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Abstract

Spiking neural networks (SNNs) are believed to offer solutions to biologically
inspired and energy-efficient computation. SNNs are dynamics models that process
and convey data by means of asynchronous spike events. The spikes are sparse in
time and space and have high information content. The rich dynamics of SNNs
enable the effective learning of complex spatiotemporal firing patterns in a dynamic
domain. However, internal state updates, e.g., membrane potential, are required
every timestep, which requires a lot of computation time. Thus, the internal state
updates of neurons must be processed in parallel for efficient spiking simulation.
Distributed processors and local memories enable this parallel computation in
dedicated neuromorphic hardware. Event-based weight update using local data can
maximize the computational efficiency of neuromorphic hardware. However, the
universal SNN learning algorithm based on the event and local data is still missing,
especially associative recall.

In this paper, we introduce an nth order sequence-predicting SNN (n-SPSNN),
which is capable of single-step prediction and sequence-to-sequence prediction, i.e.,
associative recall. As a key to these capabilities, we propose a new learning
algorithm, named the learning by backpropagating action potential (LbAP)
algorithm, which features (i) postsynaptic event-driven learning, (ii) access to
topological and temporal local data only, (iii) competition-induced weight
normalization effect, and (iv) fast learning. Most importantly, the LbAP algorithm
offers a unified learning framework over the entire SPSNN based on local data only.
The learning capacity of the SPSNN is mainly dictated by the number of hidden

neurons h; its prediction accuracy reaches its maximum value (~1) when the hidden

neuron number h is larger than twice training sequence length I, i.e., h > 2l. Another

advantage is its high tolerance to errors in input encoding compared to the state-of-
the-art sequence learning networks, namely long short-term memory (LSTM) and
gated recurrent unit (GRU). Additionally, its efficiency in learning is approximately
100 times that of LSTM and GRU when measured in terms of the number of synaptic

operations until successful training, which corresponds to multiply-accumulate



operations for LSTM and GRU. This high efficiency arises from the higher learning
rate of the SPSNN, which is attributed to the LbAP algorithm.

Applying a nonvolatile memory to neuromorphic hardware leverage the
computational efficiency in matrix-vector multiplication. Resistance switch is a
promising candidate for nonvolatile memory. The binary resistance switch array
implements efficient matrix-vector multiplication by measuring the output current
vector to the applied input voltage. The spike propagation in SNNs can be applied to
the matrix-vector multiplication in the resistive switch array. Thus, the parallel
computation can be accelerated when implementing an artificial synapse array with

a binary resistance switch array.

However, SNNs require synaptic weights with multi-bit precision, which is not
suitable for neuromorphic hardware using binary resistance switches. Also, using
multi-bit precision on neuromorphic hardware increases the memory footprint and
reduces computational efficiency. In this regard, we propose a novel event-based
weight binarization (eWB) algorithm for SNNs with binary synaptic weights (-1, 1).
The eWB algorithm is based on the Lagrange multiplier method, which optimizes
parameters within given constraints. The algorithm features (i) event-based
asymptotic weight binarization using local data only, (ii) full compatibility with
event-based learning algorithms (e.g., spike timing-dependent plasticity and event-
driven random backpropagation (eRBP) algorithm), and (iii) the capability to address
various constraints (including the binary weight constraint). As a proof of concept,
we combine eWB with eRBP (eWB-eRBP) to obtain a single algorithm for learning
binary weights to generate correct classifications. Fully connected SNNs were
trained using eWB-eRBP and achieved an accuracy of 95.35% on MNIST.

Keywords: neuromorphic engineering, resistance switch array, spiking neural
networks, event-driven learning algorithm of locality, sequence learning,
associative recall, event-based weight binarization
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1. Introduction

1.1. Spiking neural networks (SNNs)

The human brain is a complex system with approximately 100 billion neurons
and trillions of interconnected synapses [1]. Neuronal information is conveyed by
asynchronous spikes without forward locking. Spike-based temporal sparse

processing enables efficient information transfer in the brain.

Deep neural networks (DNNs) (Fig 1.1(a)) aim to mimic the behavior of a
biological nervous system. DNNs are typically trained by error-backpropagation
algorithms (BP) for layer-wise weight updates. DNNs are very powerful learning
models that solve complex problems such as visual image recognition [2-4], speech
recognition [5] and controlling tasks [6] beyond the human level. Despite the
ongoing success, the substantial computational cost compared to the human brain
and their inability to capture the temporal correlation of neural activities have created

a need for more biologically plausible learning algorithms.

Spiking neural networks (SNNs) are the primary candidate for realizing
neuromorphic systems that require lower computational effort based on temporal
coding. SNNs are dynamic models in which neuronal information is processed in
form of spikes, as shown in Fig 1.1(b). Spike is an essentially binary event, either 0
or 1. A spiking neuron in SNNs is only active when it receives or emits spikes. This
unique sparse event-driven processing using neuronal computation and synaptic
weight updates improves energy efficiency in neuromorphic hardware

implementations [7, 8].

The rich spatio-temporal dynamics of SNNs stem from temporal kernels. The time
course of internal state in spiking neuron models results from convolutions of time-
varying input stimulus, as shown in the spike-response model (SRM) [9]. The rich
dynamics of SNNs enable the effective learning of complex spatio-temporal spiking
patterns in a dynamic domain. The previously proposed remote supervised method
(ReSuMe) [10], chronotron [11], spike pattern association neuron (SPAN) [12], and
precise-spike-driven synaptic plasticity (PSD) [13] rules have both demonstrated

1 ] 211



success in learning SNN to predict precise temporal representations of
spatiotemporal spike patterns. However, success in sequence-to-sequence prediction

using these learning rules has not been demonstrated.



Figure 1.1. Illustration of (a) an ANN and (b) an SNN. In SNN, spiking neurons

communicate binary sparse spikes in the temporal domain.
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1.2. Dedicated hardware for spiking neural network

Neuromorphic Engineering originally aimed to implement biologically plausible
SNNs using very large integrated analog circuits [14]. SpiNNaker [15], Neurogrid
[16], TrueNorth [17], DYNAPs [18], and Loihi [19] are recently released prototypes
of neuromorphic hardware. Although their working principles and capabilities are
different, they realize SNNs on the chips. TrueNorth, SpiNNaker, and Loihi are
based on digital circuits that allow flexibility of network configuration and learning

algorithms.

The neuromorphic hardware has shown potential in accelerating SNN simulations
with the reconfigurable network topology and learning algorithms. Fig. 1.2 shows
the ideal architecture of digital neuromorphic hardware for SNNs. The memory is
distributed over neurons as opposed to the von Neumann architecture in which
processing units and memory are separated. Each processing unit calculates the state
variables such as synaptic current and membrane potential. The memory for each
processing unit contains its local data. The information of spiking events is processed
across the cores through data buses. The parallel computation realized by distributed
processors and local memories maximizes synaptic operation speed, the key to
neuromorphic hardware performance. Thus, digital neuromorphic hardware is

deemed to leverage the capacity of an event-driven local algorithm for SNNs.

Representing synaptic weights in digital neuromorphic hardware using non-
volatile memory can provide higher connectivity and faster computation speed.
Resistance switch is considered as one of the most promising candidates for next-
generation non-volatile memory [20]. The resistance switch device has a high
resistance state (HRS) and low resistance state (LRS). The resistance state can be
reversibly switched between HRS and LRS under sufficient voltage stimuli. Binary
resistance switch array (Fig. 1.3) has demonstrated an efficient hardware
implementation of the matrix-vector multiplication by measuring the output current
to an applied input voltage vector [21]. Also, the non-volatile characteristic of the
resistance switch allows energy efficiency compared to the volatile memories, e.g.,

dynamic random-access memory (DRAM). Thus, it is possible to implement parallel

4 23 2 11



matrix operations and reduce energy consumption when the binary resistance switch

array is applied to digital neuromorphic hardware.

In this regard, this paper consists of two parts. At first, we introduce a novel
learning algorithm for SNNs and an SNN architecture for sequence prediction, which
are suitable for neuromorphic hardware. In the second part, we propose a new
learning algorithm called the event-based weight binarization (eWB) algorithm,
which can be implemented in digital neuromorphic hardware with binary resistance

switch array.



Memory PU Memory PU
Communication Communication
) == —— Routing
Memory PU Memory PU
Communication Communication
I
Core

Figure 1.2. Schematic of the ideal architecture of digital neuromorphic cores. PU

denotes a procession unit.
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2. Literature

2.1. Sequence-predicting SNN

Associative memory or recall has long been the subject of research interest in
sequence learning, which is categorized as sequence-to-sequence learning. The
Hopfield network is a seminal network to this end; the recurrent network is given the
capability to memorize patterns over the neurons, and a piece of a pattern can activate
the whole pattern [1]. However, the network still lacks dynamics, and hence, the
sequence information of the pattern is ignored. By contrast, RNNs are dynamic
hypotheses that can learn sequences and make single-step predictions. This
capability is given by the feedback connection that bases the current prediction on
the network activity at the previous time step [2]. However, training the network
through time causes several critical issues such as vanishing gradient and exploding
gradient problems [3]. Variations of RNN, e.g., LSTM [4] and GRU [5], cope with
these issues due to a constant error-flow through internal units. A backpropagation
algorithm is commonly used to train these networks. The good performance of these
networks comes at the cost of large computational power [6]. In particular, their
demands for computational power are highlighted by comparison with the n-SPSNN,
which will be addressed in Section 3.3.4. Their low tolerance to errors in sequence

encoding is another disadvantage.

The sequence-learning neural network proposed by Wang and Yuwono [7]
employs short-term memory networks as sub-networks, which play a similar role to
the working memory of the n-SPSNN in sequence learning. The short-term memory
network considers memory decay with time so that a discount factor applies to the
contributions of previous elements to the present element prediction. Each
subsequence of previous elements is mapped onto a single detector in an injective
manner, given strong lateral inhibition among the detectors, which is also similar to
the proposed n-SPSNN architecture. However, the neural network proposed by
Wang and Yuwono consists of binary neurons, i.e., McCulloch—Pitts neurons, and
the inhomogeneous learning rule applying to the network fails to provide a unified

framework of learning. The learning rule needs to access global data (all weights
10 1] © 1]



values) to normalize the weight under update, which differs from our LbAP
algorithm. Unfortunately, the sequence-learning capacity of the network is

unavailable.

SNNs with recurrent connections are considered as hypotheses for associative
recall [8-10]. Unlike the associative recall in the above-mentioned class, the
associative recall in SNNs concerns not only a sequence of spiking neurons but also
their precise spike times. This is because SNNs are endowed with the capacity to
learn dynamic-domain data given their rich dynamics. Pfister et al. considered an
SNN with stochastic spiking neurons and proposed a method to train the SNN to lead
the postsynaptic neurons to fire spikes at desired times [11]. This work was further
extended to more complicated SNNs with visible and hidden neurons, where the
hidden neurons receive supervision signals and represent a sequence [8]. In this work,
the objective function for weight optimization was defined as the difference in a
distribution function between a desired and actual spike time. The proposed learning
algorithm for the visible neurons is found to be equivalent to the voltage-based STDP
rule [12] in support of the physiological fidelity of the proposed learning algorithm.
However, a different learning algorithm is used for the hidden neurons, which fails
to provide a unified learning framework. Unfortunately, systematic analyses on the
performance (learning capacity, efficiency, error-tolerance, etc.) of the recurrent

SNN are unavailable.

