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Abstract 
 

Assessment of urban ecosystem structure and connectivity using multi-scale 

LiDAR datasets 

 

 

Heejoon Choi 

Interdisciplinary Program in Landscape Architecture 

Graduate School, Seoul National University 

Supervised by Professor Youngkeun Song 

 

 

Integrated multiscale light detection and ranging (LiDAR) datasets are required for 

managing urban ecosystems because 1) LiDAR datasets can represent various spatial 

structures across the urban landscape and 2) the multitemporal LiDAR approach can 

derive the changes of urban landscape structures. This dissertation aimed to find the 

various spatiotemporal availabilities (i.e., from the tree-level spatial scale to the city-

level regional scale with the multitemporal approach) of LiDAR or laser scanning 

(LS) datasets for monitoring urban ecosystems in the following three chapters.  

Chapter 2: Collecting tree inventory data in urban areas is important for 

managing green areas. Surveying using airborne laser scanning (ALS) is effective 

for collecting urban tree structures but less efficient regarding the economic costs 

and its operation. Terrestrial laser scanning (TLS), and mobile laser scanning (MLS) 

datasets could have the potential in complementing those of ALS in the respect to 

efficiency. However, to the best of my knowledge, there were limited studies for 

seeking the similarities and variations among the canopy metrics derived from 

various LiDAR platforms. In Chapter 2, I compared structural canopy metrics among 

ALS, TLS, and MLS datasets in the urban parks. The purpose of Chapter 2 was to 

test whether the estimates of tree metrics differed depending on single or clustered 

trees and to test whether the errors in LiDAR-derived metrics were related to the tree 

structures. Small, urban parks were selected for surveying trees using the three 

LiDAR platforms. The ALS datasets were acquired on 14 May, 2017. The TLS and 

MLS datasets were acquired from 10–11 May, 2017, and 21–25 April, 2020, 

respectively. The tree point clouds were classified into single and clustered trees. The 

structural metrics were compared in each pair (i.e., ALS and TLS, ALS and MLS, 

and TLS and MLS pairs). The heights related metrics (e.g., percentile heights and 

the distribution of the heights values), the complexity metric (e.g., the Rumple index) 

and area were calculated for comparisons. The root mean square error (RMSE), bias, 

and the Pearson’s correlation coefficient (r) were calculated to evaluate the 

difference in each metric among the LiDAR platforms. The results showed that 



 

 iii 

ZMAX, max and mean CHM, and area showed good consistencies (RMSE% < 15 %, 

Bias% < 15 %, and r > 0.900). Especially, the biases of CHM-derived metrics did 

not present significant differences (p > 0.05) regardless of single or clustered trees. 

Moreover, the biases from the comparisons in each pair showed linear relations with 

the tree heights and vertical canopy complexity (i.e., Pearson’s correlation 

coefficient showed significant; r > |0.29|, p < 0.05). My results could be references 

when combining multiple LiDAR systems to estimate the canopy structures of urban 

park areas. 

Chapter 3: Understanding forest dynamics is important for assessing the health 

of urban forests, which experience various disturbances, both natural (e.g., treefall 

events) and artificial (e.g., making space for agricultural fields). Therefore, 

quantifying three-dimensional (3D) changes in canopies is a helpful way to manage 

and understand urban forests better. Multitemporal ALS datasets enable me to 

quantify the vertical and lateral growth of trees across a landscape scale. The goal of 

Chapter 3 is to assess the annual changes in the 3-D structures of canopies and forest 

gaps in an urban forest using annual airborne LiDAR datasets for 2012–2015. The 

canopies were classified as high canopies and low canopies by a 5 m height threshold. 

Then, I generated pixel- and plot-level canopy height models and conducted change 

detection annually. The vertical growth rates and leaf area index showed consistent 

values year by year in both canopies, while the spatial distributions of the canopy 

and leaf area profile (e.g., leaf area density) showed inconsistent changes each year 

in both canopies. In total, high canopies expanded their foliage from 12 m height, 

while forest gap edge canopies (including low canopies) expanded their canopies 

from 5 m height. Annual change detection with LiDAR datasets might inform about 

both steady growth rates and different characteristics in the changes of vertical 

canopy structures for both high and low canopies in urban forests. 

Chapter 4: Although many studies have considered urban structure when 

investigating urban ecological networks, few have considered the 3D structure of 

buildings as well as urban green spaces. In Chapter 4, I examined an urban ecological 

network using the 3D structure of both green spaces and buildings. Using breeding-

season bird species observations and ALS data collected, I assessed the influence of 

3D structural variables on species diversity. I used correlation analyses to determine 

if vertical distribution, volume, area, and height of both buildings and vegetation 

were related to bird species diversity. Then I conducted circuit theory-based current 

flow betweenness centrality (CFBC) analysis using the LiDAR-derived structural 

variables. I found that the volumes of buildings and 8–10 m vegetation heights were 

both highly correlated with species richness per unit area. There were significant 

differences between 2D and 3D connectivity analysis using LiDAR-derived 

variables among urban forest patches, boulevards, and apartment complexes. Within 
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urban forest patches and parks, 3D CFBC represented canopy structural 

characteristics well, by showing high variance in spatial distributions. The 3D CFBC 

results indicated that adjacent high-rise buildings, dense apartment complexes, and 

densely urbanized areas were isolated, as characterized by low centrality values, but 

that vegetation planted in open spaces between buildings could improve connectivity 

by linking isolated areas to core areas. My research highlights the importance of 

considering 3D structure in planning and managing urban ecological connectivity. 

In this dissertation, the availability of integrated multiscale LiDAR datasets was 

found via three standalone studies. It was revealed that 3D information could 

enhance the quality of urban landscape monitoring and ecological connectivity 

analysis by elaborately explaining spatial structures. However, the spatiotemporal 

scales of each standalone study were limited to the city scale and to five years. The 

recently launched Global Ecosystem Dynamics Investigation (GEDI) would help to 

solve these limitations. Furthermore, the GEDI dataset could help researchers 

understand the relationship between ecosystem structures and their functions. 

 

Keyword: LiDAR, Airborne laser scanner, Terrestrial laser scanner, Mobile laser 

scanner, 3D point cloud, Vegetation structure, Urban landscape structure, Urban 

ecosystem 

Student Number: 2018-35951 
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Chapter 1. Introduction 
 

1. Background 

1.1. Urbanization and the importance of urban green spaces 

Globally, 55% of the world’s population lived in urban areas in 2018. By 2050, 68% 

of the world’s population is projected to become urbanized (United Nations 2019), 

which would cause the rapid development of urban and suburban areas. Accelerated 

urbanization is considered one of the greatest threats to biodiversity and 

environments (Zhou et al. 2011). To sustain healthy environments in urban areas, 

appropriate vegetation plans and management should be considered because these 

activities reduce the ecological trade-offs that result from urban development 

(Plummer et al. 2020). Suitable vegetation plans and management can especially 

introduce diverse species and improve local biodiversity while providing various 

ecosystem services (Sandström et al. 2006; Savard et al. 2000); (Fontana et al. 2011; 

Plummer et al. 2020; Sahraoui et al. 2021). To conduct appropriate planning to 

manage urban ecosystems, it is critical to quantify urban ecosystem structures to be 

objectively informed of their status. 

 

1.2. Urban landscape and Light detection and ranging application 

In urban scales, managing urban ecosystems requires all spatial information across 

the urban landscape, including high resolution of horizontal and vertical datasets 

since urban landscape consists of various spatial structures. Furthermore, measuring 

vertical information which is essential for understanding biodiversity function of 

green spaces providing various habitat (i.e., ecological niches) (Rutten et al. 2015). 

However, it is challenging to quantify spatial information of urban ecosystems only 

with two-dimensional (2D) imageries or several spectral bands (Casalegno et al. 

2017). Using advanced techniques such as operating high-resolution light detection 

and ranging (LiDAR) and data processing can represent diverse structures of urban 

ecosystems. Recently, therefore, these advanced technologies (i.e., geospatial 

technologies and ecological informatics) are being applied to solve the ecological 

and environmental problems and related questions (D'Urban Jackson et al. 2020; 

Lepczyk et al. 2021). 

Green space surveys are conducted in many countries via onsite sampling of 

plots that are considered representative of the whole study site. In addition, airborne 

photogrammetry and satellite imagery are applied to measure the diameter at breast 

height, stand height, basal area, and species composition using terrestrial field 

sampling data. However, these traditional methods have certain limitations related 

to the subjective interpretation of measurement results, low measurement accuracy, 
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and lack of information about vertical canopy structures because of their complex 

structure (Latifi et al. 2016; Sasaki et al. 2013; Whitehurst et al. 2013). For 

overcoming the limitations of existing research methods, there is a need for 

techniques that can support the assessment of forest structures and biodiversity, such 

as LiDAR remote sensing (Coops et al. 2016). 

Many studies have used LiDAR sensors to assess horizontal and vertical tree 

structures (Song et al. 2016; White et al. 2016; Zhao et al. 2018). LiDAR is one of 

the most accurate active remote sensing tools. A laser scanner collects object imagery 

in a three-dimensional (3D) perspective (i.e., a point cloud dataset) by calculating 

the time intervals between emitting laser pulses and receiving their reflections from 

target objects. There are three LiDAR platforms or systems, depending on where the 

sensors are loaded or which systems are used; airborne laser scanning (ALS), 

terrestrial laser scanning (TLS), and mobile laser scanning (MLS or handheld laser 

scanning) (Hyyppä et al. 2020). Although ALS can cover large areas (local to region 

levels), there are concerns that they collect sparse sub-canopy data for forests due to 

the specifications of the LiDAR sensors, such as the laser footprint, pulse repetition 

rate, and flight altitude; The footprint of the laser is not small enough to penetrate 

the gaps in tree canopies or the laser is blocked by the high canopies (Bater et al. 

2011; Goodwin et al. 2006; Wang et al. 2019; White et al. 2016). TLS can generate 

a highly dense point cloud, but tree heights may be underestimated because of the 

occlusion effects of the lower canopy (Hilker et al. 2012; Krooks et al. 2014; Wang 

et al. 2019), whereas ALS estimates of tree heights < 10 m show good agreement 

regardless of stand complexity (Wang et al. 2019; Wu et al. 2020). Although TLS 

can collect accurate data from tree structures, it has disadvantages in collecting top-

canopy data and in surveying regional areas with limited access. Recently, the use of 

MLS in canopy studies has increased. MLS has been developed in the field of 

robotics and has adopted simultaneous localizing and mapping (SLAM) robotics 

systems. MLS is more convenient than TLS for collecting 3D datasets of extensive 

areas (Heo et al. 2019; Hyyppä et al. 2020; Liang et al. 2016a; Schneider et al. 2019). 

 

1.2.1. Combination with airborne LiDAR and terrestrial LiDAR data 

for surveying structures of urban green spaces 

ALS datasets may be useful for administrators to plan and manage their urban areas; 

however, the economic cost of ALS makes it difficult to collect consistent multi-

temporal ALS datasets that correspond to urban land-use changes (White et al. 2016). 

TLS and MLS may solve the acquisition problems for these temporal data (Bauwens 

et al. 2016; Bienert et al. 2018). However, there are few studies of which LiDAR-

derived structural variables of green areas can be used in common among the 

different LiDAR systems. Most studies have been conducted using single LiDAR 
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systems with field surveys for validation. Hilker et al. (2012) concluded that tree-

level (i.e., collecting individual tree data) measurements were more accurate using 

TLS than using ALS, whereas height estimation was more accurate using ALS. 

Pyörälä et al. (2019) and LaRue et al. (2020) compared ALS-derived canopy metrics 

with TLS-derived wood properties and found that several wood properties were 

predictable from the ALS datasets. Ojoatre et al. (2019) and Bazezew et al. (2018) 

estimated forest biomass by integrating ALS and TLS datasets. 

Although a few studies have integrated the different LiDAR systems (Hilker et 

al. 2012; LaRue et al. 2020; Pyörälä et al. 2019), more relevant studies are needed to 

manage the green spaces in urban areas. Moreover, more in-depth understanding is 

required as to which tree-structure variables derived from ALS, TLS, and MLS can 

substitute for and complement each other. 

 

1.2.2. Multi-temporal urban forest gap monitoring 

Quantifying forest gaps is essential for monitoring the stability of the forest structure 

because these disturbances can change the light environment and drive forest 

dynamics (Asner et al. 2013; Fisher et al. 2008; Kane et al. 2011; Whitmore 1989). 

Physical disturbances in forest canopies usually result from deforestation (e.g., 

making space for agricultural fields) and tree-fall events (Asner et al. 2013). Forest 

gaps could be characterized by their size distribution. The areas of forest gaps in 

natural forests follow the power-law distribution with the frequencies. Usually, small 

openings (formed by wind damaged or tree mortality) in natural forests dominate 

areas in the size distribution and show larger scaling exponents, while frequent large 

openings show smaller scaling exponents. Therefore, by comparing the scaling 

exponents with other forests, it is possible to compare the degrees of disturbances 

(Kane et al. 2011; Whitmore 1989).  

Urban forests are usually fragile to disturbances because the dense human 

population leads to severe conditions that can damage the forest directly (e.g., land-

cover changes from forested to urbanized areas) (Steenberg et al. 2016). Forest 

damage such as deforestation and landcover changes could result in relatively larger 

openings than small openings in forests and the human activities in there may hinder 

the forest equilibrium or change the forest ecosystems (Vepakomma et al. 2018). 

Particularly in South Korea, small and large mountainous urban forests are very 

common as they remain green areas after development and many people use them 

for leisure activities, agriculture, and private graveyards that are accompanied with 

canopy openings (Kim et al. 2013). Although many policies try to conserve these 

urban forests in South Korea, land use in urban forests is complexed and can easily 

undergo harsh disturbances (Ryu et al. 2017). Therefore, it is important to monitor 

forest gaps in urban forests where various natural or anthropogenic disturbances can 
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occur. 

For applications of multi-temporal ALS in urban forests, a few studies about the 

forest dynamics (e.g., forest growth and forest gap dynamics) in an urban forest have 

been conducted. Ossola and Hopton (2018b) measured urban tree loss dynamics in 

cities’ residential landscapes using bi-temporal (five-year period) LiDAR datasets. 

They particularly noted the changes in urban trees over time caused by human 

management and urban tree removal for hazard prevention or artistic preference. 

Since the urban forests are characteristically vulnerable to various and frequent 

disturbances, particularly in terms of physical damage (Liu et al. 2015; McWilliam 

et al. 2010; Ossola and Hopton 2018b), canopy loss occurs frequently that could 

finally result in artificial canopy openings. However, to the best of my knowledge, 

most studies with airborne LiDAR datasets have focused on the forest gaps which 

are usually treefall gaps in the natural forests (Vepakomma et al. 2018; Vepakomma 

et al. 2008) and few studies are related to artificial canopy openings in cities. In the 

same manner of the effect on the surrounding environment of forest gaps, artificial 

openings could affect the adjacent environment (Dalagnol et al. 2019) and may also 

affect the changes in surrounding canopy structures. Therefore, it is important to 

monitor urban forests continuously (Cumming et al. 2008) including both forest gaps 

and their artificial canopy openings. 

 

1.2.3. Ecological connectivity analysis using LiDAR 

Urban ecological networks provide solutions-based tools to decision-makers 

regarding urban conservation challenges (Choe and Thorne 2019; Lepczyk et al. 

2017; Nor et al. 2017; Sandstrom et al. 2006). Well-managed ecological networks 

resulting from the use of these tools could improve biodiversity and sustainability in 

cities by providing ecosystem services such as hydrological regulation, air 

purification, and positive effects on human health (Barton and Pretty 2010; 

Steenberg et al. 2016). 

Ecological networks can be quantified by connectivity indices, which provide 

a measure of how landscape patterns affect ecological processes. Centrality metrics 

are a form of connectivity indices (Carroll et al. 2012). Centrality values vary among 

landscape patches and generally imply at least some connectivity within landscapes, 

at least functionally, even when patches are not physically connected in space 

(Kindlmann and Burel 2008). Thus, urban ecological connectivity assessments can 

be effectively used to evaluate landscape function within cities (Casalegno et al. 

2017; Cook 2002; Dickson et al. 2019; Grafius et al. 2017; Tian et al. 2017; Urban 

and Keitt 2001; Zeller et al. 2012). 

Networks in urban ecosystems reflect heterogeneous landscape patterns with 

characteristics such as variation in vegetation patches and both vegetation and 
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anthropogenic structure (e.g., buildings) (Farinha-Marques et al. 2017; Lepczyk et 

al. 2017). Including vegetation measures as well as measures of building structures 

(e.g., height and volume) in assessments of urban ecological networks is essential, 

particularly when considering urban bird species, as these structures represent habitat 

structure and composition for such species (Xie et al. 2016). Urban ecology studies 

have often focused on avian species because the extent of ecological connectivity in 

a given area is related to bird species diversity (Evans et al. 2009b; Goddard et al. 

2010; Kang et al. 2015). Avian species typically use green spaces as both corridors 

and habitat by selecting and moving within vegetation in both vertical and horizontal 

directions (e.g., by using the top or middle of canopies, and tree interior or edges) 

(Casalegno et al. 2017; Conole and Kirkpatrick 2011). Therefore, considering the 

horizontal and vertical distributions of green spaces is essential to understanding 

between-patch connectivity for birds (Casalegno et al. 2017). In addition, because 

buildings in urban ecosystems often segregate urban green patches and act as barriers 

against the urban bird species (Hale et al. 2012), the configuration of structures 

including building volume, distribution, and height should be considered when 

designing urban green space connectivity. However, most urban network studies 

have treated structures only in 2-dimensions and used vertical information such as 

tree heights or structures by categorizing values (Grafius et al. 2017; Matsuba et al. 

2016). 

There are great opportunities for applying 3D datasets to the field of ecology 

and environment. A 3D dataset could help elucidate the relationship between urban 

morphologies and urban heat environment. Tian et al. (2019) identified the 

relationship between air temperature and 3D landscape indices such as building to 

vegetation volume ratio. Zhang et al. (2019) used the 3D index (e.g., sky fraction) 

derived from the Google street map to estimate land surface temperatures. Moreover, 

using a 3D dataset could enhance the understanding of bird species movements. For 

example, Liu et al. (2020b) and Tattoni and Ciolli (2019) emphasized the importance 

of 3D data for the bird corridors. Liu et al. (2020b) used digital elevation models 

(DEMs) and building heights for understanding the impacts of urban vertical 

expansion on the birds’ migratory patterns, and Tattoni and Ciolli (2019) also applied 

a DEM for finding potential stopover sites in the birds’ migratory routes. 

Many studies have demonstrated that including vegetation structure is critical 

to assessing ecological connectivity (Casalegno et al. 2017; Chen et al. 2014; Coops 

et al. 2016; Dalponte et al. 2019; Guo et al. 2018; Melin et al. 2018; Plowright et al. 

2017; Shao et al. 2019). For example, Coops et al. (2016) found that airborne 

LiDAR-derived indices such as the standard deviation of canopy height, green cover 

ratio, and canopy height diversity were related to bird species diversity; these metrics 

were successfully used, along with other environmental variables, to estimate bird 
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species diversity across broad areas. Casalegno et al. (2017) characterized urban 

habitat structure using LiDAR data from local to landscape scales and were among 

the first to assess connectivity among green space patches in urban areas using 

LiDAR data. LiDAR-derived structural variables have enormous potential for 

assessing connectivity across spatial scales and thus informing biodiversity 

conservation and monitoring strategies. Finally, Kedron et al. (2019) developed 3D 

urban landscape indices using a LiDAR dataset. 

Although ecological and connectivity networks include both anthropogenic and 

vegetation structure, existing research has not typically employed 3D analyses to 

estimate all structural variables. Two-dimensional variables would have limitations 

in representing these diverse structures of urban ecosystems. 

 

2. Purpose 

In this dissertation, I aimed to find various spatiotemporal (i.e., from the tree-level 

spatial scale to city-level regional scale with a multi-temporal approach) 

availabilities using LiDAR to monitor urban ecosystems. I focused on finding the 

relationship between urban vegetation/building structures and urban biotic 

environments through three standalone studies. First, I quantified urban vegetation 

and building structures as metrics. Then, I compared the vegetation metrics among 

ALS, TLS, and MLS systems to find their consistencies. Second, I addressed the 

structural metrics to engage in the temporal monitoring of annual changes in an urban 

forest and found the differences in changes according to whether there were forest 

gaps or not. Third, I conducted a study to find the relationship between urban 

vegetation/building structures and urban-living bird species and applied the derived 

biodiversity-related metrics to analyze ecological connectivity in an urban area. 

In Chapter 2, I compared structural tree variables among ALS, TLS, and MLS 

datasets and sought alternative structural variables that could be applied when an 

ALS dataset was not available. I aimed to test whether the estimates of tree metrics 

differed depending on whether the trees were single or clustered and whether the 

errors in LiDAR-derived metrics were related to tree structure. 

In Chapter 3, I assessed the annual changes in the 3D structures of canopies and 

forest gaps in an urban forest using annual airborne LiDAR datasets. To determine 

how much urban forest structures have changed, I estimated 1) the distribution of the 

growth area and damaged areas (e.g., vertical and later growth and damaged areas), 

2) changes in vertical leaf area density profile, and 3) the dynamics of opening and 

closing forest canopies during 2012–2015.  

In Chapter 4, I examined an urban ecological network using the 3D structure of 

both green spaces and buildings. My specific objectives of Chapter 4 are to define 

which LiDAR-derived urban bird species diversity variables to use in creating a 
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connectivity surface (landscape resistance and landscape permeability) and then test 

a modeled urban ecological network created using them. Related research questions 

are: 1) What are the contributions of the urban green spaces to the 3D connectivity 

with regard to land-use types; and 2) What are the characteristics of 3D-based 

connectivity results compared to 2D-based connectivity results? 

 

Figure 1.1 Urban ecosystem monitoring using light detection and ranging remote sensing and 

its related studies by the spatial and temporal scales dealt with in this dissertation  
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Figure 1.2 Study flow of this dissertation 
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Figure 1.3 Study flow of each chapter  



 

 １０ 

Chapter 2. Comparing tree structures derived 

among multiple LiDAR systems in urban parks 
 

1. Introduction 

A detailed dataset of cityscape tree structures is needed to provide well-managed and 

designed green spaces. Estimates of both horizontal (i.e., canopy cover) and vertical 

(i.e., vertical canopy distribution) tree structures are essential to manage and monitor 

green areas because these parameters identify tree vigor and relate to ecosystem 

functions and urban biodiversity (Nadrowski et al. 2010; Omasa et al. 2006; Smith 

et al. 2019; Song et al. 2016). Owing to the importance of estimating tree structures 

and the limitations imposed by using two-dimensional spatial datasets (e.g., airborne 

imagery and satellite imagery) to describe the vertical information of tree structures, 

there is an urgent need for more elaborate spatial datasets created using high 

resolution remote sensing systems and data processing such as light detection and 

ranging (LiDAR) remote sensing (Eitel et al. 2016; Lefsky et al. 2002; Lepczyk et 

al. 2021). 

Many studies have used LiDAR sensors to assess horizontal and vertical tree 

structures (Choi et al. 2019; Song et al. 2016). LiDAR is one of the most accurate 

active remote sensing tools. A laser scanner collects object imagery in a three-

dimensional (3D) perspective (i.e., a point cloud dataset) by calculating the time 

intervals between emitting laser pulses and receiving their reflections from target 

objects. There are three LiDAR platforms or systems, depending on where the 

sensors are loaded or which systems are used; airborne laser scanning (ALS), 

terrestrial laser scanning (TLS), and mobile laser scanning (MLS or handheld laser 

scanning) (Hyyppä et al. 2020). Although ALS can cover large areas (local to region 

levels), there are concerns that ALS collect sparse sub-canopy data for forests due to 

the specifications of the LiDAR sensors, such as the laser footprint, pulse repetition 

rate, and flight altitude; The footprint of a laser is not small enough to penetrate the 

gaps in tree canopies or is blocked by high canopies (Bater et al. 2011; Goodwin et 

al. 2006; Wang et al. 2019; White et al. 2016). TLS can generate a highly dense point 

cloud, but tree heights may be underestimated because of the occlusion effects of the 

lower canopy (Hilker et al. 2012; Krooks et al. 2014; Wang et al. 2019), whereas 

ALS estimates of tree heights < 10 m show good agreement regardless of stand 

complexity (Wang et al. 2019; Wu et al. 2020). Although TLS can collect accurate 

data from tree structures, it has disadvantages in collecting top-canopy data and in 

surveying regional areas with limited access. Recently, the use of MLS in canopy 

studies has increased. MLS has been developed in the field of robotics and has 

adopted simultaneous localizing and mapping (SLAM) robotics systems. MLS is 

more convenient than TLS for collecting 3D datasets of extensive areas (Heo et al. 
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2019; Hyyppä et al. 2020; Liang et al. 2016b; Schneider et al. 2019). Moreover, 

forest inventory results using MLS have shown good agreement compared to TLS-

derived results (Su et al. 2020; Wang and Fang 2020).  

