

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

A study on algorithms for learning spiking neural

network in neuromorphic hardware

by

Dohun KIM

August 2021

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

 i

Abstract

Spiking neural networks (SNNs) are believed to offer solutions to biologically

inspired and energy-efficient computation. SNNs are dynamics models that process

and convey data by means of asynchronous spike events. The spikes are sparse in

time and space and have high information content. The rich dynamics of SNNs

enable the effective learning of complex spatiotemporal firing patterns in a dynamic

domain. However, internal state updates, e.g., membrane potential, are required

every timestep, which requires a lot of computation time. Thus, the internal state

updates of neurons must be processed in parallel for efficient spiking simulation.

Distributed processors and local memories enable this parallel computation in

dedicated neuromorphic hardware. Event-based weight update using local data can

maximize the computational efficiency of neuromorphic hardware. However, the

universal SNN learning algorithm based on the event and local data is still missing,

especially associative recall.

In this paper, we introduce an nth order sequence-predicting SNN (n-SPSNN),

which is capable of single-step prediction and sequence-to-sequence prediction, i.e.,

associative recall. As a key to these capabilities, we propose a new learning

algorithm, named the learning by backpropagating action potential (LbAP)

algorithm, which features (i) postsynaptic event-driven learning, (ii) access to

topological and temporal local data only, (iii) competition-induced weight

normalization effect, and (iv) fast learning. Most importantly, the LbAP algorithm

offers a unified learning framework over the entire SPSNN based on local data only.

The learning capacity of the SPSNN is mainly dictated by the number of hidden

neurons h; its prediction accuracy reaches its maximum value (~1) when the hidden

neuron number h is larger than twice training sequence length l, i.e., h ≥ 2l. Another

advantage is its high tolerance to errors in input encoding compared to the state-of-

the-art sequence learning networks, namely long short-term memory (LSTM) and

gated recurrent unit (GRU). Additionally, its efficiency in learning is approximately

100 times that of LSTM and GRU when measured in terms of the number of synaptic

operations until successful training, which corresponds to multiply-accumulate

 ii

operations for LSTM and GRU. This high efficiency arises from the higher learning

rate of the SPSNN, which is attributed to the LbAP algorithm.

Applying a nonvolatile memory to neuromorphic hardware leverage the

computational efficiency in matrix-vector multiplication. Resistance switch is a

promising candidate for nonvolatile memory. The binary resistance switch array

implements efficient matrix-vector multiplication by measuring the output current

vector to the applied input voltage. The spike propagation in SNNs can be applied to

the matrix-vector multiplication in the resistive switch array. Thus, the parallel

computation can be accelerated when implementing an artificial synapse array with

a binary resistance switch array.

However, SNNs require synaptic weights with multi-bit precision, which is not

suitable for neuromorphic hardware using binary resistance switches. Also, using

multi-bit precision on neuromorphic hardware increases the memory footprint and

reduces computational efficiency. In this regard, we propose a novel event-based

weight binarization (eWB) algorithm for SNNs with binary synaptic weights (-1, 1).

The eWB algorithm is based on the Lagrange multiplier method, which optimizes

parameters within given constraints. The algorithm features (i) event-based

asymptotic weight binarization using local data only, (ii) full compatibility with

event-based learning algorithms (e.g., spike timing-dependent plasticity and event-

driven random backpropagation (eRBP) algorithm), and (iii) the capability to address

various constraints (including the binary weight constraint). As a proof of concept,

we combine eWB with eRBP (eWB-eRBP) to obtain a single algorithm for learning

binary weights to generate correct classifications. Fully connected SNNs were

trained using eWB-eRBP and achieved an accuracy of 95.35% on MNIST.

Keywords: neuromorphic engineering, resistance switch array, spiking neural

networks, event-driven learning algorithm of locality, sequence learning,

associative recall, event-based weight binarization

Student Number: 2016-20771

 Dohun KIM

 iii

Table of Contents

Abstract ..i

Table of Contents .. iii

List of Tables ..vi

List of Figures .. vii

List of Abbreviations ... xii

1. Introduction ... 1

1.1. Spiking neural networks (SNNs) .. 1

1.2. Dedicated hardware for spiking neural network 4

1.3. Bibliography ... 8

2. Literature ... 10

2.1. Sequence-predicting SNN ... 10

2.2. Binarized SNN .. 13

2.3. Bibliography ... 15

3. SPSNN: nth order sequence-predicting spiking neural

network ... 18

3.1. Introduction ... 18

3.2. Sequence-predicting spiking neural network and learning

algorithm ... 20

 Sequecne prediction principle and network architecture 20

3.2.2. Learing by backpropagating action potentail (LbAP) algorithm

 24

3.2.3. Training method and capabiltiy evaluation in detail 28

 iv

3.3. Results ... 31

3.3.1. Sequene-prediction capacity ... 31

3.3.2. Associative recall (sequence-to-sequence prediction) 38

3.3.3. Robustness of learning and inference to variability in sequence

 40

3.3.4. Learning efficiency ... 44

3.4. Conclusion .. 47

3.5. Appendix ... 49

3.6. Bibliography ... 51

4. eWB: Event-based weight binarization algorithm for

spiking neural networks ... 54

4.1. Introduction ... 54

4.2. eWB algorithm .. 55

4.2.1. Lagrange multiplier method .. 55

4.2.2. eWB algorithm .. 57

4.2.3. eWB-eRBP algorithm ... 58

4.2.4. Non-optimal weight binarization algorithm 62

4.3. Results ... 62

4.3.1. Classification accuracy ... 63

4.3.2. Weight binarization ... 67

4.3.3. Computational complexity .. 69

4.4. Discussion ... 73

4.5. Conclusion .. 76

4.6. Appendix ... 76

 v

4.7. Bibliography ... 80

5. Conclusion .. 82

Abstract (in Korean) ... 84

 vi

List of Tables

Table 3.1. Parameters for n-SPSNN. ... 30

Table 3.2. Single-step prediction Accuracy with respect to the number of hidden

neurons h for three different n values (2, 4, and 6). 36

Table 3.3. The single-step prediction accuracy with varying training sequence length

l (m = 20) for different h values. ... 37

Table 3.4. Tolerance to errors in input sequences and variability in input sampling

period. .. 43

Table 4.1. Parameters for simulations. .. 65

Table 4.2. Classification accuracy on the MNIST dataset for eRBP, eWB-eRBP, and

fWB-eRBP after 25 epochs. .. 66

Table 4.3. Time and space complexity on the MNIST dataset for 784-500-500-10

eRBP and eWB-eRBP after 25 epochs. ... 72

Table 4.4. Comparison of reported classification accuracy of quantized fully

connected SNNs on the MNIST dataset. ... 75

 vii

List of Figures

Figure 1.1. Illustration of (a) an ANN and (b) an SNN. In SNN, spiking neurons

communicate binary sparse spikes in the temporal domain. 3

Figure 1.2. Schematic of the ideal architecture of digital neuromorphic cores. PU

denotes a procession unit. .. 6

Figure 1.3. Schematic of resistance switch array. ... 7

Figure 3.1. (a) Schematic of the n-SPSN (m-(n×m)-h-m). The thick arrows indicate

all-to-all connection, whereas the thin arrows indicate element-to-

element connections. Lateral inhibition is indicated by red arrows. (b)

Visualized single-step predictions for a sequence of (B, A, C, D, B, B,

C). .. 23

Figure 3.2. LbAP learning rule with rate and temporal codes. (a) Example of

a neuronal configuration where the LbAP learning rule drives act

ivity-dependent competition between the two presynaptic neurons

N1 and N2, which share the same postsynaptic neuron N3. N1 a

nd N2 emit Poisson spikes at activities of a1 and a2, respectively.

(b) Evolution of weights w1 and w2 in response to a1 and a2, w

hich differ for the three periods: 0–0.5 s, 0.5–1 s, and 1–1.5 s.

The gray line denotes the sum of w1 and w2. (c) Example of a

configuration where the LbAP learning rule drives competition be

tween N1, N2, and N3, depending on the temporal correlation be

tween a presynaptic and postsynaptic spike. A supervision signal

applies to the postsynaptic neuron N4 to define the temporal corr

elation. We set ud,th1, ud,th2, and wmax to 0, 1 mV, and 1, respecti

 viii

vely. The firing threshold us,th was fixed to 2.5 mV. (d) A spike

sequence of (1, 4, 2, 4, 1, 4, 3, 4), where each number denotes

the index of a neuron spiking at a given time. We set Δt1 and

Δt2 to 20 ms and 30 ms, respectively. (e) Evolution of weights

w1, w2, and w3 in response to the spike sequence repeated ten ti

mes. Neuron N1 wins N2 and N3 because the unit sequence incl

udes two 1-4 pairs, whereas both 2-4 and 3-4 pairs appear once.

We set ud,th1, ud,th2, and wmax to 50 μV, 1 mV, and 0.8, respective

ly. The neuronal parameters for both simulations are listed in Ta

ble 3.1. .. 27

Figure 3.3. Spiking sequence before and after learning. (a) Spiking sequence

of a 20-(4×20)-40-20 SPSNN for output neurons (upper panel) a

nd hidden neurons (lower panel) in response to an input sequenc

e of (1, 2, 3, …, 20), which is identical to training data. The sp

iking sequence of output neurons became associated with the trai

ning sequence in contrast to the untrained SPSNN shown in (b).

(c) Spiking behavior of output neurons in Period 2 in (a), highli

ghting the capability of single-step predictions 33

Figure 3.4. The single-step prediction accuracy. (a) Single-step prediction capa

bility of a 20-(n×20)-h-20 SPSNN with respect to the number of

hidden neurons h for three different n values (2, 4, and 6). The

SPSNN was trained using a random sequence (l = 100; m = 20).

Each accuracy value was evaluated from ten trials; each trial incl

udes a training period with a different random sequence and sub

sequent accuracy evaluation period. (b) Accuracy of a 20-(4×20)-

 ix

h-20 SPSNN with varying training sequence length l (m = 20) f

or different h values. ... 34

Figure 3.5. Single-step prediction accuracy on the Nottingham dataset. (a) Spi

king sequence of input neurons in response to a one-hot encoded

Nottingham tune. (b) Prediction-accuracy with the number of lear

ned songs for a 26-(6×26)-h-26 SPSNN for different h values (h

= 1000, and 2000)... 35

Figure 3.6. Associative recall. Associative recall capability of a 20-(4×20)-40-2

0 SPSNN after the (a) first, (b) second, (c) third, and (d) fourth

training epoch. The training sequence was (1, 2, 3, …, 20) (l =

20; m = 20; Δte = 100 ms). For each case, the associative mem

ory was triggered by the initial four elements (1, 2, 3, 4) of the

total sequence. .. 39

Figure 3.7. Tolerance of the SPSNN to errors in input sequences. (a) Robustn

ess of single-step prediction for a 20-(4×20)-200-20 SPSNN to v

ariability in elements in an input sequence (l = 100; m = 20) in

comparison with LSTM and GRU. (b) Degradation of prediction

accuracy for the same SPSNN with respect to variability in input

sampling period (Δte). .. 42

Figure 3.8. Efficiency in learning. (a) Number of SynOps for a 20-(4×20)-200

0-20 SPSNN until a prediction accuracy of 0.97 with respect to

sequence length (20 ≤ l ≤ 1000; m = 20). LSTM and GRU are

compared with the SPSNN in terms of the number MAC operati

ons required to reach the same prediction accuracy (0.97). (b) Si

ngle-step prediction accuracy evolution for a 20-(4×20)-2000-20 S

 x

PSNN, LSTM, and GRU with the number of training iterations.

They were trained using random sequences (l = 1000; m = 20).

For comparison, the same data for a 20-(4×20)-20-20 SPSNN tra

ined using a random sequence (l = 10; m = 20) are co-plotted.

 ... 46

Figure 4.1. SNN architecture for eRBP. The error-coding layer (E) consists of

two error-coding neurons for each label dimension that encode fa

lse positive and negative errors between labels (L) and prediction

s (P). During training, each of the hidden (in H1 and H2) and pr

ediction (in P) neurons receives random feedback from the error

neurons with fixed random weights (dashed arrows). The input la

yer is indicated by I. .. 61

Figure 4.2. Classification accuracies of 784-1000-1000-10 SNNs on MNIST that

were trained using eRBP, fWB-eRBP, and eWB-eRBP. 64

Figure 4.3. Weight distribution of eWB-eRBP and fWB-eRBP for w(hi) (betwee

n the first hidden layer and input layer), w(hh) (between the seco

nd and first hidden layers), and w(oh) (between the output layer a

nd the second hidden layer). (a)–(c) Changes in CFS over epoch

for eWB-eRBP and fWB-eRBP. The weight distribution of the in

itial and trained real-valued weights for (d)–(f) eWB-eRBP and

(g)–(i) fWB-eRBP. ... 68

Figure 4.4. Efficiency in learning. Number of SynOps for a 784-500-500-10 S

NN with eWB-eRBP algorithm. BNN (784-500-500-10 network) i

s compared with the eWB-eRBP in terms of the number MACs

required for reaching a given accuracy for the MNIST learning t

 xi

ask. .. 71

 xii

List of Abbreviations

bAPs

BP

BNN

BWN

CD

CFS

DNN

eCD

eRBP

eWB

fWB

GRU

HB-STDP

HTM

IF

LbAP

LIF

LSTM

LMM

LTD

LTP

MAC

n-SPSNN

SNN

SRM

Backpropagating action potentials

Backpropagation

Binarized neural network

Binary weight network

Contrastive divergence

Constraint failure score

Deep neural network

Event-driven CD

Event-driven random backpropagation

Event-based weight binarization

Forced-to-be-binary weights

Gated recurrent unit

Hybrid-STDP

Hierarchical temporal memory

Integrate-and-fire

Learning by backpropagating action potential

Leaky integrate-and-fire

Long short-term memory

Lagrange multiplier method

Long-term depression

Long-term potentiation

Multiply-accumulate

nth order sequence-predicting SNN

Spiking neural network

Spike-response model

 xiii

STDP

SynOps

RNN

Spike timing-dependent plasticity

Synaptic operations

Recurrent neural network

 1

1. Introduction

1.1. Spiking neural networks (SNNs)

 The human brain is a complex system with approximately 100 billion neurons

and trillions of interconnected synapses [1]. Neuronal information is conveyed by

asynchronous spikes without forward locking. Spike-based temporal sparse

processing enables efficient information transfer in the brain.

Deep neural networks (DNNs) (Fig 1.1(a)) aim to mimic the behavior of a

biological nervous system. DNNs are typically trained by error-backpropagation

algorithms (BP) for layer-wise weight updates. DNNs are very powerful learning

models that solve complex problems such as visual image recognition [2-4], speech

recognition [5] and controlling tasks [6] beyond the human level. Despite the

ongoing success, the substantial computational cost compared to the human brain

and their inability to capture the temporal correlation of neural activities have created

a need for more biologically plausible learning algorithms.

Spiking neural networks (SNNs) are the primary candidate for realizing

neuromorphic systems that require lower computational effort based on temporal

coding. SNNs are dynamic models in which neuronal information is processed in

form of spikes, as shown in Fig 1.1(b). Spike is an essentially binary event, either 0

or 1. A spiking neuron in SNNs is only active when it receives or emits spikes. This

unique sparse event-driven processing using neuronal computation and synaptic

weight updates improves energy efficiency in neuromorphic hardware

implementations [7, 8].

The rich spatio-temporal dynamics of SNNs stem from temporal kernels. The time

course of internal state in spiking neuron models results from convolutions of time-

varying input stimulus, as shown in the spike-response model (SRM) [9]. The rich

dynamics of SNNs enable the effective learning of complex spatio-temporal spiking

patterns in a dynamic domain. The previously proposed remote supervised method

(ReSuMe) [10], chronotron [11], spike pattern association neuron (SPAN) [12], and

precise-spike-driven synaptic plasticity (PSD) [13] rules have both demonstrated

 2

success in learning SNN to predict precise temporal representations of

spatiotemporal spike patterns. However, success in sequence-to-sequence prediction

using these learning rules has not been demonstrated.

