O

V

%
 R

es
u

lt

in
o

u
t

in

R
EF

G
A

IN

ER
R

P
as

s/
Fa

il

D
U

T

M
EA

S
P

W
R

G
A

IN

TB
 3

-3

M
EA

S
P

W
R

C
O

V

%
 R

es
u

lt

o
u

t
in

TBin

p
o

le

U
H

B
_I

U
H

B
_Q

M
H

B
_I

M
H

B
_Q

LB
_I

LB
_Q

M
EA

S
P

W
R

M
EA

S
P

W
R

ER
R

P
as

s/
Fa

il

TB
 4

-1

TB

P
as

s/
Fa

il

D
U

T

C
O

V

%
 R

es
u

lt

TB
 4

-2

C
O

D
E

G
EN

%
 R

es
u

lt

D
.C

O
V

in
_I

in
_Q

lo
_I

lo
_Q

ct
rl

_g
ai

n
<1

1:
0>

C
A

LC
G

A
IN

R
EF

FR
EQ

ER
R

C
O

V

P
as

s/
Fa

il

%
 R

es
u

lt

M
EA

S
FR

EQ

G
A

IN
 ≈

 1
 ?

P
as

s/
Fa

il

ga
in

TB
 5

-1
TB

 5
-2

D
U

T

C
O

D
E

G
EN

%
 R

es
u

lt

D
.C

O
V

TB

M
EA

S
FR

EQ

C
O

V

%
 R

es
u

lt

in
o

u
t

in

M
EA

S
P

W
R

ER
R

P
as

s/
Fa

il

TB
 5

-4

D
U

T

ga
in

ga
in

ga
in

in
_I

in
_Q

C
O

V

%
 R

es
u

lt

C
O

D
E

G
EN

%
 R

es
u

lt

D
.C

O
V

C
O

V

%
 R

es
u

lt

TB

TB
 5

-3
TH G
EN

D
U

T

TB
 6

-1

%
 R

es
u

lt

rx
_

d
at

a

TB

in
A

D
C

S&
H

EV
M

B
ER

P
as

s/
Fa

il

cl
k

tx
_

d
at

a
Q

A
M

F
ig

u
re

 4
.8

.
T

e
s
tb

e
n
c
h
 d

e
ta

il
s
 a

n
d
 v

e
ri

fi
c
a
ti
o
n
 s

c
e
n
a
ri

o
s
.

 ５２

TB 6: Verification scenarios of ADC model.

(1) Check for bit errors, and calculate EVM value. (After sampling

the peak value, compare the value to the threshold values

(th_up/th_dn) of QAM level. The peak value should be less than th_up

and greater than th_dn.)

(2) Measure digital and parameter coverage in ADC output data and

compare model.

After the simulation, the pass/fail results for each verification

scenario are displayed on the monitor, allowing verification engineers

to identify which blocks have functional errors or have not achieved

sufficient coverage. Fig. 4.9 shows the simulation results of the

functionality checker and coverage analysis when design errors are

intentionally injected into the model.

(a) (b)

Figure 4.9. Simulation results and error observability.

 First, in case 1, the checker results in Fig. 4.8 (a) can confirm

that errors occur in subsequent blocks due to a connection error in

the Q-path of the down-conversion mixer block (RX-DCM). For

 ５３

case 2, the checker reported the same error as case 1, but the

coverage results show that the error has already occurred in the PA

block before the DCM block. These errors would have been

challenging to find before tape-out, and even if seen, it would have

been challenging to determine where the actual error occurred.

Therefore, functional checkers and parametric coverage analysis can

improve the completeness and observability of verification.

 ５４

Chapter 5. Conclusion

In this dissertation, the SystemVerilog models for a multi-

standard, direct-conversion RF transceiver enables efficient event-

driven simulation. The models can estimate the performance metrics

of the systems in the presence of various non-ideality conditions,

such as DC offsets and I/Q imbalances, and verify the operation of

the digital configuration/calibration controllers. The proposed models

can serve the roles of the high-level MATLAB models for

performance evaluation and digital RTL models for digital verification,

and SPICE netlists for analog simulation while delivering fast speed

entirely within SystemVerilog. The proposed models can be used as

a simulation platform for exploring various RF transceiver

architectures before IC design and as a verification testbed for

checking the digital configuration/ calibration controllers before

sign-off. In addition, modeling methodology using the XMODEL

functional primitives based on the Volterra/ perturbation-series

expansion is presented and explained with the RF low-noise

amplifier examples. The simulation results show the adjacent channel

interference and spectral regrowth generated due to the LNAs'

nonlinearity and show that the OIP3 is improved by 16 dB after

applying the nonlinearity cancellation technique.