Gardner and Griining modified the learning rule by Pfister et al. [11] to train an
SNN of deterministic neurons, referred to as FILT [13]. In the FILT rule, the synaptic
weight is adjusted to reduce the difference in spike filtering between a desired and
actual spike train. In a similar framework, several learning algorithms have been
proposed to produce a desired spike train, such as ReSuMe [9], chronotron [14],
SPAN [15], and PSD synaptic plasticity [16]. These learning rules are capable of
training a neuron to generate the desired spike train in response to the input spike
pattern. However, success in associative recall using these learning rules has not been

demonstrated.
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An STDP rule in conjunction with heterosynaptic depression enables a recurrent
SNN to form synaptic chains, each of which represents a sequence that is recalled
associatively [10]. Such chains are formed at random; however, the number of chains
tends to decrease with the strength of global inhibition. In addition, the network can
copy an applied sequential input during training and reproduce the input
subsequently. However, a critical downside is the necessary access to global data,
such as total synaptic weights (for the heterosynaptic depression) and activity state
variables (for global inhibition), which is inconsistent with the attributes of an ideal

learning rule embedded in neuromorphic hardware.

The hierarchical temporal memory (HTM) adopts and simplifies the physiological
observation that, in a pyramidal cell, a delay in postsynaptic potential is proportional
to the distance between the dendritic spine and soma [17, 18]. The HTM network
consists of a set of columns; a combination of such columns represents an element
in a sequence. A sequence is learned such that a synaptic chain (with the same length
as the sequence) representing the sequence is formed in the network. Therefore,

learning complex sequences is inefficient.
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2.2. Binarized SNN

To date, the proposed methods for learning binary weights in SNNs can be mainly
classified into two groups: (i) conversion of binarized neural networks (BNNs) [19]
or binary weight networks (BWNs) [20] into SNNs and (ii) probabilistic learning.
The first approach is motivated by recent successes in weight binarization in DNNs
[19-22]. Lu and Sengupta [23] proposed a method to map BWNs onto VGG-15-like
SNNs with perfect integrate-and-fire (IF) neurons. The IF neuron is considered to
encode an input spike train as a firing rate, thereby ensuring its similarity to a

rectified linear unit (ReLU).

The second approach uses weights that probabilistically toggle between the binary
weights 0 and 1. However, it is common to use auxiliary variables to determine the
probability of weight updates. Suri et al. [24] proposed an STDP-based stochastic

algorithm using binary weights. Potentiation (0—1) and depression (1—0) occur

with probabilities based on the temporal order of presynaptic and postsynaptic spikes.

Nevertheless, a challenge in STDP is its inability to scale to deep SNNs. STDP is
hence commonly limited to shallow SNNs. Yousefzadeh et al. [25] also proposed an
STDP-based stochastic algorithm to learn binary weights. The algorithm requires
additional operations such as weight normalization and threshold adjustment for
individual neurons. The considered network is shallow (one feature extraction layer
and one classifier) because of the aforementioned limitation of STDP. Additionally,
it does not support end-to-end training. Srinivasan and Roy [26] proposed the
Hybrid-STDP (HB-STDP) algorithm based on probabilistic STDP. Notably, HB-
STDP includes a dead zone in the STDP time window, in which neither potentiation
nor depression is allowed. HB-STDP captures temporally correlated inputs by
preventing excessive potentiation and depression; however, its low accuracy is a

challenge.

Nevertheless, a challenge in STDP is its inability to scale to deep SNNs. STDP is
hence commonly limited to shallow SNNs. Yousefzadeh et al. [25] also proposed an

STDP-based stochastic algorithm to learn binary weights. The algorithm requires
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additional operations such as weight normalization and threshold adjustment for
individual neurons. The considered network is shallow (one feature extraction layer
and one classifier) because of the aforementioned limitation of STDP. Additionally,
it does not support end-to-end training. Srinivasan and Roy [26] proposed the
Hybrid-STDP (HB-STDP) algorithm based on probabilistic STDP. Notably, HB-
STDP includes a dead zone in the STDP time window, in which neither potentiation
nor depression is allowed. HB-STDP captures temporally correlated inputs by
preventing excessive potentiation and depression; however, its low accuracy is a

challenge.

The learning of low-precision weights in SNNs as generative models is a subject
of interest. Stromatias et al. [27] tailored contrastive divergence (CD) to deep belief
networks with spiking neurons. The original double-precision floating-point weights
are converted to a lower precision floating-point format to reduce memory
consumption. However, the reduction in precision comes with the cost of significant
performance degradation. Neftci et al. [28] proposed the event-driven CD (eCD)
algorithm to train restricted Boltzmann machines with spiking neurons. In eCD, the
weight update is fine-tuned by STDP. Low-precision (down to 2-bit) weights were

tested; however, a significant reduction in accuracy was unavoidable.

The eWB algorithm adopts an approach that parameterizes the degree of binary-
constraint fulfillment and asymptotically optimizes the degree upon the occurrence
of events, whereas the aforementioned precision-reduction methods merely round
the full-precision weights. Therefore, eWB cannot be classified as any of the

aforementioned approaches.
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3. SPSNN: nth order sequence-predicting spiking

neural network

3.1. Introduction

Spiking neural network (SNN) is a dynamic hypothesis with diverse temporal
kernels to express neuronal behaviors in response to synaptic transmission [1-3]. The
central nervous system (CNS) is based on the SNN, and the SNN has therefore been
analyzed theoretically to understand the working principles of the CNS. Apart from
the SNN’s physiological plausibility, its feasible applications to deep learning as a
hypothesis have attracted considerable research attention from various fields [4-9].
The effort to realize an SNN using integrated circuits—which has continued over the
last three decades—paves the way for the data- and energy-efficient acceleration of
deep learning. This has been emerging as an important goal of neuromorphic
engineering [5, 6]. In this case, the main challenge lies in the learning algorithm; a
universal learning algorithm, similar to backpropagation algorithms for deep neural
network (DNN), is still missing. There exist several methods to optimize synaptic
weights in an SNN. They usually map the weights of backpropagation-trained DNNs
onto SNNs [10, 11]. However, to leverage the SNN in neuromorphic hardware, the
learning needs to be based on an event-driven algorithm of locality [5, 6, 12]. For
instance, the event-driven random backpropagation (eRBP) algorithm satisfies this
requirement considering that (i) the ad hoc update is driven by a presynaptic spike
and (ii) only local variables are used to evaluate the change in weight [13]. Static-

domain data, e.g., images, are suited to the eRBP algorithm for training SNNs.

Considering the rich dynamics of SNN, learning with dynamic-domain data
perhaps harnesses the full capability of SNNs [3, 12]. Dynamic-domain data include
time-series data, which embody periodic discrete data points in a time domain. In a
framework of deep learning, the recurrent neural network (RNN) and its variations,
e.g., long short-term memory (LSTM) [14] and gated recurrent unit (GRU) [15], are
known to have an excellent capability to learn time-series data. Unfortunately, there

is a lack of both SNN architecture for learning time-series data as well as a learning
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algorithm for the architecture, which performs sequence-prediction tasks, e.g.,
single-step prediction and sequence-to-sequence prediction (also known as

associative recall), with accuracy comparable to that of LSTM and GRU.

In this regard, we propose an SNN architecture for temporal sequence learning,
named nth order sequence-predicting spiking neural network (n-SPSNN). The
indispensable working memory for the prediction is realized using synaptic chains.
To train the n-SPSNN, we propose an event-driven learning algorithm of locality,
referred to as learning by backpropagation action potential (LbAP) algorithm. The
LbAP algorithm was inspired by physiological observations of backpropagating
action potential (bAP) boosts intervening in homosynaptic plasticity [16]. Note that
the weight is only updated upon postsynaptic events in contrast to other event-driven
algorithms such as spike timing-dependent plasticity (STDP) rule (updates upon both
presynaptic and postsynaptic events) and eRBP algorithm (updates upon presynaptic
events only). The locality allows the LbAP algorithm to be suitable for memory-
efficient implementation in digital neuromorphic hardware, particularly, multi-core

neuromorphic processors [6, 12, 17, 18].
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3.2. Sequence-predicting spiking neural network and learning

algorithm

3.2.1. Sequecne prediction principle and network architecture

We define a sequence of / elements as (x1, x», ..., x;), where each element is chosen
from a set of m symbols S (={si, 2, ..., Su}), i.e., X; € {S1,S2, ..., Sm}. X; €
{s1,82, -, SmJXi € {s1,S2, ., S} x: and x;:; are separated by Az in time. Each
element is represented by an m-long one-hot vector. The n-SPSNN learning a
sequence is illustrated in Fig. 3.1(a). The network is given m parallel sub-networks,
each with a synaptic chain of n neurons. One sub-network is dedicated to one of m
symbols only. The parallel m sub-networks are in full connection with a hidden layer
loaded with /# neurons. A weight matrix for the feedforward connections is defined
aswi (wy € R . [i, ] € [0, Wyax1]). The hidden neurons are fully connected
with m output neurons in an output layer. Each output neuron represents each of m
elements. Weight matrix w> (w, € R™"% w,[i,j] € [0, Wyax2] ) defines the
feedforward connections. Note that full lateral inhibition applies to both hidden and
output layers. This n-SPSNN network is expressed as m-(nxm)-h-m, considering the

number of neurons in each layer

The element on a given time step in a sequence is encoded as a one-hot vector.
Each element of the vector is subsequently applied to the input neuron of the
corresponding sub-network such that “1” indicates the presence of an input spike,
whereas “0” indicates no spike (see Fig. 3.1(a)). Each spike is relayed over the
synaptic chain in each sub-network. We consider an axonal delay (At.) between
neighboring neurons in a synaptic chain of # neurons. Assuming that Af.q = Ate, a
spike on a given time step hops to the next neuron in Af., and simultaneously, the
next element in the sequence arrives at the input neurons. Therefore, a spike
representing a particular element on a given time step can stay in the sub-network
over the synaptic chain for (n-1) At.a, serving as a working memory. Unless
otherwise stated, the equalities At = Afe and Af. = 100 ms hold. Note that the n-
SPSNN robustly predicts a sequence with random variations in Af. (i.e., Atax1 7 Ate),
which will be addressed in Section 3.3.3.
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Fig. 3.1(b) schematizes this process for a 4-SPSNN (n = 4) trained with an
arbitrary sequence of (B, A, C,D,B,B,C) (I=7;m=4; S= {A, B, C, D}). Sub-nets
1,2, 3, and 4 represent elements A, B, C, and D, respectively. The table for each sub-
network in Fig. 3.1(b) indicates a neuronal activity vector on each time step such that
anon-zero element and “0” denote the presence of a spike and no spike, respectively.
For instance, 000A; for Sub-net 1 at £, means that Neuron 1 (N1) fires a spike, while
the rest of the neurons (N2, N3, and N4) are quiet. Here, A, indicates the element
corresponding to the sub-network (A) and the neuron index (subscript). The n-
SPSNN begins sequence prediction when n preceding elements are available. Thus,
the 4-SPSNN in Fig. 3.1(b) begins the prediction at ¢4 based on the component-wise
sum of the four neuronal activity vectors (B4A3C,D1), meaning that N3 (Sub-net 1),
N4 (Sub-net 2), N2 (Sub-net 3), and N1 (Sub-net 4) fire spikes at ¢4 simultaneously.
The prediction at s is based on the vector (A4C3;D2B1), meaning the simultaneous

spiking of N4 (Sub-net 1), N1 (Sub-net 2), N3 (Sub-net 3), and N2 (Sub-net 4).

