

공학박사 학위논문

Clinical Application of Multiprotein Biomarker Assay in Classifying Risk Subgroups of Pancreatic Ductal Adenocarcinomas using Quantitative Proteomics

정량 단백체학 기술을 이용한 췌관선암 조직에서의 위험군 예측용 다중 바이오마커 어세이 개발

2021년 8월

서울대학교 대학원 협동과정 바이오엔지니어링 전공

Ph.D. Dissertation of Engineering

Clinical Application of Multiprotein Biomarker Assay in Classifying Risk Subgroups of Pancreatic Ductal Adenocarcinomas using Quantitative Proteomics

by

Minsoo Son

August 2021

Interdisciplinary Program in Bioengineering The Graduate School Seoul National University

Clinical Application of Multiprotein Biomarker Assay in Classifying Risk Subgroups of Pancreatic Ductal Adenocarcinomas using Quantitative Proteomics

정량 단백체학 기술을 이용한 췌관선암 조직에서의 위험군 예측용 다중 바이오마커 어세이 개발

지도 교수 김 영 수

이 논문을 공학박사 학위 논문으로 제출함 2021년 8월

서울대학교 대학원 협동과정 바이오엔지니어링 전공

손 민 수

손민수의 공학박사 학위논문을 인중함 2021년 8월

Chair	최	진	욱
Vice Chair	김	영	수
Examiner	윤	형	진
Examiner	0	유	진
Examiner	김	경	꼰

Clinical Application of Multiprotein Biomarker Assay in Classifying Risk Subgroups of Pancreatic Ductal Adenocarcinomas using Quantitative Proteomics

Confirming the Ph.D. Dissertation written by Minsoo Son

Interdisciplinary Program in Bioengineering The Graduate School Seoul National University

August 2021

Doctoral Committee:				
Chair	Jinwook Choi			
	Jinwook Choi, MD., Ph.D.			
Vice Chair	Youngson Kim			
	Youngsoo Kim, Ph.D.			
Examiner	Hyung-Jm Joon			
	Hyung-Jin Yoon, MD., Ph.D.			
Examiner	Eugenec 4.			
	Eugene C. Yi, Ph.D.			
Examiner	Kyunggon Kim			
	Kyunggon Kim Ph.D.			

Abstract

Clinical Application of Multi-protein Biomarker Assay in Classifying Risk Subgroups of Pancreatic Ductal Adenocarcinomas using Quantitative Proteomics

Minsoo Son Interdisciplinary Program in Bioengineering The Graduate School Seoul National University

Purpose:

Pancreatic ductal adenocarcinoma (PDAC) subtypes have been identified using various methodologies. However, it is a challenge to develop classification system applicable to routine clinical evaluation. We aimed to identify risk subgroups based on molecular features and develop a classification model that was more suited for clinical applications.

Experimental Design:

We collected whole dissected specimens from 225 patients who underwent surgery at Seoul National University Hospital, between October 2009 and February 2018, in Korea. Target proteins with potential relevance to tumor progression or prognosis were quantified with robust quality controls. We used hierarchical clustering analysis to identify risk subgroups. A random forest classification model was developed to predict the identified risk subgroups, and the model was validated using transcriptomic datasets from external cohorts (N = 700), with survival analysis.

Results:

We identified 24 protein features that could classify the four risk subgroups associated with patient outcomes: Stable; Exocrine-like; Activated; and Extracellular matrix (ECM)-Remodeling. The "Stable" risk subgroup was characterized by proteins that were associated with differentiation and tumor suppressors. "Exocrine-like" tumors highly expressed pancreatic enzymes. Two high-risk subgroups, "Activated" and "ECM-Remodeling," were enriched in such terms as cell cycle, angiogenesis, immunocompetence, tumor invasion-metastasis, and metabolic reprogramming. The classification model that included these features made prognoses with relative accuracy and precision in multiple cohorts.

Conclusions:

We proposed PDAC risk subgroups and developed a classification model that may potentially be useful for routine clinical implementations, at the individual level. This clinical system may improve the accuracy of risk prediction and treatment guidelines.