 3

Figure 1.1. Illustration of (a) an ANN and (b) an SNN. In SNN, spiking neurons

communicate binary sparse spikes in the temporal domain.

 4

1.2. Dedicated hardware for spiking neural network

Neuromorphic Engineering originally aimed to implement biologically plausible

SNNs using very large integrated analog circuits [14]. SpiNNaker [15], Neurogrid

[16], TrueNorth [17], DYNAPs [18], and Loihi [19] are recently released prototypes

of neuromorphic hardware. Although their working principles and capabilities are

different, they realize SNNs on the chips. TrueNorth, SpiNNaker, and Loihi are

based on digital circuits that allow flexibility of network configuration and learning

algorithms.

The neuromorphic hardware has shown potential in accelerating SNN simulations

with the reconfigurable network topology and learning algorithms. Fig. 1.2 shows

the ideal architecture of digital neuromorphic hardware for SNNs. The memory is

distributed over neurons as opposed to the von Neumann architecture in which

processing units and memory are separated. Each processing unit calculates the state

variables such as synaptic current and membrane potential. The memory for each

processing unit contains its local data. The information of spiking events is processed

across the cores through data buses. The parallel computation realized by distributed

processors and local memories maximizes synaptic operation speed, the key to

neuromorphic hardware performance. Thus, digital neuromorphic hardware is

deemed to leverage the capacity of an event-driven local algorithm for SNNs.

Representing synaptic weights in digital neuromorphic hardware using non-

volatile memory can provide higher connectivity and faster computation speed.

Resistance switch is considered as one of the most promising candidates for next-

generation non-volatile memory [20]. The resistance switch device has a high

resistance state (HRS) and low resistance state (LRS). The resistance state can be

reversibly switched between HRS and LRS under sufficient voltage stimuli. Binary

resistance switch array (Fig. 1.3) has demonstrated an efficient hardware

implementation of the matrix-vector multiplication by measuring the output current

to an applied input voltage vector [21]. Also, the non-volatile characteristic of the

resistance switch allows energy efficiency compared to the volatile memories, e.g.,

dynamic random-access memory (DRAM). Thus, it is possible to implement parallel

 5

matrix operations and reduce energy consumption when the binary resistance switch

array is applied to digital neuromorphic hardware.

In this regard, this paper consists of two parts. At first, we introduce a novel

learning algorithm for SNNs and an SNN architecture for sequence prediction, which

are suitable for neuromorphic hardware. In the second part, we propose a new

learning algorithm called the event-based weight binarization (eWB) algorithm,

which can be implemented in digital neuromorphic hardware with binary resistance

switch array.

 6

Figure 1.2. Schematic of the ideal architecture of digital neuromorphic cores. PU

denotes a procession unit.

 7

Figure 1.3. Schematic of resistance switch array.

 8

1.3. Bibliography

[1] F. A. Azevedo et al., Journal of Comparative Neurology, vol. 513, no. 5, pp.

532-541, 2009.

[2] D. Cireşan, U. Meier, and J. Schmidhuber, arXiv preprint arXiv:1202.2745,

2012.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Advances in neural

information processing systems, 2012, pp. 1097-1105.

[4] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 1701-1708.

[5] G. E. Dahl, D. Yu, L. Deng, and A. Acero, IEEE Transactions on audio,

speech, and language processing, vol. 20, no. 1, pp. 30-42, 2011.

[6] D. Silver et al., nature, vol. 529, no. 7587, p. 484, 2016.

[7] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, Frontiers in neuroscience,

vol. 13, p. 95, 2019.

[8] C. Lee, S. S. Sarwar, and K. Roy, arXiv preprint arXiv:1903.06379, 2019.

[9] W. Gerstner and W. M. Kistler. Cambridge University Press, 2002.

[10] F. Ponulak and A. Kasiński, Neural Comput., vol. 22, no. 2, pp. 467-510,

2010.

[11] R. V. Florian, PloS one, vol. 7, no. 8, 2012.

[12] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, International

journal of neural systems, vol. 22, no. 04, p. 1250012, 2012.

[13] Q. Yu, H. Tang, K. C. Tan, and H. Li, Plos one, vol. 8, no. 11, 2013.

[14] C. Mead, Proceedings of the IEEE, vol. 78, no. 10, pp. 1629-1636, 1990.

 9

[15] E. Painkras et al., IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp.

1943-1953, 2013.

[16] B. V. Benjamin et al., Proceedings of the IEEE, vol. 102, no. 5, pp. 699-716,

2014.

[17] P. A. Merolla et al., Science, vol. 345, no. 6197, pp. 668-673, 2014.

[18] N. Q. S. Moradi, F. Stefanini, G. Indiveri, IEEE Trans. Biomed. Circuits Syst.,

vol. 12, pp. 106-122, 2018.

[19] M. Davies et al., IEEE Micro, vol. 38, no. 1, pp. 82-99, 2018.

[20] A. Beck, J. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Applied Physics

Letters, vol. 77, no. 1, pp. 139-141, 2000.

[21] M. Hu, H. Li, Q. Wu, and G. S. Rose, DAC Design Automation Conference

2012, 2012: IEEE, pp. 498-503.

 10

2. Literature

2.1. Sequence-predicting SNN

Associative memory or recall has long been the subject of research interest in

sequence learning, which is categorized as sequence-to-sequence learning. The

Hopfield network is a seminal network to this end; the recurrent network is given the

capability to memorize patterns over the neurons, and a piece of a pattern can activate

the whole pattern [1]. However, the network still lacks dynamics, and hence, the

sequence information of the pattern is ignored. By contrast, RNNs are dynamic

hypotheses that can learn sequences and make single-step predictions. This

capability is given by the feedback connection that bases the current prediction on

the network activity at the previous time step [2]. However, training the network

through time causes several critical issues such as vanishing gradient and exploding

gradient problems [3]. Variations of RNN, e.g., LSTM [4] and GRU [5], cope with

these issues due to a constant error-flow through internal units. A backpropagation

algorithm is commonly used to train these networks. The good performance of these

networks comes at the cost of large computational power [6]. In particular, their

demands for computational power are highlighted by comparison with the n-SPSNN,

which will be addressed in Section 3.3.4. Their low tolerance to errors in sequence

encoding is another disadvantage.

The sequence-learning neural network proposed by Wang and Yuwono [7]

employs short-term memory networks as sub-networks, which play a similar role to

the working memory of the n-SPSNN in sequence learning. The short-term memory

network considers memory decay with time so that a discount factor applies to the

contributions of previous elements to the present element prediction. Each

subsequence of previous elements is mapped onto a single detector in an injective

manner, given strong lateral inhibition among the detectors, which is also similar to

the proposed n-SPSNN architecture. However, the neural network proposed by

Wang and Yuwono consists of binary neurons, i.e., McCulloch–Pitts neurons, and

the inhomogeneous learning rule applying to the network fails to provide a unified

framework of learning. The learning rule needs to access global data (all weights

 11

values) to normalize the weight under update, which differs from our LbAP

algorithm. Unfortunately, the sequence-learning capacity of the network is

unavailable.

SNNs with recurrent connections are considered as hypotheses for associative

recall [8-10]. Unlike the associative recall in the above-mentioned class, the

associative recall in SNNs concerns not only a sequence of spiking neurons but also

their precise spike times. This is because SNNs are endowed with the capacity to

learn dynamic-domain data given their rich dynamics. Pfister et al. considered an

SNN with stochastic spiking neurons and proposed a method to train the SNN to lead

the postsynaptic neurons to fire spikes at desired times [11]. This work was further

extended to more complicated SNNs with visible and hidden neurons, where the

hidden neurons receive supervision signals and represent a sequence [8]. In this work,

the objective function for weight optimization was defined as the difference in a

distribution function between a desired and actual spike time. The proposed learning

algorithm for the visible neurons is found to be equivalent to the voltage-based STDP

rule [12] in support of the physiological fidelity of the proposed learning algorithm.

However, a different learning algorithm is used for the hidden neurons, which fails

to provide a unified learning framework. Unfortunately, systematic analyses on the

performance (learning capacity, efficiency, error-tolerance, etc.) of the recurrent

SNN are unavailable.

Gardner and Grüning modified the learning rule by Pfister et al. [11] to train an

SNN of deterministic neurons, referred to as FILT [13]. In the FILT rule, the synaptic

weight is adjusted to reduce the difference in spike filtering between a desired and

actual spike train. In a similar framework, several learning algorithms have been

proposed to produce a desired spike train, such as ReSuMe [9], chronotron [14],

SPAN [15], and PSD synaptic plasticity [16]. These learning rules are capable of

training a neuron to generate the desired spike train in response to the input spike

pattern. However, success in associative recall using these learning rules has not been

demonstrated.

 12

An STDP rule in conjunction with heterosynaptic depression enables a recurrent

SNN to form synaptic chains, each of which represents a sequence that is recalled

associatively [10]. Such chains are formed at random; however, the number of chains

tends to decrease with the strength of global inhibition. In addition, the network can

copy an applied sequential input during training and reproduce the input

subsequently. However, a critical downside is the necessary access to global data,

such as total synaptic weights (for the heterosynaptic depression) and activity state

variables (for global inhibition), which is inconsistent with the attributes of an ideal

learning rule embedded in neuromorphic hardware.

The hierarchical temporal memory (HTM) adopts and simplifies the physiological

observation that, in a pyramidal cell, a delay in postsynaptic potential is proportional

to the distance between the dendritic spine and soma [17, 18]. The HTM network

consists of a set of columns; a combination of such columns represents an element

in a sequence. A sequence is learned such that a synaptic chain (with the same length

as the sequence) representing the sequence is formed in the network. Therefore,

learning complex sequences is inefficient.

 13

2.2. Binarized SNN

To date, the proposed methods for learning binary weights in SNNs can be mainly

classified into two groups: (i) conversion of binarized neural networks (BNNs) [19]

or binary weight networks (BWNs) [20] into SNNs and (ii) probabilistic learning.

The first approach is motivated by recent successes in weight binarization in DNNs

[19-22]. Lu and Sengupta [23] proposed a method to map BWNs onto VGG-15-like

SNNs with perfect integrate-and-fire (IF) neurons. The IF neuron is considered to

encode an input spike train as a firing rate, thereby ensuring its similarity to a

rectified linear unit (ReLU).

The second approach uses weights that probabilistically toggle between the binary

weights 0 and 1. However, it is common to use auxiliary variables to determine the

probability of weight updates. Suri et al. [24] proposed an STDP-based stochastic

algorithm using binary weights. Potentiation (0→1) and depression (1→0) occur

with probabilities based on the temporal order of presynaptic and postsynaptic spikes.

Nevertheless, a challenge in STDP is its inability to scale to deep SNNs. STDP is

hence commonly limited to shallow SNNs. Yousefzadeh et al. [25] also proposed an

STDP-based stochastic algorithm to learn binary weights. The algorithm requires

additional operations such as weight normalization and threshold adjustment for

individual neurons. The considered network is shallow (one feature extraction layer

and one classifier) because of the aforementioned limitation of STDP. Additionally,

it does not support end-to-end training. Srinivasan and Roy [26] proposed the

Hybrid-STDP (HB-STDP) algorithm based on probabilistic STDP. Notably, HB-

STDP includes a dead zone in the STDP time window, in which neither potentiation

nor depression is allowed. HB-STDP captures temporally correlated inputs by

preventing excessive potentiation and depression; however, its low accuracy is a

challenge.

Nevertheless, a challenge in STDP is its inability to scale to deep SNNs. STDP is

hence commonly limited to shallow SNNs. Yousefzadeh et al. [25] also proposed an

STDP-based stochastic algorithm to learn binary weights. The algorithm requires

 14

additional operations such as weight normalization and threshold adjustment for

individual neurons. The considered network is shallow (one feature extraction layer

and one classifier) because of the aforementioned limitation of STDP. Additionally,

it does not support end-to-end training. Srinivasan and Roy [26] proposed the

Hybrid-STDP (HB-STDP) algorithm based on probabilistic STDP. Notably, HB-

STDP includes a dead zone in the STDP time window, in which neither potentiation

nor depression is allowed. HB-STDP captures temporally correlated inputs by

preventing excessive potentiation and depression; however, its low accuracy is a

challenge.

The learning of low-precision weights in SNNs as generative models is a subject

of interest. Stromatias et al. [27] tailored contrastive divergence (CD) to deep belief

networks with spiking neurons. The original double-precision floating-point weights

are converted to a lower precision floating-point format to reduce memory

consumption. However, the reduction in precision comes with the cost of significant

performance degradation. Neftci et al. [28] proposed the event-driven CD (eCD)

algorithm to train restricted Boltzmann machines with spiking neurons. In eCD, the

weight update is fine-tuned by STDP. Low-precision (down to 2-bit) weights were

tested; however, a significant reduction in accuracy was unavoidable.

The eWB algorithm adopts an approach that parameterizes the degree of binary-

constraint fulfillment and asymptotically optimizes the degree upon the occurrence

of events, whereas the aforementioned precision-reduction methods merely round

the full-precision weights. Therefore, eWB cannot be classified as any of the

aforementioned approaches.

 15

2.3. Bibliography

[1] J. J. Hopfield, Proc. Natl. Acad. Sci., vol. 79, no. 8, pp. 2554-2558, 1982.

[2] P. J. Angeline, G. M. Saunders, and J. B. Pollack, IEEE transactions on

Neural Networks, vol. 5, no. 1, pp. 54-65, 1994.

[3] Y. Bengio, P. Simard, and P. Frasconi, IEEE transactions on neural networks,

vol. 5, no. 2, pp. 157-166, 1994.

[4] S. Hochreiter and J. Schmidhuber, Neural computation, vol. 9, no. 8, pp.

1735-1780, 1997.

[5] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, arXiv preprint

arXiv:1412.3555, 2014.

[6] J. S.-D. Jasmine Collins, David Sussillo, 34th International Conference on

Machine Learning, Sydney, Australia, 2017.

[7] D. L. Wang and B. Yuwono, IEEE Transactions on Systems, Man, and

Cybernetics, vol. 25, no. 4, pp. 615-628, 1995.

[8] J. Brea, W. Senn, and J.-P. Pfister, J. Neurosci., vol. 33, no. 23, pp. 9565-

9575, 2013.

[9] F. Ponulak and A. Kasiński, Neural Comput., vol. 22, no. 2, pp. 467-510,

2010.

[10] I. R. Fiete, W. Senn, C. Z. H. Wang, and R. H. R. Hahnloser, Neuron, vol. 65,

no. 4, pp. 563-576, 2010.

[11] J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner, Neural computation,

vol. 18, no. 6, pp. 1318-1348, 2006.

[12] C. Clopath, L. Büsing, E. Vasilaki, and W. Gerstner, Nat. Neurosci., Article

vol. 13, p. 344, 2010.

 16

[13] B. Gardner and A. Grüning, PloS one, vol. 11, no. 8, p. e0161335, 2016.

[14] R. V. Florian, PloS one, vol. 7, no. 8, 2012.

[15] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, International

journal of neural systems, vol. 22, no. 04, p. 1250012, 2012.

[16] Q. Yu, H. Tang, K. C. Tan, and H. Li, Plos one, vol. 8, no. 11, 2013.

[17] J. Hawkins and S. Ahmad, Front. Neural Circuits, Hypothesis & Theory vol.

10, no. 23, 2016.

[18] Y. Cui, S. Ahmad, and J. Hawkins, Neural Comput., vol. 28, no. 11, pp. 2474-

2504, 2016.

[19] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, 2016,

arXiv:1602.02830.

[20] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, European conference

on computer vision, 2016: Springer, pp. 525-542.

[21] M. Courbariaux, Y. Bengio, and J.-P. David, Advances in neural information

processing systems, 2015, pp. 3123-3131.