However, early prediction before seeing 7 previous elements is made occasionally

in real network operations, as will be addressed in Section 3.3.1.

Based on an n-long neuronal activity vector at #;, the n-SPSNN should be able to
predict the input element at #;+1. For instance, BsA3C,D; at #4 in Fig. 3.1(b) outputs B
as a predicted element at 5 such that the output neuronal activity vector is 0100. The
hidden layer in full connection with the parallel sub-networks and output layer
associates the n-long neuronal activity vector with the desired output neuronal
activity vector. Hidden neurons need to detect » simultaneous spikes on a given time
step and fire a spike accordingly, serving as a coincident detector. The spiking pattern
of hidden neurons should be specific to a certain spatial pattern of spiking over the
sub-networks. For instance, B4A3C;D; at #4 and A4C3;D,B; at #5s should cause different
spiking patterns to distinguish them. The lateral inhibition over the hidden neurons
suppresses overlap between different spiking patterns. Eventually, the spiking
pattern of hidden neurons activates the desired output neuron through the
feedforward connections. The lateral inhibition over the output neurons ensures the

clear separation of a desired output neuron from the others.
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For associative recall (sequence-to-sequence prediction), the n-SPSNN for single-
step prediction is modified to employ feedback connection from the output to the
input layer. The single-step prediction in response to a set of n preceding elements is
fed into the input layer as an input. This feedback process continues onward until the

end of the sequence.

The hidden and output neurons are expressed as a multi-compartment model in
that the dendritic and somatic potentials are separately evaluated for each neuron.
Both potentials are evaluated using a SRM [2] (Appendix 3.5). However, the
dendrite is not allowed to fire spikes so that no refractory kernel applies to the
dendritic potential evaluation. We consider axonal delays for the sub-networks-to-
hidden layer and hidden layer-to-output layer feedforward connections, which are

Atao and Atas, respectively. They are fixed to 20 ms.
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Figure 3.1. (a) Schematic of the n-SPSN (m-(nxm)-h-m). The thick arrows indicate
all-to-all connection, whereas the thin arrows indicate element-to-element
connections. Lateral inhibition is indicated by red arrows. (b) Visualized single-step

predictions for a sequence of (B, A, C, D, B, B, C).
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3.2.2. Learing by backpropagating action potentail (LbAP) algorithm

To train the n-SPSNN, we propose a local learning algorithm called learning by
backpropagating action potential (LbAP) algorithm. The LbAP algorithm was
inspired by physiological observations of homosynaptic plasticity dictated by
backpropagating action potentials (bAPs) [16, 19]. Upon spiking at a soma, the spike
propagates to the dendritic spines; this is referred to as a bAP. The bAP amplitude
decays over the dendrite. However, the initial amplitude is recovered if the dendritic
potential exceeds a certain threshold, indicating a bAP boost. Otherwise, the
amplitude keeps decaying out. The bAP, in turn, additively perturbs the dendritic
potential, such that dendritic potential above the bAP-boost threshold undergoes a
large increase in potential, whereas dendritic potential below the threshold undergoes
a negligible increase in potential. The key to the direction of plasticity is the calcium
influx such that a large (small) influx likely induces LTP (LTD) [20-22]. Importantly,
the calcium influx tends to increase with membrane potential, and thus, a bAP boost

likely induces LTP, while the failure of a bAP boost likely leads to LTD [16].

The LbAP algorithm simplifies the physiological observations as follows. First,
the dendritic potential at the moment of bAP arrival directly determines the plasticity
direction: if the potential is above the bAP-boost threshold, the synapse gains weight,
and it loses weight otherwise. Second, a delay in backpropagation is ignored, so that
the weights of all relevant synapses are updated simultaneously when the
postsynaptic neuron fires a spike. Therefore, the LbAP algorithm is an event-driven
local algorithm, ensuring incremental learning over a learning period. To be specific,
the algorithm is a postsynaptic event-driven local algorithm because the weight is
renewed only upon postsynaptic events in contrast to other event-driven algorithms
such as STDP rule (presynaptic and postsynaptic event-driven algorithm) [23-25]
and eRBP (presynaptic event-driven algorithm) [26].

The following equation describes the LbAP algorithm:

Aw = {aH(ud — udlth) — B@(ud)}6(t - tpost) (3.1)
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where ug, Ugsn, and H denote the dendritic potential at a given time, threshold for a bAP
boost, and Heaviside step function, respectively. The LTP rate is determined by a
positive constant . LTD is facilitated by a boxcar function ® with Ugm and Ug

(<ug,n2):

0= {1 ifud’thl < Uy < ud'thz.
0 otherwise.

The parameter ugmi denotes a threshold for LTD. The LTD rate is determined by
a positive constant f. The term § (t - tpost) ensures a postsynaptic event-driven
weight update, where 7,05 refers to a postsynaptic event time. We employ weight
boundaries (0 and wmayx) to avoid unlimited growth of weight and switch to inhibitory

synapses. The LbAP algorithm is paraphrased in pseudocode, as follows:

function LbAP
forj & {postsynaptic spike} do
if ug >ugep, then wy; « wj; +a
else if uqmg < uq <ugemz then wj; « w; —f
end if
end for

end function.

Notably, rate-based and spike (event)-based learning schemes merge in a unified
framework based on the LbAP algorithm. Regarding rate-based learning, consider
two independent presynaptic neurons (N1 and N2) firing Poisson spikes at a; and a»
and a postsynaptic neuron (N3) firing to the presynaptic Poisson spikes (see Fig.
3.2(a)). Applying the LbAP algorithm to the two synapses results in rate-dependent
changes in weights (w; and w») with a; and a; in an unsupervised manner, as plotted
in Fig. 3.2(b). The first period (a1 = a» = 25 Hz) explains a simultaneous increase in
wi and w, due to the equally high firing rates. However, the different rates in the
second period (a1 = 25 Hz; a, = 5 Hz) bifurcate w; and w, such that N1 with the
higher rate gains weight while N2 loses weight. Alternating the rates (a1 = 5 Hz; a»
= 25 Hz) in the third period reverses the directions of the weight changes. Note that

this learning condition recalls the monocular deprivation experiment that backs the
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seminal Bienenstock—Cooper—Munro (BCM) rule [27, 28]. The result highlights
rate-dependent learning (the higher the firing rate of a neuron, the more likely that
the synapse with a postsynaptic neuron strengthens) in agreement with the Hebbian
learning. However, unlike the basic Hebb’s rule, competition between the two
presynaptic neurons is induced even without explicit weight normalization, as
identified by the constant sum of the weights in the second and third periods in Fig.
3.2(b). This feature highlights the key advantage of the LbAP algorithm, which
enables weight normalization without access to global data unlike other
normalization algorithms, e.g., heterosynaptic depression [29], Oja rule [30], and

subtractive normalization [1].

The LbAP algorithm captures the temporal configuration of individual presynaptic
and postsynaptic spikes. A presynaptic spike closely preceding a postsynaptic spike
likely boosts a bAP at the dendritic spine, yielding LTP. In addition, using the LbAP
algorithm, a pair of presynaptic and postsynaptic neurons that most frequently fire
spikes in close succession (a presynaptic spike preceding a postsynaptic spike) is
distinguished from the other pairs. For instance, consider a toy network of three
presynaptic neurons (N1-N3) and a postsynaptic neuron (N4) in Fig. 3.2(c). One
spike at a time is elicited from one of the three presynaptic neurons following a given
sequence (1,4,2,4, 1,4, 3,4) repeated 10 times (Fig. 3.2(d)). Events from N1, N2,
N3, and N4 are denoted by 1, 2, 3, and 4, respectively. A supervision signal (external
current) is applied to N4 to manipulate the temporal configuration of pre and
postsynaptic spikes. In the sequence (1, 4, 2,4, 1, 4, 3, 4)x10, N1 is most frequently
paired with N4 (20 times) so that the synapse between N1 and N4 gains weight,
whereas the other synapses undergo LTD, as shown in Fig. 3.2(e). The temporal
order of spikes (a presynaptic spike preceding a postsynaptic spike in close
succession) likely indicates the causality between the presynaptic postsynaptic
events because a cause should precede its effect. However, the opposite order likely
undermines the causality. Therefore, this example identifies the LbAP algorithm as
an identifier of statistical causality between individual spikes, highlighting its

suitability for spike-based learning.
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Figure 3.2. LbAP learning rule with rate and temporal codes. (a) Example of a
neuronal configuration where the LbAP learning rule drives activity-dependent
competition between the two presynaptic neurons N1 and N2, which share the same
postsynaptic neuron N3. N1 and N2 emit Poisson spikes at activities of a; and aa,
respectively. (b) Evolution of weights w; and w» in response to a; and a», which differ
for the three periods: 0-0.5 s, 0.5-1 s, and 1-1.5 s. The gray line denotes the sum of
wi and wy. (¢) Example of a configuration where the LbAP learning rule drives
competition between N1, N2, and N3, depending on the temporal correlation
between a presynaptic and postsynaptic spike. A supervision signal applies to the
postsynaptic neuron N4 to define the temporal correlation. We set uqmi, ta,m2, and
Wmax t0 0, 1 mV, and 1, respectively. The firing threshold us . was fixed to 2.5 mV. (d)
A spike sequence of (1, 4, 2, 4, 1, 4, 3, 4), where each number denotes the index of
aneuron spiking at a given time. We set At; and Az to 20 ms and 30 ms, respectively.
(e) Evolution of weights wi, w2, and w3 in response to the spike sequence repeated
ten times. Neuron N1 wins N2 and N3 because the unit sequence includes two 1-4
pairs, whereas both 2-4 and 3-4 pairs appear once. We set uq,mi, Udm2, and Wmax to 50
uV, 1 mV, and 0.8, respectively. The neuronal parameters for both simulations are
listed in Table 3.1.
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3.2.3. Training method and capabiltiy evaluation in detail

The n-SPSNN (m-(nxm)-h-m) was trained for a single-step prediction, given the
n previous elements in a sequence. As training data, we employed /-long random
sequence data (x1, x2, ..., x;), where x; was randomly chosen from set S (= {s1, s2, ...,
sm}) with equal probability. Note that / and m are measures of complexity in the
training data. Each element in the sequence was sampled every Af. and subsequently
encoded as a one-hot vector. Responding to the “1”” in the one-hot vector, the input
neuron in the corresponding sub-network in Fig. 3.1 fires periodic spikes at ao (=50
Hz). A supervised learning framework was used to train the n-SPSNN as a whole;
the actual element on the present time step was considered as the correct response to
the n previous elements. Accordingly, the weights w; and w, were ad hoc updated
every time step. The correct element was encoded as a one-hot vector (supervision
signal) and applied to the output layer in sync with the nth input element of the »
previous elements. The supervision signal was a train of periodic current pulses at
ao; each pulse sufficed to evoke a spike from the neuron. Thus, periodic spikes at ao
were elicited from the output neuron, which drove the update of w,. Unsupervised
learning trained the weight matrix w; because a desired spiking pattern of hidden
neurons was unknown unlike training the weight matrix w,. Nevertheless, both
unsupervised and supervised learning were performed within a unified framework
based on the LbAP algorithm. The weight matrix w; was loaded with random values
(0 <wjj <Wmayx1) initially. To avoid unwanted preset connections to the output neurons,
the weight matrix w, was loaded with constant values (0.2). Note that the lateral
inhibition weights for both hidden and output layers were invariant through learning.
The n-SPSNN was trained with the same sequence data repeatedly until saturation
of the single-step prediction accuracy. The parameters in Table 3.1 were used for the

simulation results, unless otherwise stated.