 ５５

Appendix

Appendix 1. Trigonometric Equation for Non-Ideal Effects

A. I/Q gain mismatch in mixer model [14].

𝐵𝐵𝐼
′ = 𝐾𝐼 ∙ 𝑅𝐹 × 𝐿𝑂𝐼

 = 𝐾𝐼 ∙ {𝐴𝐼 ∙ cos 𝜔𝐵𝐵𝑡 × cos 𝜔𝐿𝑂𝑡 − 𝐴𝑄 ∙ sin 𝜔𝐵𝐵𝑡 × sin 𝜔𝐿𝑂𝑡} × cos 𝜔𝐿𝑂𝑡

 =
𝐴𝐼𝐾𝐼

2
cos 𝜔𝐵𝐵𝑡 {1 + 𝑐𝑜𝑠 2𝜔𝐿𝑂𝑡} −

𝐴𝑄𝐾𝐼

2
∙ sin 𝜔𝐵𝐵𝑡 ∙ {sin 2𝜔𝐿𝑂𝑡 + sin 0}

 =
𝐴𝐼𝐾𝐼

2
{cos 𝜔𝐵𝐵𝑡}

∴ 𝐵𝐵𝐼 = 𝐵𝐵𝐼
′ × (−2) = −𝐴𝐼𝐾𝐼 ∙ cos 𝜔𝐵𝐵𝑡 → ∴ 𝐵𝐵𝐼(𝜔𝐵𝐵𝑡 = 180°) = 𝐴𝐼𝐾𝐼

(A.1)

𝐵𝐵𝑄
′ = 𝐾𝑄 ∙ 𝑅𝐹 × 𝐿𝑂𝑄

 = 𝐾𝑄 ∙ {𝐴𝐼 ∙ cos 𝜔𝐵𝐵𝑡 × cos 𝜔𝐿𝑂𝑡 − 𝐴𝑄 ∙ sin 𝜔𝐵𝐵𝑡 × sin 𝜔𝐿𝑂𝑡} × sin 𝜔𝐿𝑂𝑡

 =
𝐴𝐼𝐾𝑄

2
∙ cos 𝜔𝐵𝐵𝑡 ∙ {sin 2𝜔𝐿𝑂𝑡 − sin 0} −

𝐴𝑄𝐾𝑄

2
∙ sin 𝜔𝐵𝐵𝑡 ∙ {1 − 𝑐𝑜𝑠 2𝜔𝐿𝑂𝑡}

 = −
𝐴𝑄𝐾𝑄

2
{sin 𝜔𝐵𝐵𝑡}

∴ 𝐵𝐵𝑄 = 𝐵𝐵𝑄
′ × (−2) = 𝐴𝑄𝐾𝑄 ∙ sin 𝜔𝐵𝐵𝑡 → ∴ 𝐵𝐵𝑄(𝜔𝐵𝐵𝑡 = 90°) = 𝐴𝑄𝐾𝑄

(A.2)

B. I/Q phase mismatch in mixer model [14].

𝐿𝑂𝐼 = cos(𝜔𝐿𝑂𝑡 ± 𝜑) = cos 𝜔𝐿𝑂𝑡 ∙ cos 𝜑 ∓ sin 𝜔𝐿𝑂𝑡 ∙ sin 𝜑

𝐿𝑂𝑄 = sin(𝜔𝐿𝑂𝑡 ± 𝜑) = sin 𝜔𝐿𝑂𝑡 ∙ cos 𝜑 ± cos 𝜔𝐿𝑂𝑡 ∙ sin 𝜑
(A.3)

𝐵𝐵𝐼

′ = 𝑅𝐹 × 𝐿𝑂𝐼

 = {𝐴𝐼 ∙ cos 𝜔𝐿𝑂𝑡 − 𝐴𝑄 ∙ sin 𝜔𝐿𝑂𝑡} × {cos 𝜔𝐿𝑂𝑡 ∙ cos 𝜑 ∓ sin 𝜔𝐿𝑂𝑡 ∙ sin 𝜑}

 =
𝐴𝐼

2
cos 𝜑 ±

𝐴𝑄

2
sin 𝜑 → ∴ 𝐵𝐵𝐼 = 𝐵𝐵𝐼

′ × 2 = 𝐴𝐼 cos 𝜑 ± 𝐴𝑄 sin 𝜑

(A.4)

𝐵𝐵𝑄

′ = 𝑅𝐹 × 𝐿𝑂𝑄

 = {𝐴𝐼 ∙ cos 𝜔𝐿𝑂𝑡 − 𝐴𝑄 ∙ sin 𝜔𝐿𝑂𝑡} × {sin 𝜔𝐿𝑂𝑡 ∙ cos 𝜑 ± cos 𝜔𝐿𝑂𝑡 ∙ sin 𝜑}

 = ±
𝐴𝐼

2
sin 𝜑 −

𝐴𝑄

2
cos 𝜑 → ∴ 𝐵𝐵𝑄 = 𝐵𝐵𝑄

′ × 2 = ±𝐴𝐼 sin 𝜑 − 𝐴𝑄 cos 𝜑

(A.5)

∴ |𝐵𝐵| = √𝐴𝐼
2 + 𝐴𝑄

2 ∴ ∠𝐵𝐵 = ∠(𝐴𝑄, 𝐴𝐼) ∓ 𝜑 (A.6)