ALS datasets may be useful for city planners to plan and manage their urban 

areas; however, the economic cost of ALS makes it difficult to collect consistent 

multi-temporal ALS datasets that correspond to urban land-use changes (White et al. 

2016). TLS and MLS may solve the acquisition problems for these temporal data 

(Bauwens et al. 2016; Bienert et al. 2018). However, to the best of my knowledge, 

there are few studies of which LiDAR-derived structural variables of green areas can 

be used in common among the different LiDAR systems. Most studies have been 

conducted using single LiDAR systems with field surveys for validation. Hilker et 

al. (2012) concluded that tree-level (i.e., collecting individual tree data) 

measurements are more accurate using TLS than using ALS, whereas height 

estimation is more accurate using ALS. Pyörälä et al. (2019) and LaRue et al. (2020) 

compared ALS-derived canopy metrics with TLS-derived wood properties and 

found that several wood properties are predictable using the ALS datasets. Ojoatre 

et al. (2019) and Bazezew et al. (2018) estimated forest biomass by integrating ALS 

and TLS datasets. 

Each LiDAR system has its pros and cons in terms of its purpose of use. Stand-

alone LiDAR systems can successfully estimate tree structures (Heo et al. 2019; Su 

et al. 2020; Wu et al. 2020). However, the estimated tree structure measurements 

could be different depending on which LiDAR system is used. This may lead to 

confusion and reduce confidence when evaluating tree structures and their derived 

products, such as the plant area index (PAI), biomass, and carbon stocks. A 

standalone LiDAR system does not capture entire spaces both vertically and 

horizontally; ALS is weak at sensing understory canopy structures, and TLS and 

MLS are unfavorable in sensing top canopies and covering broad areas. Therefore, 

assessing consistencies among the different LiDAR systems should be conducted in 

advance. Although a few studies have integrated different LiDAR systems (Hilker et 

al. 2012; LaRue et al. 2020; Pyörälä et al. 2019), a greater depth of understanding 

regarding the similarities, variations, or consistencies among measurements resulting 

from LiDAR metrics is required. By comparing canopy metrics indifferent LiDAR 

systems, it would be possible to determine a methodology for combining metrics to 

substitute for and complement each other. 

Therefore, this study compares tree structure variables among ALS, TLS, and 

MLS datasets and seeks alternative structural variables that could be applied when 

an ALS dataset is not available. Specifically, this work aims to determine whether 

the estimates of different metrics differ depending on whether trees are standalone 

or clustered and whether the errors in LiDAR-derived metrics are related to tree 
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structures. 

 

2. Methods and materials 

2.1. Study site and tree classification 

 
Figure 2.1 Study site (a, red boundary: parks surveyed using ALS, TLS, and MLS) and 

vegetation height information on numbered parks in this study (b) 

 

I selected small, isolated, urban parks, categorized as children’s parks, in Cheonan 

City, South Korea. I surveyed nine small parks using TLS and MLS to acquire the 

LiDAR data (Figure 2.1). These small, isolated, urban parks typically consisted of 

trees lower than 22 m in height, a playground facility, and pergolas. I considered that 

the vegetation structures consisted of types of single and clustered trees typical of 

parks in South Korea. 

The surveyed vegetation in the parks consisted of general tree species found 

commonly in South Korea. Generally, sub-canopies (e.g., Acer palmatum and 

Chaenomeles sinensis), and high canopies (e.g., Zelkova serrata, Sophora japonica, 
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and Ulmus davidiana var. japonica) form the canopy structures in the parks. The 

surveyed trees and their shapes were shown in Figure 2.2. 

 

 

Figure 2.2 Sampled single trees (top) and clustered trees (down) (yellow green: airborne laser 

scanning; cyan: terrestrial laser scanning; blue: mobile laser scanning) 
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2.2. LiDAR survey and processing 

Table 2.1 Configuration of the LiDAR sensors used in this study 

Specification ALS TLS MLS 

Equipment IGI LiteMapper 6800 
FARO Focus 350 laser 

scanner 

Kaarta Stencil 

(Velodyne16 sensor) 

System Mounted on an aircraft Mounted on a tripod 

Mounted on a hand-held 

computer (SLAM system, 

1. 5 m height above 

ground level) 

Range 38,000 m (width: 1,155 m) 0.6 m to 350 m 1 m to 30 m 

Accuracy <±10 cm <±0.5 cm <±3 cm 

Point density 2-8 point/㎡ > 1,000 point/㎡ > 1,000 point/㎡ 

Field of view 60° 
Verticality: 0~300° 

Horizontality: 0~360° 

Verticality: 30~330° 

Horizontality: 0~360° 

Sensing 

method and 

locations 

ALS system, flying at an 

altitude of 1000 m 

Positioned several locations 

at a height of 1.5 m above 

ground level 

SLAM system. Moving 

while sensing and 

following loop 

trajectories 

Projection WGS 1984 52N 
Local  

(Georeferenced by ALS) 

Local  

(Georeferenced by ALS) 

Data 

acquisition 
14 MAY 2017 10–11 MAY 2017 21 APR–01 MAY 2020 

Figure 2.3 LiDAR data processing and tree classification 
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Table 2.1 lists the sensor specifications. The TLS dataset was acquired from May 

10–11, 2017 during a foliated season. The TLS instrument was placed at several 

positions in each park to reduce the occlusion effects of trunks, twigs, branches, or 

other objects. Furthermore, I located the sphere-shaped targets for the registration 

process; the sphere-shaped targets were used as the control points in each collected 

scene. After scanning the parks, I merged the separate scenes from each position into 

one complete scene using FARO SCENE software (FARO, Lake Mary, FL, US). The 

TLS dataset was georeferenced to the ALS dataset by manually picking more than 

30 points of the building vertices in both the ALS and TLS datasets and using the 

iterative closest point (ICP) algorithm in the CloudCompare program 

(https://www.danielgm.net/cc/) (Figure 2.3). The positional errors (i.e., the root-

mean-square error [RMSE]) between the terrestrial-based LiDAR systems (i.e., TLS 

and MLS) and ALS were between 0.15–0.5 m (Figure 2.4). 

 

Figure 2.4 Examples of registered and normalized point clouds (a, b, and c are a park point 

cloud from the airborne laser scanning, terrestrial laser scanning, and mobile laser scanning, 

respectively) 

 

The MLS dataset was acquired from April 21–25, 2020 mostly during the same 

season as when the TLS dataset was acquired. Because the MLS was acquired three 

years after the ALS and TLS acquisition, coexisting trees in between years were 

selected for comparisons. Since the MLS system incorporated simultaneous 

localizing and mapping (SLAM) (Maddern et al. 2017; Pandey et al. 2011; Zhang et 

al. 2016), I was able to avoid occlusion effects and obtain almost complete 3D scenes 

of the parks by walking inside and outside the parks. Moreover, I made a closed loop 
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route for the sensing trajectories to improve the quality of the MLS dataset (Zhang 

et al. 2016). 

The ALS datasets were acquired on 14 May 2017 using an IGI LiteMapper 6800 

sensor (Samah Aerial Survey Co.). The study sites were surveyed following eight 

flight lines at an altitude of 1,000 m with a 50% width overlap of the scanned areas. 

The beam divergence was 0.3 mrad, and the field of view was 60°. The point density 

was > 5 points/m2. The dataset was preprocessed and classified using algorithms 

built into TerraScan software (Terrasolid, Helsinki, Finland) on a MicroStation 

(Bentley Systems, PA, USA) platform. Non-tree objects were manually deleted, 

including benches, fences, playground facilities, and building structures. 

Following registration or georeferencing using the LiDAR systems (i.e., two 

pairs: ALS-TLS and TLS-MLS), the point clouds were classified into ground and 

non-ground points using CloudCompare software (https://www.danielgm.net/cc/). 

Next, the point clouds were normalized by subtracting the height of the ground from 

the non-ground points to calculate the absolute height (z, m) values. 

Table 2.2 shows the classification of the trees. The vegetation was manually 

classified into single trees and clustered trees (where canopies combined, Figure 2.5) 

to test for errors in the LiDAR-derived metrics based on the vegetation type. All 

classifications were conducted manually, and I excluded the point cloud of any 

vegetation that had an irregular shape due to occlusion effects. 

 

Table 2.2 Tree classification 

Classification NO. 

Average of 

canopy area 

(㎡) 

Maximum 

canopy area 

(㎡) 

Minimum 

canopy area 

(㎡) 

Average of 

canopy 

height 

(m) 

Maximu

m 

canopy 

height 

(m) 

Clustered trees 35 214.63 762.07 16.94 7.29 21.26 

Single tree 28 44.29 142.97 5.74 6.55 14.69 

 
Figure 2.5 Examples of single trees (a) and clustered trees (b) (purple: airborne laser scanning; 

white: terrestrial laser scanning; sky blue: mobile laser scanning); Classification was 

conducted manually using CloudCompare software after overlaying the georeferenced 

airborne laser scanning, terrestrial laser scanning, and mobile laser scanning datasets. 
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2.3. Deriving the structural variables of the parks 

The structural variables, as shown in Table 2.3, were calculated using the lidR 

(Roussel et al. 2020) and TreeLS (Conto 2020) packages of R software (R Core Team 

2021). Height-related metrics, such as the maximum value of height (ZMAX), mean 

value of height (ZMEAN), 95th percentile height (Zq95), and standard deviation of 

height (ZSD), are generally used to estimate tree biomass (Goodwin et al. 2006; 

Hilker et al. 2010; LaRue et al. 2020). Moreover, these metrics describe the 

vegetation structures; ZMAX is the highest point in the trees and ZMEAN is the 

average value of the heights of the points (z). Zq95 is the 95th percentile heights of 

the point clouds. Canopy height model (CHM)-related metrics, such as maxCHM, 

meanCHM, and Std. of CHM are associated with the forest biomass. These CHM-

related metrics were used to describe the canopy surfaces, because ALS was able to 

detect the canopy surfaces, which were then described by the CHM. The CHMs were 

calculated by subtracting the digital surface model (DSM) from the digital elevation 

model (DEM) using CloudCompare and ArcGIS pro softwares (ESRI, Redlands, CA, 

USA) to describe the absolute heights of the canopies at the study sites. The 

resolution of the CHM was 0.5 m. I also calculated the CHM-derived metrics from 

the LiDAR sensors and ascertained whether the TLS and MLS values were similar 

to those of ALS. 

The Rumple Index is calculated by dividing the 3D surface area by the 2D 

surface area, which generally represents the complexity of the canopy (Parker et al. 

2004). A high Rumple Index value implies a highly complex canopy structure (Kane 

et al. 2010; Parker et al. 2004). 

Finally, PAI was derived from the voxelized point clouds. PAI is defined as the 

one-sided area of vegetation, including both woody and leaf parts, per unit ground 

area (Hosoi and Omasa 2009; Zhu et al. 2020). The classified point clouds were 

voxelized as 1 m3 (1 m × 1 m × 1 m) units to alleviate the effects of differences in 

the point density of each LiDAR system (Table 2.1). The PAI was calculated by 

summing up the plant area density (m2/m3) of the classified point clouds. 

 

Table 2.3 Summary of the variables derived from airborne, terrestrial and mobile LiDAR 

scans 
Variable Description Unit Reference 

ZMAX Maximum value of z (height, m) of a point cloud m 

Roussel et al. 2020 
ZMEAN Mean value of z (height, m) of a point m 

Zq95 95th percentile heights of a point cloud above m 

ZSD Standard deviation of a point cloud above m 

maxCHM 
Maximum canopy height derived from the canopy height 

model (CHM) (1-m resolution) 
m 

Calculated in 

CloudCompare 

software(https://www.dameanCHM Mean height derived from the CHM (1-m resolution) m 
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Variable Description Unit Reference 

Std. of 

CHM 
Standard deviation of the CHM (1-m resolution) m 

nielgm.net/cc/) and 

ArcGIS pro (ESRI, 

Redlands, CA, USA) 

Rumple 

index 

Canopy complexity calculated by dividing the 3D surface 

area by the 2D surface area (CHM/ortho area) of the parks 
m2/m2 

Roussel et al. 2020 

Parker et al. 2004 

Area Green area based on the point cloud m2 Roussel et al. 2020 

Plant area 

index 

One-sided area of vegetation, including both woody and 

leaf parts, per unit ground area. The voxel size was set as 1 

m × 1 m × 1 m, vertical distance, dz, was set to 2.5 m, and  

the constant k was set as 0.5 

m2/m2 
Roussel et al. 2020 

Hosoi and Omasa 2009 

 

2.4. Assessing the accuracy of the LiDAR-derived indices 

Comparisons were conducted in pairs. The Pearson’s correlation coefficient (r), root 

mean square error (RMSE), relative RMSE (%), bias and relative bias (%) were 

calculated in three pairs (Wang et al. 2019) for the tree-structure metrics. 

Comparisons were made between ALS-based vs TLS-based metrics, ALS-based vs 

MLS-based metrics, and TLS-based vs MLS-based metrics. 

The RMSE was derived from the linear regression from each pair (i.e., ALS-

TLS, ALS-MLS, and TLS-MLS). The ALS dataset metrics were considered to be a 

reference because I assumed that TLS and MLS underestimated canopy height 

(Hilker et al. 2012). The TLS data served as the reference values for the TLS-MLS 

metrics pair. The relative RMSE (%) was calculated by dividing the mean values of 

the reference data from the RMSE. Bias was calculated by subtracting the mean 

values of the reference data from the mean of the compared values, and relative bias 

(%) was derived after dividing the mean values of the reference data from the bias.  

Furthermore, I conducted a t-test to determine whether the calculated tree 

measurements showed significant differences depending on whether they were 

derived from single or clustered trees. Pearson’s correlation test was conducted to 

determine whether the calculated measurements have a linear relationship with the 

canopy structures. The Pearson’s correlation coefficient (r) has a value between -1 to 

1. If the r value is close to 1, then it indicates that the two compared datasets show a 

strongly positive linear relationship and vice versa. All calculations were conducted 

using R software (R Core Team, 2021). 
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3. Results 

3.1. Comparing height metrics among the three LiDAR systems 

Table 2.4 Assessment and comparison of the indices of tree structures determined using the 

LiDAR systems 
Metrics ZMAX ZMEAN 

Evaluation 
RMSE 

(m) 

RMSE 

(%) 

Bias 

(m) 

Bias 

(%) 
r 

RMSE 

(m) 

RMSE 

(%) 

Bias 

(m) 

Bias 

(%) 
r 

ALS VS. TLS* 0.43 4.45 -0.27 -2.81 0.990 0.86 13.70 1.84 29.11 0.815 

ALS VS. MLS* 0.44 4.52 -0.78 -8.11 0.989 1.34 21.16 2.52 39.97 0.447 

TLS VS. MLS** 0.52 5.27 -0.51 -5.16 0.984 0.74 16.53 0.69 15.31 0.406 

Metrics Zq95 ZSD 

Evaluation 
RMSE 

(m) 

RMSE 

(%) 

Bias 

(m) 

Bias 

(%) 
r 

RMSE 

(m) 

RMSE 

(%) 

Bias 

(m) 

Bias 

(%) 
r 

ALS VS. TLS* 1.10 12.66 1.07 12.34 0.882 0.44 26.67 -0.24 -14.34 0.762 

ALS VS. MLS* 1.31 15.16 1.69 19.48 0.826 0.41 24.68 -0.14 -8.65 0.801 

TLS VS. MLS** 1.09 14.41 0.62 8.15 0.764 0.34 17.86 0.09 4.98 0.762 

*Biases were calculated by subtracting the TLS and MLS values from the ALS values. 

**Biases were calculated by subtracting the MLS values from the TLS values 

 

Table 2.4 and Figure 2.6 show comparisons of the height-related metrics among the 

three datasets. ZMAX was the most consistent variable among the three LiDAR 

systems, although evaluation of ZMAX indicated that ZMAX was sometimes 

underestimated by ALS, considering the biases (Table 2.4). The ALS dataset had a 

low-density point cloud (5 points/m2 to 8 points/ m2), meaning that points 

representing tree apices could be missing (Zhao et al. 2018). On the other hand, MLS 

ZMAX values were higher than those derived from TLS and ALS. Since the MLS 

dataset was acquired 3 years after the ALS and TLS datasets, I assumed that canopy 

growth had occurred, and this was shown by the higher positive biases compared to 

ALS and TLS. Figure 6a demonstrates the higher ZMAX values of MLS. In the 

scatter plots of the MLS pairs, the dots and linear regression graphs are generally 

located below the 1:1 line, indicating higher ZMAX values than for the other two 

LiDAR platforms (Figure 2.6a). Since ZMEAN and Zq95 values can easily be 

affected by the location of the LiDAR, resulting in discrepancies in the point cloud 

density, differences were more considerable than in ZMAX. A comparison of 

ZMEAN and Zq95 showed that the dots in the ZMEAN plots were more scattered 

than those in the Zq95 plots (Figure 2.6b and Figure 2.6c), indicating that Zq95 was 

more stable and provided an alternative LiDAR metric to that of ZMEAN. A 

comparison of ZMEAN and Zq95 values revealed that ALS values were higher than 

those derived by the other two LiDAR systems. Notably, in the case of ZMEAN and 

Zq95, there were closer linear relationships for the ALS-TLS pairs than for the ALS-

MLS and TLS-MLS pairs. 
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Since ZMEAN and Zq95 values can easily be affected by the location of the 

LiDAR, resulting in discrepancies in the point cloud density, differences were more 

considerable than in ZMAX. A comparison of ZMEAN and Zq95 showed that the 

dots in the ZMEAN plots were more scattered than those in the Zq95 plots (Figure 

6b and Figure 6c), indicating that Zq95 was more stable and provided an alternative 

LiDAR metric to that of ZMEAN. A comparison of ZMEAN and Zq95 values 

revealed that ALS values were higher than those derived by the other two LiDAR 

systems. Notably, in the case of ZMEAN and Zq95, there were closer linear 

relationships for the ALS-TLS pairs than for the ALS-MLS and TLS-MLS pairs 

(Table 2.4 and Figure 2.6b and Figure 2.6c). 

ZSD values revealed a linear relationships among the LiDAR systems (the 

Pearson’s coefficient r values were higher than 0.7), but the values were not very 

precise (RMSE (%) was almost 20% and with low biases). In particular, ZSD derived 

from TLS showed relatively low consistencies with the ZSD from ALS and MLS 

(Pearson’s r for ALS-TLS and TLS-MLS were lower than the TLS-MLS pair). 

By comparing single and clustered trees, the coefficients of determination (R2 

values) of the height-related metrics of clustered trees, except for ZMAX, were lower 

than those derived for single trees (see R2 in Figure 2.6).  



 

 ２１ 

 

Figure 2.6 Comparison of height related metrics among the LiDAR systems (dashed line is 

the 1:1 line; grey band is the 95 % confidence interval) 
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3.2. Comparing CHM-derived canopy height metrics from each 

LiDAR systems 

Table 2.5 Assessment and comparison of the tree-structure indices determined using the 

LiDAR systems 
Metrics Max CHM Mean CHM Std. of CHM 

Evaluation 
RMSE 

(m) 

RMSE 

(%) 

Bias 

(m) 

Bias 

(%) 
r 

RMSE 

(m) 

RMSE 

(%) 

Bias 

(m) 

Bias 

(%) 
r 

RMSE 

(m) 

RMSE 

(%) 

Bias 

(m) 

Bias 

(%) 
r 

ALS VS. T

LS* 
0.43 4.45 -0.27 -2.81 0.990 0.27 3.87 -0.14 -2.11 0.986 0.20 13.21 -0.01 -0.48 0.953 

ALS VS. M

LS* 
0.44 4.52 -0.78 -8.11 0.989 0.36 5.19 -0.65 -9.45 0.975 0.25 16.67 -0.02 -1.21 0.923 

TLS VS. M

LS** 
0.52 5.27 -0.51 -5.16 0.985 0.39 5.54 -0.51 -7.19 0.967 0.20 13.38 -0.01 -0.73 0.945 

*Biases were calculated by subtracting the TLS and MLS values from the ALS values. 

**Biases were calculated by subtracting the MLS values from the TLS values. 

 
Figure 2.7 Comparison of the CHM-derived heights metrics among the LiDAR systems 

(dashed line is the 1:1 line; grey band is the 95 % confidence interval) 

 

Table 2.5 and Figure 2.7 show comparisons of CHM-derived height metrics among 
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the LiDAR platforms. The maxCHM describes the same results as the ZMAX in the 

evaluations and the scatter plots. A comparison of the meanCHM results showed low 

RMSEs and biases ( 0.39 m and  0.65 m, respectively) compared to those of the 

maxCHM. ALS also produced lower meanCHM values than the other two LiDAR 

systems. The ALS and TLS datasets, which were acquired on almost the same dates, 

had higher agreements between the maxCHM and meanCHM values among all the 

pairs. The Std. of CHM showed overall agreement in the pairs (RMSEs (%) were 

slightly higher than the other evaluations, but the biases (%) were lower than others). 

Because the mean CHM and Std. of CHM were calculated based on the surface 

heights of the canopies, the values showed greater agreement than did those of the 

ZMEAN and the ZSD (as the CHM showed only the height of the surfaces).  

Likewise, in comparing single and clustered trees, the R square values of the 

single trees were higher than those of the clustered trees except for the MaxCHM 

(see R2 in Figure 2.7). 

 

3.3. Comparing the area and the Rumple index determined using the 

LiDAR systems 

Table 2.6 Assessment and comparison of the tree-structure indices determined using the 

LiDAR systems 
Metrics Area Rumple index Plant area index 

Evaluation 
RMSE 

(m2) 

RMSE 

(%) 

Bias 

(m2) 

Bias 

(%) 
r 

RMSE 

(m2/m

2) 

RMSE 

(%) 

Bias 

(m2/m

2) 

Bias 

(%) 
r 

RMSE 

(m2/m

2) 

RMSE 

(%) 

Bias 

(m2/m

2) 

Bias 

(%) 
r 

ALS VS. 

TLS* 
8.19 5.89 -8.74 -6.29 0.998 0.15 9.26 -0.02 -1.50 0.892 0.766 24.63 0.69 22.27 0.600 

ALS VS. 

MLS* 
15.81 11.38 -16.67 -12.00 0.993 0.17 10.87 0.04 2.70 0.848 0.848 27.27 0.63 20.16 0.463 

TLS VS. 

MLS** 
15.00 10.80 -7.93 -5.37 0.995 0.22 13.45 0.07 4.13 0.764 0.290 12.00 -0.07 -2.72 0.877 

*Biases were calculated by subtracting the TLS and MLS values from the ALS values. 

**Biases were calculated by subtracting the MLS values from the TLS values. 

 

Table 2.6 and Figure 2.8 compare areas, Rumple Index, and plant area index values 

among the pairs.  

The rumple index values showed relatively low agreement among the LiDAR 

systems (Table 2.6 and Figure 2.8). The ALS-TLS pair showed the highest 

consistency (RMSE (%) = 9.26 and bias (%) = –1.50), while the TLS-MLS pair had 

lower values.  