Keyword : Pancreatic Ductal Adenocarcinomas; Risk Subgroups; Prognostic Biomarkers; Classification model; Method Validation; MRM-MS

Student Number : 2014-22672

*This work published "Biotechnology is in and Bioprocess Engineering." (Son, M., Kim, H., Yeo, I., Kim, Y., Sohn, A., and Kim, Y. (2019), Method Validation by CPTAC Guidelines for Multi-protein Marker Using Multiple Reaction Monitoring-Mass Spectrometry. Assavs DOI:10.1007/s12257-018-0454-7), and "Clinical Cancer Research."(Son, M., Kim, H., Han, D., Kim, Y., Huh, I., Han, Y., Hong, S., Kwon, W., Kim, H., Jang, J., and Kim, Y. (2021), A Clinically Applicable 24-Protein Model for Classifying Risk Subgroups in Pancreatic Ductal Adenocarcinomas using Multiple Reaction Monitoring-Mass Spectrometry. DOI:10.1158/1078-0432.CCR-20-3513).

List of Tables

Chapter 1

Table 1-1. List of target proteins for MRM-MS assay	12
Table 1-2. Lists of interference-free product ions examined by AuDIT	
analys is	18
Table 1-3. Results of reverse response curve analysis	28
Table 1-4. Spike concentrations of heavy peptides for response curves	31
Table 1-5. Target transitions and their parameters for MRM-MS assays	
with related diseases	33
Table 1-6. Intra- and inter-assay analytical repeatability of target	
pe ptides	38
Table 1-7. Response of the targets in 6 different matrices	41
Table 1-8. Stability of the targets under different conditions of storage	48
Table 1-9. Reproducible detection of target analytes in overall	
workflow	55
Table 1-10. Specifications for Experiments 1 and 2 of the assays in	
3 laboratories	57
Table 1-11. Performance of assays in the portal for common target	
proteins with this study	58
Table 1-12. Protein assays qualified by 5 categories	65

Chapter 2

Table 2-1. Summary of clinicopathological information in training
and validation sets90
Table 2-2. Demographic and clinical overview of the study cohort91
Table 2-3. The 775 detectable protein target candidates and target selection
for MRM-MS analysis95
Table 2-4. The 200 differentially expressed proteins and target selection
information110
Table 2-5. Individual sample analysis in the training set and
the validation set114

Table 2-6. Association of 115 protein levels with recurrence, death, and
prognostic factors122
Table 2-7. Clinicopathological characteristics of the four classified
subgroups in the training set124
Table 2-8. Univariate and multivariate survival analysis for risk subgroup
classification in the training set125
Table 2-9. Protein features in the modules from WGCNA
Table 2-10. Clinicopathological characteristics of the four classified
subgroups in the validation set133
Table 2-11. Completed or ongoing clinical trials for pancreatic cancer
associated with the highly expressed proteins in the risk
s ubgroups144
Table 2-12. Prognostic markers in the Random Forest classification
mode 1152
Table 2-13. Correlation of 24 markers between mass spectrometry-based
protein expression and RNA-seq-based mRNA expression153

List of Figures

Chapter 1

Figure 1-1. Workflow for selecting targets11
Figure 1-2. Variability of assays and the difference in the response of analytes
in six individual matrices37
Figure 1-3. Variability of analytes in six different conditions related to
stability47
Figure 1-4. Reproducible detection of endogenous analytes
Figure 1-5. The plasma protein assays uploaded to the CPTACAssay portal
and validated in this study53
Figure 1-6. Comparing the performance of the assays for 23 target proteins
in UVGPC and our study54