 ５６

C. LO leakage in mixer model [14].

𝐵𝐵𝐼

′ = (𝑅𝐹 ± 𝐾 ∙ 𝐿𝑂𝐼) × 𝐿𝑂𝐼

 = {𝐴𝐼 cos 𝜔𝐵𝐵𝑡 × cos 𝜔𝐿𝑂𝑡 − 𝐴𝑄 sin 𝜔𝐵𝐵𝑡 × sin 𝜔𝐿𝑂𝑡 ± 𝐾 cos 𝜔𝐿𝑂𝑡} × cos 𝜔𝐿𝑂𝑡

 =
𝐴𝐼

2
∙ {cos 𝜔𝐵𝐵𝑡} ±

K

2

∴ 𝐵𝐵𝐼 = 𝐵𝐵𝐼
′ × (−2) = −𝐴𝐼 ∙ cos 𝜔𝐵𝐵𝑡 ∓ 𝐾 → ∴ 𝐵𝐵𝐼(𝜔𝐵𝐵𝑡 = 180°) = 𝐴𝐼 ∓ 𝐾

(A.7)

𝐵𝐵𝑄

′ = (𝑅𝐹 ± 𝐾 ∙ 𝐿𝑂𝑄) × 𝐿𝑂𝑄

 = {𝐴𝐼 cos 𝜔𝐵𝐵𝑡 × cos 𝜔𝐿𝑂𝑡 − 𝐴𝑄 sin 𝜔𝐵𝐵𝑡 × sin 𝜔𝐿𝑂𝑡 ± 𝐾 sin 𝜔𝐿𝑂𝑡} × sin 𝜔𝐿𝑂𝑡

 = −
𝐴𝑄

2
∙ {sin 𝜔𝐵𝐵𝑡} ±

𝐾

2

∴ 𝐵𝐵𝑄 = 𝐵𝐵𝑄
′ × (−2) = 𝐴𝑄 ∙ sin 𝜔𝐵𝐵𝑡 ∓ 𝐾 → ∴ 𝐵𝐵𝑄(𝜔𝐵𝐵𝑡 = 90°) = 𝐴𝑄 ∓ 𝐾

(A.8)

D. Even-order distortion in mixer model.

𝑥(𝑡) = 𝐴1 ∙ cos 𝜔1𝑡 + 𝐴2 ∙ cos 𝜔2𝑡 , where 𝜔1 ≈ 𝜔2

𝑦(𝑡) = 𝛼1 ∙ 𝑥(𝑡) + 𝛼2 ∙ 𝑥2(𝑡)

 = 𝛼1 ∙ 𝐴1 ∙ cos 𝜔1𝑡 + 𝛼1 ∙ 𝐴2 ∙ cos 𝜔2𝑡 + 𝛼2 ∙ 𝐴1
2 ∙ cos2 𝜔1𝑡

 +𝛼2 ∙ 𝐴2
2 ∙ cos2 𝜔2𝑡 + 𝛼2 ∙ 𝐴1 ∙ 𝐴2 ∙ cos(𝜔1 + 𝜔2)𝑡

 +𝛼2 ∙ 𝐴1 ∙ 𝐴2 ∙ cos(𝜔1 − 𝜔2)𝑡 → almost DC component

(A.9)

𝑥(𝑡) = (𝐴 + 𝜀 ∙ cos 𝜔𝑚𝑡) ∙ (𝑎 ∙ cos 𝜔𝑐𝑡 + 𝑏 ∙ sin 𝜔𝑐𝑡)

𝑥2(𝑡) = (𝐴 + 𝜀 ∙ cos 𝜔𝑚𝑡)2 ∙ (𝑎 ∙ cos 𝜔𝑐𝑡 + 𝑏 ∙ sin 𝜔𝑐𝑡)2

 = 2 ∙ (𝑎2 + 𝑏2) ∙ 𝐴𝜀 ∙ cos 𝜔𝑚𝑡 + ⋯ → Baseband signal

(A.10)

E. Nonlinearity in amplifier model [11].

𝑦(𝑡) = 𝑎1𝑥(𝑡) + 𝑎2𝑥2(𝑡) + 𝑎3𝑥3(𝑡)

𝑎1 = 10
𝐺𝑑𝐵
20 , 𝑎2 =

𝑎1

√2 ∙ 50
1000

∙ 10
𝑖𝑖𝑝2
10

, 𝑎3 = 𝑎1
3 ∙

10𝑃1𝑑𝐵/20 − 10(𝑃1𝑑𝐵+1)/20

103(𝑃1𝑑𝐵+1)/20
(A.11)

GdB is the gain (Vout/Vin, [dB]), iip2 is the second-order intercept

point, and P1dB is the 1dB compression point of the linear function.

 ５７

Appendix 2. RNM Baseband Equivalent Model

A. Z-domain filter model.

(a) (b)

Figure A.1. Describing the filter model

in (a) s-domain and (b) z-domain.

Figure A.2. Pseudocode for the proposed filter model.

Bilinear transformation can transform the s-domain filter

characteristics (XMODEL) into the z-domain (RNM) with the same

frequency characteristics. The first-order low-pass filter in Fig.

A.1(a) has a transfer function Ha(s). It is converted to Hd(z) through

the following derivation process.

