

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

A Validated Semantics for LLVM IR

LLVM Ù�|ÏX ⌘⌅∏¥| ⌅\ X¯|

�XX‡ ÄùX0

August 2021

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Juneyoung Lee

Abstract

Intermediate representation (IR) is a language that is used internally by a

compiler to represent programs. Translation to an IR should preserve guar-

antees from the source language’s specification because they enable various

optimizations. This naturally makes an IR a language that is rich with high-level

information.

In LLVM, the semantics of important high-level features in IR was not

rigorously defined. It caused compiler optimizations in LLVM to use different

interpretations, and bad interactions between the optimizations resulted in

miscompilation bugs that are hard to fix. To solve this problem, the IR’s

semantics must be defined precisely. Then, optimizations that are incorrect with

respect to the chosen semantics must be fixed. Both processes are challenging

because LLVM is a large, fastly evolving software.

This thesis proposes (1) formal semantics of LLVM IR that resolves critical

problems that we have found in the old IR semantics, making it consistent (2) a

translation validation framework for LLVM’s optimizations to validate the new

semantics. We show that the old semantics of undefined behavior and memory

model in the IR cannot explain important optimizations in LLVM. We propose

new semantics that solves this problem. Next, we present Alive2, a translation

validation framework for LLVM based on the new semantics. Alive2 relies on

an automatic theorem prover to validate optimizations without any hints from

LLVM. It supports most of integer and float operations, memory operations,

function calls, and branches. To make validation practical, resources used by

the tool is bounded.

1

The new formal semantics of undefined behavior has been adopted by LLVM.

The ‘freeze’ instruction that is proposed by us is officially added into LLVM 10.0,

and the official document is updated to use our semantics. Also, critical problems

in the old memory model we have found were shared with compiler developers,

and patches have landed in LLVM to fix it. Alive2 has found more than 50

miscompilation bugs in LLVM so far and is used daily by LLVM developers.

Keywords: Compiler, programming language, compiler intermediate represen-

tation, formal language semantics, formal memory model, translation validation,

automatic verification, SMT solver

Student Number: 2016-21227

2

Acknowledgements

I am fortunate to have Nuno P. Lopes and Chung-Kil Hur as my advisors. They

taught me how to attack intricate problems and find concise and straightforward

solutions. Also, I could learn what is being a great researcher like from their

enthusiasm and immersion in research. I was impressed with the infinite amount

of trust and opportunities they have given to me as well.

It was a great pleasure to be with my brilliant colleagues in Software Foun-

dations Lab and ROPAS Lab. I will never forget the moments when discussing

interesting research issues as well as non-research topics with them. They made

my life as a graduate student full of happiness and joy. Mainly, I’d like to thank

senior lab members – Yoonseung Kim, Youngju Song, Dongkwon Lee, and Sehun

Kim. I believe they are the members who made the atmosphere of the two

groups healthy and made the members get along well for a long time. I am a

beneficiary of the healthy atmosphere.

Finally, I thank my parents for supporting my study. They also gave me

thoughtful advice when help was necessary. Also, I thank my brother for being

grown as a great mechanical engineer.

3

Contents

Abstract 1

Acknowledgements 3

Chapter 1 Introduction 11

1.1 Intermediate Representation . 15

1.2 Formally Defining the Semantics of an IR 18

1.3 Validating IR Semantics . 20

1.4 Contributions . 21

Chapter 2 Background 24

2.1 Intermediate Representation . 24

2.2 Formal Semantics of Programming Languages 27

2.2.1 Undefined Behavior . 28

2.2.2 Nondeterminism . 29

2.2.3 Memory Model . 30

2.3 Compiler Correctness . 31

2.3.1 Behavioral Refinement . 31

2.3.2 Simulation Relation . 32

4

2.3.3 Contextual Refinement . 34

2.4 Verifying Compilers . 34

2.4.1 Compiler Fuzzing . 35

2.4.2 Compiler Verification . 35

2.4.3 Translation Validation . 36

Chapter 3 Undefined Behavior in the IR 38

3.1 Undefined Behavior in the IR . 39

3.1.1 Undefined Behavior 6= Unsafe Programming 40

3.1.2 Enabling Speculative Execution 41

3.1.3 Undefined Value . 42

3.1.4 Beyond Undef . 44

3.2 Inconsistencies in LLVM . 47

3.2.1 Duplicate SSA Uses . 47

3.2.2 Global Value Numbering vs. Loop Unswitching 48

3.2.3 Select and Poison . 49

3.2.4 Summary . 51

3.3 Proposed Semantics . 52

3.3.1 Syntax . 53

3.3.2 Semantics . 54

3.4 Illustrating the New Semantics 57

3.4.1 Loop Unswitching . 57

3.4.2 Reverse Predication . 58

3.4.3 Bit Fields . 58

3.4.4 Load Combining and Widening 60

3.4.5 Pitfall 1: Freeze Duplication 60

3.4.6 Pitfall 2: Semantics of Static Analyses 61

5

3.5 Prototype Implementation . 62

3.6 Performance Evaluation . 65

3.6.1 Experimental Setup . 65

3.6.2 Results . 66

3.7 Implementing Our Semantics in LLVM 68

3.7.1 Adding Freeze Instruction and Poison Constant 68

3.7.2 Disabling Select to And/Or Folding 69

3.7.3 Branch on Undef or Poison Is UB 71

3.7.4 Dealing With Freeze in Loops 72

3.7.5 Annotating NoUndef Attribute 74

3.7.6 Optimizing Expressions Including Freeze 74

3.7.7 Folding Select Undef . 77

3.8 Undefined Behavior in Other Compilers 77

3.9 Conclusion . 78

Chapter 4 A Memory Model for the IR 79

4.1 Background . 80

4.1.1 Flat Memory Models . 81

4.1.2 Data-Flow Provenance Tracking 81

4.1.3 Extending Provenance to Integers 83

4.1.4 Wildcard Provenance . 84

4.1.5 Inbounds Pointers . 85

4.2 A Memory Model for LLVM . 86

4.2.1 Deferred Bounds Checking 86

4.2.2 Preventing Address Guessing 88

4.2.3 Summary . 91

4.3 Semantics and Transformations 92

6

4.3.1 Logical and Physical Pointers 92

4.3.2 Address Spaces . 95

4.3.3 Memory Blocks . 95

4.3.4 Pointer Arithmetic . 99

4.3.5 Casting . 99

4.3.6 Pointer Comparison . 100

4.3.7 Pointer Subtraction . 104

4.3.8 Memory Block Lifetime 105

4.3.9 Load and Store . 106

4.3.10 Justifying Transformations in Practice 108

4.3.11 Preventing Accesses via Guessed Addresses 109

4.3.12 Sometimes Two Blocks Are Not Enough 111

4.4 Prototype Implementation . 113

4.5 Performance Evaluation . 116

4.5.1 Setup . 116

4.5.2 Performance of Generated Code 117

4.5.3 Number of Instructions 119

4.5.4 Compile Time . 120

4.6 Related Work . 121

4.7 Discussion and Future Work . 122

4.8 Implementing Our Memory Model in LLVM 125

4.8.1 Removing Provenance-Changing Transformations 125

4.8.2 Safely Optimizing Casts between Pointers and Integers . . 125

4.8.3 Type Punning . 126

4.9 Conclusion . 127

Chapter 5 Validating the IR Semantics 128

7

5.1 Overview . 130

5.1.1 Verifying The Example Transformation 131

5.1.2 Efficiently Encoding LLVM’s Memory Model and Refinement133

5.2 Encoding LLVM IR Semantics in SMT 135

5.2.1 Register File . 137

5.2.2 Function Arguments . 137

5.2.3 Undef Values . 138

5.2.4 Control Flow . 139

5.2.5 Floating-Point Numbers 139

5.2.6 Return Value . 140

5.2.7 Additional Optimizations 141

5.3 Encoding Memory Blocks and Pointers in SMT 142

5.3.1 Memory Blocks . 142

5.3.2 Pointers . 143

5.3.3 Block Properties . 144

5.3.4 Physical Addresses . 146

5.3.5 Bounding the Maximum Number of Blocks 147

5.3.6 Function Attributes . 148

5.3.7 C Library Functions . 148

5.4 Memory Allocation . 148

5.4.1 Heap Allocation . 149

5.4.2 Stack Allocation . 152

5.5 Encoding Loads and Stores in SMT 152

5.5.1 Byte . 153

5.5.2 Load and Store Instructions 153

5.5.3 Multi-Array Memory . 154

5.6 Verifying Correctness of Optimizations 155

8

5.6.1 Refinement of Program State 156

5.6.2 Nondeterministic Execution 158

5.6.3 Refinement of Memory . 159

5.6.4 SMT Encoding . 161

5.7 Function Calls . 162

5.7.1 Relating Two Function Calls 162

5.7.2 SMT Encoding . 163

5.7.3 Encoding Memory Updates 164

5.7.4 Optimizations . 165

5.8 Approximating Program Behavior 166

5.9 Implementation and Evaluation 166

5.9.1 Implementation . 167

5.9.2 Translation Validation of LLVM’s Unit Tests 168

5.9.3 Updates to the LLVM IR Semantics 172

5.9.4 Translation Validation for Applications 174

5.9.5 Alias Sets . 176

5.9.6 Z3 Bugs Found While Developing Alive2 177

5.10 Conclusion . 177

Chapter 6 Conclusion 179

Chapter A Appendix 181

A.1 End-to-end miscompilation by both LLVM and GCC 181

A.2 Safe Rust Program Miscompiled by LLVM 183

A.3 Coq Formalization and Proof . 184

A.3.1 Definitions . 184

A.3.2 Proofs . 185

9

Bibliography 187

�] 200

10

Chapter 1

Introduction

The formal semantics of a programming language is a mathematical specification

providing the semantics of programs written in it. There are several approaches.

Denotational semantics defines a function from programs to a partially ordered

set that is called domain. Axiomatic semantics defines a set of axioms describing

assertions that must hold after a program’s execution. Operational semantics

defines a set of rules describing state transitions on an abstract machine during

the execution of a program. There are other variants as well, and the defined

semantics works as a foundation for formal verification, static analysis and

compiler correctness.

Ideally, people should define the formal semantics when they devise a new

programming language. However, most of the real-world programming languages

have their semantics written in prose first, and then their formal semantics

follows. The reason is that the human-friendly form is more efficient in carrying

the high-level intuition of the programming language’s semantics. For example,

to formally define the meaning of reading a memory location in operational

11

semantics, one needs to define a value, pointer, and memory in mathematical

terms first. However, programmers already have an intuition about what reading

a memory means, and the formal definition of memory read should not be very

different from this. Therefore, a simple specification stating the intuition in

prose suffices for explaining the majority of programs.

Then, when is defining formal semantics necessary? To talk about this,

imagine a case that sometimes happens – reading an out-of-bounds pointer in C.

In x86 assembly language, reading a pointer raises a fault if the page is protected,

or silently continues otherwise. We cannot use this semantics for C however,

because it makes important compiler optimizations incorrect1. An alternative

option is to simply state that a C program that reads an out-of-bounds pointer

is a badly written program that a compiler does not need to care about. This

is not what an assembler does, but it is not problematic because C’s abstract

machine does not need to be that of assembly. Instead, the design choice must

be explicitly stated somewhere, so programmers are aware of this. These details

are described in prose in the official documents of C, C++, Rust, and many

other languages.

However, the full semantics written in prose is not handy in a programmer’s

perspective. Since modern programming languages have rich features, they are

more than small textbooks, making programmers sometimes hard to know the

exact result of a program. This implies that language semantics should be

described in a machine-friendly way so that programmers can simply run their

programs and see the results. Sometimes, text specifications are ambiguous or

omit important details as well. In the case of C, unclear definition of a pointer

caused lengthy discussions and publications [1–5].

1
For example, register promotion can decrease the memory usage of a program, potentially

changing the result of reading an out-of-bounds pointer from success to an abnormal exit.

12

A formally defined semantics is unambiguous by construction because it

is defined using mathematical terms. It is machine-friendly as well – finding

a correct implementation of an executable semantics is reduced to properly

choosing data structures that precisely and efficiently represent its mathematical

objects. It fits well with formal verification techniques such as machine-checked

proof writing or automated theorem proving. One can prove important properties

of the semantics such as type preservation using a proof assistant. Due to

these reasons, formal semantics of real-world languages have become robust

foundations for formal verification and compiler correctness.

In this thesis, we introduce the formal semantics of a compiler’s intermediate

representation (IR). IR is a language as well as an internal data structure of

a compiler for representing compiling programs. Each compiler has its own

IR(s) that is appropriate to represent programs written in the desired source

languages. Compiler translates source programs into IR, performs optimizations

on it, and emits assembly2. Showing the correctness of these three steps relies

on the precise semantics of IR.

One of hardships in devising semantics for IR is that it is non-trivial to find

the mathematical definition of the high-level information that is derived from the

source language’s specification. Translation to IR should preserve guarantees from

the source language’s specification because they enable various optimizations.

This naturally makes IR a language that is rich with high-level information.

Finding its mathematical definition is not trivial because its definition written in

prose cannot be directly translated. Furthermore, we found that the semantics

of important high-level features in IR were sometimes not rigorously defined in

the official documents. This caused existing compiler optimizations to rely on

different semantics, even introducing end-to-end miscompilation bugs.

2
In fact, compilers have more than three steps because they have several IRs.

13

Another challenge is dealing with compiler optimizations that are many

and changing fast. Compiler optimizations are constantly changing since a

modern compiler evolves quickly. Also, it is unrealistic for compiler developers

to manually write a proof whenever they update an optimization. To explain

optimizations, we should devise a way of quickly validing formal semantics with

respect to the current compiler optimizations. This is connected to finding a

good compiler verification technique that fits our goal.

Among real-world compilers, we target the IR of the LLVM compiler infras-

tructure because it is extensively used by frontend languages as well as formal

verification frameworks. Also, its prose semantics is described in the official

specification in detail [6]. Note that our work is not the first formalization of

LLVM IR. Our work has two important contributions that are absent from

previous work, which are summarized below.

1. Implementing our new IR semantics in LLVM. We found critical

problems in the semantics of LLVM IR, proposed solutions for these, and

implemented our new formal semantics in the official releases of LLVM. The

previous semantics of LLVM IR had problems in the notion of undefined behavior

and its memory model. To resolve these problems, we proposed a new formal

semantics that fixes these issues. We implemented our semantics in LLVM via a

number of patches (Sections 3.7 and 4.8).

2. A validated IR semantics. We rigorously validated our semantics using

translation validation. Since LLVM is written in C++ and constantly evolving

via daily contributions, formally verifying the codebase is not realistic with the

current verification technology. Instead, we implemented Alive2 that is an auto-

matic compiler optimization validator. It uses an SMT solver to automatically

14

check the agreement between our formal semantics and the transformations

that happened during compilation of a specific program. It supports most of

integer and float operations, memory operations, function calls, and branches.

Many incorrect transformations in LLVM are fixed to comply with the validated

semantics and the official specification was updated to address the issues we

have found (Sections 5.9.2 and 5.9.3). Currently, Alive2 is being used daily by

LLVM developers to show the validity of optimizations during the code review

process.

1.1 Intermediate Representation

Compilation consists of a sequence of individual transformations. Intermediate

representation (IR) is a language that is used in these internal steps. IR’s

syntax and semantics is tailored for easy implementation of a high-performance

compiler.

LLVM has several intermediate representations, each of which is tailored to

a different kind of transformations during compilation. Among them, LLVM IR

is the top-most target-independent language where most of the inter/intraproce-

dural optimizations such as loop unroll/unswitch, inlining, auto-vectorization,

global value numbering, and scalar replacement of aggregates happen. It also

works as a language that various frontends – including Clang, Swift, and Rust –

emit.

Fig. 1.1 illustrates a subset of features of LLVM IR. It has a function @fn

taking two 32-bit integer arguments and returning a 32-bit integer. It contains

three basic blocks (ENTRY, THEN, ELSE) each of which ends with either a branch

instruction (br) or return instruction (ret). LLVM IR’s instructions typically

have two input operands on the right hand side and one output register on the

left-hand side.

15

define i32 @fn(i32 %a, i32 %b) {
ENTRY:

%t = add i32 %a, %a ; %t := %a + %a
%c = icmp eq i32 %t, 0 ; %c := Is %t == 0?
; If %c is true, goto THEN, ELSE otherwise
br i1 %c, label %THEN, label %ELSE

THEN:
%q = shl i32 %a, 2 ; %q := %a << 2
ret i32 %q

ELSE:
%r = and i32 %b, 1 ; %r := %b & 1
ret i32 %r

}

Figure 1.1: Example LLVM IR function

int y;
if (cond)

y = a + b;
else

y = a + c;

ENTRY:
br i1 %cond, label %BB1, label %BB2

BB1:
%tmp1 = add i32 %a, %b
br label %BB

BB2:
%tmp2 = add i32 %a, %c
br label %BB

BB:
%y = phi i32 [%tmp1, %BB1], [%tmp2, %BB2]

Figure 1.2: A simple C program and an equivalent LLVM IR that uses a � node.

Static Single Assignment. To facilitate the development of compiler opti-

mizations, LLVM IR has a static single assignment (SSA) form [7]. In the SSA

form, each variable is assigned exactly once at its definition. When the variable

is to be used, the assignment operation must have been executed before the use

site is reached. In other words, the definition must dominate the use site. Using

the SSA form is beneficial because it is not necessary to implement an expensive

flow-sensitive analysis to track the value of a variable. Also, the dominance

constraint prevents hoisting uses above its definition, blocking incorrect code

motions.

16

int f(int &x) {
int y = 0;
x = 1;
// This returns 0.
return y;

}

define i32 @_Z1fRi(i32* nonnull align 4
dereferenceable(4) %x) {

%y = alloca i32, align 4
store i32 0, i32* %y, align 4
store i32 1, i32* %x, align 4
%temp = load i32, i32* %y, align 4
ret i32 %temp

}

Figure 1.3: A simple C++ function and its translation to LLVM IR with -O0.
For readability, a temporary storage for x is omitted and variables are renamed.

To represent a variable whose value changes in a flow-sensitive manner, a

� node is necessary. A � node is a pseudo-instruction whose result depends

on the control flow. The phi instruction takes a list of values as well as the

predecessor blocks. Fig. 1.2 shows a simple C program where the variable y is

assigned differently depending on the control-flow and an equivalent LLVM IR

that uses the phi instruction.

Guarantees From Source Language’s Specification. Compiler can rely

on the specification of a frontend language for better code generation. For

example, the C standard enforces that pointers must be aligned according to

the pointee types. Given this information, memory accesses can be translated

into efficient assembly commands that use a specific alignment.

These informations are recorded as assumptions in IR programs. In general,

the llvm.assume instruction can be used to state that its condition operand must

hold at a program point. There are two additional ways to specify assumptions

in the LLVM IR. First, a function attribute or instruction flag specific to the

information can be attached to the corresponding place in IR. Second, if such

guarantee is common across various source languages, it is directly supported

by the semantics of basic instructions.

For example, consider a simple C++ function f (Fig. 1.3). There are three

17

interesting guarantees that C++ standard gives for f.

1. x is a 4-bytes dereferenceable non-null pointer because it has a reference

type. As shown on the right, this is encoded in LLVM IR using the nonnull

and dereferenceable(4) function attributes.

2. x and y are 4-bytes aligned. This is represented by attaching ‘align 4’ to

the function argument as well as alloca, load, and store instructions.

3. Writing a value to x cannot affect the value stored at y and vice versa,

because y is a freshly allocated storage object. Unlike the previous two

guarantees, this does not appear in the IR program syntactically. Rather,

it is the IR’s underlying memory model that must support.

Formally defining the semantics of an IR includes mathematically describing

the meaning of these language constructs.

1.2 Formally Defining the Semantics of an IR

To describe the behavior of a program, we are going to define an abstract

machine for the language. In this thesis, the formal semantics of LLVM’s IR

is described in an operational semantics style. A program state and transition

rules for the abstract machine are defined.

Memory Model. A memory model defines a pointer, memory, and the be-

havior of memory operations. For x86-64, a pointer is defined as an 64-bit

non-negative integer. A memory is a function from pointers to 8-bit non-negative

integers. The semantics of a load instruction that did not trap is written as a

transition rule stating that it reads the bytes at the location from the memory

with a given size, interprets it in little endian, and stores the value in a register.

18

After the transition, a register file is updated to contain the loaded value. Store

is similarly defined and it represents how a memory is updated. These instruc-

tions can fail (raise a fault) if the location is protected. This behavior must be

described in separate rules.

Then, can we reuse assembly’s memory model for LLVM IR? It turns out

that we cannot, because pointers in LLVM IR must carry additional information:

aliasing locations. As mentioned before, a pointer that is passed as a function

argument cannot alias a local allocation. In assembly’s memory model, there is

no such guarantee. They can alias because the caller can guess the address of

a stack variable and pass it. Therefore, the assembly’s memory model cannot

support optimizations in LLVM.

Whatever memory model we choose for an IR, we must check whether the

memory model is consistent with respect to the implementation. If the new

memory model makes some compiler optimization unsound, there is a mismatch

between the model and compiler developers’ reasoning. In this case, either (1)

the optimization must be fixed, or (2) the memory model must be amended

to support it. It depends on how crucial the optimization is for programs’

performance.

Undefined Behavior. Defining the formal semantics of IR is linked to rigor-

ously defining the meaning of assumption-carrying language constructs. This is

important for compiler correctness because many optimizations rely on them. For

example, we have the nonnull attribute to state that a pointer argument cannot

be NULL. Optimizers can rely on this attribute to simplify pointer comparisons

(e.g., ‘p == null’).

However, it is possible at run time a null pointer was passed to a nonnull

argument. It is because nonnull is not a syntactic constraint: we do not know

19

whether an unknown pointer variable will have NULL or not in general. What is the

state of an abstract machine after a null pointer is passed to nonnull argument?

A straightforward solution would be that the machine is stuck. Another common

way to express this is that such program has undefined behavior. Since the

abstract machine is stuck in that case, the following instructions can safely

assume that the pointer argument is never a null pointer in their execution. This

definition seems reasonable, and this is what LLVM’s official document stated

in the past as well.

However, there are other transformations using nonnull in LLVM as well.

If a value analysis concludes that an argument is given non-null pointers only, it

attaches nonnull to the function argument. A question is whether the transfor-

mation based on non-null pointer analysis is consistent with the intepretation.

It turns out that it is not, and the mismatch was detected during validation of

its semantics (Section 5.9.3). The official definition of nonnull is fixed to use

an alternative semantics after our findings.

1.3 Validating IR Semantics

The semantics of an IR is validated if the compiler implementation is correct

with respect to the semantics. Naturally, validation of IR semantics is deeply

related to techniques for ensuring correctness of compilers.

Existing approaches for ensuring correctness of compilers can be categorized

into three groups: compiler fuzzing, compiler verification, and translation valida-

tion. First, compiler fuzzing is a technique to randomly generate a program as

well as its input and check whether the compiled binary has an expected behav-

ior. These tools have been very successful in finding bugs in optimizers [8–11],

but they cannot ensure the absence of bugs. Second, compiler verification is an

approach to verifying the compiler implementation using a formal verification

20

technique. However, formally verifying the LLVM implementation is very chal-

lenging because (1) it is a large software written in C++, (2) the implementation

is constantly changing, and (3) it relies on fairly complex data structures to

boost compilation time whose specification must be defined as well.

The third technique – the one we would like to use – is translation validation.

Translation validation sits in-between compiler fuzzing and compiler verification.

Given a source program and target (generated) program, a validator proves

that the compilation is correct. A challenge is whether the validatior can prove

the correctness without any help from human. We found that, thanks to the

advances in automatic theorem proving, this is becoming a realistic goal for

middle-sized programs.

A validator is an independent software and it is normally unimpacted by the

changes in the LLVM implementation. Validating the semantics using translation

validation is lightweight because it does not require verification of compiler’s

code. Also, if the existing semantics is found invalid, we can quickly switch to

an alternative semantics by fixing the validator with a low cost. Furthermore,

making validators easy to use allows compiler developers to participate in

checking the validity of IR semantics without knowledge in theorem proving.

1.4 Contributions

This thesis presents a validated formal semantics for LLVM IR. We introduce

the two contributions of our work.

The first contribution is devising a formal semantics of LLVM IR’s undefined

behavior (Chapter 3) and memory model (Chapter 4). The old semantics of

undefined behavior and memory model in the IR were unclear, causing incon-

sistencies in important compiler optimizations. This caused miscompilations of

real-world applications as well. We present new formal semantics that effectively

21

addresses the problems. The new formal semantics of undefined behavior has

been adopted by LLVM (Section 3.7). Also, the problem in LLVM IR’s memory

model we have found is shared with compiler developers and motivated several

patches (Section 4.8).

The second one is Alive2, an SMT-based bounded translation validation

framework. (Chapter 5). Given source and optimized IR functions, the correctness

of the transformation is encoded into an SMT formula and checked by an SMT

solver. It supports most of integer and float operations, memory operations,

function calls, and branches. A challenge is how to encode the SMT formula

properly so that an SMT solver can effectively solve it.

We closely worked with LLVM developers to make LLVM consistent with our

validated semantics. Many LLVM optimizations that are incorrect with respect

to the new semantics were finally removed or properly fixed (Sections 5.9.2

and 5.9.3). By June 2021, Alive2 had found more than 50 miscompilation bugs

in LLVM, and the online version of Alive23 has been used by more than 100

LLVM patches during the code review phase.

Published papers This thesis is based on the following publications.

1. Taming Undefined Behavior in LLVM, PLDI’17 [12].

2. Reconciling High-level Optimizations and Low-level Code in LLVM, OOP-

SLA’18 [13].

3. Alive2: Bounded Translation Validation for LLVM, PLDI’21 [14]

4. An SMT Encoding of LLVM’s Memory Model for Bounded Translation

Validation, CAV’21 [15].

3https://alive2.llvm.org

22

The text of this thesis contains copies of sentences, paragraphs, figures, and

experimental results from them.

23

Chapter 2

Background

In this chapter, we overview compiler intermediate representation, formal se-

mantics of programming languages, compiler correctness, and verification of

compilers.

2.1 Intermediate Representation

Intermediate representation (IR) is a language that is used internally by compil-

ers. IR’s syntax and semantics is tailored for easy and correct implementation

of a high-performance compiler.

Static Single Assignment. A significant improvement of IR syntax was

made by the invention of static single assignment (SSA) form [7]. If an IR

program is in the SSA form, each variable can be assigned only once, and

its uses must be dominated by the assignment. This form allows compiler

optimizations to find the value of a variable without performing flow-sensitive

analyses. Several extensions have been made to make it suitable with loops [18],

24

information [19], arrays [20], and memory accesses [21].

Converting non-SSA programs into SSA form requires inserting � nodes

whose values depend on the control flow. Minimally inserting � nodes is important

for faster compilation and smaller memory footprint. There have been several

works to minimize the number of inserted � nodes with small time complexity

[16,17].

Memory SSA. Values stored in memory and their uses can be represented

in SSA form [21]. This is called Memory SSA. There are three instructions in

Memory SSA: DEF, USE, or PHI. DEF creates a new memory state. IR instructions

updating memory is represented as DEF in Memory SSA. USE(M) states that the

corresponding IR instruction reads a value from memory M. PHI corresponds to

the � node in the SSA.

Using Memory SSA, we can sparsely represent the alias information between

memory accesses. Consider this program:

; Assume that p and q do not overlap
store i32 10, p ; M1 = DEF(M0)
store i32 20, q ; M2 = DEF(M1)
r = load p ; USE(M2) ; optimize this to USE(M1)

The first store is represented as DEF(M0) because it updates the initial

memory M0. M1 is a memory after the store to M0, and M2 is a memory after

M1’s update. The load is represented as USE(M2) because it reads from the latest

memory M2. Note that it is valid to optimize USE(M2) to USE(M1). Since q does

not alias p, the load does not need the second store’s update.

Another valid optimization is transforming DEF(M1) to DEF(M0). This is

analogous to allowing reordering between the two stores. However, if the program

is too large, this optimization can lead to insertion of many PHI instructions.

Due to this reason, LLVM does not do this optimization. It tracks only one live

25

DEF node per basic block [22].

IRs in LLVM. Besides LLVM IR, LLVM has three more intermediate repre-

sentations: SelectionDAG, MachineIR, and MCInst.

In LLVM, instruction selection translates each basic block in LLVM IR into

a graph representation called SelectionDAG. In SelectionDAG, instructions are

represented as graph nodes and their relation as edges. In the beginning of

instruction selection, SelectionDAG mostly contains target-independent nodes.

At the end of instruction selection, majority of them are lowered into target-

dependent ones. As in LLVM IR, SelectionDAG layer has many optimizations.

However, their scope is limited to a single basic block because a graph contains

instructions in a block only.

At the end of instruction selection, SelectionDAG is translated into Ma-

chineIR. MachineIR is a low-level representation of a program whose structure

is similar to that of LLVM IR. It tracks low-level information such as constant

pool and jump tables. Register allocation maps virtual registers in MachineIR

into physical registers. MachineIR is translated into MCInst, a data structure

for emitting assembly.

IRs in GCC. GCC has three main IRs: GENERIC, GIMPLE, and RTL.

GENERIC is an IR for representing programs generated from compiler frontends.

GENERIC contains high-level language constructs such as loops and OpenMP

directives. GIMPLE is a three-address representation lowered from GENERIC

via gimplification. Its syntactic property changes over transformations. Most of

target-independent compiler optimizations happen after GIMPLE is converted

into SSA form. RTL is a low-level intemediate representation that may contain

target-dependent instructions.

26

MLIR. Multi-Level Intermediate Representation (MLIR) [23] is a compiler

infrastructure for defining custom intermediate representation and reusing it

across different compilers. In MLIR, one can define a dialect that is a small set

of instructions and types for a specific purpose. For example, tensor dialect

contains a tensor type as well as basic operations on it. memref dialect contains

a pointer (memref) type as well as related operations such as allocation, deallo-

cation, load, and store. Then, an IR program is represented using a composition

of multiple dialects.

The implementation of a dialect typically contains compiler optimizations as

well. For example, memref dialect implementation contains simple optimizations

on memory access operations, and compiler developers can reuse them. Also,

there are transformations across dialects that can be reused as well. Lowering

tensor operations to memref operations is called bufferization because it realizes

conceptual tensor operations into memory accesses.

Formalization of IRs. Vellvm [24] is a formalization of parts of the LLVM

IR in Coq, and K-LLVM [25] is a formalization of LLVM IR in K framework [26].

Both formalizations do not attack the inconsistencies described in this thesis.

CompCert [27] includes full formalization of multiple three-address code-

based IRs that are used throughout its pipeline. There is also an extension to

CompCert that includes the formalization of an SSA-based IR [28].

2.2 Formal Semantics of Programming Languages

The formal semantics of a language describes the meaning of a program in

a mathematical notation. The formal semantics of C [5, 27] with concurrency

[29–31], Java [32], Rust [33,34] as well as low-level languages such as x86-64 [35],

ARM, RISC-V [36] have been devised recently. They mathematically define

27

the behavior of a program which becomes a rigorous foundation for compiler

correctness.

In this section, we will introduce three important concepts: undefined behav-

ior, nondeterminism, and a memory model.

2.2.1 Undefined Behavior

Some programming languages define a set of erroneous operations that may

cause the abstract machine to misbehave. These operations are said to have

undefined behaviors (UB), and it is the result of design choices that can simplify

the implementation of a platform. The burden of avoiding these behaviors is

then placed upon the platform’s users.

The best-known examples of undefined behaviors in programming languages

come from C and C++, ranging from simple local operations (overflowing signed

integer arithmetic) to global program behaviors (race conditions and viola-

tions of type-based aliasing rules). Undefined behaviors facilitate optimizations

by permitting a compiler to assume that programs will only execute defined

operations.

There are two different ways in operational semantics to state that the

behavior of executing an instruction is undefined. The first one is to use a

notion of ‘stuck’. A program is stuck if there is no applicable small-step rule

at a non-terminal state1. In this scheme, any execution that is unspecified in

the language semantics has undefined behavior. The second one is to explicitly

define an undefined state and state in the small-step rules that certain operations

reach to the state. Each method is just a different representation of the other

one. In this thesis, the first one (‘stuck’) is used unless it is stated otherwise.

1
A terminal state is the state of a program that has safely exited.

28

2.2.2 Nondeterminism

A program has nondeterministic execution if it has more than one reachable

state from the same input. For example, imagine a program that runs two

threads in parallel.

// thread 1
print("1\n")

// thread 2
print("2\n")

If this programming language has interleaving semantics without any schedul-

ing policy, one of these threads will be nondeterministically chosen and executed.

Assuming that print is an atomic operation2, the trace of this program is either

‘print("1\n"),print("2\n")’ or ‘print("2\n"),print("1\n")’.

In the real world, the operating system’s scheduler (as well as CPU’s one if it

has) will algorithmically choose which thread to run. Therefore, multithreaded

programs in the real world are not purely nondeterministic. If one wants to take

the role of a scheduler into consideration, the scheduler is typically described as

an oracle that returns which thread to execute next. An oracle describes the

interaction of a program with outer space (e.g., keyboard inputs). In this thesis,

executions depending on an oracle are not considered nondeterministic.

In terms of compiler correctness, it is allowed for a compiler to remove one

or more traces from them. For the above example, it is valid to translate it

into assembly that always prints 2 after 1. This supports linking to a thread

library that can schedule threads deterministically, various optimizations on

atomic operations, compilation to ISA having strong synchronizations only, and

the "roach motel" ordering in Java Memory Model [29]. The precise definition

of compiler correctness with respect to nondeterminism will be described in

Section 2.3.

2
Otherwise, the program is racy. In C/C++, the behavior of a racy program is undefined.

29

2.2.3 Memory Model

The memory model for a programming language determines how programs are

permitted to observe and modify storage. From the perspective of operational

semantics, the memory model of a language is described as a mathematical

definition of memory and inference rules describing the output state after

executing memory-related instructions.

Different languages have different memory models. For example, references

in Java are pointer-like in that they uniquely identify objects in memory, but

programs are not allowed to construct references into the middle of objects

or to fabricate references from scratch. In contrast, assembly language allows

arbitrary memory locations to be inspected and modified with no restrictions

whatsoever on how addresses are computed.

C and C++ occupy an interesting niche. They are intended to be low-

level languages; systems software—operating system kernels, virtual machine

managers, embedded firmware, programming language runtimes, etc.—tends to

be built in one or the other. To support these applications, pointers into objects

can be constructed using pointer arithmetic, and pointers may be converted to

integers and integers to pointers. However, despite their low-level character, the

C and C++ memory models also incorporate higher-level features. For example,

the compiler is permitted to assume (with some restrictions) that a pointer to

one allocated object is not used as the basis for creating a pointer to another

object. This causes finding a valid formal memory model for C and C++ a hard

problem [5,37]

It is challenging to develop memory models for concurrent programming

languages. Since hardwares as well as compiler optimizations can reorder memory

operations, a multithreaded program may exhibit behavior that cannot be

30

explained using interleaving semantics. A promising semantics [29] explains such

behavior by introducing a notion of promise. A thread can nondeterministically

promise to write a value to a certain location if it can fulfill its promise in

the future. The promised store is indistinguishable from other stores in other

threads’ perspectives. The semantics is extended to explain concurrent programs

in ARM/RISC-V [38], support global optimizations [30], a stronger notion of

data-race freedom [31], and non-volatile memory accesses [39].

Chakraborty and Vafeiadis [40] formalize the semantics of parts of the

concurrency-related instructions of LLVM IR.