The area data were relatively consistent among the LiDAR systems. Table 2.6 

and Figure 2.8 describes the higher area values in the MLS than ALS and TLS; biases 

in Table 2.6 and dots on the plots in Figure 2.8 show that the highest area values were 
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in the MLS dataset. Moreover, the ALS-TLS pair showed nearly a 1:1 relation in the 

area comparison (Figure 2.8). 

By comparing single and clustered trees, the rumple index for the single trees 

showed a greater R2 value than that for clustered trees among the LiDAR datasets. 

(Figure 2.8). The ALS-TLS and ALS-MLS pairs derived higher R2 values in area 

comparisons for clustered trees than single trees. In the case of the TLS-MLS, the R2 

of the area comparison for clustered trees showed a lower value than that for single trees. 

 

 
Figure 2.8 Comparison of areas and Rumple Index values among the LiDAR systems (dashed 

line is the 1:1 line; grey band is the 95 % confidence interval) 

 

Low densities and point clouds were excluded to calculate the PAI; 25 clustered 

trees and five single trees were used to derive the PAI. Table 2.6 and Figure 2.9 

compare the PAI values among the pairs. All pairs showed low linear relations with 

each other (Pearson’s r > 0.4). In particular, the TLS-MLS pair showed a greater 

consistency (i.e., low RMSE and bias and high Pearson’s coefficient r) rather than 

other two pairs. 
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Figure 2.9 Comparison of plant area index values among the LiDAR systems (dashed line is 

the 1:1 line; grey band is the 95 % confidence interval) 

 

4. Discussion 

4.1 LiDAR configurations and data acquisition time intervals 

In this study, I investigated ten tree structure metrics (Table 2.3). Most of the metrics 

derived from each LiDAR system showed linear relationships (values of Pearson’s 

correlation coefficient r was higher than 0.4, and most were strongly correlated, 

except for the ZMEAN, Rumple Index, and PAI) (Table 2.4, Table 2.5, and Table 

2.6). 

 

Consistencies oft height metrics 

The ZMAX, maxCHM, and meanCHM, which informed the tree-height values, 

showed substantial similarity among the LiDAR systems (Table 2.4 and Table 2.5). 

Although these metrics were highly consistent, differences remained for the bias 

values. My TLS and MLS data estimated the canopy heights to be higher than 

estimates by the ALS data at the study sites (Table 2.4 and Table 2.5); the biases in 

the height comparisons in the ALS-TLS and ALS-MLS pairs showed negative values, 

although the TLS and MLS data generally tended to underestimate the canopy height 

compared to ALS data (Hilker et al. 2012; Wang et al. 2019). Since my research sites 

consisted of small urban parks, with relatively short trees and a sparse canopy density, 

it was not difficult to set the TLS and MLS locations, which enabled the tops of the 

canopies to be detected more easily than would be the case in dense forest. Moreover, 

due to the sparse point density (< 8 points/m2) provided by ALS, I speculate that ALS 

missed some tree apices (Zhao et al. 2018), resulting in lower height values (e.g., 

ZMAX and Max CHM) compared to TLS and MLS (see biases in Table 2.4 and 

Table 2.5). Therefore, I inferred that the ALS data used in this study missed 

maximum canopy height detection (Song et al. 2016; Zhao et al. 2018).  

Furthermore, since the MLS data were acquired three years after acquiring the 

ALS and TLS data, ZMAX, maxCHM, and meanCHM metrics derived from the 
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MLS data, which indicated higher values than those derived by other LiDAR systems 

(Table 2.4 and Table 2.5), would reflect vertical tree growth in urban parks (e.g., 

Choi et al. 2019; Song et al. 2016).  

More considerable differences in the ZMEAN and Zq95 values may have 

resulted from the specifications of each LiDAR system (Table 2.1). Because ALS 

observed its targets from above, the points were concentrated in the higher canopies 

(skewed towards the top, Figure 2.10) (Hilker et al. 2012). In contrast, the TLS- and 

MLS-acquired points were concentrated lower in the canopies (skewed towards the 

bottom, Figure 2.10) (Hilker et al. 2012). These differences in height point densities 

could have resulted in the large discrepancies observed in the ZMEAN and Zq95 

values. Figure 2.11 appropriately represents the distribution of point clouds and their 

height metrics. Since the ALS dataset was concentrated on the upper canopies, the 

height metrics were greater than those of TLS and MLS. (Figure 2.8a, Figure 2.8b 

and Figure 2.8c). 

Although there were discrepancies in ZMAX, maxCHM, and meanCHM, I 

considered the differences sufficiently small (less than 1 m) to allow their use as 

standard height metrics among the LiDAR systems. 

 

Consistencies oft tree structural metrics 

The ZSD, Std. of CHM, area, Rumple Index, and PAI describe the structural diversity 

of canopies. The Rumple Index, in particular, indicates the vertical diversity of a 

canopy (Kane et al. 2011; Parker et al. 2004). A comparison of the Rumple Index 

results derived from each LiDAR system showed relatively low agreement (RMSE 

(%) = 9.26–13.45 % and bias (%) = –1.50–4.13 %). However, the ALS-MLS and 

TLS-MLS showed lower consistency than the ALS-TLS pair. Since the Rumple 

Index was calculated by dividing the areas derived from the CHM surface areas, the 

3D surfaces, area, height diversity, ZSD and Std. of CHM could have influenced the 

results. In particular, the greater area values derived from the MLS than those from 

the ALS and TLS might have lowered the rumple index values derived from the MLS 

than those from the ALS and TLS. Moreover, park management efforts, such as 

pruning, may have affected the decrease in the rumple index in urban parks (e.g., 

Choi et al. (2019) found that the rumple index value decreases in artificial openings). 

Since the MLS data was acquired three years after acquiring the ALS and TLS 

data, the lateral growth of the trees might have affected the greater biases in the area 

values of the ALS-MLS and TLS-MLS comparisons. (Choi et al. 2019; Song et al. 

2016). Moreover, MLS was able to survey entire targets, and this reduced occlusion 

effects due to the adoption of the SLAM system. The use of SLAM enabled MLS to 

obtain an almost complete view of the targets, while TLS missed some points due to 

issues with sensing locations and shadow effects. Therefore, with the time interval, 
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the high density of the MLS and an advantage avoiding occlusion effect may affect 

the greater area values in the MLS. 

 

Figure 2.10 Vertical distribution of the clustered trees (a) and single trees (b) by the three 

LiDAR platforms (The voxel size was 1 m × 1m × 1m, and the dots on the lines indicate the 

mean values of occupied number of voxels at every 1 m–height) 

 

 

Figure 2.11 Distribution of point cloud from airborne lasers scanning (a), terrestrial laser 

scanning (b), and mobile laser scanning (c) (White lines indicate height information 

 

In this study, I limited the setting of the parameters to derive the PAI (Table 2.3). 

The PAI comparison of the TLS-MLS pair showed relatively good consistency. 

However, the ALS-MLS and ALS-TLS pairs showed low consistencies (Table 2.6). 

This could have resulted from the wrong grain size, constant K, height threshold, 

and pulse density used in this study (Almeida et al. 2019; Wang and Fang 2020). In 

particular, as shown in Figure 2.10 and Figure 2.11, the point density of each LiDAR 

system was different. I inferred that these differences in point densities among the 

LiDAR systems resulted in poor agreements in PAI comparisons of ALS-TLS and 

ALS-MLS pairs. Furthermore, to accurately estimate LAI using LiDAR systems, 

various factors, such as optimal voxel size, occlusion effect, clumping effect, and 

others, should be considered with field survey data for calibration (Almeida et al. 

2019; Wang and Fang 2020). 
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4.2. Uncertainty of the structural indices derived from the three 

LiDAR systems 

4.2.1 Evaluation of the degree of differences between the references 

and observations for the tree classes 

Table 2.7 Size comparison of the biases (mean differences between the references and the 

observations) 

Pairs 

Tree 

classificatio

n 

Biases 

of 

ZMAX 

(m) 

Biases 

of 

ZMEA

N 

(m) 

Biases 

of 

Zq95 

(m) 

Biases 

of ZSD 

(m) 

Biases 

of max 

CHM 

(m) 

Biases 

of 

mean 

CHM 

(m) 

Biases 

of Std. 

of 

CHM 

(m) 

Biases 

of 

Rumpl

e index 

(m2/m2) 

Biases 

of Area 

(m2/m2) 

ALS 

VS. 

TLS* 

Single tree -0.31 1.57 0.69 -0.37 -0.31 -0.14 -0.01 -0.00 -7.30 

Clustered 

tree 
-0.24 2.06 1.37 -0.13 -0.24 -0.15 -0.02 -0.04 -9.90 

ALS 

VS. 

MLS* 

Single tree -0.60 1.97 1.08 -0.28 -0.60 -0.63 -0.03 0.09 -10.26 

Clustered 

tree 
-0.92 2.97 2.17 0.03 -0.92 -0.68 -0.06 0.00 -21.81 

TLS 

VS. 

MLS** 

Single tree -0.30 0.40 0.40 0.08 -0.30 -0.49 0.02 0.01 -2.95 

Clustered 

tree 
-0.68 0.91 0.80 0.10 -0.68 -0.53 0.04 0.04 -11.91 

* Biases were calculated by subtracting the TLS and the MLS values from the ALS values. 

** Biases were calculated by subtracting the MLS values from the TLS values. 

Light grey indicates significant differences between tree classification derived from the LiDAR 

systems (p < 0.05). 

 

I assumed that biases (differences between the references: the ALS and the 

observations: the TLS and the MLS) would be distinct for the different tree classes 

because of occlusion effect and different point cloud distributions. The t-tests of the 

mean distances between clustered and single trees were conducted (i.e., testing the 

mean values of the differences between the references and the observations for single 

and clustered trees) (Table 2.7). 

As shown in Table 2.4 and Figure 2.6, the ZMAX and the area showed great 

consistencies among the LiDAR systems. However, the biases in the ZMAX and 

area were not significantly different in the ALS-TLS pair, while the ZMAX and area 

biases by tree class showed significant differences in the ALS-MLS and TLS-MLS 

pairs (p < 0.05). In the ALS-MLS and TLS-MLS pairs, clustered trees showed 

greater mean distances (0.92 m and 0.68 m, respectively) than single trees (0.60 m 

and 0.30 m, respectively) in ZMAX comparisons. Moreover, in the ALS-MLS and 

TLS-MLS pairs, clustered trees showed greater mean distances (-21.81 m2 and -

11.91 m2, respectively) than single trees (-10.26 m2 and -2.95 m2, respectively) in 

area comparisons. I think it is likely that additional unknown reasons, such as soil 

conditions, tree species composition, and stand complexity, may have impacted tree 

growth and contributed to the higher ZMAX and area estimates in clustered trees as 
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derived by MLS. Oldfield et al. (Oldfield et al. 2015) found that stand complexity 

and the existence of the shrubs in stands could enhance tree growth. This study 

showed more complex structures in the case of clustered trees (rumple index values 

= 1.63 ± 0.18 m2/m2) than single trees (1.57 ± 0.46 m2/m2), and clustered trees 

included shrubs (Figure 2.5). Therefore, I infer that the differences in biases between 

clustered and single trees might have resulted from the stand complexity and other 

environmental factors. 

ZMEAN and Zq95 values showed significant bias differences for the ALS-TLS 

and ALS-MLS pairs (Table 2.7). These metrics showed that point densities for 

heights were skewed as a result of the sensor locations (Figure 2.10). Clustered trees 

had more data acquisition points at the low heights than did single trees, so both TLS 

and MLS collected more data for lower heights. This tendency resulted in lower 

ZMEAN and Zq95 values, especially for clustered trees when the data were derived 

from TLS and MLS rather than from ALS (Table 2.7). In this study, ZMEAN and 

Zq95 values showed no significant differences by tree class between TLS and MLS.  

In terms of the CHM-related metrics, maxCHM produced exactly the same 

results as ZMAX, and I assume that differences in the biases were for the same 

reasons as identified for ZMAX (i.e., tree growth rates might be different depending 

on soil conditions, stand complexity, and the existence of shrubs). The meanCHM 

and Std. of CHM showed no significant differences for all the pairs. CHMs (1-m 

resolution) derived from the LiDAR platforms could be used interactively. 

Bias of the rumple index and Std. of CHM by the tree class did not differ 

significantly in all pairs (p > 0.05).  
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4.2.2 Evaluating the degree of the biases by the tree height, area, and 

complexity 

 

Figure 2.12 Correlation matrix plot between ALS-derived metrics and the biases (color 

represents only the significant correlations; p < 0.05, and differences were calculated by 

subtracting the observations from the references.) 

 

The biases of the metrics among the sensors were highly correlated with the canopy 

complexity and tree or canopy heights (Figure 2.12). I infer that bias increased when 

the trees were tall and the canopy structures were complex (Figure 2.12) because of 

occlusions effects of the TLS and the MLS, and sparse point density of the ALS. 

Moreover, more complicated canopy structures imply the difficulties in sensing the 

tree structures using the LiDAR scanner (Wang et al. 2019).  

The biases in the ZMEAN and Zq95 values showed clear linear relationships 

with tree structures (Figure 2.12). Moreover, a comparison of LiDAR systems 

revealed significant differences in the biases of the ZMEAN and Zq95 for different 

tree classes (Table 2.7), highlighting inconsistencies in the application of different 

LiDAR systems as a standard set of metrics. 
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Chapter 3. Urban forest growth and gap 

dynamics detected by yearly repeated airborne 

LiDAR 
 

1. Introduction 

Quantifying forest gaps is essential for monitoring the stability of the forest structure 

because these disturbances can change the light environment and drive forest 

dynamics (Asner 2013; Fisher et al. 2008; Kane et al. 2011; Whitmore 1989). 

Physical disturbances in forest canopies usually result from deforestation (e.g., 

making space for agricultural fields) and tree-fall events (Asner 2013). Forest gaps 

could be characterized by their size distribution. The areas of forest gaps in natural 

forests follow the power-law distribution with the frequencies. Usually, small 

openings (formed by wind damaged or tree mortality) in natural forests dominate 

areas in the size distribution and show larger scaling exponents, while frequent large 

openings show smaller scaling exponents. Therefore, by comparing the scaling 

exponents with other forests, it is possible to compare the degrees of disturbances 

(Kane et al. 2011; Whitmore 1989).  

Urban forests are usually fragile to disturbances because the dense human 

population leads to severe conditions that can damage the forest directly (e.g., land-

cover changes from forested to urbanized areas) (Steenberg et al. 2016). Forest 

damage such as deforestation and landcover changes could result in relatively larger 

openings than small openings in forests and the human activities in there may hinder 

the forest equilibrium or change the forest ecosystems (Vepakomma et al. 2018). 

Particularly in South Korea, small and large mountainous urban forests are very 

common as they remain green areas after development and many people use them 

for leisure activities, agriculture, and private graveyards that are accompanied with 

canopy openings (Kim et al. 2013; Kim and Pauleit 2009; Lee et al. 2009; Lee and 

Kim 2010; Ryu et al. 2017; Youn 2009). Although many policies try to conserve 

these urban forests in South Korea, land use in urban forests is complexed and can 

easily undergo harsh disturbances (Koo et al. 2013; Park and Lee 2014; Ryu et al. 

2017). Therefore, it is important to monitor forest gaps in urban forests where various 

natural or anthropogenic disturbances can occur. 

Forest surveys are conducted in many countries via onsite sampling of plots that 

are considered representative of the whole study site. In addition, airborne 

photogrammetry and satellite imagery are applied to measure the diameter at breast 

height, stand height, basal area, and species composition using terrestrial field 

sampling data. However, these traditional methods have certain limitations related 

to the subjective interpretation of measurement results, low measurement accuracy, 

and lack of information about vertical canopy structures (Latifi et al. 2016; 
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Magnussen et al. 2012; Naesset 1997; Sasaki et al. 2013; Thompson et al. 2007; 

White et al. 2015; Whitehurst et al. 2013). To compensate for the limitations of 

existing research methods, there is a need to improve techniques that can support the 

assessment of forest growth and biodiversity such as airborne Light Detection and 

Ranging [LiDAR] (Whitehurst et al. 2013). 

Many studies have suggested that airborne laser scanning (ALS) can be applied 

to describe vertical forest structures and the accuracy of stand height estimations has 

been assessed (Magnussen et al. 2012; Naesset 1997). Although ALS-based tree 

height estimations are less accurate than those using rigorous field measurements 

(Andersen et al. 2006), the accuracy is acceptable and the more efficient coverage of 

large areas by ALS offsets this weakness (White et al. 2015). Especially, Vepakomma 

et al. (2018) reported that the difference between the effects of natural and 

anthropogenic linear openings (i.e., steam and roads) with LiDAR data. These days, 

with its acceptable accuracy and advantages in sensing vertical canopy structures, 

multi-temporal LiDAR survey has also shown great potential for detecting changes 

in forest structure (Eitel et al. 2016). For example, the use of adequate multi-temporal 

airborne LiDAR datasets represents a reliable and efficient method for detecting 

canopy changes and estimating canopy growth and forest biomass dynamics at a fine 

temporal resolution (Cao et al. 2016; Dalagnol et al. 2019; Dalponte et al. 2019; 

Hopkinson et al. 2008; Rangel Pinagé et al. 2019; Song et al. 2016; Vepakomma et 

al. 2012; Vepakomma et al. 2008; Vepakomma et al. 2011; Yu et al. 2008; Zhao et al. 

2018). Recently, Song et al. (2016), Zhao et al. (2018), Dalponte et al. (2019) and 

Cao et al. (2016) successfully estimated forest biomass dynamics and tree growth in 

forests using repeated airborne LiDAR data. Moreover, Dalagnol et al. (2019) and 

Rangel Pinagé et al. (2019) reported quantifying canopy dynamics focusing on 

human-induced disturbances (e.g., logging) by using multi-temporal airborne 

LiDAR data in Amazon forests. Rangel Pinagé et al. (2019) reported that setting a 

height differences threshold was an efficient way to map logged trees and small gaps 

usually closed within short periods (within two years). Dalagnol et al. (2019) found 

that gap formation occurred more frequently in logged areas than in intact forests. 

For applications of multi-temporal ALS in urban forests, a few studies about the 

forest dynamics (e.g., forest growth and forest gap dynamics) in an urban forest have 

been conducted. Ossola and Hopton (2018a) measured urban tree loss dynamics in 

cities’ residential landscapes using bi-temporal (five-year period) LiDAR datasets. 

They particularly noted the changes in urban trees over time caused by human 

management and urban tree removal for hazard prevention or artistic preference. 

Since the urban forests are characteristically vulnerable to various and frequent 

disturbances, particularly in terms of physical damage (Bolund and Hunhammar 

1999; Fisher et al. 2008; Lai and Leone 2017; Liu et al. 2015; McWilliam et al. 2010; 
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Ossola and Hopton 2018b), canopy loss occurs frequently that could finally result in 

artificial canopy openings. However, to the best of my knowledge, most studies with 

airborne LiDAR datasets have focused on the forest gaps which are usually treefall 

gaps in the natural forests (Vepakomma et al. 2012; Vepakomma et al. 2008; 

Vepakomma et al. 2011) and few studies are related to artificial canopy openings in 

cities. In the same manner of the effect on the surrounding environment of forest 

gaps, artificial openings could affect the adjacent environment (Dalagnol et al. 2019; 

Li et al. 2018) and may also affect the changes in surrounding canopy structures. 

Therefore, it is important to monitor urban forests continuously (Cumming et al. 

2008) including both forest gaps and their artificial canopy openings.  

Thus, I estimated the three-dimensional canopy changes in an urban forest using 

four years of annual LiDAR datasets. To assess how much urban forest structures 

have changed, I estimated 1) the distribution of the growth area and damaged areas 

(e.g., vertical and later growth and damaged areas), 2) changes in vertical leaf area 

density profile, and 3) the dynamics of opening and closing forest canopies during 

2012–2015. Accordingly, this study addressed two questions: 1) What are the 

differences between the canopy structure changes derived from annual change 

detections and three-year interval change detection? 2) What are the characteristics 

of structural changes by the different canopy classes (e.g., high canopies and lower 

canopies) in urban forests? 

 

2. Methods and Materials 

2.1 Field survey 

The study was conducted at Mt. Bongseo (36.82°N, 127.12°E, altitude: 158 m, area: 

124 ha), a remnant patch after urban development located in the center of 

metropolitan Cheonan, Chungcheongnam-Do, Republic of Korea. The study site is 

covered with a mixed forest dominated by Quercus acutissima (percent area: 44.8%), 

Pinus rigida (29.7%), and Larix leptolepis (7.4%). The average age class (as 

designated by the Korea Forest Service, 2015, http://www.forest.go.kr/) of the forest 

is 3.8 (i.e., 30–40 years old; the third class). Both managed and unmanaged forest 

areas can be found within the study site. The forest is easily accessed by citizens and 

local amenities such as health facilities are present within the forest. Moreover, some 

of the land in the site is used as a cemetery and some have agricultural activity, which 

is private land (Figure 3.1). 
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Figure 3.1 Study site (boundary line) and eight airborne LiDAR survey trajectories (red line), 

and artificial canopy openings or gaps ((a and b): sports facilities, (c and d): private 

graveyards, and (e and f): agricultural lands) 

2.2. Canopy opening detection 

To classify open canopy types (e.g., natural treefall or thinning, private graveyards, 

facilities, and agricultural activities), I conducted field trips on October 7, 2016, 

August 26, 2017, and September 26, 2017. Moreover, to determine how much 

canopy should be classified as open canopy, I conducted Simultaneous Localizing 

and Mapping (SLAM) mobile LiDAR (Stencil, Kaarta, PA, USA) scanning under 

the tree-fall area (Figure 3.2) at the site on March 26, 2018, when the trees were 

defoliated. I generated 0.25 × 0.25 m2 digital surface models using the maximum 

height (HMAX) of all mobile LiDAR datasets with CloudCompare software 

(https://www.danielgm.net/cc/), and generated CHMs by subtracting the digital 

terrain models from the digital surface models. Finally, I calculated the gap size in 

ArcGIS ver. 10.2.2 (ESRI, Redlands, CA, USA). The average area of the 19 open 

canopies in the nine sampled plots was calculated as 12.48 ± 9.76 m2 with 

consideration of the foliated season and previous research by Yamamoto (2000) and 

Runkle and Yetter (1987), who did not consider very small openings (<5 m2) as gaps, 

and for the convenience of calculation, I classified gaps as locations where the open 

area was 10 m2 or more (Figure 3.3). 
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Figure 3.2 Examples of open canopy scanned with mobile LiDAR. (a) Section view of an 

open canopy formed by a fallen tree. (b) Plane view of an open canopy (highlighted area) 

2.3. Airborne LiDAR dataset acquisition and registration 

The airborne LiDAR datasets were acquired on October 9, 2012 (day of the year 

[DOY]: 283), May 16, 2013 (DOY: 136), June 16, 2014 (DOY: 167), and October 

30, 2015 (DOY: 303) from IGI LiteMapper 6800 (Samah Aerial Survey) which are 

all in the foliated season. The LiDAR data were acquired in different months. 

However, Song and Ryu (2015) reported relatively stable seasonal LAI values in a 

forest (in the same climate zone as my study site) in South Korea, and my study site 

experiences for the days with the maximum number of leaves that turned red in the 

first and last study year were October 28, 2012 and October 26, 2015, respectively 

(Korea Meteorological Administration, www.kma.go.kr). Therefore, I assumed that 

my data were acquired in the full-leaved seasons. 

The study site was surveyed following eight trajectories (Figure 3.1) by 

overlapping 50% of the trajectory edges at an altitude of 1,000 m, the beam 

divergence is 0.3 mrad and field of view is 60°. All annual point densities were higher 

than 8 points/m2, which provided sufficiently dense and similar to effectively 

compare datasets. The airborne LiDAR datasets were preprocessed using algorithms 

built into the TerraScan (Terrasolid) software on the MicroStation (Bentley) platform. 