𝐻𝑎(𝑠) =

1
𝑠𝐶

𝑅 +
1

𝑠𝐶

=
1

1 + 𝑅𝐶𝑠
=

1

1 + 𝜏𝑠
, 𝜏 =

1

𝜔𝐶

=
1

2𝜋𝑓𝑝

𝐻𝐷(𝑧) = 𝐻𝑎 (
2

𝑇
∙

𝑧 − 1

𝑧 + 1
) =

1 + 𝑧−1

(1 +
2𝜏
𝑇

) + (1 −
2𝜏
𝑇

) 𝑧−1
=

Y

X

(A.12)

module abb_filter #(
 parameter gain = 1,
 parameter fmax = 1.0e9,
 parameter fmin = 1.0e6
)(
 input [11:0] ctrl_pole,
 input real in,
 output real out
);
 real period, pole, tau, Ax, Ay, XD, YD;

 // discrete-time filter: Y = X + Ax*Z-1 + Ax*Ay*Z-1
 assign period = 1.0/50.0e6;
 assign pole = real’(ctrl_pole) * (fmax-fmin)/4095.0;
 assign tau = 1.0/(2.0*3.141592*pole);
 assign Ax = 1.0/(1.0+(2.0*tau/period));
 assign Ay = (2.0*tau/period)-1;

 always @(posedge clk) begin
 XD = in_I;
 YD = out_I*Ay;
 end
 assign out = gain*Ax*(in_I+XD+YD);

endmodule

 ５８

𝑌 =
𝑋

1 +
2𝜏
𝑇

+
𝑋 ∙ 𝑧−1

1 +
2𝜏
𝑇

+
(

2𝜏
𝑇

− 1) ⋅ 𝑌 ∙ 𝑧−1

1 +
2𝜏
𝑇

= 𝐴𝑥 ∙ {𝑋 + 𝑋 ∙ 𝑧−1 + 𝐴𝑌 ⋅ 𝑌 ⋅ 𝑧−1}

𝑤ℎ𝑒𝑟𝑒, Ax =
1

1 +
2𝜏
𝑇

, 𝐴𝑌 =
2𝜏

𝑇
− 1

(A.13)

Eq. (A.13) can be drawn as a block diagram shown in Fig A.1(b)

and implemented in SystemVerilog as shown in Fig A.2.

B. Complex-baseband equivalent channel.

[34] describes how to represent a complex baseband equivalent

channel model. The following is a brief introduction to how to do that.

(a) (b)

(c)

Figure A.3. Block diagram of the complex

baseband equivalent channel.

fC fC+WfC-W-fC -fC+W-fC-W

fC fC+WfC-W

+W-W

|SP(f)|

|SP
+(f)|

|SB(f)|

fC fC+WfC-W-fC -fC+W-fC-W

fC fC+WfC-W

+W-W

|HP(f)|

|HP
+(f)|

|HB(f)|

fC fC+WfC-W-fC -fC+W-fC-W

fC fC+WfC-W

+W-W

|YP(f)|

|YP
+(f)|

|YB(f)|

hB(t)

sB(t) yB(t)

 ５９

sP(t) and yB(t) are passband signals, and sB(t) and yB(t) are

baseband equivalent baseband signals. Since filtering sP(t) with the

wideband channel response h(t) is equivalent to filtering sP(t) with

the passband equivalent channel response hP(t), h(t) can replace with

hP(t) as shown in Fig. A.3 (a). By deriving the output response of the

passband filter as follows, we can redraw the block diagram as shown

in Fig. A.3 (b-1) [34].

𝑦𝑃(𝑡) = [𝑠𝑃(𝑡) ∗ ℎ𝑃(𝑡)] ∙ 2𝑒−𝑗2𝜋𝑓𝑐𝑡 = ∫ 𝑠(𝜏) ∙ ℎ𝑃(𝑡 − 𝜏) 𝑑𝜏 ∙ 2𝑒−𝑗2𝜋𝑓𝑐𝑡

= ∫ 𝑠(𝜏) ∙ 2𝑒−𝑗2𝜋𝑓𝑐𝜏 ∙ ℎ𝑃(𝑡 − 𝜏) ∙ 2𝑒−𝑗2𝜋𝑓𝑐(𝑡−𝜏) 𝑑𝜏

= [𝑠(𝑡) ∙ 2𝑒−𝑗2𝜋𝑓𝑐𝑡] ∗ [ℎ𝑃(𝑡) ∙ 𝑒−𝑗2𝜋𝑓𝑐𝑡]

(A.14)

As LPF and ℎ
𝑃

(𝑡) ∙ 𝑒−𝑗2𝜋𝑓𝑐𝑡 are both LTI systems, the order of the

two blocks can be reversed, as shown in Fig. A.3 (b-2). In this figure,

the block of the squared part (modulate the baseband signal and then

demodulate it again) receives sB(t) and produces sB(t), so we can

remove them, as shown in Fig. A.3. (b-3). The remaining block,

ℎ
𝑃

(𝑡) ∙ 𝑒−𝑗2𝜋𝑓𝑐𝑡, is the baseband equivalent channel model [34].

ℎ
𝐵

(𝑡) = ℎ
𝑃

(𝑡) ∙ 𝑒−𝑗2𝜋𝑓𝑐𝑡 (A.15)

 ６０

Appendix 3. Parameter Coverage Analysis

The threshold is a constant determined when the model is defined.