Chapter 2

Figure 2-1. Cohort and target protein selection76
Figure 2-2. Target protein selection workflow77
Figure 2-3. Quality Control of 115 proteins for response curve generation.78
Figure 2-4. Quality Control of 115 proteins for repeatability analysis84
Figure 2-5. Evaluating hierarchical clustering analysis for proteins and
proteomic risk subgroups119
Figure 2-6. Identifying proteomic risk subgroups associated with prognosis
and original tumor subtypes120
Figure 2-7. Gene enrichment analysis and the defining signatures of the risk
subgroups121
Figure 2-8. Selection of additional proteins that are highly expressed in each
risk subgroup, to improve the performance of the classification
mode 1
Figure 2-9. Development of the Random Forest classification model 129
Figure 2-10. Prediction of proteomic risk subgroups
Figure 2-11. External validation of the Random Forest classification
model

List of Abbreviation

ADEX, aberrantly differentiated endocrine-exocrine AU, approximately unbiased AUC, area under the curve CI, confidence interval CPTAC, Clinical Proteomic Tumor Analysis Consortium CV, coefficient of variance DEPs, differentially expressed proteins DFS, disease-free survival ECM, extracellular matrix FFPE, formalin-fixed paraffin-embedded IHC, immunohistochemistry IPMN, intraductal papillary mucinous neoplasia LLOQ, lower limit of quantitation MRM-MS, multiple reaction monitoring-mass spectrometry OS, overall survival PCA, principal component analysis PDAC, pancreatic ductal adenocarcinoma PEI, pancreatic exocrine insufficiency PERT, pancreatic enzyme replacement therapy QC, quality control RF, random forest RTKs, receptor tyrosine kinases SDC, sodium deoxycholate SIS, stable isotope-labeled standard TCGA, The Cancer Genome Atlas

WGCNA, weighted gene correlation network analysis

Table of Contents

Genere	al Introduction	1
Chapte	er 1	
Method	d Validation by CPTAC Guidelines for Multi-protein Ma	rker Ass <i>a</i> ys
using N	Multiple Reaction Monitoring-Mass Spectrometry	
1.1	Introduction	4
1.2	Materials and Methods	5
1.3	Results	9
1.4	Discussion	61

Chapter 2

A Clinically Applicable 24-Protein Model for Classifying Risk Subgroups in Pancreatic Ductal Adenocarcinomas using Multiple Reaction Monitoring-Mass Spectrometry

1.1	Introduction	69
1.2	Materials and Methods	71
1.3	Results	74
1.4	Discussion	147
Referer	nces	

General Introduction

Advances in medical technology and research have improved treatment outcomes for many cancers; however, pancreatic ductal adenocarcinoma (PDAC) prognosis remains dismal, with an overall survival rate of approximately 10%(1). The low survival rate associated with PDAC can primarily be attributed to the difficulty performing early diagnosis, which results in only 20% of patients being eligible for resection at the time of diagnosis, even when including borderline cases and locally advanced post-chemotherapy pancreatic cancer cases(2-4). Additionally, PDAC is prone to recurrence and metastasis, even after surgery, due to its tumorigenic biology. Although radiologic images and pathological data are currently the primary methods used to determine treatment strategies and identify tumor characteristics, the development of superior methods for characterizing tumors and facilitating the early diagnosis of cancer are urgently necessary to improve the PDAC survival outcome(5,6).

Protein biomarkers are important in the pathogenesis of various diseases. However, they are rarely used in clinical practice due to their low diagnostic power (7,8). Based on the wide variety of individual circumstances (physiological, environmental, and clinical factors) and the complexity of disease-inducing processes, single-protein markers are unable to diagnose specific diseases accurately (9,10). These issues can be remedied through the use of several protein markers, improving their diagnostic power and accuracy by increasing sensitivity and specificity (11-13).

Multiple reaction monitoring-mass spectrometry (MRM-MS), a highthroughput '-omics' technologies can simultaneously measure the abundance of protein targets on the order of thousands and assess their feasibility as biomarkers (14,15). Although hundreds of MRM-MS assays have been published, the protocols for characterizing their performance have not been standardized. Further, their reproducibility and transferability

1

across various platforms and sites have not been demonstrated. To address these problems, the Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute (NCI-CPTAC) has evaluated the intra- and interlaboratory analytical performance of the MRM-MS assay (16-18) and developed guidelines for analytical validation using a fit-for-purpose approach (19). CPTAC assay characterization guidelines were established to evaluate clinical assays by observing quantitative changes across various targets, and the CPTAC assay portal was designed as a public repository of well-characterized, MS-based, targeted proteomics assays to help users of different instruments between laboratories developing new assays (20).