[22] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, The

Journal of Machine Learning Research, vol. 18, no. 1, pp. 6869-6898, 2017.

[23] S. Lu and A. Sengupta, 2020, arXiv:2002.10064.

[24] M. Suri et al., IEEE Transactions on Electron Devices, vol. 60, no. 7, pp.

2402-2409, 2013.

[25] A. Yousefzadeh, E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B.

Linares-Barranco, Frontiers in neuroscience, vol. 12, p. 665, 2018.

[26] G. Srinivasan and K. Roy, Frontiers in Neuroscience, vol. 13, p. 189, 2019.

[27] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and S.-C. Liu,

 17

Frontiers in neuroscience, vol. 9, p. 222, 2015.

[28] E. O. Neftci, B. U. Pedroni, S. Joshi, M. Al-Shedivat, and G. Cauwenberghs,

Frontiers in neuroscience, vol. 10, p. 241, 2016.

 18

3. SPSNN: nth order sequence-predicting spiking

neural network

3.1. Introduction

Spiking neural network (SNN) is a dynamic hypothesis with diverse temporal

kernels to express neuronal behaviors in response to synaptic transmission [1-3]. The

central nervous system (CNS) is based on the SNN, and the SNN has therefore been

analyzed theoretically to understand the working principles of the CNS. Apart from

the SNN’s physiological plausibility, its feasible applications to deep learning as a

hypothesis have attracted considerable research attention from various fields [4-9].

The effort to realize an SNN using integrated circuits—which has continued over the

last three decades—paves the way for the data- and energy-efficient acceleration of

deep learning. This has been emerging as an important goal of neuromorphic

engineering [5, 6]. In this case, the main challenge lies in the learning algorithm; a

universal learning algorithm, similar to backpropagation algorithms for deep neural

network (DNN), is still missing. There exist several methods to optimize synaptic

weights in an SNN. They usually map the weights of backpropagation-trained DNNs

onto SNNs [10, 11]. However, to leverage the SNN in neuromorphic hardware, the

learning needs to be based on an event-driven algorithm of locality [5, 6, 12]. For

instance, the event-driven random backpropagation (eRBP) algorithm satisfies this

requirement considering that (i) the ad hoc update is driven by a presynaptic spike

and (ii) only local variables are used to evaluate the change in weight [13]. Static-

domain data, e.g., images, are suited to the eRBP algorithm for training SNNs.

Considering the rich dynamics of SNN, learning with dynamic-domain data

perhaps harnesses the full capability of SNNs [3, 12]. Dynamic-domain data include

time-series data, which embody periodic discrete data points in a time domain. In a

framework of deep learning, the recurrent neural network (RNN) and its variations,

e.g., long short-term memory (LSTM) [14] and gated recurrent unit (GRU) [15], are

known to have an excellent capability to learn time-series data. Unfortunately, there

is a lack of both SNN architecture for learning time-series data as well as a learning

 19

algorithm for the architecture, which performs sequence-prediction tasks, e.g.,

single-step prediction and sequence-to-sequence prediction (also known as

associative recall), with accuracy comparable to that of LSTM and GRU.

In this regard, we propose an SNN architecture for temporal sequence learning,

named nth order sequence-predicting spiking neural network (n-SPSNN). The

indispensable working memory for the prediction is realized using synaptic chains.

To train the n-SPSNN, we propose an event-driven learning algorithm of locality,

referred to as learning by backpropagation action potential (LbAP) algorithm. The

LbAP algorithm was inspired by physiological observations of backpropagating

action potential (bAP) boosts intervening in homosynaptic plasticity [16]. Note that

the weight is only updated upon postsynaptic events in contrast to other event-driven

algorithms such as spike timing-dependent plasticity (STDP) rule (updates upon both

presynaptic and postsynaptic events) and eRBP algorithm (updates upon presynaptic

events only). The locality allows the LbAP algorithm to be suitable for memory-

efficient implementation in digital neuromorphic hardware, particularly, multi-core

neuromorphic processors [6, 12, 17, 18].

.

 20

3.2. Sequence-predicting spiking neural network and learning

algorithm

 Sequecne prediction principle and network architecture

We define a sequence of l elements as (x1, x2, …, xl), where each element is chosen

from a set of m symbols S (={s1, s2, …, sm}), i.e., 𝑥𝑖 ∈ {𝑠1, 𝑠2, … , 𝑠𝑚} . xi ∈

{s1, s2, … , sm}xi ∈ {s1, s2, … , sm} xi and xi+1 are separated by Δte in time. Each

element is represented by an m-long one-hot vector. The n-SPSNN learning a

sequence is illustrated in Fig. 3.1(a). The network is given m parallel sub-networks,

each with a synaptic chain of n neurons. One sub-network is dedicated to one of m

symbols only. The parallel m sub-networks are in full connection with a hidden layer

loaded with h neurons. A weight matrix for the feedforward connections is defined

as w1 (𝒘1 ∈ ℝ
ℎ×𝑛𝑚; 𝑤1[𝑖, 𝑗] ∈ [0,𝑤𝑚𝑎𝑥1]). The hidden neurons are fully connected

with m output neurons in an output layer. Each output neuron represents each of m

elements. Weight matrix w2 (𝒘2 ∈ ℝ
𝑚×ℎ; 𝑤2[𝑖, 𝑗] ∈ [0, 𝑤𝑚𝑎𝑥2]) defines the

feedforward connections. Note that full lateral inhibition applies to both hidden and

output layers. This n-SPSNN network is expressed as m-(n×m)-h-m, considering the

number of neurons in each layer

The element on a given time step in a sequence is encoded as a one-hot vector.

Each element of the vector is subsequently applied to the input neuron of the

corresponding sub-network such that “1” indicates the presence of an input spike,

whereas “0” indicates no spike (see Fig. 3.1(a)). Each spike is relayed over the

synaptic chain in each sub-network. We consider an axonal delay (Δtax1) between

neighboring neurons in a synaptic chain of n neurons. Assuming that Δtax1 = Δte, a

spike on a given time step hops to the next neuron in Δte, and simultaneously, the

next element in the sequence arrives at the input neurons. Therefore, a spike

representing a particular element on a given time step can stay in the sub-network

over the synaptic chain for (n-1) Δtax1, serving as a working memory. Unless

otherwise stated, the equalities Δtax1 = Δte and Δte = 100 ms hold. Note that the n-

SPSNN robustly predicts a sequence with random variations in Δte (i.e., Δtax1 ≠ Δte),

which will be addressed in Section 3.3.3.

 21

Fig. 3.1(b) schematizes this process for a 4-SPSNN (n = 4) trained with an

arbitrary sequence of (B, A, C, D, B, B, C) (l = 7; m = 4; S = {A, B, C, D}). Sub-nets

1, 2, 3, and 4 represent elements A, B, C, and D, respectively. The table for each sub-

network in Fig. 3.1(b) indicates a neuronal activity vector on each time step such that

a non-zero element and “0” denote the presence of a spike and no spike, respectively.

For instance, 000A1 for Sub-net 1 at t2 means that Neuron 1 (N1) fires a spike, while

the rest of the neurons (N2, N3, and N4) are quiet. Here, A1 indicates the element

corresponding to the sub-network (A) and the neuron index (subscript). The n-

SPSNN begins sequence prediction when n preceding elements are available. Thus,

the 4-SPSNN in Fig. 3.1(b) begins the prediction at t4 based on the component-wise

sum of the four neuronal activity vectors (B4A3C2D1), meaning that N3 (Sub-net 1),

N4 (Sub-net 2), N2 (Sub-net 3), and N1 (Sub-net 4) fire spikes at t4 simultaneously.

The prediction at t5 is based on the vector (A4C3D2B1), meaning the simultaneous

spiking of N4 (Sub-net 1), N1 (Sub-net 2), N3 (Sub-net 3), and N2 (Sub-net 4).

However, early prediction before seeing n previous elements is made occasionally

in real network operations, as will be addressed in Section 3.3.1.

Based on an n-long neuronal activity vector at ti, the n-SPSNN should be able to

predict the input element at ti+1. For instance, B4A3C2D1 at t4 in Fig. 3.1(b) outputs B

as a predicted element at t5 such that the output neuronal activity vector is 0100. The

hidden layer in full connection with the parallel sub-networks and output layer

associates the n-long neuronal activity vector with the desired output neuronal

activity vector. Hidden neurons need to detect n simultaneous spikes on a given time

step and fire a spike accordingly, serving as a coincident detector. The spiking pattern

of hidden neurons should be specific to a certain spatial pattern of spiking over the

sub-networks. For instance, B4A3C2D1 at t4 and A4C3D2B1 at t5 should cause different

spiking patterns to distinguish them. The lateral inhibition over the hidden neurons

suppresses overlap between different spiking patterns. Eventually, the spiking

pattern of hidden neurons activates the desired output neuron through the

feedforward connections. The lateral inhibition over the output neurons ensures the

clear separation of a desired output neuron from the others.

 22

For associative recall (sequence-to-sequence prediction), the n-SPSNN for single-

step prediction is modified to employ feedback connection from the output to the

input layer. The single-step prediction in response to a set of n preceding elements is

fed into the input layer as an input. This feedback process continues onward until the

end of the sequence.

The hidden and output neurons are expressed as a multi-compartment model in

that the dendritic and somatic potentials are separately evaluated for each neuron.

Both potentials are evaluated using a SRM [2] (Appendix 3.5). However, the

dendrite is not allowed to fire spikes so that no refractory kernel applies to the

dendritic potential evaluation. We consider axonal delays for the sub-networks-to-

hidden layer and hidden layer-to-output layer feedforward connections, which are

Δtax2 and Δtax3, respectively. They are fixed to 20 ms.

 23

Figure 3.1. (a) Schematic of the n-SPSN (m-(n×m)-h-m). The thick arrows indicate

all-to-all connection, whereas the thin arrows indicate element-to-element

connections. Lateral inhibition is indicated by red arrows. (b) Visualized single-step

predictions for a sequence of (B, A, C, D, B, B, C).

 24

3.2.2. Learing by backpropagating action potentail (LbAP) algorithm

To train the n-SPSNN, we propose a local learning algorithm called learning by

backpropagating action potential (LbAP) algorithm. The LbAP algorithm was

inspired by physiological observations of homosynaptic plasticity dictated by

backpropagating action potentials (bAPs) [16, 19]. Upon spiking at a soma, the spike

propagates to the dendritic spines; this is referred to as a bAP. The bAP amplitude

decays over the dendrite. However, the initial amplitude is recovered if the dendritic

potential exceeds a certain threshold, indicating a bAP boost. Otherwise, the

amplitude keeps decaying out. The bAP, in turn, additively perturbs the dendritic

potential, such that dendritic potential above the bAP-boost threshold undergoes a

large increase in potential, whereas dendritic potential below the threshold undergoes

a negligible increase in potential. The key to the direction of plasticity is the calcium

influx such that a large (small) influx likely induces LTP (LTD) [20-22]. Importantly,

the calcium influx tends to increase with membrane potential, and thus, a bAP boost

likely induces LTP, while the failure of a bAP boost likely leads to LTD [16].

The LbAP algorithm simplifies the physiological observations as follows. First,

the dendritic potential at the moment of bAP arrival directly determines the plasticity

direction: if the potential is above the bAP-boost threshold, the synapse gains weight,

and it loses weight otherwise. Second, a delay in backpropagation is ignored, so that

the weights of all relevant synapses are updated simultaneously when the

postsynaptic neuron fires a spike. Therefore, the LbAP algorithm is an event-driven

local algorithm, ensuring incremental learning over a learning period. To be specific,

the algorithm is a postsynaptic event-driven local algorithm because the weight is

renewed only upon postsynaptic events in contrast to other event-driven algorithms

such as STDP rule (presynaptic and postsynaptic event-driven algorithm) [23-25]

and eRBP (presynaptic event-driven algorithm) [26].

The following equation describes the LbAP algorithm:

 ∆𝑤 = {𝛼𝐻(𝑢𝑑 − 𝑢𝑑,𝑡ℎ) − 𝛽𝛩(𝑢𝑑)}𝛿(𝑡 − 𝑡𝑝𝑜𝑠𝑡) (3.1)

 25

where ud, ud,th, and H denote the dendritic potential at a given time, threshold for a bAP

boost, and Heaviside step function, respectively. The LTP rate is determined by a

positive constant α. LTD is facilitated by a boxcar function Θ with ud,th2 and ud,th1

(<ud,th2):

Θ = {
1 if 𝑢𝑑,𝑡ℎ1 < 𝑢𝑑 < 𝑢𝑑,𝑡ℎ2.

0 otherwise.

The parameter ud,th1 denotes a threshold for LTD. The LTD rate is determined by

a positive constant β. The term 𝛿(𝑡 − 𝑡post) ensures a postsynaptic event-driven

weight update, where tpost refers to a postsynaptic event time. We employ weight

boundaries (0 and wmax) to avoid unlimited growth of weight and switch to inhibitory

synapses. The LbAP algorithm is paraphrased in pseudocode, as follows:

function LbAP

 for j ∈ {postsynaptic spike} do

 if 𝑢𝑑 > 𝑢𝑑,𝑡ℎ2 then 𝑤𝑗𝑖 ← 𝑤𝑗𝑖 + 𝛼

 else if 𝑢d,th1 < 𝑢d < 𝑢d,th2 then 𝑤𝑗𝑖 ← 𝑤𝑗𝑖 − 𝛽

 end if

 end for

end function.

Notably, rate-based and spike (event)-based learning schemes merge in a unified

framework based on the LbAP algorithm. Regarding rate-based learning, consider

two independent presynaptic neurons (N1 and N2) firing Poisson spikes at a1 and a2

and a postsynaptic neuron (N3) firing to the presynaptic Poisson spikes (see Fig.

3.2(a)). Applying the LbAP algorithm to the two synapses results in rate-dependent

changes in weights (w1 and w2) with a1 and a2 in an unsupervised manner, as plotted

in Fig. 3.2(b). The first period (a1 = a2 = 25 Hz) explains a simultaneous increase in

w1 and w2 due to the equally high firing rates. However, the different rates in the

second period (a1 = 25 Hz; a2 = 5 Hz) bifurcate w1 and w2 such that N1 with the

higher rate gains weight while N2 loses weight. Alternating the rates (a1 = 5 Hz; a2

= 25 Hz) in the third period reverses the directions of the weight changes. Note that

this learning condition recalls the monocular deprivation experiment that backs the

 26

seminal Bienenstock–Cooper–Munro (BCM) rule [27, 28]. The result highlights

rate-dependent learning (the higher the firing rate of a neuron, the more likely that

the synapse with a postsynaptic neuron strengthens) in agreement with the Hebbian

learning. However, unlike the basic Hebb’s rule, competition between the two

presynaptic neurons is induced even without explicit weight normalization, as

identified by the constant sum of the weights in the second and third periods in Fig.

3.2(b). This feature highlights the key advantage of the LbAP algorithm, which

enables weight normalization without access to global data unlike other

normalization algorithms, e.g., heterosynaptic depression [29], Oja rule [30], and

subtractive normalization [1].

The LbAP algorithm captures the temporal configuration of individual presynaptic

and postsynaptic spikes. A presynaptic spike closely preceding a postsynaptic spike

likely boosts a bAP at the dendritic spine, yielding LTP. In addition, using the LbAP

algorithm, a pair of presynaptic and postsynaptic neurons that most frequently fire

spikes in close succession (a presynaptic spike preceding a postsynaptic spike) is

distinguished from the other pairs. For instance, consider a toy network of three

presynaptic neurons (N1–N3) and a postsynaptic neuron (N4) in Fig. 3.2(c). One

spike at a time is elicited from one of the three presynaptic neurons following a given

sequence (1, 4, 2, 4, 1, 4, 3, 4) repeated 10 times (Fig. 3.2(d)). Events from N1, N2,

N3, and N4 are denoted by 1, 2, 3, and 4, respectively. A supervision signal (external

current) is applied to N4 to manipulate the temporal configuration of pre and

postsynaptic spikes. In the sequence (1, 4, 2, 4, 1, 4, 3, 4)×10, N1 is most frequently

paired with N4 (20 times) so that the synapse between N1 and N4 gains weight,

whereas the other synapses undergo LTD, as shown in Fig. 3.2(e). The temporal

order of spikes (a presynaptic spike preceding a postsynaptic spike in close

succession) likely indicates the causality between the presynaptic postsynaptic

events because a cause should precede its effect. However, the opposite order likely

undermines the causality. Therefore, this example identifies the LbAP algorithm as

an identifier of statistical causality between individual spikes, highlighting its

suitability for spike-based learning.