2.3 Compiler Correctness

To state the correctness of compilation, we need to define a relation that must

hold between the behavior of a source (input) and target (output) program. The

relation must be strict enough to filter out incorrect transformations but weak

enough to allow valid compiler optimizations. The relation is called refinement

because the source program acts as a specification of the target program. A

commonly used relation is behavioral refinement that relates the observable

behavior of the source and target program [27].

2.3.1 Behavioral Refinement

Compilation from a source program Ps to a target program Pt is correct if

refinement holds between the observable behaviors of Ps and Pt. An observable

behavior of a program is either (1) a possibly infinite trace of observable

events (e.g., system calls, volatile memory accesses) during its execution, or

31

(2) undefined34. In small-step operational semantics, a program’s behavior is

undefined if the program reaches to a state has no applicable rule (a.k.a. stuck).

For closed programs Ps and Pt, behavioral refinement holds if for any in-

put I, either (1) Ps’s behavior is undefined, or (2) Pt’s behavior is defined

and the observable behavior of Ps and Pt is equivalent. We will use notation

B(Ps) w B(Pt) to represent the behavioral refinement between Ps and Pt. Be-

havioral refinement is transitive: for any programs P1, P2, P3, if B(P1) w B(P1)

and B(P2) w B(P3) holds, then B(P1) w B(P3) holds. This naturally implies

that if all transformations in a compiler are individually correct, so does the

end-to-end compilation.

Nondeterministic Behavior. If either the source or target language can

exhibit nondeterminism, the definition of behavioral refinement is expanded.

Behavioral refinement is defined in terms of set inclusion. B(Ps) w B(Pt) holds

if for any input I (1) Ps’s observable behavior set B(Ps) contains undefined

behavior, or (2) Pt’s observable behavior set B(Pt) does not have undefined

behavior and B(Ps) ◆ B(Pt) holds.

2.3.2 Simulation Relation

A technique that is frequently used to prove the behavioral refinement of two

programs is to (1) define a simulation relation and (2) use adequacy property [42].

Informally speaking, we relate equivalent program states in Ps and Pt’s executions

including their terminated states, and show that the initial states of Ps and

Pt are indeed related. We will use notation s
e
,�! s

0 to represent a small-step
3
One missing case is an infinite loop without having any observable event. It is undefined

behavior in C/C++, but allowed behavior in type-safe languages such as Rust. This case is

omitted for simplicity.
4
It is not trivial to find a definition of a program behavior that is (1) general enough to

encompass nondeterministic behavior and infinite events (2) friendly to writing machine-checked

proofs. [41] has a nice introduction about this issue and provides its own solution.

32

transition from a program state s 2 State to another state s
0 2 State raising an

event e. If e = ⌧ , the step has no event. The program text and program counter

are embedded in State. States is a set of program states of Ps and Statet is a

set of program states of Pt.

A relation R 2 States ⇥ Statet is a simulation if for any (s1, s2) 2 R, the

following predicate holds5:

8s02 2 Statet . s2
e
,�! s

0
2 =) 9s01, (s01, s02) 2 R ^ s1

⌧
,�!

⇤ e
,�! ⌧

,�!
⇤

s
0
1

⌧
,�!

⇤
is a multi-step transition consisting of zero or more silent small steps

(a.k.a. stuttering). We will use s1 ⇠R s2 to state that s2 simulates s1 ((s1, s2) 2

R).

Construction of R. As mentioned before, every terminated program state is

related to each other. A simulation relation can be built in an incremental manner

from this base case. However, this cannot relate non-terminating executions

because they will never terminate. In order to deal with this issue, R and an

event trace must be coinductively defined. The detail of this case is out of the

scope of this thesis.

Another approach to constructing R is to define which states in the source

and target program are similar. In CompCert, each transformation defines its

own match_states(s1, s2) that is a predicate stating that s1 and s2 are similar.

Unlike the generic definition of a simulation, its definition only depends on the

current states. Its definition is loose enough to allow slightly different states,

but the predicate itself must be a simulation relation.

match_states is tailored to the optimization. For example, if an optimization

affects registers’ values only, source and target memories are simply stated as

equal.
5
For brevity, we omit the undefined behavior and terminated cases.

33

Proving Behavioral Refinement. Once R is built, we can check the behav-

ioral refinement of Ps and Pt by checking whether their initial states are related

by R. This is called adequacy property. If Ps and Pt are closed programs, the

initial states are simply the program states at the beginning of main function.

If they are open programs, they are initial states in the function entry with

properly related input variables and memories.

2.3.3 Contextual Refinement

It is common that a program consists of multiple source files. In order to verify

the compilation of an open program, contextual refinement is often used. An

open program t contextually refines s if C[t] refines C[s] for all closing program

contexts C [43]. Note that this is stronger than the behavioral refinement:

proving contextual refinement for all modules means that behavioral refinement

holds for the full programs, but not vice versa.

A simulation relation can be used to prove contextual refinement as well. We

can define match_states for relating program states at function call boundaries.

In Section 5.6, we will define state refinement which is a kind of match_states

that is general enough to cover intraprocedural optimizations.

2.4 Verifying Compilers

Ensuring the correctness of compilers is crucial for the correctness of software

relying on it. Compiler bugs have changed the behavior of SQLite’s memory

allocator [44], git’s diff [45], introduced exploitable security holes in web

browsers’ JavaScript Just-In-Time compilers [46–48], and used to introduce a

backdoor in sudo [49]. An even more complicated kind of bug is that a compiler

miscompiled itself and the resulting compiler miscompiled another program. [50].

In order to ensure the correctness of compilers, various efforts have been

34

made in the research community. Existing approaches can be categorized into

three groups: compiler fuzzing, compiler verification, and translation validation.

2.4.1 Compiler Fuzzing

Fuzzing tools have been very successful in finding bugs in optimizers. Randomly

generated programs are compiled, carefully chosen inputs are given to the

binaries, and their outputs are compared with previously known answers or

outputs from other compilers’ binaries. Tools like Csmith [8], EMI [9], YARPgen

[10] and SPE [11] have found hundreds of bugs in commercial compilers, including

GCC, LLVM, and MSVC. Marcozzi et al. [51] studied the impact of bugs found

by fuzzers and verification tools.

However, they cannot ensure the absence of bugs. Since there is an infinite

number of valid programs as well as possible inputs, testing alone cannot entirely

give a correctness guarantee.

2.4.2 Compiler Verification

An alternative approach is compiler verification, where the compiler/optimizer

is verified once and for all. CompCert [27] is a compiler for C that is formalized

and verified in Coq [52]. Its core property – behavioral refinement – is proven by

the developers and mechanically checked. Further work has extended CompCert

with verified peephole optimizations [53], verified polyhedral model-based opti-

mizations [54], and a verified SSA-based middle-end optimizer [55]. However, it

still lacks important optimizations such as vectorization because a human must

write its correctness proof manually. Automatically writing the proof is still a

far-reaching goal due to its sheer complexity.

There are several frameworks tailored for verifying a limited set of compiler

optimizations. Cobalt [56] and its successor Rhodium [57] are frameworks to

35

specify and automatically verify peephole optimizations and dataflow analyses.

PEC [58] extends this work with support for loop-manipulating optimizations

by reusing some of the TVOC’s techniques [59].

Alive [60] is an automatic verification tool for LLVM’s peephole optimizations.

AliveInLean [61] is a reimplementation of Alive that was specified and verified in

Lean. Newcomb et al. [62] present an automatic verification tool for soundness

and termination of Halide’s rewriting system. CORK [63] is an automatic

equivalence checker that supports loop optimizations over rational numbers.

2.4.3 Translation Validation

Translation validation is a technique that sits in-between compiler fuzzing and

compiler verification. Given a source program and its compiled assembly, a

validator mechanically checks whether the semantic preservation holds for the

pair.

Early translation validation (TV) tools supported only transformations that

did not change the control-flow or the loop structure (e.g., loop unroll, software

pipeline) of the program [64]. TV tools were then extended to accept hints from

the compiler (witnesses) to simplify their job [65–68]. Crellvm [69] proposes

a witnessed TV framework for LLVM whose validator is formally verified in

Coq. Witnesses are especially useful for validating optimizations that change

the loop structure. Witnesses do not have to be correct, since they are validated

by the TV tool. When the compiler provides sufficient information, validation

can be done mostly syntactically [69]; there is something of a tradeoff between

the amount of changes required in the compiler and the computational and

implementation complexity of the TV tool.

Some tools, such as CoVaC [70], Counter [71], DDEC [72], JTFG [73], and

trace alignment [74], search for cut points between source and target programs

36

such that some relation between the two programs can be automatically synthe-

sized. When such relations are found, verification can be split into smaller tasks.

Moreover, this technique supports some control-flow-changing transformations.

TVOC [59,75] also has heuristics to support transformations that change loop

structure.

LLVM-MD [76] and Peggy [77] are TV tools for LLVM that work by rewriting

the source program until it is syntactically equal to the source. This process—

equality saturation—is similar to how many first-order theorem provers work

(e-matching). egg [78] is a library that implements equality saturation. These

tools are limited to proving equivalence.

Coeus [79] implements verification of relational program properties with

reinforcement learning. Klebanov et al. [80] proposed a CEGAR-based approach

for the verification of program equivalence. Inter-procedural equivalence checking

with mutual summaries was proposed in [81, 82]. Compositional Lifter [83]

validates binary-to-LLVM IR lifting tools.

A different class of TV tools are ones that are specific to a particular

transformation. For example, there are TV tools specific for lazy code motion [84],

software pipelining [85,86], and optimizations for scientific programs [87]. The

advantage of being specific is that these tools are simpler than generic ones.

Moreover, some of these TV tools are formally verified, which is harder to do

for generic tools. Sewell et al. [88] implemented TV for a specific program (seL4

kernel) for its compilation from C to ARM assembly.

While the majority of work so far on TV has focused on equivalence checking,

there is one that introduced support for some forms of UB [89]. This work shows

that adding support for UB (even if partially) reduces the number of false alarms

substantially.

37

Chapter 3

Undefined Behavior in the IR

LLVM heavily relies on undefined behavior to utilize the assumptions made by

the frontend languages. For example, C/C++ standard assumes that a reasonable

program will never divide a number by zero, stating that such program has

undefined behavior. A compiler can benefit from this and can analyze that a

value is never zero if it is used by division. It makes removal of a dead division

instruction valid as well because it is allowed for compiler to remove undefined

behavior from the source program. This possibly makes a programmer surprised

because it changes the equivalent assembly program from raising a trap to

silently finishing the execution.

Undefined behavior in LLVM IR falls into two categories. First, “immediate

UB” for serious errors, such as dividing by zero or dereferencing an invalid pointer,

that have consequences such as a processor trap. Second, “deferred UB” for

operations that produce unpredictable values but are otherwise safe to execute.

For example, shifting by a number that is larger than the bitwidth yields a value

that depends on the target architecture, but it does not immmediately crash

38

the system. Deferred UB is necessary to support speculative execution, such as

hoisting potentially undefined operations out of loops. Deferred UB in LLVM

comes in two forms: an undef value that models a register with indeterminate

value, and poison, a slightly more powerful form of UB that taints the dataflow

graph and triggers immediate UB if it reaches a side-effecting operation such as

division.

The presence of two kinds of deferred UB, and in particular the interaction

between them, has often been considered to be unsatisfying, and has been a

persistent source of discussions and bugs. LLVM has long contained optimizations

that are inconsistent with the documented semantics and that are inconsistent

with each other. To prevent miscompilation and permit rigorous reasoning about

LLVM IR, we redefined the UB-related parts of LLVM’s semantics in such a

way that:

• Compiler developers can understand and work with the semantics.

• Long-standing optimization bugs can be fixed.

• Few optimizations currently in LLVM need to be removed.

• Compilation time and execution time of generated code are largely unaf-

fected.

The new formal semantics of undefined behavior has been adopted by the

LLVM (Section 3.7). This chapter describes and evaluates our efforts.

3.1 Undefined Behavior in the IR

Undefined-behavior-related compiler optimizations are often thought of as black

magic, even by compiler developers. In this section we introduce IR-level unde-

fined behavior and show examples where it enables useful optimizations.

39

3.1.1 Undefined Behavior 6= Unsafe Programming

Despite the very poor example set by C and C++, there is no inherent connection

between undefined behavior (UB) and unsafe programming. Rather, UB simply

reflects a refusal to systematically trap program errors at one particular level

of the system: the responsibility for avoiding these errors is delegated to a

higher level of abstraction. For example, of course, many safe programming

languages have been compiled to machine code, the unsafety of which in no way

compromises the high-level guarantees made by the language implementation.

Swift and Rust are compiled to LLVM IR; some of their safety guarantees are

enforced by dynamic checks in the emitted code, other guarantees are made

through type checking and have no representation at the LLVM level. Even C

can be used safely if some tool in the development environment ensures—either

statically or dynamically—that it will not execute UB.

The essence of undefined behavior is the freedom to avoid a forced coupling

between error checks and unsafe operations. The checks, once decoupled, can

be optimized, for example by being hoisted out of loops or eliminated outright.

The remaining unsafe operations can be—in a well-designed IR—mapped onto

basic processor operations with little or no overhead. As a concrete example,

consider this Swift code:

func add(a : Int, b : Int)->Int {
return (a & 0xffff) + (b & 0xffff)

}

Although a Swift implementation must trap on integer overflow, the compiler

observes that overflow is impossible and emits this LLVM IR:

define i64 @add(i64 %a, i64 %b) {
%0 = and i64 %a, 65535
%1 = and i64 %b, 65535
%2 = add nuw nsw i64 %0, %1

40

ret i64 %2
}

Not only has the checked addition operation been lowered to an unchecked

one, but in addition the add instruction has been marked with LLVM’s nsw and

nuw attributes, indicating that both signed and unsigned overflow are undefined.

In isolation these attributes provide no benefit, but they may enable additional

optimizations after this function is inlined. When the Swift benchmark suite1 is

compiled to LLVM, about one in eight addition instructions has an attribute

indicating that integer overflow is undefined.

In this particular example the nsw and nuw attributes are redundant since

an optimization pass could re-derive the fact that the add cannot overflow.

However, in general these attributes and others like them add real value by

avoiding the need for potentially expensive static analyses to rediscover known

program facts. Also, some facts cannot be rediscovered later, even in principle,

since information is lost at some compilation steps.

3.1.2 Enabling Speculative Execution

The C code in Fig. 3.1 executes undefined behavior if x is INT_MAX and n > 0,

because in this case the signed addition x + 1 overflows. A straightforward

translation of the C code into LLVM IR, also shown in Fig. 3.1, has the same

domain of definedness as the original code: the nsw modifier to the add instruction

indicates that it is defined only when signed overflow does not occur.

We would like to optimize the loop by hoisting the invariant expression x + 1.

If integer overflow triggered immediate undefined behavior, this transformation

would be illegal because it makes the domain of definedness smaller: the code

would execute UB when x was INT_MAX, even if n was zero. LLVM works around

1https://swift.org/blog/swift-benchmark-suite/

41

for (int i = 0; i < n; ++i) {
a[i] = x + 1;

}

init:

br %head

head:
%i = phi [0, %init], [%i1, %body]
%c = icmp slt %i, %n
br %c, %body, %exit

body:
%x1 = add nsw %x, 1
%ptr = getelementptr %a, %i
store %x1, %ptr
%i1 = add nsw %i, 1
br %head

Figure 3.1: C code and its corresponding LLVM IR. We want to hoist the
invariant addition out of the loop. The nsw attribute means the add is undefined
for signed overflow.

this problem by adding the concept of deferred undefined behavior: the undefined

addition is allowed, but the resulting value cannot be relied upon. It is easy to

see that after hoisting the add, the code remains safe in the n = 0 case, because

x1 is not used. While deferred UB is useful, it is not appropriate in all situations.

For example, division by zero can trigger a processor trap and an out-of-bounds

store can corrupt RAM. These operations, and a few others in LLVM IR, are

immediate undefined behaviors and programs must not execute them.

3.1.3 Undefined Value

We need a semantics for deferred undefined behavior. A reasonable choice is

to specify that an undefined value represents any value of the given type. A

42

int x;
if (cond)

x = f();

if (cond2)
g(x);

(a)

entry:
br %cond, %ctrue, %cont

ctrue:
%xf = call @f()
br %cont

cont:
%x = phi [%xf, %ctrue],

[undef, %entry]
br %cond2, %c2true, %exit

c2true:
call @g(%x)

(b)

; test cond
testb %dil, %dil
je ctrue
; return value goes in %eax
callq f

ctrue:
; test cond2
testb %bl, %bl
je exit
; whatever is in %eax
; gets passed to g()
movl %eax, %edi
callq g

(c)

Figure 3.2: If cond2 implies cond, the C code in (a) does not perform UB by
accessing x before it is assigned a value. (b) is Clang’s translation into LLVM
IR and (c) is the eventual x86-64.

number of compiler IRs support this abstraction; in LLVM it is called undef.23.

Undef is useful because it lets the compiler avoid materializing an arbitrary

constant in situations—such as the one shown in Fig. 3.2—where the exact

value does not matter. In this example, assume that cond2 implies cond in some

non-trivial way such that the compiler cannot see it. Thus, there is no need to

initialize variable x at its point of declaration since it is only passed to g after

being assigned a value from f’s return value. If the IR lacked an undef value, the

compiler would have to use an arbitrary constant, perhaps zero, to initialize x on

the branch that skips the first if statement. This, however, increases the code

size by one instruction and two bytes on x86 and x86-64. Little optimizations

like this can add up across a large program. Undef is used to represent the values

of padding in structures, arrays, and bit fields as well.

2http://nondot.org/sabre/LLVMNotes/UndefinedValue.txt
3
Actually, undef in LLVM is defined as a set of values of the type. Section 5.2 describes its

formal definition in detail.

43

3.1.4 Beyond Undef

In C and C++, we can assume that the expressions a + b > a and b > 0

always yield the same value because signed overflow is undefined (assuming a

and b are of a signed type like int). If the original expression is translated to

this LLVM IR:

%add = add %a, %b
%cmp = icmp sgt %add, %a

the optimization to:

%cmp = icmp sgt %b, 0

becomes illegal since the add instruction wraps around on overflow. Moreover,

this problem cannot be fixed by defining a version of add that returns undef

when there is a signed integer overflow.

To see the inadequacy of undef, let a = INT_MAX and b = 1. The addition

overflows and the expression simplifies to undef > INT_MAX, which is always

false since there is no value of integer type that is larger than INT_MAX. However,

the desired optimized expression, b > 0, simplifies to 1 > 0, which is true. Thus,

the optimization is illegal: it would change the semantics of the program.

To justify this transformation, LLVM has a second kind of deferred undefined

behavior, the poison value. The original expression is compiled to this code

instead:

%add = add nsw %a, %b
%cmp = icmp sgt %add, %a

The nsw (no signed wrap) attribute on the add instruction indicates that

it returns a poison value on signed overflow. Poison values, unlike undef, are

not restricted to being a value of a given type. Most instructions including icmp

return poison if any of their inputs is poison. Thus, poison is a stronger form of

44

for (int i = 0; i <= n; ++i) {
a[i] = 42;

}

entry:
br %head

head:
%i = phi [0, %entry], [%i1, %body]
%c = icmp sle %i, %n
br %c, %body, %exit

body:
%iext = sext %i to i64
%ptr = getelementptr %a, %iext
store 42, %ptr
%i1 = add nsw %i, 1
br %head

Figure 3.3: C code and corresponding LLVM IR on x86-64. We want to eliminate
the sext instruction in the loop body.

UB than undef. In the previous example with nsw, the result of the comparison

becomes poison whenever the addition overflows and thus the optimization is

justified.

Fig. 3.3 shows another example motivating the poison value. The getelementptr

instruction (GEP for short) performs pointer arithmetic. The GEP there is

computing a+ i ⇤ 4, assuming that a is an array of 4-byte integers.

The sign-extend operation sext in the loop body handles the mismatch in

bitwidth between the 32-bit induction variable and the 64-bit pointer size. It is

the low-level equivalent of casting an int to long in C. Therefore, the GEP in

the program is actually computing a+ sext(i) ⇤ 4. We would like to optimize

away the sext instruction since sign extension, unlike zero extension, is usually

not free at runtime.

45

If we convert the loop induction variable i into long we can remove the

sign extension within the loop body (at the expense of adding a sign extend of

n to the entry basic block). This transformation improves performance by up

to 39%, depending on the microarchitecture, since we save one instruction per

iteration (cltq — sign extend eax into rax).

The transformation is only valid if pointer arithmetic overflow is undefined.

If it is defined to wrap around, the transformation is not semantics-preserving,

since a sequence of values of a signed 32-bit counter is different from a signed

64-bit counter’s. Therefore, we would be changing the set of stored locations in

case of overflow.

For a compiler to perform the aforementioned transformation, it needs to

prove that either the induction variable does not overflow, or if it does it is a

signed operation and therefore it does not matter. As we have seen before, signed

integer overflow cannot be immediate UB since that would prevent hoisting math

out of loops. If signed integer overflow returns undef, the resulting semantics

are too weak to justify the desired optimization: on overflow we would obtain

sext(undef) for %iext, which has all the most-significant bits equal to either

zero or one. Therefore, the maximum value %i1 could take would be INT_MAX

and thus the comparison at %c would always be true if %n = INT_MAX. On the

other hand, the comparison with 64-bit integers would return false instead.

If overflow is defined to return poison, an induction variable overflow would

result in %iext = sext(poison), which is equal to poison, which would make

the comparison at %c equal to poison as well. Therefore, this semantics justifies

induction variable widening.

46

3.2 Inconsistencies in LLVM

In this section we present several examples of problems with the current LLVM

IR semantics.

3.2.1 Duplicate SSA Uses

In some CPU micro-architectures, addition is cheaper than multiplication. It

may therefore be beneficial to rewrite 2⇥ x as x+ x. In LLVM IR we want to

rewrite:

%y = mul %x, 2

as:

%y = add %x, %x

Algebraically, these two expressions are equivalent. However, consider the

case where %x is undef. In the original code, the result can be any even number,

while in the transformed code the result can be any number. Therefore, the

transformation is wrong because we have increased the set of possible outcomes.

This problem happens because each use of undef in LLVM can yield a different

result. Therefore, it is not correct in general to increase the number of uses of a

given SSA register in an expression tree, unless it can be proved to not hold the

undef value. Even so, LLVM incorrectly performs similar transformations.

There are, however, multiple advantages to defining undef as yielding a

possibly different value on each use. For example, it helps reduce register pressure

since we do not need to hold the value of an undef in a register to give the

same value to all uses. Secondly, peephole optimizations can easily assume that

an undef takes whatever value is convenient to do a particular transformation,

which they could not easily do if undef had to remain consistent over multiple

uses. Another advantage is to allow duplication of memory loads given that

47

loads from uninitialized memory yield undef. If undef was defined to return a

consistent value for all uses, a duplicated load could potentially return a different

value if loading from uninitialized memory, which would be incorrect.

3.2.2 Global Value Numbering vs. Loop Unswitching

When c2 is loop-invariant, LLVM’s loop unswitching optimization transforms

code of this form:

while (c) {
if (c2) { foo }
else { bar }

}

to:

if (c2) {
while (c) { foo }

} else {
while (c) { bar }

}

This transformation assumes that branching on poison is not UB, but is rather

a non-deterministic choice. Otherwise, if c2 was poison, then loop unswitching

would be introducing UB if c was always false (i.e., if the loop never executed).

The goal of global value numbering (GVN) is to find equivalent expressions

and then pick a representative one and remove the remaining (redundant)

computations. For example, in the following code, variables t, w, and y all hold

the same value within the “then” block:

t = x + 1;
if (t == y) {

w = x + 1;
foo(w);

}

Therefore, GVN can pick y as the representative value and transform the code

into:

48

t = x + 1;
if (t == y) {

foo(y);
}

However, if y is a poison value and w is not, we have changed the code

from using a regular value as function argument to passing a poison value to

foo. If GVN followed loop unswitching’s interpretation of branch-on-poison

(non-deterministic branch), the transformation would be unsound. However, if

we decide instead that branch-on-poison is UB, then GVN is fine, since the

comparison “t == y” would be poison and therefore the original program would

be already executing UB. This, however, contradicts the assumption made by

loop unswitching. In other words, loop unswitching and GVN require different

semantics for branch on poison in LLVM IR in order to be correct. By assuming

different semantics, they perform conflicting optimizations, enabling end-to-end

miscompilations.4

3.2.3 Select and Poison

LLVM’s ternary select instruction, like the ?: operator in C/C++, uses a

Boolean to choose between its arguments. Either choice for how select deals

with poison—producing poison if its not-selected argument is poison, or not—

could be used as the basis for a correct optimizer. However, LLVM’s optimization

passes have not consistently implemented either choice. The LLVM Language

Reference Manual5 implies that if either argument to a select is poison, the

output is poison.

The SimplifyCFG pass tries to convert control flow into select instructions:

br %cond, %true, %false
true:

4http://llvm.org/PR27506 and http://llvm.org/PR31652
5http://llvm.org/docs/LangRef.html

49

br %merge
false:

br %merge
merge:

%x = phi [%a, %true], [%b, %false]

Gets transformed into:

br %merge
merge:

%x = select %cond, %a, %b

For this transformation to be correct, select on poison cannot be UB if

branching on poison is not. Moreover, it can only be poison when the chosen

value at runtime is poison (in order to match the behavior of phi).

LLVM also performs the reverse transformation, usually late in the pipeline

and for target ISAs where it is preferable to branch rather than do a conditional

move. For this transformation to be correct, branch on poison can only be UB

if select on a poison condition is also UB. Since we want both transformations

to be feasible, we can conclude that the behavior of branching on poison and

select with a poison condition has to be equivalent.

If select on a poison condition is UB, it makes it very hard for the compiler

to introduce select instructions in replacement of arithmetic. E.g., the following

transformation that replaces an unsigned division with a comparison would be

invalid (which ought to be valid for any constant %C < 0):

%r = udiv %a, %C

to:

%c = icmp ult %a, %C
%r = select %c, 0, 1

This transformation is desirable since it removes a potentially expensive

operation like division. However, if select on poison is UB, the transformed

50

program would execute UB if %a was poison, while the original program would

not. As we have seen previously, if select (and therefore branch) on poison is not

UB, GVN is unsound, but that is incompatible with the transformation above.

Finally, it is often desirable to view select as arithmetic, allowing transforma-

tions like: %x = select %c, true, %b to %x = or %c, %b. This property of

equivalence with arithmetic, however, requires making the return value poison

if any of the arguments is poison, which breaks soundness for the phi/branch to

select transformation (SimplifyCFG in LLVM) above.

There is a tension between the different semantics that select can take

and which optimizations can be made sound. Currently, different parts of

LLVM implement different semantics for select, which originates end-to-end

miscompilations. 6

Finally, it is very easy to make mistakes when both undef and poison are

involved. LLVM currently performs the following substitution:

%v = select %c, %x, undef

to:

%v = %x

This is wrong because %x could be poison, and poison is stronger than undef.7

3.2.4 Summary

In this section we showed that undefined behavior, which was added to LLVM’s

IR to justify certain desirable transformations, is exceptionally tricky and has

lead to conflicting assumptions among compiler developers. These conflicts are

reflected in the code base.8 Although the LLVM developers almost always fix
6http://llvm.org/PR31632
7http://llvm.org/PR31633
8
e.g., http://llvm.org/PR31181 and http://llvm.org/PR32176

51

overt problems that can be demonstrated to lead to end-to-end miscompilations,

the latent problems we have shown here are long-standing and have so far resisted

attempts to fix them (any fix that makes too many existing optimizations illegal

is unacceptable). In the next section we introduce a modified semantics for UB

in LLVM that we believe fixes all known problems and is otherwise acceptable.

3.3 Proposed Semantics

In Section 3.1 we showed that undef and poison enable useful optimizations that

programmers might expect. In Section 3.2, however, we showed that undef and

poison, as currently defined, are inconsistent with other desirable transformations

(or combinations of transformations) and that they interact poorly with each

other. Our proposal—arrived at after many iterations and much discussion,

and currently under discussion with the broader LLVM community—is to tame

undefined behavior in LLVM as follows:

• Remove undef and use poison instead.

• Introduce a new instruction:

%y = freeze %x

freeze is a nop unless its input is poison, in which case it non-deterministically

chooses an arbitrary value of the type. All uses of a given freeze return the

same value, but different freezes of a value may return different constants.

• All operations over poison unconditionally return poison except phi,

select, and freeze.

• Branching on poison is immediate UB.

52

Our experience is that the presence of two kinds of deferred undefined

behavior is simply too difficult for developers to reason about: one of them had

to go. We define phi and select to conditionally return poison, and branching on

poison to be UB, because these decisions reduce the number of freeze instructions

that would otherwise be needed.

Defining branching on poison to be UB further enables analyses to assume

that predicates used on branches hold within the target basic block, which would

not be possible if we had defined branching on poison to be a non-deterministic

choice. For example, for code like if (x > 0) \{ /* foo */ \}, we want to

allow analyses to assume that x is positive within the “then” block (and not

positive in the “else” block).

A risk of using freeze is that it disables subsequent optimizations that take

advantage of poison. Our observation is that many of these optimizations were

illegal anyway, and that it is better to disable them explicitly rather than

implicitly. Also, as we show later, we usually do not need to introduce many

freeze instructions. We experimentally show that freeze does not unduly impact

performance.

3.3.1 Syntax

Fig. 3.4 gives the partial syntax of LLVM IR statements. LLVM IR is typed, but

we omit operand types for brevity (in this section and throughout the paper)

when these are implicit or non-essential. The IR includes standard unary/binary

arithmetic instructions, load/store operations, a phi node, a comparison operator,

multiple type casting instructions, conditional branching, instructions to access

and modify vectors, etc. We also include the new freeze instruction and the

new poison value, while removing the old undef value.

53

stmt : : = reg = inst | br op, label , label | store op, op
inst : : = binop attr op, op | conv op | bitcast op |

select op, op, op | icmp cond , op, op |
phi ty , [op, label] . . . , [op, label] | freeze op |
getelementptr op, . . . , op | load op |
extractelement op, constant |
insertelement op, op, constant

cond : : = eq | ne | ugt | uge | slt | sle
ty : : = isz | ty⇤ | <sz ⇥ isz > | <sz ⇥ ty⇤>

binop : : = add | udiv | sdiv | shl | and | or
attr : : = nsw | nuw | exact
op : : = reg | constant | poison

conv : : = zext | sext | trunc

Figure 3.4: Partial syntax of LLVM IR statements. Types include arbitrary
bitwidth integers, pointers ty⇤, and vectors <elems ⇥ ty> that have a statically-
known number of elements elems.

3.3.2 Semantics

We first define the semantic domains as follows.

Num(sz) : : = { i | 0 i < 2
sz }

Jisz K : : = Num(sz)] {poison }
Jty⇤K : : = Num(32)] {poison }
Jhsz⇥tyiK : : = {0, . . . , sz � 1} ! JtyK
Mem ::= Num(32) 9 Jh8⇥i1iK
Name : := { %x, %y, . . . }
Reg : := Name ! { (ty , v) | v 2 JtyK }

Here JtyK denotes the set of values of type ty , which are either poison or

fully defined for base types, and are element-wise defined for vector types. The

memory Mem is bitwise defined since it has no associated type. Specifically,

Mem partially maps a 32-bit address to a bitwise defined byte (we assume, with

no loss of generality, that pointers are 32 bits). The register file Reg maps a

name to a type and a value of that type.

We define two meta operations: conversion between values of types and low-

level bit representation. These operations are used later for defining semantics

of instructions.

54

ty# 2 JtyK ! Jhbitwidth(ty)⇥i1iK
ty" 2 Jhbitwidth(ty)⇥i1iK ! JtyK

isz#(v) or ty⇤#(v) =
⇢
�_.poison if v=poison
(std) otherwise

hsz⇥tyi#(v) = ty#(v[0])++ . . . ++ ty#(v[sz � 1])

isz"(b) or ty⇤"(b) =
⇢
poison if 9i. b[i]=poison
(std) otherwise

hsz⇥tyi"(b) = hty"(b0), . . . , ty"(bsz�1)i
where b = b0 ++ . . .++ bsz�1

For base types, ty# transforms poison into the bitvector of all poison bits, and

defined values into their standard low-level representation. For vector types, ty#

transforms values element-wise, where ++ denotes the bitvector concatenation.

Conversely, for base types, ty" transforms bitwise representations with at least

one poison bit into poison, and transforms fully defined ones in the standard

way. For vector types, ty" transforms bitwise representations element-wise.

Now we give semantics to selected instructions in Fig. 3.5. It shows how

each instruction updates the register file R 2 Reg and the memory M 2 Mem,

denoted R,M ,! R
0
,M

0. The value JopKR of operand op over R is given by:

JrKR = R(r) // register
JCKR = C // constant

JpoisonKR = poison // poison

The load operation Load(M,p, sz) successfully returns the loaded bit repre-

sentation only if p is a non-poison address pointing to a valid block of bitwidth at

least sz in the memory M . The store operation Store(M,p, b) successfully stores

the bit representation b in the memory M and returns the updated memory

only if p is a non-poison address pointing to a valid block of bitwidth at least

bitwidth(b).

55

(r = freeze isz op)

JopKR = poison v 2 Num(sz)

R,M ,! R[r 7! v],M

JopKR = v 6= poison

R,M ,! R[r 7! v],M

(r = freeze ty op) for ty = hn⇥isz i
JopKR = hv0, . . . , vn�1i

8i. (vi = poison ^ v
0
i 2 Num(sz))

_ (vi = v
0
i 6= poison)

�

R,M ,! R[r 7! hv00, . . . , v0n�1i],M

(r = phi ty [op1, L1], . . . , [opn, Ln])

JopiKR = vi

R,M ,! R[r 7! vi],M
(coming from Li)

(r = select op, ty op1, op2)

JopKR = poison

R,M ,! R[r 7! poison],M

JopKR = 1 Jop1KR = v1

R,M ,! R[r 7! v1],M

JopKR = 0 Jop2KR = v2

R,M ,! R[r 7! v2],M

(r = and isz op1, op2)

Jop1KR = poison

R,M ,! R[r 7! poison],M

Jop2KR = poison

R,M ,! R[r 7! poison],M
Jop1KR = v1 6= poison Jop2KR = v2 6= poison

R,M ,! R[r 7! v1 & v2],M

(r = add nsw isz op1, op2)

Jop1KR = poison

R,M ,! R[r 7! poison],M

Jop2KR = poison

R,M ,! R[r 7! poison],M
Jop1KR = v1 Jop2KR = v2 v1 + v2 overflows (signed)

R,M ,! R[r 7! poison],M
Jop1KR = v1 Jop2KR = v2 v1 + v2 no signed overflow

R,M ,! R[r 7! v1 + v2],M

(r = bitcast ty1 op to ty2)

JopKR = v

R,M ,! R[r 7! ty2"(ty1#(v))],M

(r = load ty , ty⇤ op)

Load(M, JopKR, bitwidth(ty)) fails
R,M ,! UB

Load(M, JopKR, bitwidth(ty)) = v

R,M ,! R[r 7! ty"(v)],M

(store ty op1, ty⇤ op)

Store(M, JopKR, ty#(Jop1KR)) fails
R,M ,! UB

Store(M, JopKR, ty#(Jop1KR)) = M
0

R,M ,! R,M
0

Figure 3.5: Semantics of selected instructions

56

The rules shown in Fig. 3.5 follow the standard operational semantics

notation. For example, the first rule says that the instruction r = freeze isz op,

if the operand value JopKR is poison, updates the destination register r with

an arbitrary value v (i.e., updates the register file R to R[r 7! v]) leaving the

memory M unchanged; and if JopKR is a non-poison value v, it updates the

register r with the operand value v.