A single-step prediction result was determined from output neuronal spikes in a
time step. Training generally hinders output spikes from multiple neurons in a given
time step, and hence, the index of a single active neuron was encoded as a one-hot
vector of a predicted element. Otherwise, the neuron index of the largest activity was

considered to output a predicted element. The accuracy of single-step prediction was
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evaluated by applying the training sequence to the n-SPSNN without a supervision
signal and by comparing the actual output with the correct output. For instance, if an
n-SPSNN trained with an /-long sequence makes correct predictions x times, its
single-step prediction accuracy is x/(/ - n), where n is in the denominator because the

first n elements are ignored considering the working principle of the n-SPSNN.
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Table 3.1. Parameters for n-SPSNN.

Symbol Explanation Value
Usth Threshold for spikes 10 mV
Ud th1 Threshold for LTD 0.05 mV
Ud 2 Threshold for a bAP boost 1 mV
Upeset Maximum hyper-polarized potential 10 mV
uy Rest potential at soma 0
ts Postsynaptic current time constant at the soma 15 ms
to Postsynaptic potential time constant at the soma 20 ms
td Postsynaptic current time constant at the dendrite 15 ms
td Postsynaptic potential time constant at the dendrite 20 ms
€o Pre-exponential factor 0.0243
Ko Pre-exponential factor 0.162
jext An externally injected current 1 mA
Wrnax Maximum weight for sub-networks-to-hidden layer 0.25
Wnax2 Maximum weight for hidden layer-to-output layer 0.75
o Synaptic permanence increment 0.03
b Synaptic permanence decrement 0.03
ao Input activity 50 Hz
Ataxi Axonal delays in synaptic chain 100 ms
At Axonal delays for the sub-networks-to-hidden layer 20 ms
Atas Axonal delays for the hidden layer-to-output layer 20 ms
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3.3. Results

3.3.1. Sequene-prediction capacity

Fig. 3.3 compares the spiking pattern of a fully trained 20-(4%20)-40-20 SPSNN
with that of an untrained SPSNN. We used a sequence of (1, 2, 3, ..., 20) (/= 20; m
=20;S=1{1,2,...,20}), where each element was sampled every Az. (=100 ms). Fig.
3.3(a) shows the response of the fully trained SPSNN to the training sequence,
identifying the capability of single-step predictions, unlike the untrained SPSNN in
Fig. 3.3(b). The output spikes are delayed for one time-step because of the EPSC
integration rate of the used neuron model. The delay is shown in Fig. 3.3(c), where
the present input element and the output spikes responding to the element on the
previous time step are present on the same time step. The first nth elements in the
training sequence cannot be predicted correctly because the n-SPSNN needs n
previous elements to predict the following element. Nevertheless, this 4-SPSNN can
predict the fourth element based on the first three elements for this specific learning

as in Period 1 shown in Fig. 3.3(a).

To identify the sequence-prediction capacity of the proposed n-SPSNN, we
analyzed the prediction accuracy of an m-(nxm)-h-m SPSNN by varying the number
of hidden neurons (%) and the length of a training sequence. Fig. 3.4(a) shows the
measured single-step prediction accuracy with respect to / for 2-, 4-, and 6-SPSNNs
trained with random sequences (/= 100; m = 20). The data are provided in Table 3.2.
The accuracy tends to increase with the number of hidden neurons until its saturation
with approximately 200 hidden neurons. The accuracy for the 4-, and 6-SPSNNs
reaches approximately 0.99, whereas the maximum accuracy for the 2-SPSNN is
approximately 0.89. This result indicates that the number of hidden neurons is a key
parameter for single-prediction capacity. Considering the negligible difference in
maximum accuracy between 4- and 6-SPSNNs, 7 is fixed to 4 hereafter. For the 2-

SPSNN, the bAP-boost threshold of a hidden neuron uﬁrthz was set to 0.5 mV (cf.
a u(’]{’th2 of 1 mV in Table 3.1) because two simultaneous spikes from the sub-

networks fail to elevate the dendritic potential of hidden neurons above 1 mV.
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The optimal number of hidden neurons offers the maximum accuracy (~1) at
minimal SynOps. Fig. 3.4 reveals the rule of thumb that /4 (>2/) leads to an accuracy
of approximately unity; therefore, 4 (=2/) appears to be the optimal number. This
rule of thumb is underpinned by Fig. 3.4(b), which shows the prediction accuracy of
20-(4%20)-h-20 SPSNNs (4 = 200, 500, 1000, and 2000) with respect to sequence
length (/ = 100, 200, 500, and 1000; m = 20). The rule that # (>2/) leads to the
maximum accuracy (~1) holds for the data in Fig. 3.4(b). The data in Fig. 3.4(b) are
provided in Table 3.3.

We trained a 6-SPSNN on the Nottingham dataset (1200 British and American
folk tunes). For each tune, we used its monophonic melody only, which was
discretized as 26 notes according to pitch height. The note on a given time step was
encoded as a one-hot vector and input into the input layer (26 neurons). The time bin
size was set to 100 ms, so that each tune was subject to periodic sampling every At.
(=100 ms). This preprocessing yielded training sequences (62 </ < 192; m = 26) with
heterogencous length. The response of the 26 input neurons to a random tune is

shown in Fig. 3.5(a).

To evaluate the sequence-prediction capacity, we trained a 26-(6%26)-4-26
SPSNN on the tunes (randomly sampled from the dataset and preprocessed as
explained) by varying the number of sampled tunes. Fig. 3.5(b) shows the prediction
accuracy of two SPSNNs (4 = 1000 and 2000) with the number of sampled tunes.
For a single tune, the accuracy of both cases for one sequence is above 0.98. However,
it decreases with the number of the trained sequences. For 20 sequences, the accuracy
reaches approximately 0.86 for & = 2000, whereas that for 2 = 1000 is approximately
0.72.
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Figure 3.3. Spiking sequence before and after learning. (a) Spiking sequence of a 20-
(4%20)-40-20 SPSNN for output neurons (upper panel) and hidden neurons (lower
panel) in response to an input sequence of (1, 2, 3, ..., 20), which is identical to
training data. The spiking sequence of output neurons became associated with the
training sequence in contrast to the untrained SPSNN shown in (b). (¢) Spiking
behavior of output neurons in Period 2 in (a), highlighting the capability of single-

step predictions
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Figure 3.4. The single-step prediction accuracy. (a) Single-step prediction capability
of'a 20-(nx20)-h-20 SPSNN with respect to the number of hidden neurons 4 for three
different n values (2, 4, and 6). The SPSNN was trained using a random sequence (/
=100; m =20). Each accuracy value was evaluated from ten trials; each trial includes
a training period with a different random sequence and subsequent accuracy
evaluation period. (b) Accuracy of a 20-(4x20)-4-20 SPSNN with varying training
sequence length / (m = 20) for different % values.
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Table 3.2. Single-step prediction Accuracy with respect to the number of hidden

neurons 4 for three different n values (2, 4, and 6).

Sequence length / Network Accuracy
100 20-(2%20)-50-20 0.295 +0.0758
100 20-(2%20)-100-20 0.614+0.135
100 20-(2x20)-200-20 0.898 +0.0292
100 20-(2%20)-500-20 0.886 + 0.0307
100 20-(4x20)-50-20 0.324 +0.0427
100 20-(4%x20)-100-20 0.646 +0.0798
100 20-(4%20)-200-20 0.994 +0.00728
100 20-(4x20)-500-20 0.998 + 0.00439
100 20-(6x20)-50-20 0.338 £0.0578
100 20-(6x20)-100-20 0.589+£0.112
100 20-(6%20)-200-20 0.989 + 0.0270
100 20-(6%20)-500-20 1
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Table 3.3. The single-step prediction accuracy with varying training sequence length

[ (m = 20) for different /4 values.

Sequence length / Network Accuracy
100 20-(4x20)-200-20 0.994 + 0.00728
100 20-(4%20)-500-20 0.998 + 0.00439
100 20-(4%20)-1000-20 0.997 + 0.00503
100 20-(4x20)-2000-20 0.978 £0.0143
200 20-(4%x20)-200-20 0.576 £ 0.0733
200 20-(4%20)-500-20 0.999 + 0.00215
200 20-(4%20)-1000-20 0.999 + 0.00215
200 20-(4x20)-2000-20 0.989 + 0.00627
500 20-(4%20)-200-20 0.174 £0.0184
500 20-(4%20)-500-20 0.441+0.0913
500 20-(4%20)-1000-20 0.987 +0.00512
500 20-(4%20)-2000-20 0.995 +0.00343
1000 20-(4x20)-200-20 0.0519+£0.0168
1000 20-(4%20)-500-20 0.174 £ 0.0368
1000 20-(4%20)-1000-20 0.403 + 0.0689
1000 20-(4%20)-2000-20 0.972 £ 0.0131
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3.3.2. Associative recall (sequence-to-sequence prediction)

The high accuracy of single-step prediction of the n-SPSNN offers the basis for
associative recall (sequence-to-sequence prediction). For associative recall, the n-
SPSNN architecture is modified such that feedback from the output to the input layer
is employed to pass the prediction result on to the input. An advantage is that the
output result (one-hot vector) can be applied to the input layer without additional
encoding. To identify associative recall capability, we repeatedly trained a 20-
(4x20)-40-20 SPSNN without feedback using the sequence (1, 2, 3, ..., 20) (/ = 20;
m = 20). An associative recall test with the feedback followed every training epoch;
associative recall was triggered by applying the first four elements of the sequence.
Fig. 3.6 shows the progress of associative recall with the repetition of training. The
20-(4%20)-40-20 SPSNN eventually succeeds in recalling the whole sequence after

repeating training four times.
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Figure 3.6. Associative recall. Associative recall capability of a 20-(4x20)-40-20
SPSNN after the (a) first, (b) second, (¢) third, and (d) fourth training epoch. The
training sequence was (1, 2, 3, ..., 20) (/= 20; m = 20; At. = 100 ms). For each case,

the associative memory was triggered by the initial four elements (1, 2, 3, 4) of the
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3.3.3. Robustness of learning and inference to variability in sequence

Considering that real-world sequences include many imperfections, e.g., typo and
noise, sequence-learning hypotheses need to make correct predictions despite the
presence of imperfections. In this regard, the robustness of the n-SPSNN to errors in
input encoding was examined. A 4-SPSNN [20-(4%20)-200-20] was trained using a
random sequence (/ = 100; m = 20), and its single-step prediction accuracy was
measured with a test sequence that is identical to the training sequence but with a
few different elements from the training sequence. They were chosen randomly. The
different elements indicate errors in input encoding; their number x defines the error
rate as x/I. We evaluated the average prediction accuracy for a given error rate in the
range 0—0.25 on 20 trials. Fig. 3.7(a) shows a linear decrease in accuracy with error
rate, reaching approximately 0.62 at the maximum error rate (0.25). The results are
compared with the error-tolerance of an LSTM and GRU, which are state-of-the-art
sequence learning hypotheses. The LSTM and GRU used for this comparative study
are elaborated in Appendix 3.5. Similar to the 4-SPSNN, the LSTM and GRU
undergo the degradation of prediction accuracy with error rate. However, their
degradation rates are faster than that of the 4-SPSNN, insomuch as the accuracy for
the LSTM and GRU reaches approximately 0.54 and 0.53, respectively, with an error
rate of 0.25 (Fig. 3.7(a)). This comparison ensures a large tolerance of encoding error
for the n-SPSNN trained with the LbAP algorithm compared to the state-of-the-art

sequence learning hypotheses.