 27

Figure 3.2. LbAP learning rule with rate and temporal codes. (a) Example of a

neuronal configuration where the LbAP learning rule drives activity-dependent

competition between the two presynaptic neurons N1 and N2, which share the same

postsynaptic neuron N3. N1 and N2 emit Poisson spikes at activities of a1 and a2,

respectively. (b) Evolution of weights w1 and w2 in response to a1 and a2, which differ

for the three periods: 0–0.5 s, 0.5–1 s, and 1–1.5 s. The gray line denotes the sum of

w1 and w2. (c) Example of a configuration where the LbAP learning rule drives

competition between N1, N2, and N3, depending on the temporal correlation

between a presynaptic and postsynaptic spike. A supervision signal applies to the

postsynaptic neuron N4 to define the temporal correlation. We set ud,th1, ud,th2, and

wmax to 0, 1 mV, and 1, respectively. The firing threshold us,th was fixed to 2.5 mV. (d)

A spike sequence of (1, 4, 2, 4, 1, 4, 3, 4), where each number denotes the index of

a neuron spiking at a given time. We set Δt1 and Δt2 to 20 ms and 30 ms, respectively.

(e) Evolution of weights w1, w2, and w3 in response to the spike sequence repeated

ten times. Neuron N1 wins N2 and N3 because the unit sequence includes two 1-4

pairs, whereas both 2-4 and 3-4 pairs appear once. We set ud,th1, ud,th2, and wmax to 50

μV, 1 mV, and 0.8, respectively. The neuronal parameters for both simulations are

listed in Table 3.1.

 28

3.2.3. Training method and capabiltiy evaluation in detail

The n-SPSNN (m-(n×m)-h-m) was trained for a single-step prediction, given the

n previous elements in a sequence. As training data, we employed l-long random

sequence data (x1, x2, …, xl), where xi was randomly chosen from set S (= {s1, s2, …,

sm}) with equal probability. Note that l and m are measures of complexity in the

training data. Each element in the sequence was sampled every Δte and subsequently

encoded as a one-hot vector. Responding to the “1” in the one-hot vector, the input

neuron in the corresponding sub-network in Fig. 3.1 fires periodic spikes at a0 (=50

Hz). A supervised learning framework was used to train the n-SPSNN as a whole;

the actual element on the present time step was considered as the correct response to

the n previous elements. Accordingly, the weights w1 and w2 were ad hoc updated

every time step. The correct element was encoded as a one-hot vector (supervision

signal) and applied to the output layer in sync with the nth input element of the n

previous elements. The supervision signal was a train of periodic current pulses at

a0; each pulse sufficed to evoke a spike from the neuron. Thus, periodic spikes at a0

were elicited from the output neuron, which drove the update of w2. Unsupervised

learning trained the weight matrix w1 because a desired spiking pattern of hidden

neurons was unknown unlike training the weight matrix w2. Nevertheless, both

unsupervised and supervised learning were performed within a unified framework

based on the LbAP algorithm. The weight matrix w1 was loaded with random values

(0 < wij < wmax1) initially. To avoid unwanted preset connections to the output neurons,

the weight matrix w2 was loaded with constant values (0.2). Note that the lateral

inhibition weights for both hidden and output layers were invariant through learning.

The n-SPSNN was trained with the same sequence data repeatedly until saturation

of the single-step prediction accuracy. The parameters in Table 3.1 were used for the

simulation results, unless otherwise stated.

A single-step prediction result was determined from output neuronal spikes in a

time step. Training generally hinders output spikes from multiple neurons in a given

time step, and hence, the index of a single active neuron was encoded as a one-hot

vector of a predicted element. Otherwise, the neuron index of the largest activity was

considered to output a predicted element. The accuracy of single-step prediction was

 29

evaluated by applying the training sequence to the n-SPSNN without a supervision

signal and by comparing the actual output with the correct output. For instance, if an

n-SPSNN trained with an l-long sequence makes correct predictions x times, its

single-step prediction accuracy is x/(l - n), where n is in the denominator because the

first n elements are ignored considering the working principle of the n-SPSNN.

 30

Table 3.1. Parameters for n-SPSNN.

Symbol Explanation Value

usth Threshold for spikes 10 mV

ud,th1 Threshold for LTD 0.05 mV

ud,th2 Threshold for a bAP boost 1 mV

𝑢𝑟𝑒𝑠𝑒𝑡
𝑠 Maximum hyper-polarized potential 10 mV

𝑢𝑟
𝑠 Rest potential at soma 0

𝑡𝑠
𝑠 Postsynaptic current time constant at the soma 15 ms

𝑡𝑚
𝑠 Postsynaptic potential time constant at the soma 20 ms

𝑡𝑠
𝑑 Postsynaptic current time constant at the dendrite 15 ms

𝑡𝑚
𝑑 Postsynaptic potential time constant at the dendrite 20 ms

𝜖0 Pre-exponential factor 0.0243

𝜅0 Pre-exponential factor 0.162

𝐼𝑒𝑥𝑡 An externally injected current 1 mA

wmax1 Maximum weight for sub-networks-to-hidden layer 0.25

wmax2 Maximum weight for hidden layer-to-output layer 0.75

α Synaptic permanence increment 0.03

β Synaptic permanence decrement 0.03

a0 Input activity 50 Hz

Δtax1 Axonal delays in synaptic chain 100 ms

Δtax2 Axonal delays for the sub-networks-to-hidden layer 20 ms

Δtax3 Axonal delays for the hidden layer-to-output layer 20 ms

 31

3.3. Results

3.3.1. Sequene-prediction capacity

Fig. 3.3 compares the spiking pattern of a fully trained 20-(4×20)-40-20 SPSNN

with that of an untrained SPSNN. We used a sequence of (1, 2, 3, …, 20) (l = 20; m

= 20; S = {1, 2, …, 20}), where each element was sampled every Δte (=100 ms). Fig.

3.3(a) shows the response of the fully trained SPSNN to the training sequence,

identifying the capability of single-step predictions, unlike the untrained SPSNN in

Fig. 3.3(b). The output spikes are delayed for one time-step because of the EPSC

integration rate of the used neuron model. The delay is shown in Fig. 3.3(c), where

the present input element and the output spikes responding to the element on the

previous time step are present on the same time step. The first nth elements in the

training sequence cannot be predicted correctly because the n-SPSNN needs n

previous elements to predict the following element. Nevertheless, this 4-SPSNN can

predict the fourth element based on the first three elements for this specific learning

as in Period 1 shown in Fig. 3.3(a).

To identify the sequence-prediction capacity of the proposed n-SPSNN, we

analyzed the prediction accuracy of an m-(n×m)-h-m SPSNN by varying the number

of hidden neurons (h) and the length of a training sequence. Fig. 3.4(a) shows the

measured single-step prediction accuracy with respect to h for 2-, 4-, and 6-SPSNNs

trained with random sequences (l = 100; m = 20). The data are provided in Table 3.2.

The accuracy tends to increase with the number of hidden neurons until its saturation

with approximately 200 hidden neurons. The accuracy for the 4-, and 6-SPSNNs

reaches approximately 0.99, whereas the maximum accuracy for the 2-SPSNN is

approximately 0.89. This result indicates that the number of hidden neurons is a key

parameter for single-prediction capacity. Considering the negligible difference in

maximum accuracy between 4- and 6-SPSNNs, n is fixed to 4 hereafter. For the 2-

SPSNN, the bAP-boost threshold of a hidden neuron 𝑢d,th2
ℎ was set to 0.5 mV (cf.

a 𝑢d,th2
ℎ of 1 mV in Table 3.1) because two simultaneous spikes from the sub-

networks fail to elevate the dendritic potential of hidden neurons above 1 mV.

 32

The optimal number of hidden neurons offers the maximum accuracy (~1) at

minimal SynOps. Fig. 3.4 reveals the rule of thumb that h (≥2l) leads to an accuracy

of approximately unity; therefore, h (=2l) appears to be the optimal number. This

rule of thumb is underpinned by Fig. 3.4(b), which shows the prediction accuracy of

20-(4×20)-h-20 SPSNNs (h = 200, 500, 1000, and 2000) with respect to sequence

length (l = 100, 200, 500, and 1000; m = 20). The rule that h (≥2l) leads to the

maximum accuracy (~1) holds for the data in Fig. 3.4(b). The data in Fig. 3.4(b) are

provided in Table 3.3.

We trained a 6-SPSNN on the Nottingham dataset (1200 British and American

folk tunes). For each tune, we used its monophonic melody only, which was

discretized as 26 notes according to pitch height. The note on a given time step was

encoded as a one-hot vector and input into the input layer (26 neurons). The time bin

size was set to 100 ms, so that each tune was subject to periodic sampling every Δte

(=100 ms). This preprocessing yielded training sequences (62 ≤ l ≤ 192; m = 26) with

heterogeneous length. The response of the 26 input neurons to a random tune is

shown in Fig. 3.5(a).

To evaluate the sequence-prediction capacity, we trained a 26-(6×26)-h-26

SPSNN on the tunes (randomly sampled from the dataset and preprocessed as

explained) by varying the number of sampled tunes. Fig. 3.5(b) shows the prediction

accuracy of two SPSNNs (h = 1000 and 2000) with the number of sampled tunes.

For a single tune, the accuracy of both cases for one sequence is above 0.98. However,

it decreases with the number of the trained sequences. For 20 sequences, the accuracy

reaches approximately 0.86 for h = 2000, whereas that for h = 1000 is approximately

0.72.

 33

Figure 3.3. Spiking sequence before and after learning. (a) Spiking sequence of a 20-

(4×20)-40-20 SPSNN for output neurons (upper panel) and hidden neurons (lower

panel) in response to an input sequence of (1, 2, 3, …, 20), which is identical to

training data. The spiking sequence of output neurons became associated with the

training sequence in contrast to the untrained SPSNN shown in (b). (c) Spiking

behavior of output neurons in Period 2 in (a), highlighting the capability of single-

step predictions

 34

Figure 3.4. The single-step prediction accuracy. (a) Single-step prediction capability

of a 20-(n×20)-h-20 SPSNN with respect to the number of hidden neurons h for three

different n values (2, 4, and 6). The SPSNN was trained using a random sequence (l

= 100; m = 20). Each accuracy value was evaluated from ten trials; each trial includes

a training period with a different random sequence and subsequent accuracy

evaluation period. (b) Accuracy of a 20-(4×20)-h-20 SPSNN with varying training

sequence length l (m = 20) for different h values.

 35

Figure 3.5. Single-step prediction accuracy on the Nottingham dataset. (a) Spiking

sequence of input neurons in response to a one-hot encoded Nottingham tune. (b)

Prediction-accuracy with the number of learned songs for a 26-(6×26)-h-26 SPSNN

for different h values (h = 1000, and 2000).

 36

Table 3.2. Single-step prediction Accuracy with respect to the number of hidden

neurons h for three different n values (2, 4, and 6).

Sequence length l Network Accuracy

100 20-(2×20)-50-20 0.295 ± 0.0758

100 20-(2×20)-100-20 0.614 ± 0.135

100 20-(2×20)-200-20 0.898 ± 0.0292

100 20-(2×20)-500-20 0.886 ± 0.0307

100 20-(4×20)-50-20 0.324 ± 0.0427

100 20-(4×20)-100-20 0.646 ± 0.0798

100 20-(4×20)-200-20 0.994 ± 0.00728

100 20-(4×20)-500-20 0.998 ± 0.00439

100 20-(6×20)-50-20 0.338 ± 0.0578

100 20-(6×20)-100-20 0.589 ± 0.112

100 20-(6×20)-200-20 0.989 ± 0.0270

100 20-(6×20)-500-20 1

 37

Table 3.3. The single-step prediction accuracy with varying training sequence length

l (m = 20) for different h values.

Sequence length l Network Accuracy

100 20-(4×20)-200-20 0.994 ± 0.00728

100 20-(4×20)-500-20 0.998 ± 0.00439

100 20-(4×20)-1000-20 0.997 ± 0.00503

100 20-(4×20)-2000-20 0.978 ± 0.0143

200 20-(4×20)-200-20 0.576 ± 0.0733

200 20-(4×20)-500-20 0.999 ± 0.00215

200 20-(4×20)-1000-20 0.999 ± 0.00215

200 20-(4×20)-2000-20 0.989 ± 0.00627

500 20-(4×20)-200-20 0.174 ± 0.0184

500 20-(4×20)-500-20 0.441 ± 0.0913

500 20-(4×20)-1000-20 0.987 ± 0.00512

500 20-(4×20)-2000-20 0.995 ± 0.00343

1000 20-(4×20)-200-20 0.0519 ± 0.0168

1000 20-(4×20)-500-20 0.174 ± 0.0368

1000 20-(4×20)-1000-20 0.403 ± 0.0689

1000 20-(4×20)-2000-20 0.972 ± 0.0131

 38

3.3.2. Associative recall (sequence-to-sequence prediction)

The high accuracy of single-step prediction of the n-SPSNN offers the basis for

associative recall (sequence-to-sequence prediction). For associative recall, the n-

SPSNN architecture is modified such that feedback from the output to the input layer

is employed to pass the prediction result on to the input. An advantage is that the

output result (one-hot vector) can be applied to the input layer without additional

encoding. To identify associative recall capability, we repeatedly trained a 20-

(4×20)-40-20 SPSNN without feedback using the sequence (1, 2, 3, …, 20) (l = 20;

m = 20). An associative recall test with the feedback followed every training epoch;

associative recall was triggered by applying the first four elements of the sequence.

Fig. 3.6 shows the progress of associative recall with the repetition of training. The

20-(4×20)-40-20 SPSNN eventually succeeds in recalling the whole sequence after

repeating training four times.

 39

Figure 3.6. Associative recall. Associative recall capability of a 20-(4×20)-40-20

SPSNN after the (a) first, (b) second, (c) third, and (d) fourth training epoch. The

training sequence was (1, 2, 3, …, 20) (l = 20; m = 20; Δte = 100 ms). For each case,

the associative memory was triggered by the initial four elements (1, 2, 3, 4) of the

total sequence.

 40

3.3.3. Robustness of learning and inference to variability in sequence

Considering that real-world sequences include many imperfections, e.g., typo and

noise, sequence-learning hypotheses need to make correct predictions despite the

presence of imperfections. In this regard, the robustness of the n-SPSNN to errors in

input encoding was examined. A 4-SPSNN [20-(4×20)-200-20] was trained using a

random sequence (l = 100; m = 20), and its single-step prediction accuracy was

measured with a test sequence that is identical to the training sequence but with a

few different elements from the training sequence. They were chosen randomly. The

different elements indicate errors in input encoding; their number x defines the error

rate as x/l. We evaluated the average prediction accuracy for a given error rate in the

range 0–0.25 on 20 trials. Fig. 3.7(a) shows a linear decrease in accuracy with error

rate, reaching approximately 0.62 at the maximum error rate (0.25). The results are

compared with the error-tolerance of an LSTM and GRU, which are state-of-the-art

sequence learning hypotheses. The LSTM and GRU used for this comparative study

are elaborated in Appendix 3.5. Similar to the 4-SPSNN, the LSTM and GRU

undergo the degradation of prediction accuracy with error rate. However, their

degradation rates are faster than that of the 4-SPSNN, insomuch as the accuracy for

the LSTM and GRU reaches approximately 0.54 and 0.53, respectively, with an error

rate of 0.25 (Fig. 3.7(a)). This comparison ensures a large tolerance of encoding error

for the n-SPSNN trained with the LbAP algorithm compared to the state-of-the-art

sequence learning hypotheses.