3.4 Illustrating the New Semantics

In this section we show how the proposed semantics enable optimizations that

cannot be performed soundly today in LLVM. We also show how to encode

certain C/C++ idioms in LLVM IR for which changes are required in the

frontend (Clang), as well as optimizations that need tweaks to remain sound.

3.4.1 Loop Unswitching

We showed previously that GVN and loop unswitching could not be used together.

With the new semantics, GVN becomes sound, since we chose to trigger UB in

case of branch on poison value. Loop unswitching, however, requires a simple

change to become correct. When a branch is hoisted out of a loop, the condition

needs to be frozen. E.g.,

while (c) {
if (c2) { foo }
else { bar }

}

is transformed into:

if (freeze(c2)) {
while (c) { foo }

} else {
while (c) { bar }

}

57

By using the freeze instruction, we avoid introducing UB in case c2 is

poison and force a non-deterministic choice between the two loops instead. This

is a refinement of the original code, which would trigger UB if c2 was poison

and the loop executed at least once.

Freeze can be avoided if the branch on c2 is placed in the loop pre-header

(since then the loop is guaranteed to execute at least once). The compiler further

needs to prove that the branch on c2 is always reachable (i.e., that all function

calls before the “if (c2)” statement always return).

3.4.2 Reverse Predication

In some CPU architectures it is beneficial to compile a select instruction into a

set of branches rather than a conditional move. We support this transformation

using freeze:

%x = select %c, %a, %b

can be transformed to:

%c2 = freeze %c
br %c2, %true, %false

true:
br %merge

false:
br %merge

merge:
%x = phi [%a, %true], [%b, %false]

Freeze ensures that no UB is triggered if %c is poison. We believe, however,

that this kind of transformation may be delayed to lower-level IRs where poison

usually does not exist.

3.4.3 Bit Fields

C and C++ have bit fields in structures. These fields are often packed together

to form a single word-sized field (depending on the ABI). Since in our semantics

58

loads of uninitialized data yield poison, and bit-field store operations also require

a load (even the first store), extra care is needed to ensure that a store to a bit

field does not always yield poison.

Therefore we propose to lower the following C code:

mystruct.myfield = foo;

into:

%val = load %mystruct
%val2 = freeze %val
%val3 = ; ...combine %val2 and %foo...
store %val3, %mystruct

We need to freeze the loaded value, since it might be the first store to the bit

field and therefore it might be uninitialized. If the stored value foo is poison, this

bit field store operation contaminates the adjacent fields when it is combined

through bit masking operations. This is fine, however, since if foo is poison

then UB must have already occurred in the source program and so we can taint

the remaining fields.

An alternative way of lowering bit fields is to use vectors or use the structure

type. These are superior alternatives, since they allow perfect store-forwarding

(no freezes), but currently they are both not well supported by LLVM’s backend.

E.g., with vectors:

%val = load <32 x i1> %mystruct
%val2 = insertelement %foo, %val, ...
store %val2, %mystruct

Here we assume the word size is 32 bits, and therefore we ask LLVM to load

a vector of 32 bits instead of loading a whole word. Since our semantics for

vectors define that poison is determined per element, a poison bit field cannot

contaminate adjacent fields.

59

3.4.4 Load Combining and Widening

Sometimes it is profitable to combine or widen loads to align with the word size

of a given CPU. However, if the compiler chooses to widen, say, a 16-bit load

into a 32-bit load, then care must be taken because the remaining 16 bits may

be poison or uninitialized and they should not poison the value the program

was originally loading. To solve the problem, we also resort to vector loads, e.g.,

%a = load i16, %ptr

can be transformed to:

%tmp = load <2 x i16>, %ptr
%a = extractelement %tmp, 0

As for bit fields, vector loads make it explicit to the compiler that we are

loading unrelated values, even though at assembly level it is the still the same

load of 32 bits.

3.4.5 Pitfall 1: Freeze Duplication

Duplicating freeze instructions is not allowed, since each freeze instruction

may return a different value if the input is poison. For example, this blocks

loop sinking optimization (dual of loop invariant code motion). Loop sinking

is beneficial if, e.g., a loop is rarely executed. For example, it is not sound to

perform the following transformation:

x = a / b;
y = freeze(x);
while (...) {

use(y)
}

to:

while (...) {
x = a / b;

60

y = freeze(x);
use(y)

}

3.4.6 Pitfall 2: Semantics of Static Analyses

Static analyses in LLVM usually return a value that holds only if all of the ana-

lyzed values are not poison. For example, if we run the isKnownToBeAPowerOfTwo

analysis on value “%x = shl 1, %y”, we get a statement that %x will be always a

power of two. However, if %y is poison, then %x will also be poison, and therefore

it could take any value, including a non-power-of-two value.

Many LLVM analyses are not sound over-approximations with respect to

poison. The main reason is that if poison was taken into account then most

analyses would return the worst result (top) most of the time, rendering them

useless.

This semantics is generally fine when the result of the analyses are used for

expression rewriting, since the original and transformed expressions will yield

poison when any of the inputs is poison. However, this is not true when dealing

with code movement past control-flow. For example, we would like to hoist the

division out of the following loop (assuming a is loop invariant):

while (c) {
b = 1 / a;

}

If the isKnownToBeAPowerOfTwo analysis states that a is always a power of

two, we are tempted to conclude that hoisting the division is safe since a cannot

possibly be zero. However, a may be poison, and therefore hoisting the division

would introduce UB if the loop did not execute.

In summary, there is a trade-off for the semantics of static analysis regarding

how they treat poison. LLVM is considering extending APIs of relevant analyses

to return up-to results with respect to poison, i.e., the result of an analysis is

61

sound if a set of values is non-poison. Then it is up to the client of the analysis

to ensure this is the case if it wants to use the result of the analysis in a way

that requires the value to be non-poison (e.g., to hoist instructions that may

trigger UB past control-flow).

3.5 Prototype Implementation

We prototyped our new semantics in LLVM 4.0 RC4.9 We made the following

modifications to LLVM, changing a total of 578 lines of code:

• Added a new freeze instruction to the IR and to SelectionDAG (SDAG),

and added appropriate translation from IR’s freeze into SDAG’s freeze

and then to MachineInstruction (MI).

• Fixed loop unswitching to freeze the hoisted condition (as described in

Section 3.4.1).

• Fixed several unsound InstCombine (peephole) transformations handling

select instructions (e.g., the problems outlined in Section 3.2.3).

• Added simple transformations to InstCombine to optimize spurious uses

of freeze, such as transforming freeze(freeze(x)) to freeze(x) and

freeze(const) to const.

We made a single change to Clang, modifying just one line of code: we

changed the lowering of bit field stores to freeze the loaded value (as described

in Section 3.4.3).

Lowering Freeze LLVM IR goes through two other intermediate languages

before assembly is finally generated. Firstly, LLVM IR is lowered into Selection
9
Code available from https://github.com/snu-sf/{llvm-freeze,clang-freeze}/tree/

pldi

62

DAG (SDAG) form, which still represents code in a graph like LLVM IR but

where operations may already be target dependent. Secondly, SDAG is lowered

into MachineInstruction (MI) through standard instruction selection algorithms,

followed by register allocation.

We introduced a freeze operation in SDAG, so a freeze in LLVM IR maps

directly into a freeze in SDAG. Additionally, we had to teach type legalization

(SDAG level) to handle freeze instructions with operands of illegal type (for

the given target ISA). For instruction selection (i.e., when going from SDAG to

MI), we convert poison values into pinned undef registers, and freeze operations

into register copies. At MI level there is no poison, but instead there are undef

registers, which may yield a different value for each use like LLVM IR’s undef

value. Since taking a copy from an undef register effectively freezes undefinedness

(i.e., all uses of the copy observe the same value), we can lower freeze into a

register copy.

Optimizations We had to implement a few optimizations to recover some

performance regressions we observed in early prototypes. These regressions

were due to LLVM optimizers not recognizing the new freeze instruction and

conservatively giving up. For example, on x86 it is usually preferable to lower a

branch on an and/or operation into a pair of jumps rather than do the and/or

operation and then do a single jump. This transformation got blocked if the

branch was done on a frozen and/or operation. We modified CodeGenPrepare

(a phase right before lowering IR to SDAG) to support freeze.

For x86, a comparison used only by a conditional branch is usually moved

so that it is placed right before the branch, since it is often preferable to

repeat the comparison (if needed) than save the result to reuse later. Since

freeze instructions cannot be sunk into loops, this transformation is blocked

63

if the branch is over a frozen comparison. We changed CodeGenPrepare to

transform “freeze(icmp %x, const)” to “icmp(freeze %x), const” when

deemed profitable. Note that we cannot do this transformation early in the

pipeline since it would break some static analyses (like scalar evolution)—the

transformed expression is a refinement of the original one.

We changed the inliner to recognize freeze instructions as zero cost, even if

they may not always be free. With this change, we avoid changing the behavior

of the inliner as much as possible.

Testing the Prototype To test the correctness of the prototype, we used the

LLVM and Clang test suites. We also used opt-fuzz10 to exhaustively generate

all LLVM functions with three instructions (over 2-bit integer arithmetic) and

then we used Alive [60] to validate both individual passes (InstCombine, GVN,

Reassociation, and SCCP) and the collection of passes implied by the -O2

compiler flag. This way we increase confidence that Alive and LLVM agree

on the semantics of the IR. This technique was also very useful during the

development of the semantics since it enabled us to quickly try out different

solutions and check which optimizations would be invalid.

Limitations of the Prototype Our prototype has a few limitations that

make it unsound in theory, even though we did not detect any end-to-end

miscompilations. These limitations do not reflect fundamental problems with

our proposed semantics, but they require more extensive changes to LLVM than

we have performed so far. Also, bear in mind that LLVM was already unsound

before our changes, but in ways that are harder to fix.

InstCombine performs a few transformations taking a select instruction

10https://github.com/regehr/opt-fuzz

64

and producing arithmetic operations. For example, “select %c, true, %x” is

transformed into “or %c, %x”. This transformation is incorrect if %c may be

poison. A safe version requires freezing %c for the or operation. Alternatively,

we could just remove these transformations, but that would likely require

improvements to other parts of the compiler to make them recognize the idiom to

produce efficient code (since at the moment the backend and other optimizations

may not be expecting this non-canonical code).

Another limitation is related to vectors. We have shown that widening can

be done safely by using vector operations. However, LLVM does not yet handle

vectors as first-class values, which frequently results in generation of sub-optimal

code when vectors are used. Therefore, we did not fix any widening done by

LLVM (e.g., in GVN, in Clang’s lowering of bit-fields, or in Clang’s lowering of

certain parameters that require widening by some ABIs).

3.6 Performance Evaluation

This section evaluates the performance of our prototype in terms of compile

time and size and speed of generated code.

3.6.1 Experimental Setup

Environment We used two machines with different micro-architectures for

evaluation. Machine 1 had an Intel Core i7 870 CPU at 2.93 GHz, and Machine 2

had an Intel Core i5 6600 CPU at 3.30 GHz. Both machines had 8 GB of RAM

and were running Ubuntu 16.04. To get consistent results, we disabled Hyper-

Threading, SpeedStep, Turbo Boost, and address space layout randomization

(ASLR). We used the cpuset tool11 to grant exclusive hardware resources to

the benchmark process. Machines were disconnected from the network while

11https://github.com/lpechacek/cpuset.git

65

running the benchmarks.

Benchmarks We used three benchmarks: SPEC CPU 2006, LLVM Nightly

Test (LNT), and five large single-file programs ranging from 7k to 754k lines of

code each.12 SPEC CPU consists of 12 integer-only (CINT) and seven floating-

point (CFP) benchmarks (we only consider C/C++ benchmarks). LNT consists

of 281 benchmarks with about 1.5 million lines of code in total.

Measurements We measured running time and peak memory consumption

of the compiler, running time of compiled programs, and generated object file

size.

To estimate compilation and running time, we ran each benchmark three

times (except LNT, which we ran five times to cope with shorter running times)

and took the median value. To estimate peak memory consumption, we used the

ps tool and recorded the rss and vsz columns every 0.02 seconds. To measure

object file size, we recorded the size of .o files and the number of IR instructions

in LLVM bitcode files. All programs were compiled with -O3 and the comparison

was done between our prototype and the version of LLVM/Clang from which

we forked.

3.6.2 Results

Compile time On both machines, compile time was largely unaffected by

our changes. Most benchmarks were in the range of ±1%. There were a few

exceptions with small files, such as the “Shootout nestedloop” benchmark, where

compilation time increased by 19% to 29 ms. The reason was that an optimization

(jump threading) did not kick in because of not knowing about freeze, which

12http://people.csail.mit.edu/smcc/projects/single-file-programs/ and

https://sqlite.org/2016/sqlite-amalgamation-3140100.zip

66

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la
nc

bm
k

C
h

a
n

g
e

 in
 P

e
rf

o
rm

a
n

ce
 (

%
)

Machine 1
Machine 2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

m
ilc

na
m

d

de
al
II

so
pl
ex

po
vr

ay lb
m

sp
hi
nx

3

C
h

a
n

g
e

 in
 P

e
rf

o
rm

a
n

ce
 (

%
)

Machine 1
Machine 2

Figure 3.6: Change in performance in % for SPEC CPU 2006: CINT on the
left, CFP on the right. Positive values indicate that performance improved, and
negative values indicate that performance degraded.

then caused a different set of optimizations to fire in the rest of the pipeline.

Memory consumption For most benchmarks, peak memory consumption

was unchanged, and we observed a maximum increase of 2% for bzip2, gzip, and

oggenc.

Object code size We observed changes in the range of ±0.5%. Freeze instruc-

tions represented about 0.04%–0.06% of the total number of IR instructions.

The gcc benchmark, however, had 3,993 freeze instructions (0.29% of total),

since it contains a large number of bit-field operations.

Run time Change in performance for SPEC CPU 2006 is shown in Fig. 3.6.

The results are in the range of ±1.6%, with slightly different results on the two

machines.

For LNT benchmarks, only 26% had different IR after optimization, and only

82% of those produced different assembly (21% overall resulted in a different

binary). Excluding noisy tests, we observed a range of -3% to 2% performance

67

change on machine 1 and -3% to 1.5% on machine 2, except for one case:

“Stanford Queens.” This test showed a significant speedup (6% on machine 1 and

8% on machine 2) because the introduction of a single freeze instruction caused

a change in allocated registers (r13 vs r14). According to the Intel Optimization

Reference Manual, the latency and throughput of the LEA instruction is worse

with certain registers.13

It is normal that run time results fluctuate a bit when a new instruction is

added to an IR, since some optimizations and heuristics need to learn how to

handle the new instruction. We did only a fraction of the required work, but the

results are already reasonable, which shows that the semantics can be deployed

incrementally.

3.7 Implementing Our Semantics in LLVM

The new formal semantics has been adopted by LLVM, and many optimizations

are fixed because they were incorrect with respect to the semantics. In this

section, we describe the efforts we made to carry our formal semantics to

LLVM. We actively sent patches to the LLVM project in order to fix incorrect

transformations and address performance regressions after their land. Several

incorrect transformations are fixed by LLVM developers as well.

3.7.1 Adding Freeze Instruction and Poison Constant

The proposed freeze instruction is officially added into LLVM 10.0 in November,

2019. We wrote patches for adding freeze to LLVM IR and SelectionDAG14, both

of which were successfully landed. Instruction selection was updated to handle

freeze with an operand whose type is illegal in the target architecture. A freeze
13https://software.intel.com/sites/default/files/managed/9e/bc/

64-ia-32-architectures-optimization-manual.pdf, §3.5.1.3 Using LEA
14https://reviews.llvm.org/rG58acbce3def63a207b8f5a69318a99666a4aac53, https://

reviews.llvm.org/rG7802be4a3d86743242273593d43a78df84ece8c1

68

node in SelectionDAG is lowered into a register copy in MachineIR. However,

this translation turned out to be unsound because MachineIR’s IMPLICIT_DEF

has undef-like behavior. To fully fix this, further updates in MachineIR’s trans-

formations are necessary.

We also implemented isGuaranteedNotToBeUndefOrPoison analysis in Val-

ueTracking to make removal of redundant freeze instructions easy. It is a

flow-sensitive analysis returning true if the value must be well defined. A similar

function is added to SelectionDAG framework as well.

Also, poison constant is officially added to LLVM in December, 202015. In

the past, there was no way to present poison constant in LLVM IR. After this

patch, constant folding and instruction combining are updated to deal with

poison.

Several transformations and APIs are updated to use poison instead of undef

to represent a don’t-care value. For example, IRBuilder::CreateShuffleVector

is updated to use poison as the second vector operand if the shuffle operation

does not choose elements from the second vector. Fully replacing undef with

poison is ongoing work.

3.7.2 Disabling Select to And/Or Folding

As described in Section 3.5, transforming “select %c, true, %x” into “or

%c, %x” is incorrect because “or %c, %x” is more poisonous than “select %c,

true, %x“ if %c is true and %x is poison. Similarly, transforming “select %c,

%x, true” into “and %c, %x” is also unsound. There are two solutions for this.

The first one is to remove this transformation, and the second one is to freeze

%c.

The first solution, simply removing the and/or transformation, required
15https://reviews.llvm.org/D71126 - this patch is written by a coauthor of our memory

model and Alive2 paper.

69

significant updates in the codebase to avoid performance regression. Transforma-

tions and analyses were recognizing “or %c, %x” but not “select %c, true,

%x” as a disjunction (similarly, “and %c, %x” but not “select %c, %x, true”

as well). Also, the backend’s code generation algorithm could emit optimized

assembly code for “and/or” but not for select. However, this solution had one

important strength: it does not remove undefinedness from source programs.

Compared to the first solution, the second solution (freezing %c) did not

require updates in recognizing conjunction/disjunction patterns. However, inser-

tion of freeze still caused suboptimal assembly because optimizations often had

to look through the frozen condition. Besides that, inserted freeze instructions

blocked further optimization because they permanently removed undefinedness

from the program.

After discussions with LLVM developers, we chose to pursue the first solution.

We updated transformations/analysis to recognize the select form of and/or.

The backend was updated to generate optimized code as well.

Some optimizations were valid only when the input expression was in and/or

form, but not in the select form. To fix them, we made two kinds of efforts.

First, we again folded select to and/or only when it is correct to do so. The

transformation is correct if %x being poison implies %c is also poison. We

implemented a new impliesPoison(x, y) function that returns true if x being

poison means y is also poison. Then, “select %c, true, %x” is optimized to

“or %c, %x” if impliesPoison(%x, %c) holds (similarly for and). Second, in

rare cases, select was transformed into to and/or with freeze.

We had to fix incorrect transformations that directly insert and/or as well.

For example, SimplifyCFG pass was inserting and/or when short-circuiting two

branch conditions (“if (e1) { if (e2) { .. }}” in C), which is poison-unsafe

as described before. We fixed them to insert select instead.

70

In summary, we wrote about 20 patches and pushed a few without-review

commits for minor improvements. The transformation was fully removed in May

2021.

3.7.3 Branch on Undef or Poison Is UB

We clarified in LLVM Language Reference Manual [6] that branching on undef

or poison has undefined behavior16. For switch instruction, it has undefined

behavior if the condition is either fully or partially undefined.

After the clarification, we fixed incorrect transformations that introduce

undefined behavior according to our semantics. The transformation in Code-

GenPrepare that converts select to a conditional branch is fixed to insert

freeze instead. Also, JumpThreading is fixed to introduce freeze only when

linking-time optimization is enabled. Since JumpThreading runs multiple times

during the optimization pipeline, unconditionally inserting freeze could cause

an observable performance regression.

Another incorrect transformation SimplifyCFG is fixed by a student who

participated as a mentee in our Google Summer of Code project17.

%A = icmp ne i32 %mode, 0
%B = icmp ne i32 %mode, 51
%C = select i1 %A, i1 %B, i1 false
%D = select i1 %C, i1 %Cond, i1 false
br i1 %D, label %T, label %F

=>
br i1 %Cond, label %switch.early.test, label %F

switch.early.test:
switch i32 %mode, label %T [

i32 51, label %F
i32 0, label %F

]

16https://reviews.llvm.org/D76973
17

In the summer of 2021, I and Nuno worked as mentors of 3 Google Summer of Code

projects for fixing miscompilations in LLVM.

71

This transformation is incorrect if %Cond is poison and %C is false. We

fixed this by freezing %Cond18. Previously, this transformation was inactivated if

memory sanitizer option is turned on because it caused false positives. We fully

activated the transformation in our patch.

To address performance regression after insertion of freeze, we added new

optimizations to SelectionDAG. First of all, the semantics of branching on

undef or poison in SelectionDAG is defined as a nondeterministic jump unlike

IR19. This is okay because optimizations in SelectionDAG do not exploit branch

conditions. After the clarification, we sent patches that remove freeze away if

the instruction has only one use which is a conditional branch. This helped the

backend do better code generation.

Fixing loop unswitch using freeze is ongoing work. The first trial to fix

it was made in early 2020, but it was reverted due to performance regression.

There are several patches under review to address the performance regression

(Aug. 2021).

3.7.4 Dealing With Freeze in Loops

LLVM’s loop optimizations heavily rely on loop analyses. Among them, scalar

evolution is an analysis that finds a recurrence relation for an induction variable

as well as its bounds. Scalar evolution helps simplify expressions containing

induction variables as well as modeling the cost of the loop.

For precise modeling of an induction variable, scalar evolution assumes that

a loop does not continue if it has a branch on poison.

loop:
%i = phi i32 [0, %entry], [%i.next, %loop]
%i.next = add nsw i32 %i, 1

18https://reviews.llvm.org/D104569
19https://reviews.llvm.org/D92015

72

%cond = %i.next <= %n
br i1 %cond, %loop, %exit

Given the above program, scalar evolution concludes that %i increases from

zero to %n � 1 by one. A tricky case is when %n is 2
32. In this case, the last

iteration executes a conditional branch on poison. To justify this case, we can

use our branch-on-poison semantics. Since the last iteration executes a branch

on poison, it has undefined behavior. As other value analyses do20, scalar

evolution’s result holds for well-defined executions only. Since the last iteration

is undefined, we only need to consider the remaining iterations.

This implies that the validity of scalar evolution’s result relies on the unde-

finedness of the latch condition (%cond). If it is frozen (e.g., “freeze %cond”),

or the added result is frozen (e.g., “freeze %i.next”), there is no undefined

behavior anymore. This means the analysis result must be >. This resulted in

disabling many loop optimizations.

To fix this regression, we implemented a pass that pushes freeze out of

a loop21. If the induction variable %i.next was frozen and used by %cond

previously, the new pass removes freeze by stripping off poison-generating flags

and freezing the initial value.

; Initial value 0 is already a well-defined constant, so
; it isn't necessary to be frozen

loop:
%i = phi i32 [0, %entry], [%i.next, %loop]
%i.next = add i32 %i, 1
%cond = %i.next <= %n
br i1 %cond, %loop, %exit

This pass is activated by default if -O1 or higher optimization flag is set.

20
LLVM’s value analysis on assumptions (llvm.assume) relies on undefined behavior as well,

for example.
21https://reviews.llvm.org/D77523

73

3.7.5 Annotating NoUndef Attribute

LLVM has noundef function attribute stating that the annotated function

argument or returned value must be well-defined. For example, passing “undef

| 1” to a noundef argument has undefined behavior. To help never-undef-or-

poison analysis, we wrote patches that annotate certain library functions’s

arguments and return value as noundef22.

We can go one step further, and all user-defined functions in C/C++ can be

marked as noundef. LLVM uses undef and poison to represent the result of an

operation that (1) has undefined behavior, (2) yields a trap representation, or

(3) yields an unspecified value in C/C++. The third case is unsound because the

result is too undefined23. Assuming that translation of an unspecified value is

fixed to use freeze(poison) instead, functions’ arguments and return values can

be annotated with noundef. Memory sanitizer experts wrote an initial version of

a patch for this. In July 2021, a mentee of our Google Summer of Code project

took the patch and he is completing the patch.

3.7.6 Optimizing Expressions Including Freeze

A majority of optimizations on arithmetic expressions pass are still sound if one

or more of its input is freeze. For example, “sub (freeze x), x”24 can be

folded to 0.

There are two ways to show the correctness of such optimizations. The

22https://reviews.llvm.org/D97045
https://reviews.llvm.org/D87984
https://reviews.llvm.org/D85894
https://reviews.llvm.org/D85345

23
C17 §3.19.3 says that an unspecified value is a valid value of the relevant type and using

an unspecified value has unspecified behavior. According to this definition, using undef or

poison is unsound because they raise undefined behavior if used by a few operations including

br. To fix this, “freeze poison” must be used instead.
24

For brevity, % is omitted from the variable names in this subsection.

74

first way is by applying sound unit transformations25. First, we can replace an

operand of instruction with a frozen one because it makes the program more

defined. We will name this unit transformation freeze-replace. Second, it is

sound to merge two identical freeze instructions into one. We will name it

freeze-merge.

x' = freeze x
r = sub x', x

=) x' = freeze x
x2 = freeze x
r = sub x', x2 ; by freeze-replace

=) x' = freeze x
r = sub x', x' ; by freeze-merge

=) x' = freeze x
r = 0 ; by 'sub x, x => 0'

The second way is by proving the refinement relation between the resulting

values. We are going to show that 0 refines the result of “sub (freeze x), x”

for any x.

1. If x is a well-defined value, freeze(x) is equivalent to x. Since both of the

source and target value are 0, refinement trivially holds.

2. If x is poison, “sub (freeze x), x” is poison, therefore refinement

holds.

3. If x is a (partially) undefined value S, freeze(x) yields an element s 2 S.

“sub (freeze x), x” returns a set of value {s � s
0 | s0 2 S}. The set

includes 0, therefore refinement holds.

Although this optimization is valid, this is not added into the LLVM main-

stream because it did not help any benchmark.
25

Note that this is slightly different from equational reasoning because compiler transforma-

tions are not reversible.

75

Pushing Freeze Forwardly and Backwardly. Consider a transformation

that pushes a freeze instruction backwardly:

r = op x, y
out = freeze r

)
x.fr = freeze x
y.fr = freeze y
out = op x.fr, y.fr

This transformation is correct if op never returns undef or poison when

well-defined inputs are given. We can prove its soundness using freeze-replace.

r = op x, y
out = freeze r

=) x.fr = freeze x
y.fr = freeze y
r = op x.fr, y.fr ; by freeze-replace
out = freeze r

=) x.fr = freeze x
y.fr = freeze y
r = op x.fr, y.fr ; by the definition of op

This transformation is added into InstCombine26. ValueTracking’s

canCreateUndefOrPoison is used to check the validity of the second step.

On the other hand, pushing freeze forwardly is hard to justify. Consider this

transformation:

x.fr = freeze x
y.fr = freeze y
; slt is 'signed less-than'
out = icmp slt x.fr, y.fr

) r = icmp slt x, y
out = freeze r

If y is INT_MAX, out in the source program is true regardless of x. How-

ever, in the target program, out can be false if x was poison. Therefore, this

transformation can be done only when y is known to be smaller than INT_MAX27.
26https://reviews.llvm.org/D105392
27https://reviews.llvm.org/D105344

76

3.7.7 Folding Select Undef

As described in Section 3.2.3, folding “select %c, undef, %x” to %x is incorrect

because the latter is more poisonous. This transformation is fixed so that it is

folded only if %x is guaranteed not to be poison. Also, the backend is updated

to support better assembly generation for such select pattern.

3.8 Undefined Behavior in Other Compilers

Most compilers have a concept like LLVM’s undef, since it is simple, innocent-

looking, and has tangible benefits. There are two common semantics for undef:

one where each use of undef may get a different value, as in LLVM and Microsoft

Phoenix; and another where all uses of undef get the same value, as in Firm [90],

the Microsoft Visual C++ compiler (MSVC), and the Intel C/C++ Compiler

(ICC).

GCC attempts to initialize uninitialized variables to zero, or give them a

consistent value otherwise. However, this does not appear to be part of GCC’s

semantics because optimizations like SCCP can assume multiple values for the

same uninitialized variable.28

Firm additionally has the concept of a “Bad” value,29 the use of which

triggers UB. This semantics is stronger than LLVM’s poison (where the use of

poison is not necessarily UB; arithmetic operations taking poison as input often

just yield poison).

Signed overflow UB is exploited by ICC,30 MSVC,31 and GCC.32 As far

as we know, these compilers do not have their semantics formalized, but they

28https://godbolt.org/g/r4PX4A
29http://pp.ipd.kit.edu/firm/Unknown_and_Undefined
30https://godbolt.org/g/egCqqm
31https://godbolt.org/g/ojfRVd
32https://godbolt.org/g/gtEbXx

77

appear to use concepts similar to LLVM’s poison. At least MSVC seems to suffer

from similar problems as the ones we have outlined in this work for LLVM. It is

likely that MSVC could fix their IR in a way similar to our solution. Similarly,

Firm’s developers acknowledge several bugs with their handling of “Bad” values;

it is not clear whether it is a fundamental problem with the semantics of their

IR or if these are implementation bugs.

CompCert [27] IR also has a deferred UB value called undef, which is

essentially the same as poison in LLVM. Since branching on undef triggers UB

in CompCert, certain optimizations like loop unswitching are unsound and thus

not performed by CompCert. Mullen et al. [91] describe how the undef value

gets in the way of peephole optimizations in CompCert.

In summary, most modern compiler IRs support reasoning based on undefined

behavior, but this reasoning has received little up-front design work or formal

attention.

3.9 Conclusion

Undefined behavior in a compiler IR, which is not necessarily related to undefined

behavior in any given source language, gives optimizers the freedom to perform

desirable transformations. We have presented the first detailed look at IR-level

undefined behavior that we are aware of, and we have described difficult, long-

standing problems with the semantics of undefined behavior in LLVM IR. These

problems are present to some extent in other modern optimizing compilers. We

developed and prototyped a modified semantics for undefined behavior that

meets our goals of justifying most of the optimizations that LLVM currently

performs, putting the semantics of LLVM IR on firm ground, and not significantly

impacting either compile time or quality of generated code.

78

Chapter 4

A Memory Model for the IR

Precisely defining the memory model of IR is crucial because many important

optimizations rely on it. Both GCC and LLVM have memory models that are

informally specified, and they share an inconsistency in their semantics, leading

to end-to-end miscompilation (Appendix A.1) This not only affects C and C++

but also type-safe languages like Rust (Appendix A.2)

The culprit is a new bug we found in LLVM’s global value numbering (GVN)

optimization. GVN propagates equalities of pointers (as well as of integers) from

branch conditions, replacing pointers with value-equal ones. This, however, can

change the behavior of a program, since pointers that compare equal are not

necessarily equivalent. In the Rust example, GVN incorrectly propagates the

equality in the condition of the last if statement (i.e., it replaces q with p), which

then results in the program producing an incorrect result. The miscompilation

of the C example can be traced back to a second bug we found where LLVM

incorrectly assumes that (int*)(intptr_t)p is equal to p.

Fixing these miscompilations within the current IR semantics would be possi-

79

p[0]

01
p[2] q[0] q[2]

p+6

Figure 4.1: In a flat memory model, storing a 1 into p[6] can overwrite the 0 in
q[2]

ble, but would necessitate disabling useful optimizations. The main contribution,

which builds on insights developed by [5], is a new, formalized IR memory

model for LLVM that departs from the current design in two ways. First, it uses

deferred bounds checking to relax restrictions on the creation of out-of-bounds

pointers in such a way that useful code motion optimizations can be performed

soundly. Second, it uses twin allocation, which formalizes the idea that the value

of a pointer has to be observed directly, it cannot be guessed. Twin allocation

supports aggressive optimization of LLVM-based languages in the presence of

low-level code such as integer-to-pointer casts. We have adapted LLVM to the

new semantics in order to show that it does not require major changes to the

compiler and it also does not degrade the performance of generated code.

4.1 Background

In this section we describe the design space for low-level sequential memory

models and explain that existing designs are inadequate for managing the

tension between low-level memory access and high-level optimizations. Then, in

Section 4.2, we describe the basis for the new memory model for LLVM IR that

we will formalize in Section 4.3. Our examples are written in a C-like syntax to

make them easier to read, even though the scope of the paper is to specify a

memory model for compiler IRs rather than for C.

80

4.1.1 Flat Memory Models

The two main questions a memory model needs to answer are (1) what is the

return value of a load instruction, and (2) under what conditions is a memory-

accessing instruction well-defined. A consequence is that the memory model

should define which memory locations a store instruction writes to.

For example, what does the code below print? Or, alternatively, can the

assignment p[6] = 0 change any byte of the object pointed to by q?

char *p = malloc(4);
char *q = malloc(4);
q[2] = 0;
p[6] = 1;
print(q[2]); // prints 0 or 1?

In a flat memory model, the program would print 1 if q == p + 4, and 0

otherwise. A flat memory model treats pointers like integers: a memory-accessing

instruction can access any (unprotected) location in memory, and therefore the

program is allowed to guess the location of objects (as shown in Fig. 4.1). Some

assembly languages have a flat memory model; others, such as those for machines

with segmented memory, do not.

While a flat memory model is conceptually simple and is a good match for

low-level programming, it hinders high-level optimizations that are routinely

performed by and considered essential in modern compilers.

4.1.2 Data-Flow Provenance Tracking

In the previous example, we showed that the program can print either 0 or

1 depending on where the memory allocator places the allocated blocks. This

dependence on the run-time behavior of the allocator overconstrains the compiler,

blocking it from performing important optimizations such as store forwarding.

For example, we want the compiler to be able to propagate the store q[2] = 0

81

to the print instruction. Hence, the memory model needs a way to prevent the

store to p[6] from accessing q[2] regardless of where p and q end up pointing

at run time. For example, rules to this effect have been a part of C since C89.

Data-flow provenance tracking provides a way to prevent objects from being

accessed via pointers derived from unrelated objects. The idea is that each

pointer is a pair of two values: the object to which it can point to, and the

memory address (or an offset within that object). It is undefined behavior (UB)

to try to access memory with a pointer that is out-of-bounds of its object. This

semantics is sufficient to allow the compiler to conclude that p[6] cannot access

q[2], regardless of the fact that at runtime they may end up referring to the

same location.

Data-flow provenance tracking could be defined like this:

char *p = malloc(4); // (val=0x10, obj=p)
char *q = malloc(4); // (val=0x14, obj=q)
char *q2 = q + 2; // (val=0x16, obj=q)
char *p6 = p + 6; // (val=0x16, obj=p)

*q2 = 0; // OK
*p6 = 1; // UB, since out-of-bounds of obj p
print(*q2); // can be replaced with print(0);

The first store through q2 succeeds, since it is within the bounds of object q.

The second store, however, triggers UB because the pointer is out-of-bounds of

its base object (p), even though the program correctly guessed the address of a

valid object (as shown in Fig. 4.2). Finally, the compiler can safely propagate

the store *q2 = 0 to the print instruction since there are no well-defined store

instructions in between.

82

p[0]
0

p[2] q[0] q[2]

p+6 ← out-of-bounds

Figure 4.2: In a memory model with data-flow provenance tracking, p[6] is not
allowed to alias q[2]

4.1.3 Extending Provenance to Integers

The model we showed in the previous section does not support low-level language

features like integer to pointer casts. To support this functionality, we can extend

integers with provenance information: 1

char *p = malloc(4); // (val=0x10, obj=p)
char *q = (int*)0x10; // (val=0x10, obj=nil)

*q = 0; // UB, since obj=nil
if (p == q)

*q = 1; // still UB; obj=nil

int v = (int)p; // (val=0x10, obj=p)
int w = v + 2; // (val=0x12, obj=p)

(char)w = 3; // OK

char *r = malloc(4); // (val=0x14, obj=r)
int x = v + (int)r; // (val=0x24, obj=??)
int y = x - (int)r; // (val=0x10, obj=??)