In contrast, the meas_cov module needs to calculate the sensitivity

by comparing the relationship between the input and output signals

during the simulation run. For reference, sensitivity is a function of

the model parameter pk and the input signal 𝑥(𝑡). Suppose N model

parameters 𝒑 = [𝑝1, 𝑝2, … , 𝑝𝑘 , … , 𝑝𝑁] produce output 𝑦(𝑡|𝒑) for input

𝑥(𝑡). In that case, if the kth parameter is changed ∆(parameter is 𝒑′

and output is 𝑦(𝑡|𝒑′)), the sensitivity can be expressed as the

difference between the two output signals, as shown in the following

equation [32].

𝑆𝑘(𝑝, 𝑥(𝑡)) ≡ lim
∆→0

𝐷(𝑦(𝑡|𝒑), 𝑦(𝑡|𝒑′))

0.5 (
∆
𝑝𝑘

)
2 = 𝑝𝑘

2 ∙

‖
𝜕𝑦(𝑡|𝒑)

𝜕𝑝𝑘
‖

2

2

‖𝑦(𝑡|𝒑)‖2
2

= 𝑝𝑘
2 ∙

∫ (
𝜕𝑦(𝑡|𝒑)

𝜕𝑝𝑘
)

2
𝑇𝑠𝑦𝑚

0
𝑑𝑡

∫ (𝑦(𝑡|𝒑))
2𝑇𝑠𝑦𝑚

0
𝑑𝑡

(A.16)

The analog adder outputs weighted-sum values for multiple

inputs, and the N-bit DAC outputs weighted-sum values for N digital

input codes. In both cases, it produces results 𝑦 = ∑ 𝑤𝑖𝑥𝑖
𝑁
𝑖=1 for the

input 𝒙(𝑡) = [𝑥𝑖(𝑡)] and weight 𝒘(𝑡) = [𝑥𝑖(𝑡)] parameters. The

following equations define sensitivity and threshold, respectively,

and the physical meaning of the sensitivity function is the relative

energy of the input signal/code [32].

𝑆𝑘(𝑝, 𝑥(𝑡)) = 𝑤𝑘
2 ∙

∫ (𝑥𝑘(𝑡))
2𝑇𝑠𝑦𝑚

0
𝑑𝑡

∫ (𝑦(𝑡))
2𝑇𝑠𝑦𝑚

0
𝑑𝑡

, 𝜃𝑘 =
𝑤𝑘

2

∑ 𝑤𝑖
2𝑁

𝑖=1

 (A.17)

The filter model can model the high frequencies generated by

modulation in the TX/RX stage, the band characteristics of the RFIC,

and the channel characteristics. These analog filters can be

expressed as a transfer function H(s) in the s domain with poles 𝒑 =

[𝑝𝑖] and zeros 𝒛 = [𝑧𝑗] as parameters [10]. The following equations

 ６１

define sensitivity and threshold, respectively, and the physical

meaning of the sensitivity function is the spectral distribution of the

input power over the maximum power [32].

𝐻(𝑠) = ∏ (1 +
𝑠

𝑧𝑗

)
𝑁𝑧

𝑗=1
/ ∏ (1 +

𝑠

𝑝𝑖

)
𝑁𝑝

𝑖=1
 (A.18)

 𝑆𝑘(𝑝, 𝑧, 𝑥(𝑡)) = 𝑝𝑘
2 ∙

∫ (
𝜕(𝑥(𝑡) ∗ ℎ(𝑡))

𝜕𝑝𝑘
)

2
𝑇𝑠𝑦𝑚

0
𝑑𝑡

∫ (𝑥(𝑡) ∗ ℎ(𝑡))
2𝑇𝑠𝑦𝑚

0
𝑑𝑡

𝜃𝑝 = 𝑝2 ∙
∫ (

𝜕ℎ(𝑡)
𝜕𝑝

)
2

𝑇𝑠𝑦𝑚

0
𝑑𝑡

∫ (ℎ(𝑡))
2𝑇𝑠𝑦𝑚

0
𝑑𝑡

(A.19)

Figure A.3. Pseudocode for the module

that measures the coverage results of filter model

module meas_fcov (
 `input_xreal out, // output
 `input_xreal in, // input
 `input_real p // pole (bandwidth)
);
 xreal sen, thr; // sensitivity, threshold
 xbit cov; bit coverage; // coverage

 real g;
 always @(p) g = 1.0/(6.24*p);

 // (1) Calculate Signal Sensitivity
 filter #(.gain(g), .poles(`{p, 0, p, 0}), .zeros(`{0.0}))
 ipert_1 (.in(in), .out(out_pert_neg));
 filter #(.gain(g), .polse(`{p, 0}), .zeros(`{0.0}))
 ipert_2 (.in(in), .out(out_pert_pos));
 add #(.num_in(2), .scale(`{-1.0, 1.0}))
 ipert_3 (.in({out_pert_neg, out_pert_pos}), .out(out_pert));

 // (2) Calculate Optimum Threshold
 assign thr = 0.5 / (6.28*6.28*p*p);

 // (3) Decide Parameter Coverage
 cpmpare cov_result (.in(sen), .in_ref(thr), .out(cov), .trig(clk));
 xbit_to_bit #(.width(num_bit)) xtb_cov (.in(cov), .out(coverage));