Clinical applications of risk prediction for pancreatic cancers have remained stagnant due to some obstacles. The hundreds of genes used to define the subtypes can cause overfitting that hindered prediction and transferability of subtypes. In addition, the methodologies, such as micro-array, RNA-Seq, isobaric-tagging, and high-pH fractionations, are clinically unsuitable due to their high levels of complexity, expensive costs, and long run-times. A clinical assay must be developed, similar to the MammaPrint(21) and PAM50(22) assays that have been developed for the classification of breast cancer risks based on dozens of genes, and utilize a simple and affordable quantitation platform. Furthermore, predicting the risk for an individual patient has been difficult because most classification methodologies are based on clustering analyses.

In the present study, we characterized method validation of protein quantitation using MRM-MS for clinical application, based on the CPTAC Assay Characterization Guidance Document. Then, using the methodology, we identified risk subgroups and developed a classification model, based on 24 carefully selected proteins, to address the current limitations.

Chapter 1 Method Validation by CPTAC Guidelines for Multi-protein Marker Assays Using Multiple Reaction Monitoring-Mass Spectrometry

1.1 Introduction

For nearly a decade, hundreds of millions of dollars have been spent annually on the discovery of putative protein biomarkers for human diseases (23). Changes in protein expression in biospecimens are reflective of specific disease states (24). Thus, *in vitro* diagnostic tests that use protein biomarkers are useful for the early detection of human diseases, and the prediction of patient prognosis (25,26).

Traditionally, the most frequently used technique for quantifying proteins has been the enzyme-linked immunosorbent assay (ELISA). Its high sensitivity, specificity, and compatibility with standard clinical laboratory equipment render ELISA suitable for clinical practice (27,28). However, this method is expensive and laborious due to the time that is needed to develop antibodies. Moreover, multiplex ELISA encounters difficulties quantitating proteins in parallel due to the crossreactivity that results from multiple antibodies interacting with one another (29,30).

In contrast, high-throughput '-omics' technologies can simultaneously measure the abundance of protein targets on the order of thousands and assess their feasibility as biomarkers (14,15). One such method is multiple reaction monitoring-mass spectrometry (MRM-MS). It is a highly selective and sensitive approach for quantitating targeted proteins in samples—a potential alternative tool for screening diseases. MRM-MS is a targeted proteomics technology that can simultaneously measure more than 300 protein targets in a cost-effective manner (31). In addition, MRM-MS does not require antibodies and can circumvent the issue of crossreactivity altogether, unlike multiplex ELISA (31,32).

Here, we report the MRM-MS assays that were characterized, based on the 5 criteria in the CPTAC Assay Characterization Guidance Document, established to evaluate clinical assays by observing quantitative changes across various targets. The assays cover 29 disease-related proteins, consisting of US Food and Drug Administration (FDA)-approved and

4

Laboratory Development Test (LDT) markers that are used in quantitative assays. The performance of the assays was verified by comparison with techniques in the CPTAC ASSAY PORTAL (https://assays.cancer.gov). This study demonstrates that our MRM-MS assay is a reproducible and transferrable analytical platform for targeted proteomics analysis that has potential for preclinical applications.

1.2 Materials and Methods

1.2.1 Reagents and Materials

Dithiothreitol was purchased from Merck (Darmstadt, Germany). lodoacetamide was purchased from Sigma-Aldrich (St. Louis, MO, USA), Rapigest[™] SF Surfactant was obtained from Waters (Manchester, UK). Sequencing-grade modified trypsin was obtained from Promega (Madison, WI, USA). High-performance liquid chromatography (HPLC)-grade water, formic acid, and acetonitrile were purchased from Thermo Fisher Scientific (Bremen, Germany). The digested samples were desalted using OASIS HLB 1 cc (30 mg) extraction cartridges (Waters Corp., Milford, MA). Semiabsolute stable isotope-labeled standard (SIS) peptides (isotope labeled at the C-terminus of ¹³C and ¹⁵N) were synthesized by JPT (Berlin, Germany) (85% to 95% purity, according to the manufacturer).