First, I filtered noise at low points and aerial points. Second, I used classification 

algorithms to classify the points into ground and non-ground classes. I minimized 

measurement errors by selecting 190 planar areas over the entire year in the digital 

surface model generated from the point cloud datasets for 2012, 2013, 2014, and 

2015 and matched the heights with the average elevation for 2012. Finally, the height 

was adjusted based on the ground control points (triangulation point: 36°49′02.09″, 

127°07′27.31″, ellipsoidal height: 182.17 m; unified control point: 36°48′50.29″, 

127°06′55.92″, ellipsoidal height: 906,045 m; National Geographic Information 

Institute) and points on the roof of a building detected for all years. I selected 70 new 

random 16 m2 plots, including building rooftops and roads where the heights were 
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consistently adjacent to the site, to compare the 2012–2014 airborne LiDAR datasets 

with the 2015 airborne LiDAR dataset. The average differences from the 2015 

dataset were –0.01 m (2012), –0.04 m (2013), and –0.05 m (2014). Although the 

validation results showed that the heights in 2015 were slightly greater than those in 

the other years, I concluded that accuracy anomalies in the dataset of within 0.1 m 

were acceptable. 

 

2.4. Generation of height models and change detection 

Since the research site is mountainous and sloped areas may distort the vertical and 

horizontal locations of the tree canopy and apex (Alexander et al. 2018; 

Khosravipour et al. 2015), I did not consider segmenting the tree apices. Therefore, 

I simply calculated the vertical differences in CHMs for 2012–2015 that were 

generated from the LiDAR datasets and estimated the changes in the canopy 

throughout the study period. Since quantifying the changes of canopy opening areas 

and identifying the growth direction (i.e., vertical or lateral direction) both require 

high-resolution CHMs (e.g., Vepakomma et al. 2012; Vepakomma et al. 2011; Yu et 

al. 2008) and the beam divergence of the LiDAR sensor is 0.3 mrad, which is a 0.3 

m footprint at the ground level (flight altitude: 1,000 m), I assumed that 0.25 × 0.25 

m2 grid resolution would be adequate. After preprocessing the LiDAR datasets into 

0.25 × 0.25 m2 (grid level survey) digital surface models and digital terrain models, 

CHMs were generated using the TerraScan software Figure 3.4 a). The annual 

average canopy heights for 2012–2015 were 11.09 m, 11.02 m, 12.29 m, and 12.12 

m, respectively. The CHMs for each year were classified into two classes: high 

canopy [HC], with canopy height >5 m and low canopy [LC], with canopy height ≤5 

m (Figure 3.3). In addition, I included the subclass canopy closure (CaC), which 

represents areas with LCs in earlier years that became HCs in later years. Based on 

the estimated growth rates outlined by Song et al. (2016), I assumed that the average 

annual growth rate of mature trees could not exceed 50 cm/year. Therefore, after 

calculating the changes between the two years, I classified the growth regions into 

four subclasses: vertical growth (VGr) areas with annual mean growth rate ≤50 cm; 

LGr areas with annual mean growth rate >50 cm; damaged areas with negative 

growth rates, and no-change areas with –10–+10 cm growth rates. 

Since grid size can affect the accuracy of HMAX estimates (Roussel et al. 2017), 

and canopy metrics based on vertical profiles can be used to accurately estimate 

forest structure (Hopkinson et al. 2008; Zhang et al. 2017), I generated a larger size 

of grids for the plot level survey using hexagonal grids with an area of 16.24 m2 and 

edge length of 2.5 m (approximately the mean size of a closed gap area during the 

study periods) to estimate the changes in vertical profiles, leaf area density (LAD), 

and canopy complexity. 
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Figure 3.3 Analysis framework for the classification of urban open canopies in this study and 

a section of a normalized LiDAR dataset at an artificial gap (Figure 3.1c)  
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2.5. Gap detection and classification 

I set the thresholds of height and area for detecting open canopies as 5 m (which was 

almost half of the CHMs) and 10 m2 (based on the gap area calculation from mobile 

LiDAR datasets and for convenience of calculation), respectively, and identified the 

OCs in each CHM. I defined gaps with canopy openings caused by fallen or dead 

trees as forest gaps (FGp) and those caused by civic usage as farmland, cemeteries, 

or trails as artificial gaps (AGp) (Figure 3.1). 

To investigate the size distribution of FGp and AGp, I estimated the scaling 

exponent (λ) that describes the extent to which disturbances are clustered (i.e., lower 

λ means frequent large disturbances while higher λ means frequent small 

disturbances) (Asner et al. 2013; Kellner and Asner 2009; Vaughn et al. 2015) using 

methods from Asner et al. (2013). 

 

2.6. Estimating changes of vertical canopy distribution and canopy 

complexity 

The leaf area index (LAI, m2/m2) and canopy complexity (Rumple index, m2/m2) are 

well known to correlate with the productivity of forest ecosystems (Bouvier et al. 

2015; Jenness 2004; Parker et al. 2004); LAI is usually calculated as half the total 

leaf area per unit surface area (Ishii et al. 2004; Jonckheere et al. 2004). I estimated 

the LAI and leaf area density (LAD, m2/m3) using the “lidR” package in R software 

according to the method of Bouvier et al. (2015), who calculated the LAI based on 

the Beer–Lambert theory. The LAD was estimated by dividing the LAI values by dz 

(the profile of LAD). The canopy complexity was also estimated using the Rumple 

index function within the “lidR” package. Canopy complexity was calculated as a 

three-dimensional surface area divided by a two-dimensional surface area, which 

denotes the structural diversity of canopies (Jenness 2004; Parker et al. 2004; Sasaki 

et al. 2008). Session 2.6 is summarized in Table 3.1 Examples of the canopy height 

model and hexagon height model and Figure 3.4 .  

 

Table 3.1 Examples of the canopy height model and hexagon height model 

 0.25× 0.25 m2 pixel-level height model 
2.5m hexagon (16.24 m2) plot-

level height model 

Result 

Distribution of vertical growth area 

Distribution of lateral growth area 

Distribution of damaged area 

Leaf area density & leaf area index 

(Bouvier et al. 2015)  

Canopy complexity (Parker et al. 

2004) 

Percentile height differences 
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3. Results 

3.1. Pixel and hexagon height model-based change detection 

With change detection, I found that changes in the distribution of canopies were 

irregular year by year (Figure 3.5), while the annual VGr rates remained relatively 

stable throughout the study period. There were no great growth rate differences 

according to either the time interval or the grid size (Table 3.2). Figure 3.5a presents 

an example of the overall distributions of growth and damaged areas in 2012–2015. 

Figure 3.5b and c show the vertical changes over two years (i.e., one-year term) to 

explain the growth and damaged area distributions. Detected growth areas where the 

canopy height increased usually resulted from lateral growth rather than vertical 

growth in HCs, which could mean that taller canopy overlapping occurred frequently. 

In the case of low canopies, lateral growth areas were pervasive in annual change 

detection, while vertical growth areas were sustained over total periods. Because LC 

areas included bare lands, the height remained relatively unchanged.  

Furthermore, canopy closure (LC to HC) tended to be driven by LGr rather than 

VGr, possibly because the rate of LGr among taller trees was higher than that of VGr 

among young trees at the study site (Figure 3.5d). Besides, I found that disturbance 

and canopy loss were widespread over the whole study period (Figure 3.5b, c). 

 

 
(a) 

 
(b) 

Figure 3.4 Example of raster grids (height model) (a: 2015 canopy height model, 0.25 

× 0.25 m2 resolution) and hexagon grids (height model) (b: 2015 normalized point 

cloud, 2.5 m edge length) 
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Figure 3.5 Results from pixel-based analysis. (a) Distribution of High Canopy [HC], Low 

Canopy [LC], Canopy Closure [from LC to HC, CaC], and damaged areas (2012–2015); (b) 

Distribution of growth and damaged areas in HCs; (c) Distribution of growth and damage 

areas in LCs; (d) Distribution of growth areas in CaC; first year:  2012–2013, second year: 

2013–2014, and third year: 2014–2015; DA: Damaged area, VG: Vertical growth area, LG: 

Lateral growth area 

 

Table 3.2 Annual mean vertical growth rate (unit: m/year) (First year:  2012–2013, second 

year: 2013–2014, and third year: 2014–2015; DA: Damaged area, VG: Vertical growth area, 

LG: Lateral growth area) 

Canopy 

class 
Periods (terms) 

HMAX 

(pixel) 

HMAX 

(plot) 

H95TH 

(plot) 

HMEAN 

(plot) 

HC to HC 

First year (218 days) 0.29 0.25 0.25 0.29 

Second year (396 days) 0.30 0.30 0.29 0.32 

Third year (401 days) 0.29 0.29 0.29 0.30 

Total years (1,015 days) 0.30 0.26 0.27 0.31 

LC to LC 

First year (218 days) 0.27 0.25 0.25 0.28 

Second year (396 days) 0.28 0.29 0.29 0.30 

Third year (401 days) 0.28 0.29 0.29 0.30 
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Canopy 

class 
Periods (terms) 

HMAX 

(pixel) 

HMAX 

(plot) 

H95TH 

(plot) 

HMEAN 

(plot) 

Total year (1,015 days) 0.27 0.27 0.27 0.30 

 

3.2. Continuous one-year vertical growth area 

Due to widespread canopy loss and the complexity of the dynamics in both canopies 

(Figure 3.5), I tried to detect continuous growth areas. Table 3.3 shows the proportion 

of the area in which the canopy continuously grew upward at pixel (via CHMs) and 

plot (via hexagonal grids) levels. The proportion of overlapping growth areas with 

positive values (i.e., gradual vertical canopy growth) based on the height difference 

for 2012–2015 showed a 15.9% correspondence at the pixel scale and a 38.9% 

correspondence at the plot scale. 

Table 3.3  Correspondence of 3-year interval growth grids and annual continuous 

growth grids (A: growth pixels for 2012-2015, B: continuous growth pixels for 2012-

2015 

Layers 

Overall growth in 

the mid-term 

A:  

(CHM2015 - 

CHM2012) > 0.1 m 

Consistent growth through short terms 

B:  

(CHM2013 - CHM2012) > 0.1m 

& 

(CHM2014- CHM2013) > 0.1m 

& 

(CHM2015- CHM2014) > 0.1m 

Consistent 

growth 

area ratio 

(%) 

B/A * 100 

H95TH -hexagon 

grids (No. of 

hexagons) 

68,381 26,577 39 

Hmax-pixel grids 

(No. of pixels) 
10,754,351 1,706,387 16 
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3.3. Open canopy change detection  

Table 3.4 Forest gap information (2012 ~ 2015) 

Forest gap 2012-2015 

Year 2012 2013 2014 2015 

No. of 925 792 542 601 

λ (scaling 

exponent) 
1.28 1.26 1.28 1.28 

Mean (m2) 36 ± 97 42 ± 107 37 ± 84 36 ± 70 

Minimum (m2) 10 10 10 10 

Maximum (m2) 2,251 2,212 1,294 906 

Sum (m2) 33,335 33,512 20,058 21,361 

 

For 2012–2015, the total number of FGps and the sum of the area decreased (Table 

3.4). However, the mean FGp area each year did not decrease over time; this might 

indicate that some forest gaps continued to open and some were closed during the 

study periods. Moreover, total FGp areas (Sum in Table 3.4) abruptly decreased 

between 2013 and 2014, which was also present in Figure 5c, as growth distributions 

increased. Finally, even though the scaling exponent λ in 2013 decreased slightly, λ 

showed consistent values over the years.   

 

Table 3.5 Existing gaps and closed gaps in forest gaps 

Forest gap 

(FGp) 
Gap continuation (existing gap, EGp) 

Closed gap 

(CGp) 

Year 2012 2013 2014 2015 2012~2015 

No. of 374 363 387 391 551 

Mean (m2) 65 ± 147 70 ± 153 46 ± 97 46 ± 85 16 ± 9 

Minimum 

(m2) 
10 10 10 10 10 

Maximum 

(m2) 
2,251 2,212 1,294 906 95 

Sum (m2) 24,276 25,237 17,852 17,907 9,059 

*The difference in the number of existing gaps in each year might be due to gap coalescence (e.g., 

Vepakomma et al. 2011) 

Forest gaps were classified into two subclasses according to whether they were 

closed in the study periods (e.g., Vepakomma et al. 2012); existing gap (EGp) and 

closed gap (CGp) (Table 3.5). The number of existing gaps (EGp) (i.e., FGp in the 

same location detected for all years) increased slightly from 374 to 391 due to gap 

coalescence (e.g., Vepakomma et al. 2012), while the mean area of EGp decreased 

by 19.11 m2 (Table 3.5). Although the number of EGp patches increased slightly, the 

mean area and maximum area diminished because some gaps were divided into two 

or more gaps as a result of tree growth. Moreover, areas of 10.00–94.75 m2 (mean: 

16 ± 9 m2) were closed for the whole study period (Table 3.5). 
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In the case of AGp, the mean area was increased by about 10 m2 while the 

number of patches decreased (Table 3.6). The decrement in the number of patches 

could result from the LGr of the edge trees (Table 3.5). The notable difference 

between the changes in forest gap and artificial openings is that artificial opening 

areas either maintained their position or expanded their area, while natural forest 

gaps showed more dynamics (i.e., faster canopy closure rates). Moreover, the scaling 

exponent λ showed lower values than that of forest gaps, which may indicate 

frequent larger openings in artificial gaps. 

Table 3.6 Artificial gap area information (2012 ~2015) 

Artificial gap 2012 -2015 

Year 2012 2013 2014 2015 

No. of 607 531 540 548 

Mean (m2) 237 ± 750 280 ± 1025 226 ± 628 246 ± 671 

λ (scaling 

exponent) 
1.22 1.21 1.22 1.22 

Minimum (m2) 10 10 10 10 

Maximum (m2) 10,694 18,760 7,713 7,736 

Sum (m2) 143,817 148,666 122,241 134,935 

 

3.4. Changes in vertical canopy structures in High Canopy and 

Open Canopy 

The differences in changes to canopy structures by canopy class were more notable 

in the changes of vertical canopy distribution. In particular, FGp in OC showed both 

the largest LAI values each year and the largest differences in LAI (0.12 ± 0.62 m2/m2) 

during the study periods, followed by HC and AGp, which could indicate the positive 

effects of FGp on foliage (Figure 3.6). Furthermore, FGp also exhibited the greatest 

differences in canopy complexity for 2012–2015 (0.93 ± 4.15 m2/m2) followed by 

HC and AGp (there was no significant difference between HCs and AGp), which 

possibly indicated that FGp has an important role in increasing canopy structural 

diversity (Figure 3.6b).  

Figure 3.7 shows the LAD of each year and differences in LAD for 2012–2015 

(Figure 3.7 ‘class_dLAD’) in FGp (subclassified as EGp and CGp), AGp, and HC at 

the study site. In the total study period (three-year interval), vertical foliage 

distribution decreased at a lower height and increased at a higher height for every 

canopy class. Particularly among high canopies, 12m-height divided the LAD 

increment and decrement, while 5–10 m heights divided them in the low canopies. 

Furthermore, in the FGp canopy, the increment in LAD was greater than those in 

other canopy classes while the differences in LAD among heights in the AGp did not 

show clear differences. However, looking at the annual changes in Figure 3.7, these 
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changes were inconsistent throughout the study periods. 

 
Figure 3.7 Differences in leaf area density (LAD) (m2/m3) of high canopy and 

low canopy in each year from 2012 and 2015; dLAD_’class’: differences 

between 2012 and 2015 in the canopy ‘class’; HC: High Canopy; EGp: Exiting 

Gap; CGp: Closed Gap; AGp: Artificial Gap; total: between 2012 and 2015; 

First year:  2012–2013, second year: 2013–2014, third year: 2014–2015; DA: 

Damaged area, VG: Vertical growth area, LG: Lateral growth area) 

 
Figure 3.6 Plot-based canopy structure indices of High Canopy and Low Canopy 

(Forest gap and artificial gap) (a) Yearly LAI for 2012-2015; (a) Yearly rumple index 

for 2012-2015 
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4. Discussion 

4.1. What are the differences between the canopy structural changes 

derived from annual change detections and three-year interval 

change detection?  

I found that each annual vertical growth rate and total LAI showed almost consistent 

values, while distributions of changes in the canopies and leaf area profiles were 

irregular year by year. Moreover, the distribution of the annual growth regions 

showed low correspondence with the three-year interval growth regions (Table 3). I 

speculated that this low correspondence and the irregular changes in the canopies 

might have resulted from frequent changes in urban canopies (i.e., dynamics), 

weather conditions during data acquisition, grid size, and the DOYs in data 

acquisition. 

 

4.1.1. In terms of the aspects of the urban canopy dynamics and the 

DOYs of the data acquisition 

I found that the lateral canopy changes were irregular annually. By investigating 

Figure 3.5b and 5c, the first-year change detection in both HC and LC showed a 

higher distribution ratio for the damaged area than the others. In addition, the extent 

of the LGr areas was highest between 2013 and 2014, the second year (Figure 3.5b). 

Furthermore, Figure 3.6 shows that LAI and the canopy complexity (Rumple index) 

of all classes in 2013 were slightly lower than in previous years. These may show 

the importance of the DOYs of data acquisition for the one-year interval LiDAR 

survey. Since the DOY of data acquisition in 2013 was in the early growing season, 

while the DOY of data acquisition in 2014 was in the mid-growing season, the 

phenology might differ. This means that the point density of canopies in 2013 might 

have been relatively lower than that in other years, which could have resulted from 

the presence of more extensive damaged areas in the first year and smaller damaged 

areas in second year. However, considering the third year (the longest term of 401 d) 

when damaged areas occupied the largest area (Figure 5) and changes in the leaf area 

density did not show clear differences (Figure 7), I could assume that both the DOY 

of data acquisition and other environmental variables might have affected the results.  

Overall, the forest canopy appeared to change dynamically in each study year 

(Figure 3.5 and Figure 3.7). This may indicate that growth and disturbance events 

happened simultaneously and frequently in the study site. Table 3.7 shows the 

distribution of the yearly canopy changes in damaged area (DA) (HC to LC) and 

CaC (LC to HC). Row d in Table 3.7 shows the ratio of continuous change areas 

(open to closed or closed to open), which might indicate that dynamics of the canopy 

or uncertainty in the change detection using one-year interval LiDAR datasets. 
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Table 3.7 The ratio of open and closed areas by time (a) open or closed in the first year, 

(b) open or closed in the second year; (c) open or closed in the third year; (d) continuous 

changes to open to closed; (e) Total open or closed for 2012–2015, three-year term 

Categories 
Open area ratio 

(%) 

Close area ratio 

(%) 

Open or closed in the first year (a) 33 50 

Newly open or closed in the second year (b) 14 29 

Newly open or closed in the third year (c) 69 28 

Opened (first year) → Closed (second year) 

→ Opened (third year) or vice versa (d) 
15 7 

Total (e: a+b+c-d) 100 100 

 

Although the datasets for 2012–2015 were acquired on DOYs 283, 136, 167, 

and 303, respectively, the one-year interval comparisons showed the potential to 

estimate the VGr of the canopy surface, given the association between the annual 

VGr rate and DOY (Table 3.2) and to detect newly opened forest gaps during the 

study periods. 

 

4.1.2. Regarding the aspect of grid size 

For the weather conditions, the canopy heights could have been influenced by windy 

conditions creating tree canopy movement. Furthermore, I was uncertain whether 

the trees had grown vertically. These could have resulted in low correspondences 

when detecting gradual growth areas at smaller grid sizes (Table 3.3), which could 

indicate that a smaller grid size could be easily affected by canopy movement or 

growth direction, while a larger grid size would not. In addition, as Roussel et al. 

(2017) concluded, smaller plot sizes could cause larger errors in HMAX estimations; 

thus, the plot and grid size may have affected a higher degree of correspondence in 

the growth area for the plot-level survey. However, in the case of detecting the gap 

opening areas, change detection with smaller grid sizes could be more useful than a 

larger size (Table 3.4, Figure 3.5 and Figure 3.6). Since gap edge trees expand their 

foliage in the lateral direction (Figure 3.5 and Figure 3.7), I might not have seriously 

considered whether they have exactly grown. 

 

4.2. What are the characteristics of the structural changes according 

to the different canopy classes (e.g., high canopies and low 

canopies) in the urban forest? 

4.2.1. Forest gap effects on canopy dynamics in urban forests 

During the study period (2012–2015), the overall distribution of the canopy growth 

area in HC was about 58.6% (VGr area: 17.1%, LGr area: 41.5%), while the 
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damaged areas accounted for about 32.3% of the total area, which suggests active 

canopy growth and erosion in the study site. Meanwhile, about 26.2% of the LC area 

exhibited canopy growth, while the remaining 73.8% of the area was either damaged 

(14.6%) or unchanged (59.2%). The higher percentage of unchanged areas in LC 

probably resulted from areas of bare land or terrain not covered by canopies. 

Moreover, based on the VGr rate, both HCs and LCs seemed to grow upward at a 

steady rate (Table 3.2). However, the VGr rate of LCs was relatively lower than that 

of HCs; this difference might be due to civic usage and disturbances in LC. 

AGp formed via anthropogenic activities (e.g., building graveyards, sports 

facilities, and recreation areas) has prolonged changes in LAI, canopy complexity, 

and LAD (Figure 3.6 and Figure 3.7). The particularly slow or lower changes of AGp 

may have driven the low overall and VGr rates in LC. Regardless, the canopies of 

FGp showed the greatest changes in canopy complexity, LAI, and complexity 

(Figure 3.6 and Figure 3.7), exhibiting the well-known effects of FGp, which foster 

dynamic changes in the forest canopy (Yamamoto 2000). Since canopy complexity 

and LAI are important parameters of forest health assessments, the FGp at the study 

site may have positively stimulated vegetation growth (Ishii et al. 2004; Jonckheere 

et al. 2004). However, Figure 3.8 suggests that FGp could be also vulnerable to 

disturbances, agreeing with Vepakomma et al. (2012). 

In terms of the size distribution of physical disturbances or canopy openings, I 

could also find notable differences between FGp and AGp. In the case of FGp, the 

decrement of the scaling exponent in the first year (2012–2013) might result from 

frequent closures in smaller gaps rather than by opening larger areas (the maximum 

gap area and total area were similar between 2012–2013). From 2014 to 2015, it 

seemed that, due to forest gap closure, maximum and total gap area decreased, and 

the scaling exponent increased slightly. In the case of AGp, the decrement in the 

number of patches in the first year (2012–2013) and more frequent large openings 

might reflect slightly lower scaling exponent values in 2013 (the maximum gap area 

increased in 2013). From 2014 to 2015, it seemed that because of gap closure, 

maximum gap area was divided into several patches, and the scaling exponent 

increased slightly. Finally, since AGp had lower λ values, larger mean gap areas, and 

slower gap closure rates (6% closed in AGp, while 36% closed in FGp in all total 

periods, 2012–2015), I can assume that AGp was more vulnerable to physical 

disturbances; therefore, frequent larger openings occurred in AGp than in FGp 

(Dalagnol et al. 2019; Vepakomma et al. 2018). 
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Figure 3.8 Annual height decrements in High Canopy and Low Canopy (FGp and AGp) 

 

4.2.2. Forest gap closure 

The FGp exhibited a closure rate of 5.48 m2/year (Table 3.5), which appeared to be 

driven by LGr (Figure 3.5d) above a height of 5–10 m (i.e., HC) (Figure 3.7). As 

shown in Figure 3.5d, LGr occupied most of the area in CaC (96.59%). Based on 

these results, the LGr rate of maturity consisted of the gap boundaries in trees that 

appeared to be greater than the VGr rate of the young trees or shorter vegetation on 

the floor. Many studies have reported that small disturbances such as branch and tree 

falls could be closed by the lateral extension of gap-edge trees (Runkle 1992; St-

Onge et al. 2014; Valverde and Silvertown 1997; Vepakomma et al. 2012). At the 

present study site, FGps were smaller in size (mean area: 34–42 m2) than AGp (mean 

area: 226–279 m2). Considering a 5.48 m2/year rate of closure, FGp could close over 

short time scales. However, the larger gaps and reduced canopy dynamics in AGp 

areas led to more extensive gaps that remained open over long periods. 
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Chapter 4. LiDAR-derived three-dimensional 

ecological connectivity mapping 
 

1. Introduction 

Green spaces in cities can enhance biodiversity by providing habitat and food 

sources. However, as human populations in cities expand globally (United Nations 

2019), urban green spaces are in decline (Haaland and van den Bosch 2015) and are 

increasingly threatened with fragmentation and habitat loss. Due to this threat, it is 

the role of ecologists and environmental managers to identify biodiversity-based 

conservation priorities and ecological management for green spaces (Lepczyk et al. 