In this model, each integer and pointer variable tracks a numeric value plus

the object it refers to, or nil if none. As in the previous model, addresses of

objects, even if stored as integer variables, need to be derived from an object.

Hence, the stores through q are UB. The accesses through w are well-defined

since the value of this integer variable derives (data-flow wise) from a valid
1
We will use int to represent an integer type that is sufficiently large to hold a pointer for

brevity.

83

object. The last lines of the example show that provenance tracking breaks

down when doing integer arithmetic operations. It is hard to assign meaningful

semantics to cases like these.

A drawback of this model—fatal in practice—is that it blocks many integer

optimizations, such as propagation of equalities as done by, e.g., global value num-

bering (GVN) or range analysis. For example, transforming “(a == b) ? a : b”

into “b” is incorrect in this model: even if two integer variables compare equal,

they may still have different provenances. We give a more complete example to

demonstrate the problem:

char *p = malloc(4); // (val=0x10, obj=p)
char *q = malloc(4); // (val=0x14, obj=q)
int v = (int)p + 4; // (val=0x14, obj=p)
int w = (int)q; // (val=0x14, obj=q)

if (v == w)
(int)w = 2;

In this program, v and w happen to have the same value, but they dif-

fer in their provenance. Hence it is not safe to replace “*(int*)w = 2” with

“*(int*)v = 2”. Doing so would introduce UB since “v” is only allowed to

access object p and its offset is out-of-bounds. However, this sort of equality

propagation is routinely done by GVN. In fact, a transformation similar to this

one performed by GVN was responsible for miscompiling the Rust code shown

in Appendix A.2.

4.1.4 Wildcard Provenance

The previous memory model has the advantage of supporting low-level operations

and enabling high-level memory optimizations. However, since integer variables

now carry provenance, it makes some integer optimizations unsound. One way

to solve this problem is to remove provenance from integer variables, as follows:

84

char *p = malloc(4); // (val=0x10, obj=p)
char *q = malloc(4); // (val=0x14, obj=q)
int v = (int)p + 4; // (val=0x14)
int w = (int)q; // (val=0x14)

if (v == w) {
char *r = (int*)w; // (val=0x14, obj=*)
*r = 2;

}

The differences to the example in the previous section are that (1) integers

only carry a numeric value, and (2) a pointer obtained by casting from an integer

can access any object (represented with a *). Therefore, v and w can be used

interchangeably, and GVN for integers becomes sound again. This model has a

major disadvantage: precise alias analysis becomes very difficult as soon as a

single integer-to-pointer cast has been performed by the program being compiled.

In the next sections we explore how to recover precision.

4.1.5 Inbounds Pointers

In the previous section, we presented a model with wildcard provenance; this

works, but it impedes precise alias analysis. In this section we explain the model

currently used by LLVM where pointer arithmetic is optionally “inbounds,” allow-

ing some precision to be recovered by making out-of-bounds pointer arithmetic

undefined:

char *p = malloc(4); // (val=0x10, obj=p)
char *q = foo(p); // (val=0x13, obj=p)
char *r = q +inb 2; // poison: 0x15 is out of bounds of p

p[1] = 0;
*r = 1; // UB
print(p[1]); // prints 0 or 1?

When doing inbounds pointer arithmetic (+inb), the base pointer and the

85

result must be within bounds of the same object (or one past its end). This is

not the case in r, hence the result of the operation is poison, which then makes

the dereference of this pointer UB [6].

Even if the compiler does not know the value of q, because of the inbounds

pointer arithmetic it now knows that the minimum offset of r has to be two,

since both q and r have to be in bounds of the same object (i.e., 0 oq n

and 0 or n, with oq and oq being the offsets of q and r respectively within

the object, and n the object size). Since the access to p[1] only accesses offset

one of an object, and *r can only access offset two or beyond, the compiler can

conclude these accesses do not alias (and that the program prints 0 always).

4.2 A Memory Model for LLVM

This section informally describes a modified IR-level memory model that: enables

high-level optimizations while still supporting low-level code; does not restrict

movement of pointer arithmetic instructions (which remain pure functions); and,

does not inhibit any standard integer optimizations. Section 4.3 formalizes the

new model.

4.2.1 Deferred Bounds Checking

A drawback of LLVM’s current inbounds pointer checking is that it prevents

reordering of pointer arithmetic instructions and allocation functions:

char *p = malloc(4); // (val=0x10, obj=p)
char *q = malloc(4); // (val=0x14, obj=q)

char *r = (char*)((int)p + 5); // (val=0x15, obj=*)
char *s = r +inb 1; // (val=0x16, obj=q)
*s = 0; // OK

In this example, s is a valid pointer (i.e., it is in bounds of an object).

86

However, if we move the definitions of r and s across that of q, s becomes

out-of-bounds, and thus gets assigned poison.2

Constraining the movement of instructions is not desirable, since it inhibits

optimizations like code hoisting. LLVM, as it turns out, freely moves pointer

arithmetic instructions around. This is unsound. Our new model fixes the

problem by instead using deferred bounds checking, in contrast with LLVM’s

current immediate bounds checking.

In deferred bounds checking, we allow out-of-bounds pointers to be created

and manipulated; undefined behavior is only triggered when such a pointer

is dereferenced. It is now OK to reorder pointer arithmetic across allocation

functions in the previous example:

char *p = malloc(4); // (val=0x10, obj=p)

char *r = (char*)((int)p + 5); // (val=0x15, obj=*)
char *s = r +inb 1; // (val=0x16, obj=*, inb={0x15,0x16})

char *q = malloc(4); // (val=0x14, obj=q)

*s = 0; // OK since 0x15 and 0x16 are inbounds of same object

For pointers with obj=*, we now track a set of addresses that have to be

within bounds of the same object when the pointer is dereferenced. On every

inbounds pointer arithmetic operation, we record in the inb field the base

pointer as well as the resulting pointer. A memory access operation is UB if

not all the addresses in inb are within bounds of the same object. Therefore,

the inbounds check is delayed until the pointer is dereferenced. While deferred

bounds checking achieves the same effect as immediate bounds checks, it allows

2
Note that while this example is not correct in memory models with data-flow provenance

tracking, it is ok in our model. Even though we build a pointer into q based on p, this might

be the result of the compiler propagating an equality that established that p == q + 4.

87

free movement of pointer arithmetic instructions since they now do not depend

on the memory state.

Precision could be further increased by replacing * provenance with the

object(s) the cast pointer refers to. In the first example above we could define

r to have value (val=0x15, obj=q) instead. However, this is also a form of

immediate bounds checking with the same movement restriction. Moreover, some

addresses are in bounds of two objects, like 0x14 in the example (corresponds

to p + 4 and q), adding further complexity to the model. Therefore, we do not

use these semantics.

4.2.2 Preventing Address Guessing

This section introduces twin allocation, a technique that allows our model

to prevent a program from guessing addresses of objects without data-flow

provenance tracking.

A problem with wildcard provenance is that a pointer formed out of an

integer can access any object. Consequently, a program may be able to guess

the address of any object and access it. This makes precise alias analysis very

difficult.

A simple idea to prevent guessing is to exploit the fact that allocation

functions return a non-deterministic value:

char *p = malloc(4); // (val=*, obj=p)
char *q = 0x10;
*q = 0; // UB if val(p) != 0x10

This program can guess the address of p in a possible execution where malloc

returns 0x10. However, there is at least one execution where the program fails

to guess the address of p (e.g., malloc returns 0x20), and so the program would

trigger UB. Since there is at least one execution where the program would trigger

UB, the compiler can assume q cannot alias with p (or with any object at all).

88

Even with non-deterministic allocations, a program can still (desirably)

observe the address of an object such that a pointer created by casting from an

integer can alias with that object, e.g.:

char *p = malloc(4); // (val=*, obj=p)
*p = 0;
int v = 0x10;
if ((int)p == v)

(int)v = 1;
print(*p); // can print 0 or 1

This program is well-defined and may print 0 or 1, depending on the return

value of malloc. The comparison is sufficient for the program to observe the

address of object p, and so *(int*)v = 1 will not trigger UB in any execution.

However, this semantics still has a caveat: it allows programs to guess

addresses through a “side-channel leak.” The leak happens when the memory

only has a single address left where a new object can be allocated. For example,

assume that a system has an 8-bit heap segment as well as 8-bit pointers, that

heap address 0x00 is legal, and that the allocations below succeed:

char *p = malloc(0x80);
char *q = malloc(0x80);

*q = 0;
int v = ((int)p == 0x00) ? 0x80 : 0x00;
(char)v = 1;

print(*q); // prints 1

Since each heap cell is half the size of the address space, there are only two

possible heap configurations: p-first or q-first. Therefore, a single test allows

the program to guess the address of q without having to explicitly observe

it. In other words, when memory is finite, returning a non-deterministic value

89

from allocation functions is not sufficient to prevent programs from guessing

addresses.

Our solution is to change allocation functions to reserve (at least) two blocks

instead of a single one, as it happens in run-time implementations. We call this

technique twin allocation, and we use it to formalize the notion that a program

cannot guess the address of an object.

We will informally explain the concept of twin allocation with the following

example:

char *p = malloc(1);
char *q = malloc(1);

*q = 0;
int v = (int)p + 1; // equal to q?
(char)v = 1;

print(*q); // prints 0 or 1?

Since the address of q was not observed, we would like the compiler to

be able to conclude that the program can only print 0. However, as we have

seen previously, if the memory is full, observing the address of one object may

implicitly disclose the address of another object. In Fig. 4.3(a) we show a possible

memory configuration before our allocations, and (b) shows the configuration

after allocating p and q.

With twin allocation, each allocation function reserves at least two blocks.

Non-deterministically, one of the blocks is used and its address is returned,

and the remaining blocks are marked as unreachable (i.e., it is UB to access

those memory regions). By reserving two blocks, we guarantee there is enough

non-determinism left such that the program cannot guess the address of a block

even if the memory is full.

90

0

0a)

b)

0p1c)

0d)

p2

p1 p2 q1 q2

p q

Figure 4.3: Memory configuration: (a) almost full with only two bytes left,
(b) after allocating p and q in (a), (c) after allocating p with twin allocation
semantics in (a), (d) alternative configuration where twin allocation had enough
space for both objects.

In Fig. 4.3(c), we show that with twin allocation our previous example

would simply run out of memory, and thus the program cannot continue and

try to guess the address of q. In (d) we show another memory configuration

where the space left was just enough to allocate two blocks for each allocation.

Since we have two blocks per object, malloc can still return one of the two

addresses non-deterministically, effectively inhibiting the program from guessing

the address of an object. Even if a program is able to guess the address of, say,

p1 (and even p2 as well), it is not able to guess which of the remaining addresses

points to q: It cannot know which of q1 and q2 was used.

4.2.3 Summary

We have informally presented our memory model for LLVM IR. To support both

high-level optimizations and low-level code, we split pointers into two categories.

First, logical pointers, derived from allocation sites, for which we do data-

flow dependence tracking. That is, a pointer q obtained by pointer arithmetic

operations from p (e.g., q = p + x) can only access the same object as p. Second,

physical pointers, derived from integer-to-pointer casts, for which we do not

do data-flow dependence tracking, since that would block standard integer

optimizations such as equality propagation. We employ two new techniques to

91

recover precision instead: delayed bounds checking (to restrict the set of objects

a pointer can point to, while keeping pointer arithmetic operations pure), and

twin memory allocation (to prevent address guessing).

4.3 Semantics and Transformations

In this section, we present a formal view of the modified memory model for

LLVM that we informally presented in Section 4.2. Our top-level design goal was

to support low-level operations required by C and C++, such as casting between

integers and pointers, while also enabling high-level memory optimizations.

Additional goals were: not interfering with integer optimizations, not constraining

opportunities for code motion, not requiring major changes to make LLVM

conform to the new model, and finally, avoiding significant regressions in compile

time and in quality of generated code.

4.3.1 Logical and Physical Pointers

As we saw in Section 4.1.4, we have two types of pointers. Logical pointers are

obtained by calling an allocation function or by doing pointer arithmetic on a

logical pointer. In Section 4.1.4 these are the pointers with provenance of one

object, e.g., (val=0x10, obj=p). The second type of pointer is the physical

pointer, which is the result of an integer-to-pointer cast. In Section 4.1.4, these

are the pointers with wildcard provenance, e.g., (val=0x10, obj=*); they can

access any object.

In Fig. 4.4 we show the definitions for our model. Logical and physical

pointers are represented, respectively, by Log(l, o, s) and Phy(o, s, I, cid).

Logical Pointers A logical pointer Log(l, o, s) consists of a logical block id l,

an offset o within the block, and the address space s it corresponds to (explained

92

Num(sz) : : = { i | 0 i < 2
sz }

Time : := N
BlockID : := N
CallID : := N
Mem ::= Time⇥ (BlockID 9 Block)⇥ (CallID 9 Time] {None})
AddrSpace : : = N
Block : : = { (t, r, n, a, c, P) | t 2 { stack, heap, global, function } ^

r 2 (Time⇥ (Time] {1})) ^ n 2 N ^ a 2 N ^ c 2 Byte
n ^

P 2 (AddrSpace 9 Num(64)
N+1

) }
LogAddr(s) : : = { Log(l, o, s) | l 2 BlockID ^ o 2 Num(ptrsz(s)) }
PhyAddr(s) : : = {Phy(o, s, I, cid) | o 2 Num(ptrsz(s)) ^ I ⇢ Num(ptrsz(s))^

cid 2 CallID] {None} }
Addr(s) : : = LogAddr(s)] PhyAddr(s)

Jisz K : : = Num(sz)] {poison }
Jhsz⇥tyiK : : = {0, . . . , sz � 1} ! JtyK
Jty⇤K : : = Addr(0)] {poison }
Name : := { %x, %y, . . . }
Reg : := Name ! { (ty , v) | v 2 JtyK }
Byte : : = Bit

8

Bit : : = Ji1K]AddrBit

AddrBit : : = { (p, i) | 9s. p 2 Addr(s) ^ (0 i < ptrsz(s)) }

Figure 4.4: Definitions. ptrsz(s) is the pointer size (in bits) for a given address
space s (e.g., 64). The set of all possible values of a type ty is given by JtyK.

later in Section 4.3.2). A logical pointer corresponds to the address P + o on

the physical machine, where P is the base address of block l.

Logical pointers realize the rule that pointers derived from one object can

never be used to modify other objects. This is achieved by making it impossible

to change the value of l: Pointer arithmetic only affects the offset o.

Physical Pointers As we have seen in Section 4.1.4, tracking objects in a

pointer obtained by an integer-to-pointer cast is not viable because (1) some

addresses may be within bounds of multiple objects, and (2) it prevents reordering

of instructions. Hence we introduce physical pointers, roughly corresponding to

pointers in a flat memory model.

93

A physical pointer Phy(o, s, I, cid) consists of an offset o within the address

space s (i.e., the physical address), as well as two additional fields I and cid to

restrict the set of objects the pointer can access. This allows us to recover alias

analysis precision, and it enables several of the optimizations allowed by the

C and C++ standards. Field I is a set of physical addresses that corresponds

to the inb field we used to specify deferred bounds checking in Section 4.2.1.

When the pointer is dereferenced, each address in I must be inbounds of the

same object as o. Field cid is a call id, which corresponds to the time stamp

when the pointer was passed as argument to a function, or None if the pointer

did not originate from an argument. The intent is to show that pointers received

as arguments do not alias locally allocated objects, e.g.:

int f(int *p) {
int a = 0;
if (&a == p)

*p = 1;
return a; // returns 0 or 1?

}

Since a physical pointer can access any object, if there was no call id

restriction, this function could return either 0 or 1. However, since p has a call

id of a function call still on the call stack, it cannot access any object created

after the call.

The motivation to have an indirection in the time stamp of the call time in

the pointer (cid indexes in memory M to retrieve the time stamp) is to support

escaping pointers. Escaped physical pointers should behave as their cids being

None after termination of the function call. This supports moving function calls

across other function calls. If a function stores a pointer received by argument

in a global variable, we did not want to have to record that fact and change all

such pointers when the function returns. This way we only need to change the

94

mapping between cid and time stamp on function return (set it to None).

4.3.2 Address Spaces

LLVM uses address spaces to represent distinct memories, and our memory

model also supports this feature. For example, a machine might use one address

space for the CPU and another for the GPU, or one address space for code and

another for data. Since both memories may have overlapping address ranges

(e.g., they may both use addresses in the range [0, 2
64
)), the address space field

in pointers is used to disambiguate between the two.

The main memory of the CPU is assigned the address space zero. It is

possible that a physical memory region is mapped into multiple address spaces.

In this case the application can use an address cast instruction to convert

pointers between address spaces.

A consequence of possible overlapping of address spaces is that pointers

belonging to different address spaces may alias. To improve precision of alias

analysis, we parameterize our model by the overlap.

4.3.3 Memory Blocks

We define memory M = Time⇥(BlockID 9 Block)⇥(CallID 9 Time]{None})

as a triple of a time stamp, a map from logical block ids to memory blocks, and

a map recording the time stamp of each function call (indexed on cid of physical

pointers). When a new memory block is created (e.g., with malloc or alloca)

or deallocated, the time stamp is incremented by one.

A memory block is a tuple (t, r, n, a, c, P), where t is the block type (e.g.,

stack or heap allocated), r is the life range of the block, n is the block size in

bytes, a is the alignment, c the contents of the block (the actual data), and P

has the addresses of the block.

95

(◆ = “r = call i8⇤ malloc(i64 len)”)

malloc
n = JlenKR c = i(8⇥ n)#(poison)

P unallocated physical addresses, l fresh
m

0
= m[l 7! (heap, (⌧cur,1), n, a, c, P)]

R, (⌧cur,m,C)
◆
,�! R[r 7! Log(l, 0, 0)], (⌧cur + 1,m

0
, C)

(◆ = “call void free(i8⇤ ptr)”)

free-logical
Log(l, 0, 0) = JptrKR

m(l) = (heap, (b,1), n, a, c, P)

m
0
= m[l 7! (heap, (b, ⌧cur), n, a, c, P)]

R, (⌧cur,m,C)
◆
,�! R, (⌧cur + 1,m

0
, C)

(◆ = “r =ptrtoint ty⇤ op to isz”)
ptrtoint-logical

Log(l, o, s) = JopKR
cast2intM (l, o, s) = j

R,M
◆
,�! R[r 7! j%2

sz
],M

(◆ = “r = inttoptr i64 op to ty⇤”)
inttoptr

i = JopKR
p = Phy(i, 0, ;,None)

R,M
◆
,�! R[r 7! p],M

(◆ = “r = icmp eq ty⇤ op1 op2”)
icmp-ptr-logical

Log(l, o1, s) = Jop1KR
Log(l, o2, s) = Jop2KR

R,M
◆
,�! R[r 7! (o1 = o2)],M

(◆ = “r = icmp eq ty⇤ op1 op2”)

icmp-ptr-logical’
Log(l1, o1, s) = Jop1KR
Log(l2, o2, s) = Jop2KR

l1 6= l2

R,M
◆
,�! R[r 7! false],M

(◆ = “r = icmp eq ty⇤ op1 op2”)
icmp-ptr-physical
Phy(o1, s, I1, cid1) = Jop1KR
Phy(o2, s, I2, cid2) = Jop2KR
R,M

◆
,�! R[r 7! (o1 = o2)],M

(◆ = “r = icmp ule ty⇤ op1 op2”)
icmp-ule-ptr-physical
Phy(o1, s, I1, cid1) = Jop1KR
Phy(o2, s, I2, cid2) = Jop2KR

R,M
◆
,�! R[r 7! (o1 u o2)],M

(◆ = “r = icmp ule ty⇤ op1 op2”)
icmp-ptr-ule-logical

Log(l, o1, s) = Jop1KR
Log(l, o2, s) = Jop2KR

R,M
◆
,�! R[r 7! (o1 u o2)],M

(◆ = “r = icmp eq ty⇤ op1 op2”)
icmp-ptr-logical-nondet-true

Log(l1, o1, s) = Jop1KR
Log(l2, o2, s) = Jop2KR

m(l1) = (t1, r1, n1, a1, c1, P1)

m(l2) = (t2, r2, n2, a2, c2, P2)

l1 6= l2�
(o1 = n1 ^ o2 = 0) _ o1 > n1 _
(o1 = 0 ^ o2 = n2) _ o2 > n2 _

r1, r2 disjoint
�

R, (⌧cur,m,C)
◆
,�! R[r 7! true], (⌧cur,m,C)

Figure 4.5: Selected rules of our operational semantics

96

(◆ = “r =gep ty⇤ op1 isz op2”)
gep-logical

Log(l, o, s) = Jop1KR i = Jop2KR
o
0
= (o+ bytewidth(ty) ⇤ i)%2

ptrsz(s)

R,M
◆
,�! R[r 7! Log(l, o0, s)],M

(◆ = “r =gep ty⇤ op1 isz op2”)
gep-physical
Phy(o, s, I, cid) = Jop1KR i = Jop2KR
o
0
= (o+ bytewidth(ty) ⇤ i)%2

ptrsz(s)

R,M
◆
,�! R[r 7! Phy(o0, s, I, cid)],M

(◆ = “r =gep inbounds ty⇤ op1 isz op2”)
gep-inbounds-logical

Log(l, o, s) = Jop1KR
o
0
= o+ bytewidth(ty) ⇤ i

i = Jop2KR
inboundsM (l, o)

inboundsM (l, o
0
)

R,M
◆
,�! R[r 7! Log(l, o0, s)],M

(◆ = “r =gep inbounds ty⇤ op1 isz op2”)
gep-inbounds-physical

Phy(o, s, I, cid) = Jop1KR i = Jop2KR
o
0
= o+ bytewidth(ty) ⇤ i
0 o

0
< 2

ptrsz(s)

R,M
◆
,�! R[r 7! Phy(o0, s, I [{ o, o0 }, cid)],M

(◆ = “r =psub ty⇤ op1 , op2”)
psub-logical
Log(l, o1, s) = Jop1KR
Log(l, o2, s) = Jop2KR
i = (o1 � o2)%2

ptrsz(s)

R,M
◆
,�! R[r 7! i],M

(◆ = “r =psub ty⇤ op1 , op2”)
psub-logical-poison

Log(l1, o1, s) = Jop1KR
Log(l2, o2, s) = Jop2KR

l1 6= l2

R,M
◆
,�! R[r 7! poison],M

(◆ = “r =psub ty⇤ op1 , op2”)
psub-physical
Phy(o1, s, I1, cid1) = Jop1KR
Phy(o2, s, I2, cid2) = Jop2KR

i = (o1 � o2)%2
ptrsz(s)

R,M
◆
,�! R[r 7! i],M

Figure 4.6: Selected rules of our operational semantics (cont.)

97

When a block is deallocated (e.g., with free or on function exit), it is not

deleted from memory. 3 Instead, we set the end of the lifetime range to the

current memory time stamp, and increment it as well. free-logical in Fig. 4.5

shows the semantics of free. If a physical pointer Phy(o, s, I, cid) is given to

free, it is equivalent to freeing a dereferenceable block whose base address is o.

Double-freeing a block or free with a logical pointer with non-zero offset is UB.

free with NULL is no-op.

Memory allocation functions reserve at least two blocks: The block actually

observed by the program, and N additional twin blocks. The number N of twin

blocks is a parameter of the semantics. (We will discuss in Section 4.3.12 why

N = 1 might not be enough.) The block’s base addresses in address space s

are stored in P (s), a sequence of physical addresses: P (s)0 is the actual base

address used and observed by the program, while the remaining addresses in

the sequence are the base addresses of the twin blocks.

Crucially, we maintain the invariant that for P, P
0 of any pair of differ-

ent live (non-deallocated) blocks, the address ranges [P (s)i, P (s)i + n) and

[P
0
(s)j , P

0
(s)j + n) are disjoint. Thus, malloc reserves space for both the block

and its twins (Fig. 4.5). The rest of the semantics only depends on P (s)0 and

ignores the remaining base addresses.

In Fig. 4.5, notation JopKR represents the evaluation of an instruction’s

operand:

JvKR =

⇢
R(v) if v is a register
v if v is a constant or v = poison

3
Note that memory is deallocated at run time as expected. Also, in our semantics addresses

can be reused because allocation functions allocate blocks with addresses that are disjoint from

all other live blocks only.

98

4.3.4 Pointer Arithmetic

LLVM IR has a single instruction for pointer arithmetic, getelementptr, or

gep for short. In Fig. 4.5 we show the semantics of several cases. For a logical

pointer, the result is also a logical pointer where only the offset is updated

(gep-logical). Likewise for physical pointers (gep-physical).

Function inboundsM (l, o) checks if a given offset o is within bounds of object

l in memory M = (⌧,m,C). If m(l) = (t, r, n, a, c, P), inboundsM (l, o) is true iff

0 o n.

When gep has the inbounds tag (e.g., when compiling C/C++ code or

most cases in safe languages), the compiler can assume that the input pointer is

valid (within bounds of some object or else one element past the end) and also

that the resulting pointer is valid. For logical pointers, the bounds checking is

immediate (gep-inbounds-logical). If either of the inbounds conditions fails,

the result is poison (not shown).

If the pointer is physical, we use deferred bounds checking: input and output

offsets are added to I. They are checked to be inbounds only when the pointer

is dereferenced. As seen in Section 4.2.1, this allows free movement of gep

instructions since they do not depend on the memory state.

4.3.5 Casting

LLVM has two pointer/integer casting instructions: ptrtoint and inttoptr. The

semantics of casting a logical pointer to an integer is given in ptrtoint-logical.

Function cast2intM (l, o, s) converts Log(l, o, s) to the integer P (s)0 + o based on

block l. If the operation P (s)0 + o overflows, it wraps around. This can happen

if the pointer is out of bounds. Instruction ‘ptrtoint Phy(o, s, I, cid)’ yields o.

If the size of the destination type isz is larger than the pointer width, the result

is zero-extended. If it is smaller, the most significant bits are truncated.

99

Casting from an integer to a pointer returns a physical pointer with no

provenance information (inttoptr). No check is done on whether the pointer

refers to a valid location or not. This avoids a dependency on the memory state,

and thus allows code motion.

The NULL pointer used in, e.g., C is defined as ‘inttoptr 0’ because C

programs use ‘(void*)0’ as the null pointer value.

Casting a pointer to a different address space through addrspacecast

translates the pointer’s offset(s) using a target-specific mapping function. If the

pointer is logical, it preserves the block id and offset if in bounds, otherwise it

yields poison. If the pointer is physical, ‘ptrtointPhy(o, s, I, cid)’ updates o

as well as the offsets in I.

In our semantics, all casting instructions can be freely moved, removed, or

introduced.

4.3.6 Pointer Comparison

Consider the following program compares two logical pointers that point to

different objects. Pointer optimizations would like to fold this comparison to

false:

char *p = malloc(4);
char *q = malloc(4);

char *pp = some expr over p;
char *qq = some expr over q;
if (pp == qq) { /* always false? */ }

If pp and qq are dereferenceable, i.e., their offsets are in the range [0, 4), the

comparison should yield false since the resulting machine addresses cannot be

the same (since objects p and q cannot overlap). However, what if pp == p +

4, qq == q, and the objects p and q were allocated consecutively (i.e., p + 4

== q)? Even though pp and qq are conceptually very different pointers, their

100

Integer comparison Non-deterministic
Fold p = q to false if p.bid 6= q.bid No Yes
Fold p+ i = q+ i to p = q Yes No
Fold (int)p = (int)q to p = q Yes No
Fold p < q ^ p 6= q to p < q Yes No
Fold p < q ^ q 6= null to p < q Yes Potentially
Run-time aliasing checks Yes Correct, but not useful
Analysis of pointers cast from integers Harder Easy

Table 4.1: Comparison of two semantics for pointer comparison.

underlying machine addresses are the same. Therefore, if the compiler lowers

pointer comparison into a comparison of the respective machine addresses in

assembly, the comparison would yield true.

There are two solutions for this. The first solution is relying on nondetermin-

ism of their allocated locations. In twin allocation, there exists a twin execution

such that p + 4 != q. Therefore, we can fold the comparison into false by the

definition of refinement4

The second solution is to define the comparison p + n == q to yield a non-

deterministic value, justifying both the lowering to machine address comparison,

and the desired optimization. This way the compiler can always fold comparisons

between different objects to false without having to prove that they cannot

have the same machine address.

We found that there are pros and cons of both semantics for the comparison of

pointers of different blocks, and that neither of them covers all optimizations that

LLVM performs. Table 4.1 summarizes the effects on each of the optimizations.

We will explain each solution in detail.

4
This might require more than one twin. Section 4.3.12 has more details about this issue.

101

Provenance-Agnostic Comparison

The first semantics, defining pointer comparison as an operation that simply

compare the operands’ integer addresses, is simple and a friendly definition

to compiler developers. This explains LLVM’s arithmetic optimizations on

pointer comparisons as depicted in Table 4.1. Most importantly, the definition is

consistent with the current wording of pointer comparison in LLVM Language

Reference5.

The cons of this definition is that it cannot support ‘high-level’ optimizations.

Given two pointers p and q, if a program learns that q is placed right after p

in memory, the program can potentially change the contents of q without the

compiler realizing it. Therefore, alias analysis must answer very conservatively

if a pointer is compared. Also, alias analysis must give up when they encounter

an integer-to-pointer cast, which is what LLVM’s alias analyses already do.

LLVM has a transformation that is incorrect under this definition. Unless p

is compared only once, p == q cannot be folded to false (the first optimization

in Table 4.1). Therefore, we must remove the optimization which is what LLVM

already does today from LLVM to make it sound. Furthermore, C++ standard

allows an unspecified value when comparing two pointers from different objects.

LLVM optimizations cannot exploit this power under the integer comparison

semantics.

Provenance-Aware Comparison

The second solution, defining the comparison p + n == q to yield a non-

deterministic value, addresses these concerns. Formally speaking, rule icmp-ptr-

logical’ defines that comparing logical pointers to different blocks can always

evaluate to false. Furthermore, icmp-ptr-logical-nondet-true states that
5
For this reason, we chose this semantics for Alive2 (Section 5.3).

102

if the offset of either pointer is not dereferenceable, the comparison can also

evaluate to true.

A caveat of this choice of semantics is that even if a pointer comparison

returns true, we cannot assume that two pointers have the same value. However,

this was already the case because pointer comparison ignores, e.g., the extra

precision fields in physical pointers like cid . This makes propagation of pointer

equalities (e.g., GVN) unsound. We show later in this section how to make GVN

for pointers correct.

Also, making pointer comparison non-deterministic violates the C standard.

However, both GCC and LLVM (in C mode) will fold a comparison to false even

when the pointers compare equal, effectively choosing code quality over standards

conformance. The C semantics makes programs harder to optimize since it causes

pointer comparisons to leak information about the memory layout, therefore

requiring compilers to conservatively assume that most compared pointers escape

(which inhibits many optimizations, such as store forwarding and dead store

elimination). Therefore, to give more optimization opportunities to LLVM, we

adopt this provenance-aware model for pointer comparison semantics.

For pointer inequality comparison (e.g., p <= q), for two logical pointers of

the same block, if their offsets are inbounds the result is simply the comparison

of their offsets (icmp-ptr-ule-logical). If the offsets are not inbounds, pointer

values may overflow in hardware and hence produce a different result than if

comparing the offsets. Hence, if one of the offsets is not inbounds, the result

of the comparison is nondeterministic, allowing both the compiler to optimize

comparisons based on the pointer offsets, as well as efficient compilation of

pointer comparisons to assembly.

Comparison of logical pointers into different blocks yields a non-deterministic

value. We cannot compare their integer values since that would leak information

103

about the memory layout. We do not make the comparison yield poison in this

case because optimizations like vectorization introduce comparisons between

pointers of potentially different blocks to check at run time if vectorized accesses

overlap or not (to check if it is safe to run the vectorized code).

Comparing two physical pointers is equivalent to comparing their integer

representations (icmp-ptr-physical, icmp-ule-ptr-physical). If one pointer

is logical and the other physical, the logical pointer is converted to a physical

pointer and then they are compared. This naturally supports the definition of

comparison with pointer-integer roundtrip in the C/C++ standard: Given a

valid pointer p, (void*)(int)p == p should be true. The pointer-integer round

trip yields a physical pointer in our semantics, hence the comparison is always

true.

4.3.7 Pointer Subtraction

Pointers can be subtracted to compute the difference between their offsets. This

can be soundly implemented by first casting the pointers to integers and then

performing an integer subtraction. In fact, this is what LLVM/Clang does today.

However, there is potential for improvement: The C/C++ standard permits

an indeterminate result for the subtraction of pointers into different blocks.

However, if the operation was realized as an integer subtraction, such an opera-

tion would be well defined and therefore leak information about the memory

layout. Therefore, lowering pointer subtraction to subtraction of pointers cast

to integers fundamentally loses precision.

In our semantics, if the program subtracts logical pointers from different

blocks, the result is a poison value. To this end, we introduce a new instruction

psub that takes two pointers and returns their difference. When given two

logical pointers, psub gives the difference of their offsets if they refer to the

104

same block (psub-logical). Otherwise, if the pointers refer to different logical

blocks, psub returns poison (psub-logical-poison). If at least one of the

pointers is physical, both pointers are cast to integers and their difference is

computed.

Besides the theoretical precision improvement by having a dedicated pointer

subtraction instruction, there is also a practical advantage. Compiler analyses

are naturally imprecise. In particular, when they see a pointer-to-integer or an

integer-to-pointer cast, they tend to bail out. By introducing a new instruction for

pointer subtraction, we are able to reduce the number of these casts significantly

(as shown later in the evaluation).

4.3.8 Memory Block Lifetime

Besides the p + n == q case, the machine addresses of different logical pointers

may also be equal when addresses get reused by the allocator. For example:

char *p = malloc(4);
free(p);
char *q = malloc(4);
if (p == q) { /* ... */ }

We would again like to optimize the comparison to false because we are

comparing the results of two separate calls to malloc. And again, in an actual

execution, the addresses may be equal because malloc can reuse memory after

free.

A common solution to this problem is to let the behavior of pointer equality

depend on whether the block that p points to is still allocated. However, the

problem with that approach is that it makes comparison not freely reorderable

with deallocation. Another solution is to define comparisons with freed blocks

as UB (as C and C++ standards do), but that limits movement of pointer

comparisons as well. Instead, we add the concept of a lifetime to our memory

105

blocks. The memory time stamp gets incremented on every memory allocation

and deallocation. The end of the lifetime of a block is initially 1 and gets set

when the block is deallocated.

In the above situation, because the lifetimes of the two blocks do not overlap,

we again make pointer comparison non-deterministic, justifying the optimization.

This is reflected in icmp-ptr-logical-nondet-false, which also applies if the

lifetimes of the blocks are disjoint.

This lifetime-based handling of pointer comparison has the caveat that a

free can no longer be moved up above a malloc of a different block, since

that would make the two blocks’ lifetimes no longer overlap, possibly affecting

program behavior. Although this an interesting optimization to support (to

reduce peak memory consumption and potentially reuse cached memory), LLVM

does not perform it.

4.3.9 Load and Store

To perform a memory access of size sz > 0 through a pointer p on memory M ,

the pointer must be dereferenceable, written derefM (p, sz). If p is a logical pointer

Log(l, o, s) where block l is not freed and inboundsM (l, o)^ inboundsM (l, o+ sz),

then we have derefM (p, sz).