1.2.2 Human serum samples

A set of 6 individual normal serum samples and pooled normal serum were purchased from an FDA-approved facility (Innovative Research, MI, USA). All samples tested negative for human immunodeficiency virus (HIV)-1 ribonucleic acid (RNA), anti-HIV 1/2, hepatitis C virus (HCV), HCV RNA, hepatitis B virus surface antigen (HbsAg), and syphilis using FDA-approved methods by the provider.

1.2.3 Sample preparation for MRM-MS analysis

All samples were depleted of high-abundance proteins on a Multiple Affinity Removal System Human-7 affinity column that was interfaced with an HPLC system (Shimadzu, Kyoto, Japan). Depleted serum samples were concentrated, and 100 µg of depleted serum was denatured with 0.1% Rapigest. After the trypsin digestion and desalting steps, the eluted samples were lyophilized on a vacuum centrifuge. All serum digests were resolubilized in 0.1% formic acid/water prior to analysis via MRM-MS (more details are given in Supporting Information).

1.2.4 Quantitative MRM-MS analysis

We used a 5- μ L sample loop (100- μ m inner diameter capillary tubing) in an autosampler and performed full-loop injection to reduce void volume. For the MRM-MS analysis, a 150-mm homemade analytical column was used—an IntegraFrit capillary (ID, 75 μ m; OD, 360 μ m) was packed with ReproSil-Pur C18-AQ (5 μ m, 200 Å, Dr.Maisch GmbH, Ammerbuch, Germany). We injected 5 μ L (1 μ g desalted samples) of prepared sample with Sol A (97% distilled water, 3% acetonitrile, and 0.1% formic acid) and Sol B (97% acetonitrile, 3% distilled water, and 0.1% formic acid) directly into the analytical column; the flow rate was set to 300 nL/min, and exponential gradient elution was performed with a 55-min gradient, consisting of 0% to 7% Sol B for 3 min, 7% to 37% sol B for 35 min, 37% to 87% sol B for 1 min, 87% sol B for 5 min, and 0% sol B for 9 min, to equilibrate the column for the following run.

MRM-MS analyses were performed on a hybrid triple quadrupole/ion trap mass spectrometer (QTRAP 4000, AB SCIEX, Foster City, CA, USA) that was coupled to a tempo multidimensional liquid chromatography system (Tempo MDLC, Applied Biosystems, CA, USA). The optimal parameters for the mass spectrometer that was interfaced with a nanospray source were set as follows: ion spray, 2400 V; source temperature, 180°C; high collision gas, approximately 4×10⁻⁵ torr; and curtain gas, 25 µL/min. MS parameters for declustering potential were determined using Skyline, and collision energy parameters were generated by optimization in ramping collision energy mode (step size 1, step count 5).

1.2.5 CPTAC assay guidance

The CPTAC assay guidelines consist of 5 experimental items: response curve, repeatability, selectivity, stability, and reproducibility. Under these guidelines, only the first 2 experimental items are required to be uploaded to the CPTAC portal, and the first 4 experimental items should be completed for an assay to be recognized with a higher level of qualification in the CPTAC program (20).

The purpose and criteria of the 5 itemized experiments were as follows. The "response curve" evaluates the linearity of the target peptides and assesses several analytical properties, including limit of detection (LOD), limit of quantitation (LOQ), and lower limit of quantitation (LLOQ). "Repeatability" examines intra- and interday variability using 3 quality control (QC) samples (low, medium, and high). "Selectivity" evaluates whether endogenous components interfere with the detection of the target peptides using 3 QC samples (blank, 1/2 medium, and medium) in 6 different biological matrices of the same matrix type. "Stability" assesses the stability of target peptides under 4 storage conditions (0 h, 6 h, 24 h after at 4°C, and 28 d after at -80°C) and up to 2 freeze-thaw cycles. Finally, "Reproducibility" measures the reproducibility of the overall process of quantifying an endogenous analyte.