Prediction-robustness to variability in input-encoding delay is the key to the
application to asynchronous neuromorphic hardware. To identify this robustness, a
20-(4x20)-200-20 SPSNN was trained using a sequence (/ = 100; m = 20) with
constant Az, (=100 ms), and its single-step prediction accuracy was investigated with
the same sequence but with randomly varying Af. over the sequence. The delay in
input-encoding At, was sampled from a Gaussian distribution function, which is
centered at Az. (=100 ms) with a standard deviation of o, i.e., Ati~N(Ate, o). The
delay was sampled for every interval over the test sequence. The standard deviation
o is a measure of the variability in input-encoding delay. The measured prediction

accuracy with the standard deviation is shown in Fig. 3.7(b). The accuracy tends to

40 .:I ] .



decrease with the standard deviation because the difference in input-encoding delay
between the training and test sequences becomes larger with the standard deviation.
Nevertheless, an accuracy of approximately 0.77 is maintained even with a standard
deviation of 25 ms (25% of the center value). All data in Fig. 3.7 are provided in
Table 3.4.
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Figure 3.7. Tolerance of the SPSNN to errors in input sequences. (a) Robustness of
single-step prediction for a 20-(4x20)-200-20 SPSNN to variability in elements in
an input sequence (/ = 100; m = 20) in comparison with LSTM and GRU. (b)
Degradation of prediction accuracy for the same SPSNN with respect to variability

in input sampling period (At).
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Table 3.4. Tolerance to errors in input sequences and variability in input sampling

period.
Network
Error rate SIZ?:;ECZe 20-(4;1%(8?\}%\? 0-20 LSTM GRU
0 100 0.994 +0.00728 1 1
0.05 100 0.913 £0.0275 0.874 £0.0196 0.880=+0.0240
0.1 100 0.838 £0.0294 0.770 £0.0306  0.784 +0.0479
0.15 100 0.769 £ 0.0287 0.693+£0.0383  0.685+0.0427
0.2 100 0.692 £+ 0.0267 0.598 £0.0441 0.606 +0.0323
0.25 100 0.615+0.0218 0.541£0.0353  0.527 £0.0562
s.d. of
At (ms)
0 100 0.994 £ 0.00728 - -
5 100 0.967 £ 0.0235 - -
10 100 0.939 +0.0307 - -
15 100 0.873 £0.0440 - -
20 100 0.818 £0.0421 - -
25 100 0.774 £ 0.0605 - -
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3.3.4. Learning efficiency

Energy-efficient learning is an important attribute of a learning algorithm
embedded in neuromorphic hardware [5, 12]. In this regard, a high learning rate is
beneficial to energy-efficient learning, reducing the number of operations that
significantly consume power. The SynOps is such an operation, which indicates a
single update on a neuronal membrane potential upon an event. Therefore, the
number of SynOps required for successful learning is a direct measure of energy-
efficiency in learning. This quantity was evaluated for a 20-(4x20)-2000-20 SPSNN
learning sequences of different lengths (20 </ < 1000; m = 20). Success in learning
was defined by prediction accuracy above 0.97, and hence, the iterative training
terminated when an accuracy of 0.97 was reached. The results are plotted in Fig.
3.8(a). The number of SynOps increases with the sequence length because a longer
training sequence needs more ad hoc updates over the whole sequence, which

inevitably increases SynOps.

We compared the required number of SynOps for successful learning with the
required number of multiply-accumulate (MAC) operations for an LSTM and GRU.
As for the SPSNN, both LSTM and GRU were trained using sequences of different
lengths (20 </ < 1000; m = 20), and the training terminated when the single-step
prediction accuracy reached 0.97. Details of the LSTM and GRU are provided in
Appendix 3.5. The evaluation results are co-plotted in Fig. 3.8(a), highlighting the
efficient learning for the SPSNN with approximately two orders of magnitude fewer
energy-consuming operations. The efficiency in learning is attributed to the fast
learning rate facilitated by the LbAP algorithm, which is identified by monitoring
the evolution of prediction accuracy with the number of training iterations (epochs).
As shown in Fig. 3.8(b), a 20-(4x20)-2000-20 SPSNN trained using a random
sequence (/= 1000; m = 20) achieves its maximum accuracy (~0.98) in five training
iterations, while the LSTM and GRU needs approximately two orders of magnitude
more iterations. This comparison indicates the fast learning rate of the LbAP
algorithm. In the SPSNN, hidden neurons compete through lateral inhibition and
work as unique subsequence detectors. This unsupervised learning with winner-

takes-all results in fast learning speed. Moreover, the learning rate is independent of
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the network size (here, the number of hidden neurons) and sequence length / as
shown in the comparison with a 20-(4x20)-20-20 SPSNN trained using a random
sequence (/=10; m =20) (Fig. 3.8(b)). The smaller network could learn the sequence
with four iterative training steps, identifying a non-scaling learning rate with both

network size and sequence length.
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Figure 3.8. Efficiency in learning. (a) Number of SynOps for a 20-(4x20)-2000-20
SPSNN until a prediction accuracy of 0.97 with respect to sequence length (20 </ <
1000; m = 20). LSTM and GRU are compared with the SPSNN in terms of the
number MAC operations required to reach the same prediction accuracy (0.97). (b)
Single-step prediction accuracy evolution for a 20-(4x20)-2000-20 SPSNN, LSTM,
and GRU with the number of training iterations. They were trained using random
sequences (/ = 1000; m = 20). For comparison, the same data for a 20-(4x20)-20-20
SPSNN trained using a random sequence (/ = 10; m = 20) are co-plotted.
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3.4. Conclusion

We proposed an SNN architecture suitable for single-step prediction given n
previous elements in a training sequence, referred to as n-SPSNN. The key to the nth
order sequence prediction is the sub-networks of synaptic chains that serve as
working memory. This n-SPSNN architecture can learn sequences of various lengths
using the LbAP algorithm as a unified learning framework. The LbAP algorithm is
a postsynaptic event-driven learning algorithm of locality; each synapse involves a
single local state variable (dendritic potential) so that memory usage is minimal. The
competition between synapses with the same postsynaptic neuron is facilitated by
the LbAP algorithm, which realizes effective weight normalization using local state
variables only. The LbAP algorithm endows the n-SPSNN with the capabilities of

single-step prediction and associative recall.

The sequence prediction robustness to variability in the test sequence element
highlights its high tolerance to errors in input encoding, which is higher than the
state-of-the-art sequence learning hypotheses LSTM and GRU. The n-SPSNN also
offers the sequence prediction robustness to variability in intervals between
neighboring elements, implying high tolerance to random changes in input-encoding
delay. The efficiency in learning is another advantage of the n-SPSNN with the LbAP
algorithm. The learning is completed in a few iterations. The iteration number
necessary for success in learning hardly scales with the network size and sequence
length; therefore, the LbAP algorithm can train large-scale SNNs in an energy- and

time-efficient manner.

Nevertheless, the learning capacity of the n-SPSNN is limited mainly by (i) the
use of one-hot coding for input (extremely sparse coding) and (ii) the limited number
of hidden neurons 4. The former limits the number of symbol representations for a
given network setting. Therefore, dense coding is desired to improve the learning
capacity of a given n-SPSNN, which we leave as a future work for the moment.
Considering the latter, the optimal number of hidden neurons % for successful
learning scales with sequence length / such that # = 2/. The number of learnable

sequences with different lengths is also determined by this rule; the entire length of



the concatenated sequences should satisfy this rule. Therefore, the network should
be preset appropriately considering the complexity of the sequences that the n-

SPSNN is trained on.
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3.5. Appendix

Appendix I. Multi-compartment neuron model

Multi-compartment neurons were employed in the hidden and output layers in the
n-SPSNN; each neuron is with a soma and multiple dendritic spines. Accordingly,
somatic and dendritic potentials were evaluated separately. The somatic potential of

neuron i (u]) was evaluated using the SRM [2] expressed as
ui(t) =nt—t) +X;w; Xre(t — tj(f)) + fooo k(S)IFF(t —s)ds, (3.2)

where £;, wy, and tj(f ) denote the last spike time of neuron i, the weight of the
synapse between neurons j and i, and the /@ spike time of neuron j, respectively. A
refractory period and leaky integration of postsynaptic current are realized by the

kernels n and €, respectively. An externally injected current into neuron i for

supervised learning is denoted by I£*¢.
S S t
N(t) = —(Upeser — Ur)exp(— tT)G)(t) (3.3)
m
t t
e(t) = eo [exp (~ ) — exp(~ D] (D), (3.4)
k(t) = Ko exp (— é) o(t), (3.5)

where uj.s; and wu; are the most hyperpolarized membrane potential
(immediately after spiking) and the resting potential at the soma, respectively. At the
soma, the postsynaptic current and potential decay exponentially with time constants
of t; and t;,, respectively. The pre-exponential factors €, and x, are positive
constants. The somatic membrane potential exceeding a threshold for spiking fires a

spike, and the potential is evaluated on the next time step with the updated ¢£;.
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The SRM applied to the dendritic potential evaluation. However, because no
dendritic spikes are allowed, the first term on the right-hand side of (3.2) is ruled out.
Furthermore, because supervision current pulses are applied to the soma only, the
last term on the right-hand side of (3.2) is excluded. The same kernel in (3.4) was
used but with the parameters t¢ and t% instead of t$ and t3,. The replacement
considers different responses of postsynaptic current and membrane potential to
presynaptic spikes for a soma and dendritic spine, based on physiological
observations [16, 31]. The neuronal parameters used in this study are listed in Table

4.1.
Appendix II. Training RNN with LSTM and GRU layer

For the LSTM and GRU experiment, we trained a two-layer neural network with
a recurrent unit. The first layer is the LSTM or GRU layer with 40 units and the
second layer is a dense layer with 20 output neurons. Training employed categorical
cross-entropy as a loss function and the Adam optimizer with a learning rate of 0.001.
To realize nth order prediction, n-long subsequences were taken as inputs and
encoded as an m-long real-valued vector (0—1) using a real-valued dense distributed
representation. The output was an m-long vector that indicates a predicted element
given a subsequence including n preceding elements. During training, a desired
output was encoded as a one-hot vector with which the weights were updated ad hoc,

i.e., online learning.