If p is a physical pointer Phy(o, s, I, cid), there must be a still-alive block

(t, (b,1), n, a, c, P) with id l and an offset ol such that P (s)0 + ol = o and

inboundsM (l, ol) ^ inboundsM (l, ol + sz). (Note that l and ol are uniquely deter-

mined since memory blocks are disjoint and sz > 0.) Moreover, all addresses

o
0 2 I must be inbounds of the same block, i.e., 8o0 2 I, inboundsM (l, o

0�P (s)0).

If the pointer was derived from a parameter (i.e., cid 6= None) and the function

corresponding to that parameter did not return yet (i.e., M(cid) 6= None),

then b < M(cid), i.e., the block must have been allocated before the function

106

call identified by cid started. If all these requirements are satisfied, we have

derefM (p, sz).

To support conversion between values and low-level bitwise representa-

tion, we define two meta operations, ty# 2 (JtyK ! Bit
bitwidth(ty)

) and ty" 2

(Bit
bitwidth(ty) ! JtyK). For base types, ty# transforms poison into the bitvector

of all poison bits, and defined values into their standard low-level representation

(Fig. 4.7a). getbit v i is a partial function that returns the ith bit of a value v.

If v is a pointer, getbit v i returns either poison if v is poison or a pair (p, i)

which is an element of AddrBit denoting the ith bit of a non-poison pointer

p. For vector types, ty# transforms values element-wise, where ++ denotes the

bitvector concatenation.

isz"(b) transforms a bitwise value b to an integer of type isz (Fig. 4.7b).

Notation n.i is used to represent the ith bit of a non-poison integer n. Type

punning from pointer to integer yields poison. This is needed to justify redun-

dant load-store pair elimination.6 If any bit of b is poison, the result of isz"(b)

is poison. For vector types, ty" transforms bitwise representations element-wise.

ty⇤"(b) transforms a bitvector b into a pointer of type ty⇤. If b is exactly

all the bits of a pointer p in the right order, it returns p. Otherwise, it returns

poison.

Now we define semantics of load/store operations. Function Load(M,p, sz , a)

returns the bits that correspond to pointer p if derefM (p, sz) and if p is a-aligned

(i.e., p% a = 0). load yields v if Load(M,p, sz , a) returns a value v, or UB

otherwise. The store operation Store(M,p, b, a) stores the bit representation b

into the memory M and returns the updated memory M
0 if p is dereferenceable

and a-aligned. store is UB if Store(M,p, b, a) fails, and updates the memory to

6
Redundant load-store pair elimination means removing ‘v = load i64 ptr; store v,

ptr’. If reading a logical pointer as integer implicitly casts the pointer, removing this load-store

pair would eliminate a cast and hence be illegal. This is discussed further in Section 4.7.

107

isz#(v) or ty⇤#(v) = �i. getbit v i

hsz⇥tyi#(v) = ty#(v[0])++ . . .

++ ty#(v[sz � 1])

(a) Converting a value to a bit vector

isz"(b) =

8
<

:

n if 80i<sz b[i] 6= poison
such that 80i<sz b[i] = n.i

poison otherwise
(b) Converting a bit vector to an integer

(◆ = “r = load ty , ty⇤ op, align a”)

Load(M, JopKR, bitwidth(ty), a) fails

R,M
◆
,�! UB

Load(M, JopKR, bitwidth(ty)) = v

R,M
◆
,�! R[r 7! ty"(v)],M

(◆ = “store ty op1, ty⇤ op, align a”)

Store(M, JopKR, ty#(Jop1KR), a) fails

R,M
◆
,�! UB

Store(M, JopKR, ty#(Jop1KR)) = M
0

R,M
◆
,�! R,M

0

Figure 4.7: Semantics of load and store

M
0 otherwise.

4.3.10 Justifying Transformations in Practice

We now illustrate how our semantics can be used in practice in a compiler,

and how one can informally reason about the correctness of optimizations. For

example, we would like to justify that the following transformation performed

by GVN is correct:
char *p = malloc(4);
int v = (int)p;
if (v == 10)

(int)v = 0;

)

char *p = malloc(4);
int v = (int)p;
if (v == 10)

(int)10 = 0;

108

Under our semantics, this transformation is legal because integers do not track

provenance. Moreover, the address of object p is observed by the comparison,

and therefore the store through (int*)10 is guaranteed to write to object p.

A useful way to think about this is that our semantics effectively take control-

flow dependencies into account when determining which objects have had their

addresses observed. In our example, the address of p is observed within the then

block since it was used in a comparison along the control-flow that leads to the

block. Hence, we allow (int*)10 to refer to object p. This sort of reasoning can

be directly implemented in a compiler.

4.3.11 Preventing Accesses via Guessed Addresses

We now show how twin allocation semantics prevents unobserved blocks from

being accessed via guessed addresses. This aspect is essential to enable compiler

optimizations, otherwise any pointer could potentially access any object.

A block is unobserved if any value derived from (i.e., any value that has

data or control dependence on) the block’s logical address created at allocation

is never used in any of the address-observing operations: being (i) cast to an

integer, (ii) compared to a physical address, and (iii) subtracted to/from a

physical address. For example, in the following program, the first block of size

10 is unobserved because its address a is never used in an address-observing

operation, while the second block of size 5 is observed because its address b is

compared to the physical address 0x200.

1: char *a = malloc(10);
2: char *b = malloc(5);
3: if (b == (char*)0x200)
4: *(char*)0x100 = 1;

A guessed address is necessarily a physical address. We will now show that in

the twin allocation model, compilers can safely assume that unobserved blocks

109

cannot be accessed via guessed addresses. Since compilers are allowed to assume

anything when the source program has an execution raising UB, it suffices to

show that whenever an unobserved block b is accessed via a guessed address p

in some execution, there is an alternative execution raising UB. The alternative

execution is to take the address of the twin block b
0 instead of that of b at

allocation. After allocating blocks b and b
0, the twin executions (i.e., the original

and the alternative) have exactly the same program state except that:

(i) the logical address created at allocation corresponds to a different under-

lying machine address (i.e., that of b and b
0 respectively), and

(ii) validity of b and b
0 are swapped.

Condition (i) does not make any difference in the twin executions because

the machine address is only ever used in address-observing operations. More

specifically, our semantics is carefully designed in such a way that all operations

other than the address-observing ones are independent of the underlying machine

address of any logical address. Thus only condition (ii) can make a difference

during execution. This can happen only when one of the blocks b and b
0 is

accessed via a physical address. Since only one of b and b
0 is accessible in each

of the twin executions, at least one of the executions will raise UB when block b

is accessed via a guessed address.

For instance, in the above example, suppose that at line 1, two blocks of size

10 are allocated at 0x100 and 0x150 with the former activated. Then at line 4

the block is successfully accessed via the physical address 0x100, while in the

twin execution where the block at 0x150 is activated, the access at 0x100 at

line 4 raises UB. Therefore, the compiler can conclude that the store at line 4

cannot access object a.

Finally, we discuss why allocating two blocks is necessary even though one of

110

them is always made invalid. The reason is because in order to have equivalent

twin executions modulo accesses via guessed addresses as described above, the

twin executions should have identical memory layouts. For example, instead

of allocating two blocks, consider allocating a single block in such a way that

there is enough space left for allocating another one of the same size; and raising

out-of-memory if such allocation is not possible. In this semantics, one may think

that we can still simulate a twin execution as described above using the free

space. However, it does not work due to different memory layouts. Specifically,

in the above example program, suppose that before executing line 1, the memory

only has two segments of free space: 0x100 ⇠ 0x109 and 0x200 ⇠ 0x209. Then

at line 1, the block of size 10 can be allocated at 0x100 or 0x200 because there

is enough space left for allocating another one. Then at line 2, the block of

size 5 can be allocated at 0x200 or 0x205 in the former case and at 0x100 or

0x105 in the latter case because there is enough space left. Among those twin

executions, one of them accesses the unobserved block of size 10 via the guessed

address 0x100 at line 4 while the others do not reach line 4 thereby raising no

UB. Therefore, with this simpler semantics the compiler would (annoyingly)

have to conclude that line 4 can access object a.

4.3.12 Sometimes Two Blocks Are Not Enough

Justifying the correctness of some optimizations requires more than two blocks.

We give an example of an optimization that requires triple allocation (N = 2

in our semantics). This optimization removes single observations of addresses

of local variables through comparison with a function argument. For example,

in the following function on the left, if the address of c is unobserved except

at line 3, the comparison can be folded to false to get the optimized code on

the right. This enables further optimizations since the address of c becomes

111

completely unobserved in the target code and thus the compiler can assume

that the block c cannot be accessed via a guessed address.

1: void foo(int i) {
2: char c[4];
3: if (c == (char*)i) {
4: ...
5: } else {
6: *(char*)0x200 = 0;
7: }
8: ...
9: }

)

void foo(int i) {
char c[4];
if (false) {

...
} else {

(char)0x200 = 0;
}
...

}

The reason why two blocks are not enough for this optimization is that c

can be accessed in line 6 of the original code when memory has only space for

two blocks: The observation of the address of c in line 3 can forbid one of the

twin executions from reaching line 6, which does not happen in the optimized

code. To see this clearly, suppose that i = 0x100 and the twin blocks for c can

be only allocated at 0x100 and 0x200 because the memory had space for just

those blocks. Then, in the original code, none of the twin executions triggers

UB for the guessed access at line 6, while in the optimized code, the execution

with c = 0x100 triggers UB at line 6 now that guessing is prevented, as usual,

by the twin allocations.

However, if we have triple twin allocations, c cannot be accessed via a

guessed address even if one of the triple twin executions is ruled out by a single

observation: We still have two twin executions left. For example, in the above

setting, if c is allocated at 0x100, 0x200 and 0x300, in the original code the

execution with c = 0x300 triggers UB for the guessed access at line 6.

We can argue as follows that triple twin allocations enable the optimization

above for a fresh block c when the address of c is observed only once in the

comparison. If one of the triple executions in the optimized code accesses c via

112

a guessed address (causing UB in the optimized code), we can always trigger

UB for the guessed access in one of the three possible executions of the original

code as discussed above. If not, the triple executions behave exactly the same in

the optimized code because there is no observation of the address of c, and the

behavior is simulated by one of the triple executions of the original code that

makes the comparison c == p false.

Finally, we note that over-approximating the number of twin blocks is sound.

However, as we have seen in the previous example, under-approximating it is

not. In practice, due to the limited reasoning power of compilers in general, and

LLVM in particular, we believe 3 blocks are sufficient. 7

4.4 Prototype Implementation

We implemented two prototype versions of LLVM to study the impact of adapting

the compiler to match the new semantics. First, we removed optimizations that

are invalid in our semantics in order to create a version of LLVM that soundly

implements its memory model. We confirmed this version fixes all the related

bugs we have found. Second, we modified the “sound” compiler to regain some

performance by adding optimizations that were not previously supported. We

implemented our prototypes using LLVM 6.0.8

Making LLVM sound. LLVM propagated pointer equalities in several places;

these had to be disabled. For example, InstSimplify (a peephole optimizer that

does not create new instructions) transforms the IR equivalent of (x == y) ?

x : y into y. In our semantics this transformation is correct for integers, but

7
We are only aware of one optimization in LLVM and GCC that may require more

than three blocks, and further investigation is ongoing to determine whether it is valid (see

http://llvm.org/PR35102).
8https://github.com/snu-sf/llvm-twin and https://github.com/snu-sf/clang-twin

113

not for pointers, because it breaks data-flow provenance tracking. Similarly, we

turned off GVN for pointer-typed variables.

A second kind of transformation that we had to disable were some integer-

pointer conversions. LLVM (and GCC to some extent) treat a round-trip of

pointer-to-integer and then integer-to-pointer casts as a no-op. This is incorrect

under our semantics, and we removed this transformation—the IR equivalent

of turning (int*)(int)p into p—in InstSimplify. Also related is a transfor-

mation from InstCombine (a peephole optimizer that potentially creates new

instructions), which rewrites (int)p == (int)q into p == q for pointers p and

q. This transformation was also removed, since comparing physical pointers is

not equivalent to comparing logical pointers in our semantics.

A third kind of change is related to compiler-introduced type punning.

There are optimizations in LLVM that transform, for example, load/store

instructions of pointers into that of pointer-sized integers. This includes GVN

when equivalent variables have different types, transforming a small memcpy into

a pair of load/store instructions (e.g., where the intermediate value is an integer,

and the target type is a pointer), etc. As we will discuss in Section 4.7, we had

to disable all of these.

Finally, we disabled a few additional transformations that became invalid in

our semantics including folding a pointer comparison against a stack-allocated

object within a loop and a handful of peephole optimizations that changed

pointer provenance. In total, we changed 419 lines of code.

Regaining performance. Making LLVM sound with respect to our memory

model caused some small performance regressions in SPEC CPU 2017. We

created a second prototype that attempts to regain that performance by adding

optimizations that conform to our new semantics.

114

We changed how LLVM/Clang handles C/C++ pointer subtractions. The un-

modified Clang lowers pointer subtraction into the IR equivalent of (int)p - (int)q.

This is sound under our model, but since LLVM is very conservative when it

encounters these kind of casts (it assumes the pointers escape), we unnecessarily

lose precision in, e.g., alias analysis. The problem becomes even worse in our

“sound” prototype. We added the psub instruction for pointer subtraction (de-

scribed in Section 4.3.7) and modified Clang to use it. Since in our semantics

psub does not escape if both operands are logical pointers, more aggressive

optimization are now allowed.

We augmented alias analysis so that it becomes more precise when it en-

counters integer-to-pointer casts. Alias analysis can now conclude that a pointer

cast from integer never aliases an unescaped object. Moreover, we also improved

the analysis to assume that the pointer comparison instruction does not make

its operands escape if they are both logical pointers.

Finally, we re-enabled GVN for pointer types for the following specific cases

where it is guaranteed to be sound (for pointers p and q in the same equivalence

class, where p is replaced with q):

• q is NULL or the result of an integer-to-pointer cast.

• p and q are logical pointers, and both are either dereferenceable or point

to the same block.

• p and q are both computed by the gep inbounds with same base pointer.

• Either p or q is computed by a series of gep inbounds with positive

offsets, based on the same base pointer.

The number of lines changed in this prototype against the previous one totals

about 1274 lines. Overall, our “sound and fast” prototype requires changing less

115

than 1700 lines of code in LLVM to make it sound against our memory model

with minor impact on run time performance.

4.5 Performance Evaluation

We show that our memory model does not interfere with the quality of generated

code.

4.5.1 Setup

We used three machines, with the following CPUs, to measure performance: (1)

Intel i3-6100 (Skylake), (2) Intel i5-6600 (Skylake), and (3) Intel i7-7700 (Kaby

Lake). All machines have 8 GB RAM and Ubuntu 16.04 installed. To get more

consistent results, Intel Hyperthreading, TurboBoost, SpeedStep, and Speed Shift

were disabled, and the CPU scaling governor was set to “performance.” We also

disabled non-essential system services and address space layout randomization.

As benchmarks, we used SPEC CPU 2017 and the LLVM Nightly Test

suite (293 C/C++ benchmarks). For SPEC CPU, we used only the SPECrate

benchmarks because of RAM limitations (SPECspeed requires more memory

than our machines had). The Fortran benchmarks were compiled first with

gfortran.

Each benchmark was compiled with -O3, executed three times, and the

median running time is used to compare performance. To run LLVM Nightly

Tests, we used the cpuset utility to pin the benchmark to a single core. Unlike

SPEC, these short-running benchmarks were seeing significant variance due to

migrations between cores. Also, we used a RAM disk to minimize fluctuations

due to disk access time. Some benchmarks in the LLVM suite have short running

time, so using this setting is helpful to stabilize the results.

When comparing performance for LLVM Nightly Tests, we exclude bench-

116

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

ca
ct
uB

SSN r

na
m

d r

pa
re

st r

po
vr

ay
r

lb
m r

w
rf r

bl
en

de
r r

ca
m

4 r

im
ag

ic
k r

na
b r

pe
rlb

en
ch

r
gc

c r
m

cf r

om
ne

tp
p r

xa
la
nc

bm
k r

x2
64

r

de
ep

sj
en

g r

le
el
a r xz r

FP INT

C
h

a
n

g
e

 in
 P

e
rf

o
rm

a
n

ce
 (

%
)

Machine 3
Machine 2
Machine 1

(a) After making LLVM sound

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

ca
ct
uB

SSN r

na
m

d r

pa
re

st r

po
vr

ay
r

lb
m r

w
rf r

bl
en

de
r r

ca
m

4 r

im
ag

ic
k r

na
b r

pe
rlb

en
ch

r
gc

c r
m

cf r

om
ne

tp
p r

xa
la
nc

bm
k r

x2
64

r

de
ep

sj
en

g r

le
el
a r xz r

FP INT

C
h

a
n

g
e

 in
 P

e
rf

o
rm

a
n

ce
 (

%
)

Machine 3
Machine 2
Machine 1

(b) Sound prototype + optimizations

Figure 4.8: Change in run time of SPEC CPU 2017 for our two prototypes.
Higher bars indicate speedup relative to baseline LLVM, lower bars indicate
slowdown.

marks where our changes to Clang and LLVM did not result in any changes to

the resulting object code. Some benchmarks had high performance variation

(> 5%) across runs, most of these were benchmarks that run too quickly for

accurate timing. We excluded these from our results as well.

4.5.2 Performance of Generated Code

Performance after making LLVM sound. Fig. 4.8a shows the effect that

our first (sound but unoptimized) prototype had on the performance of SPEC

CPU 2017. On average, across all benchmarks and machines, we observed a

0.2% slowdown. The worst slowdown was a 1.75% regression in xalancbmk on

machine 2. There was also a 0.5 ⇠ 1.5% consistent slowdown in gcc, mcf, and

xalancbmk.

For the LLVM Nightly Tests, the worst slowdown was 4.3%, and the best

speedup was 4.0%. On average, we observed a 0.3% slowdown. One benchmark,

Oscar, had a huge speedup (25%). This was because our fixes prevented loop

vectorization from working in this case, which happened to make the benchmark

run faster. This benchmark is omitted in the numbers mentioned before.

In the LLVM Nightly Tests, only 25% (464/1853) of object files were different

than when compiled with the baseline compiler, and only 27% (80/293)of

117

benchmarks had any object file changed.

Across all of our benchmarks, the baseline version of LLVM’s GVN pass

performs about 24,700 replacements. About 28% of these correspond to prop-

agation of pointer equalities, with the remaining being propagation of integer

equalities. Of the pointer replacements, 44% correspond to replacing a pointer

with NULL, which is a sound transformation under our semantics (even though

it was disabled in this prototype).

Performance after adding optimizations. Fig. 4.8b shows the change

in performance of SPEC CPU 2017 for our second prototype (“sound and

fast”) relative to baseline LLVM. The three changes that contributed the most

to recovering lost performance were as follows. Adding psub changed the

average slowdown on SPEC from �0.2% to �0.1%. The main winners due to

this optimization were mcf and xalancbmk, having a 1.7% and 1.1% speedup,

respectively.

We found “jpeg-6.a” in LLVM Nightly Tests showed 2.2% slowdown. It was

because removing transformations from load/store of pointers into load/store of

pointer-sized integers blocked SLP vectorization of heterogeneous types. We can

support this by allowing type punning between a physical pointer and integer. For-

mally, we can define load of integer i as pointer to yield Phy(i, 0, ;,None) rather

than poison, and load of Phy(i, 0, ;,None) as integer to return i. With this

update, it is valid to canonicalize load/store of pointer-sized integers into load/-

store of pointers. After the canonicalization, SLP vectorization can fire because

load/stores now have homogeneous types. We implemented this canonicalization

pass before SLP vectorization and checked that the slowdown disappeared. It

did not, however, improve the performance of the SPEC benchmarks nor the

average slowdown of the LLVM Nightly Tests. This canonicalization can be a

118

Table 4.2: Number of instructions with different prototypes

Baseline i2p(p2i p)
fold disabled Sound add psub

-O0 Total 21,219,982 21,219,982 21,219,982 21,194,610
inttoptr 1,554 1,554 1,554 1,554
ptrtoint 39,726 39,726 39,726 14,338
psub 0 0 0 12,806

-O3 Total 15,015,064 15,030,020 14,950,405 14,750,101
inttoptr 29,976 44,255 2,580 2,573
ptrtoint 38,249 45,425 64,585 9,431
psub 0 0 0 29,117

good workaround for reenabling vectorization, but in the future we would like

to pursue more generalized solution for this, as discussed in Section 4.7.

Finally, reactivating GVN for safe cases removed the slowdown in perlbench

and cactuBSSN. With the Nightly Tests, the performance regressed slightly,

increasing the average slowdown to 0.07%.

This experiment shows that it is possible to make LLVM adhere to our mem-

ory model without significant performance regression. In fact, some benchmarks

get a small performance improvement.

4.5.3 Number of Instructions

We investigated how the number of pointer cast instructions (inttoptr /

ptrtoint) and psub instructions evolved with our modifications. Table 4.2

shows the total number of instructions over all the benchmarks, when compiled

without optimizations (-O0) and with optimizations (-O3).

In the first column, we have the numbers for the baseline (vanilla LLVM).

In the second column, we can observe the number of casts does not increase

significantly after disabling the (incorrect) optimization that removes the round-

trip cast of (int*)(int)p to p, for a pointer p.

The third column shows the result for our first prototype, where all incorrect

119

optimizations were removed. The number of inttoptr instructions is reduced

because we disabled the introduction of type punning by the optimizer. The

increase in the number of ptrtoint casts is the result of removing unsound

optimizations like the one that rewrites (int)p == (int)q into p == q.

In the last column, we show the data for a prototype that uses the new psub

instruction. Not only are the number of casts reduced in the non-optimized

build (since we changed Clang to lower pointer subtraction into psub), but

the optimized build also shows a reduction since we also added support for the

optimizers to create psub when needed.

Finally, we note the number of cast instructions is still larger in the optimized

build since optimizations like loop unrolling and inlining can soundly duplicate

instructions.

4.5.4 Compile Time

We measured the time it takes to compile each file of all the benchmarks in an

optimized build. We exclude files with a very small compile time (< 0.15 s) in

these results.

In the first prototype, the average compile time had a 0.1% slowdown.

The worst slowdown was 10.5% and the best speedup 13.9%. For the second

prototype, we observed an average slowdown of compilation time of 1.1%. The

worst slowdown increased to 9.3%. A reason for the second prototype regressing

further on the compilation time is due to extra analysis required to propagate

pointer equalities. Also, our prototype implementations were not optimized to

reduce compilation time.

120

high-level mem int-to-ptr low-level ptr all integer ptr arith

optimizations casts manipulation optimizations is pure

Flat X X X X
Memarian et al. X X X
CompCert X X X
Besson et al. X X X
Kang et al. X † X X
Ours X X X X X

Table 4.3: Comparison between different memory models: whether they enable
high-level memory optimizations (such as store forwarding), whether they sup-
port integer-to-pointer casts, whether they support languages with low-level
pointer manipulation (such as doing XORs of pointers), whether they support all
standard integer optimizations (such as equality propagation and reassociation),
and whether pointer arithmetic and cast operations are pure (since otherwise
they constrain movement of such instructions). † does not support cast of p+ n.

4.6 Related Work

Much work has been done on defining and clarifying the semantics of C, including

the semantics of pointer provenance [2–4,92–95]. However, focusing on source

language semantics involves different considerations than that of a compiler

IR. For example, many of the optimizations presented in this chapter are not

sound under the proposed C semantics. That is not a problem, as long as

C can efficiently be compiled to an IR like LLVM’s that allows the desired

optimizations.

CompCert [27, 96] is a compiler for a subset of C that is formalized in Coq.

It defines a pointer as a pair of block id and offset, which is equivalent to our

logical pointer. CompCert does not, however, support pointer-to-integer casts,

thereby avoiding the problems we address in this chapter. [97] extend CompCert

with a weak memory model.

Vellvm [24] formalizes the LLVM IR in Coq. It adopts CompCert’s memory

model, inheriting its weaknesses.

Besson et al. [98–101] propose an extension of the CompCert memory model

121

supporting casts between integers and pointers. When a pointer is cast to

an integer, a fresh symbol is created to represent the underlying physical

address and henceforth keep the result of arithmetic or bitwise operations

over it as symbolic expressions. When a concrete value is needed for a symbolic

expression, if it uniquely determines an integer value, then that value is returned;

otherwise, poison is returned. They verify CompCert optimizations and programs

performing bitwise operations on pointers with their memory model. However,

their model is limited in practice because observing the underlying address of

a pointer is not allowed. For example, using a pointer value as a hash key is

undefined in their model.

[5] proposed a low-level memory model that supports pointer-to-integer

casts. However, the model does not support casting a pointer one-past-the-end

of an object to an integer and back: this round-trip resulted in poison in their

semantics, while it is well-defined in C. Moreover, in their semantics, ptrtoint is

an effectful operation that cannot be removed even if the result is not used, and

inttoptr is not freely movable across malloc and free. Our work fixes both

of these problems by combining logical and physical pointers in one memory

model.

4.7 Discussion and Future Work

Type Punning In our semantics, loading, e.g., from a memory location that

contains a pointer at an integer type results in poison due to type punning. One

may wonder why we did not specify the load to, instead, perform an implicit

pointer-to-integer cast. Disallowing implicit pointer casts is necessary to justify

load-store elimination:

int q, **x = malloc(sizeof(int*));
*x = &q;

122

int i = *(int*)x // implicit pointer-to-integer cast
(int)x = i; // remove; it is redundant

So, while the original code performed a pointer-to-integer cast and then wrote

back an integer (or, equivalently, a physical pointer with no provenance in-

formation), the changed program leaves the original provenance information

intact. In other words, load-store elimination can result in increasing provenance

restrictions on pointers, which can in turn result in introducing UB. To fix this,

we let load return poison instead of performing an implicit cast.

The downside of disallowing implicit casts is that there is no longer a type

that can actually hold any data that can be present in memory. LLVM typically

uses integer types for that purpose but, as discussed above, that does not work

in our semantics. One option to fix this is adding a new “byte” type that only

permits a few bitwise operations, and that can hence hold both pointer and

integer bits. We intend to pursue this avenue further in the future.

Non-deterministic Values We have defined some operations to yield a non-

deterministic result, e.g., icmp ule of pointers of different blocks. This blocks

duplication of instructions since they could then return different results. Solutions

to this problem includes introducing a notion of “entangled” instructions that

need to be folded together. We leave this exploration for future work.

Out of memory A technical problem with our memory model is that any

transformation that may eliminate an out-of-memory condition is unsound. How-

ever, the necessary conditions for achieving miscompilation via this unsoundness

are difficult to meet. First, the compiler must perform a transformation based on

knowledge that a program path triggers out-of-memory (LLVM does not do this

at present, and seems unlikely to do so in the future). Second, it would need to

123

perform an optimization eliminating the out-of-memory condition (these trans-

formations, such as eliminating unused allocations, are performed routinely).

Designing a memory model that is sound in this respect seems challenging and

it is not clear the result would be useful in practice.

As an example, consider this function:

unsigned int oom(unsigned int n) {
int a[128];
return n == 0 ? 0 : oom(n-1) + (unsigned int)&a;

}

Since the LLVM compiler analyzes the function as readnone (i.e., not ac-

cessing memory), it optimizes away oom(n) if its return value is unused. For

instance, (oom(UINT_MAX); print(0)) is optimized to print(0), which is un-

sound in our model because out-of-memory behavior of the source is eliminated

in the target. In theory, allowing such optimizations can be problematic be-

cause print(1) can be translated to (oom(UINT_MAX); print(1)) by some

code motion, which is equivalent to (oom(UINT_MAX); print(0)) because both

behaves exactly the same (i.e., always producing out-of-memory), which can

be translated to print(0) by eliminating oom(UINT_MAX). Thus, print(1) can

be translated to print(0), which is clearly a problem. However, in practice,

compilers never recognize equivalence between (oom(UINT_MAX); print(1))

and (oom(UINT_MAX); print(0)) because they never perform out-of-memory

analysis.

Finding a semantic model that allows translating (oom(UINT_MAX); print(0))

to print(0), but not (oom(UINT_MAX); print(1)) to (oom(UINT_MAX); print(0))

is a challenging problem.

124

4.8 Implementing Our Memory Model in LLVM

In this section, we describe the efforts we made to carry our memory model to

LLVM. We delivered our work to the LLVM community by (1) giving a talk at

EuroLLVM’18, (2) leading and actively participating in online discussions, and

(3) writing patches and sending them to the LLVM project.

4.8.1 Removing Provenance-Changing Transformations

Our proposal motivated developers to remove a few transformations that are

unsound because they change pointer provenance. LLVM InstCombine and

InstSimplify were incorrectly folding ‘gep p, (q-p)’ to ‘q’. The transformations

were finally removed by Rust developers9.

To prevent unsound replacement of a pointer using equality comparison,

canReplacePointersIfEqual is added to LLVM’s value analysis (ValueTracking.h).

Given two pointers, this function returns true if it is sound to replace a pointer

with the other one. However, the function is not used by optimizers due to a

possible performance regression. To allow pointer replacements in general, a

new provenance-laundering operation is necessary. Interestingly, a proposal for

C’s restrict keyword support in clang contains an operation for this. The

operation can be used after the patch is landed in LLVM.

4.8.2 Safely Optimizing Casts between Pointers and Integers

We delivered our idea about folding inttoptr(ptrtoint p) to LLVM devel-

opers via our EuroLLVM’18 talk and online discussions. It motivated compiler

developers to write a few patches in LLVM.

First of all, clang-tidy is updated so that it detects integer-to-pointer

9https://reviews.llvm.org/D98588 and https://reviews.llvm.org/D98611. https://
reviews.llvm.org/D93820 has a link to our paper.

125

casts and warns that LLVM may not optimize this code well10. It also sug-

gests its alternative form. For example, instead of writing a pointer masking

operation as ‘(char*)(ofs | (intptr_t)p)’, clang-tidy suggests using ‘p

+ (((intptr_t)p | ofs) - (intptr_t)p)’ because the alternative form pre-

serves pointer provenance. Also, to succinctly represent a pointer masking

expression, a new llvm.ptrmask instrinsic function is added11. Its semantics is

equivalent to the above alternative form.

In this summer, we are working on writing patches for the removal of the

pointer cast roundtrip folding. A student who participated as a mentee in Google

Summer of Code12 added a new ‘-disable-i2p-p2i-opt’ flag to the official

LLVM implementation13. If the commandline flag is given, the pointer cast

roundtrip folding is disabled. She also added optimizations to InstCombine in

order to help reduce performance regressions after the flag is enabled.

4.8.3 Type Punning

A few transformations incorrectly performing type punning of loads and stores

are finally removed by compiler developers. InstCombine’s type punning trans-

formation, which was the source of the majority of inttoptr casts, was finally

removed14. Similar transformations in other optimizations were removed as well.

In this summer, we are working with a student who is interested in imple-

menting the ‘byte’ type (Section 4.7). He participated as a mentee in Google

Summer of Code and is working on implementing its prototype.

10https://reviews.llvm.org/D91055
11https://reviews.llvm.org/D59065
12

As described in Section 3.7, I and Nuno worked as mentors of 3 Google Summer of Code

projects for fixing miscompilations in LLVM.
13https://reviews.llvm.org/D105771
14https://reviews.llvm.org/D88789

126

4.9 Conclusion

Languages like C, C++, and Rust give the programmer low-level control over

how memory is arranged and accessed while also giving the compiler freedom

to perform high-level memory optimizations. This is challenging and current

toolchains based on LLVM and GCC are not always able to strike the right

balance between performance of generated code and strength of guarantees

made to programs. Part of the problem is that the memory models for the

internal representations in these compilers—where high-level optimizations are

performed—are informally specified and thus easily misunderstood.

We created a new memory model for LLVM IR that we believe provides

sufficiently strong guarantees that it can be efficiently targeted by front-ends

while also permitting many desirable optimizations. We have implemented a

prototype of this model and have shown that the implementation is not invasive,

that code quality remains good, and that several known miscompilations due to

the current, informal memory model are fixed.

127

Chapter 5

Validating the IR Semantics

Ensuring that LLVM is correct is crucial for the safety and reliability of the

software ecosystem. There has been significant work towards this goal including,

e.g., formally specifying the semantics of the LLVM IR (intermediate represen-

tation). This entails describing precisely what each instruction does and how

it handles special cases such as integer overflows, division by zero, or derefer-

encing out-of-bounds pointers [12,13,24,25,102]. There has also been work on

automatic verification of classes of optimizations, such as peephole optimiza-

tions [60,61], semi-automated proofs [103], translation validation [69,76,77,104],

and fuzzing [8, 9]. All this work uncovered several hundred bugs in LLVM.

Alive2 is the first fully automatic bounded translation validation tool for

LLVM. It relies on our formal semantics of undefined behavior and memory

model. Alive2 supports all of its forms of undefined behavior (UB). Handling

UB is important because LLVM’s optimizers frequently take advantage of it.

UB is heavily used by frontends to communicate invariants about the code to

optimizers. Therefore, in practice, any optimization verification tool that targets

128

LLVM (or any other modern compiler) needs to support UB; otherwise the

number of false alarms would make the tool impractical.

Our goal is a zero false-alarm rate, so we err on the side of soundness. We

make use of bounded translation validation to bound the resources used by each

verification task. For example, we unroll loops up to a given bound, and we limit

input variables to be either fully or never undef, but not partially.

We also present the first SMT encoding of our LLVM’s memory model1. It is

precise enough to validate LLVM’s intraprocedural memory optimizations. The

design of the encoding was guided by practical insights of the common aliasing

cases in BTV to achieve better performance. For example, we observed that in

most cases we can cheaply infer whether a pointer aliases with a locally-allocated

or a global object (but not both). Therefore, our encoding case-splits itself on

this property rather than leaving that to the SMT solver, as we can cheaply

resolve the case split for over 95% of the cases.

Another contribution of our memory model encoding is a new semantics

for heap allocation for the verification of optimizations for real-world C/C++

programs. Although our memory model has a reasonable semantics for heap

allocations, we realized it was not suitable for verifying optimizations. In some

programming styles, the result of functions such as malloc is not checked against

NULL and the resulting pointer is dereferenced right away. Since malloc can

return NULL in some executions, we could end up proving that some undesirable

optimizations were correct since the program triggers undefined behavior in at

least one execution. We propose a new semantics for heap allocations in this

chapter that is better suited for the verification of optimizations.

Alive2 has emphasized transitioning formal methods tools and their results

1
Currently, our encoding deals with logical pointers only. Finding an efficient encoding for

physical pointers is ongoing work.

129

into the LLVM community, including:

• Creating several Alive2-based tools such as plugins for opt (LLVM’s

standalone IR optimizer) and Clang (LLVM’s C/C++ frontend) that can

be used to check refinement after every optimization pass, and a refinement

checker for pairs of files containing LLVM IR.

• Since summer of 2019, continuously monitoring the LLVM unit test suite

using Alive2, resulting in 54 bug reports, of which 28 have been fixed.

• Contributing 7 bug fixes to LLVM.

• Contributing 11 patches to LLVM IR’s specification document and leading

the discussion for fixing several other inconsistencies in the semantics.

• Running larger-scale experiments doing translation validation while com-

piling small applications.

• Engaging with the LLVM community on mailing lists and at their annual

developers’ meeting, where we have presented three talks about our work.

• Releasing Alive2 as open-source software (https://github.com/AliveToolkit/

alive2) and also making it available through a web site (https://alive2.

llvm.org/), obviating the need for most developers to compile our tools.