2017). Urban ecological networks provide solutions-based tools to decision-makers 

regarding urban conservation challenges (Choe and Thorne 2019; Lepczyk et al. 

2017; Nor et al. 2017; Sandström et al. 2006). Well-managed ecological networks 

resulting from the use of these tools could improve biodiversity and sustainability in 

cities by providing ecosystem services such as hydrological regulation, air 

purification, and positive effects on human health (Barton and Pretty 2010; 

Steenberg et al. 2016). 

Ecological networks can be quantified by connectivity indices, which provide 

a measure of how landscape patterns affect ecological processes. Centrality metrics 

are a form of connectivity indices (Carroll et al. 2012). Centrality values vary among 

landscape patches and generally imply at least some connectivity within landscapes, 

at least functionally, even when patches are not physically connected in space 

(Kindlmann and Burel 2008). Thus, urban ecological connectivity assessments can 

be effectively used to evaluate landscape function within cities (Casalegno et al. 

2017; Cook 2002; Dickson et al. 2019; Grafius et al. 2017; Tian et al. 2017; Urban 

and Keitt 2001; Zeller et al. 2012). 

Networks in urban ecosystems reflect heterogeneous landscape patterns with 

characteristics such as variation in vegetation patches and both vegetation and 

anthropogenic structure (e.g., buildings) (Farinha-Marques et al. 2017; Lepczyk et 

al. 2017). Including vegetation measures as well as measures of building structures 

(e.g., height and volume) in assessments of urban ecological networks is essential, 

particularly when considering urban bird species, as these structures represent habitat 

structure and composition for such species (Xie et al. 2016). Urban ecology studies 

have often focused on avian species because the extent of ecological connectivity in 

a given area is related to bird species diversity (Evans et al. 2009a; Goddard et al. 

2010; Kang et al. 2015). Avian species typically use green spaces as both corridors 

and habitat by selecting and moving within vegetation in both vertical and horizontal 

directions (e.g., by using the top or middle of canopies, and tree interior or edges) 

(Casalegno et al. 2017; Conole and Kirkpatrick 2011). Therefore, considering the 
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horizontal and vertical distributions of green spaces is essential to understanding 

between-patch connectivity for birds (Casalegno et al. 2017). In addition, because 

buildings in urban ecosystems often segregate urban green patches and act as barriers 

against the urban bird species (Hale et al. 2012), the configuration of structures 

including building volume, distribution, and height should be considered when 

designing urban green space connectivity. However, most urban network studies 

have treated structures only in 2-dimensions and used vertical information such as 

tree heights or structures by categorizing values (Grafius et al. 2017; Matsuba et al. 

2016). 

There are great opportunities for applying 3D datasets to the field of ecology 

and environment. A 3D dataset could help elucidate the relationship between urban 

morphologies and urban heat environment. Tian et al. (2019) identified the 

relationship between air temperature and 3D landscape indices such as building to 

vegetation volume ratio. Zhang et al. (2019) used the 3D index (e.g., sky fraction) 

derived from the Google street map to estimate land surface temperatures. Moreover, 

using a 3D dataset could enhance the understanding of bird species movements. For 

example, Liu et al. (2020a) and Tattoni and Ciolli (2019) emphasized the importance 

of 3D data for the bird corridors. Liu et al. (2020a) used digital elevation models 

(DEMs) and building heights for understanding the impacts of urban vertical 

expansion on the birds’ migratory patterns, and Tattoni and Ciolli (2019) also applied 

a DEM for finding potential stopover sites in the birds’ migratory routes. 

Advances in airborne light detection and ranging (LiDAR) (or airborne laser 

scanning [ALS]) and their availability have made quantifying three-dimensional (3D) 

structure feasible for ecological applications. LiDAR produces a point cloud which 

reveals objects in three dimensions at fine scale. This remote sensing can cover wide 

areas more easily and with higher accuracy than field measurements or aerial photo 

interpretation (Lefsky et al. 2002; White et al. 2016). Many researchers have 

successfully applied airborne LiDAR data to quantify vegetation structure in both 

forestry and urban studies, and many studies have demonstrated that including 

vegetation structure is critical to assessing ecological connectivity (Casalegno et al. 

2017; Chen et al. 2014; Coops et al. 2016; Dalponte et al. 2019; Guo et al. 2018; 

Melin et al. 2018; Plowright et al. 2017; Shao et al. 2019). For example, Coops et al. 

(2016) found that airborne LiDAR-derived indices such as the standard deviation of 

canopy height, green cover ratio, and canopy height diversity were related to bird 

species diversity; these metrics were successfully used, along with other 

environmental variables, to estimate bird species diversity across broad areas. 

Casalegno et al. (2017) characterized urban habitat structure using LiDAR data from 

local to landscape scales and were among the first to assess connectivity among 

green space patches in urban areas using LiDAR data. LiDAR-derived structural 
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variables have enormous potential for assessing connectivity across spatial scales 

and thus informing biodiversity conservation and monitoring strategies. Finally, 

Kedron et al. (2019) developed 3D urban landscape indices using a LiDAR dataset. 

Although ecological and connectivity networks include both anthropogenic and 

vegetation structure, existing research has not typically employed 3D analyses to 

estimate all structural variables. Two-dimensional variables would have limitations 

in representing these diverse structures of urban ecosystems. Therefore, in this study 

I evaluate connectivity for avian species in urban areas using both building and 

vegetation structure variables. My specific research objectives are to define which 

LiDAR-derived urban bird species diversity variables to use in creating a 

connectivity surface (landscape resistance and landscape permeability) and then test 

a modeled urban ecological network created using them. Related research questions 

are: 1) What are the contributions of the urban green spaces to the 3D connectivity 

with regard to land-use types; and 2) What are the characteristics of 3D based 

connectivity results compared to 2D based connectivity results? 

 

2. Materials and Methods 

 

Figure 4.1 Study site (Cheonan city, Republic of Korea) information. (a) Study site 

mapped with residential areas and commercial areas, (b) map of vegetation height (m), 

(c) map of building height (m) 
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Figure 4.2 Methodological flow chart depicting vegetation and building mapping 

 

2.1. Study area and avian species observation 

The study site covers 19.27 km2 in the center of Cheonan, population 600,000 

(Korea Statistical Information Service, http://kosis.kr/ 2015), Republic of Korea 

(Figure 4.1). The city of Cheonan is a major transportation hub connecting the 

metropolitan areas of Seoul with other provinces in South Korea. The study site has 

various types of urban green areas, including large urban mountainous forest (Mt. 

Bongseo located at the center of the research site), urban parks, and street trees. 

These green areas are surrounded by a variety of urban land-use types including 

apartment complexes, commercial areas, and private residential areas (Figure 4.1, 

appendix table 1). 

I surveyed bird species during the breeding season (21 April to 15 May 2015) 

within 18 neighborhood parks (Figure 4.1). Bird species presence and abundance 

were recorded along line transects (25 m in width) method. Each transect was 

surveyed three times. Then I summed transect-level observations to determine 

species richness and abundance. Species richness, abundance, and species richness 

per unit area for each surveyed park were used in analyses (Figure 4.2). I observed 

birds using binoculars (Ultraview EX OP 10×32DH II, Kenko Tokina Co., Ltd., 

Tokyo, Japan) and identified species via sound and visual observation of flight forms 

((Bibby et al. 2000; Song 2015, 2017). 

The vegetation in the parks consists of general tree species in South Korea. 

Generally, shrubs (e.g., Buxus koreana, Euonymus alatus and Rhododendron 
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schlippenbachii), sub-canopy (e.g., Acer palmatum and Chaenomeles sinensis), and 

high canopy (e.g., Zelkova serrata, Sophora japonica, and Ulmus davidiana var. 

japonica) formed the canopy structures in the parks. Broad-leave trees such as 

Zelkova serrata and Sophora japonica were planted for shading. Some species, such 

as Cornus kousa, Ginko biloba, Prunus sargentii, Taxus cuspidate, and Pinus 

densiflora were planted for landscaping. Pinus strobus was planted for screening. 

 

2.2. Airborne LiDAR acquisition, preprocessing and classification 

and deriving structural variables 

 

Figure 4.3 Process schematic of LiDAR-derived structure variables for vegetation and 

buildings. (a) Examples of 10 m×10 m grid cells in the study site, (b) illustration of 2D 

variables, and (c) illustration of 3D variables. 

The airborne LiDAR datasets were surveyed on 30th October 2015 using IGI 

LiteMapper 6800 sensor (by Samah Aerial Survey CO.) during the foliated season. 

The study site was surveyed following eight flight lines (Figure 4.1, reds dot lines) 

at an altitude of 1000 m with a 50% overlap in the width of scanned areas. The beam 

divergence was 0.3 mrad, and the field of view was 60°. Point density was >5 

points/m2. The dataset was preprocessed and classified using built-in algorithms in 

TerraScan (Terrasolid, Helsinki, Finland) software on the MicroStation (Bentley 

Systems, PA, USA) platform.  

I classified the LiDAR dataset (point cloud) into buildings, vegetation, ground, 

and others (e.g., vehicles, streetlights etc.; Figure 4.2) by overlapping and clipping 

GIS files (vector files at 1:5,000 scale) provided by the National Geographic 

Information Institute (NGII 2015; https://www.ngii.go.kr/). In addition, I classified 

green areas into street trees, artificial green areas, natural green areas by overlapping 

land-use types (appendix table 1). The ground point class was used to normalize the 

heights and z values of the remaining classes based on the absolute zero height value. 

Next, I allocated the normalized point cloud into 10 m × 10 m grid cells to generate 

and map the 3D characteristics of the study site (Figure 4.3). Finally, I mapped both 

building and vegetation structure variables into every grid cell, after selecting bird 

diversity-related variables from correlation results (Figure 4.2). 

https://www.ngii.go.kr/
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I derived 2D and 3D structural variables from the LiDAR dataset (Figure 4.3). 

I created 50 m (Andersson and Bodin 2009) buffer zones around the boundary of 

each surveyed park and then calculated building structure variables within these 

buffers. Building heights and areas were derived from the airborne LiDAR dataset. 

The volume of each building was calculated by multiplying its height by its area. 

Additional building structure variables included mean building area (b_amean), 

mean building height (b_hmean), the standard deviation of building height (b_hstd), 

and the ratio of building area for each buffer (b_ratio) (Table 4.1).  

To obtain vegetation structure variables for each surveyed park, I estimated the 

vertical distribution of vegetation structure (i.e., the number of voxels within 1 m3 at 

1 m height increments, g_L01–g_L12) and canopy complexity (obtained by dividing 

the 3D surface area by the 2D surface area, g_rumple) (Parker et al. 2004). Then I 

obtained the following four horizontal distribution variables: vegetation area (the 

amount of area covered by vegetation, g_area), green space perimeter (g_pe), 

vegetation cover ratio per pixel (g_ratio), and the green space perimeter to area ratio 

(g_pa_ratio) (Table 4.1). Vertical distribution variables were calculated using the 

“lidR” package in R (R core team 2018) and horizontal distribution variables were 

calculated from a canopy height model that I generated using the LiDAR dataset at 

a cell size of 0.25 m × 0.25 m. 

The final resolution of the building structural variables was 0.25 m × 0.25 m in 

10 m × 10 m grid cells. In the case of the vegetation structures, the resolution of 

voxel was 1 m3 and that of area-related variables was 0.25 m × 0.25 m per 10 m × 

10 m grid cells. 

 

Table 4.1 Summary of the building and vegetation LiDAR-derived variables used in 

this study 

Variables Description 2D or 3D 

Building structure 
b_amean mean building area for each buffer around park 2D 

b_hmean mean building height for each buffer around park 3D 

b_hstd standard deviation of building height for each 

buffer around park 

3D 

b_ratio ratio of building area for each buffer around park 2D 

b_vmean mean building volume for each buffer around park 3D 

Vegetation structure 
g_L01–g_L12 the number of voxels within 1 m3 at 1 m height 

increments 

3D 

g_rumple canopy complexity obtained by dividing the 3D 

surface area by the 2D surface area 

3D 

g_area the amount of area covered by vegetation 2D 

g_pe green space perimeter 2D 

g_ratio vegetation cover ratio per pixel 2D 

g_pa_ratio the green space perimeter to area ratio 2D 
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2.3. Correlation analysis and selection of structural variables 

After calculating 2D and 3D structural variables for the 18 surveyed parks, I used 

the nonparametric Spearman’s rank-order correlation (Rho) to assess correlations 

between bird species richness, abundance, and richness per unit area and horizontal 

and vertical structure variables of the 18 parks. 

I assumed that structural variables that were positively correlated with bird 

species variables would enhance avian movement, whereas those that were 

negatively correlated would impede movement. Therefore, I generated 2D and 3D 

variable maps selecting the vegetation ratio variables by calculating the ratio of 

vegetation cover (the ratio of vegetated area to total area within each 10 m × 10 m 

grid cell) and the vegetation volume ratio (the ratio of the volume of vegetation to 

the total volume in each 1 m3 voxel at each height strata). 

I selected LiDAR-derived variables that were significantly correlated (p < 0.05), 

either positively or negatively (Figure 4.4), with the number of species per unit area 

to generate 2D and 3D landscape permeability maps. Using a 10 m × 10 m cell size, 

I calculated volume and area ratios as follows: 

 

1) 2D: vegetation area ratio = vegetation area/the area of each grid cell 

2) 3D: vegetation volume ratio (8 m to 10 m) = vegetation volume/the volume 

of each grid cell 

 

2.4. 2D and 3D ecological networks 

I applied an electrical current flow-based model provided in the Connectivity 

Analysis Toolkit (Carroll et al. 2012) to map the connectivity between the parks 

(Dickson et al. 2019; McRae et al. 2008). I produced current flow betweenness 

centrality (CFBC) which shows multiple important pathways or alternative pathways 

surrounding the shortest path (Carroll et al. 2012; Kang et al. 2015). As in the 

electrical current flow-based model, a high CFBC value means that gird has a greater 

contribution to connectivity (McRae et al. 2008). 

The models were calculated from the landscape permeability maps which 

reflect how readily target species can move within a landscape. I generated 2D and 

3D permeability maps (10 m ×10 m cell size) by normalizing the mapping results of 

the structural variables from 1–100 linearly after selecting 2D and 3D structural 

variables from the correlational results (See the Results 3.2 section).  

In addition, to visualize which areas were more connected (higher centrality 

values) or more isolated (lower centrality values), I generated Z-distribution maps 

for both the 2D and 3D-based connectivity results. I assumed that centrality values 

that were greater than and less than |0.5SD| reflected connected area and isolated 
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area, respectively.  

Finally, after mapping both 2D and 3D CFBCs, I conducted correlation analyses 

between those CFBCs and the indices of bird diversity. 

 

3. Results 

3.1. Avian species survey 

The total number of observed species is 23 and the number of birds is 822. The 

majority of the observed birds were general species (generalist) living in the city, 

such as Passer montanus (abundance: 486), Microscelis amaurotis (abundance: 73), 

Pica pica (abundance: 52), Carduelis sinica ussuriensis (abundance: 39), 

Streptopelia orientalis (abundance: 29), Parus major (abundance: 24), and 

Phylloscopus inornatus (abundance: 19) (see also appendix table 2). I calculated the 

bird species richness, abundances, and species richness per square meter at each park 

for identifying the bird diversity-related LiDAR-derived variables (Figure 4.2). 

 

3.2. Correlation analyses and variable selection 

Correlations between bird species diversity and structural variables are shown in 

Figure 4.4. The results described the importance of amounts of the high canopies (8–

10 m height) as well as the structural complexity of canopy (g_rumple) for the 

species per unit area (Fig. 4). Moreover, Figure 4.4 also showed that building 

structure variables, especially mean building volume (p<0.01, r= -0.66), should be 

considered for the connectivity analysis since there was a negative correlation 

between the mean building volume and the number of species per unit area. 

The 2D variables including the area of vegetation cover and vegetation 

perimeter (Table 4.1) were negatively correlated with the number of bird species per 

unit area, whereas these variables were positively correlated with species richness 

and species abundance. Similarly, structural building variables within 50 m buffers, 

including mean building area, the standard deviation in building height, and mean 

building volume were negatively correlated with the number of species per unit area 

but positively correlated with species richness and abundance. This trend could be 

explained by data type. 
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Figure 4.4 Spearman’s correlations 

between the number of species per 

unit area, species richness, and 

species abundance with LiDAR-

derived variables. Eighteen parks 

were surveyed in this study. 

Positive and negative correlations 

are displayed in green and black, 

respectively (p < 0.05). Color 

intensity is proportional to the 

correlation coefficients. See Table 

1 for definitions of variables. 
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3.3. Connectivity analysis results 

 
Figure 4.5 Z-distribution maps of all possible alternative pathways (CFBC) derived from the 

a) 2D permeability map and b) 3D permeability map. Colors indicate standard deviations 

from each mean centrality value. (See also appendix figure 1) 

 

Although the spatial Z-distributions of possible alternative pathways (i.e., CFBC) 

derived from both 2D and 3D structural variables (mean CFBC = 0.00241 and 

0.00245; SD = 0.00207 and 0.00252, respectively) indicate that boulevards and large 

green spaces are associated with higher centrality values, there are differences.  

In the 3D CFBC, boulevards and large green spaces in the center of the study 

area appear to be of greater importance than in the 2D CFBC (Figure 4.5).  

The occupied connected area (≥0.5 SD) was more extensive in the 2D CFBC 

(54,209 grid cells, 28.20% of the study area) than in the 3D results (46,292 grid cells, 

24.08% of the study area). By contrast, highly connected areas (>1.5 SD) were more 

universal in the 3D CFBC (8.04% of the study area) than in the 2D (5.96% of the 

study area). The 3D CFBC results indicated that green spaces within dense 

residential areas and spaces adjacent to high-rise buildings were more isolated 

(centrality values < -0.5 SD) than was suggested by the 2D results. Generally, 

isolated areas (<-0.5 SD) were more extensive in the 3D results (92,842 grid cells, 

48.30% of the study area) than in the 2D (80,716 grid cells, 41.99% of the study 

area). 

 



 

 ５９ 

3.4. Correlation between connectivity results with bird species 

diversity 

 

 

 

Figure 4.6 Spearman’s 

correlations between the number 

of species per unit area and species 

abundance and richness with 

statistics (minimum [min], 

maximum [max], mean, and 

summation [sum]) derived from the 

2D and 3D CFBCs within surveyed 

urban parks (n = 18). Positive and 

negative correlations are shown in 

green and black, respectively (p < 

0.05). Color intensity is proportional 

to the correlation coefficients. 

 

 

 

 

 

Both the 2D and 3D CFBCs within urban parks indicated a significant correlation 

with avian species diversity (p < 0.05, Figure 4.6). Species richness and abundance 

were both positively correlated with the summation of the 2D and 3D CFBCs, 

whereas the number of species per unit area was negatively correlated with both of 

these metrics. Although it was not significant, the average of the 3D CFBC appeared 

to have a positive relationship with the number of species per unit area. 
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3.5. Differences between 2D- and 3D-based CFBCs 

 
Figure 4.7 Z-distribution map of the differences between the 3D and 2D CFBCs This 

map was created by subtracting the 2D CFBC from the 3D CFBC for the (a) overall 

study area and (b) surveyed urban parks. Colors represent standard deviations from the 

mean difference between CFBC values (mean = 4.22E-05; standard deviation = 1.52E-

03). Thick red lines indicate park boundaries and dashed red lines indicate the 50 m 

buffer zones. 

 

The differences between the 2D and 3D CFBCs are shown in Figure 4.7. Although 

the mean difference was close to zero (4.2E-05 ± 1.5E-03), notable differences 

(>±|1.5SD|) occurred in areas adjacent to boulevards and within residential areas and 

large green space patches (Figure 4.7). In the 3D CFBC results, areas adjacent to 

apartment complexes (heights>15-20 m) around the mountain displayed 

significantly less values relative to the 2D CFBC. This is likely because the volume 

of apartment complexes was incorporated into the 3D-based results, and thus the Z-

distribution values in those areas were low (<-1.5SD). Street trees planted along 

boulevards were also a source of discrepancy between the 2D and 3D CFBCs. Given 

that boulevards rarely have high structural volumes, the large values observed in the 

3D results are likely the result of the volume of street trees 8–10 m in height. Finally, 

the distribution of the Z-values in large green space patches in the 3D CFBC had 

relatively high variance, which could be a reflection of diverse canopy structures 

(canopy volume at 8–10 m) (Figure 4.4). The differences between the 2D and 3D 

CFBCs for each urban park are shown in Table 2. Although there were no significant 
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differences between means for each park, some areas of parks 2, 4–6, 9, 16, and 17 

were significantly different between the CFBCs (Figure 4.7). 

 

Table 4.2 Differences in the 2D and 3D CFBCs for each surveyed park. Values were 

obtained by subtracting the 2D CFBC from the 3D CFBC and parks are listed in 

descending value order. 

Park No. 
park0

6 

park1

6 

park1

5 

park0

1 

park0

7 

park0

4 

park1

0 

park1

3 
  

3D-2D of 

CFBC 

(positive 

value) 

8.1E-

04 

6.1E-

04 

5.9E-

04 

2.6E-

04 

2.3E-

04 

1.9E-

04 

4.5E-

05 

4.5E-

05 
  

Park No. 
park0

2 

park1

4 

park0

8 

park1

1 

park0

3 

park1

2 

park0

9 

park1

8 

park0

5 

park1

7 

3D-2D of 

CFBC 

(negative 

value) 

-

1.6E-

05 

-

1.6E-

04 

-

2.2E-

04 

-

2.8E-

04 

-

4.2E-

04 

-

4.7E-

04 

-

4.8E-

04 

-

5.5E-

04 

-

6.1E-

04 

-

1.3E-

03 

 

4. Discussion 

4.1. Vegetation and building structures and bird species diversity 

I assessed urban connectivity for avian species in the context of urban vegetation and 

building features. Vegetation volume at heights of 8–10 m (i.e., the number of voxels 

at those heights) was positively correlated with bird species richness per unit area, 

whereas at heights of 4 m, vegetation volume was negatively correlated with bird 

species richness per unit area (see results 3.2). Therefore, I infer well-managed urban 

parks with high canopies (>8 m height) provide profitable habitats or shelters for the 

bird species.  

Both the volume and average height of buildings within 10 m × 10 m grid cells 

were negatively correlated with the number of species per unit area. Collectively, 

these results suggest that 3D structural metrics of vegetation and buildings should be 

considered in connectivity analyses for birds in urban areas. My results support 

previous findings of negative effects of the built environment on bird diversity (Xie 

et al. 2016; Zhou et al. 2012) by providing evidence that high volume or tall buildings 

are negatively correlated with species metrics. 

My results further demonstrate that the number of species per unit area is related 

to the height and volume of both vegetation and buildings (Results 3.1). The rumple 

index, which represents complexity in the vertical distribution of vegetation canopies, 

was a positive correlation with bird species diversity (r = 0.58, p < 0.05). This 

indicates that complex canopy composition, such as multi-layered canopies, may 

relate to greater bird diversity (e.g., Cerra and Crain 2016; Coops et al. 2016; Evans 

et al. 2009b; Zhou et al. 2012). However, the standard deviation of building height 
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was negatively related to the number of species found per unit area (r = -0.46, p < 

0.05). There could be a negative impact on the bird diversity caused by the 

heterogeneity in height of the buildings generally due to high-rise apartment 

complexes in the site.  

 

4.2. 3D-based connectivity results 

The 3D CFBC results indicated that large forested areas (e.g., Mt. Bongseo) and 

street trees along boulevards appeared to play as key corridors within the study area 

(Figure 4.8). Mainly, street trees acted to connect isolated areas to areas of higher 

connectivity, such as boulevards and large green spaces, for avian species (Figure 

4.8) (e.g., Grafius et al. 2017; Morelli et al. 2014). For example, in park 6 (Figure 

4.8c), where there were adjacent street trees with high canopies (>8m), CFBC values 

were high relative to other parks (Table 4.2). Street trees contribute to the greater 

CFBC value of roads compared to other anthropogenic land-use types (Figure 4.9). 