1.2.6 Data processing

The raw MRM-MS data were processed to calculate the peak areas of transitions using Skyline, ver. 3.6 (MacCoss Lab, University of Washington, USA) (33). Peak integration was performed manually. Figures and tables were created from the peak area ratios of stable isotope-labeled standard (SIS) peptides to endogenous peptides using Excel, ver. 2013 (Microsoft Corp., WA, USA) and R, ver. 3.2.1 (R Foundation for Statistical Computing, Vienna, Austria). Interference screening of peptides was performed using the automated detection of inaccurate and imprecise transitions (AuDIT) algorithm (34).

1.2.7 Data comparison with public repository data

The assays in our study were compared with those that have been uploaded to the CPTAC ASSAY PORTAL (https://assays.cancer.gov) for 2 experimental items: Response curves and Repeatability. A total of 1582 assays for 830 unique proteins and 1503 unique peptides have been uploaded since the portal was launched. We downloaded and used data on the assays for 193 unique proteins and 350 unique peptides, which were validated using plasma or serum specimens and 4 assay platforms and laboratories: the Broad institute (Broad), Fred Hutchison Cancer Research Center (FHCRC), Johns Hopkins University (JHU), and University of Victoria Genome British Columbia Proteomics Centre (UVGPC).

1.3 Results

1.3.1 Target peptide selection

We selected the 195 protein biomarkers that are FDA-approved or Laboratory Development Test (LDT)-approved as the initial targets (7). Five additional proteins that were not on the lists were included with the initial targets to characterize novel targets in the diagnosis of the disease. We decided not to synthesize unlabeled synthetic peptide (internal standard), which could have increased the intensity of the endogenous peptide (or light peptide). Therefore, of the 200 initial targets, 75 high-abundance proteins that had high-intensity light peptides were selected to minimize the influence of light peptides on the variability in peak area ratio (PAR) (35). Six proteins that were influenced by depletion were removed from the 75 proteins (Table 1-1) (36). Peptides that were derived from the 69 initial targets were filtered by empirical evidence of MS detectability, based on cross-referencing of MS/MS spectra in the National Institute of Standards and Technology MS/MS libraries (37). Up to 10 proteolytic peptides were selected per protein, and a total of 566 peptides were selected to represent the 69 proteins in subsequent analyses. Unique peptides were chosen by aligning the target peptide sequences to the corresponding regions of source proteins with the BLAST tool, National Center for Biotechnology Information (38). As a result, 69 proteins and 343 unique peptides were selected for further analysis.

The next step involved high-throughput quantification to establish sensitive and accurate assays for peptide measurements. We were unable to afford SIS peptides for all 343 surrogate peptides. Thus, to select the best peptides for quantitative analysis, a pooled normal serum sample without an internal standard was analyzed in triplicate, which led to the selection of 1 peptide (69 peptides) per protein with high reproducibility [coefficient of variation (CV) < 20%] and peak intensity. Ultimately, 69 SIS peptides were synthesized prior to the MRM-MS assay development. Of the 69 peptides

9

that were surveyed, 37 peptides, corresponding to 37 proteins, were verified to be interference-free in the pooled normal serum sample. (Table 1-2). The other 32 peptides did not meet the criteria of the AuDIT algorithm (34). The overall scheme is presented in Figure 1-1, and more details are supplied in Supporting Information.

Figure 1-1. Workflow for selecting targets.

Assay Validation (CPTAC guideline)

Workflow for building and validating the MRM-MS assay with the appropriate targets following CPTAC guidelines, showing the number of proteins (peptides). Of the 252 proteins from Anderson's group (FDA or LDT targets) and Hortin's group (high concentrations in the blood), the 64 proteins representing the 548 tryptic peptides were common to both references. The 69 unique peptides were selected depending on reproducible detection and highest peak intensity. With the 37 targets detected by interference free-transition, the analytical method was validated following CPTAC guidelines, comprising 5 experimental categories. The 34 proteins were finally validated by MRM-MS assay.