Prediction-robustness to variability in input-encoding delay is the key to the

application to asynchronous neuromorphic hardware. To identify this robustness, a

20-(4×20)-200-20 SPSNN was trained using a sequence (l = 100; m = 20) with

constant Δte (=100 ms), and its single-step prediction accuracy was investigated with

the same sequence but with randomly varying Δte over the sequence. The delay in

input-encoding ∆𝑡e
′ was sampled from a Gaussian distribution function, which is

centered at Δte (=100 ms) with a standard deviation of σ, i.e., ∆𝑡e
′~𝑁(∆𝑡e, 𝜎). The

delay was sampled for every interval over the test sequence. The standard deviation

σ is a measure of the variability in input-encoding delay. The measured prediction

accuracy with the standard deviation is shown in Fig. 3.7(b). The accuracy tends to

 41

decrease with the standard deviation because the difference in input-encoding delay

between the training and test sequences becomes larger with the standard deviation.

Nevertheless, an accuracy of approximately 0.77 is maintained even with a standard

deviation of 25 ms (25% of the center value). All data in Fig. 3.7 are provided in

Table 3.4.

 42

Figure 3.7. Tolerance of the SPSNN to errors in input sequences. (a) Robustness of

single-step prediction for a 20-(4×20)-200-20 SPSNN to variability in elements in

an input sequence (l = 100; m = 20) in comparison with LSTM and GRU. (b)

Degradation of prediction accuracy for the same SPSNN with respect to variability

in input sampling period (Δte).

 43

Table 3.4. Tolerance to errors in input sequences and variability in input sampling

period.

Network

Error rate
Sequence

length l

20-(4×20)-200-20

SPSNN
LSTM GRU

0 100 0.994 ± 0.00728 1 1

0.05 100 0.913 ± 0.0275 0.874 ± 0.0196 0.880 ± 0.0240

0.1 100 0.838 ± 0.0294 0.770 ± 0.0306 0.784 ± 0.0479

0.15 100 0.769 ± 0.0287 0.693 ± 0.0383 0.685 ± 0.0427

0.2 100 0.692 ± 0.0267 0.598 ± 0.0441 0.606 ± 0.0323

0.25 100 0.615 ± 0.0218 0.541 ± 0.0353 0.527 ± 0.0562

s.d. of

Δte (ms)

0 100 0.994 ± 0.00728 - -

5 100 0.967 ± 0.0235 - -

10 100 0.939 ± 0.0307 - -

15 100 0.873 ± 0.0440 - -

20 100 0.818 ± 0.0421 - -

25 100 0.774 ± 0.0605 - -

 44

3.3.4. Learning efficiency

Energy-efficient learning is an important attribute of a learning algorithm

embedded in neuromorphic hardware [5, 12]. In this regard, a high learning rate is

beneficial to energy-efficient learning, reducing the number of operations that

significantly consume power. The SynOps is such an operation, which indicates a

single update on a neuronal membrane potential upon an event. Therefore, the

number of SynOps required for successful learning is a direct measure of energy-

efficiency in learning. This quantity was evaluated for a 20-(4×20)-2000-20 SPSNN

learning sequences of different lengths (20 ≤ l ≤ 1000; m = 20). Success in learning

was defined by prediction accuracy above 0.97, and hence, the iterative training

terminated when an accuracy of 0.97 was reached. The results are plotted in Fig.

3.8(a). The number of SynOps increases with the sequence length because a longer

training sequence needs more ad hoc updates over the whole sequence, which

inevitably increases SynOps.

We compared the required number of SynOps for successful learning with the

required number of multiply-accumulate (MAC) operations for an LSTM and GRU.

As for the SPSNN, both LSTM and GRU were trained using sequences of different

lengths (20 ≤ l ≤ 1000; m = 20), and the training terminated when the single-step

prediction accuracy reached 0.97. Details of the LSTM and GRU are provided in

Appendix 3.5. The evaluation results are co-plotted in Fig. 3.8(a), highlighting the

efficient learning for the SPSNN with approximately two orders of magnitude fewer

energy-consuming operations. The efficiency in learning is attributed to the fast

learning rate facilitated by the LbAP algorithm, which is identified by monitoring

the evolution of prediction accuracy with the number of training iterations (epochs).

As shown in Fig. 3.8(b), a 20-(4×20)-2000-20 SPSNN trained using a random

sequence (l = 1000; m = 20) achieves its maximum accuracy (~0.98) in five training

iterations, while the LSTM and GRU needs approximately two orders of magnitude

more iterations. This comparison indicates the fast learning rate of the LbAP

algorithm. In the SPSNN, hidden neurons compete through lateral inhibition and

work as unique subsequence detectors. This unsupervised learning with winner-

takes-all results in fast learning speed. Moreover, the learning rate is independent of

 45

the network size (here, the number of hidden neurons) and sequence length l as

shown in the comparison with a 20-(4×20)-20-20 SPSNN trained using a random

sequence (l = 10; m = 20) (Fig. 3.8(b)). The smaller network could learn the sequence

with four iterative training steps, identifying a non-scaling learning rate with both

network size and sequence length.

 46

Figure 3.8. Efficiency in learning. (a) Number of SynOps for a 20-(4×20)-2000-20

SPSNN until a prediction accuracy of 0.97 with respect to sequence length (20 ≤ l ≤

1000; m = 20). LSTM and GRU are compared with the SPSNN in terms of the

number MAC operations required to reach the same prediction accuracy (0.97). (b)

Single-step prediction accuracy evolution for a 20-(4×20)-2000-20 SPSNN, LSTM,

and GRU with the number of training iterations. They were trained using random

sequences (l = 1000; m = 20). For comparison, the same data for a 20-(4×20)-20-20

SPSNN trained using a random sequence (l = 10; m = 20) are co-plotted.

 47

3.4. Conclusion

We proposed an SNN architecture suitable for single-step prediction given n

previous elements in a training sequence, referred to as n-SPSNN. The key to the nth

order sequence prediction is the sub-networks of synaptic chains that serve as

working memory. This n-SPSNN architecture can learn sequences of various lengths

using the LbAP algorithm as a unified learning framework. The LbAP algorithm is

a postsynaptic event-driven learning algorithm of locality; each synapse involves a

single local state variable (dendritic potential) so that memory usage is minimal. The

competition between synapses with the same postsynaptic neuron is facilitated by

the LbAP algorithm, which realizes effective weight normalization using local state

variables only. The LbAP algorithm endows the n-SPSNN with the capabilities of

single-step prediction and associative recall.

The sequence prediction robustness to variability in the test sequence element

highlights its high tolerance to errors in input encoding, which is higher than the

state-of-the-art sequence learning hypotheses LSTM and GRU. The n-SPSNN also

offers the sequence prediction robustness to variability in intervals between

neighboring elements, implying high tolerance to random changes in input-encoding

delay. The efficiency in learning is another advantage of the n-SPSNN with the LbAP

algorithm. The learning is completed in a few iterations. The iteration number

necessary for success in learning hardly scales with the network size and sequence

length; therefore, the LbAP algorithm can train large-scale SNNs in an energy- and

time-efficient manner.

Nevertheless, the learning capacity of the n-SPSNN is limited mainly by (i) the

use of one-hot coding for input (extremely sparse coding) and (ii) the limited number

of hidden neurons h. The former limits the number of symbol representations for a

given network setting. Therefore, dense coding is desired to improve the learning

capacity of a given n-SPSNN, which we leave as a future work for the moment.

Considering the latter, the optimal number of hidden neurons h for successful

learning scales with sequence length l such that h ≈ 2l. The number of learnable

sequences with different lengths is also determined by this rule; the entire length of

 48

the concatenated sequences should satisfy this rule. Therefore, the network should

be preset appropriately considering the complexity of the sequences that the n-

SPSNN is trained on.

 49

3.5. Appendix

Appendix I. Multi-compartment neuron model

Multi-compartment neurons were employed in the hidden and output layers in the

n-SPSNN; each neuron is with a soma and multiple dendritic spines. Accordingly,

somatic and dendritic potentials were evaluated separately. The somatic potential of

neuron i (𝑢𝑖
𝑠) was evaluated using the SRM [2] expressed as

 𝑢𝑖
𝑠(𝑡) = 𝜂(𝑡 − 𝑡̂𝑖) + ∑ 𝑤𝑖𝑗𝑗 ∑ 𝜖(𝑡 − 𝑡𝑗

(𝑓)
)𝑓 + ∫ 𝜅(𝑠)𝐼𝑖

𝑒𝑥𝑡(𝑡 − 𝑠)𝑑𝑠
∞

0
, (3.2)

where 𝑡̂𝑖, wij, and 𝑡𝑗
(𝑓)

 denote the last spike time of neuron i, the weight of the

synapse between neurons j and i, and the fth spike time of neuron j, respectively. A

refractory period and leaky integration of postsynaptic current are realized by the

kernels 𝜂 and 𝜖 , respectively. An externally injected current into neuron i for

supervised learning is denoted by 𝐼𝑖
𝑒𝑥𝑡.

 𝜂(𝑡) = −(𝑢𝑟𝑒𝑠𝑒𝑡
s − 𝑢𝑟

𝑠)exp (−
𝑡

𝑡𝑚
𝑠)Θ(𝑡) (3.3)

 𝜖(𝑡) = 𝜖0 [exp (−
𝑡

𝑡𝑚
𝑠) − exp (−

𝑡

𝑡𝑠
𝑠)]Θ(𝑡), (3.4)

 𝜅(𝑡) = 𝜅0 exp (−
𝑡

𝑡𝑚
𝑠)Θ(𝑡), (3.5)

where 𝑢𝑟𝑒𝑠𝑒𝑡
𝑠 and 𝑢𝑟

𝑠 are the most hyperpolarized membrane potential

(immediately after spiking) and the resting potential at the soma, respectively. At the

soma, the postsynaptic current and potential decay exponentially with time constants

of 𝑡𝑠
𝑠 and 𝑡𝑚

𝑠 , respectively. The pre-exponential factors 𝜖0 and 𝜅0 are positive

constants. The somatic membrane potential exceeding a threshold for spiking fires a

spike, and the potential is evaluated on the next time step with the updated 𝑡̂𝑖.

 50

The SRM applied to the dendritic potential evaluation. However, because no

dendritic spikes are allowed, the first term on the right-hand side of (3.2) is ruled out.

Furthermore, because supervision current pulses are applied to the soma only, the

last term on the right-hand side of (3.2) is excluded. The same kernel in (3.4) was

used but with the parameters 𝑡𝑠
𝑑 and 𝑡𝑚

𝑑 instead of 𝑡𝑠
𝑠 and 𝑡𝑚

𝑠 . The replacement

considers different responses of postsynaptic current and membrane potential to

presynaptic spikes for a soma and dendritic spine, based on physiological

observations [16, 31]. The neuronal parameters used in this study are listed in Table

4.1.

Appendix II. Training RNN with LSTM and GRU layer

For the LSTM and GRU experiment, we trained a two-layer neural network with

a recurrent unit. The first layer is the LSTM or GRU layer with 40 units and the

second layer is a dense layer with 20 output neurons. Training employed categorical

cross-entropy as a loss function and the Adam optimizer with a learning rate of 0.001.

To realize nth order prediction, n-long subsequences were taken as inputs and

encoded as an m-long real-valued vector (0–1) using a real-valued dense distributed

representation. The output was an m-long vector that indicates a predicted element

given a subsequence including n preceding elements. During training, a desired

output was encoded as a one-hot vector with which the weights were updated ad hoc,

i.e., online learning.

 51

3.6. Bibliography

[1] P. Dayan and L. F. Abbott. London: The MIT Press, 2001.

[2] W. Gerstner and W. M. Kistler. Cambridge University Press, 2002.

[3] D. S. Jeong, Journal of Applied Physics, vol. 124, no. 15, p. 152002, 2018.

[4] M. Pfeiffer and T. Pfeil, Frontiers in neuroscience, vol. 12, p. 774, 2018.

[5] E. O. Neftci, iScience, vol. 5, pp. 52-68, 2018.

[6] M. Davies et al., IEEE Micro, vol. 38, no. 1, pp. 82-99, 2018.

[7] P. A. Merolla et al., Science, vol. 345, no. 6197, pp. 668-673, August 8, 2014.

[8] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida,

Neural Netw., vol. 111, pp. 47-63, 2019.

[9] P. O'Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, Front.

Neurosci., Original Research vol. 7, no. 178, 2013.

[10] H. Mostafa, IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7, pp. 3227-

3235, 2018.

[11] S. K. Esser et al., Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 41, pp. 11441-

11446, 2016.

[12] V. Kornijcuk and D. S. Jeong, Advanced Intelligent Systems, 2019.

[13] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, Front. Neurosci.,

Original Research vol. 11, p. 324, 2017-June-21 2017.

[14] S. Hochreiter and J. Schmidhuber, Neural computation, vol. 9, no. 8, pp.

1735-1780, 1997.

[15] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, arXiv preprint

arXiv:1412.3555, 2014.

 52

[16] P. J. Sjöström and M. Häusser, Neuron, vol. 51, no. 2, pp. 227-238, 2006.

[17] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, Proc. IEEE, vol. 102,

no. 5, pp. 652-665, 2014.

[18] N. Q. S. Moradi, F. Stefanini, G. Indiveri, IEEE Trans. Biomed. Circuits Syst.,

vol. 12, pp. 106-122, 2018.

[19] P. J. Sjöström, G. G. Turrigiano, and S. B. Nelson, Neuron, vol. 32, no. 6, pp.

1149-1164, 2001.

[20] J. Lisman, Proc. Natl. Acad. Sci., vol. 86, no. 23, pp. 9574-9578, December

1, 1989.

[21] C. Hansel, A. Artola, and W. Singer, European Journal of Neuroscience, vol.

9, no. 11, pp. 2309-2322, 1997.

[22] K. Cho, J. P. Aggleton, M. W. Brown, and Z. I. Bashir, J. Physiol., vol. 532,

no. Pt 2, pp. 459-466, 2001.

[23] S. Song, K. D. Miller, and L. F. Abbott, Nat. Neurosci., 10.1038/78829 vol.

3, no. 9, pp. 919-926, 2000.

[24] R. C. Froemke and Y. Dan, Nature, 10.1038/416433a vol. 416, no. 6879, pp.

433-438, 2002.

[25] E. M. Izhikevich and N. S. Desai, Neural Comput., vol. 15, no. 7, pp. 1511-

1523, 2003.

[26] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs,

Front. Neurosci., Original Research vol. 7, no. 272, 2014.

[27] E. Bienenstock, L. Cooper, and P. Munro, J. Neurosci., vol. 2, no. 1, pp. 32-

48, 1982.

[28] L. N. Cooper and M. F. Bear, Nat. Rev. Neurosci., 10.1038/nrn3353 vol. 13,

no. 11, pp. 798-810, 2012.

 53

[29] I. R. Fiete, W. Senn, C. Z. H. Wang, and R. H. R. Hahnloser, Neuron, vol. 65,

no. 4, pp. 563-576, 2010.

[30] E. Oja, Journal of Mathematical Biology, vol. 15, no. 3, pp. 267-273, 1982.

[31] J. C. Magee, Nat Rev Neurosci, 10.1038/35044552 vol. 1, no. 3, pp. 181-190,

2000.