These contributions of the street trees are due to high canopies (>8 m in height) 

occurred at equidistant intervals (e.g., Figure 4.10), and the negative impacts of given 

building volume near roads on bird diversity (Figure 4.4) by acting as barriers (e.g., 

Hale et al. 2012). 

Artificial green areas including residential parks, landscaped green areas, or 

privately-owned public open spaces also showed great CFBC value (0.003197) 

among other land-use types except for the natural green spaces and graveyards 

(graveyards were located inside natural green spaces). However, their contribution 

to the connectivity could be limited if they are isolated by dense buildings (Figure 

4.8b). Therefore, it is required green-infrastructure strategies for improving the 

connectivity in the isolated areas, such as designing green wall systems and rooftop 

gardens (Chiquet et al. 2013; Mayrand and Clergeau 2018), or planting and well-

managing street trees.  

Apartment complexes, owing to their high volume, tended to show lower CFBC 

values in the 3D analyses. However, if buildings are adequately spaced, adjacent 

landscaped green spaces or residential parks connected by street trees can improve 

connectivity inside the apartment complexes (Figure 4.8c). In the case of private 

residential areas (Figure 4.8d), although the buildings inside the areas are less heights 

(≦6m), they represented severely isolated areas (Z values of 3D CFBC < -0.5, Figure 

4.9). This describes that the extremely isolated areas are decided by the low density 

of vegetation and high dense building structures in 3D based connectivity analysis.  

 



 

 ６３ 

 

Figure 4.8 Z-distribution map of 3D-based current flow betweenness centrality results 

with heights of building information (the interval is 20 percentile) for the (a) overall 

study area, (b) surveyed parks in residential-commercial area, (c) park 6 in an apartment 

complex, (d) private residential area (e) high-rise apartment complexes and low-rise 

commercial area adjacent to an urban forest, and (f) high-rise apartment complexes and 

boulevards adjacent to an urban forest. 
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Figure 4.9 3D CFBCs among various land-use types. Colors represent land-use 

classifications obtained from EGIS, Ministry of Environment, Republic of Korea, 

https://egis.me.go.kr/) 

 

 

Figure 4.10 Street view of a boulevard in the study area obtained from Naver Corp., 

Seongnam, South Korea (http://map.naver.com) 

 

4.3. Differences between 2D and 3D network analyses 

Connected areas were more restricted in the 3D CFBC than in the 2D CFBC, and the 

latter also detected more areas of connectivity (Results 3.3). However, both isolated 

(<-0.5SD) and highly connected areas (>1.5SD) were more pervasive in the 3D 

CFBC. I infer that the 3D analyses reflect areas of higher intensity connectivity, 

whereas the 2D approach can be more generous. I also observed differences in the 

2D and 3D CFBCs based on land use types (Figure 4.11).  
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Figure 4.11 Differences between the 2D and 3D CFBC. Centrality values were obtained 

by subtracting the 2D CFBC from the 3D CFBC, bars represent men differences. 

 

4.3.1. Forest and artificial green area 

Both the 2D and 3D CFBCs reflected the importance of natural forests (i.e., 

broadleaved, coniferous, and mixed) in sustaining connectivity in the study area. 

However, my results highlighted the importance of considering 3D structures in 

determining the degree of importance of forest patches to connectivity. The 3D 

CFBC showed extensive forest patches as more highly connected than the 2D CFBC, 

and these differences were most pronounced around forest edges facing roads, where 

adjacent street trees appeared to act as corridors (Figure 4.7). However, I observed 

little difference between the two CFBCs in a large valley south of the forested patch, 

which was likely the result of nearby high-volume apartment complexes reducing 

the contribution of this forested area to connectivity.  

I found no evidence of connectivity differences (i.e. mean differences) in 

artificial green areas (i.e., residential urban parks, landscaped green spaces, or 

private owned open space) between the two CFBCs. However, my results did suggest 

that street trees and landscaped green spaces improve connectivity by connecting 

core areas in the 3D CFBC (Figure 4.8c). In the urban park shown in Fig. 12, the 

innermost area has a low canopy (less than 5–10 m in height) with open grassland 

areas and the outermost areas has a high canopy (>10 m). The 3D-based analyses 

well-described the vertical diversity and volume of these canopies, whereas the 2D-

based analyses considered these areas as nearly identical (Figure 4.5 and Figure 4.12). 
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Figure 4.12 A large urban park in the study area showing (a) Ortho-imagery, (b) canopy 

height (m), and (c) Z-distribution of the difference between the 2D and 3D CFBCs.) 

 

4.3.2. Roads and residential areas 

When comparing the 2D and 3D CFBCs for roads I observed a relatively low mean 

difference (7.E-05) but high standard deviation(i.e. 2.E-03), which indicates that 

variables such as the volume of street trees or the presence of buildings may affect 

road contribution to connectivity. The contribution of boulevards was greatest likely 

because these roads are wide (≥25 m), which may mitigate the effects of building 

volume. By contrast, narrow alleys had a minimal contribution to connectivity due 

to adjacent dense buildings (Figure 4.13).  

The influence of building volumes on connectivity is seen in the CFBC results 

in apartment complexes and private residential areas. The connectivity in private 

residential areas is slightly greater in 3D CFBC results (mean difference of CFBC = 

2E-5 ± 8E-4, Z-values≤0.5; Figure 4.7 and Figure 4.11), whereas considerably lower 

(mean difference of CFBC = 7E-4 ± 1E-3, Z-values≤-1.5) in 3D CFBC in apartment 

complexes compared to 2D-CFBC results.  

I ascertain that 3D connectivity analyses have a great advantage in presenting 

the difference in building and vegetation structures in the study sit, and that this 

difference leads to the results of higher intensity connectivity in the 3D analyses and 

more area selected in 2D analyses.  

 
Figure 4.13 Examples of boulevards and narrow alleys in the study site (a: Otho-

imagery; b: 2-D based CFBC results; c: 3-D based CFBC results) 
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Appendix 

Appendix table 1 Land-use information* of the study site 

Classificatio

n 

Medium 

classification  

code 

Area 

 (m2) 
Classification 

Medium 

classificatio

n  

code 

Area 

 (m2) 

Road 154 5289,536 Railway 153 124,030 

Artificial 

green 
423 2663,816 Schoolyard 622 105,090 

Bareland 623 2451,265 Graveyard 422 82,688 

Broadleaf 

forest 
311 2048,194 

Residential-

Commercial 

area 

132 31,158 

Commercial 

area 
131 1591,168 

Environmental 

facility 
161 28,320 

Agricultural 

area 4 
222 1075,865 Inland wetland 511 26,897 

Apartment 

complex 
112 876,436 Stream 711 23,016 

Coniferous 

forest 
321 750,004 Greenhouse 231 22,021 

Industrial 

area 
121 417,343 Farm2 252 9,778 

Private 

residential 

area 

111 393,975 Lake 712 8,649 

Agricultural 

area 2 
212 296,987 Farm1 251 7,814 

Recreational 

area 
141 229,155 Golf course 421 7,555 

Mixed forest 331 219,668 Natural green 411 7,141 

Education-

Administratio

n area 

162 190,865 
Transportation 

facility 
155 1,214 

ETC 163 150,799 Riverside 612 278 

Orchard 241 143,358 Total  19,274,082 
*Land-use GIS files and information are serviced by EGIS (https://egis.me.go.kr/), Ministry of Environment, 

Republic of Korea 

Appendix table 2 Observed bird species at each park 

Park No. 
No. of 

species 

No. of 

birds 
Observed species (No. of observed birds) 

1 17 127 

Passer montanus (47), Pica pica (1), Microscelis amaurotis (9), 

Streptopelia orientalis (8), Phoenicurus auroreus (2), Parus 

major (7), Parus palustris (3), Parus varius (1), Carduelis sinica 

ussuriensis (24), Sinosuthora webbiana (4), Aegithalos 

caudatus (2), Picus canus (1), Erithacus sibilans (2), Turdus 

hortulorum (1), Dendrocopos major (1), Phylloscopus 

inornatus (3), Emberiza spodocephala (2) 

2 7 63 

Passer montanus (43), Pica pica (3), Microscelis amaurotis (5), 

Streptopelia orientalis (3), Carduelis sinica ussuriensis (1), 

Phylloscopus inornatus (3), Emberiza spodocephala (5) 

3 11 42 
Passer montanus (25), Pica pica (5), Microscelis amaurotis (1), 

Streptopelia orientalis (2), Phoenicurus auroreus (1), Parus 
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Park No. 
No. of 

species 

No. of 

birds 
Observed species (No. of observed birds) 

major (2), Parus palustris (2), Parus varius (1), Aegithalos 

caudatus (1), Phylloscopus inornatus (1), Emberiza 

spodocephala (1) 

4 11 86 

Passer montanus (48), Pica pica (9), Microscelis amaurotis (6), 

Streptopelia orientalis (5), Phoenicurus auroreus (2), 

Cyanoptila cyanomelana (1), Parus major (3), Carduelis sinica 

ussuriensis (6), Erithacus sibilans (2), Phylloscopus inornatus 

(1), Emberiza spodocephala (3) 

5 8 45 

Passer montanus (28), Pica pica (1), Microscelis amaurotis (5), 

Streptopelia orientalis (3), Parus major (2), Carduelis sinica 

ussuriensis (3), Sinosuthora webbiana (2), Phylloscopus 

inornatus (1) 

6 3 16 Passer montanus (9), Pica pica (4), Microscelis amaurotis (3) 

7 4 26 
Passer montanus (19), Microscelis amaurotis (4), Parus major 

(2), Tarsiger cyanurus (1) 

8 4 63 
Passer montanus (55), Pica pica (3), Microscelis amaurotis (4), 

Parus major (1) 

9 3 34 Passer montanus (28), Pica pica (2), Microscelis amaurotis (4) 

10 8 3 

Passer montanus (14), Pica pica (3), Microscelis amaurotis (6), 

Streptopelia orientalis (1), Phoenicurus auroreus (1), Parus 

major (1), Aegithalos caudatus (3), Phylloscopus inornatus (1) 

11 4 35 
Passer montanus (31), Pica pica (2), Microscelis amaurotis (1), 

Streptopelia orientalis (1) 

12 6 33 
Passer montanus (21), Pica pica (4), Microscelis amaurotis (4), 

Parus major (2), Parus varius (1), Phylloscopus inornatus (1) 

13 6 25 

Passer montanus (15), Pica pica (4), Microscelis amaurotis (3), 

Parus palustris (1), Dendrocopos major (1), Phylloscopus 

inornatus (1) 

14 4 53 
Passer montanus (45), Pica pica (2), Microscelis amaurotis (5), 

Cyanopica cyanus (1) 

15 4 27 
Passer montanus (2), Pica pica (2), Carduelis sinica ussuriensis 

(2), Phylloscopus borealis (3) 

16 10 63 

Passer montanus (35), Pica pica (4), Microscelis amaurotis (6), 

Streptopelia orientalis (1), Parus major (2), Parus palustris (4), 

Carduelis sinica ussuriensis (2), Sinosuthora webbiana (3), 

Urosphena squameiceps (1), Phylloscopus inornatus (5) 

17 7 26 

Passer montanus (17), Pica pica (1), Microscelis amaurotis (1), 

Streptopelia orientalis (2), Parus major (2), Phylloscopus 

inornatus (1), Phylloscopus borealis (2) 

18 8 55 

Passer montanus (4), Pica pica (2), Microscelis amaurotis (6), 

Streptopelia orientalis (3), Phoenicurus auroreus (1), Carduelis 

sinica ussuriensis (1), Phylloscopus coronatus (1), 

Phylloscopus inornatus (1) 
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Shortest path betweenness centrality 

 
Appendix Figure 1 Z-distribution maps showing the most important pathway (SPBC) 

derived from the a) 2D permeability map and b) the 3D permeability map. Colors 

indicate standard deviations from each mean centrality value. 

The best single pathways derived from the 2D and 3D SPBCs are shown in Appendix 

Figure 1. The results of both 2D and 3D SPBCs indicated that core pathways (>0.5 

SD) followed boulevards (roads with widths ≥ 25 m) and large green spaces in the 

center and west (left) portions of the study area. The 2D-based SPBC indicated a 

core pathway in a dense, highly urbanized area, whereas the 3D-based path did not 

include this area (Appendix Figure 1). This suggests that green spaces within highly 

urbanized areas contribute greatly to connectivity when it is assessed in 2D. 

Moreover, I found that the area of the core pathway (≥0.5 SD) was wider in the 2D 

SPBC (11,146 grid cells, 5.80% of the study area) than in the 3D SPBC (7,280 grid 

cells, 3.79% of the study area). 
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Chapter 5. Conclusion 
 

1. Combination with multiple LiDAR systems for surveying 

structures of urban green spaces 

It is necessary to find common or standard tree structural metrics from the 

measurements of different LiDAR platforms, and these metrics should be 

interactively used among the platforms. Moreover, finding common or standard 

metrics is essential in preventing differences in tree structural metrics from numerous 

LiDAR platforms that affect the overall monitoring results and cause confusion. 

Therefore, Chapter 2 attempted to find the consistencies in tree structural variables 

among the ALS, TLS, and MLS datasets to find alternative structural variables that 

can be derived from MLS and TLS and applied when ALS datasets are not accessible 

in urban parks. 

My results reveal that ZMAX and CHM-derived structural metrics values 

showed good agreement among the ALS, TLS, and MLS platforms. These metrics 

could, therefore, be interchangeable among the three LiDAR systems. ALS-TLS 

showed better agreement than did the ALS-MLS and TLS-MLS comparisons 

because the data were acquired on the same dates. The consistency of ZMEAN and 

Zq95 values between ALS and the other LiDAR systems was low due to the LiDAR 

scanner locations. There were considerable differences between MLS and the other 

two LiDAR systems in the values for ZMAX, meanCHM, and area due to the later 

acquisition date of the MLS data. Although most metrics showed good agreement, 

errors or differences increased with canopy height and canopy complexity. 

This study also emphasized the configuration of LiDAR systems for estimating 

tree measurements. Depending on the point density and sensing location, the tree 

measurements could be differently calculated (e.g., ZMEAN and Zq95) and result in 

different derived outcomes, such as PAI. ZMEAN and Zq95 showed preliminary 

agreement among the LiDAR systems used in this study. Moreover, in estimating 

PAI, more factors should be considered in the estimation, and different parameter 

settings should be required among the ALS and other terrestrial-based systems. 

Therefore, further studies would be necessary to find methods to alleviate differences 

in point density and its distribution by different LiDAR configurations. Lastly, using 

a digital elevation model (DEM) for registering and testing accuracy could enhance 

the confidence of the comparison results. 

Recently, various LiDAR systems, such as the unmanned aerial vehicle laser 

scanning system and mobile laser scanning system, have been developed. Therefore, 

there is a great opportunity to combine various LiDAR datasets to monitor tree 

structures. My results show the potential advantages of combining multiple LiDAR 

systems to estimate the structural makeup of urban park areas. For example, 
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researchers have successfully evaluated above-ground biomass by using multiple 

LiDAR systems, and they recently found that utilizing multiple LiDAR systems at 

the same time increases the accuracy of tree structure and biomass estimations 

(Levick et al. 2021; Pyörälä et al. 2019; Zhang and Shao 2021). Given the increasing 

interest in using multiple LiDAR systems, my results suggest the importance of 

assessing consistencies among different LiDAR systems before combining multiple 

LiDAR systems. Finally, as there is an increasing demand for LiDAR technology in 

urban planning and design and particularly for managing urban green spaces, my 

results could help when there is a need to fill gaps in datasets in terms of temporal 

and spatial perspectives. 

 

2. Multi-temporal urban forest gap monitoring 

In Chapter 3, I estimated the three-dimensional canopy changes in an urban forest 

using four-year annual LiDAR datasets. Based on my results, I concluded that the 

vertical growth rates derived from one-year change detections showed similar values 

to three-year interval change detection. However, the regions in which the canopies 

grew up continuously differed according to the grid sizes (pixel- and plot-level grids) 

and they occupied only 15.9% and 38.9% of the growth areas detected in three-year 

interval comparison. Moreover, the distributions in VGr, LGr, and damaged areas in 

the annual change detections showed irregular changes according to the year. These 

results might indicate that even though three-year interval (or larger) change 

detection could be a more efficient way to estimate the growth rates in a forest in 

terms of the costs and efforts, one-year interval change detection with airborne 

LiDAR datasets would be useful for monitoring and understanding what areas are 

vulnerable to disturbance (three-year interval change detection might detect open 

canopies as closed canopies). 

I also concluded that the leaf area index showed continuous values year-by-year, 

while the leaf area profile (e.g., leaf area density) showed irregular yearly changes 

in both high and low canopies. Among the low canopies, I could conclude that they 

were vulnerable to physical damage, particularly in AGps. In the case of FGps, they 

also drove the growth and disturbance aspects of forest dynamics and served to 

diversify the canopy structure; most of them were closing in a lateral direction by 

gap-edge trees. Furthermore, high canopies expanded their foliage at a higher height 

(12 m) than those of low canopies (5 m).  

Although I found that the one-year interval change detections showed the 

potential to achieve detailed information about canopy changes, further study is 

warranted. For example, since detecting changes in the distribution of canopies 

might be easily affected by the grid size and the DOY of data acquisitions, an 

adequate grid size and DOY should be suggested. In particular, in the case of DOY, 
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seasonal variations in the canopies over a year could be studied with a mobile LiDAR, 

and this may both hint at the DOY of data acquisition via airborne LiDAR survey 

and inform about seasonal changes in canopy structures. 

 

3. Ecological connectivity analysis using LiDAR 

In Chapter 4, I assessed the urban ecological connectivity by using a LiDAR dataset 

to evaluate 3D aspect of the urban structures. I found that 3D variables, namely 

building and vegetation volume, were related to bird diversity in my study area. 

Building structures including heights, standard deviation of heights, volumes, and 

areas were negatively correlated with the number of species per unit area. However, 

vegetation structures including heights, canopy complexity, volumes from 8–10 m 

heights, and areas were positively correlated with the number of species per unit area.  

In 3D connectivity results, the isolated areas are decided by the low density of 

vegetation and high-density building structures while highly connected areas were 

detected in sparsely built environment with high tree canopies (>8 m). Moreover, my 

3D connectivity results indicated that large green spaces and street trees > 8 m in 

height act as the key corridors in the study area. Street trees act as major corridors 

by connecting isolated green spaces patches to larger, more connected patches. 

Differences between the 2D and 3D connectivity results were substantial in open 

spaces such as boulevards, forested areas, and apartment complexes. My findings 

indicate that 3D-based analyses adequately characterize urban building and 

vegetation structure. This study highlights the value of considering 3D structure in 

urban planning for ecological networks. Especially, flying species could be affected 

by the vertical direction of the urbanized areas due to extensive vertical expansion. 

My findings can be applicable to the network analysis of other urban-dwelling and 

flying species. I also encourage future studies to assess the effects of changes in the 

3D structure on connectivity, assuming applications of green-infrastructure 

strategies such as roof gardens and green walls. 

 

4. LiDAR application to urban ecosystem monitoring 

To monitor urban ecosystems, various spatiotemporal approaches, and advanced 

remote sensing technologies, such as LiDAR, are required. Chapters 2 to 4 

demonstrated the various spatiotemporal applications of the LiDAR dataset; The 

urban ecosystem structures were quantified using TLS and MLS for the tree-level 

spatial scale and ALS for the regional-level spatial scale.  

The tree metrics calculated in Chapter 2 can be used to assess urban ecosystem 

structures and their fitness. Furthermore, deriving the tree metrics using a 

multitemporal LiDAR dataset would enable the investigation of vegetation growth 

and dynamics. Chapter 3 revealed differences in canopy dynamics by the land use 
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(i.e., artificial openings and naturally formed gaps) in urban forests. However, 

acquiring high-temporal-resolution ALS is challenging in terms of cost and operation. 

The TLS and MLS datasets could offset the gaps in the ALS data of urban forests 

where frequent disturbances occur and enable consistent monitoring. 

The results from the regionals-scale approach in Chapter 4 showed that the 

distribution of urban components (i.e., vegetation and buildings) impacts ecological 

connectivity. Applying this approach, urban planners or governors could find 

ecologically isolated places and make appropriate actions. Furthermore, applying 

multi-temporal approaches and acquiring a dataset combining TLS and MLS could 

help in monitoring places where actions need to be implemented. 

 

5. Expanding spatiotemporal scale and further works 

In this dissertation, the availability of a 3D dataset was found via three stand-alone 

studies. I applied LiDAR remote sensing to three different spatiotemporal scales to 

monitor urban green spaces. I concluded that the 3D information could enhance the 

quality of urban ecosystem monitoring and ecological connectivity analysis by 

elaborately explaining spatial structures. However, the spatiotemporal scales of each 

study were limited to a city scale and within five years. In terms of the environmental 

monitoring field, this scale-dependent limitation should be overcome to continuously 

link a city to a national scale and finally to a global scale. Furthermore, long-term 

monitoring should be done to investigate ecological phenomena (e.g., forest 

succession) by the fusion of spectral imageries and data processing techniques. 

NASA launched the Global Ecosystem Dynamics Investigation (GEDI) mission 

in 2018, and they provide high-resolution (25 m) 3D structural metrics of the Earth’s 

surface (Dubayah et al. 2020). Furthermore, the GEDI’s products include canopy-

related variables (e.g., leaf area index, canopy fraction, etc.), above-ground biomass, 

and biodiversity/habitat model outputs. Therefore, there is great opportunity to 

expand the spatial and temporal scales of this work by combing it with the GEDI’s 

products. First, since the GEDI’s data are brand new, the data used in this dissertation 

can be used to validate and calibrate the GEDI’s products, such as canopy height 

metrics. Second, with the calibrated GEDI’s products and national species 

observation data, it would be possible to assess ecological connectivity on national, 

continental, or even global scales. Third, the GEDI’s products can be used as link 

data in a region where the data cannot be easily acquired or when the data is missing. 

Future works will focus on finding the relationships between urban landscape 

structures and their functions using advanced remote sensing and data processing 

techniques (Figure 5.1). In this dissertation, I concentrated on monitoring and 

mapping urban ecosystem structures. With these urban ecosystem structures 

combining other remote sensing and data processing techniques, such as 
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hyperspectral imageries and high-resolution RGB imageries, I will configure the 

functions of the urban ecosystem, and classify the urban biotopes or habitats by the 

structures and functions, spatially. These studies will help assess urban biodiversity 

and suggest clues about ecological designs and management in urban areas. Lastly, 

these works will help understand the other ecosystem services in urban areas, such 

as urban heat reduction and air purification. 

 

 

Figure 5.1 Further works after the dissertation (Grey color represents the contents dealt in 

this dissertation) 

  



 

 ７５ 

Acknowledgments 
 

First, I would like to note my appreciation of my advisor, Prof. Youngkeun Song, for 

his support of my Ph.D. studies. Thanks to Prof. Song, I had the opportunity to 

conduct my research under excellent conditions. Furthermore, his sincere advice and 

guidance on my academic and personal life as a graduate school student greatly 

encouraged me to persevere. He has inspired me to be confident in my research. I 

also want to extend my gratitude to my committee members, Prof. Dong-Kun Lee, 

Prof. Youngryel Ryu, Prof. Junsuk Kang, and Prof. Wanmo Kang, for their 

outstanding help and direction concerning my academic life at Seoul National 

University. Thanks to Prof. Dong-Kun Lee, I had a great research experience by 

participating in a research project. Moreover, his advice always helped me rethink 

my research implications for deducing meaningful results. I appreciate Prof. 

Youngryel Ryu for his considerate feedback and direction for my studies and my 

career. Thanks to Prof. Junsuk Kang, I was able to improve the organization of my 

dissertation. 