5.1 Overview

Consider the functions below in C:2 a source (original) function on the left and a

target (optimized) function on the right. According to the semantics of high-level

languages, and also of LLVM IR, a pointer received as argument or a callee
2
We use the syntax of C for many of the examples in this chapter to make them easier to

read, even though we consider the semantics of LLVM IR.

130

cannot guess the address of a memory region allocated within a function. That

is, pointer q is not aliased with p, r, nor touched by g(p+1). Although the caller

of f may guess the address of q in practice, that behavior is excluded by the

language semantics because p’s object (provenance) cannot be a fresh one like q.

If p happens to alias q, accessing such pointer triggers UB.

1: int f(int *p) {
2: int *q = malloc(4);
3: *q = 42;
4: int *r = g(p+1);
5: *r = 37;
6: return *q;
7: }

1': int f(int *p) {
2': // q removed
3':
4': int *r = g(p+1);
5': *r = 37;
6': return 42;
7': }

The provenance rules allow LLVM to forward the stored value in line 3 to

line 6, and therefore line 6
0 simply returns 42. As the value stored to *q is not

used anymore and pointer q does not escape, LLVM also removes the heap

allocation.

Next we show how to verify this example. Note that we do not require

the two programs to be aligned; the example is aligned to make it easier to

understand.

5.1.1 Verifying The Example Transformation

We start by defining two auxiliary functions that encode the effect of memory

operations on the program state. Let state S = (m,ub) be a pair, where m is a

memory and ub a boolean that tracks whether the program has already executed

UB or not. Let p be the accessed pointer, and v the stored value. The definition

of functions load and store is as follows:

load p S : : = (load(p, S.m) , (S.m, S.ub _ ¬ deref(p, sizeof(⇤p), S.m)))

store p v S : : = (store(p, v, S.m) , S.ub _ ¬ deref(p, sizeof(⇤p), S.m))

load returns a pair with the loaded value and the updated state, where ub

131

Inputs: p,m0, ub0 # Inputs: p0,m0
0, ub

0
0

2 S1 := (m0, ub0) A1 := q is fresh 20 -

3 S2 := store q 42 S1 30 -

4
S3 := (mg, S2.ub _ ubg)

A2 := r is not aliased with q ^ mg agrees with S2.m on q
40 S0

1 := (m0
g, ub

0
0 _ ub0g)

5 S4 := store r 37 S3 50 S0
2 := store r0 37 S0

1

6 O := load q S4 60 O
0 := (42, S0

2)

Table 5.1: States and axioms after executing each of the lines of f.

is further constrained to ensure that pointer p is dereferenceable for at least the

size of the loaded type. Similarly, store returns the updated state. The gray

boxes (· · ·) encode SMT expressions; we describe these in the next section.

1. Encoding the output states. Table 5.1 shows the state after executing each of

the programs’ lines. p, m0, and ub0 are SMT variables for the input pointer, and

function f caller’s memory and UB flag, respectively. The target’s corresponding

variables are primed. Meta variables are upper-cased and SMT variables are

lower-cased.

On line 2, q is assigned a pointer to a new object (encoded in axiom A1).

On line 3, ‘*q = 42’ updates the state using store.

On line 4, the return value, output memory, and UB of g(p+1) are repre-

sented with fresh variables r, mg, and ubg, respectively. Axiom A2 encodes the

provenance rules: the return value cannot alias with locally non-escaped pointers

(q) and only the remaining objects are modified. Line 4
0 does not need these

axioms because there are no locally-allocated objects in the target function.

Finally, the outputs O and O
0 are a pair of return value and state.

2. Relating the source and target’s states. To prove correctness of a trans-

formation, we must first establish refinement between the input states of the

source/target functions. Refinement (w) is used rather than equality because it

132

is allowed for the source’s caller to give less defined inputs than the target’s.

Ain := p w p
0 ^ m0 w m

0
0 ^ (ub

0
0 =) ub0)

The inputs and outputs of function calls are also related using refinement.

For any pair of calls in the source and target functions, if the target’s inputs

refine those of the source, the target’s output also refines the source’s output.

The example only has one function call pair:

Acall :=
⇣
S2.m w m

0
0 ^ p+ 1 w p

0
+ 1 =) mg w m

0
g ^ r w r

0 ^ (ub
0
g =) ubg)

⌘

We can now state the correctness theorem for the example transformation.

For any input, if the axioms hold, the output of the target must refine that of the

source for some internal nondeterminism in the source (e.g., the address of pointer

q). Output is refined iff (i) the source triggers UB, or (ii) the target triggers no

UB, and the target’s return value and memory refine those of the source.

8p, p0,m0,m
0
0, ub0, ub

0
0,mg,m

0
g, ubg, ub

0
g . 9q . (A1 ^A2 ^Ain ^Acall) =) O w O

0

5.1.2 Efficiently Encoding LLVM’s Memory Model and Refine-
ment

We now present our key ideas for efficiently encoding LLVM’s memory model

and refinement (the gray boxes) in SMT, which is one of our main contributions.

1. Pointers. We represent a pointer as a pair (bid, o) of a block id (i.e., its

provenance) and an offset within, so that we can easily detect out-of-bound

accesses: accessing (bid, o) in memory m triggers UB unless 0 o < m[bid].size,

from which deref((bid, o), sz,m) naturally follows.

2. Bounding the number of blocks. Our first observation is that we can safely

bound the number of memory blocks for bounded translation validation since

loops are unrolled for a fixed number of iterations. As a result, we can use a

(fixed-length) bit-vector to encode block ids.

133

For the example source function, four blocks are sufficient: three for pointers

p, q, r as they may all point to different blocks, and an extra to represent all the

other blocks that are not syntactically present but are accessible by function g.

For the sake of simplifying the example, we ignore that p, q, r may be null.

Our model does not make such assumption; we explain later how null is handled.

3. Aliasing rules. Several of the aliasing rules are encoded for free as we can

distinguish most blocks by construction. First, we use the most significant bit of

the block ids to distinguish local (1) from non-local (0) blocks. Second, we assign

constant ids whenever possible (e.g., global variables and stack allocations).

For the example source function, (without loss of generality) we set the

block ids of q, p and the extra block to 100(2), 000(2), and 011(2) (in binary

format), respectively. However, we cannot fix the block id of r and instead give

the constraint that it should be either 000(2) or 001(2) since r may alias with p

but not with q. This establishes the alias constraints in A1 and A2 for free.

4. Memory accesses. In order to leverage the fact that each pointer may range

over a small number of blocks as seen above, we use one SMT array per block

(from an offset to a byte) instead of using a single global array (from a pointer

to a byte). For the latter, it becomes harder to exploit non-aliasing guarantees

since all stores to different blocks are grouped together.

For the example source function, m0 consists of four arrays m
(100)
0 , m(000)

0 ,

m
(001)
0 , m(011)

0 for the four blocks. Then since q’s block id is 100(2), store q 42 S1

at line 3 only updates the array m
(100)
0 , leaving the others unchanged. Similarly,

store r 2 S3 at line 5 only updates m(000)
0 and m

(001)
0 using the SMT if-then-else

expression on r’s block id. Finally, load q S4 at line 6 reads from the updated

array at 100(2), thereby easily realizing that the read value is 42.

5. Refinement. The value/memory refinement w is defined based on a map-

134

Num(sz) : : = { i | 0 i < 2
sz }

BlockID : := N
O↵set : : = Num(64)

PtrAttr : : = {nocapture, readonly, readnone}
Pointer : : = BlockID⇥O↵set⇥ 2

PtrAttr

DefinedValue : : = Int] Pointer] Float

Value : : = P(DefinedValue)] {poison }]Aggregate

Aggregate : : = list Value

Memory : := BlockID ! MemBlock

RegFile : : = string ! Value

State : : = RegFile⇥Memory ⇥ bool

ValueNoRet : : = Value] { noreturn }
FinalState : : = ValueNoRet⇥Memory ⇥ bool

Figure 5.1: Definitions of important sets. P is the power set operation. The full
definitions are at Fig. 5.5.

ping between source and target blocks, which we efficiently encode leveraging

the alignment information between source and target as much as possible (Sec-

tion 5.6).

5.2 Encoding LLVM IR Semantics in SMT

In this section we explain how Alive2 encodes the state of an LLVM IR function

and how the semantics of the IR are specified. Fig. 5.1 defines values, the register

file, and the program state. A program state consists of a register file, a memory,

and a flag stating whether the program has executed UB. The program state is

updated after the execution of each instruction.

A register file assigns a valuation to each register. A value is either poison

or a set of integer/floating-point numbers or pointers. The set of values is not a

singleton if the value is undef . When a value is used, one of the elements of

the set is picked non-deterministically. Memory is a map from block id to its

properties, including the block’s data, size, alignment, whether it is alive, etc.

Each allocation gets a fresh block.

135

(◆ = “r = add isz op1, op2”)

add-poison
Jop1KR = poison _ Jop2KR = poison

hR,M, bi ◆
,�! hR[r 7! poison],M, bi

add
Jop1KR = v1 Jop2KR = v2 v1, v2 2 P(Int)

v
0
= { (i1 + i2)mod 2

sz | i1 2 v1 ^ i2 2 v2 }
hR,M, bi ◆

,�! hR[r 7! v
0
],M, bi

(◆ = “r = add nuw isz op1, op2”)

add-nuw-overflow
Jop1KR = v1 Jop2KR = v2 v1, v2 2 P(Int)

9i1 2 v1, i2 2 v2 . i1 + i2 � 2
sz

hR,M, bi ◆
,�! hR[r 7! poison],M, bi

(◆ = “r = udiv isz op1, op2”)

udiv-ub
Jop2KR = v2

v2 = poison _ 0 2 v2

hR,M, bi ◆
,�! hR,M, truei

udiv-poison
Jop1KR = poison Jop2KR = v2

v2 2 P(Int) ^ 0 /2 v2

hR,M, bi ◆
,�! hR[r 7! poison],M, bi

(◆ = “r = freeze isz op”)

freeze-poison
JopKR = poison
v 2 Num(sz)

hR,M, bi ◆
,�! hR[r 7! {v}],M, bi

freeze-pick
JopKR = v v

0 2 v

v 2 P(DefinedValue)

hR,M, bi ◆
,�! hR[r 7! {v0}],M, bi

Figure 5.2: Semantics of selected instructions

We give the semantics for a few example instructions in Fig. 5.2. Let tuple

S = hR,M, bi be a program state (resp. register file, memory, UB flag). The

notation S
◆
,�! S

0 defines the resulting state S’ of executing instruction ◆ on state

S.

The final state is similar to a register valuation, but includes the symbol

noreturn. In LLVM, functions can end with a call instruction to a function that

does not return (e.g., exit). This is a code-size optimization as it enables the

compiler to skip inserting code to cleanup the stack and return to the callee, for

example.

136

5.2.1 Register File

For each program register in the register file, we maintain a pair of SMT

expressions: (value, ispoison). The second element is a Boolean indicating whether

the value is poison or not. The first element’s value is only meaningful when

the ispoison flag is false. The value is an SMT expression of appropriate type,

depending on the program register’s type. Integers are encoded with bit-vectors,

while floats use SMT’s FPA theory. Aggregates (arrays, vectors, and structs)

are encoded by converting each element to a bit-vector and then concatenating

them. Similarly, pointers are encoded with a bit-vector concatenation of the

individual components (block id and offset).

5.2.2 Function Arguments

We assume function arguments can be arbitrary, and therefore these can be

either undef , poison, or well-defined. We use four SMT variables to encode

each function argument: two Booleans to indicate if the argument is undef or

poison, a variable to hold the well-defined value, and a fresh quantified variable

to represent all the values of a type for the undef case.

Putting it together, the encoding of a function argument %a is the pair:

(ite(isundef%a, undef1,%a), ispoison%a). For aggregates, we compute this expres-

sion element-wise, allowing for example each element to be poison or not

independently.

Our encoding for undef values is an under-approximation, since we only

allow an argument to be either fully undef or not undef at all. This disallows

behaviors where, e.g., only one of the input bits is undef (like the result of

“and i32 undef, 1”). Partial undef values spawn a doubly-exponential state

space (22n � 1 for each n-bit integer). By supporting only fully undef values,

we reduce the complexity to a “mere” exponential state space. We believe the

137

potential for missed bugs is small, and that this is a good tradeoff.

5.2.3 Undef Values

We have seen that undef can yield a different value each time it is observed.

Therefore, we need to create a fresh variable for each undef each time a value

is observed. We keep track of the undef SMT variables used for each expression

in the register file. When we lookup a value in the register file, we rewrite all

undef variables with fresh variables.

For example, assume that we have the following value in the register file for

%a:

R[%a] = (ite(isundef%a, undef1,%a), ispoison%a)

Evaluating the instruction %b = add %a, %a yields the following expression

for the value (ignoring the poison bit):

ite(isundef%a, undef2,%a) + ite(isundef%a, undef3,%a)

Variables undefi are appropriately quantified so they can take any value of

the type. We describe this process later in Section 5.6.

The freeze instruction stops propagation of both undef and poison. The

only difference between freezeundef and undef is that the former evaluates

to the same (arbitrary) value on every use. Therefore, we just need to clear the

set of undef SMT variables in the register file such that the undef variables are

not replaced with fresh ones on each lookup.

Detecting undef boils down to detecting if an expression can evaluate to

more than one value. The straightforward way for checking this for an expression

e with the set of undef variables v is to check if 9v, w . e 6= e[w/v] is satisfiable

(with w being a set of fresh variables). To reduce the number of variables, we

use an alternative encoding: we replace variables v with a constant, ek = e[k/v].

138

If the comparison e = ek is valid, then e is not undef since there is no model

for the undef variables that makes e different than a base value (ek). We tried

the values 0 and 1 for this constant, but neither worked well because they are

identity/absorbent for some arithmetic operations and are folded away by the

solver. This tends to destroy syntactic similarity between e and ek, confusing our

SMT solver’s quantifier instantiation algorithm. The constant 2 also does not

work well: it is a power of 2 and thus simplifies, e.g., multiplications. Therefore,

we replace undef values with 3 when creating ek.

5.2.4 Control Flow

The flow of execution in LLVM is controlled using (conditional) branch, switch,

function calls (Section 5.7), and exceptions (invoke instruction).

As LLVM’s IR is in SSA form, merge of values from different paths through

the control-flow graph (CFG) is already explicit through the phi instruction. We

merge the multiple SMT expressions from the incoming paths of a basic block

trivially using the phi instructions, ending up with a single SMT expression per

register per function. We do not fork expressions across paths in the CFG.

5.2.5 Floating-Point Numbers

LLVM’s floating-point (IEEE-754) instructions trivially map to SMT’s FPA

theory. A notable exception is LLVM’s remainder operation (equivalent to C’s

fmod) which has different rounding behavior than SMT’s (equivalent to C’s

remainder). Additionally, we do not support non-IEEE-754 types such as x86’s

80-bit floats, as SMT’s FPA theory does not support those either.

In IEEE-754, the bit representation of NaN is not unique, and different

CPUs use different bit patterns in practice. This leaves us with the question of

what should be the semantics of the bitcast instruction from float to integer

139

(not to be confused with an arithmetic cast, where the float’s value is truncated

to an integer).

There are essentially two choices:

• bitcast from integer to float and then back to integer preserves the bit

pattern (such a round-trip is a NOP).

• bitcast does not preserve NaN’s bit pattern. When a NaN is bit cast to

integer, it gets assigned a non-deterministic bit pattern.

Unfortunately, either semantics makes some of LLVM’s optimizations incor-

rect. At the time of writing there was no consensus in the community on which

of the semantics to adopt. We chose the second one in Alive2, as it supports

processors that canonicalize NaN bit patterns when a NaN is loaded into a

floating-point register.

5.2.6 Return Value

As previously mentioned, a function in LLVM may either return a value or reach

a “no-return” instruction. We therefore compute two expressions: the returned

value, and a Boolean indicating in which cases the function reaches a “no-return”

instruction. To compute the final state, we merge the states of each of the return

instructions through a linear chain of ite expressions.

The SMT encoding for the register file of the function shown in Fig. 1.1 is:

R[%a] = (ite(isundef%a, undef1,%a), ispoison%a)

R[%b] = (ite(isundef%b, undef2,%b), ispoison%b)

R[%t] =
�
ite(isundef%a, undef3,%a) + ite(isundef%a, undef4,%a),
ispoison%a

�

R[%c] =
�
ite(ite(isundef%a, undef5,%a) +

ite(isundef%a, undef6,%a) = 0, 1, 0), ispoison%a

�

R[%q] = (shl(%a, 2), false)
R[%r] = (ite(isundef%b, undef7,%b) & 1, ispoison%b)

140

Each use of an undef value creates a new fresh variable to account for the case

that each observation may yield a different value. Perhaps the most surprising

is the value of R[%q] as it ignores the cases when %a is undef or poison. This

is an optimization: since branching on a non-well-defined value is UB, we can

assume that %t is well-defined and transitively %a as well.

Another expression that might be surprising is that of R[%c]. LLVM has no

Boolean type and uses 1-bit integers instead, which explains the extra ite to

convert the Boolean expression to a bit-vector.

The final state for the same function is as follows:

retval =
�
ite(%a+%a = 0, shl(%a, 2),

ite(isundef%b, undef7,%b) & 1),

ite(%a+%a = 0, false, ispoison%b)
�

ub = isundef%a _ ispoison%a

noret = false

We perform the same optimization as described for the register file. By

taking advantage of the cases that are guaranteed to be UB, we are able to

simplify the formulas for the return value.

5.2.7 Additional Optimizations

We do several optimizations to shrink the size of SMT formulas by taking

advantage of invariants that are deduced during verification condition generation.

For example, we track whether a register is undef or poison in a flow-sensitive

way. This information is deduced from the cases where it would be UB if a

register was undef or poison (such as when branching on that register). It

does not matter whether a value is well-defined if the program already triggered

UB.

Another set of facts we propagate in a flow-sensitive way is the set of unused

undefi variables to avoid rewriting expressions on each register file lookup. When

we lookup the value of, say, %r in the register file, the undefi variables are not

141

rewritten if this register was not used before in the current basic block or in any

predecessor. This reduces the number of formula rewrites and the number of

quantified variables.

As shown in the previous example, we attempt to compute closed-form

expressions to determine when registers are undef for common patterns. For

example, the expression ite(isundef%a, undef1,%a) = 0 is undef iff isundef%a

is true. This expression is simpler than the general formula and does not use

quantified variables.

We instantiate the isundef%r variables in the final SMT formula (i.e., replace

9x . f(x) with 9x . (¬x^ f(false))_ (x^ f(true))), up to a bound to limit the

exponential growth. This helps refinement proofs substantially as the non-undef

case often becomes trivial and the fully undef case also becomes simpler (as

the SMT solver can replace, e.g., undef1 + undef2 with undef 0 as these undefi

variables often only appear once in the formula).

5.3 Encoding Memory Blocks and Pointers in SMT

We describe our new encoding of LLVM’s memory model in SMT over the

next few sections. We use the theories of UFs (uninterpreted functions), BVs

(bit-vectors), and arrays with lambdas [105], with first order quantification.

Moreover, we consider that the scope of verification is a single function without

loops (or where loops have been previously unrolled). We only consider logical

pointers and a single address space.

5.3.1 Memory Blocks

Each memory block is assigned a distinct identifier (a bit-vector number). We

further split memory blocks into local and non-local. Local blocks are all those

that are allocated within the function under consideration, either on the stack

142

O↵set (o↵) Attributes (attrs)Block ID (bid)

MSB LSB

Figure 5.3: The bit-vector representation of a pointer.

or the heap. Non-local blocks are the remaining ones, including global variables,

heap/stack allocations in callers and heap allocations in callees (stack allocations

in callees are not observable, since they are deallocated when the called function

returns, hence there is no need to consider them).

We use the most significant bit (MSB) to encode whether a block is local (1)

or non-local (0). This representation allows the null block to have bid = 0 and

be non-local. We refer to the short block id, or fbid, to refer to bid without the

MSB. This is used in cases where it has already been established whether the

block is local or not. Example with 4-bit block ids:

int g; // bid(g) = 0001
void f(int *p) { // bid(p) = 0xyz (with xyz = arbitrary)

int a[2]; // bid(a) = 1000
int *q = malloc(4); // bid(q) = 1001

}

The separation of local and non-local block ids is an efficient way to encode

the constraint that pointers of these groups cannot alias with each other. In the

example above, argument p cannot alias with either a or q.

As we only consider functions without loops, block ids can be statically

assigned for each allocation site.

5.3.2 Pointers

A pointer ptr = (bid, o↵, attrs) is encoded as a single bit-vector consisting in

the concatenation of the three elements. The offset is interpreted as a signed

number (which is why blocks cannot be larger than half of the address space).

Each attribute (such as readonly) is encoded with a bit. Example with 2-bit

143

block ids and offsets, and a single attribute (we use . to visually separate the

elements):

void f(char readonly *p, char *q) { // p = 0x.ab.1, q = 0y.cd.0
char *r = p + 2; // r = 0x.(ab+2).1
char *s = q + 3; // s = 0y.(cd+3).0
char *t = malloc(4); // t = 10.00.0

}

Let fo↵ be a truncated offset where the least significant bits corresponding to

the greatest common divisor of the alignment and sizes of all memory operations

are removed. For example, if all operations are 4-byte aligned and they access

either 4- or 8-byte values, then fo↵ has less 2 bits than o↵ (as these are guaranteed

to be always zero when accessing the memory).

5.3.3 Block Properties

Each block has seven associated properties: size, alignment, read-only, liveness,

allocation type (heap, stack, global), physical address, and value. Block properties

are looked up and updated by memory operations. For example, when doing a

store, we need to check if the access is within the bounds of the block.

Except for liveness and value, properties are fixed at allocation time. Liveness

is encoded with a bit-vector (one bit per block), and value with arrays (indexed

on fo↵). We use a multi-memory encoding, where we have one array per bid.

The encoding of fixed properties differs for local and non-local blocks. For

non-local blocks, we use a UF symbol per property, taking fbid as argument. For

local blocks, we cannot use UFs because for the refinement check some of these

would have to be quantified (c.f. Section 5.6) and most, if not all, SMT solvers

do not support quantification of UF symbols. Therefore, we encode each of the

remaining properties of local blocks as an if-then-else (ITE) expression, which

is tailored for each use (e.g., each time an operation needs to lookup a local

block’s size, we build an ITE expression for the given fbid).

144

Using ITE expressions to encode properties is less concise than using UFs.

However, it is not a disaster for two reasons. Firstly, we only need to consider the

local blocks that have been allocated beforehand, since the program cannot access

blocks allocated afterward. Secondly, pointers are usually not fully arbitrary.

Oftentimes we know statically which type of block they refer to, and even what

is the block id, given that pointer arithmetic operations do not change the block

id. Therefore, the ITE expressions are usually small in practice. Example with

4-bit block ids and offsets of a source program:

int g; // g = 0001.0000, size_src(001) = 4
void f() {

char p[2]; // p = 1000.0000
char q[3]; // q = 1001.0000
char *r = ... p or q or g ...
r[2] = 0;
char t[1]; // t = 1010.0000

}

The store in this program is only well defined if the size of block pointed by

r is greater than 2. This is encoded in SMT as follows:

ite(islocal(r), ite(gbid(r) = 0, 2, 3), sizesrc(gbid(r)) > 2)

Function islocal(p) is encoded with the SMT extract expression to fetch the

MSB of the pointer. Similarly, gbid(p) extracts the relevant bits from a pointer.

The expression for local blocks only needs to consider local blocks 0 and 1, since

block 2 (t) is only allocated afterward. This allows a simple single pass through

the code to generate optimized ITE expressions.

Value

Value is defined as an array from short offset to byte (described later in Sec-

tion 5.5.1). For non-local blocks, only those that are constant are initialized

with the respective value. The remaining blocks are allowed to take almost any

145

value. The exception is for pointers: non-local blocks cannot initially have local

pointers stored, since the calling environment cannot fabricate local pointers.

Local blocks are initialized with poison values using a constant array (i.e.,

an array that yields the same value for all indexes).

5.3.4 Physical Addresses

If a program observes addresses (through, e.g., pointer-to-integer casting or

pointer comparison3), we need additional constraints to ensure that addresses of

blocks that overlap in time are disjoint. Since we are doing translation validation,

we have two programs with potentially different sets of locally allocated blocks.

Therefore, we need to ensure that non-local blocks’ addresses are disjoint from

those of local blocks of both programs. This makes the disjointness constraints

quite complex.

As an optimization, we split the address space in two: local blocks have

MSB=1 and non-locals have MSB=0. Since the encoding of address disjointness

is quadratic in the worst case (cross-product of blocks), halving the number of

blocks is significant. This optimization, however, is an under-approximation of

the program’s behavior (Section 5.8). After investigating LLVM’s optimizations,

we believe it is highly unlikely this approximation will cause false negatives.

If a program does not observe any pointer’s physical address, neither the

block’s physical address property nor the disjointness axioms are instantiated.

However, when dereferencing a pointer, we need to check if the physical

address is sufficiently aligned. When physical addresses are not created, we

resort to checking alignment of both of the pointer’s block and offset. Since in

this case physical addresses are not observed (and therefore not constrained

by the program using, e.g., pointer comparisons), a block’s physical address
3
We decided to implement the integer comparison semantics. Section 4.3.6 explains the

details about pros and cons of two pointer comparison definitions.

146

can take any value, and therefore blocks and offsets must be both sufficiently

aligned to ensure that physical pointers are aligned in all program executions.

This argument justifies why we can soundly discard physical addresses.

5.3.5 Bounding the Maximum Number of Blocks

Since we assume that programs do not have loops, we can statically bound the

maximum number of both local and non-local blocks a program may observe.

The maximum number of local blocks in the source and target programs,

respectively, N src
local and N

tgt
local, is computed by counting the number of heap and

stack allocation instructions. Note that this is an upper-bound because not all

allocation sites may be reachable in practice.

For non-local blocks, we cannot see their definitions as with local blocks,

except for global variables. Nevertheless, we can still bound the maximum

number of observed blocks. It is sufficient to count the number of instructions

that may return non-local pointers, such as function calls and pointer loads.

In addition, we consider a null block when needed (if the null pointer may be

observed).

To encode the behavior of source and target programs, we need N
src
nonlocal +

N
tgt
nonlocal non-local blocks in the worst case, as all referenced pointers may be

distinct. However, correct transformations will not have the target program

observe more blocks than the source. If the target observes a pointer to a

non-local block that was not observed in the source, we can set that pointer to

poison because its value is not restricted by the source. Therefore, N src
nonlocal

non-local blocks are sufficient to allow the target to exhibit an incorrect behavior.

The bit-width of fbid is: wfbid = dlog2(max(N
src
nonlocal,max(N

src
local, N

tgt
local)))e.

When only local or non-local pointers are used, wbid = wfbid, as we know statically

if the pointer is local or not. Otherwise, wbid = wfbid + 1.

147

5.3.6 Function Attributes

LLVM’s function attributes constrain the pre/postcondition of a function. For

example, if a pointer argument is marked as readonly, the function should

not write any byte via that pointer (triggers UB otherwise). We implemented

the most common memory-related attributes: nonnull, dereferenceable(n),

byval, readonly, readnone, nocapture, and nofree.

5.3.7 C Library Functions

We encoded a few commonly used library functions that LLVM recognizes and

optimizes, including memcpy, memset, memcmp, and strlen. The semantics

of these is not specified in the LLVM manual, so we created a reasonable semantics

from the C99 standard and tested the semantics against LLVM’s implementation.

LLVM unrolls small memcmp (and bcmp) into a sequence of integer loads

and comparisons. To explain this transformation, we set the result to poison if

any of the loaded bytes is poison (as opposed to, e.g., UB). On the other hand,

we defined strlen to raise UB on poison bytes and it did not cause any failure

(note that raising UB rather than returning poison leads to a more efficient

encoding in SMT).

Encoding the exact semantics of these library functions in SMT requires the

use of quantifiers. For example, n = strlen(p) should constrain n so that all

bytes between p and p+ n are non-zero. To avoid an introduction of quantifiers,

we approximated these functions by unrolling them a constant number of times,

except for memcpy and memset where we use lambdas.

5.4 Memory Allocation

In LLVM, memory blocks can be allocated on the stack (alloca), in the heap

(e.g., malloc, calloc, etc), or as global variables. It is surprisingly non-trivial to

148

find a semantics for memory allocations that allows all of LLVM’s optimizations,

and rejects undesired transformations. For example, we have to support alloca-

tion removal and splitting, introduce new stack allocations and new constant

global variables, etc. We explore multiple semantics and show their merits and

shortcomings in the context of proving correctness of program transformations.

5.4.1 Heap Allocation

Heap allocation is done through functions such as malloc, calloc, C++’s new

operator, etc. We describe semantics for malloc; remaining functions can be

described in terms of it.

First of all, it is important to note that there are two common idioms used

in practice by C programmers when doing memory allocation:

int *p = malloc(4);
*p = 0;

int *p = malloc(4);
if (p) { *p = 0; }

In some programs, like the example on the left, malloc is assumed to never

return null, say non-null assumption. This is mainly because the program does

not consume too much memory and it is expected that the computer has enough

memory/swap space. In other programs like the one on the right, malloc is

expected to sometimes return null, say may-null assumption. Therefore, the

program performs null-ness checks.

Since both programming styles are prevalent, we would like optimizations to

be correct for both. This is non-trivial, as the two assumptions are conflicting:

with the non-null assumption, it is sound to eliminate null checks, but not with

the may-null assumption. We now explore several possible semantics to find one

that works for both programming styles.

149

A. Malloc always succeeds. Based on the non-null assumption, in this

semantics we only consider executions where there is enough space for all

allocations to succeed. Regardless of whether the target uses more or less

memory than the source, all calls to malloc yield non-null pointers. Therefore,

for example, deleting unused malloc calls is allowed.

However, removing null checks of malloc is also allowed in this semantics.

For example, optimizing the right example above into the left one is sound. This

transformation, however, is obviously undesirable.

B. Malloc only succeeds if there is enough free space. To solve the

problem just described, based on the may-null assumption, we can simulate the

behavior of dynamic memory allocation and define malloc to return a pointer to

a newly created block if there is an empty space in memory, and null otherwise.

This semantics prevents the removal of null checks of malloc as it may return

null.

However, this semantics does not explain removal of unused allocations.

It aligns both source and target programs’ allocations such that any change

in the allocation sequence disrupts the program alignment and thus makes

verification fail. For example, the following transformation removing unused

malloc instructions and replacing comparisons of their output with null is not

supported:

int *x = malloc(4);
if (x != nullptr) { ... }

) // remove x (unused)
if (true) { ... }

In case there were 0 bytes left in memory, x would be null, but since LLVM

assumes that the program cannot observe the state of the allocator it folds

the comparison x != nullptr to true after eliminating the allocation. This

optimization would be flagged as incorrect in this semantics.

150

LLVM assumes very little about the run-time behavior of memory allocators.

This is to support, for instance, garbage collectors, where an allocation may fail

but if repeated it may succeed because memory was reclaimed in between. This

explains why LLVM folds comparisons with null of unused memory blocks, and

also contradicts the linear view of allocations of this semantics.

C. Malloc non-deterministically returns null. This semantics abstracts

the behavior of the memory allocator by (1) allowing malloc to non-deterministically

return null even if there is available space, and (2) only considering executions

where there is enough space for all allocations to succeed. This semantics pre-

vents the removal of null checks of malloc, which fixes the shortcomings of

semantics A, and also allows the removal of unused allocations, which fixes those

of semantics B. However, this semantics is too weak and therefore allows other

undesirable transformations, like the following:

p = malloc(4);
*p = 0;

) exit();

For the sake of proving refinement (Section 5.6), we need just one trace

triggering UB (i.e., one particular realization of the non-deterministic choices)

for a given input to be able to transform the source program into anything

for that input. Informally speaking, refinement always picks the worst-case

execution for each input. Since the source program executes UB when p is null,

it is correct to transform the source into any program although that is obviously

undesirable.

This semantics is too weak in practice since many programs are written

without null checks, either assuming the program will not run out of memory, or

assuming the program will terminate if it runs out memory. It is not reasonable

in practice to allow compilers to break all such programs.

151

Our solution. As we have seen, there is no single semantics that both allows all

desired transformations and rejects undesired ones. While semantics B prevents

desired optimizations like allocation removal, semantics A and C allow undesired

optimizations, but in a complementary way. For example, removing null checks of

malloc is allowed in A but not in C. On the other hand, transforming an access

of a malloc-allocated block without a null check beforehand into arbitrary code

is allowed in C but not in A.

Therefore, we obtain a good semantics by requiring both A and C: an

optimization is correct if it passes the refinement criteria with each of the two

semantics. Intuitively, this definition requires the compiler to support the two

considered coding styles: semantics A supports the non-null assumption, while

semantics C the may-null assumption.

5.4.2 Stack Allocation

The semantics of alloca, the stack-allocation instruction, is slightly different

from that of malloc. LLVM assumes that stack allocations always succeed, since

the program will likely crash if there is a stack overflow. That is, alloca never

returns a null pointer.

LLVM performs more optimizations on stack allocations than on heap ones.

For example, LLVM can split an allocation into multiple smaller ones or increase

the alignment. These transformations can increase memory consumption.

5.5 Encoding Loads and Stores in SMT

We encode the value of memory blocks with several arrays (one per bid): from

short offset to byte. We next give the definition of byte and the encoding of

memory accessing instructions in SMT.

152

Pointer representation Byte o↵set1 p?

0 Integral valuePoison bits Padding

Pointer byte:

Non-pointer byte:

MSB LSB

Figure 5.4: Bit-wise representation of a byte. A pointer byte is poison if ‘p?’ is
zero. A non-pointer byte tracks poison bit-wise.

5.5.1 Byte

There are two types of bytes: pointer bytes and non-pointer bytes, cf. Fig. 5.4.

A pointer byte has the most significant bit (MSB) set to one. The following

bit states whether the byte is poison or not. Next is the pointer representation

as described in Section 5.3.2 (bid, o↵, attrs).

Pointers are often longer than one byte, so when storing a pointer to memory

we write multiple consecutive bytes. Each of these bytes records the same pointer,

but with a different byte offset (the last bits of the byte) to distinguish between

the partial bytes of the pointer.

For non-pointer bytes, we track whether each of the bits is poison or not.

This is not required for pointers, since LLVM does not allow pointer values to

be manipulated bit-wise. Non-pointer values can be manipulated bit-wise (e.g.,

using vectors with element types smaller than 8 bits). Each bit of the integral

value is only significant if the corresponding poison bit is zero.

5.5.2 Load and Store Instructions

Load and store instructions are trivially encoded using SMT arrays. These arrays

store bytes as described in the previous section. We next describe how LLVM

values are encoded to and decoded from our byte representation.

We define two functions, ty#(v) and ty"(b), which convert a value v into a

byte array and a byte array b back to value, respectively. We show below ty#(v)

when v 6= poison. isz stands for the integer type with bit-width sz. If sz is not

153

a multiple of 8 bits, v is zero-extended first. When v is poison, all poison bits

are set to one. BitVec(n, b) stands for number n with bit-width b. Pointer’s byte

offset is 3 bits because we assume 64-bit pointers.

isz#(v) or float#(v) = �i. 0++0
8
++bitrepr(v)[8⇥i . . . 8⇥(i+ 1)� 1]++padding

ty⇤#(v) = �i. 1
2
++bitrepr(v)++BitVec(i, 3)

isz"(b) and float"(b) return poison if any bit is poison, or if any of the

bytes is a pointer. Otherwise, these functions return the concatenation of the

integral values of the bytes.

ty⇤"(b) returns poison if any of the bytes is poison or not a pointer, there

is more than one distinct pointer value in b, or one of the bytes has an incorrect

byte offset (they have to be consecutive, from zero to byte size minus one).