50 ¥,



3.6. Bibliography

(1]

(2]

(3]

(4]

[3]

(6]

[7]

[10]

[11]

[15]

P. Dayan and L. F. Abbott. London: The MIT Press, 2001.

W. Gerstner and W. M. Kistler. Cambridge University Press, 2002.

D. S. Jeong, Journal of Applied Physics, vol. 124, no. 15, p. 152002, 2018.
M. Pfeiffer and T. Pfeil, Frontiers in neuroscience, vol. 12, p. 774, 2018.

E. O. Neftci, iScience, vol. 5, pp. 52-68, 2018.

M. Davies et al., IEEE Micro, vol. 38, no. 1, pp. 82-99, 2018.

P. A. Merolla et al., Science, vol. 345, n0. 6197, pp. 668-673, August 8, 2014.

A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida,
Neural Netw., vol. 111, pp. 47-63, 2019.

P. O'Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, Front.
Neurosci., Original Research vol. 7, no. 178, 2013.

H. Mostafa, IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7, pp. 3227-
3235, 2018.

S. K. Esser et al., Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 41, pp. 11441-
11446, 2016.

V. Kornijcuk and D. S. Jeong, Advanced Intelligent Systems, 2019.

E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, Front. Neurosci.,
Original Research vol. 11, p. 324, 2017-June-21 2017.

S. Hochreiter and J. Schmidhuber, Neural computation, vol. 9, no. 8, pp.

1735-1780, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, arXiv preprint

arXiv:1412.3555, 2014.
51 I ] _l.l_":



[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

P. J. Sj6strom and M. Hausser, Neuron, vol. 51, no. 2, pp. 227-238, 2006.

S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, Proc. IEEE, vol. 102,
no. 5, pp. 652-665, 2014.

N. Q. S. Moradi, F. Stefanini, G. Indiveri, IEEE Trans. Biomed. Circuits Syst.,
vol. 12, pp. 106-122, 2018.

P. J. Sjostrom, G. G. Turrigiano, and S. B. Nelson, Neuron, vol. 32, no. 6, pp.
1149-1164, 2001.

J. Lisman, Proc. Natl. Acad. Sci., vol. 86, no. 23, pp. 9574-9578, December
1, 1989.

C. Hansel, A. Artola, and W. Singer, European Journal of Neuroscience, vol.

9, no. 11, pp. 2309-2322, 1997.

K. Cho, J. P. Aggleton, M. W. Brown, and Z. 1. Bashir, J. Physiol., vol. 532,
no. Pt 2, pp. 459-466, 2001.

S. Song, K. D. Miller, and L. F. Abbott, Nat. Neurosci., 10.1038/78829 vol.
3, no. 9, pp. 919-926, 2000.

R. C. Froemke and Y. Dan, Nature, 10.1038/416433a vol. 416, no. 6879, pp.
433-438, 2002.

E. M. Izhikevich and N. S. Desai, Neural Comput., vol. 15, no. 7, pp. 1511-
1523, 2003.

E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs,
Front. Neurosci., Original Research vol. 7, no. 272, 2014.

E. Bienenstock, L. Cooper, and P. Munro, J. Neurosci., vol. 2, no. 1, pp. 32-
48, 1982.

L. N. Cooper and M. F. Bear, Nat. Rev. Neurosci., 10.1038/nrn3353 vol. 13,
no. 11, pp. 798-810, 2012.
52 I ] _l.l_":



[29]

[30]

[31]

I. R. Fiete, W. Senn, C. Z. H. Wang, and R. H. R. Hahnloser, Neuron, vol. 65,
no. 4, pp. 563-576, 2010.

E. Oja, Journal of Mathematical Biology, vol. 15, no. 3, pp. 267-273, 1982.

J. C. Magee, Nat Rev Neurosci, 10.1038/35044552 vol. 1, no. 3, pp. 181-190,
2000.

53 ;\_'! _-:I:_ 1-15 B
1 = )



4. eWB: Event-based weight binarization algorithm

for spiking neural networks

4.1. Introduction

There has been growing interest in fast, efficient, and compact neuromorphic
computing for high-performance processing of large amounts of data for on-chip
learning. Spiking neural networks (SNNs) are a promising model for energy-efficient
neuromorphic computing [1-3]. Their energy efficiency is mainly due to the sparse
event-based asynchronous data processing and learning weights, as opposed to the
case for deep neural networks (DNNs), which utilize error-backpropagation
algorithms (BP) for layer-wise synchronous weight updates in dedicated learning
phases [1]. Further efficiency improvements are gained when SNNs are implemented
on dedicated neuromorphic hardware [4, 5]. To date, several event-based learning
algorithms have been proposed, including STDP [6-8], eRBP [9], sequence-
predicting SNN [10], ReSuMe [11], tempotron [12], and Spikeprop [13]. However,
because most of these event-based algorithms use multi-bit weights, their hardware
implementation requires large on-chip memory capacity and intensive computing
power, which degrades their energy efficiency. Weight quantization has been
considered to address this issue, for example, in recent STDP-based algorithms with
quantized weights [7, 8, 14-16]. However, achieving a competitive classification
accuracy commonly requires (i) a large number of trainable parameters, especially
those related to hidden neurons, (ii) an inhomogeneous learning framework to

consider BP and STDP separately, and (iii) multi-bit weights for output evaluation.

Learning binary weights is an extreme case of weight quantization. The use of 1-
bit weights significantly reduces on-chip memory usage considering the O(n?)
memory complexity of synapses. Additionally, the leaky integrate-and-fire (LIF)
model and its variations involve the multiplication of weights and low-pass filtered
spikes [17]. Thus, learning binary weights avoids multiplication and significantly

reduces power consumption and processing time.

To this end, we propose an event-driven weight binarization (eWB) algorithm to
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learn binary weights (-1, 1) in an event-based manner. The eWB algorithm uses the
Lagrange multiplier method (LMM) based on a Lagrange function that combines a
conventional loss function and constraints on binary weights. Each synapse is given
a binary weight constraint function and a Lagrange multiplier. The binarization of
each weight is independent of the variables in the other synapses. This ensures the
locality of eWB. Because a conventional loss function is also used, eWB is not a
standalone learning algorithm. Instead, it requires an additional event-based
supervised learning algorithm based on a loss function such as eRBP. As a proof of
concept, we combine eWB and eRBP (eWB-eRBP) to train fully connected
multilayer SNNs on MNIST. The results demonstrate successful weight binarization

at the cost of an accuracy reduction by approximately 1.85%.

4.2. eWB algorithm
4.2.1. Lagrange multiplier method

LMM is a strategy to solve general nonlinear nonlinear programming problems
(NLPs) [19]. An NLP is an optimization problem whose optimal solution is
determined by constraints in conjunction with a nonlinear objective function. In the
minimization problem, a general continuous equality-constrained NLP can be stated

as
minimize [(w); w = [wy, wy, -+, wy]

subjectto g(w) =0; g = [g1,92, "> Im)-

The LMM calculates the local maxima or minima of the objective function within
the given equality constraints. The Lagrange function L for the objective function /

and constraints g is expressed as

Lw,2) =lw)+21-g(w), 4.1)
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where A(= [A4,43,-+,4,,]) is a vector of Lagrange multipliers with one
multiplier for each of the m constraints. If w" is a local extremum point of the

objective function /(w) subject to g(w) = 0, the following equalities hold:

{le(w) +A-V,g(w) =0atw’

gw) =0 (42

This optimal solution w" can be calculated from the gradient of Eq. 4.1:
Vwailw,2) =V, [l(w) + 2- gw)] + V4[I(w) + 4 - g(w)].
The condition V,,;L(w,4) = 0 is equivalent to the following conditions:

{Vw[l(W) +i-gwW)]=r,iw)+1:-V,gw) =0
Vallw) +2-gw)] = g(w) =0 '

which are identical to the conditions in Eq. 4.2. Therefore, the optimal point w"

leads to
Vwal(w, 1) = 0. 4.3)

The solution to Eq. 4.3 can be calculated using a basic differential multiplier
method [20], in which the optimal w and 4 are calculated using a gradient descent

and ascent method, respectively, i.e.,

{Wk+1 Stk (4.

lk+1 — lk + TIAQ(WR)

where 7, and 75, are learning rates. Note that this method is compatible with the
BP in DNNS if the model parameters w are updated using a gradient descent method
but with the Lagrange function L rather than the loss function / taken as the objective

function.
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4.2.2. eWB algorithm

The eWB algorithm is based on LMM with binary weight constraints. The key
feature of this algorithm is that the configuration of binary weights over the network
is subject to optimization, unlike common weight binarization methods that force the
weights to assume binary values using particular binarization functions. Because
each synapse is given a binary weight constraint and a Lagrange multiplier, the total
numbers of constraints and Lagrange multipliers are equal to the number of synapses

in the SNNs. Here, we select the binary weight constraint g for a given synapse as
gilw;, t) = (1 - wl-z)si(t), 4.5)

which is zero if w;= +1. We introduce the spike function s;, which yields one

when a presynaptic (or postsynaptic) spike occurs and zero otherwise, and hence
enables event-based asymptotic binarization. The loss function /(w,f) should be

chosen to enable event-based weight updates and satisfy

L _ how,05:(0
an' B W, b)si

where 4 is the product of the backpropagating error and the derivative of

postsynaptic output. The Lagrange function L is given by
Lw,2,6) = lw, )+ ) 44(1 = wP)si(0)
i

Consequently, the weight and Lagrange multiplier are updated upon a presynaptic

(or postsynaptic) spike of synapse w; conforming to Eq. 4.4:

daL

Wi = Wi = 1w 5~
L

oL (4.6)
|4 ditmar
L

These real-valued weights and Lagrange multipliers are stored in the memory for

successive event-based updates. However, during training with eWB, both signal
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forward propagation and error backpropagation use the forced-to-be-binary weights

+1if w; =0

4.
—1 otherwise .7

wp = Sign(w;) = {
This avoids the multiplication of real-valued weights and low-pass filtered spikes
in the LIF model, thereby significantly reducing the computational complexity and,

thus, the power consumption.

4.2.3. eWB-eRBP algorithm

As a proof of concept, we chose eRBP for combination with eWB (eWB-eRBP).
As shown in Fig. 4.1, eRBP is a three-factor rule based on (i) presynaptic events, (ii)
approximated gradients of postsynaptic activation, and (iii) error signals through
random feedback channels [9]. The eRBP algorithm is elaborated in the Appendix
4.6. Accordingly, the loss function / is considered to be the mean-squared difference
between the target and actual outputs. The eRBP algorithm defines the derivative of
the loss function with respect to the weight w;; between the presynaptic neuron j and

postsynaptic neuron i as

al def
awy T;(HOU)s] (t), (4.8)

where T; is a random backpropagation error for the weight update. The gradient of
the postsynaptic activation is approximated by a boxcar function ® with two

transition points (hmin and bmax), which is a function of the synaptic current /;:

1if Byyin < I; < b

4.
0 otherwise (4.9)

o) = {

The spike train of the presynaptic neuron j is denoted by S]-pre. This term allows
weight update upon the occurrence of presynaptic events only; therefore, eRBP is a
presynaptic event-based learning algorithm. We tailor the binary weight constraint

function g to eRBP such that
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g(wij) = A =w@)eu)s ™ ). (4.10)

The modification can be seen by comparing with Eq. 4.5. For compatibility with
eRBP, eWB is also assumed to be driven by presynaptic events. Additionally, we
incorporate the approximated postsynaptic activation gradient ® into the constraint
function. O is included in the constraint function to synchronize the weight update
for reducing the constraint function g with the update for reducing the loss function
/. Otherwise, it may be possible that only the constraint g is reduced during the

weight update, irrespective of the loss function /, especially when ® = 0.