I sincerely appreciate Prof. Wanmo Kang at Kookmin University and Dr. James 

Thorne at the University of California, Davis, for their incredible guidance in 

publishing Chapter 4 of this dissertation. Their interest and direction for my studies 

immensely helped me develop my research ability. I thank Satoshi Miyasaka, 

Masanobu Kondo, and Yoshimichi Senda for training me in LiDAR processing at 

Nakanihon Air Service Co., Ltd., Nagoya, Japan. 

I would also like to thank the lab members of the Landscape and Ecological 

Planning Lab for their assistance. I especially extend my gratitude to Jonghee Kim, 

who enables me to overcome difficulties and makes me happy. 

Finally, I appreciate my parents, brother, and Dodam for their full support and 

trust in me during my academic career and life. 

 

Funding: Contents of this dissertation were supported by the National Research 

Foundation of Korea (NRF) grant funded by the Korea government (Ministry of 

Education) (No. NRF-2016R1D1A1B03933179), the Korea Environment Industry 

& Technology Institute (KEITI) through its “Public Technology Program based on 

Environmental Policy” (No. 2016000210004) and “Urban Ecological Health 

Promotion Technology Development Project” (No. 2019002770001 and 

2020002770002) and funded by the Korea Ministry of Environment (MOE). 

Additionally, this work was supported by the BK21 plus Project from 2018-2020 

(Seoul National University Interdisciplinary Program in Landscape Architecture, 

Global Leadership Program towards Innovative Green Infrastructure).  



 

 ７６ 

Reference 

 

Alexander, C., Korstjens, A.H., & Hill, R.A. (2018). Influence of micro-topography and 

crown characteristics on tree height estimations in tropical forests based on LiDAR 

canopy height models. International Journal of Applied Earth Observation and 

Geoinformation, 65, 105-113 

Almeida, D., Stark, S., Chazdon, R., Nelson, B., Cesar, R., Meli, P., Gorgens, E., Duarte, M., 

Valbuena, R., & Moreno, V. (2019). The effectiveness of lidar remote sensing for 

monitoring forest cover attributes and landscape restoration. Forest Ecology and 

Management, 438, 34-43 

Andersen, H.-E., Reutebuch, S.E., & McGaughey, R.J. (2006). A rigorous assessment of tree 

height measurements obtained using airborne lidar and conventional field methods. 

Canadian Journal of Remote Sensing, 32, 355-366 

Andersson, E., & Bodin, O. (2009). Practical tool for landscape planning? An empirical 

investigation of network based models of habitat fragmentation. Ecography, 32, 

123-132 

Asner, G.P. (2013). Geography of forest disturbance. Proceedings of the National Academy 

of Sciences, 110, 3711-3712 

Asner, G.P., Kellner, J.R., Kennedy-Bowdoin, T., Knapp, D.E., Anderson, C., & Martin, R.E. 

(2013). Forest Canopy Gap Distributions in the Southern Peruvian Amazon. PLoS 

One, 8, 10 

Barton, J., & Pretty, J. (2010). What is the Best Dose of Nature and Green Exercise for 

Improving Mental Health? A Multi-Study Analysis. Environmental Science & 

Technology, 44, 3947-3955 

Bater, C.W., Wulder, M.A., Coops, N.C., Nelson, R.F., Hilker, T., & Nasset, E. (2011). 

Stability of Sample-Based Scanning-LiDAR-Derived Vegetation Metrics for 

Forest Monitoring. IEEE Transactions on Geoscience and Remote Sensing, 49, 

2385-2392 

Bauwens, S., Bartholomeus, H., Calders, K., & Lejeune, P. (2016). Forest Inventory with 

Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. 

Forests, 7, 17 

Bazezew, M.N., Hussin, Y.A., & Kloosterman, E.H. (2018). Integrating Airborne LiDAR and 

Terrestrial Laser Scanner forest parameters for accurate above-ground 

biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia. International 

Journal of Applied Earth Observation and Geoinformation, 73, 638-652 

Bibby, C., Hill, D., Burgess, N., & Mustoe, S. (2000). Bird Census Technique. –Academic 

Press. In: London 

Bienert, A., Georgi, L., Kunz, M., Maas, H.G., & von Oheimb, G. (2018). Comparison and 

Combination of Mobile and Terrestrial Laser Scanning for Natural Forest 

Inventories. Forests, 9, 25 

Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological 

Economics, 29, 293-301 

Bouvier, M., Durrieu, S., Fournier, R.A., & Renaud, J.-P. (2015). Generalizing predictive 

models of forest inventory attributes using an area-based approach with airborne 

LiDAR data. Remote Sensing of Environment, 156, 322-334 

Cao, L., Coops, N.C., Innes, J.L., Sheppard, S.R.J., Fu, L., Ruan, H., & She, G. (2016). 

Estimation of forest biomass dynamics in subtropical forests using multi-temporal 

airborne LiDAR data. Remote Sensing of Environment, 178, 158-171 

Carroll, C., McRAE, B.H., & BROOKES, A. (2012). Use of Linkage Mapping and Centrality 

Analysis Across Habitat Gradients to Conserve Connectivity of Gray Wolf 

Populations in Western North America. Conservation Biology, 26, 78-87 

Casalegno, S., Anderson, K., Cox, D.T.C., Hancock, S., & Gaston, K.J. (2017). Ecological 



 

 ７７ 

connectivity in the three-dimensional urban green volume using waveform 

airborne lidar. Scientific Reports, 7, 45571 

Cerra, J.F., & Crain, R. (2016). Urban birds and planting design: strategies for incorporating 

ecological goals into residential landscapes. Urban Ecosystems, 19, 1823-1846 

Chen, Z., Xu, B., & Devereux, B. (2014). Urban landscape pattern analysis based on 3D 

landscape models. Applied Geography, 55, 82-91 

Chiquet, C., Dover, J.W., & Mitchell, P. (2013). Birds and the urban environment: the value 

of green walls. Urban Ecosystems, 16, 453-462 

Choe, H., & Thorne, J.H. (2019). Omnidirectional connectivity of urban open spaces 

provides context for local government redevelopment plans. Landscape and 

Ecological Engineering, 15, 245-251 

Choi, H., Song, Y., & Jang, Y. (2019). Urban Forest Growth and Gap Dynamics Detected by 

Yearly Repeated Airborne Light Detection and Ranging (LiDAR): A Case Study of 

Cheonan, South Korea. Remote Sensing, 11 

Conole, L.E., & Kirkpatrick, J.B. (2011). Functional and spatial differentiation of urban bird 

assemblages at the landscape scale. Landscape and Urban Planning, 100, 11-23 

Conto, d. (2020). TreeLS: Terrestrial Point Cloud Processing of Forest Data 

Cook, E.A. (2002). Landscape structure indices for assessing urban ecological networks. 

Landscape and Urban Planning, 58, 269-280 

Coops, N.C., Tompaski, P., Nijland, W., Rickbeil, G.J.M., Nielsen, S.E., Bater, C.W., & Stadt, 

J.J. (2016). A forest structure habitat index based on airborne laser scanning data. 

Ecological Indicators, 67, 346-357 

Cumming, A.B., Twardus, D.B., & Nowak, D.J. (2008). Urban forest health monitoring: 

large-scale assessments in the United States. Aboriculture & Urban Forestry. 34 

(6): 341-346., 34 

D'Urban Jackson, T., Williams, G.J., Walker-Springett, G., & Davies, A.J. (2020). Three-

dimensional digital mapping of ecosystems: a new era in spatial ecology. 

Proceedings of the Royal Society B, 287, 20192383 

Dalagnol, R., Phillips, O.L., Gloor, E., Galvão, L.S., Wagner, F.H., Locks, C.J., & Aragão, 

L.E. (2019). Quantifying Canopy Tree Loss and Gap Recovery in Tropical Forests 

under Low-Intensity Logging Using VHR Satellite Imagery and Airborne LiDAR. 

Remote Sensing, 11, 817 

Dalponte, M., Jucker, T., Liu, S., Frizzera, L., & Gianelle, D. (2019). Characterizing forest 

carbon dynamics using multi-temporal lidar data. Remote Sensing of Environment, 

224, 412-420 

Dickson, B.G., Albano, C.M., Anantharaman, R., Beier, P., Fargione, J., Graves, T.A., Gray, 

M.E., Hall, K.R., Lawler, J.J., & Leonard, P.B. (2019). Circuit‐theory applications 

to connectivity science and conservation. Conservation Biology, 33, 239-249 

Dubayah, R., Blair, J.B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, 

G., Kellner, J., & Luthcke, S. (2020). The Global Ecosystem Dynamics 

Investigation: High-resolution laser ranging of the Earth’s forests and topography. 

Science of Remote Sensing, 1, 100002 

Eitel, J.U.H., Höfle, B., Vierling, L.A., Abellán, A., Asner, G.P., Deems, J.S., Glennie, C.L., 

Joerg, P.C., LeWinter, A.L., Magney, T.S., Mandlburger, G., Morton, D.C., Müller, 

J., & Vierling, K.T. (2016). Beyond 3-D: The new spectrum of lidar applications 

for earth and ecological sciences. Remote Sensing of Environment, 186, 372-392 

Evans, J.S., Hudak, A.T., Faux, R., & Smith, A.M.S. (2009a). Discrete Return Lidar in 

Natural Resources: Recommendations for Project Planning, Data Processing, and 

Deliverables. Remote Sensing, 1, 776-794 

Evans, K.L., Newson, S.E., & Gaston, K.J. (2009b). Habitat influences on urban avian 

assemblages. Ibis, 151, 19-39 

Farinha-Marques, P., Fernandes, C., Guilherme, F., Lameiras, J.M., Alves, P., & Bunce, 

R.G.H. (2017). Urban Habitats Biodiversity Assessment (UrHBA): a standardized 

procedure for recording biodiversity and its spatial distribution in urban 



 

 ７８ 

environments. Landscape Ecology, 32, 1753-1770 

Fisher, J.I., Hurtt, G.C., Thomas, R.Q., & Chambers, J.Q. (2008). Clustered disturbances lead 

to bias in large-scale estimates based on forest sample plots. Ecology Letters, 11, 

554-563 

Fontana, S., Sattler, T., Bontadina, F., & Moretti, M. (2011). How to manage the urban green 

to improve bird diversity and community structure. Landscape and Urban 

Planning, 101, 278-285 

Goddard, M.A., Dougill, A.J., & Benton, T.G. (2010). Scaling up from gardens: biodiversity 

conservation in urban environments. Trends in Ecology & Evolution, 25, 90-98 

Goodwin, N.R., Coops, N.C., & Culvenor, D.S. (2006). Assessment of forest structure with 

airborne LiDAR and the effects of platform altitude. Remote Sensing of 

Environment, 103, 140-152 

Grafius, D.R., Corstanje, R., Siriwardena, G.M., Plummer, K.E., & Harris, J.A. (2017). A 

bird's eye view: using circuit theory to study urban landscape connectivity for birds. 

Landscape Ecology, 32, 1771-1787 

Guo, S., Saito, K., Yin, W., & Su, C. (2018). Landscape Connectivity as a Tool in Green 

Space Evaluation and Optimization of the Haidan District, Beijing. Sustainability, 

10, 1979 

Haaland, C., & van den Bosch, C.K. (2015). Challenges and strategies for urban green-space 

planning in cities undergoing densification: A review. Urban Forestry & Urban 

Greening, 14, 760-771 

Hale, J.D., Fairbrass, A.J., Matthews, T.J., & Sadler, J.P. (2012). Habitat Composition and 

Connectivity Predicts Bat Presence and Activity at Foraging Sites in a Large UK 

Conurbation. PLoS One, 7, e33300 

Heo, H.K., Lee, D.K., Park, J.H., & Thorne, J.H. (2019). Estimating the heights and diameters 

at breast height of trees in an urban park and along a street using mobile LiDAR. 

Landscape and Ecological Engineering, 1-11 

Hilker, T., Coops, N.C., Newnham, G.J., van Leeuwen, M., Wulder, M.A., Stewart, J., & 

Culvenor, D.S. (2012). Comparison of Terrestrial and Airborne LiDAR in 

Describing Stand Structure of a Thinned Lodgepole Pine Forest. Journal of 

Forestry, 110, 97-104 

Hilker, T., van Leeuwen, M., Coops, N.C., Wulder, M.A., Newnham, G.J., Jupp, D.L., & 

Culvenor, D.S. (2010). Comparing canopy metrics derived from terrestrial and 

airborne laser scanning in a Douglas-fir dominated forest stand. Trees, 24, 819-832 

Hopkinson, C., Chasmer, L., & Hall, R.J. (2008). The uncertainty in conifer plantation growth 

prediction from multi-temporal lidar datasets. Remote Sensing of Environment, 112, 

1168-1180 

Hosoi, F., & Omasa, K. (2009). Estimating vertical plant area density profile and growth 

parameters of a wheat canopy at different growth stages using three-dimensional 

portable lidar imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 

151-158 

Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J.C., Wulder, M.A., Pyörälä, J., Liang, X., Yu, 

X., Wang, Y., Kaartinen, H., Virtanen, J.-P., & Hyyppä, J. (2020). Accurate 

derivation of stem curve and volume using backpack mobile laser scanning. ISPRS 

Journal of Photogrammetry and Remote Sensing, 161, 246-262 

Ishii, H.T., Tanabe, S., & Hiura, T. (2004). Exploring the relationships among canopy 

structure, stand productivity, and biodiversity of temperature forest ecosystems. 

Forest Science, 50, 342-355 

Jenness, J.S. (2004). Calculating landscape surface area from digital elevation models. 

Wildlife Society Bulletin, 32, 829-839 

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., & Baret, F. (2004). 

Review of methods for in situ leaf area index determination. Agricultural and 

Forest Meteorology, 121, 19-35 

Kane, V.R., Gersonde, R.F., Lutz, J.A., McGaughey, R.J., Bakker, J.D., & Franklin, J.F. 



 

 ７９ 

(2011). Patch dynamics and the development of structural and spatial heterogeneity 

in Pacific Northwest forests. Canadian Journal of Forest Research, 41, 2276-2291 

Kane, V.R., McGaughey, R.J., Bakker, J.D., Gersonde, R.F., Lutz, J.A., & Franklin, J.F. 

(2010). Comparisons between field- and LiDAR-based measures of stand 

structural complexity. Canadian Journal of Forest Research, 40, 761-773 

Kang, W., Minor, E.S., Park, C.-R., & Lee, D. (2015). Effects of habitat structure, human 

disturbance, and habitat connectivity on urban forest bird communities. Urban 

Ecosystems, 18, 857-870 

Kedron, P., Zhao, Y., & Frazier, A.E. (2019). Three dimensional (3D) spatial metrics for 

objects. Landscape Ecology, 34, 2123-2132 

Kellner, J.R., & Asner, G.P. (2009). Convergent structural responses of tropical forests to 

diverse disturbance regimes. Ecology Letters, 12, 887-897 

Khosravipour, A., Skidmore, A.K., Wang, T., Isenburg, M., & Khoshelham, K. (2015). Effect 

of slope on treetop detection using a LiDAR Canopy Height Model. ISPRS Journal 

of Photogrammetry and Remote Sensing, 104, 44-52 

Kim, E., Song, W., & Lee, D. (2013). A multi-scale metrics approach to forest fragmentation 

for Strategic Environmental Impact Assessment. Environmental Impact 

Assessment Review, 42, 31-38 

Kim, K.-H., & Pauleit, S. (2009). Woodland changes and their impacts on the landscape 

structure in South Korea, Kwangju City Region. Landscape Research, 34, 257-277 

Kindlmann, P., & Burel, F. (2008). Connectivity measures: a review. Landscape Ecology, 23, 

879-890 

Koo, J.-C., Park, M.S., & Youn, Y.-C. (2013). Preferences of urban dwellers on urban forest 

recreational services in South Korea. Urban Forestry & Urban Greening, 12, 200-

210 

Krooks, A., Kaasalainen, S., Kankare, V., Joensuu, M., Raumonen, P., & Kaasalainen, M. 

(2014). Predicting tree structure from tree height using terrestrial laser scanning 

and quantitative structure models.  

Lai, S., & Leone, F. (2017). Bridging biodiversity conservation objectives with landscape 

planning through green infrastructures: a case study from Sardinia, Italy. In, 

International Conference on Computational Science and Its Applications (pp. 456-

472): Springer 

LaRue, E.A., Wagner, F.W., Fei, S., Atkins, J.W., Fahey, R.T., Gough, C.M., & Hardiman, 

B.S. (2020). Compatibility of aerial and terrestrial LiDAR for quantifying forest 

structural diversity. Remote Sensing, 12, 1407 

Latifi, H., Heurich, M., Hartig, F., Müller, J., Krzystek, P., Jehl, H., & Dech, S. (2016). 

Estimating over- and understorey canopy density of temperate mixed stands by 

airborne LiDAR data. Forestry: An International Journal of Forest Research, 89, 

69-81 

Lee, D.K., Park, C., Kim, E.Y., Song, W.K., & Choe, H.Y. (2009). Classification of Urban 

Forest Types and its Application Methods for Forests Creation and Management. 

Journal of the Korea Society of Environmental Restoration Technology. Journal of 

the Korea Society of Environmental Restoration Technology, 12, 101-109 

Lee, J.-D., & Kim, M.-H. (2010). Development and practicability evaluation of GIS-based 

cemetery information management system. Journal of the Korean Society of 

Surveying, Geodesy, Photogrammetry and Cartography, 28, 223-231 

Lefsky, M.A., Cohen, W.B., Parker, G.G., & Harding, D.J. (2002). Lidar Remote Sensing for 

Ecosystem StudiesLidar, an emerging remote sensing technology that directly 

measures the three-dimensional distribution of plant canopies, can accurately 

estimate vegetation structural attributes and should be of particular interest to forest, 

landscape, and global ecologists. BioScience, 52, 19-30 

Lepczyk, C.A., Aronson, M.F.J., Evans, K.L., Goddard, M.A., Lerman, S.B., & MacIvor, J.S. 

(2017). Biodiversity in the City: Fundamental Questions for Understanding the 

Ecology of Urban Green Spaces for Biodiversity Conservation. BioScience, 67, 



 

 ８０ 

799-807 

Lepczyk, C.A., Wedding, L.M., Asner, G.P., Pittman, S.J., Goulden, T., Linderman, M.A., 

Gang, J., & Wright, R. (2021). Advancing Landscape and Seascape Ecology from 

a 2D to a 3D Science. BioScience 

Levick, S., Whiteside, T., Loewensteiner, D., Rudge, M., & Bartolo, R. (2021). Leveraging 

TLS as a Calibration and Validation Tool for MLS and ULS Mapping of Savanna 

Structure and Biomass at Landscape-Scales. Remote Sensing, 13, 257 

Li, Y., Kang, W., Han, Y., & Song, Y. (2018). Spatial and temporal patterns of microclimates 

at an urban forest edge and their management implications. Environmental 

monitoring and assessment, 190, 93 

Liang, D., Ma, C., Wang, Y.Q., Wang, Y.J., & Zhao, C.X. (2016a). Quantifying PM2.5 capture 

capability of greening trees based on leaf factors analyzing. Environmental Science 

and Pollution Research, 23, 21176-21186 

Liang, X.L., Kankare, V., Hyyppa, J., Wang, Y.S., Kukko, A., Haggren, H., Yu, X.W., 

Kaartinen, H., Jaakkola, A., Guan, F.Y., Holopainen, M., & Vastaranta, M. (2016b). 

Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry 

and Remote Sensing, 115, 63-77 

Liu, X., Zhou, Y.Y., Yue, W.Z., Li, X.C., Liu, Y., & Lu, D.B. (2020a). Spatiotemporal patterns 

of summer urban heat island in Beijing, China using an improved land surface 

temperature. Journal of Cleaner Production, 257 

Liu, Y., Wang, Y., Peng, J., Du, Y., Liu, X., Li, S., & Zhang, D. (2015). Correlations between 

Urbanization and Vegetation Degradation across the World’s Metropolises Using 

DMSP/OLS Nighttime Light Data, 7, 2067-2088 

Liu, Z., Huang, Q., & Tang, G. (2020b). Identification of urban flight corridors for migratory 

birds in the coastal regions of Shenzhen city based on three-dimensional landscapes. 

Landscape Ecology 

Maddern, W., Pascoe, G., Linegar, C., & Newman, P. (2017). 1 year, 1000 km: The Oxford 

RobotCar dataset. International Journal of Robotics Research, 36, 3-15 

Magnussen, S., Næsset, E., Gobakken, T., & Frazer, G. (2012). A fine-scale model for area-

based predictions of tree-size-related attributes derived from LiDAR canopy 

heights. Scandinavian Journal of Forest Research, 27, 312-322 

Matsuba, M., Nishijima, S., & Katoh, K. (2016). Effectiveness of corridor vegetation depends 

on urbanization tolerance of forest birds in central Tokyo, Japan. Urban Forestry 

& Urban Greening, 18, 173-181 

Mayrand, F., & Clergeau, P. (2018). Green roofs and green walls for biodiversity conservation: 

a contribution to urban connectivity? Sustainability, 10, 985 

McRae, B.H., Dickson, B.G., Keitt, T.H., & Shah, V.B. (2008). USING CIRCUIT THEORY 

TO MODEL CONNECTIVITY IN ECOLOGY, EVOLUTION, AND 

CONSERVATION, 89, 2712-2724 

McWilliam, W., Eagles, P., Seasons, M., & Brown, R. (2010). Assessing the degradation 

effects of local residents on urban forests in Ontario, Canada. Journal of 

Arboriculture, 36, 253 

Melin, M., Hinsley, S.A., Broughton, R.K., Bellamy, P., & Hill, R.A. (2018). Living on the 

edge: utilising lidar data to assess the importance of vegetation structure for avian 

diversity in fragmented woodlands and their edges. Landscape Ecology, 33, 895-

910 

Morelli, F., Beim, M., Jerzak, L., Jones, D., & Tryjanowski, P. (2014). Can roads, railways 

and related structures have positive effects on birds? - A review. Transportation 

Research Part D-Transport and Environment, 30, 21-31 

Nadrowski, K., Wirth, C., & Scherer-Lorenzen, M. (2010). Is forest diversity driving 

ecosystem function and service? Current Opinion in Environmental Sustainability, 

2, 75-79 

Naesset, E. (1997). Determination of mean tree height of forest stands using airborne laser 

scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 52, 49-56 



 

 ８１ 

Nor, A.N.M., Corstanje, R., Harris, J.A., Grafius, D.R., & Siriwardena, G.M. (2017). 

Ecological connectivity networks in rapidly expanding cities. Heliyon, 3 

Ojoatre, S., Zhang, C., Hussin, Y.A., Kloosterman, H.E., & Ismail, M.H. (2019). Assessing 

the Uncertainty of Tree Height and Aboveground Biomass From Terrestrial Laser 

Scanner and Hypsometer Using Airborne LiDAR Data in Tropical Rainforests. 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, 12, 4149-4159 

Oldfield, E.E., Felson, A.J., Auyeung, D.S.N., Crowther, T.W., Sonti, N.F., Harada, Y., 

Maynard, D.S., Sokol, N.W., Ashton, M.S., Warren II, R.J., Hallett, R.A., & 

Bradford, M.A. (2015). Growing the urban forest: tree performance in response to 

biotic and abiotic land management. Restoration Ecology, 23, 707-718 

Omasa, K., Hosoi, F., & Konishi, A. (2006). 3D lidar imaging for detecting and understanding 

plant responses and canopy structure. Journal of Experimental Botany, 58, 881-898 

Ossola, A., & Hopton, M.E. (2018a). Climate differentiates forest structure across a 

residential macrosystem. Science of the Total Environment, 639, 1164-1174 

Ossola, A., & Hopton, M.E. (2018b). Measuring urban tree loss dynamics across residential 

landscapes. Science of the Total Environment, 612, 940-949 

Pandey, G., McBride, J.R., & Eustice, R.M. (2011). Ford Campus vision and lidar data set. 