An exception is reading a non-pointer zero byte, which is interpreted as a null

pointer byte. This allows initialization of, e.g., arrays with null pointers with

memset (which is an idiom commonly used in LLVM IR).

Instructions memset and memcpy are encoded using lambdas.

5.5.3 Multi-Array Memory

As already described, we use a multi-array encoding for memory, with one array

per block id, each indexed on fo↵. A simpler encoding would have used a single

array indexed on ptr. The multi-array encoding is beneficial when we can cheaply

compute small aliasing sets for each memory access. In that case, we reduce

the case-splitting work on bid that the SMT solver needs to do, and it enables

further formula simplifications like store forwarding.

The multi-array encoding may, however, end up in a larger encoding overall if

several of the accesses may alias with too many blocks. For load operations that

alias multiple blocks the resulting expression is a linear combination of the loads

154

of each block, e.g., ite(bid = 0, load(m0,
fo↵), ite(bid = 1, load(m1,

fo↵), . . .)). In

this case, it would be more compact to use the single-array encoding. Note

that even if we do not know the specific block id, we often know whether a

pointer refers to a local or non-local block (e.g., pointers received as argument

have unknown block id, but are known to be non-local), and hence splitting the

memory in two is usually a good idea (c.f. Section 5.9).

We perform several optimizations that are enabled with this multi-array

encoding. We do partial-order reduction (POR) to shrink the potential aliasing

of pointers with unknown block id. For example, consider a function with two

pointer arguments (x and y) and one global variable. We assign bid = 1 to the

global variable. Then, we estipulate that x can only alias blocks with bid 2,

which is sufficient to access the global variable or another unknown block.

Argument y is also constrained to only alias blocks with bid 3, allowing it

to alias with the global variable, the same block as x, or a different block. The

same is done for function calls that return pointers. This POR technique greatly

reduces the potential aliasing of unknown pointers without losing precision.

5.6 Verifying Correctness of Optimizations

To verify correctness of LLVM optimizations, we establish a refinement relation

between source (original) and target (optimized) code. We cannot simply check

for equivalence because UB-related transformations are ubiquitous.

Given functions fsrc and ftgt, a set of input and output variables Isrc/Itgt

and O (which include, e.g., memory, side effects, and the return value), a set of

non-determinism variables Nsrc/Ntgt, fsrc is refined by ftgt iff:

8Isrc, Itgt, O . (Isrc w Itgt ^ 9Ntgt . ftgt(Itgt, Ntgt, O)) =)
(9Nsrc . fsrc(Isrc, Nsrc, O))

155

In other words, for any fixed input Isrc, if the target function ftgt produces a

given output O with some internal non-determinism Ntgt and refined input Itgt

(equal to or more defined than Isrc), the source function must produce the same

output for some internal non-determinism Nsrc. Therefore, the target function

is allowed to remove non-determinism so it generates fewer outputs for a given

input, but not the other way around.

We only support intraprocedural optimizations, and therefore checking

refinement of each function individually is sufficient to establish refinement of

an entire program. The definition above ensures compositionality: if a function’s

inputs are refined, so are the outputs. This definition is assumed at call sites, and

established for each function, justifying why checking each function individually

is sufficient.

In LLVM, loops tagged with the mustprogress attribute must either ter-

minate or perform externally observable actions infinitely often. The function

triggers UB otherwise. Therefore, every function in LLVM with only such loops

terminates, perhaps triggering UB. In practice, the compiler can only prove

non-termination of simple cases and therefore we only need to support those.

Moreover, given that we do bounded translation validation, we do not support

non-terminating loops without the mustprogress attribute.

5.6.1 Refinement of Program State

We start by defining refinement between values. A value v is refined by another

value v
0 if v0 is equivalent to or more defined than v. Fig. 5.6 gives rules for the

definition.

For integer and floating-point numbers, refinement holds between two equal

numbers (element-nonptr). For pointers, we cannot simply use equality

because local pointers (such as pointers to stack-allocated memory blocks) in

156

Num(sz) : : = {i | 0 i<2
sz} BlockID : := N Addr : : = Num(64) O↵set : : = Num(64)

PtrAttr : : = {nocapture, readonly, readnone}
Pointer : : = BlockID⇥O↵set⇥2

PtrAttr
DefinedValue : : = Int] Pointer] Float

Value : : = Aggregate] Int] Pointer] Float] {poison} Aggregate : : = list Value

PtrByte : : = (Pointer⇥{i | 0 i<8})] {poison} NonPtrByte : : = Num(8)⇥Num(8)

Byte : : = PtrByte]NonPtrByte Bytes : : = O↵set!Byte Size : : = Num(64)

Align : : = {i | 0 i<64} Kind : := {stack, malloc, new, global} Live : : = bool

Writable : : = bool MemBlock : : = Addr⇥Align⇥Kind⇥Live⇥Writable⇥Size⇥Bytes

Memory : := BlockID!MemBlock UB ::= bool

ValueNoRet : : = Value] { noreturn } FinalState : : = ValueNoRet⇥Memory⇥UB

p 2 Pointer ag 2 Aggregate ⌫ 2 DefinedValue v 2 Value r 2 ValueNoRet

pb 2 PtrByte nb 2 NonPtrByte b 2 Byte mb 2 MemBlock

M 2 Memory ub 2 UB µ 2 BlockID 7!BlockID

Figure 5.5: Type Definitions and Variable Naming Conventions. P is the power
set operation.

element-nonptr
⌫ 2 Int] Float

poison wµ
e ⌫

element-ptr
⌫, ⌫

0 2 Pointer ⌫ wµ
ptr ⌫

0

⌫ wµ
e ⌫

0

value-poison
v 2 Value

poison wµ
v

value-undef
v, v

0 2 P(DefinedValue)

8⌫0 2 v
0
. 9⌫ 2 v . ⌫ wµ

e ⌫
0

v wµ
v
0

value-aggregate
v, v

0 2 Aggregate

|v| = |v0| 8i . v[i] wµ
v
0
[i]

v wµ
v
0

final-state-ub
r, r

0 2 ValueNoRet

M,M
0 2 Memory

ub
0 2 UB

hr,M, truei wst hr0,M 0
, ub

0i

final-state-noret
r = noreturn

M,M
0 2 Memory

ub = false

hr,M, ubi wst hr,M 0
, ubi

final-state
r, r

0 2 Value

M,M
0 2 Memory

9µ, r wµ
r
0 ^M wµ

mem M
0

hr,M, falsei wst hr0,M 0
, falsei

Figure 5.6: Refinement of value and final state.

source and target are internal to each of the functions. Even if they have the

same block identifier, they may refer to different allocation sites in the functions

(element-ptr). Similarly, the refinement of the final state should consider

this difference between local pointers. To address this, we track a mapping µ

between escaped local blocks of the two functions, which will be described in

157

Section 5.6.3.

poison is refined by any value (value-poison). A (partially) undef value is

refined by another undef value that is equally or more defined (value-undef).

Aggregate values are compared element-wise (value-aggregate).

Next, we define refinement between final states. Fig. 5.5 shows the definition

of final program state which is a tuple of return value, return memory, and UB.

A memory is a function from block id to a memory block. A memory block has

seven attributes that are described in Section 5.3.3. A final state is defined as

a tuple hr,M, ubi, where r is the return value, M the memory at the return

site, and ub a Boolean flag indicating whether the function triggered UB before

returning. A memory M is refined by M
0, M wµ

mem M
0, if refinement holds

between blocks in M and M
0 (value and remaining attributes) with respect

to mapping µ. A final state s is refined by s
0, or s wst s

0, if (1) s is undefined

(final-state-ub), (2) both s and s
0 never return, or (3) refinement between

their respective return values and memories holds with respect to some mapping

µ (final-state).

Using wst, we define correctness of an optimization as follows. If functions

fsrc and ftgt are deterministic, fsrc is refined by ftgt if:

8Isrc, Itgt . Isrc w Itgt ^ valid(Isrc, Itgt) =)

JfsrcK(Isrc) wst JftgtK(Itgt)

The valid predicate encodes the global precondition. For example, it states that

global variables should be assigned non-null and disjoint addresses. JfK(I) is the

final state after executing function f with input I.

5.6.2 Nondeterministic Execution

The previous definition of correctness does not take non-determinism, such

as undef values and freeze instructions, into account. Let Nsrc and Ntgt be

158

the set of variables used to encode non-determinism in functions fsrc and ftgt,

respectively. We extend the previous definition of refinement to support non-

determinism as follows:

8Isrc, Itgt, Otgt . Isrc w Itgt ^ valid(Isrc, Itgt) ^

(9Ntgt . pretgt(Itgt, Ntgt) ^ JftgtK(Itgt, Ntgt) = Otgt)

=) (9Nsrc . presrc(Isrc, Nsrc) ^ JfsrcK(Isrc, Nsrc) wst Otgt)

Predicate pre represents the precondition of a function, which is used to

constrain the non-determinism and the inputs a function can take. For example,

in LLVM a function’s argument can be marked as non-null. Constraints like this

are added to pre.

Sometimes the precondition for the source function does not hold for a

particular input Isrc for any non-determinism but it may hold for the target

function. For example, LLVM is allowed to remove the non-null attribute of

a function’s argument. The formula above fails in that case, since then presrc

makes the right-hand side of the implication become false. To support such

cases, we extend the previous refinement condition to arrive at the final version

that Alive2 actually uses4:

8Isrc, Itgt, Otgt . valid(Isrc, Itgt) ^
�
9Nsrc, Ntgt . presrc(Isrc, Nsrc) ^ pretgt(Itgt, Ntgt) ^

JftgtK(Itgt, Ntgt) = Otgt
�

=) (9Nsrc . presrc(Isrc, Nsrc) ^ JfsrcK(Isrc, Nsrc) wst Otgt)

5.6.3 Refinement of Memory

Checking refinement of non-local memory blocks is simple as blocks are the

same in the source and target functions (e.g., global variables have the same
4
It is an open question whether this definition satisfies transitivity. We leave this question

to people who are interested in implementing formally verified validators.

159

(pointer)
p.block.live) p

0
.block.live

p.o↵set = p
0
.o↵set

(isNonLocal({p, p0}) ^ p.block.id = p
0
.block.id)

_ (isLocal({p, p0}) ^ p.block.id = µ[p
0
.block.id])

�

p wµ
ptr p

0

(memory-map)
8bid, isNonLocal(bid)
=) M [bid] wµ

blk M
0
[bid]

�

8bid, isLocal(bid) ^ µ[bid] defined

=) M [µ[bid]] wµ
blk M

0
[bid]

�

M wµ
mem M

0

(byte-ptr)
pb.byteo↵ = pb

0
.byteo↵

pb.ptr wµ
ptr pb

0
.ptr

pb wµ
byte pb

0

(byte-nonptr)
nb

0
.p | nb.p = nb.p

nb.v | nb.p = nb
0
.v | nb.p

nb wµ
byte nb

0

(byte-zero)
isZeroByte(b)

isZeroByte(b
0
)

b wµ
byte b

0

(byte-poison)

isPoisonByte(b)

b wµ
byte b

0

(bytes)

8 0 i < mb.size,

mb.bytes[i] wµ
byte mb

0
.bytes[i]

�

mb wµ
bytes mb

0

(block)
mb.live) mb

0
.live mb.size = mb

0
.size

mb.kind = mb
0
.kind mb.writable = mb

0
.writable

mb.align mb
0
.align mb.live) mb wµ

bytes mb
0

mb wµ
blk mb

0

Figure 5.7: Refinement of memory and pointers.

ids in the two functions). Therefore, one just needs to compare blocks of source

and target functions with the same id pairwise.

Checking refinement of local blocks is harder but needed when, e.g., the

function returns a locally-allocated heap block. This is legal, but block ids in the

two functions may not be equal as allocations may have happened in a different

order. Therefore, we cannot simply compare local blocks with the same ids.

To check refinement of local blocks, we need to align the two functions’

allocations, i.e., we need to find a correspondence between local blocks of the

two functions. We introduce a mapping µ 2 BlockID 7! BlockID between target

and source local block ids.

Local blocks become related on function calls and return statements, which

is when local pointers may be observed. For example, if a function is called with

a pointer to a local block as the first argument, µ should relate that pointer

160

with the first argument of an equivalent function call in the target function.

Fig. 5.7 gives the definition of memory refinement, M wµ
mem M

0, as well

as other related relations between memory blocks and pointers. The first rule

pointer describes refinement between source pointer p and target pointer p
0

with respect to µ. The following four rules define refinement between bytes

b and b
0. In rule byte-nonptr, ‘a | b’ is the bitwise OR operation, and it is

used to check the equality of only those bits that are not poison. Predicate

isZeroByte(b) holds if b is a null pointer or if it is a zero-valued non-pointer byte.

This is needed because stores of null pointers can be optimized to memset

instructions.

Rules bytes and block define refinement between memory blocks’ values

and memory blocks, respectively. Rule memory-map describes memory refine-

ment with respect to local block mapping µ. M [bid] stands for the memory

block with block id bid.

The well-formedness of µ is established in the refinement rules for function

calls and return statements. We show these for function calls in Section 5.7. We

note that there might be multiple well-formed µ due to non-determinism. As an

optimization, we track the memory locations that may contain escaped pointers

throughout the function such that we can focus only on those locations when

searching for escaped blocks to be related.

5.6.4 SMT Encoding

To check refinement using an SMT solver, the last formula from the previous

subsection is negated and the SMT solver is asked to prove unsatisfiability.

Rather than running a monolithic query, we check refinement as a sequence

of simpler queries; this helps provide detailed error messages to users and also

reduces the burden on the solver. We check if:

161

call
args, args

0 2 list Value (Mo, vo, ubo) = call(fn, args, M)

M,M
0 2 Memory (M

0
o, v

0
o, ubo0) = call(fn, args

0
, M

0
)

M wµ
mem M

0 8i . args[i] wµ
arg args

0
[i]

µout = extend(µ,M,M
0
, args, args

0
)

Mo wµout
mem M

0
o ^ vo wµout v

0
o ^ (ub

0
o =) ubo)

Figure 5.8: Refinement between the inputs and outputs of two function calls.
Fig. 5.9 shows the definition of args[i] wµ

arg args
0
[i] which is refinement between

function call arguments in source and target programs. Section 5.7.3 shows the
definition of extend().

1. Any of the preconditions is always false; this can happen because of bugs or
limitations in the encoding.

2. The target triggers UB only when the source does.

3. The return domain of the target is equal to that of the source, except for when
the source triggers UB.

4. The return value of the target is poison only when the source’s return value is
poison.

5. The return value of the target is undef only when the source’s return value is
undef or poison.

6. The return value of the source and target are equal when the source value is
neither undef nor poison.

7. Finally, if memory is refined.

5.7 Function Calls

A call to an unknown function may change the memory in an arbitrary way.

We model the semantics of call instructions as a pure function that takes its

arguments as well as the current memory as inputs, and returns a value and a

fresh memory. Let (Mo, vo, ubo) = call(f, args, M) denote a call.

5.7.1 Relating Two Function Calls

When considering multiple calls to the same function, we may need to relate the

impact each has on the program state. For the purpose of refinement checking,

162

there are three cases to consider: (1) two calls in source, (2) two calls in target,

(3) a call in source and another in target.

For the first case, we consider all pairs of calls in the source to a same

function and constrain their behavior such that their outputs are refined if the

inputs are refined (c.f. Fig. 5.8). We need to consider this case because LLVM

has an optimization that removes duplicated calls. For example, if a function

is known to not read or write to memory and it is called twice with the same

arguments and one call dominates the other, LLVM removes the dominated call.

In practice, LLVM’s optimizer only de-duplicates calls with equal inputs (rather

than refined), so similarly we make the condition for input refinement stronger

(for performance reasons) without introducing false alarms.

Relating two calls in the target is not necessary: these calls must already

exist in source (with potentially less defined inputs) and therefore they are

already appropriately related, or else refinement does not hold as it is illegal to

introduce new function calls. Relating calls in source and target is similar to

the first case, but we need to use the full refinement rule as shown in Fig. 5.8.

5.7.2 SMT Encoding

Each call in the source function gets a fresh variable for each of its outputs

(memory, return value, and UB flag). Calls in the target are encoded differently,

as these must refine at least one of the source’s calls since no new calls can be

introduced.

Focusing just on poison, a value v is refined by v
0 iff v is poison or v = v

0.

Same reasoning applies for undef . Therefore, we consider the two parts of the

encoding differently: (1) the poison flag, and (2) the value (only meaningful

when the poison flag is false). For the poison flag, we introduce a fresh variable

for each call in the target. For the value part, we have to pick one of the source

163

(nonptr
-arg)
v, v

0
/2

Pointer

�

v wµ
v
0

v wµ,sz
arg v

0

(ptr
-arg
-mapped)

p wµ
ptr p

0

p wµ,sz
arg p

0

(ptr-arg-unmapped)

isLocal({p, p0})
p.o↵set = p

0
.o↵set

M [p.bid] wµ
blk M

0
[p

0
.bid]

p wµ,sz
arg p

0

(ptr-arg-byval)
sz > 0 o = p.o↵set o

0
= p

0
.o↵set

mb = M [p.bid] mb
0
= M

0
[p

0
.bid]

80 i < sz,

mb.bytes[o+i] wµ
bytemb

0
.bytes[o

0
+i]

�

p wµ,sz
arg p

0

Figure 5.9: Refinement between function arguments.

call’s values or use a fresh one in case the source’s value is poison.

Given that the non-deterministic variables of source and target are bound

to different quantifiers in the refinement query, it is not trivial to encode the

value part. Let Cf
src be the set of calls to function f in the source. We introduce

a fresh variable i such that 0 i |Cf
src|. Then, in the precondition, we encode

that i = j holds iff the jth call in |Cf
src| is refined by the target’s call, except

for i = |Cf
src| that holds iff no source’s call is refined. The target’s value is

encoded with an ite expression that ranges over i and yields the corresponding

source’s value. The target triggers UB if i = |Cf
src|, i.e., when the call does not

correspond to any of the source’s.

A limitation of our current implementation is that local variables are never

modified by function calls even if their address has escaped.

5.7.3 Encoding Memory Updates

A call to an unknown function may change the memory arbitrarily (except for,

e.g., constant variables and non-escaped local blocks). The outputs in the source

and target are, however, related: if the target’s inputs refine those of the source,

refinement holds between their outputs as well.

Let (Min, vin) and (Mout, vout) be the input and output of a function call

in the source, and their primed versions, (M 0
in, v

0
in) and (M

0
out, v

0
out), those of a

function call in the target. Let µin be a local block mapping before executing

164

the calls. To state that the outputs are refined if the inputs are refined, we add

the following formula to the target’s precondition:

⇣
Min wµin

mem M
0
in ^ 8i . vin[i] wµin,sz[i]

arg v
0
in[i]

⌘
=)

�
Mout wµout

mem M
0
out ^ vout wµout v

0
out

�

A call to a function with a pointer to a local block as argument escapes this

block, as the callee may, e.g., store that pointer to a global variable. Moreover,

any pointer stored in this block also escapes as the callee may traverse the block

and grab any pointer stored there, and do so transitively. The updated mapping

µout = extend(µin,Min,M
0
in, vin, v

0
in) returns µin updated with the relationship

between the newly escaped blocks in source and target functions. These can

come either from the arguments or from the memory as the caller may have

previously stored addresses of local blocks in non-local blocks or in escaped local

blocks. As an optimization, we keep track of blocks that may be escaped on

each store instruction to shrink the initial set of locations we need to search for

escaped blocks.

Fig. 5.9 shows the definition of refinement between function call arguments

in source and target programs. The first rule relates non-pointer arguments.

The second one handles pointers that have escaped before these calls. The third

rule handles local pointers of blocks that did not escape before these calls, and

therefore we need to check if the contents of these block are refined.

The fourth refinement rule handles byval pointer arguments. These argu-

ments get a freshly allocated block and the contents of the pointer are copied

from the pointer’s offset onwards.

5.7.4 Optimizations

The number of function call pairs that may need to be related grows quadratically

with the number of calls to the same function. We use a dataflow analysis to

165

cheaply prune call pairs that definitely do not have their inputs refined. For

each call, we compute (in a path-sensitive way) the min/max number of calls

of each function that were made in all preceding paths. Then we only consider

call pairs with overlapping ranges. If ranges do not overlap, one of the calls

must have had at least one more call beforehand which could have changed the

memory that is read by the function under consideration. Therefore, this is a

sound over-approximation of possibly-related call pairs.

5.8 Approximating Program Behavior

In order to speedup verification, we approximate programs’ behaviors, which

can result in false negatives. We believe none of these approximations has a

significant impact because we do not consider the compiler to be malicious

(which may not be true in certain contexts).

1. Physical addresses of local memory blocks have the MSB set to 1, and

non-locals set to 0. This is reasonable if we assume the compiler is not

malicious and therefore will not exploit our approximation.

2. We do not consider the case where a (portion of a) global variable is

initially undef , only poison or a regular value.

3. Library functions strlen, memcmp, and bcmp are unrolled for a constant

number of times. A precondition is added to constrain the input to be

smaller than the unroll factor. In the case of strlen, the input pointer is

often a constant array. We compute the result straight away in this case.

5.9 Implementation and Evaluation

This section describes the implementation of Alive2, and evaluates its utility

and its impact on the LLVM compiler and community.

166

5.9.1 Implementation

Alive2 consists in about 23,000 lines of C++ and uses Z3 [106] for SMT solving.

Besides its own source code, the trusted computing base for Alive2 includes Z3

and functionality from LLVM for parsing binary and textual LLVM IR into an

in-memory representation. Because a premise of our project is that we do not

trust LLVM to be correct, Alive2 does not rely on code from LLVM to perform

tasks such as computing points-to sets or dominator trees.

Tools Alive2 includes multiple tools for different use cases:

• A plugin for clang (LLVM’s C/C++ frontend) that validates all optimiza-

tions performed by LLVM.

• A plugin for opt (LLVM’s standalone optimization tool). We add a -tv

argument so the user can choose after which optimizations Alive2 should

run (to support batching), e.g., opt -tv -sroa -instcombine -tv -gvn

-tv file.ll.

• alive-tv, a standalone tool that takes two LLVM IR files and checks

refinement between each function present in the two files.

• A pair of compiler drivers, alivecc and alive++, that respectively invoke

clang and clang++ with options that cause our translation validation

plugin to be loaded, and then to validate every intra-procedural IR-level

transformation that the compiler performs.

Our LLVM plugins implement a trivial (but effective) additional optimization

beyond those described earlier in this chapter, which is to avoid running Alive2

at all when an LLVM pass does not make any changes.

167

5.9.2 Translation Validation of LLVM’s Unit Tests

As of version 11, the LLVM test suite contains around 168,000 functions in

LLVM IR that are variously optimized, analyzed, and compiled to machine code

during testing. About 36,000 of these functions test IR-level transformations

and this subset has been the focus of our translation validation efforts.

LLVM’s Unit Test Framework This is a typical test case:

; RUN: opt < %s -instsimplify -S | FileCheck %s

define i1 @max1(i32 %x, i32 %y) {
; CHECK-LABEL: @max1(
; CHECK: ret i1 false
;

%c = icmp sgt i32 %x, %y
%m = select i1 %c, i32 %x, i32 %y
%r = icmp slt i32 %m, %x
ret i1 %r

}

It ensures that the instruction simplifier—a collection of peephole optimizations—

can recognize that the maximum of two integer values cannot be smaller than

the first of those values. The first line specifies that the opt tool should run the

instruction simplifier and pipe its output through the FileCheck tool, which

fails the test unless the function is optimized to return false.

To run one or more of these test cases through Alive2, we ask lit, the LLVM

unit test runner, to call a program that we wrote, instead of calling opt. This

program runs opt with our plugin and skips unsupported transformations (e.g.,

inter-procedural optimizations). Our plugin then works in three stages. First, it

translates the original LLVM IR into Alive2 IR and stores it in memory. Second,

it runs the specified (unmodified) LLVM transformations (managed by LLVM’s

pass manager itself). Finally, it translates the optimized LLVM code into Alive2

168

IR and checks if it refines the original IR that was saved earlier. Thus, the LLVM

unit tests can be run seamlessly through Alive2.

Results We detected 121 violations of refinement in the unit tests:

• 43 optimizations that are incorrect when undef is given as input or constant

• 18 optimizations that introduce a branch on undef or poison, which is UB

• 9 bugs due to the mishandling of vector operations

• 5 UB-related bugs while optimizing select instructions

• 4 incorrect arithmetic operations

• 3 occurrences of incorrect handling of floating point “fast-math” flags

• 3 bugs due to the ambiguous semantics of bitcast between integer and floating
points

• 4 loop optimizations incorrectly handling memory accesses

• 17 memory-related miscompilations

• 15 failures due to bugs in Alive2, or tests that are designed to fail when an
external module like Alive2 is invoked

We reported 54 miscompilation bugs to the LLVM community after identify-

ing the root causes of unit test failures. We did not report every bug detected by

Alive2 as some were already known. In April 2021, 28 of the bugs we reported

have been fixed, including 7 patches that we wrote ourselves. The remaining

fixes were done by LLVM developers, and we actively led discussions around

finding good solutions for the bugs. In several cases, compiler developers used

Alive2 to help validate that their fixes were correct. Moreover, several members

of the LLVM community have become Alive2 users, and have gone on to fix

LLVM bugs detected by Alive2, even though we never reported them.

Selected Bug #1: Vectorization Here %x is a pointer to an array of 8-bit

integers:

169

%a = load i8* %x
%b = load i8* (%x+1)
%c = load i8* (%x+2)
%d = load i8* (%x+3)
%r = %a +nsw %b +nsw

%c +nsw %d

6)
%v = load <4 x i8>* %x
%w = %v[0:1] +nsw %v[2:3]
%r = %w[0] +nsw %w[1]

This transformation, which exploits the associativity of addition to reduce the

number of instructions using vector addition, is not a refinement. The problem

is that LLVM’s addition operator, when qualified by the nsw flag (which turns

signed overflows into poison values), is not associative. The fix was to drop the

nsw flag from the code on the target side of this transformation.

Selected Bug #2: Floating point This transformation is not a refinement:

%c = fmul nsz %a, %b
%r = fadd %c, +0.0
ret %r

6)
%c = fmul nsz %a, %b

ret %c

The nsz (non-signed-zero) flag is an assertion that %c is nondeterministically

+0.0 or �0.0 if %a⇥ %b = 0. However, %r is +0.0 even if %c = �0.0 due to the

definition of floating point addition. Thus, the target code displays a behavior

not observed in the source, violating refinement.

Selected Bug #3: Eliminating a load This transformation is incorrectly

removing a load:

// i32 *x, *y, *z;
i32 *p = (*x < *y ? x : y);
(i64)z = *(i64*)p;

6)
// i32 *x, *y, *z;
i32 r = (*x < *y ? *x : *y);
*z = r;

The bit-width of the store is accidentally shrunk from 64 to 32 bits, which is

incorrect since the last 32 bits were not copied. This happened because of the

170

16k
17k
18k
19k
20k

 0 5 10 15 20 25 30
Unroll

Correct

70
80
90

100
110
120

 0 5 10 15 20 25 30
Unroll

Incorrect

0
50

100
150
200

 0 5 10 15 20 25 30
Unroll

Running Time (min.)

Figure 5.10: Effect of changing the unroll factor when validating LLVM’s unit
tests.

mismatch in the load and store’s bit-widths. The checks in place were not tight

enough to catch this bug.

Selected Bug #4: Phi optimization This transformation is not a refine-

ment:

BB: %z = phi i1 [1, B1], [%c, B2]
%r = select %z, i32 %a, i32 %b

6)

B2: br %c, BB, B3
B3: br BB
BB: %r = phi i32 [%a, B1], [%a, B2], [%b, B3]

Here, a select instruction is replaced by a conditional branch. This in-

troduces UB when %c is undef or poison. The transformation can be fixed

by adding a “%c
0
= freeze(%c)” instruction and branching on %c

0 instead.

This bug is partially fixed, due to concerns about regressing the quality of the

generated code, with further work ongoing for a full fix.

Performance Running the LLVM unit test suite under Alive2 takes about 2.5

hours on an 8-core Intel workstation. Fig. 5.10 shows the trend of the number

of passed tests, refinement failures, and running time when increasing the unroll

171

factor. The number of passed tests decreases with the unroll factor due to

timeout or out-of-memory. The wall-clock time increases in a linear manner.

Discussion One might wonder why the LLVM unit tests—which seldom fail

on the main LLVM development branch—would be a fruitful place to look for

compiler bugs. The answer is that Alive2 is a far more discerning test oracle

than are the syntactic oracles, such as the CHECK: line in the example at the

start of this subsection, that are built into the unit tests. Moreover, Alive2 has

the virtue of being consistent: it expects all test cases to follow the same rules.

5.9.3 Updates to the LLVM IR Semantics

When we found ambiguities in the LLVM Language Reference Manual, we

initiated discussions in order to clarify the document. Overall, we wrote 8 patches

and contributed advice or ideas to 3 patches written by LLVM developers.

Nonnull Attribute While testing our tool, we found a mismatch in the

semantics of the nonnull attribute between LLVM’s documentation and LLVM’s

code. The documentation specified that passing a null pointer to a nonnull

argument triggered UB. However, as illustrated below, LLVM adds nonnull to a

pointer that may be poison. This is incorrect because poison can be optimized

into any value including null.

p = gep inbounds q, 1
f(p) 6) p = gep inbounds q, 1

f(nonnull p) ; UB if p poison

We proposed a new semantics to the LLVM developers, where non-conforming

pointers would be considered poison rather than UB. This was accepted, and

we have contributed patches to fix the docs and the incorrect optimizations.

172

Nocapture Attribute While implementing the nocapture attribute, we

found that the definition of pointer capture was not explicit in the LLVM

Language Reference Manual. We wrote and shared a draft of patch to the

document for the precise definition of pointer capture. After discussions, we

could list four cases that capture pointers and updated the patch to explicitly

mention them. The patch was accepted, and we have contributed it to the LLVM

Reference Manual.

Lifetime Intrinsics We found that LLVM IR’s document does not clearly

define the semantics of instructions manipulating lifetimes of stack-allocated

memory objects (lifetime.start, lifetime.end). We defined formal semantics

for them based on what LLVM’s stack coloring algorithm assumes. The validity

of the new semantics is checked using LLVM unit tests as well as through manual

inspection of LLVM’s optimizations. We proposed our new semantics to the

LLVM community, and after its acceptance we wrote a patch to the document.

GEP When we started our work, it was not clear whether LLVM’s gep

inbounds operator for pointer arithmetic interpreted its index argument and

the base pointer’s offset value as signed or unsigned integers, for purposes of

computing “inboundedness” of the resulting address. Also, the assumptions that

an object cannot be larger than half of the size of its address space, and that no

“inbounds” address computation can overflow an unsigned value, needed to be

clarified.

Vectors and UB LLVM’s shu✏evector instruction supports permuting two

input vectors, returning an output vector that has the same number of elements

as its mask argument:

173

; Shuffles two vectors with mask <3, 2, 1, 2>
%v = shufflevector <10, 20>, <30, 40>, <3, 2, 1, 2>
; result: %v = <40, 30, 20, 30>

Initially, we believed that when the mask operand contained one or more

undef values, poison elements in the input vectors would be propagated to the

output. We reported optimizations that were incorrect under these semantics,

and this led to discussions with LLVM developers followed by a decision that

undef in the mask operand does not result in the propagation of poison values.

Other Changes We helped make several clarifications regarding the inter-

action between undef and padding in aggregates. For example, freeze has no

effect on padding values. Additionally, we clarified that a pointer given to a load

or store instruction is not allowed to be a non-deterministic value.

5.9.4 Translation Validation for Applications

Although our focus has been on validating transformations for core elements of

LLVM IR, we also wanted to see how Alive2 would work while compiling applica-

tions. We chose five single-file benchmarks: bzip2, gzip, oggenc,5 ph7 2.1.4,6 and

SQLite 3.30.1 amalgamation,7 and compiled them at the -O3 optimization level,

and using the -fno-strict-aliasing flag to disable type-based alias analysis.

We extracted pairs of IR files corresponding to the code before and after every

optimization pass ran on every function in the code being compiled. We timed

out individual invocations of Z3 after one minute and limited its RAM usage to

1 GB.

We batched optimization passes for oggenc, ph7, and SQLite, in order to

reduce the total verification time. Instead of calling Alive2 after each optimization,
5http://people.csail.mit.edu/smcc/projects/single-file-programs
6http://www.symisc.net/downloads/ph7-amalgamation-2001004.zip
7https://www.sqlite.org/2019/sqlite-amalgamation-3300100.zip

174

Prog. LoC Pairs Diff Time 3 7 TO OOM Unsup.

bzip2 5.1K 282K 2.2K 1.26 333 10 540 195 1,125

gzip 5.3K 371K 2.6K 1.74 884 4 905 60 754

oggenc 48K 215K 1.8K 1.63 440 4 588 72 663

ph7 43K 1.7M 5.6K 3.15 1,393 28 1,337 35 2,755

SQLite3 141K 3.9M 12.2K 6.37 2,314 38 2,102 100 7,543

Figure 5.11: Results for single-file benchmarks. From left to right, the columns
indicate the program name, the number of lines of code, the total number of
source/target function pairs (intraprocedural optimizations only), the number
of non-identical pairs considered for translation validation, total wall-clock time
taken (in hours), pairs successfully validated, violations of refinement, timeouts,
out-of-memory conditions, and pairs containing at least one feature unsupported
by Alive2.

we batched optimizations between pairs of unsupported optimizations, such

that only supported transformations occurred between those two optimizations.

Batching, however, incurs a slight risk of hiding bugs, as an optimization may

accidentally fix the miscompilation of a previous optimization.

The results of this experiment, run on an 8-core machine, are shown in

Fig. 5.11. Quite a few functions in these programs make use of features not

yet supported by Alive2; fixing these is a matter of ongoing work. The most

common unsupported features are function pointers and missing semantics for

some string and I/O library functions. Furthermore, LLVM IR has a long tail

of features that have been added over the years, and supporting them requires

significant engineering effort.

The last five columns almost add up to the “Diff” column, which is the

number of function pairs for which we run Alive2. The remaining few pairs not

shown in the table could not be proved correct or incorrect due to Z3 giving up

because of incomplete handling of quantifiers.

We manually inspected every failure of refinement observed during this

experiment. The bulk of them are due to an incorrect transformation done

175

 2000
 2400

Correct

 300
 600
 900

 0 1 2 3 4 5
Timeout (min.)

24
36
48

Incorrect

4
8

12

 0 1 2 3 4 5
Timeout (min.)

-100
0

100
200
300
400

 0 1 2 3 4 5
Timeout (min.)

bzip2
gzip

oggenc
ph7

sqlite3

Changes in runtime (%)

Figure 5.12: Effect of changing the SMT solver timeout for the single-file bench-
marks. In the third graph, at the right, running times are normalized to the
time taken by that benchmark when the timeout is set to one minute.

by LLVM, where in some cases select instructions with Boolean operands are

replaced with and/or instructions. As discussed in Section 3.7, they are fully

removed and no longer happens in the later version of LLVM.

5.9.5 Alias Sets

To show that splitting the memory into multiple arrays is beneficial, we gathered

statistics of the alias sets in our benchmarks. More than 96% of the dereferenced

pointers turned out to be only local or non-local, but not both. This shows that

splitting the memory into local and non-local simplifies the memory encoding.