 // (4) Report Coverage Result
 covergroup cg;
 cover_point : coverpoint coverage;
 endgroup
 cg cg_inst = new();
 always @(posedge clk) cg_inst.sample();
endmodule

 ６２

Appendix 4. List of Models

A. RF Transceiver Models

// RF Transceiver Model (XMODEL):

TOP.sv, transmitter.sv, receiver.sv, scs_gen.sv, qam_gen.sv

ABB.sv, channel.sv, GMC.sv mixer_cal.sv, PA.sv, receiver.sv,

ADC.sv, DCOC.sv, mixer.sv, ref_gen.sv, LNA.sv, sw.sv, mux.sv,

Route.sv, BB.sv, add_cov.sv, dac_cov.sv, meas_cov.sv, VGA.sv

// RF Transceiver Model (BBEQ-RNM):

(…) zfilter.sv

// Low-Noise Amplifier Model:

LNA_wCC.sv, LNA_woCC.sv

B. Testbench and Post-processing Scripts

// RF Transceiver Model (XMODEL/BBEQ-RNM):

TB_IDEAL.sv, TB_woDCOC.sv, TB_woGMC.sv, TB_woDPD.sv,

TB_woAGC.sv, TB_256QAM.sv, TB_64QAM.sv TB_FR1.sv

TB_FR2.sv, TB_TOP.sv, TB_FR1_2ns/1ns/500ps/250ps.sv,

TB_FR2_100ps/50ps/25ps/12_5ps.sv

// Low-Noise Amplifier Model

TB_640QAM.sv, TB_640QAM_two_LNA.sv, TB_Fund_IM.sv,

TB_LNAs_meas.sv, TB_multi_tone.sv, TB_QAM.sv, TB_TOP.sv,

TB_two_tone.sv, TB_LNA_wc.sv, TB_LNA_woC.sv

// Parameter Coverage Analysis

add_cov.sv, dac_uniform.sv, common.sv, slice_cov.sv, dac_cov.sv,

compare_cov.sv, filet_1st_static.sv, scale_cov.sv

// Performance Estimating Script

coverage.py, calculate.py, cal_pole.py, imp_cal.py, chebyshev.sv,

cmd_ofdm.py, plot_constellation.py, calc_evm.py

 ６３

Bibliography

[1] J. Kim, et al., “A Model-First Design and Verification Flow for

Analog-Digital Convergence Systems: A High-Speed Receiver

Example in Digital TBs,” Int’ Symp. Circuts and Sys. (ISCAS),

May 2012.

[2] E. Shera, “Buck Converter Modeling in SystemVerilog for

Verification and Virtual Test Applications,” Int’ Mixed-Signal

Test Workshop (IMSTW), Jun. 2015.

[3] B. J. Lamerse, Introduction to Logic Circuits & Logic Design

with Verilog, 2nd ed. Switzerland: Springer, 2019.

[4] C. Y. Park, et al., “Event-Driven Modeling and Simulation of

5G NR-Band RF Transceiver in SystemVerilog,” in IEEE Intl’

conf. on Synthesis, Modeling, Analysis and Simulation Methods

and Applications to Circuit Design (SMACD), Jul. 2021.

[5] J. Lee, et al., “21.6 A Sub-6GHz 5G New Radio RF

Transceiver Supporting EN-DC with 3.15Gb/s DL and 1.27Gb/s

UL in 14nm FinFET CMOS,” in IEEE ISSCC Dig. Tech. Papers,

Feb. 2019.

[6] W. Dunham, “RFIC Design Methodology: Functional

Verification,” in IEEE Region 5 Tech. Conf., Apr. 2007.

[7] H. Chang, et al., “Verification of Complex Analog and RF IC

Designs,” Proc. Of the IEEE, Mar. 2007.

[8] K. Karnane, et al., “Solutions for Mixed-Signal SoC

Verification,” Cadence Design Systems, 2009.

[9] J. E. Chen, “A Modeling Methodology for Verifying

Functionality of a Wireless Chip,” in IEEE Behavioral Modeling

and Simulation Workshop (BMAS), Sep. 2009.

[10] J. He, et al., “System-Level Time-Domain Behavioral

Modeling for a Mobile WiMax Transceiver,” in IEEE

Behavioral Modeling and Simulation Workshop (BMAS), Sep.

2006.

[11] J. B. David, “Radio Receiver Mixer Model of Event-Driven

Simulators to support Functional Verification of RF-SOC

Wireless Links,” in IEEE Behavioral Modeling and Simulation

Workshop (BMAS), Sep. 2010.

 ６４

[12] J. Jang, et al., “True Event-Driven Simulation of Analog/

Mixed-Signal Behaviors in SystemVerilog: A Decision-

Feedback Equalizing (DFE) Receiver Example,” in IEEE

Custom Integr. Circuits Conf., Sep. 2012.

[13] C. Beyerstedt, et al., “Baseband Equivalent Modeling Approach

for Analog Linear Transfer Functions in Event-driven

Simulations,” in IEEE Intl’ conf. on Synthesis, Modeling,

Analysis and Simulation Methods and Applications to Circuit

Design (SMACD), Jul. 2019.