The derivative of the boxcar function ® in Eq. (9) is zero except for the two
transition points (bmin and bmax), which are singular points. Thus, the boxcar function
is non-differentiable. As a workaround, we assume that the synaptic current /; avoids
these transition points when presynaptic events occur, which is highly probable
because the probability of the current being equal to either of the two particular

values is extremely low. Therefore, the following equation holds:

ag
aWij

= —ZWij@(Ii)S]Pre (t) +

ae(1;) aI;
1—w3)sP™ () —L+—~L
( U) ] () al; 0

3y (4.11)
= —ZWUG(Il)SJp (t)

Using Egs. 4.6, 4.8, and 4.11, we evaluate the updates on the weight w;; and the

Lagrange multiplier A;:

oL o, g
Wl] - nw an] - nw aWU Y aWU
= =1y (T; () = 225w )0U)s (£) (4.12)
oL
Al = Mgy, = Mg = m(1-wh)eu)s’ )
ij

As highlighted in the previous section, the weights for the forward paths (to
calculate current input /;) and backward paths (to calculate T;) are forcibly binarized

(Eq. 4.7) to reduce the hardware computing workload.

59 ¥ ] 1



The weights are initialized using the Xavier uniform initialization [21], whereas
the Lagrange multipliers are initialized to zero. We confine each weight to between
-1 and 1 by projecting w to -1 (1) when the updated weight is smaller than -1 (larger
than 1). This weight clipping prevents unlimited weight growth. The eWB-eRBP

algorithm is given in pseudocode in Algorithm 1.

Algorithm 1 eWB-eRBP algorithm.
Initialize w, A
while 7rue do
w? « Binarize(w)
for k & {presynaptic event indices sP"} do
if bpin <1 < bpax then

w « Clip{w — n,,V,, L, —1,1}

A<=21+ NaViL
end if
end for
return wP
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Figure 4.1. SNN architecture for eRBP. The error-coding layer (E) consists of two
error-coding neurons for each label dimension that encode false positive and
negative errors between labels (L) and predictions (P). During training, each of the
hidden (in H' and H?) and prediction (in P) neurons receives random feedback from
the error neurons with fixed random weights (dashed arrows). The input layer is

indicated by I.
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4.2.4. Non-optimal weight binarization algorithm

The defining feature of eWB is the optimization of the binary weight distribution
over the SNN. To highlight the performance of eWB, we compare eWB-eRBP with
eRBP in conjunction with forced-to-be-binary weights conforming to Eq. 4.7,
referred to as fWB-eRBP. Note that fWB stands for forced weight binarization. In
fWB-eRBP, the binary weight distribution is non-optimal, and the real-valued
weights are optimized using the loss function / only. In eWB-eRBP, the real-valued
weights are used for weight update only, and the signal forward propagation and
error backpropagation use the binarized weights given by Eq. 4.7 instead. The fWB-
eRBP algorithm is given in pseudocode in Algorithm 2.

Algorithm 2 fWB-eRBP algorithm
Initialize w
while True do

w? « Binarize(w)

for k & {presynaptic spike indices sP"¢} do

if bpin <1 < bpax then
w < Clip{w — n,V,,f,—1,1}
end if

end for

return wP

4.3. Results

We trained three types of fully connected SNNs (784-4-A-10; & = 200, 500, and
1000) on MNIST. One training epoch consisted of 60,000 full training data that were
selected randomly and input into the SNN. The intensity of each pixel in each hand-
written digit image was encoded as the firing rate of input spikes (10-265 Hz) in
proportion to the intensity. Note that even blank pixels were encoded at 10 Hz to
serve as low-frequency background noise. Each image was shown to the SNN for

200 ms. To avoid interference from the previous training image, all neuronal
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variables were reset to zero before the onset of the current training image. The
classification accuracy was evaluated once every 500 training data using the 10,000
test data. The predicted output was identified by counting the number of spikes from

each output neuron for 200 ms. The parameters used are listed in Table 4.1.

4.3.1. Classification accuracy

We used the three aforementioned algorithms (eRBP, eWB-eRBP, and fWB-eRBP)
to train the three SNNs (784-h-h-10; h =200, 500, and 1000). The final classification
accuracy for each case was measured after the 25th training epoch (Table 4.2). For
all three algorithms, the 784-1000-1000-10 SNN achieved the best accuracy. The
accuracy evolution of this SNN for each algorithm is shown in Fig. 4.2. It is noted
that weight binarization using either algorithm results in the loss of classification
accuracy. Nevertheless, eWB-eRBP outperforms fWB-eRBP in terms of the loss for
all SNNs. For example, for 784-1000-1000-10, the losses for eWB-eRBP and fWB-
eRBP are 1.85% and 2.43%, respectively. This highlights the importance of optimal
weight binarization for inference. Fig. 4.2 also shows that the fluctuations in
accuracy over the inference period for eWB-eRBP are negligible compared with
those for fWB-eRBP. This stability results from eWB asymptotically driving the
real-valued weights toward the binary weights during training. Thus, the forced-to-
be-binary weights conforming to Eq. 4.7 that are used for inference negligibly alter
the accuracy over successive inference periods, particularly when the weights are

close to binary values.
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Table 4.1. Parameters for simulations.

Symbol Explanation Value

Ny Number of data neurons 784

N Number of hidden neurons 200,500,1000
M Number of label neurons 10
Ng+ Number of positive error neurons 10

NE. Number of negative error neurons 10

N, Number of prediction neurons 10
Trefi Refractory period 4 ms
Topn Synaptic time constant 4 ms
gav Leak constant state V' 1 nS
gu Leak constant state U 5nS

C Membrane capacitance 1 pF
Vin Threshold for spikes 1.1V
wh Fixed weight 1 nA

bumin, Bimax Boxcar function constants -25,25nA

7 Learning rate 2e*

7 Lagrange multiplier step-size parameter 2¢”’
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Table 4.2. Classification accuracy on the MNIST dataset for e(RBP, eWB-eRBP, and
fWB-eRBP after 25 epochs.

Classification accuracy (%)

Network eRBP eWB-eRBP fWB-eRBP
784-200-200-10 96.32 93.81 93.59
784-500-500-10 96.92 95.05 94.50

784-1000-1000-10 97.20 95.35 94.77
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4.3.2. 'Weight binarization

To evaluate the degree of weight binarization during training, we introduce a

]RNXM

constraint failure score (CFS) for a real-valued weight matrix w € as

follows:

1 N Moo
CFS = 1 ——Z Z 2
NM £aj=1 £aj=1q Wi

Therefore, when all weights are binarized, the CFS equals zero. We monitored the
change in CFS over the training epoch (using eWB-eRBP or fWB-eRBP) for the
784-1000-1000-10 SNN. There are three weight matrices: w™ (between the first
hidden layer and the input layer), w" (between the second and first hidden layers),
and w® (between the output layer and the second hidden layer). The changes in CFS
for these matrices are shown in Figs. 4.3(a), (b), and (c), respectively. The CFS for
eWB-eRBP asymptotically decreases to zero, ensuring successful weight
binarization. For eWB-eRBP, the distributions of the trained real-valued weights in
the weight matrices w"), w®", and w" are plotted in Figs. 4.3(d), (e), and (f),
respectively. These distributions are compared with the distributions of the initial
weights. Considering a weight w (jw| > 0.9) to be fully binarized, the proportions of
such fully binarized weights are 84.7%, 53.9%, and 72.9% in w"), w™_ and w",
respectively. The main cause of imperfect binarization is discussed in the following
section. In contrast, the weight distribution for fWB-eRBP is rather diffusive over
the entire weight range [Figs. 4.3(g)—(i)]. Consequently, the proportions of fully
binarized weights after training are 30.0%, 27.1%, and 18.0% for w", w®®_and w",

respectively.
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Figure 4.3. Weight distribution of eWB-eRBP and fWB-eRBP for w (between the
first hidden layer and input layer), w"® (between the second and first hidden layers),
and " (between the output layer and the second hidden layer). (a)—(c) Changes in
CFS over epoch for eWB-eRBP and fWB-eRBP. The weight distribution of the initial
and trained real-valued weights for (d)—(f) eWB-eRBP and (g)—(i) fWB-eRBP.
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4.3.3. Computational complexity

Although the eWB algorithm is proposed for neuromorphic processors, for the
moment, neuromorphic processors that serve as platforms for algorithm studies with
high degrees of freedom are not available at hand. Instead, we used a GPU
workstation (CPU: Intel Xeon Silver 4110 2.10GHz, GPU: RTX 2080 Ti). The
algorithm was implemented in Python. Because eWB is not a standalone learning
algorithm, we measured the time complexity of eWB from the difference in time
complexity between RBP and eWB-eRBP. The eRBP and eWB-eRBP algorithms
applied to a 784-500-500-10 SNN on MNIST for 25 learning epochs, yielding a wall-
clock time of 4.99ES s and 6.27ES s, respectively (Table 4.3). The additional wall-
clock to eRBP (1.28E5 s) arose from eWB. Additionally, we measured the space
complexity for eRBP and eWB-eRBP, 366.0 and 368.0 MB, respectively. The
MNIST dataset occupies 360.0 MB, so that eRBP and eWB-eRBP occupy 6.0 and
8.0 MB, respectively.

Akin to multiply-accumulate operations (MACs) for deep learning implemented
in general-purpose hardware, synaptic operations (SynOps) in neuromorphic
hardware are known to consume considerable power, so that the number of SynOps
can be a relative measure of energy-efficiency for learning. We evaluated the number
of SynOps required for training a 784-500-500-10 SNN on MNIST using eWB-eRBP.
The SNN was trained for 25 epochs in aggregate. Fig. 4.4 shows the evaluated

number of SynOps and classification accuracy for each learning epoch.

For a comparison with binarized neural network (BNN) [18], we measured the
number of MACs required for training a 784-500-500-10 BNN on MNIST. Each
MNIST image was pre-binarized to £1 using the sign function. We used Batch
Normalization with a minibatch size of 100. The square hinge loss was minimized
using Adam optimizer. We employed an exponentially decaying global learning rate
and Glorot initialization. Dropout layers were deployed to regularize the BNN. The
evaluation results are co-plotted in Fig. 4.4, indicating that both networks require

similar same numbers of operations to reach an accuracy approximately 0.93.
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The comparison indicates similar operational complexity for both cases. Yet,
power-efficiency for eWB-eRBP likely outperforms BNN when implemented in
neuromorphic hardware. Power-efficiency is the defining feature of neuromorphic
hardware. For instance, Loihi (digital neuromorphic processor) [22] highlights high
power-efficiency, approximately 300 times that of graphics processing units [23].
Thus, we expect a two orders of magnitude increase in power-efficiency when eWB-

eRBP is embedded in neuromorphic hardware.
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Figure 4.4. Efficiency in learning. Number of SynOps for a 784-500-500-10 SNN
with eWB-eRBP algorithm. BNN (784-500-500-10 network) is compared with the
eWB-eRBP in terms of the number MACs required for reaching a given accuracy

for the MNIST learning task.
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Table 4.3. Time and space complexity on the MNIST dataset for 784-500-500-10
eRBP and eWB-eRBP after 25 epochs.

eRBP eWB-eRBP
Accuracy 96.92 95.05
Wall-clock time (5s) 4.99E5 6.27E5
Memory usage (MB) 366.0 368.0
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4.4. Discussion

Generally, event-based learning algorithms update a weight only if a presynaptic
or postsynaptic event (local to the synapse) occurs, unlike BP, which updates all
weights layer-wise. Specifically, eWB-eRBP addresses only the synapses that satisfy
the two conditions of (i) presence of presynaptic spike, and (ii) non-zero boxcar
function of the postsynaptic activation, as described in Eq. (12). During training,
several synapses were inactive (and their presynaptic neurons quiescent), and thus,
they maintained their initial weights until the end of training. The high proportion of
fully binarized weights in w(hi) (84.7%) is due to the blank pixels being encoded at

a 10-Hz spike rate rather than being left inactive.