We also counted the number of memory blocks pointers may alias with. Half

of the pointers were aliased with just one block. About 80% of the pointers

aliased with at most 3 blocks. This is much less than the median number of

blocks functions have. The median of the number of memory blocks was 7 ⇠ 13

(varying over programs), and only 10% of the functions had fewer than 3 blocks.

Measuring the effect of SMT solver timeout To better understand the

impact of the SMT solver’s timeout, we ran the single-file benchmarks with

timeouts varying from one second to five minutes; the results are shown in

Fig. 5.12. While the running time of Alive2 increases approximately linearly

176

with the solver timeout, the number of times Alive2 reached a definitive result

plateaus once the timeout reaches one minute. Increasing the solver timeout from

one to five minutes increased the number of pairs proved correct and incorrect

by less than 5% and 17%, respectively.

5.9.6 Z3 Bugs Found While Developing Alive2

Although finding defects in Z3 was not one of our goals, we did encounter solver

bugs while performing this work. We found six soundness bugs, six crashes, and

one timeout violation. All but one of these bugs have been fixed; two by us, and

the rest by the Z3 developers.

We also hit some performance issues in Z3. We found that one of Z3’s internal

timer mechanisms was incurring significant overhead because it created a new

helper thread on every use of the timer. By patching Z3 to use a thread pool

for its scoped_timer abstraction, we realized a 20–30% speedup for a collection

of Alive2 processes running on a large multicore. We also found an issue in the

structural hashing mechanism that was having too many collisions in the hash

table. Fixing this issue led to a 3x speedup in the sqlite3 benchmark. Finally,

we introduced a new API in Z3 to reset the solver’s memory, to reduce memory

fragmentation; this fixed an issue where the performance of long Alive2 runs

degraded over time. All these patches have been upstreamed.

5.10 Conclusion

Software development is a fundamentally human process, and there are many

opportunities for a large, decentralized group of compiler developers, who

primarily coordinate using a mailing list and an English-language specification,

to introduce subtle defects into their implementation. To assist the LLVM

community in creating a coherent semantics for their IR, and making their

177

toolchain respect it, we have created and deployed Alive2, a tool for bounded

translation validation for LLVM IR. Running Alive2 over LLVM’s unit test

suite has revealed 54 bugs of which 28 have been fixed so far. Moreover, there

have been a number of cases where the LLVM IR specification was either vague

or defective, and we have worked with the community to fix these. The goals

are to create a formalization of the intended semantics of LLVM IR, to bring

the compiler implementation into conformance with these semantics, and to

give the LLVM community tools that it can use to prevent deviations from its

specification in the future.

178

Chapter 6

Conclusion

LLVM IR is a language that is used internally by LLVM to represent programs.

Precisely defining the semantics of LLVM IR is crucial for rigorously checking

the correctness of compilation.

This thesis proposes (1) a new formal semantics of LLVM IR’s undefined

behavior and memory model, and (2) an SMT-based translation validation tool

for LLVM IR based on the semantics. We show that the old undefined behavior

and memory model are inconsistent with the LLVM implementation. To fix the

inconsistency of the old undefined behavior model, we suggest removing undef

value and introducing a new ‘freeze’ instruction. To fix the inconsistency of the

memory model, we suggest removing transformations that incorrectly assume

pointers and integers are equivalent. The new formal semantics of undefined

behavior has been adopted by LLVM. Also, the problem of the old memory

model was shared with compiler developers, and patches have landed in LLVM

to fix it.

To help compiler developers explore our semantics, we propose Alive2, an

179

automatic translation validation tool for LLVM. Since Alive2 does not require

any hints from compiler, it does not require any change in LLVM. To make the

tool practical, various optimizations in its SMT encoding were necessary. The

tool found dozens of miscompilation bugs in LLVM, many of them have already

been fixed by compiler developers.

180

Appendix A

Appendix

A.1 End-to-end miscompilation by both LLVM and
GCC

This C program is miscompiled by both GCC and LLVM:1

// b.c
void f(int *x, int *y) {}

// a.c
#include <stdint.h>
#include <stdio.h>

void f(int *, int *);

int main(void) {
int a = 0, y[1], x = 0;
uintptr_t pi = (uintptr_t)&x;
uintptr_t yi = (uintptr_t)(y + 1);
int n = pi != yi;

if (n) {

1
Please note that the program may produce different results on different platforms, since the

miscompilation is only observable with some stack layouts. Changing the order of declaration

of variables x and y is often sufficient to observe the miscompilation.

181

a = 100;
pi = yi;

}

if (n) {
a = 100;
pi = (uintptr_t)y;

}

*(int *)pi = 15;

printf("a=%d x=%d\n", a, x);

f(&x, y);

return 0;
}

$ clang-5.0 -Wall -O2 a.c b.c ; ./a.out
a=0 x=0
$ gcc-7 -Wall -O2 a.c b.c ; ./a.out
a=0 x=0

The result produced by both compilers is incorrect. There are only two

possible outcomes, depending on whether x and y are allocated consecutively (n

is false) or not (n is true):

• Case 1: n is true and the program must print

a=100 x=0

• Case 2: n is false and the program must print

a=0 x=15

No other output is permitted. In both compilers, the root cause is insuffi-

ciently conservative treatment of a pointer derived from an integer. The problem

is difficult to solve without throwing away desirable pointer optimizations. This

program has been reported in the bug tracking systems for both compilers. The

semantics given in this chapter solve this problem, and we have confirmed that

the prototype fixes this bug.

182

A.2 Safe Rust Program Miscompiled by LLVM

This function uses low-level language features, but it is still in the safe subset of

Rust. It is miscompiled because of a bug in LLVM’s GVN optimization:

pub fn test(gp1: &mut usize, gp2: &mut usize, b1: bool, b2: bool)
-> (i32, i32) {

let mut g = 0;
let mut c = 0;
let y = 0;
let mut x = 7777;
let mut p = &mut g as *const _;

{
let mut q = &mut g;
let mut r = &mut 8888;

if b1 {
p = (&y as *const _).wrapping_offset(1);

}
if b2 {

q = &mut x;
}

*gp1 = p as usize + 1234;
if q as *const _ == p {

c = 1;
*gp2 = (q as *const _) as usize + 1234;
r = q;

}
*r = 42;

}
return (c, x);

}

This function first assigns a reference of g to q. It then creates a temporary

object holding the number 8888 and r is assigned a reference to it. Function

wrapping_offset performs pointer arithmetic that can safely go out of bounds

of the base object (equivalent to LLVM’s gep without inbounds). If b2 is

true, q is assigned a reference to x. Therefore, if the program enters in the

following branch as well, r is assigned a reference to x, and thus the following

183

store through r (*r = 42;) overwrites the value of x.

When called with b1 and b2 set to true, the optimized version of this code

returns c = 1, x = 7777. This outcome is impossible; legal results are c = 0,

x = 7777 and c = 1, x = 42.

The miscompilation happens when LLVM’s GVN pass exploits the condition

of the last if statement and incorrectly replaces all uses of q within that

branch with p. After the replacement, *r is assumed not to touch x because

r now either contains a reference to the initial temporary object or to one of

the references assigned to p (based on g and y only). Therefore, x = 7777 is

constant-propagated to the return statement, which causes the wrong output.

A.3 Coq Formalization and Proof

I formalized the memory model in Coq and proved several key claims of this chap-

ter. The code is available from https://github.com/snu-sf/llvmtwin-coq.

Note that I omit function calls and returns to simplify the formalization.

A.3.1 Definitions

The memory model is specified in file Memory.v. It differs in two ways from the

presentation in this chapter: (1) it does not support address spaces for brevity,

and (2) memory maintains the last used block id, which is used to create fresh

ids on allocation. The number of twin blocks (|P |) is set to 3.

Well-formedness of a memory block is defined in Ir.MemBlock.wf, and

states, e.g., that |P | is always 3, and the size of blocks is larger than zero.

Well-formedness of memory is defined in Ir.Memory.wf and states, e.g., that all

existing memory blocks are well-formed, and alive blocks have no overlapping

addresses. Well-formedness of a state is defined in Ir.Config.wf, and includes

assertions like the program counter is valid, memory is well-formed, etc. We

184

proved that the execution of any instruction preserves the well-formedness of

the input state.

The small-step semantics is defined in fileSmallStep.v. Given an input state,

a step can result in one of the following results: (1) success, if the execution

of the following instruction was successful and yielded a new state, (2) UB,

if the program raised undefined behavior, (3) OOM, if the program raised

out-of-memory, and (4) halt, if the program finished.

Two states s and s
0 are twin with respect to a memory block l iff they are

equal except for the configuration of l where the addresses of l in s
0 (P 0) are a

permutation of those of s (P) and the enabled address is different (i.e., P0 6= P
0
0).

A block’s address is observed if a pointer to that block is given as argument

to one of the following instructions: ptrtoint, psub, or icmp. Moreover, for

the latter two instructions, the other argument must be a physical pointer. A

pointer is guessed if it points to an unobserved block.

A.3.2 Proofs

We proved the following theorems in Coq:

Theorem 1 (Twin allocation forbids pointer guessing) Given two twin
states s and s

0 w.r.t. l, where the next instruction dereferences a guessed pointer
to l, the execution of either s or s

0 triggers UB.

Two additional theorems are proved that establish the usefulness of twin

states:

Theorem 2 (Malloc) malloc either returns a NULL pointer, or a logical
pointer Log(l, o). Moreover, the states yielded by the small-step execution are all
twin w.r.t. l.

Theorem 3 Given two twin states s and s
0 w.r.t. l, the small-step execution

of s and s
0 where the next instruction does not dereference a guessed pointer

and does not observe block l either (1) halts, triggers UB or OOM, or (2) is
successful and the successor states of s are twin with those of s0.

185

We now show that certain instructions can be freely moved across (de)allocation

functions:

Theorem 4 (Instruction reordering) Instructions icmp eq, icmp ule, psub,
inttoptr, ptrtoint, and gep can be moved across malloc and free in both
directions (upward and downward). Moreover, a program P

0 obtained from P by
doing such reordering is equivalent to P .

Finally we prove sufficient conditions for soundness of GVN:

Theorem 5 (Soundness of GVN for pointers) The four conditions given
in Section 4.4 that state when it is sound to replace a pointer p with another
pointer q are correct, i.e., the pointer replacement is a refinement.

186

Bibliography

[1] WG14, “Indeterminate values and identical representations (defect report

#260),” 2004. [Online]. Available: http://www.open-std.org/jtc1/sc22/

wg14/www/docs/dr_260.htm

[2] K. Memarian and P. Sewell, “Clarifying the C memory object

model (revised version of WG14 N2012),” 2016. [Online]. Available:

https://www.cl.cam.ac.uk/~pes20/cerberus/notes64-wg14.html

[3] D. Chisnall, J. Matthiesen, K. Memarian, P. Sewell, and R. N. M.

Watson, “C memory object and value semantics: the space of

de facto and ISO standards,” 2016. [Online]. Available: https:

//www.cl.cam.ac.uk/~pes20/cerberus/notes30.pdf

[4] K. Memarian and P. Sewell, “N2090: Clarifying pointer provenance

(draft defect report or proposal for C2x),” 2016. [Online]. Available:

https://www.cl.cam.ac.uk/~pes20/cerberus/n2090.html

[5] J. Kang, C.-K. Hur, W. Mansky, D. Garbuzov, S. Zdancewic, and

V. Vafeiadis, “A formal C memory model supporting integer-pointer casts,”

in PLDI, 2015.

187

[6] T. L. Project, “LLVM language reference manual,” 2021. [Online].

Available: https://llvm.org/docs/LangRef.html

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,

“Efficiently computing static single assignment form and the control de-

pendence graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4, p.

451–490, Oct. 1991.

[8] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding

bugs in C compilers,” in PLDI, 2011.

[9] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence modulo

inputs,” in PLDI, 2014.

[10] V. Livinskii, D. Babokin, and J. Regehr, “Random testing for C and

C++ compilers with YARPGen,” Proc. ACM Program. Lang., vol. 4, no.

OOPSLA, Nov. 2020.

[11] Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration for rigorous

compiler testing,” in PLDI, 2017.

[12] J. Lee, Y. Kim, Y. Song, C.-K. Hur, S. Das, D. Majnemer, J. Regehr, and

N. P. Lopes, “Taming undefined behavior in LLVM,” in PLDI, 2017.

[13] J. Lee, C.-K. Hur, R. Jung, Z. Liu, J. Regehr, and N. P. Lopes, “Reconciling

high-level optimizations and low-level code in LLVM,” Proc. of the ACM

on Programming Languages, vol. 2, no. OOPSLA, Nov. 2018.

[14] N. P. Lopes, J. Lee, C.-K. Hur, Z. Liu, and J. Regehr, “Alive2: Bounded

translation validation for LLVM,” in PLDI, 2021.

[15] J. Lee, D. Kim, C.-K. Hur, and N. P. Lopes, “An SMT encoding of LLVM’s

memory model for bounded translation validation,” in CAV, 2021.

188

[16] M. Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, and A. Zwinkau,

“Simple and efficient construction of static single assignment form,” in CC,

2013.

[17] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. K. Zadeck, “An

efficient method of computing static single assignment form,” in POPL

’89, 1989.

[18] K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe, “The program

dependence web: A representation supporting control-, data-, and demand-

driven interpretation of imperative languages,” in Proceedings of the ACM

SIGPLAN 1990 Conference on Programming Language Design and Im-

plementation, ser. PLDI ’90. New York, NY, USA: Association for

Computing Machinery, 1990, p. 257–271.

[19] C. S. Ananian, “The static single information form,” 1999.

[20] K. Knobe and V. Sarkar, “Array SSA form and its use in parallelization,”

in Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, ser. POPL ’98. New York, NY, USA:

Association for Computing Machinery, 1998, p. 107–120.

[21] D. Novillo, “Memory SSA – a unified approach for sparsely representing

memory operations,” in Proc. of the GCC Developers’ Summit, 2007.

[22] “MemorySSA.” [Online]. Available: https://llvm.org/docs/MemorySSA.

html

[23] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,

R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scal-

ing compiler infrastructure for domain specific computation,” in 2021

189

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion (CGO), 2021, pp. 2–14.

[24] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Formalizing the

LLVM intermediate representation for verified program transformations,”

in Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, ser. POPL ’12. New York, NY,

USA: Association for Computing Machinery, 2012, p. 427–440.

[25] L. Li and E. L. Gunter, “K-LLVM: A relatively complete semantics of

LLVM IR,” in ECOOP, 2020.

[26] G. Rosu, “K: A semantic framework for programming languages and formal

analysis tools,” in Dependable Software Systems Engineering, 2017.

[27] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,

vol. 52, no. 7, pp. 107–115, Jul. 2009.

[28] G. Barthe, D. Demange, and D. Pichardie, “Formal verification of an

SSA-based middle-end for CompCert,” ACM Trans. Program. Lang. Syst.,

vol. 36, no. 1, Mar. 2014.

[29] J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer, “A promising

semantics for relaxed-memory concurrency,” in Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages, ser.

POPL 2017. New York, NY, USA: Association for Computing Machinery,

2017, p. 175–189.

[30] S.-H. Lee, M. Cho, A. Podkopaev, S. Chakraborty, C.-K. Hur, O. Lahav,

and V. Vafeiadis, “Promising 2.0: Global optimizations in relaxed memory

concurrency,” in Proceedings of the 41st ACM SIGPLAN Conference on

190

Programming Language Design and Implementation, ser. PLDI 2020. New

York, NY, USA: Association for Computing Machinery, 2020, p. 362–376.

[31] M. Cho, S.-H. Lee, C.-K. Hur, and O. Lahav, “Modular data-race-freedom

guarantees in the promising semantics,” in Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design

and Implementation, ser. PLDI 2021. New York, NY, USA: Association

for Computing Machinery, 2021, p. 867–882.

[32] D. Bogdanas and G. Roşu, “K-Java: A complete semantics of java,” in

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ser. POPL ’15. New York, NY,

USA: Association for Computing Machinery, 2015, p. 445–456.

[33] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “RustBelt: Securing

the foundations of the Rust programming language,” Proc. ACM Program.

Lang., vol. 2, no. POPL, Dec. 2017.

[34] R. Jung, H.-H. Dang, J. Kang, and D. Dreyer, “Stacked borrows: an

aliasing model for Rust,” in POPL, 2020.

[35] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu, “A

complete formal semantics of x86-64 user-level instruction set architecture,”

in Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI 2019. New York, NY,

USA: Association for Computing Machinery, 2019, p. 1133–1148.

[36] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.

Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,

N. Krishnaswami, and P. Sewell, “ISA semantics for ARMv8-a, RISC-v,

191

and CHERI-MIPS,” Proc. ACM Program. Lang., vol. 3, no. POPL, Jan.

2019.

[37] F. Besson, S. Blazy, and P. Wilke, “A concrete memory model for Com-

pCert,” in ITP, 2015.

[38] C. Pulte, J. Pichon-Pharabod, J. Kang, S. H. Lee, and C. Hur, “Promising-

ARM/RISC-V: A simpler and faster operational concurrency model,” in

PLDI 2019. ACM, 2019, pp. 1–15.

[39] K. Cho, S.-H. Lee, A. Raad, and J. Kang, “Revamping hardware persis-

tency models: view-based and axiomatic persistency models for Intel-x86

and Armv8,” in Proceedings of the 42nd ACM SIGPLAN International

Conference on Programming Language Design and Implementation, ser.

PLDI 2021. Association for Computing Machinery, 2021.

[40] S. Chakraborty and V. Vafeiadis, “Formalizing the concurrency semantics

of an LLVM fragment,” in CGO, 2017.

[41] L.-y. Xia, Y. Zakowski, P. He, C.-K. Hur, G. Malecha, B. C. Pierce,

and S. Zdancewic, “Interaction Trees: Representing recursive and impure

programs in Coq,” Proc. ACM Program. Lang., vol. 4, no. POPL, Dec.

2019.

[42] J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, and V. Vafeiadis, “Lightweight

verification of separate compilation,” in Proceedings of the 43rd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, ser. POPL ’16. New York, NY, USA: Association for Computing

Machinery, 2016, p. 178–190.

192

[43] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and

V. Vafeiadis, “Pilsner: A compositionally verified compiler for a higher-

order imperative language,” SIGPLAN Not., vol. 50, no. 9, p. 166–178,

Aug. 2015.

[44] “clang-11.0.0 miscompiles SQLite.” [Online]. Available: https://sqlite.org/

forum/forumpost/296b7c1e02

[45] “A bug in gcc miscompiling git’s diff.c.” [Online]. Available: https:

//gcc.gnu.org/bugzilla/show_bug.cgi?id=93908

[46] “CVE-2020-16040.” [Online]. Available: https://nvd.nist.gov/vuln/detail/

CVE-2020-16040

[47] “CVE-2019-11707.” [Online]. Available: https://nvd.nist.gov/vuln/detail/

CVE-2019-11707

[48] F. Brown, J. Renner, A. Nötzli, S. Lerner, H. Shacham, and D. Stefan,

“Towards a verified range analysis for JavaScript JITs,” in Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation, ser. PLDI 2020. New York, NY, USA: Association

for Computing Machinery, 2020, p. 135–150.

[49] S. Bauer, P. Cuoq, and J. Regehr, “Deniable backdoors using compiler

bugs,” 2015.

[50] “[llvm-dev] a bug related with undef value when bootstrap Memo-

rySSA.cpp.” [Online]. Available: https://lists.llvm.org/pipermail/llvm-dev/

2017-July/115497.html

193

[51] M. Marcozzi, Q. Tang, A. F. Donaldson, and C. Cadar, “Compiler fuzzing:

How much does it matter?” Proc. ACM Program. Lang., vol. 3, no. OOP-

SLA, Oct. 2019.

[52] “The Coq Proof Assistant.” [Online]. Available: https://coq.inria.fr/

[53] E. Mullen, D. Zuniga, Z. Tatlock, and D. Grossman, “Verified peephole

optimizations for CompCert,” in PLDI, 2016.

[54] N. Courant and X. Leroy, “Verified code generation for the polyhedral

model,” in POPL, 2021.

[55] G. Barthe, D. Demange, and D. Pichardie, “Formal verification of an

SSA-based middle-end for CompCert,” ACM Trans. Program. Lang. Syst.,

vol. 36, no. 1, Mar. 2014.

[56] S. Lerner, T. Millstein, and C. Chambers, “Automatically proving the

correctness of compiler optimizations,” in PLDI, 2003.

[57] S. Lerner, T. Millstein, E. Rice, and C. Chambers, “Automated soundness

proofs for dataflow analyses and transformations via local rules,” in POPL,

2005.

[58] S. Kundu, Z. Tatlock, and S. Lerner, “Proving optimizations correct using

parameterized program equivalence,” in PLDI, 2009.

[59] L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu, “Trans-

lation and run-time validation of loop transformations,” Form. Methods

Syst. Des., vol. 27, no. 3, pp. 335–360, Nov. 2005.

[60] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr, “Provably cor-

rect peephole optimizations with Alive,” in Proceedings of the 36th ACM

194

SIGPLAN Conference on Programming Language Design and Implemen-

tation, ser. PLDI ’15. New York, NY, USA: Association for Computing

Machinery, 2015, p. 22–32.

[61] J. Lee, C.-K. Hur, and N. P. Lopes, “AliveInLean: A verified LLVM

peephole optimization verifier,” in CAV, 2019.

[62] J. L. Newcomb, A. Adams, S. Johnson, R. Bodik, and S. Kamil, “Verifying

and improving halide’s term rewriting system with program synthesis,”

Proc. ACM Program. Lang., vol. 4, no. OOPSLA, Nov. 2020.

[63] N. P. Lopes and J. Monteiro, “Automatic equivalence checking of programs

with uninterpreted functions and integer arithmetic,” Int. J. Softw. Tools

Technol. Transf., vol. 18, no. 4, pp. 359–374, Aug. 2016.

[64] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in

TACAS, 1998.

[65] M. C. Rinard and D. Marinov, “Credible compilation with pointers,” in

RTRV, 1999.

[66] G. C. Necula, “Translation validation for an optimizing compiler,” in PLDI,

2000.

[67] A. Kanade, A. Sanyal, and U. P. Khedker, “Validation of GCC optimizers

through trace generation,” SP&E, vol. 39, no. 6, pp. 611–639, Apr. 2009.

[68] K. S. Namjoshi and L. D. Zuck, “Witnessing program transformations,” in

SAS, 2013.

[69] J. Kang, Y. Kim, Y. Song, J. Lee, S. Park, M. D. Shin, Y. Kim, S. Cho,

J. Choi, C.-K. Hur, and K. Yi, “Crellvm: Verified credible compilation for

LLVM,” in PLDI, 2018.

195

[70] A. Zaks and A. Pnueli, “CoVaC: Compiler validation by program analysis

of the cross-product,” in FM, 2008.

[71] S. Gupta, A. Rose, and S. Bansal, “Counterexample-guided correlation

algorithm for translation validation,” in OOPSLA, 2020.

[72] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken, “Data-driven equiva-

lence checking,” in OOPSLA, 2013.

[73] M. Dahiya and S. Bansal, “Black-box equivalence checking across compiler

optimizations,” in APLAS, 2017.

[74] B. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic program

alignment for equivalence checking,” in PLDI, 2019.

[75] C. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. Zuck, “TVOC:

A translation validator for optimizing compilers,” in CAV, 2005.

[76] J.-B. Tristan, P. Govereau, and J. G. Morrisett, “Evaluating value-graph

translation validation for LLVM,” in PLDI, 2011.

[77] M. Stepp, R. Tate, and S. Lerner, “Equality-based translation validator

for LLVM,” in CAV, 2011.

[78] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha,

“Egg: Fast and extensible equality saturation,” Proc. ACM Program. Lang.,

vol. 5, no. POPL, Jan. 2021.

[79] J. Chen, J. Wei, Y. Feng, O. Bastani, and I. Dillig, “Relational verification

using reinforcement learning,” Proc. ACM Program. Lang., vol. 3, no.

OOPSLA, Oct. 2019.

196

[80] V. Klebanov, P. Rümmer, and M. Ulbrich, “Automating regression verifi-

cation of pointer programs by predicate abstraction,” Form. Methods Syst.

Des., vol. 52, no. 3, pp. 229–259, Jun. 2018.

[81] C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and H. Rebêlo, “Towards

modularly comparing programs using automated theorem provers,” in

CADE, 2013.

[82] T. Wood, S. Drossopolou, S. K. Lahiri, and S. Eisenbach, “Modular verifi-

cation of procedure equivalence in the presence of memory allocation,” in

ESOP, 2017.

[83] S. Dasgupta, S. Dinesh, D. Venkatesh, V. S. Adve, and C. W. Fletcher,

“Scalable validation of binary lifters,” in PLDI, 2020.

[84] J.-B. Tristan and X. Leroy, “Verified validation of lazy code motion,” in

PLDI, 2009.

[85] R. Leviathan and A. Pnueli, “Validating software pipelining optimizations,”

in CASES, 2002.

[86] J.-B. Tristan and X. Leroy, “A simple, verified validator for software

pipelining,” in POPL, 2010.

[87] K. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens, “Geometric

Model Checking: An automatic verification technique for loop and data

reuse transformations,” ENTCS, vol. 65, no. 2, 2002.

[88] T. Sewell, M. Myreen, and G. Klein, “Translation validation for a verified

OS kernel,” in PLDI, 2013.

[89] M. Dahiya and S. Bansal, “Modeling undefined behaviour semantics for

checking equivalence across compiler optimizations,” in HVC, 2017.

197

[90] M. Braun, S. Buchwald, and A. Zwinkau, “Firm—a graph-based

intermediate representation,” Karlsruhe Institute of Technology, Tech.

Rep. 35, 2011. [Online]. Available: http://digbib.ubka.uni-karlsruhe.de/

volltexte/1000025470

[91] E. Mullen, D. Zuniga, Z. Tatlock, and D. Grossman, “Verified peephole

optimizations for CompCert,” in PLDI, 2016.

[92] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R. N.

Watson, and P. Sewell, “Into the depths of C: elaborating the de facto

standards,” in PLDI, Jun. 2016.

[93] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the undefinedness of C,”

in PLDI, 2015.

[94] R. Krebbers and F. Wiedijk, “A typed C11 semantics for interactive

theorem proving,” in CPP, 2015, pp. 15–27.

[95] R. Krebbers, “Aliasing restrictions of C11 formalized in Coq,” in CPP,

2013.

[96] X. Leroy and S. Blazy, “Formal verification of a C-like memory model

and its uses for verifying program transformations,” Journal of Automated

Reasoning, vol. 41, no. 1, pp. 1–31, Jul 2008.

[97] J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell,

“CompCertTSO: A verified compiler for relaxed-memory concurrency,” J.

ACM, vol. 60, no. 3, pp. 22:1–22:50, Jun. 2013.

[98] F. Besson, S. Blazy, and P. Wilke, “CompCertS: A memory-aware verified

C compiler using pointer as integer semantics,” in ITP, 2017.

198

[99] ——, “A verified CompCert front-end for a memory model supporting

pointer arithmetic and uninitialised data,” Journal of Automated Reason-

ing, Nov 2017.

[100] ——, “A concrete memory model for CompCert,” in ITP, 2015.

[101] ——, “A precise and abstract memory model for C using symbolic values,”

in APLAS, 2014.

[102] S. Chakraborty and V. Vafeiadis, “Formalizing the concurrency semantics

of an LLVM fragment,” in CGO, 2017.

[103] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Formal verifi-

cation of SSA-based optimizations for LLVM,” in PLDI, 2013.

[104] K. S. Namjoshi, G. Tagliabue, and L. D. Zuck, “A witnessing compiler: A

proof of concept,” in RV, 2013.

[105] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Modeling and verifying

systems using a logic of counter arithmetic with lambda expressions and

uninterpreted functions,” in CAV, 2002.

[106] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS,

2008.

199

�]

⌘⌅∏¥îÙ�|Ï�¿X⌘x⌅\¯®D¥Ä�<\ò¿¥0⌅t¨©Xî

∏¥t‰. å§ ⌅\¯®D ⌘⌅∏¥\ àÌ` Lî å§ ∏¥X Ö8\Ä0 ªD

⇠ àî ÏÏ ‡ �Ù‰D ò Ùtt| Xîp, ¯ t î Ù�|Ï \�T�

t �Ù‰D \©` ⇠ àƒ] X0 ⌅t⌧t‰. 0|⌧ ⌘⌅∏¥î tÏ\ ‡

�Ù| \⌅` ⇠ àî 8ï‰D �¿‡ à‰.

0tX LLVM@ ⌘⌅∏¥\ àÌ⌧ ⌅\¯®– \⌅⌧ ‡ �Ù‰X X¯

� 4«x¿| ƒ�Xå �XX‡ à¿ JX»‰. tÉ@ ‡ �Ù| ò¿¥î

l8X X¯| Ù�|Ï \�T »‰ ⌧\ ‰tå ttXî ∞¸| ≥X‡, t‰

⌅Xò\¡8ë©@ÏÏÙ�|ÏÑ¯‰X–xt⇠»‰.t8⌧|t∞X0

⌅t⌧î <� ⌘⌅∏¥– àî ‡ �ÙX X¯| <� �UX‡ ƒ�Xå �X

t| \‰. ¯ ‰L–î, LLVM ¥X Ù�|Ï \�T‰t t˘ �X| 0�<\

3@¿| XòXò ƒ�Xå ¥lt| \‰. X¿Ã LLVM@ `tå ƒTXî

)�\ å⌅∏Ë¥t0 L8– ®¸�<\ t 8⌧| t∞X0� }¿ J‰.

t Y⌅ |8–⌧î (1) LLVM Ù�|ÏX ⌘⌅∏¥ X¯– t¨XX XÖ

�x 8⌧‰D t∞Xî »\¥ �› X¯| ⌧HX‡ (2) ¯– 0⇠\ Ù�|Ï

\�T àÌ Äù (translation validation) ⌅�ÑÃl| å⌧\‰. ∞¨î LLVM

Ù�|Ï ⌘⌅∏¥X �X⇠¿ J@ âŸ (undefined behavior) ¸ T®¨ ®x

– Ï�\ 8⌧� àLD Ùtp, tÉD t∞\ »\¥ �› X¯| ⌧H\‰.

X¯\, ∞¨î êŸ àÌ Äù ⌅�ÑÃl Alive2| ⌧⌧X�‰. ⌧H⌧ àÌ Ä

ù ⌅�ÑÃlî êŸ Ö⌧ ùÖ0 (SMT solver)| ¨©t⌧ \�TX 3L1D

⇠Y�<\ ƒ�Xå UxXp Ù�|Ï\Ä0X ƒ¿t DîX¿ J‰.

∞¨�⌧H\�X⇠¿J@âŸX�›X¯î LLVMÙ�|Ï–ı›�<

\D›⇠»‰.¯|8–⌧⌧H\ ‘freeze’Ö9¥î LLVM 10.0–ƒÖ⇠»<p,

200

ı›8⌧î∞¨X�›X¯|¨©Xƒ]≈pt∏⇠»‰.⇣\,0tX LLVM

T®¨ ®x–⌧ >@ XÖ�x 8⌧‰@ Ù�|Ï ⌧⌧ê‰–å ı ⇠»<p

ÏÏ †`D |0à‡ t 8⌧| t∞X0 ⌅\ (X� LLVM Ù�|Ï– �©

⇠»‰. ∞¨î Alive2 | t©t ⇠Ì⌧X Ù�|Ï Ñ¯| >Dº ⇠ à»<p,

t ƒlî ⌅¨ LLVM Ù�|Ï ⌧⌧ê‰– Xt T‹ ¨ ¸�–⌧ ¨©⇠‡

à‰.

¸î¥:Ù�|Ï,⌅\¯ò�∏¥,Ù�|Ï⌘⌅∏¥,�›∏¥X¯,Ù�|Ï

Äù, êŸ Äù, àÌ Äù, T®¨ ®x

Yà: 2016-21227

201

	Abstract
	Acknowledgements
	Chapter 1 Introduction
	1.1 Intermediate Representation
	1.2 Formally Defining the Semantics of an IR
	1.3 Validating IR Semantics
	1.4 Contributions

	Chapter 2 Background
	2.1 Intermediate Representation
	2.2 Formal Semantics of Programming Languages
	2.3 Compiler Correctness
	2.4 Verifying Compilers

	Chapter 3 Undefined Behavior in the IR
	3.1 Undefined Behavior in the IR
	3.2 Inconsistencies in LLVM
	3.3 Proposed Semantics
	3.4 Illustrating the New Semantics
	3.5 Prototype Implementation
	3.6 Performance Evaluation
	3.7 Implementing Our Semantics in LLVM
	3.8 Undefined Behavior in Other Compilers
	3.9 Conclusion

	Chapter 4 A Memory Model for the IR
	4.1 Background
	4.2 A Memory Model for LLVM
	4.3 Semantics and Transformations
	4.4 Prototype Implementation
	4.5 Performance Evaluation
	4.6 Related Work
	4.7 Discussion and Future Work
	4.8 Implementing Our Memory Model in LLVM
	4.9 Conclusion

	Chapter 5 Validating the IR Semantics
	5.1 Overview
	5.2 Encoding LLVM IR Semantics in SMT
	5.3 Encoding Memory Blocks and Pointers in SMT
	5.4 Memory Allocation
	5.5 Encoding Loads and Stores in SMT
	5.6 Verifying Correctness of Optimizations
	5.7 Function Calls
	5.8 Approximating Program Behavior
	5.9 Implementation and Evaluation
	5.10 Conclusion

	Chapter 6 Conclusion
	Chapter A Appendix
	Bibliography
	초록

<startpage>6
Abstract 1
Acknowledgements 3
Chapter 1 Introduction 11
 1.1 Intermediate Representation 15
 1.2 Formally Defining the Semantics of an IR 18
 1.3 Validating IR Semantics 20
 1.4 Contributions 21
Chapter 2 Background 24
 2.1 Intermediate Representation 24
 2.2 Formal Semantics of Programming Languages 27
 2.3 Compiler Correctness 31
 2.4 Verifying Compilers 34
Chapter 3 Undefined Behavior in the IR 38
 3.1 Undefined Behavior in the IR 39
 3.2 Inconsistencies in LLVM 47
 3.3 Proposed Semantics 52
 3.4 Illustrating the New Semantics 57
 3.5 Prototype Implementation 62
 3.6 Performance Evaluation 65
 3.7 Implementing Our Semantics in LLVM 68
 3.8 Undefined Behavior in Other Compilers 77
 3.9 Conclusion 78
Chapter 4 A Memory Model for the IR 79
 4.1 Background 80
 4.2 A Memory Model for LLVM 86
 4.3 Semantics and Transformations 92
 4.4 Prototype Implementation 113 
 4.5 Performance Evaluation 116
 4.6 Related Work 121
 4.7 Discussion and Future Work 122 
 4.8 Implementing Our Memory Model in LLVM 125
 4.9 Conclusion 127 
Chapter 5 Validating the IR Semantics 128
 5.1 Overview 130
 5.2 Encoding LLVM IR Semantics in SMT 135
 5.3 Encoding Memory Blocks and Pointers in SMT 142
 5.4 Memory Allocation 148
 5.5 Encoding Loads and Stores in SMT 152
 5.6 Verifying Correctness of Optimizations 155
 5.7 Function Calls 162
 5.8 Approximating Program Behavior 166
 5.9 Implementation and Evaluation 166
 5.10 Conclusion 177
Chapter 6 Conclusion 179
Chapter A Appendix 181
Bibliography 187
초록 200
</body>