[14] J. E. Chen, “Modeling RF Systems,” The Designer’s Guide

Community, accessed Jul. 29, 2021, http:// https://designers-

guide.org/modeling/modeling-rf-systems.pdf

[15] XMODEL Reference Manual, Release 2020.05, Scientific Analog,

Inc., 2020.

[16] Mak, et al., “Transceiver Architecture Selection: Review,

State-of-the-art Survey and Case Study,” in IEEE Circuits

Syst. Mag., Sep. 2007.

[17] T. Lee, The Design of CMOS Radio-Frequency Integrated

Circuits, 2nd ed. Cambridge, UK: Cambridge University Press,

2004.

[18] J. W. Jeong, et al., “Built-In Self-Test and Digital Calibration

of Zero-IF RF Transceiver,” Trans. Very Large Scale Integ.

Syst. (TVLSI), Jan. 2016.

[19] H. Ye., et al., “A Digital IQ imbalance Self-Calibration in FDD

Transceiver,” Int’ Sym. VLSI Design, Auto. and Design (VLSI-

DAT), Apr. 2017.

[20] L. Anttila., et al., “Circularity-Based I/Q Imbalance

Compensation in Wideband Direct-Conversion Receivers,”

Trans. Vehicular Tech. (TVT), Jul. 2008.

[21] L. Yu., “A Novel Adaptive Mismatch Cancellation System for

Quadrature IF Radio Receivers,” IEEE Trans. Circuits Syst. II,

Jun. 1999.

[22] I. Elahi, “IIP2 Calibration by Injecting DC Offset at the Mixer in

a Wireless Receiver,” IEEE Trans. Circuits Syst. II, Exp. Briefs,

Dec. 2007.

[23] Y. Liu, et al., “A General Digital Predistortion Architecture

Using Constrained Feedback Bandwidth for Wideband Power

Amplifiers,” IEEE Trans. Microw. Theory Techn., May 2015.

 ６５

[24] A. Zaidi, et al., 5G Physical Layer Principles, Models and

Technology Components, Academic Press, 1st ed. UK:

Academic Press, 2018.

[25] S. A. Maas, Nonlinear Microwave and RF Circuits, 2nd ed.

Boston, USA: Artech, 2003.

[26] C. Eun, et al., “A new Volterra predistorter based on the

indirect learning architecture,” IEEE Trans. Signal Proc., Jan.

1997.

[27] C. Y. Park, “A Volterra-Series Model in SystemVerilog/

XMODEL for Nonlinear RF Low-Noise Amplifiers,” Design

and Verification Conf. (DVcon), Mar. 2021.

[28] J.-E. Jang, et al., “Event-Driven Simulation of Volterra Series

Models in SystemVerilog,” in IEEE Custom Integr. Circuits

Conf., Sep. 2013.

[29] T. W. Kim, “A Common-Gate Amplifier with Trans-

conductance Nonlinearity Cancellation and Its High-Frequency

Analysis Using the Volterra Series,” IEEE Trans. Microw.

Theory Tech., Jun. 2009.

[30] J. Roychowdhury, “Reduced-Order Modeling of Time-

Varying Systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs,

Oct. 1999.

[31] S. Li, et al., “An E-Band High-Linearity Antenna-LNA

Front-End with 4.8dB NF and 2.2dBm IIP3 Exploiting Multi-

Feed on-Antenna Noise-Canceling and Gm-Boosting,” in

IEEE ISSCC Dig. Tech. Papers, Feb. 2020.

[32] J. Lee, “Parameter Coverage Analysis on Simulation of Analog

Functional Models,” Ph.D Dissertation, Aug. 2019.

[33] D. Rich, “The Missing Link: The Testbench to DUT

Connection,” Design and Verification Conf. (DVcon), Mar.

2012.

[34] P. Schniter, et al., “Introduction to Analog and Digital

Communications,” accessed May 17, 2021, http://cnx.org/

content/col10968/1.2/.

 ６６

Abstract

도래한 초연결시대에서는 스마트폰뿐만 아니라 다양한 사물 인터넷

디바이스들이 5세대 이동통신 시스템을 활용하면서, 늘어난 데이터량과

트래픽을 감당하기 위해 밀리미터파 대역의 사용이 필수적일 것이다. 시

스템이 보다 대용량화 그리고 광대역화 됨에 따라, 통신 규약을 만족시

키기 위해, 점차 거대한 디지털 캘리브레이션 및 신호처리 로직이, 무선

통신 전단부 칩에 함께 집적되고 있다. 따라서 멀티-도메인의 신호(아

날로그/디지털/무선통신 신호)가 복잡하게 혼성된 무선통신 집적회로 칩

을, 짧은 개발 기간 동안 충분히 검증하기엔 어려움이 따른다. 일반적으

로 혼성 신호 시스템을 검증하기 위해서는, 하위 시스템을 모두 포함해

서 시간 도메인의 시뮬레이션을 수행해야 하는데, 이를 위한 스파이스와

스파이스-하드웨어 기술 언어의 co-시뮬레이션은 지나치게 느리다는

한계가 있기 때문이다. 따라서, 멀티-도메인의 신호를 빠르고 정확하게

시뮬레이션 가능하게 하는 모델링 방법과, 다양한 시나리오의 검증 완성

도를 향상시켜줄 있는 검증 기술이 모두 요구된다.