 54

4. eWB: Event-based weight binarization algorithm

for spiking neural networks

4.1. Introduction

 There has been growing interest in fast, efficient, and compact neuromorphic

computing for high-performance processing of large amounts of data for on-chip

learning. Spiking neural networks (SNNs) are a promising model for energy-efficient

neuromorphic computing [1-3]. Their energy efficiency is mainly due to the sparse

event-based asynchronous data processing and learning weights, as opposed to the

case for deep neural networks (DNNs), which utilize error-backpropagation

algorithms (BP) for layer-wise synchronous weight updates in dedicated learning

phases [1]. Further efficiency improvements are gained when SNNs are implemented

on dedicated neuromorphic hardware [4, 5]. To date, several event-based learning

algorithms have been proposed, including STDP [6-8], eRBP [9], sequence-

predicting SNN [10], ReSuMe [11], tempotron [12], and Spikeprop [13]. However,

because most of these event-based algorithms use multi-bit weights, their hardware

implementation requires large on-chip memory capacity and intensive computing

power, which degrades their energy efficiency. Weight quantization has been

considered to address this issue, for example, in recent STDP-based algorithms with

quantized weights [7, 8, 14-16]. However, achieving a competitive classification

accuracy commonly requires (i) a large number of trainable parameters, especially

those related to hidden neurons, (ii) an inhomogeneous learning framework to

consider BP and STDP separately, and (iii) multi-bit weights for output evaluation.

Learning binary weights is an extreme case of weight quantization. The use of 1-

bit weights significantly reduces on-chip memory usage considering the O(n2)

memory complexity of synapses. Additionally, the leaky integrate-and-fire (LIF)

model and its variations involve the multiplication of weights and low-pass filtered

spikes [17]. Thus, learning binary weights avoids multiplication and significantly

reduces power consumption and processing time.

To this end, we propose an event-driven weight binarization (eWB) algorithm to

 55

learn binary weights (-1, 1) in an event-based manner. The eWB algorithm uses the

Lagrange multiplier method (LMM) based on a Lagrange function that combines a

conventional loss function and constraints on binary weights. Each synapse is given

a binary weight constraint function and a Lagrange multiplier. The binarization of

each weight is independent of the variables in the other synapses. This ensures the

locality of eWB. Because a conventional loss function is also used, eWB is not a

standalone learning algorithm. Instead, it requires an additional event-based

supervised learning algorithm based on a loss function such as eRBP. As a proof of

concept, we combine eWB and eRBP (eWB-eRBP) to train fully connected

multilayer SNNs on MNIST. The results demonstrate successful weight binarization

at the cost of an accuracy reduction by approximately 1.85%.

4.2. eWB algorithm

4.2.1. Lagrange multiplier method

LMM is a strategy to solve general nonlinear nonlinear programming problems

(NLPs) [19]. An NLP is an optimization problem whose optimal solution is

determined by constraints in conjunction with a nonlinear objective function. In the

minimization problem, a general continuous equality-constrained NLP can be stated

as

minimize 𝑙(𝒘); 𝒘 = [𝑤1, 𝑤2,⋯ ,𝑤𝑛]

subject to 𝒈(𝒘) = 0; 𝒈 = [𝑔1, 𝑔2,⋯ , 𝑔𝑚].

The LMM calculates the local maxima or minima of the objective function within

the given equality constraints. The Lagrange function L for the objective function l

and constraints g is expressed as

 𝐿(𝒘, 𝝀) = 𝑙(𝒘) + 𝝀 ∙ 𝒈(𝒘), (4.1)

 56

where 𝝀(= [𝝀𝟏, 𝝀𝟐,⋯ , 𝝀𝒎]) is a vector of Lagrange multipliers with one

multiplier for each of the m constraints. If w* is a local extremum point of the

objective function l(w) subject to g(w) = 0, the following equalities hold:

 {
∇𝒘𝑙(𝒘) + 𝝀 ∙ ∇𝒘𝒈(𝒘) = 𝟎 at 𝒘

∗

𝒈(𝒘∗) = 𝟎
 (4.2)

This optimal solution w* can be calculated from the gradient of Eq. 4.1:

𝜵𝒘,𝝀𝑳(𝒘, 𝝀) = 𝜵𝒘[𝑙(𝒘) + 𝝀 ∙ 𝒈(𝒘)] + 𝜵𝝀[𝑙(𝒘) + 𝝀 ∙ 𝒈(𝒘)].

The condition ∇𝒘,𝝀𝐿(𝒘, 𝝀) = 0 is equivalent to the following conditions:

{
𝜵𝒘[𝑙(𝒘) + 𝝀 ∙ 𝒈(𝒘)] = 𝜵𝒘𝑙(𝒘) + 𝝀 ∙ 𝜵𝒘𝒈(𝒘) = 𝟎

𝜵𝝀[𝑙(𝒘) + 𝝀 ∙ 𝒈(𝒘)] = 𝒈(𝒘) = 𝟎
,

which are identical to the conditions in Eq. 4.2. Therefore, the optimal point w*

leads to

 ∇𝒘,𝝀𝐿(𝒘, 𝝀) = 0. (4.3)

The solution to Eq. 4.3 can be calculated using a basic differential multiplier

method [20], in which the optimal w and λ are calculated using a gradient descent

and ascent method, respectively, i.e.,

 {
𝒘𝑘+1 = 𝒘𝑘 − 𝜂𝑤∇𝐿𝒘(𝒘

𝑘, 𝝀𝑘)

𝝀𝑘+1 = 𝝀𝑘 + 𝜂𝜆𝒈(𝒘
𝑘)

 (4.4)

where 𝜂w and 𝜂λ are learning rates. Note that this method is compatible with the

BP in DNNs if the model parameters w are updated using a gradient descent method

but with the Lagrange function L rather than the loss function l taken as the objective

function.

 57

4.2.2. eWB algorithm

The eWB algorithm is based on LMM with binary weight constraints. The key

feature of this algorithm is that the configuration of binary weights over the network

is subject to optimization, unlike common weight binarization methods that force the

weights to assume binary values using particular binarization functions. Because

each synapse is given a binary weight constraint and a Lagrange multiplier, the total

numbers of constraints and Lagrange multipliers are equal to the number of synapses

in the SNNs. Here, we select the binary weight constraint g for a given synapse as

 𝑔𝑖(𝑤𝑖, 𝑡) = (1 − 𝑤𝑖
2)𝑠𝑖(𝑡), (4.5)

which is zero if wi = ±1. We introduce the spike function si, which yields one

when a presynaptic (or postsynaptic) spike occurs and zero otherwise, and hence

enables event-based asymptotic binarization. The loss function l(w,t) should be

chosen to enable event-based weight updates and satisfy

𝜕𝑙

𝜕𝑤𝑖
= ℎ(𝒘, 𝑡)𝑠𝑖(𝑡)

where h is the product of the backpropagating error and the derivative of

postsynaptic output. The Lagrange function L is given by

𝐿(𝒘, 𝝀, 𝑡) = 𝑙(𝒘, 𝑡) +∑𝜆𝑖(1 − 𝑤𝑖
2)

𝑖

𝑠𝑖(𝑡)

Consequently, the weight and Lagrange multiplier are updated upon a presynaptic

(or postsynaptic) spike of synapse wi conforming to Eq. 4.4:

{

 𝑤𝑖 ← 𝑤𝑖 − 𝜂𝑤
𝜕𝐿

𝜕𝑤𝑖

𝜆𝑖 ← 𝜆𝑖 + 𝜂𝜆
𝜕𝐿

𝜕𝜆𝑖

 (4.6)

These real-valued weights and Lagrange multipliers are stored in the memory for

successive event-based updates. However, during training with eWB, both signal

 58

forward propagation and error backpropagation use the forced-to-be-binary weights

wb:

 𝑤𝑖
b = Sign(𝑤𝑖) = {

+1 𝑖𝑓 𝑤𝑖 ≥ 0
−1 otherwise

 (4.7)

This avoids the multiplication of real-valued weights and low-pass filtered spikes

in the LIF model, thereby significantly reducing the computational complexity and,

thus, the power consumption.

4.2.3. eWB-eRBP algorithm

As a proof of concept, we chose eRBP for combination with eWB (eWB-eRBP).

As shown in Fig. 4.1, eRBP is a three-factor rule based on (i) presynaptic events, (ii)

approximated gradients of postsynaptic activation, and (iii) error signals through

random feedback channels [9]. The eRBP algorithm is elaborated in the Appendix

4.6. Accordingly, the loss function l is considered to be the mean-squared difference

between the target and actual outputs. The eRBP algorithm defines the derivative of

the loss function with respect to the weight wij between the presynaptic neuron j and

postsynaptic neuron i as

∂𝑙

∂𝑤𝑖𝑗
≝ 𝑇𝑖(𝑡)Θ(𝐼𝑖)𝑠𝑗

𝑝𝑟𝑒
(𝑡), (4.8)

where Ti is a random backpropagation error for the weight update. The gradient of

the postsynaptic activation is approximated by a boxcar function Θ with two

transition points (bmin and bmax), which is a function of the synaptic current Ii:

 Θ(𝐼𝑖) = {
1 if 𝑏𝑚𝑖𝑛 < 𝐼𝑖 < 𝑏𝑚𝑎𝑥
0 otherwise

. (4.9)

The spike train of the presynaptic neuron j is denoted by 𝑠𝑗
𝑝𝑟𝑒

. This term allows

weight update upon the occurrence of presynaptic events only; therefore, eRBP is a

presynaptic event-based learning algorithm. We tailor the binary weight constraint

function g to eRBP such that

 59

 𝑔(𝑤𝑖𝑗) = (1 − 𝑤𝑖𝑗
2)Θ(𝐼𝑖)𝑠𝑗

𝑝𝑟𝑒
(𝑡). (4.10)

The modification can be seen by comparing with Eq. 4.5. For compatibility with

eRBP, eWB is also assumed to be driven by presynaptic events. Additionally, we

incorporate the approximated postsynaptic activation gradient Θ into the constraint

function. Θ is included in the constraint function to synchronize the weight update

for reducing the constraint function g with the update for reducing the loss function

l. Otherwise, it may be possible that only the constraint g is reduced during the

weight update, irrespective of the loss function l, especially when Θ = 0.

The derivative of the boxcar function Θ in Eq. (9) is zero except for the two

transition points (bmin and bmax), which are singular points. Thus, the boxcar function

is non-differentiable. As a workaround, we assume that the synaptic current Ii avoids

these transition points when presynaptic events occur, which is highly probable

because the probability of the current being equal to either of the two particular

values is extremely low. Therefore, the following equation holds:

𝜕𝑔

𝜕𝑤𝑖𝑗
= −2𝑤𝑖𝑗Θ(𝐼𝑖)𝑠𝑗

𝑝𝑟𝑒(𝑡) +

(1 − 𝑤𝑖𝑗
2)𝑠𝑗

𝑝𝑟𝑒(𝑡)
𝜕Θ(𝐼𝑖)

𝜕𝐼𝑖

𝜕𝐼𝑖

𝜕𝑤𝑖𝑗
≈ −2𝑤𝑖𝑗Θ(𝐼𝑖)𝑠𝑗

𝑝𝑟𝑒(𝑡).
(4.11)

Using Eqs. 4.6, 4.8, and 4.11, we evaluate the updates on the weight wij and the

Lagrange multiplier λij:

{

 ∆𝑤𝑖𝑗 = −𝜂𝑤

𝜕𝐿

𝜕𝑤𝑖𝑗
= −𝜂𝑤 (

𝜕𝑙

𝜕𝑤𝑖𝑗
+ 𝜆𝑖𝑗

𝜕𝑔

𝜕𝑤𝑖𝑗
)

 = −𝜂𝑤(𝑇𝑖(𝑡) − 2𝜆𝑖𝑗𝑤𝑖𝑗)Θ(𝐼𝑖)𝑠𝑗
𝑝𝑟𝑒(𝑡)

∆𝜆𝑖𝑗 = 𝜂𝜆
𝜕𝐿

𝜕𝜆𝑖𝑗
= 𝜂𝜆𝑔 = 𝜂𝜆(1 − 𝑤𝑖𝑗

2)Θ(𝐼𝑖)𝑠𝑗
𝑝𝑟𝑒(𝑡)

 (4.12)

As highlighted in the previous section, the weights for the forward paths (to

calculate current input Ii) and backward paths (to calculate Ti) are forcibly binarized

(Eq. 4.7) to reduce the hardware computing workload.

 60

The weights are initialized using the Xavier uniform initialization [21], whereas

the Lagrange multipliers are initialized to zero. We confine each weight to between

-1 and 1 by projecting w to -1 (1) when the updated weight is smaller than -1 (larger

than 1). This weight clipping prevents unlimited weight growth. The eWB-eRBP

algorithm is given in pseudocode in Algorithm 1.

Algorithm 1 eWB-eRBP algorithm.

Initialize w, 𝝀

while True do

 𝒘𝑏 ← Binarize(𝒘)

for k ∈ {presynaptic event indices 𝒔𝑝𝑟𝑒} do

 if 𝑏min < 𝐼 < 𝑏max then

 𝒘 ← Clip{𝒘− 𝜂𝑤∇𝒘𝐿,−1, 1}

 𝝀 ← 𝝀 + 𝜂𝜆∇𝝀𝐿

 end if

end for

return 𝒘𝐛

 61

Figure 4.1. SNN architecture for eRBP. The error-coding layer (E) consists of two

error-coding neurons for each label dimension that encode false positive and

negative errors between labels (L) and predictions (P). During training, each of the

hidden (in H1 and H2) and prediction (in P) neurons receives random feedback from

the error neurons with fixed random weights (dashed arrows). The input layer is

indicated by I.

 62

4.2.4. Non-optimal weight binarization algorithm

The defining feature of eWB is the optimization of the binary weight distribution

over the SNN. To highlight the performance of eWB, we compare eWB-eRBP with

eRBP in conjunction with forced-to-be-binary weights conforming to Eq. 4.7,

referred to as fWB-eRBP. Note that fWB stands for forced weight binarization. In

fWB-eRBP, the binary weight distribution is non-optimal, and the real-valued

weights are optimized using the loss function l only. In eWB-eRBP, the real-valued

weights are used for weight update only, and the signal forward propagation and

error backpropagation use the binarized weights given by Eq. 4.7 instead. The fWB-

eRBP algorithm is given in pseudocode in Algorithm 2.

Algorithm 2 fWB-eRBP algorithm

Initialize w

while True do

 𝒘𝑏 ← Binarize(𝒘)

for k ∈ {presynaptic spike indices 𝒔𝑝𝑟𝑒} do

 if 𝑏min < 𝐼 < 𝑏max then

 𝒘 ← Clip{𝒘− 𝜂1∇𝒘𝑓,−1, 1}

 end if

end for

return 𝒘𝐛

4.3. Results

We trained three types of fully connected SNNs (784-h-h-10; h = 200, 500, and

1000) on MNIST. One training epoch consisted of 60,000 full training data that were

selected randomly and input into the SNN. The intensity of each pixel in each hand-

written digit image was encoded as the firing rate of input spikes (10–265 Hz) in

proportion to the intensity. Note that even blank pixels were encoded at 10 Hz to

serve as low-frequency background noise. Each image was shown to the SNN for

200 ms. To avoid interference from the previous training image, all neuronal

 63

variables were reset to zero before the onset of the current training image. The

classification accuracy was evaluated once every 500 training data using the 10,000

test data. The predicted output was identified by counting the number of spikes from

each output neuron for 200 ms. The parameters used are listed in Table 4.1.

4.3.1. Classification accuracy

We used the three aforementioned algorithms (eRBP, eWB-eRBP, and fWB-eRBP)

to train the three SNNs (784-h-h-10; h = 200, 500, and 1000). The final classification

accuracy for each case was measured after the 25th training epoch (Table 4.2). For

all three algorithms, the 784-1000-1000-10 SNN achieved the best accuracy. The

accuracy evolution of this SNN for each algorithm is shown in Fig. 4.2. It is noted

that weight binarization using either algorithm results in the loss of classification

accuracy. Nevertheless, eWB-eRBP outperforms fWB-eRBP in terms of the loss for

all SNNs. For example, for 784-1000-1000-10, the losses for eWB-eRBP and fWB-

eRBP are 1.85% and 2.43%, respectively. This highlights the importance of optimal

weight binarization for inference. Fig. 4.2 also shows that the fluctuations in

accuracy over the inference period for eWB-eRBP are negligible compared with

those for fWB-eRBP. This stability results from eWB asymptotically driving the

real-valued weights toward the binary weights during training. Thus, the forced-to-

be-binary weights conforming to Eq. 4.7 that are used for inference negligibly alter

the accuracy over successive inference periods, particularly when the weights are

close to binary values.