Table 4.4 presents a comparison of the performance of eWB-eRBP with that of
relevant works using limited-precision weights (< 8-bit). For a fair comparison, we
chose event-based algorithms applied to fully connected SNNs. Notably, most of
them use higher precision than 1-bit. Nevertheless, the classification accuracy is
lower than or only slightly better than that of our work. This highlights the

performance of eWB.

The works by Yousefzadeh ef al. [7] and Srinivasan and Roy [8] partly use 1-bit
weights, but the usage is limited to only the weights between the input and hidden
layers. The weights between the hidden and output layers are of higher precision to
minimize the classification accuracy loss. Therefore, eWB is the first event-driven

weight binarization algorithm with locality that ensures high performance.

The eWB-eRBP algorithm is an example to demonstrate the compatibility of eWB
with event-based learning algorithms. In principle, eWB can also be combined with
other event-based learning algorithms with appropriate modifications and can serve
as a common weight binarization algorithm for various event-based learning
algorithms. In this regard, attention should be paid to the performance reduction
resulting from optimal weight binarization instead of the absolute performance when
evaluating the performance of eWB. This is because the absolute performance is

mainly determined by the learning algorithm combined with eWB.
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Although we have applied LMM to weight binarization in this study, any other
constraints can be considered as long as they are mathematically well-defined. For
instance, ternary weight (0, +1; 2-bit precision) constraints with eRBP can be
formulated as g(wi j) =w;(1 - wfj)@(li)s}”e (t) instead of Eq. 4.10. This
constraint function outputs zero when w; = 0 or w; =+1, enabling the algorithm to
learn optimal ternary weights. Further, 3-bit weight (0, +1, +2, £3) constraints can
be considered using the constraint function g(wi ]-) =w;(1— Wizj)(4 - Wl-zj)(9 -
Wizj) o l-)sfre (t). Therefore, the proposed LMM-based learning algorithm forms the

foundation for event-based learning with various constraints.

The use of limited-precision weights improves not only memory efficiency but
also energy efficiency. Energy efficiency is a key attribute of neuromorphic
computing and is a defining motivation for event-based learning algorithms as
alternatives to layer-wise synchronous learning such as BP. In digital neuromorphic
hardware, a lower precision of the data format reduces the energy consumed in
arithmetic operations. Horowitz [24] identified a 30-fold (18.5-fold) improvement in
the energy efficiency by replacing 32-bit floating-point data with 8-bit fixed-point
data in addition (multiplication) operations. The use of binary weights completely
avoids the multiplication of weights and low-pass filtered spikes, which are
otherwise needed for every synaptic operation. Given that synaptic operations
impose the most significant workload on neuromorphic hardware, as is the case for
multiply-accumulate operations in DNNs [16], SNNs with binary weights can
achieve a large improvement in energy efficiency. Nevertheless, the degree of
improvement depends on neuromorphic hardware design, which is not specified in

this study.
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Table 4.4. Comparison of reported classification accuracy of quantized fully

connected SNNs on the MNIST dataset.

Learning algorithm Structure Weight precision | Accuracy (%)
CD + BP [25] 784-500-500-10 4-bit 91.35
STDP + eCD [16] 784-500-10 4-bit 94.80
eRBP [9] 784-200-200-10 8-bit 96.50
STDP + BP [7] 784-6400-10 1-bit + 24-bit 95.70
STDP + BP [8] 784-6400-10 1-bit + 32-bit 92.14
E’glﬁfvﬁg 784-1000-1000-10 1-bit 95.35
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4.5, Conclusion

In this study, we proposed an eWB algorithm that optimally binarizes weights in
an SNN based on local events. The optimal configuration of binary weights is
calculated using the LMM with binary weight constraints. Given that eWB addresses
local data only to update weights in an event-based manner, it is inherently
compatible with multicore neuromorphic hardware. When combined with an event-
based learning algorithm using an appropriate loss function, eWB enables the
network to learn binary weights that minimize the loss function. This was
demonstrated using eWB-eRBP (eWB combined with eRBP), which was applied to
train fully connected SNNs on MNIST. The consequent classification accuracy is
95.35%, whereas eRBP with 32-bit weights yielded an accuracy of 97.20%. The
results indicate an accuracy reduction of 1.85% as the cost of optimal weight
binarization. To the best of our knowledge, eWB is the first method to learn binary
weights based on events; therefore, a comparison with directly related methods is
unavailable at the moment. Nevertheless, to highlight the importance of optimal
binary weights in performance, eWB-eRBP was compared with fWB-eRBP (with
non-optimal binary weights that were forcibly binarized) and was shown to yield
better performance and more stable performance evolution over the training epoch

than fWB-eRBP.

Finally, eWB is scalable to any event-based learning algorithm with appropriate
modifications, thus serving as a common weight binarization method. The LMM is
also scalable to any weight constraint as long as the constraint functions are
mathematically well-defined. The eWB algorithm is an example that demonstrates

this scalability.

4.6. Appendix

The eRBP algorithm is a presynaptic event-driven local learning rule that uses
direct feedback alignment (Fig. 4.1). In eRBP, the weight update with a mean-

squared loss function is formulated as
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Awj(t) = =Ty (D)OU)s]  (8), (4.13)

which realizes a three-factor rule with (i) presynaptic spike (s,°°), (ii) postsynaptic
signal ®, corresponding to the derivative of the postsynaptic activation, and (iii) error

signal T;, which backpropagates through random feedback channels.

(i) The presynaptic spikes are the output of neuron i, which is modeled using an
LIF model that includes two defining variables, namely, the synaptic current /; and

subthreshold somatic membrane potential Vi

( d
ITsynEIi =-I+ Z w;;s; ()€ ()
j

d
| CgVi=—avVith

where wy, s;, and ¢ denote the weight between neurons j and 7, spikes from neuron j,
and a stochastic Bernoulli process with probability (1 — p), respectively. The time
constant for the synaptic current is denoted by sy The ion conductance through the

membrane is denoted as gy.

(i1) As a workaround for the postsynaptic activation being non-differentiable, the

derivative of the postsynaptic activation is approximated as a boxcar function ®:

Lifbyin <1; < bmax
0 otherwise

o) ={

This corresponds to the derivative of a hard sigmoid function with two transition

points (bmin and bHmax).
(ii1) The error signal T; is formulated as

T;(t) = Xk ex () Gik (4.14)

where ey is the error signal from the error-coding neuron k. The constant g;x denotes
the fixed random feedback weight from the error-coding neuron k to the hidden
neuron . It is noteworthy that this error signal is non-local to the synapse wy;, and

thus unavailable for updating the weight w;; using Eq. (13). It is conceivable that the
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data may be moved from the location of error evaluation to the synapse during
updating; however, this is not an optimal strategy for neuromorphic hardware in
which neurons communicate using events only. To render the error local to the target
synapses, eRBP uses two error-coding neurons with somatic potentials ¥ and V*
for each output dimension. They code for false positive and negative errors,
respectively. Their subthreshold behaviors are modeled using a perfect integrate-

and-fire model
CoVEE = 1w (sP (D) — (1)),

where s” and s* are the spike trains from the prediction neurons and labels, and w* is
a positive constant. The false positive error coding neuron (potential V" and weight
w¥) spikes and generates the spike train s°* when s” = 1 and s* = 0, whereas the false
negative error coding neuron (potential /*~ and weight -w”) spikes and generates the
spike train s when s” = 0 and s* = 1. The consequent spike trains s/ and s,* (from
the two error-coding neurons for label f), rather than the error data themselves, are
relayed to the target synapses through the random weight g; so that the

communication architecture is well suited for neuromorphic hardware.

The error spike trains s;°" and s/~ from label j are subsequently encoded as firing
rates to eventually realize the error signal 7; in Eq. (14). To this end, each neuron in
the output and hidden layers is given a dendritic compartment that calculates the
dendritic potential (U for hidden neuron i and U7 for prediction neuron i) using a

leaky integrated model
d n h E+ E-
C UM = =gl + ) giy(s*(©) = sf~(©)
J
and

d -
€Ul = =guUf +wi(s{™(6) = s~ ()
This dendritic potential is equivalent to the error signal 7; and is local to each target

synapse. Therefore, the learning rule in Eq. (13) can be rewritten as
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Aw;; = nU;©(1;)s;(0)

The parameters used in this study are listed in Table 4.1.
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5. Conclusion

Neuromorphic hardware capable of parallel computation enables the efficient
computation of neuronal variables in SNN. With event-driven weight updates using
local data leverage the capacity of neuromorphic hardware. Parallel computation can
be accelerated when neuromorphic hardware is combined with a binary resistance
switch array to implement an artificial synaptic array. Thus, we have studied on
two subjects, which are a sequence-predicting SNN architecture with event-
based learning algorithm and method for training SNN with binary weight in

an event-driven fashion.

At first, we introduce an SNN architecture for sequence predictions (#-SPSNN)
by deploying working memories and a novel learning algorithm (LbAP algorithm)
for SNNs, which is suitable for neuromorphic hardware. We demonstrate the
sequence-learning capability of the proposed architecture and learning algorithm
using the Nottingham dataset and random sequences. The #n-SPSNN shows high
tolerance to errors in input encoding, which is higher than the state-of-the-art
sequence learning hypotheses LSTM and GRU. Also, n-SPSNN offers high
tolerance to random changes in input-encoding delay. The LbAP algorithm endows
the n-SPSNN with efficiency in learning. The learning is completed in a few
iterations. Therefore, the LbAP algorithm can train SNNs in an energy- and time-

efficient manner.

Secondly, we introduce a novel weight binarization algorithm (eWB), which is an
event-driven algorithm with the locality. The binary weights can not only be applied
to binary resistance switch arrays in digital neuromorphic hardware but also reduce
energy consumption. LMM with binary weight constraints is used to optimize the
weights to satisfy the constraint condition. We elaborate on the scaling of eWB to
eRBP (eWB-eRBP), which was applied to train fully connected SNNs on MNIST.
The classification accuracy of the 784-1000-1000-10 network is 95.35% and shows
an accuracy reduction of 1.85% as the cost of optimal weight binarization. Optimal

binarization endows eWB with better and more stable performance evolution over
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the training age when compared to fWB-eRBP (with coercively binarized non-

optimal binary weights).
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