 혼성 시스템을 검증하기 위해서는, 아날로그와 무선 통신 블록들을

시스템 베릴로그 상에서 구현된 함수적 모델로 대체하고, 디지털 블록들

과 함께 하나의 디지털 플랫폼에서 시뮬레이션하는 것이 효과적이다. 실

제 설계할 때, 문제가 되는 대부분의 에러들은, 연결 오류, 부호 오류,

신호 순서 오류, 혹은 잘못된 파워 도메인과의 연결과 같이 사소한 오류

들이다. 이러한 오류를 찾기 위해, 오래 걸리는 트랜지스터-레벨의 시뮬

레이션을 수행하기보다는, 아날로그 스파이스 모델들을 시스템 베릴로그

모델들로 대체하고, 보다 다양한 시나리오를 빠르게 검증하는 방법이 검

증 완성도를 향상시키는데 적합하다. 그럼에도, 지나치게 단순한 선형

모델이나, 중요한 회로 특성이 빠진 모델로는 원하는 수준의 검증이 불

가능할 수 있다. 예를 들어, 직접 변조 구조의 무선통신 송수신기에서

발생하는 비이상 효과, 저전력 동작을 하면서 발생하는 비선형 효과, 그

리고 흔히 메모리 효과는 모델에 효과를 충분히 반영해 주어야만, 주파

수 도메인에서의 검증, 성능 예측 등의 검증을 의미 있게 수행할 수 있

다. 문제는 비선형 시스템은 훨씬 복잡한 식으로 표현되며, 시뮬레이션

시 연산량도 크게 늘어나기 때문에, 비선형 모델을 만들고 시뮬레이션

 ６７

하기가 쉽지 않다는 것이다. 따라서 모델이 비이상성들을 충분히 반영하

면서도 효과적인 검증을 가능하게 하는 모델링/시뮬레이션 방법 역시 요

구된다.

본 학위 논문에서는, 무선통신 송수신기 집적회로 전체의 모사 모델

을 제안한다. 모델은 누설 신호와 신호 간 불일치에 의한 비-이상적인

효과를 엑스모델의 알고리즘을 활용해 반영하였고, 비선형성과 메모리

효과를 볼테라-섭동법을 활용해 반영하였다. 제안하는 모델은 다양한

주파수 대역과 동작 모드를 검증하는데, 기존 등가 베이스밴드 모델보다

30~1800배 빠르게 시뮬레이션 할 수 있었고, 비이상 효과에 대해, 통

신 성능들(심볼의 오류 벡터의 크기, 인접 채널의 파워 그리고 비트 에

러)을 평가 가능했다. 나아가, 아날로그 검사기를 활용한 기능 검증법과

모델 파라미터 커버리지 분석법을 적용하여, 시스템-레벨 검증의 완성

도를 향상시켰다. 무선통신 집적회로 모델에 다양한 디자인/파라미터 오

류를 주입하고, 시뮬레이션 동안 검사기가 찾은 에러의 개수와 커버리지

결과를 실험적으로 보였다.

	Chapter 1. Introduction
	1.1 Design and Verification Flow
	1.2 5G NR Band RF Transceiver IC
	1.3 Baseband-Equivalent and Passband Modeling
	1.4 Thesis Organization

	Chapter 2. Modeling and Simulation of RF Transceiver
	2.1 Direct Conversion RF Transceiver
	2.2 Proposed Transceiver Models
	2.3 System and Simulation Performance

	Chapter 3. Nonlinear RF System Modeling
	3.1 Volterra / Perturbation Method
	3.2 Low Noise Amplifier Example
	3.3 Nonlinearity Analysis

	Chapter 4. Coverage Analysis and Functional Verification
	4.1 Model Parameter Coverage Analysis
	4.2 Self-Checking Testbench

	Chapter 5. Conclusion
	Appendix
	A.1 Trigonometric Equation for Non-Ideal Effects
	A.2 RNM Baseband Equivalent Modeling
	A.3 Parameter Coverage Analysis
	A.4 List of Models

	Bibliography
	Abstract in Korean

<startpage>10
Chapter 1. Introduction 1
 1.1 Design and Verification Flow .
 1.2 5G NR Band RF Transceiver IC .
 1.3 Baseband-Equivalent and Passband Modeling .
 1.4 Thesis Organization .
Chapter 2. Modeling and Simulation of RF Transceiver 11
 2.1 Direct Conversion RF Transceiver .
 2.2 Proposed Transceiver Models .
 2.3 System and Simulation Performance .
Chapter 3. Nonlinear RF System Modeling 28
 3.1 Volterra / Perturbation Method .
 3.2 Low Noise Amplifier Example .
 3.3 Nonlinearity Analysis .
Chapter 4. Coverage Analysis and Functional Verification 42
 4.1 Model Parameter Coverage Analysis .
 4.2 Self-Checking Testbench .
Chapter 5. Conclusion 54
Appendix 55
 A.1 Trigonometric Equation for Non-Ideal Effects .
 A.2 RNM Baseband Equivalent Modeling .
 A.3 Parameter Coverage Analysis .
 A.4 List of Models .
Bibliography 63
Abstract in Korean 66
</body>