International Journal of Robotics Research, 30, 1543-1552 

Park, M., & Lee, H. (2014). Forest policy and law for sustainability within the Korean 

Peninsula. Sustainability, 6, 5162-5186 

Parker, G.G., Harmon, M.E., Lefsky, M.A., Chen, J., Pelt, R.V., Weis, S.B., Thomas, S.C., 

Winner, W.E., Shaw, D.C., & Frankling, J.F. (2004). Three-dimensional Structure 

of an Old-growth Pseudotsuga-Tsuga Canopy and Its Implications for Radiation 

Balance, Microclimate, and Gas Exchange. Ecosystems, 7, 440-453 

Plowright, A.A., Coops, N.C., Chance, C.M., Sheppard, S.R., & Aven, N.W. (2017). Multi-

scale analysis of relationship between imperviousness and urban tree height using 

airborne remote sensing. Remote Sensing of Environment, 194, 391-400 

Plummer, K.E., Gillings, S., & Siriwardena, G.M. (2020). Evaluating the potential for bird-

habitat models to support biodiversity-friendly urban planning. Journal of Applied 

Ecology, 57, 1902-1914 

Pyörälä, J., Saarinen, N., Kankare, V., Coops, N.C., Liang, X., Wang, Y., Holopainen, M., 

Hyyppä, J., & Vastaranta, M. (2019). Variability of wood properties using airborne 

and terrestrial laser scanning. Remote Sensing of Environment, 235, 111474 

Rangel Pinagé, E., Keller, M., Duffy, P., Longo, M., dos-Santos, M.N., & Morton, D.C. 

(2019). Long-Term Impacts of Selective Logging on Amazon Forest Dynamics 

from Multi-Temporal Airborne LiDAR. Remote Sensing, 11, 709 

Roussel, J.-R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H., Meador, A.S., 

Bourdon, J.-F., de Boissieu, F., & Achim, A. (2020). lidR: An R package for 

analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 

251, 112061 

Roussel, J.-R., Caspersen, J., Béland, M., Thomas, S., & Achim, A. (2017). Removing bias 

from LiDAR-based estimates of canopy height: Accounting for the effects of pulse 

density and footprint size. Remote Sensing of Environment, 198, 1-16 

Runkle, J.R. (1992). Guidelines and sample protocol for sampling forest gaps.  

Runkle, J.R., & Yetter, T.C. (1987). Treefalls Revisited: Gap Dynamics in the Southern 

Appalachians. Ecology, 68, 417-424 

Rutten, G., Ensslin, A., Hemp, A., & Fischer, M. (2015). Vertical and Horizontal Vegetation 

Structure across Natural and Modified Habitat Types at Mount Kilimanjaro. PLoS 

One, 10, e0138822 

Ryu, J., Hwang, J., Lee, J., Chung, H.-I., Lee, K.-i., Choi, Y.-Y., Zhu, Y., Sung, M.-J., Jang, 

R., & Sung, H.-C. (2017). Analysis of changes in forest according to urban 

expansion pattern and morphological features-Focused on Seoul and Daegu. 

Korean Journal of Remote Sensing, 33, 835-854 



 

 ８２ 

Sahraoui, Y., De Godoy Leski, C., Benot, M.-L., Revers, F., Salles, D., van Halder, I., Barneix, 

M., & Carassou, L. (2021). Integrating ecological networks modelling in a 

participatory approach for assessing impacts of planning scenarios on landscape 

connectivity. Landscape and Urban Planning, 209, 104039 

Sandström, U., Angelstam, P., & Mikusiński, G. (2006). Ecological diversity of birds in 

relation to the structure of urban green space. Landscape and Urban Planning, 77, 

39-53 

Sandstrom, U.G., Angelstam, P., & Mikusinski, G. (2006). Ecological diversity of birds in 

relation to the structure of urban green space. Landscape and Urban Planning, 77, 

39-53 

Sasaki, T., Imanishi, J., Ioki, K., Morimoto, Y., & Kitada, K. (2008). Estimation of leaf area 

index and canopy openness in broad-leaved forest using an airborne laser scanner 

in comparison with high-resolution near-infrared digital photography. Landscape 

and Ecological Engineering, 4, 47-55 

Sasaki, T., Imanishi, J., Ioki, K., Song, Y., & Morimoto, Y. (2013). Estimation of leaf area 

index and gap fraction in two broad-leaved forests by using small-footprint 

airborne LiDAR. Landscape and Ecological Engineering, 12, 117-127 

Savard, J.-P.L., Clergeau, P., & Mennechez, G. (2000). Biodiversity concepts and urban 

ecosystems. Landscape and Urban Planning, 48, 131-142 

Schneider, F.D., Kükenbrink, D., Schaepman, M.E., Schimel, D.S., & Morsdorf, F. (2019). 

Quantifying 3D structure and occlusion in dense tropical and temperate forests 

using close-range LiDAR. Agricultural and Forest Meteorology, 268, 249-257 

Shao, G., Stark, S.C., de Almeida, D.R.A., & Smith, M.N. (2019). Towards high throughput 

assessment of canopy dynamics: The estimation of leaf area structure in 

Amazonian forests with multitemporal multi-sensor airborne lidar. Remote Sensing 

of Environment, 221, 1-13 

Smith, M.N., Stark, S.C., Taylor, T.C., Ferreira, M.L., de Oliveira, E., Restrepo-Coupe, N., 

Chen, S., Woodcock, T., dos Santos, D.B., Alves, L.F., Figueira, M., de Camargo, 

P.B., de Oliveira, R.C., Aragão, L.E.O.C., Falk, D.A., McMahon, S.M., Huxman, 

T.E., & Saleska, S.R. (2019). Seasonal and drought-related changes in leaf area 

profiles depend on height and light environment in an Amazon forest. New 

Phytologist, 222, 1284-1297 

Song, W. (2015). Analysis of Bird Species Diversity Response to Structural Conditions of 

Urban Park -Focused on 26 Urban Parks in Cheonan City-. Journal of the Korea 

Society of Environmental Restoration Technology, 18, 65-77 

Song, W. (2017). Analysis of Bird Diversity According to Landscape Connectivity and 

Structure of Urban Park. Journal of the Korea Society of Environmental 

Restoration Technology, 20, 131-142 

Song, Y., Imanishi, J., Sasaki, T., Ioki, K., & Morimoto, Y. (2016). Estimation of broad-leaved 

canopy growth in the urban forested area using multi-temporal airborne LiDAR 

datasets. Urban Forestry & Urban Greening, 16, 142-149 

Song, Y., & Ryu, Y. (2015). Seasonal changes in vertical canopy structure in a temperate 

broadleaved forest in Korea. Ecological Research, 30, 821-831 

St-Onge, B., Vepakomma, U., Sénécal, J.-F., Kneeshaw, D., & Doyon, F. (2014). Canopy Gap 

Detection and Analysis with Airborne Laser Scanning. In M. Maltamo, E. Næsset, 

& J. Vauhkonen (Eds.), Forestry Applications of Airborne Laser Scanning: 

Concepts and Case Studies (pp. 419-437). Dordrecht: Springer Netherlands 

Steenberg, J.W., Millward, A.A., Nowak, D.J., & Robinson, P.J. (2016). A conceptual 

framework of urban forest ecosystem vulnerability. Environmental Reviews, 25, 

115-126 

Su, Y., Guo, Q., Jin, S., Guan, H., Sun, X., Ma, Q., Hu, T., Wang, R., & Li, Y. (2020). The 

Development and Evaluation of a Backpack LiDAR System for Accurate and 

Efficient Forest Inventory. IEEE Geoscience and Remote Sensing Letters, 1-5 

Tattoni, C., & Ciolli, M. (2019). Analysis of Bird Flyways in 3D. Isprs International Journal 



 

 ８３ 

of Geo-Information, 8, 535 

Thompson, I.D., Maher, S.C., Rouillard, D.P., Fryxell, J.M., & Baker, J.A. (2007). Accuracy 

of forest inventory mapping: some implications for boreal forest management. 

Forest Ecology and Management, 252, 208-221 

Tian, Y., Liu, Y., Jim, C., & Song, H. (2017). Assessing Structural Connectivity of Urban 

Green Spaces in Metropolitan Hong Kong. Sustainability, 9, 1653 

Tian, Y., Zhou, W., Qian, Y., Zheng, Z., & Yan, J. (2019). The effect of urban 2D and 3D 

morphology on air temperature in residential neighborhoods. Landscape Ecology, 

34, 1161-1178 

Urban, D., & Keitt, T. (2001). LANDSCAPE CONNECTIVITY: A GRAPH-THEORETIC 

PERSPECTIVE. Ecology, 82, 1205-1218 

Valverde, T., & Silvertown, J. (1997). Canopy closure rate and forest structure. Ecology, 78, 

1555-1562 

Vaughn, N.R., Asner, G.P., & Giardina, C.P. (2015). Long‐term fragmentation effects on the 

distribution and dynamics of canopy gaps in a tropical montane forest. Ecosphere, 

6, 1-15 

Vepakomma, U., D Kneeshaw, D., & De Grandpre, L. (2018). Influence of Natural and 

Anthropogenic Linear Canopy Openings on Forest Structural Patterns 

Investigated Using LiDAR.  

Vepakomma, U., Kneeshaw, D., & Fortin, M.J. (2012). Spatial contiguity and continuity of 

canopy gaps in mixed wood boreal forests: persistence, expansion, shrinkage and 

displacement. Journal of Ecology, 100, 1257-1268 

Vepakomma, U., St-Onge, B., & Kneeshaw, D. (2008). Spatially explicit characterization of 

boreal forest gap dynamics using multi-temporal lidar data. Remote Sensing of 

Environment, 112, 2326-2340 

Vepakomma, U., St-Onge, B., & Kneeshaw, D. (2011). Response of a boreal forest to canopy 

opening: Assessing vertical and lateral tree growth with multi-temporal lidar data. 

Ecological Applications, 21, 99-121 

Wang, Y., & Fang, H. (2020). Estimation of LAI with the LiDAR Technology: A Review. 

Remote Sensing, 12, 3457 

Wang, Y., Lehtomäki, M., Liang, X., Pyörälä, J., Kukko, A., Jaakkola, A., Liu, J., Feng, Z., 

Chen, R., & Hyyppä, J. (2019). Is field-measured tree height as reliable as believed 

– A comparison study of tree height estimates from field measurement, airborne 

laser scanning and terrestrial laser scanning in a boreal forest. ISPRS Journal of 

Photogrammetry and Remote Sensing, 147, 132-145 

White, J., Stepper, C., Tompalski, P., Coops, N., & Wulder, M. (2015). Comparing ALS and 

Image-Based Point Cloud Metrics and Modelled Forest Inventory Attributes in a 

Complex Coastal Forest Environment. Forests, 6, 3704 

White, J.C., Coops, N.C., Wulder, M.A., Vastaranta, M., Hilker, T., & Tompalski, P. (2016). 

Remote Sensing Technologies for Enhancing Forest Inventories: A Review. 

Canadian Journal of Remote Sensing, 42, 619-641 

Whitehurst, A., Swatantran, A., Blair, J., Hofton, M., & Dubayah, R. (2013). Characterization 

of Canopy Layering in Forested Ecosystems Using Full Waveform Lidar. Remote 

Sensing, 5, 2014-2036 

Whitmore, T.C. (1989). Canopy Gaps and the Two Major Groups of Forest Trees. Ecology, 

70, 536-538 

Wu, D., Johansen, K., Phinn, S., Robson, A., & Tu, Y.H. (2020). Inter-comparison of remote 

sensing platforms for height estimation of mango and avocado tree crowns. 

International Journal of Applied Earth Observation and Geoinformation, 89, 15 

Xie, S., Lu, F., Cao, L., Zhou, W., & Ouyang, Z. (2016). Multi-scale factors influencing the 

characteristics of avian communities in urban parks across Beijing during the 

breeding season. Scientific Reports, 6 

Yamamoto, S.-I. (2000). Forest gap dynamics and tree regeneration. Journal of forest 

research, 5, 223-229 



 

 ８４ 

Youn, Y.-C. (2009). Use of forest resources, traditional forest-related knowledge and 

livelihood of forest dependent communities: Cases in South Korea. Forest Ecology 

and Management, 257, 2027-2034 

Yu, X., Hyyppa, J., Kaartinen, H., Maltamo, M., & Hyyppa, H. (2008). Obtaining plotwise 

mean height and volume growth in boreal forests using multi-temporal laser 

surveys and various change detection techniques. International Journal of Remote 

Sensing, 29, 1367-1386 

Zeller, K.A., McGarigal, K., & Whiteley, A.R. (2012). Estimating landscape resistance to 

movement: a review. Landscape Ecology, 27, 777-797 

Zhang, J., Grabe, V., Hamner, B., Duggins, D., & Singh, S. (2016). Compact, real-time 

localization without reliance on infrastructure. In, Proc. 3rd Annu. Microsoft 

Indoor Localization Competition 

Zhang, Y., Middel, A., & Turner, B.L. (2019). Evaluating the effect of 3D urban form on 

neighborhood land surface temperature using Google Street View and 

geographically weighted regression. Landscape Ecology, 34, 681-697 

Zhang, Y., & Shao, Z.F. (2021). Assessing of Urban Vegetation Biomass in Combination with 

LiDAR and High-resolution Remote Sensing Images. International Journal of 

Remote Sensing, 42, 964-985 

Zhang, Z., Cao, L., & She, G. (2017). Estimating Forest Structural Parameters Using Canopy 

Metrics Derived from Airborne LiDAR Data in Subtropical Forests. Remote 

Sensing, 9, 940 

Zhao, K., Suarez, J.C., Garcia, M., Hu, T., Wang, C., & Londo, A. (2018). Utility of 

multitemporal lidar for forest and carbon monitoring: Tree growth, biomass 

dynamics, and carbon flux. Remote Sensing of Environment, 204, 883-897 

Zhou, D., Fung, T., & Chu, L.M. (2012). Avian community structure of urban parks in 

developed and new growth areas: A landscape-scale study in Southeast Asia. 

Landscape and Urban Planning, 108, 91-102 

Zhou, W.Q., Huang, G.L., & Cadenasso, M.L. (2011). Does spatial configuration matter? 

Understanding the effects of land cover pattern on land surface temperature in 

urban landscapes. Landscape and Urban Planning, 102, 54-63 

Zhu, X., Liu, J., Skidmore, A.K., Premier, J., & Heurich, M. (2020). A voxel matching method 

for effective leaf area index estimation in temperate deciduous forests from leaf-on 

and leaf-off airborne LiDAR data. Remote Sensing of Environment, 240, 14 



 

 ８５ 

Abstract in Korean 
 

다중 규모 LiDAR 데이터를 활용한 도시생태계 구조 및 연결성 평가 

 

 

최희준 

서울대학교 대학원 협동과정 조경학 

논문지도교수: 송영근 

 

 

본 학위논문은 다양한 시공간 스케일에서 도시생태계 모니터링을 위한 

LiDAR 데이터의 활용과 생태적 의미 도출에 관한 내용을 다룬다. 

LiDAR란 Light Detection and Ranging의 약어로, LiDAR 센서에서 발사된 

레이저가 대상에 도달한 뒤 반사되어 돌아오는 레이저의 세기와 시간을 

계산하여 대상의 위치 정보를 3차원 점군 데이터로 변환해주는 능동형 

원격탐사 도구이다. LiDAR 원격탐사 도구의 등장으로 자연과 도시의 

3차원 공간정보의 취득이 기능해짐에 따라, 서식지의 3차원 공간정보와 

생물 종 사이의 관계 도출, 시계열 LiDAR 데이터를 활용한 녹지 

모니터링 연구 등이 이뤄지고 있다. 또한 항공 LiDAR(ALS), 지상 

LiDAR(TLS), 이동형 LiDAR(MLS) 등 다양한 LiDAR 시스템의 개발로 

연구 목적에 알맞은 시공간 해상도의 3차원 공간정보를 취득할 수 있게 

되었다. 본 학위논문에서는 도시녹지를 대상으로 LiDAR 원격탐사 

도구의 다양한 시공간 스케일 적용 측면에서, Chapter 2 항공, 지상, 

이동형 LiDAR 시스템 사이 수목구조관련 변수들의 일치성 평가, Chapter 

3 시계열 분석을 통한 도시녹지 동태 모니터링, Chapter 4 도시의 생태적 

연결성 분석을 진행하였다. 

Chapter 2: 도시의 수목정보를 취득하는 것은 도시녹지 관리에 있어 

필수적이다. LiDAR 기술의 발달로 도시수목의 3차원 정보를 취득할 수 

있게 되었으며, 이를 통해 수목높이와 수목구조, 지상 바이오매스 등을 

높은 정확도로 산출할 수 있게 되었다. 항공 LiDAR는 넓은 범위의 

공간정보를 높은 정확도로 측정하는 특성을 지녀 산림 모니터링 
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분야에서 활발히 활용되고 있다. 하지만 항공 LiDAR 데이터의 취득은 

항공기 운용비, 장비관련 막대한 비용이 발생하고 운용에 있어 전문성을 

요구하며 대상의 점군밀도가 상대적으로 낮다는 단점을 지닌다. 반면 

지상 LiDAR와 이동형 LiDAR는 운용하기 편리하고 높은 점군밀도를 

출력한다는 점에서 항공 LiDAR의 단점을 극복할 수 있다. 이처럼 

다양한 LiDAR 시스템의 등장과 이를 활용한 생태계 모니터링 연구 

시도가 증가하면서 LiDAR 시스템간 효율적인 운용과 데이터의 보완 

방법들이 요구되고 있다. 하지만 현재까지 ALS, TLS, MLS의 3개의 

시스템을 통해 취득된 수목 정보를 서로 비교하고, 서로 대체가능한 

수목정보를 도출한 연구는 많이 진행된 바 없다. 따라서 본 학위논문의 

Chapter 2에서는 ALS, TLS, MLS 통해 취득된 도시의 수목정보를 서로 

비교하여 일치성을 평가하고, 어떠한 수목구조관련 지표가 세 LiDAR 

시스템 사이에서 대체가능한지 다루고 있다. 세부적으로 Chapter 2는 

수목구조관련 지표가 단목차원과 군집차원, 수목구조에 따라 ALS, TLS, 

MLS 시스템에서 차이가 발생하는지에 대한 내용을 담고 있다. 천안시 

도시공원 9개소에서 ALS 데이터는 2017년 5월 14일, TLS 데이터는 

2017년 5월 10일과 11일, MLS 데이터는 2020년 4월 21에서 25일 

취득되었다. 취득된 데이터셋은 수관의 겹침 여부에 따라 단목과 

군집으로 분류되었으며, 3개의 페어(ALS-TLS, MLS-TLS, ALS-MLS)로 

수관의 퍼센타일 높이, 수관복잡성, 면적 등의 수목구조관련 변수들을 

1:1 비교하였다. 항공 LiDAR 데이터를 통해 도출된 수목구조관련 

변수들을 참조로 하여 평균제곱근오차(RMSE), 편향(bias), 피어슨 

상관계수(r) 등을 계산하고 세 LiDAR 시스템 사이의 일치성을 

평가하였다. 평가 결과 ZMAX, CHM관련 수관높이 관련 변수들, 그리고 

수관면적이 높은 일치성을 보였다(RMSE% < 15 %, Bias% < 15 %, and r > 

0.900). 특히 CHM을 통해 도출된 수관높이 관련 변수들은 단목과 

군집에서 세개의 LiDAR 시스템간 통계적인 차이를 보이지 않았다(p > 

0.05). 반면 퍼센타일 수관높이와 평균 수관높이 등은 매우 낮은 

일치성을 나타냈으며, 세 페어에서 도출된 편향은 수고, 수관복잡성과 
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약한 선형관계를 나타냈다(r > |0.29|, p < 0.05).  

Chapter 3: 수관동태는 숲의 건강성을 반영한다. 특히, 

자연적·인위적인 교란에 의해 발생한 숲틈은 숲 내부에 빛의 투과율, 

온도, 습도 등에 영향을 끼쳐 주변 환경의 변화를 야기한다. 따라서 

숲틈을 탐지하고 모니터링하는 것은 숲의 동태를 이해하는데 있어 매우 

중요하다. 항공 LiDAR 센서를 활용할 경우 위성영상이나 항공사진 등 

2차원 데이터로 탐지하기 어려운 숲틈 또는 개방공간의 탐지와 수관의 

3차원 형상의 취득이 가능하다. Chapter 3에서는 2012년도부터 2015년도 

4개년의 항공 LiDAR를 활용하여 자연형 도시공원(봉서산)의 수관과 

숲틈의 수평적 수직적 변화양상을 추정하였다. 수관은 높이 5m를 

기준으로 상층부와 하층부 수관으로 분류되었으며, 수관높이모델(canopy 

height model, CHM)을 생성하여 연간변화를 탐지하였다. 연구결과 상층부 

및 하층부 수관의 수직생장량과 엽면적지수는 일정한 연간 변화양상을 

보인 반면, 수평적 변화와 엽면적밀도는 불규칙적인 연간 변화양상을 

보였다. 전반적으로 상층부 수관은 높이 12m에서 측방향 생장을 하는 

것으로 나타났으며, 하층부 수관 중 숲틈에서는 높이 5m에서 측방향 

생장이 활발하게 나타났다. LiDAR 데이터의 연간 변화 탐지를 통해 

자연적으로 형성된 숲틈의 경우 생장과 교란 측면에서 매우 활발한 

동태가 발생하고 있으며, 인위적으로 형성된 개방공간의 경우 수관의 

동태가 다소 침체됨을 도출하였다. 

Chapter 4는 도시 내 건물과 녹지의 3차원 구조를 입력자료로 

활용하여 도시의 생태적 연결성을 평가하는 연구를 다룬다. 도시 내 

생태적 연결성 도출과 관련한 연구는 도시와 녹지의 형태 등을 주요 

변수로 하여 진행이 되고 있다. 그러나 3차원적인 특성인 도시 건물의 

부피, 수목의 수직적인 구조 등을 고려한 연결성 분석은 많이 진행된 바 

없다. 연구 대상지는 천안시 시청을 중심으로한 4 km × 4 km 지역으로, 

2015년에 취득된 항공 LiDAR와 같은 해 취득된 조류 종 조사 데이터를 

활용하여 1)도시 내 건물과 녹지의 3차원 구조와 조류 종 다양성 사이 

관계를 살피고, 2)조류 종 다양성과 상관관계를 가지는 3차원 구조변수를 
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활용하여 전류흐름기반 매개중심성 연결성 분석(CFBC)을 진행하였다. 

연구결과 건축물의 부피와 수목높이 8-10m의 녹지 부피비가 면적당 

조류 종 풍부도와 스피어만 순위상관관계에서 높은 상관관계(|ρ| > 0.6)를 

나타냈다. 연결성 분석의 결과는 입력변수의 공간차원(2D 및 3D)에 따라 

다르게 나타났다. 특히 도시숲, 대로변, 아파트단지내 녹지 등에서 2D 

기반 CFBC와 3D기반 CFBC는 통계적으로 유의미한 차이를 보였다. 

또한 도시녹지의 3D 기반 CFBC의 경우 같은 녹지 면적임에도 수관의 

구조적인 특성에 따라 높은 차이가 나타남을 확인하였다. 3D CFBC 

분석결과를 통해 고층 건물 주변부, 고밀도 아파트단지, 고밀 시가화지역 

등이 낮은 중심성을 보여 고립지역으로 나타났으며, 건물 사이 공지 내 

식생은 연결성이 고립된 지역과 핵심지역을 연결하는 기능을 나타냈다.  

이 학위논문은 서로 다른 LiDAR 시스템을 활용하여 단목, 경관 

지역단위 등 다양한 공간 스케일에서의 도시경관구조 분석, 

도시녹지구조와 토지이용 등에 따른 시간적 변화양상, 도시경관구조가 

가지는 생태적 의미 등과 관련된 내용을 다루고 있다. 향후 Global 

Ecosystem Dynamics Investigation(GEDI) 미션의 데이터를 활용하여 본 

학위논문에서 다루는 지역규모의 연구를 국가단위, 대륙단위 등으로 

확장할 수 있을 것이며 이를 통해 도시생태계 구조와 그 기능 사의 

관계를 이해하는데 도움을 줄 수 있을 것이다.  

Keyword: LiDAR, 레이저 스캐닝, 3차원 데이터, 식생구조, 

도시경관구조, 도시생태계 

학번: 2018-35951 
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