N.	Gene Symbol	Uniprot ID	Uniprot Accession	Protein name	FDA or LDT targets (195)	Hortin et al, 2008 (127)	Initial targets (75)
1	A1BG	A1BG	P04217	Alpha-1B-gly coprotein	N	Ύ	Ň
2	A2M	A2MG	P01023	Alpha-2-macroglobulin	Y	Y	Y
3	ACE	ACE	P12821	Angiotensin-converting enzy me	Y	N	N
4	ACPP	PPAP	P15309	Prostatic acid phosphatase	Y	N	N
5	ADA	ADA	P00813	Adenosine deaminase	Y	N	N
6	ADAMTS13	ATS13	Q76LX8	A disintegrin and metalloproteinase with thrombospondin motifs 13	Y	N	N
7	ADIPOQ	ADIPO	Q15848	Adiponectin	Y	Y	Y
8	AFM	AFAM	P43652	Afamin	N	Y	N
9	AFP	FETA	P02771	Alpha-fetoprotein	Y	N	N
10	AGT	ANGT	P01019	Angiotensinogen	Y	Y	Y
11	AHSG	FETUA	P02765	Alpha-2-HS-gly coprotein	Y	Y	Y
12	ALB	ALBU	P02768	Serum albumin	Y	Y	Y
13	ALDOA	ALDOA	P04075	Fructose-bisphosphate aldolase A	Y	N	N
14	ALPL	PPBT	P05186	Alkaline phosphatase, tissue-nonspecific isozyme	Y	N	N
15	AMBP	AMBP	P02760	Protein AMBP [Cleaved into: Alpha-1-microglobulin	N	Y	Y ^a
16	AMH	MIS	P03971	Muellerian-inhibiting factor	Y	N	N
17	AMY 2A	AMYP	P04746	Pancreatic alpha-amy lase	Y	N	N
18	APCS	SAMP	P02743	Serum amy loid P-component	N	Y	N
19	APOA1	APOA1	P02647	Apolipoprotein A-I	N	Y	Y
20	APOA2	APOA2	P02652	Apolipoprotein A-II	N	Y	Y ^a
21	APOA4	APOA4	P06727	Apolipoprotein A-IV	N	Y	N
22	APOB	APOB	P04114	Apolipoprotein B-100	Y	Y	Y
23	APOC1	APOC1	P02654	Apolipoprotein C-I	N	Y	N
24	APOC2	APOC2	P02655	Apolipoprotein C-II	N	Y	N
25	APOC3	APOC3	P02656	Apolipoprotein C-III	N	Y	N
26	APOC4	APOC4	P55056	Apolipoprotein C-IV	N	Y	N
27	APOD	APOD	P05090	Apolipoprotein D	N	Y	N
28	APOE	APOE	P02649	Apolipoprotein E	N	Y	Y ^a
29	APOF	APOF	Q13790	Apolipoprotein F	N	Y	N
30	APOH	APOH	P02749	Beta-2-gly coprotein 1	N	Y	Y ^a
31	APOL1	APOL1	O14791	Apolipoprotein L1	N	Y	N
32	APOM	APOM	O95445	Apolipoprotein M	N	Y	N
33	APP	A4	P05067	Amy loid beta A4 protein	Y	N	N
34	AZGP1	ZA2G	P25311	Zinc-alpha-2-gly coprotein	N	Y	N
35	B2M	B2MG	P61769	Beta-2-microglobulin	Y	Ŷ	Ŷ
36	BCHE	CHLE	P06276	Cholinesterase	Y	Y	Y
37	BGLAP	OSTCN	P02818	Osteocalcin	Y	N	N
38	BTD	BTD	P43251	Biotinidase	Y	N	N

Table 1-1. List of target proteins for MRM-MS assay.