 64

Figure 4.2. Classification accuracies of 784-1000-1000-10 SNNs on MNIST that

were trained using eRBP, fWB-eRBP, and eWB-eRBP.

 65

Table 4.1. Parameters for simulations.

Symbol Explanation Value

Nd Number of data neurons 784

Nh Number of hidden neurons 200,500,1000

Nl Number of label neurons 10

NE+ Number of positive error neurons 10

NE- Number of negative error neurons 10

Np Number of prediction neurons 10

τrefr Refractory period 4 ms

τsyn Synaptic time constant 4 ms

gV Leak constant state V 1 nS

gU Leak constant state U 5 nS

C Membrane capacitance 1 pF

Vth Threshold for spikes 1.1 V

wE Fixed weight 1 nA

bmin, bmax Boxcar function constants -25, 25 nA

𝜂1 Learning rate 2e-4

𝜂2 Lagrange multiplier step-size parameter 2e-7

 66

Table 4.2. Classification accuracy on the MNIST dataset for eRBP, eWB-eRBP, and

fWB-eRBP after 25 epochs.

 Classification accuracy (%)

Network eRBP eWB-eRBP fWB-eRBP

784-200-200-10 96.32 93.81 93.59

784-500-500-10 96.92 95.05 94.50

784-1000-1000-10 97.20 95.35 94.77

 67

4.3.2. Weight binarization

To evaluate the degree of weight binarization during training, we introduce a

constraint failure score (CFS) for a real-valued weight matrix 𝒘 ∈ ℝ𝑁×𝑀 as

follows:

CFS = 1 −
1

𝑁𝑀
∑ ∑ 𝑤𝑖𝑗

2
𝑀

𝑗=1

𝑁

𝑖=1

Therefore, when all weights are binarized, the CFS equals zero. We monitored the

change in CFS over the training epoch (using eWB-eRBP or fWB-eRBP) for the

784-1000-1000-10 SNN. There are three weight matrices: w(hi) (between the first

hidden layer and the input layer), w(hh) (between the second and first hidden layers),

and w(oh) (between the output layer and the second hidden layer). The changes in CFS

for these matrices are shown in Figs. 4.3(a), (b), and (c), respectively. The CFS for

eWB-eRBP asymptotically decreases to zero, ensuring successful weight

binarization. For eWB-eRBP, the distributions of the trained real-valued weights in

the weight matrices w(hi), w(hh), and w(oh) are plotted in Figs. 4.3(d), (e), and (f),

respectively. These distributions are compared with the distributions of the initial

weights. Considering a weight w (|w| > 0.9) to be fully binarized, the proportions of

such fully binarized weights are 84.7%, 53.9%, and 72.9% in w(hi), w(hh), and w(oh),

respectively. The main cause of imperfect binarization is discussed in the following

section. In contrast, the weight distribution for fWB-eRBP is rather diffusive over

the entire weight range [Figs. 4.3(g)–(i)]. Consequently, the proportions of fully

binarized weights after training are 30.0%, 27.1%, and 18.0% for w(hi), w(hh), and w(oh),

respectively.

 68

Figure 4.3. Weight distribution of eWB-eRBP and fWB-eRBP for w(hi) (between the

first hidden layer and input layer), w(hh) (between the second and first hidden layers),

and w(oh) (between the output layer and the second hidden layer). (a)–(c) Changes in

CFS over epoch for eWB-eRBP and fWB-eRBP. The weight distribution of the initial

and trained real-valued weights for (d)–(f) eWB-eRBP and (g)–(i) fWB-eRBP.

 69

4.3.3. Computational complexity

Although the eWB algorithm is proposed for neuromorphic processors, for the

moment, neuromorphic processors that serve as platforms for algorithm studies with

high degrees of freedom are not available at hand. Instead, we used a GPU

workstation (CPU: Intel Xeon Silver 4110 2.10GHz, GPU: RTX 2080 Ti). The

algorithm was implemented in Python. Because eWB is not a standalone learning

algorithm, we measured the time complexity of eWB from the difference in time

complexity between RBP and eWB-eRBP. The eRBP and eWB-eRBP algorithms

applied to a 784-500-500-10 SNN on MNIST for 25 learning epochs, yielding a wall-

clock time of 4.99E5 s and 6.27E5 s, respectively (Table 4.3). The additional wall-

clock to eRBP (1.28E5 s) arose from eWB. Additionally, we measured the space

complexity for eRBP and eWB-eRBP, 366.0 and 368.0 MB, respectively. The

MNIST dataset occupies 360.0 MB, so that eRBP and eWB-eRBP occupy 6.0 and

8.0 MB, respectively.

Akin to multiply-accumulate operations (MACs) for deep learning implemented

in general-purpose hardware, synaptic operations (SynOps) in neuromorphic

hardware are known to consume considerable power, so that the number of SynOps

can be a relative measure of energy-efficiency for learning. We evaluated the number

of SynOps required for training a 784-500-500-10 SNN on MNIST using eWB-eRBP.

The SNN was trained for 25 epochs in aggregate. Fig. 4.4 shows the evaluated

number of SynOps and classification accuracy for each learning epoch.

For a comparison with binarized neural network (BNN) [18], we measured the

number of MACs required for training a 784-500-500-10 BNN on MNIST. Each

MNIST image was pre-binarized to ±1 using the sign function. We used Batch

Normalization with a minibatch size of 100. The square hinge loss was minimized

using Adam optimizer. We employed an exponentially decaying global learning rate

and Glorot initialization. Dropout layers were deployed to regularize the BNN. The

evaluation results are co-plotted in Fig. 4.4, indicating that both networks require

similar same numbers of operations to reach an accuracy approximately 0.93.

 70

The comparison indicates similar operational complexity for both cases. Yet,

power-efficiency for eWB-eRBP likely outperforms BNN when implemented in

neuromorphic hardware. Power-efficiency is the defining feature of neuromorphic

hardware. For instance, Loihi (digital neuromorphic processor) [22] highlights high

power-efficiency, approximately 300 times that of graphics processing units [23].

Thus, we expect a two orders of magnitude increase in power-efficiency when eWB-

eRBP is embedded in neuromorphic hardware.

 71

Figure 4.4. Efficiency in learning. Number of SynOps for a 784-500-500-10 SNN

with eWB-eRBP algorithm. BNN (784-500-500-10 network) is compared with the

eWB-eRBP in terms of the number MACs required for reaching a given accuracy

for the MNIST learning task.

 72

Table 4.3. Time and space complexity on the MNIST dataset for 784-500-500-10

eRBP and eWB-eRBP after 25 epochs.

 eRBP eWB-eRBP

Accuracy 96.92 95.05

Wall-clock time (s) 4.99E5 6.27E5

Memory usage (MB) 366.0 368.0

 73

4.4. Discussion

Generally, event-based learning algorithms update a weight only if a presynaptic

or postsynaptic event (local to the synapse) occurs, unlike BP, which updates all

weights layer-wise. Specifically, eWB-eRBP addresses only the synapses that satisfy

the two conditions of (i) presence of presynaptic spike, and (ii) non-zero boxcar

function of the postsynaptic activation, as described in Eq. (12). During training,

several synapses were inactive (and their presynaptic neurons quiescent), and thus,

they maintained their initial weights until the end of training. The high proportion of

fully binarized weights in w(hi) (84.7%) is due to the blank pixels being encoded at

a 10-Hz spike rate rather than being left inactive.

Table 4.4 presents a comparison of the performance of eWB-eRBP with that of

relevant works using limited-precision weights (≤ 8-bit). For a fair comparison, we

chose event-based algorithms applied to fully connected SNNs. Notably, most of

them use higher precision than 1-bit. Nevertheless, the classification accuracy is

lower than or only slightly better than that of our work. This highlights the

performance of eWB.

The works by Yousefzadeh et al. [7] and Srinivasan and Roy [8] partly use 1-bit

weights, but the usage is limited to only the weights between the input and hidden

layers. The weights between the hidden and output layers are of higher precision to

minimize the classification accuracy loss. Therefore, eWB is the first event-driven

weight binarization algorithm with locality that ensures high performance.

The eWB-eRBP algorithm is an example to demonstrate the compatibility of eWB

with event-based learning algorithms. In principle, eWB can also be combined with

other event-based learning algorithms with appropriate modifications and can serve

as a common weight binarization algorithm for various event-based learning

algorithms. In this regard, attention should be paid to the performance reduction

resulting from optimal weight binarization instead of the absolute performance when

evaluating the performance of eWB. This is because the absolute performance is

mainly determined by the learning algorithm combined with eWB.

 74

Although we have applied LMM to weight binarization in this study, any other

constraints can be considered as long as they are mathematically well-defined. For

instance, ternary weight (0, ±1; 2-bit precision) constraints with eRBP can be

formulated as 𝑔(𝑤𝑖𝑗) = 𝑤𝑖𝑗(1 − 𝑤𝑖𝑗
2)Θ(𝐼𝑖)𝑠𝑗

𝑝𝑟𝑒
(𝑡) instead of Eq. 4.10. This

constraint function outputs zero when wij = 0 or wij =±1, enabling the algorithm to

learn optimal ternary weights. Further, 3-bit weight (0, ±1, ±2, ±3) constraints can

be considered using the constraint function 𝑔(𝑤𝑖𝑗) = 𝑤𝑖𝑗(1 − 𝑤𝑖𝑗
2)(4 − 𝑤𝑖𝑗

2)(9 −

𝑤𝑖𝑗
2)Θ(𝐼𝑖)𝑠𝑗

𝑝𝑟𝑒
(𝑡). Therefore, the proposed LMM-based learning algorithm forms the

foundation for event-based learning with various constraints.

The use of limited-precision weights improves not only memory efficiency but

also energy efficiency. Energy efficiency is a key attribute of neuromorphic

computing and is a defining motivation for event-based learning algorithms as

alternatives to layer-wise synchronous learning such as BP. In digital neuromorphic

hardware, a lower precision of the data format reduces the energy consumed in

arithmetic operations. Horowitz [24] identified a 30-fold (18.5-fold) improvement in

the energy efficiency by replacing 32-bit floating-point data with 8-bit fixed-point

data in addition (multiplication) operations. The use of binary weights completely

avoids the multiplication of weights and low-pass filtered spikes, which are

otherwise needed for every synaptic operation. Given that synaptic operations

impose the most significant workload on neuromorphic hardware, as is the case for

multiply-accumulate operations in DNNs [16], SNNs with binary weights can

achieve a large improvement in energy efficiency. Nevertheless, the degree of

improvement depends on neuromorphic hardware design, which is not specified in

this study.

 75

Table 4.4. Comparison of reported classification accuracy of quantized fully

connected SNNs on the MNIST dataset.

Learning algorithm Structure Weight precision Accuracy (%)

CD + BP [25] 784-500-500-10 4-bit 91.35

STDP + eCD [16] 784-500-10 4-bit 94.80

eRBP [9] 784-200-200-10 8-bit 96.50

STDP + BP [7] 784-6400-10 1-bit + 24-bit 95.70

STDP + BP [8] 784-6400-10 1-bit + 32-bit 92.14

eWB-eRBP

(This work)
784-1000-1000-10 1-bit 95.35

 76

4.5. Conclusion

In this study, we proposed an eWB algorithm that optimally binarizes weights in

an SNN based on local events. The optimal configuration of binary weights is

calculated using the LMM with binary weight constraints. Given that eWB addresses

local data only to update weights in an event-based manner, it is inherently

compatible with multicore neuromorphic hardware. When combined with an event-

based learning algorithm using an appropriate loss function, eWB enables the

network to learn binary weights that minimize the loss function. This was

demonstrated using eWB-eRBP (eWB combined with eRBP), which was applied to

train fully connected SNNs on MNIST. The consequent classification accuracy is

95.35%, whereas eRBP with 32-bit weights yielded an accuracy of 97.20%. The

results indicate an accuracy reduction of 1.85% as the cost of optimal weight

binarization. To the best of our knowledge, eWB is the first method to learn binary

weights based on events; therefore, a comparison with directly related methods is

unavailable at the moment. Nevertheless, to highlight the importance of optimal

binary weights in performance, eWB-eRBP was compared with fWB-eRBP (with

non-optimal binary weights that were forcibly binarized) and was shown to yield

better performance and more stable performance evolution over the training epoch

than fWB-eRBP.

Finally, eWB is scalable to any event-based learning algorithm with appropriate

modifications, thus serving as a common weight binarization method. The LMM is

also scalable to any weight constraint as long as the constraint functions are

mathematically well-defined. The eWB algorithm is an example that demonstrates

this scalability.

4.6. Appendix

The eRBP algorithm is a presynaptic event-driven local learning rule that uses

direct feedback alignment (Fig. 4.1). In eRBP, the weight update with a mean-

squared loss function is formulated as

 77

 ∆𝑤𝑖𝑗(𝑡) = −𝑇𝑖(𝑡)Θ(𝐼𝑖)𝑠𝑗
𝑝𝑟𝑒
(𝑡), (4.13)

which realizes a three-factor rule with (i) presynaptic spike (sj
pre), (ii) postsynaptic

signal Θ, corresponding to the derivative of the postsynaptic activation, and (iii) error

signal Ti, which backpropagates through random feedback channels.

(i) The presynaptic spikes are the output of neuron i, which is modeled using an

LIF model that includes two defining variables, namely, the synaptic current Ii and

subthreshold somatic membrane potential Vi:

{

 𝜏𝑠𝑦𝑛

𝑑

𝑑𝑡
𝐼𝑖 = −𝐼𝑖 +∑𝑤𝑖𝑗𝑠𝑗(𝑡)𝜉(𝑡)

𝑗

C
𝑑

𝑑𝑡
𝑉𝑖 = −𝑔𝑉𝑉𝑖 + 𝐼𝑖

where wij, sj, and ξ denote the weight between neurons j and i, spikes from neuron j,

and a stochastic Bernoulli process with probability (1 − p), respectively. The time

constant for the synaptic current is denoted by τsyn. The ion conductance through the

membrane is denoted as gV.

(ii) As a workaround for the postsynaptic activation being non-differentiable, the

derivative of the postsynaptic activation is approximated as a boxcar function Θ:

Θ(𝐼𝑖) = {
1 if 𝑏𝑚𝑖𝑛 < 𝐼𝑖 < 𝑏𝑚𝑎𝑥
0 otherwise

This corresponds to the derivative of a hard sigmoid function with two transition

points (bmin and bmax).

(iii) The error signal Ti is formulated as

 𝑇𝑖(𝑡) = ∑ 𝑒𝑘(𝑡)𝑔𝑖𝑘𝑘 , (4.14)

where ek is the error signal from the error-coding neuron k. The constant gik denotes

the fixed random feedback weight from the error-coding neuron k to the hidden

neuron i. It is noteworthy that this error signal is non-local to the synapse wij, and

thus unavailable for updating the weight wij using Eq. (13). It is conceivable that the

 78

data may be moved from the location of error evaluation to the synapse during

updating; however, this is not an optimal strategy for neuromorphic hardware in

which neurons communicate using events only. To render the error local to the target

synapses, eRBP uses two error-coding neurons with somatic potentials VE+ and VE-

for each output dimension. They code for false positive and negative errors,

respectively. Their subthreshold behaviors are modeled using a perfect integrate-

and-fire model

C
𝑑

𝑑𝑡
𝑉E± = ±𝑤𝐸(𝑠𝑃(𝑡) − 𝑠𝐿(𝑡)),

where sP and sL are the spike trains from the prediction neurons and labels, and wE is

a positive constant. The false positive error coding neuron (potential VE+ and weight

wE) spikes and generates the spike train sE+ when sp = 1 and sL = 0, whereas the false

negative error coding neuron (potential VE- and weight -wE) spikes and generates the

spike train sE- when sp = 0 and sL = 1. The consequent spike trains sj
E+ and sj

E- (from

the two error-coding neurons for label j), rather than the error data themselves, are

relayed to the target synapses through the random weight gij so that the

communication architecture is well suited for neuromorphic hardware.

The error spike trains sj
E+ and sj

E- from label j are subsequently encoded as firing

rates to eventually realize the error signal Ti in Eq. (14). To this end, each neuron in

the output and hidden layers is given a dendritic compartment that calculates the

dendritic potential (Ui
h for hidden neuron i and Ui

p for prediction neuron i) using a

leaky integrated model

𝐶
𝑑

𝑑𝑡
𝑈𝑖
ℎ = −𝑔𝑈𝑈𝑖

ℎ +∑𝑔𝑖𝑗(𝑠𝑗
𝐸+(𝑡) − 𝑠𝑗

𝐸−(𝑡))

𝑗

and

𝐶
𝑑

𝑑𝑡
𝑈𝑖
𝑝
= −𝑔𝑈𝑈𝑖

𝑝
+𝑤𝐸(𝑠𝑖

𝐸+(𝑡) − 𝑠𝑖
𝐸−(𝑡))

This dendritic potential is equivalent to the error signal Ti and is local to each target

synapse. Therefore, the learning rule in Eq. (13) can be rewritten as

 79

∆𝑤𝑖𝑗 = 𝜂𝑈𝑖Θ(𝐼𝑖)𝑠𝑗(𝑡)

The parameters used in this study are listed in Table 4.1.

 80

4.7. Bibliography

[1] M. Pfeiffer and T. Pfeil, Frontiers in neuroscience, vol. 12, p. 774, 2018.

[2] D. S. Jeong, Journal of Applied Physics, vol. 124, no. 15, p. 152002, 2018.

[3] K. Roy, A. Jaiswal, and P. Panda, Nature, vol. 575, no. 7784, pp. 607-617,

2019.

[4] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, Frontiers in neuroscience,

vol. 13, p. 95, 2019.

[5] C. Lee, S. S. Sarwar, and K. Roy, 2019, arXiv:1903.06379.

[6] G.-q. Bi and M.-m. Poo, Journal of neuroscience, vol. 18, no. 24, pp. 10464-

10472, 1998.

[7] A. Yousefzadeh, E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B.

Linares-Barranco, Frontiers in neuroscience, vol. 12, p. 665, 2018.

[8] G. Srinivasan and K. Roy, Frontiers in Neuroscience, vol. 13, p. 189, 2019.

[9] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, Frontiers in

neuroscience, vol. 11, p. 324, 2017.

[10] D. Kim, V. Kornijcuk, C. S. Hwang, and D. S. Jeong, IEEE Access, vol. 8,

pp. 110523-110534, 2020.

[11] F. Ponulak and A. Kasiński, Neural computation, vol. 22, no. 2, pp. 467-510,

2010.

[12] R. Gütig and H. Sompolinsky, Nature neuroscience, vol. 9, no. 3, pp. 420-

428, 2006.

[13] S. M. Bohte, J. N. Kok, and H. La Poutre, Neurocomputing, vol. 48, no. 1-4,

pp. 17-37, 2002.

 81

[14] M. Suri et al., IEEE Transactions on Electron Devices, vol. 60, no. 7, pp.

2402-2409, 2013.

[15] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs,

Frontiers in neuroscience, vol. 7, p. 272, 2014.

[16] E. O. Neftci, B. U. Pedroni, S. Joshi, M. Al-Shedivat, and G. Cauwenberghs,

Frontiers in neuroscience, vol. 10, p. 241, 2016.

[17] W. Gerstner and W. M. Kistler. Cambridge university press, 2002.

[18] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, 2016,

arXiv:1602.02830.

[19] M. Maher and J.-F. Puget. Springer Science & Business Media, 1998.

[20] J. C. Platt and A. H. Barr, Proceedings of the 1987 International Conference

on Neural Information Processing Systems, 1987.

[21] X. Glorot and Y. Bengio, Proceedings of the thirteenth international

conference on artificial intelligence and statistics, 2010, pp. 249-256.

[22] M. Davies et al., IEEE Micro, vol. 38, no. 1, pp. 82-99, 2018.

[23] P. Blouw, X. Choo, E. Hunsberger, and C. Eliasmith, Proceedings of the 7th

Annual Neuro-inspired Computational Elements Workshop, 2019, pp. 1-8.

[24] M. Horowitz, in 2014 IEEE International Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), 2014: IEEE, pp. 10-14.

[25] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and S.-C. Liu,

Frontiers in neuroscience, vol. 9, p. 222, 2015.

 82

5. Conclusion

Neuromorphic hardware capable of parallel computation enables the efficient

computation of neuronal variables in SNN. With event-driven weight updates using

local data leverage the capacity of neuromorphic hardware. Parallel computation can

be accelerated when neuromorphic hardware is combined with a binary resistance

switch array to implement an artificial synaptic array. Thus, we have studied on

two subjects, which are a sequence-predicting SNN architecture with event-

based learning algorithm and method for training SNN with binary weight in

an event-driven fashion.

At first, we introduce an SNN architecture for sequence predictions (n-SPSNN)

by deploying working memories and a novel learning algorithm (LbAP algorithm)

for SNNs, which is suitable for neuromorphic hardware. We demonstrate the

sequence-learning capability of the proposed architecture and learning algorithm

using the Nottingham dataset and random sequences. The n-SPSNN shows high

tolerance to errors in input encoding, which is higher than the state-of-the-art

sequence learning hypotheses LSTM and GRU. Also, n-SPSNN offers high

tolerance to random changes in input-encoding delay. The LbAP algorithm endows

the n-SPSNN with efficiency in learning. The learning is completed in a few

iterations. Therefore, the LbAP algorithm can train SNNs in an energy- and time-

efficient manner.

Secondly, we introduce a novel weight binarization algorithm (eWB), which is an

event-driven algorithm with the locality. The binary weights can not only be applied

to binary resistance switch arrays in digital neuromorphic hardware but also reduce

energy consumption. LMM with binary weight constraints is used to optimize the

weights to satisfy the constraint condition. We elaborate on the scaling of eWB to

eRBP (eWB-eRBP), which was applied to train fully connected SNNs on MNIST.

The classification accuracy of the 784-1000-1000-10 network is 95.35% and shows

an accuracy reduction of 1.85% as the cost of optimal weight binarization. Optimal

binarization endows eWB with better and more stable performance evolution over

 83

the training age when compared to fWB-eRBP (with coercively binarized non-

optimal binary weights).

 84

Abstract (in Korean)

스파이킹 신경망은 생물학적 관찰에 기반한 신경망 모델로 에너지

효율적인 계산이 가능한 것으로 알려져 있다. 스파이킹 신경망에서

뉴런의 내부 상태는 다른 뉴런에서 오는 스파이크와 시간 정보에 따라

변하며 뉴런의 막전위가 특정 임계값을 초과할 경우 스파이크가

발생한다. 뉴런의 스파이크는 시공간 상에서 드물게 발생하며 이벤트에

기반해 정보를 전달한다. 정보 밀도가 높은 스파이크에 기반한 스파이킹

신경망은 순열과 같이 시공간 상에 분포된 스파이크 패턴의 효과적인

학습을 가능하게 한다. 그러나 스파이킹 신경망 계산을 위해서는 매

단위 시간마다 막 전위와 같은 내부 상태 업데이트가 필요하며 이는

많은 계산 시간을 요구한다. 이러한 이유로 효율적인 스파이킹

시뮬레이션을 하기 위해서는 뉴런의 내부 상태 업데이트가 병렬적으로

처리되어야 한다. 분산 프로세서와 로컬 메모리 구조를 가지는 뉴로모픽

하드웨어는 병렬 계산을 가능하게 하며 이벤트 기반 지역 정보를 통해

스파이킹 신경망을 학습시킬 경우 그 효율성이 극대화된다. 그러나

범용적인 이벤트와 지역 정보에 기반한 스파이킹 신경망 학습 방법은

아직 존재하지 않으며 특히, 연관 리콜에 관한 연구는 아직 이뤄지지

않고 있다.

이 논문에서는 단일 단계 예측 및 시퀀스 간 예측, 즉 연관 리콜이

가능한 n-SPSNN (nth order-predicting SNN)을 소개한다. 이러한 기능의

핵심으로, LbAP (learning by backpropagating action potential) 알고리즘이라는

 85

새로운 학습 알고리즘을 제안한다. LbAP 알고리즘은 (i) 시냅스 후

이벤트 기반 학습 (ii) 시간적 로컬 데이터만 사용 iii) 경쟁으로 인한

가중치 정규화 효과 (iv) 빠른 학습의 특징을 가지고 있다. 가장 중요한

것은 LbAP 알고리즘이 로컬 데이터만을 이용해 전체 SPSNN에 대한

통합 학습 프레임워크를 제공한다는 것이다. SPSNN의 학습 능력은 주로

은닉층 뉴런의 수 h에 의해 결정된다. 은닉 뉴런 수 h가 학습 시퀀스

길이 l의 두 배보다 클 때 시퀀스 예측 정확도는 최대 값 (~ 1)에

도달한다. 또한 SPSNN은 최신의 시퀀스 학습 네트워크인 LSTM (long

short-term memory) 및 GRU (gated recurrent unit)에 비해 입력 인코딩

오류에 대한 높은 내성을 가진다. 성공적인 학습을 위해 필요한 SPSNN

시냅스 동작 수와 LSTM 및 GRU의 행렬 곱 수를 비교한 결과, SPSNN은

다른 두 네트워크에 비해 약 100배의 효율성을 보였다. SPSNN의 높은

효율성은 LbAP 알고리즘에 기인하는 SPSNN의 빠른 학습에서 비롯된

것으로 볼 수 있다.

뉴로모픽 하드웨어에 저항 스위치와 같은 비휘발성 메모리를 적용할

경우 더욱 효율적인 신경망 학습을 구현할 수 있다. 저항 스위치

어레이의 행렬-벡터 곱셈은 신경망에서의 스파이크 전파 과정과

유사하다. 입력 전압 벡터에 대한 전류 응답을 측정함으로써 뉴로모픽

하드웨어에서의 행렬-벡터 곱셈을 효율적으로 처리할 수 있다. 따라서

이진 저항 스위치 어레이로 인공 시냅스 어레이를 구현할 경우, 기존

 86

네트워크에서의 행렬-벡터 계산을 병렬적으로 처리해 계산 속도를 높일

수 있다.

그러나 기존의 스파이킹 신경망은 시냅스 가중치를 저장하기 위해

다중 비트가 필요하다. 이는 이진 저항 어레이를 이용한 뉴로모픽

하드웨어의 시냅스 어레이 구현을 어렵게 만든다. 또한 다중 비트

정밀도를 사용하면 메모리 사용량이 증가하고 복잡한 패턴 인식 작업 시

스파이킹 신경망의 계산 효율성을 감소시킨다.

따라서 본 연구에서는 이진 시냅스 가중치 (-1, 1)를 가진 스파이킹

신경망에 대한 새로운 이벤트 기반 가중치 이진화 알고리즘을 제안한다.

eWB (event-based weight binarization algorithm for spiking neural networks)

알고리즘은 주어진 제약 내에서 매개 변수를 최적화하는 라그랑주

승수법을 기반으로 한다. eWB 알고리즘은 (i) 지역 정보만을 통해 이벤트

기반 점차적 가중치 이진화 (ii) eRBP (event-driven random

backpropagation)와 같은 이벤트 기반 학습 알고리즘과 완전한 호환성 (iii)

이진 가중치 제한 조건을 포함한 다양한 가중치 제한 조건을 처리할 수

있다. 이를 증명하기 위해 eWB와 eRBP를 결합한 이진 가중치를

학습하는 단일 알고리즘인 eWB-eRBP 구현했다. 완전 연결을 가지는

스파이킹 신경망에서 eWB-eRBP를 MNIST를 학습시켰을 시 95.35%의

정확도를 달성했다.

 87

주요어: 뉴로모픽 엔지니어링, 저항 변화 스위치, 스파이킹 신경망,

이벤트 기반 지역성 학습 알고리즘, 순차 학습, 연관 리콜, 이벤트 기반

가중치 이진화 학습 알고리즘

학번: 2016-20771

김 도 헌

	1. Introduction
	1.1. Spiking neural networks (SNNs)
	1.2. Dedicated hardware for spiking neural network
	1.3. Bibliography

	2. Literature
	2.1. Sequence-predicting SNN
	2.2. Binarized SNN
	2.3. Bibliography

	3. SPSNN: nth order sequence-predicting spiking neural network
	3.1. Introduction
	3.2. Sequence-predicting spiking neural network and learning algorithm
	3.2.1. Sequecne prediction principle and network architecture
	3.2.2. Learing by backpropagating action potentail (LbAP) algorithm
	3.2.3. Training method and capabiltiy evaluation in detail

	3.3. Results
	3.3.1. Sequene-prediction capacity
	3.3.2. Associative recall (sequence-to-sequence prediction)
	3.3.3. Robustness of learning and inference to variability in sequence
	3.3.4. Learning efficiency

	3.4. Conclusion
	3.5. Appendix
	3.6. Bibliography

	4. eWB: Event-based weight binarization algorithm for spiking neural networks
	4.1. Introduction
	4.2. eWB algorithm
	4.2.1. Lagrange multiplier method
	4.2.2. eWB algorithm
	4.2.3. eWB-eRBP algorithm
	4.2.4. Non-optimal weight binarization algorithm

	4.3. Results
	4.3.1. Classification accuracy
	4.3.2. Weight binarization
	4.3.3. Computational complexity

	4.4. Discussion
	4.5. Conclusion
	4.6. Appendix
	4.7. Bibliography
	5. Conclusion

	Abstract (in Korean)

<startpage>17
1. Introduction 1
 1.1. Spiking neural networks (SNNs) 1
 1.2. Dedicated hardware for spiking neural network 4
 1.3. Bibliography 8
2. Literature 10
 2.1. Sequence-predicting SNN 10
 2.2. Binarized SNN 13
 2.3. Bibliography 15
3. SPSNN: nth order sequence-predicting spiking neural network 18
 3.1. Introduction 18
 3.2. Sequence-predicting spiking neural network and learning algorithm 20
 3.2.1. Sequecne prediction principle and network architecture 20
 3.2.2. Learing by backpropagating action potentail (LbAP) algorithm 24
 3.2.3. Training method and capabiltiy evaluation in detail 28
 3.3. Results 31
 3.3.1. Sequene-prediction capacity 31
 3.3.2. Associative recall (sequence-to-sequence prediction) 38
 3.3.3. Robustness of learning and inference to variability in sequence 40
 3.3.4. Learning efficiency 44
 3.4. Conclusion 47
 3.5. Appendix 49
 3.6. Bibliography 51
4. eWB: Event-based weight binarization algorithm for spiking neural networks 54
 4.1. Introduction 54
 4.2. eWB algorithm 55
 4.2.1. Lagrange multiplier method 55
 4.2.2. eWB algorithm 57
 4.2.3. eWB-eRBP algorithm 58
 4.2.4. Non-optimal weight binarization algorithm 62
 4.3. Results 62
 4.3.1. Classification accuracy 63
 4.3.2. Weight binarization 67
 4.3.3. Computational complexity 69
 4.4. Discussion 73
 4.5. Conclusion 76
 4.6. Appendix 76
 4.7. Bibliography 80
 5. Conclusion 82
Abstract (in Korean) 84
</body>