39	C1QA	C1QA	P02745	Complement C1q subcomponent subunit A	Y	Y	Y
40	C1QB	C1QB	P02746	Complement C1q subcomponent subunit B	Y	Y	Y
41	C1QC	C1QC	P02747	Complement C1q subcomponent subunit C	Y	Y	Y
42	C1R	C1R	P00736	Complement C1r subcomponent	Y	Y	Y
43	C1S	C1S	P09871	Complement C1s subcomponent	Y	Y	Y
44	C2	CO2	P06681	Complement C2	Y	Y	Y
45	C3	CO3	P01024	Complement C3	Y	Y	Y
46	C4A	CO4A	P0C0L4	Complement C4-A	Y	Y	Y
47	C4B	CO4B	P0C0L5	Complement C4-B	N	Y	N
48	C4BPA	C4BPA	P04003	C4b-binding protein alpha chain	N	Y	N
49	C4BPB	C4BPB	P20851	C4b-binding protein beta chain	N	Y	N
50	C5	CO5	P01031	Complement C5	Y	Y	Y
51	C6	CO6	P13671	Complement component C6	Y	Y	Y
52	C7	C07	P10643	Complement component C	Y	Y	Y
53	C8A	CO8A	P07357	Complement component C8 alpha chain	Y	Y	Y
54	C8B	CO8B	P07358	Complement component C8 beta chain	Y	Y	Y
55	C8G	CO8G	P07360	Complement component C8 gamma chain	Y	Y	Y
56	C9	CO9	P02748	Complement component C9	Y	Y	Y
57	CALCA	CALC	P01258	Calcitonin	Y	N	N
58	ССК	CCKN	P06307	Cholecy stokinin	Y	N	N
59	CEACAM5	CEAM5	P06731	Carcinoembry onic antigen-related cell adhesion molecule 5	Y	N	N
60	CFB	CFAB	P00751	Complement factor B	Y	Y	Y
61	CFD	CFAD	P00746	Complement factor D	N	Y	N
62	CFH	CFAH	P08603	Complement factor H	Y	Y	Y
63	CFHR1	FHR1	Q03591	Complement factor H-related protein 1	N	Y	N
64	CFI	CFAI	P05156	Factor I, heavy chain	N	Y	N
65	CFP	PROP	P27918	Properdin	N	Y	N
66	CGA	GLHA	P01215	Gly coprotein hormones alpha chain	Y	N	N
67	CGB3	CGB3	P0DN86	Choriogonadotropin subunit beta 3	Y	N	N
68	CHGA	CMGA	P10645	Chromogranin-A	Y	N	N
69	CKB	KCRB	P12277	Creatine kinase B-type	Y	N	N
70	СКМ	KCRM	P06732	Creatine kinase M-type	Y	N	N
71	CLEC3B	TETN	P05452	Tetranectin	N	Y	N
72	CLU	CLUS	P10909	Clusterin	N	Y	N
73	CP	CERU	P00450	Ceruloplasmin	Y	Y	Y
74	CPB2	CBPB2	Q96IY4	Carboxy peptidase B2	N	Y	N
75	CR1L	CR1L	Q2VPA4	Complement component receptor 1-like protein	Y	N	N
76	CRP	CRP	P02741	C-reactive protein	Y	Y	Y
77	CSF2	CSF2	P04141	Granulocy te-macrophage colony -stimulating factor	Y	N	N
78	CSF3	CSF3	P09919	Granulocy te colony -stimulating factor	Y	N	N
79	CSH1	Q6PF11	Q6PF11	Chorionic somatomammotropin hormone 1	Y	N	N
80	CST3	CYTC	P01034	Cy statin-C	Ŷ	Y	Ŷ
81	CXCL8	IL8	P10145	Interleukin-8	Y	N	N

82	DDC	DDC	P20711	Aromatic-L-amino-acid decarboxy lase	Y	N	N
83	EGF	EGF	P01133	Pro-epidermal growth factor	Y	N	N
84	EGFR	EGFR	P00533	Epidermal growth factor receptor	Y	N	N
85	ELA3A	Q96QL8	Q96QL8	Elastase 3A, pancreatic	Y	N	N
86	ENGASE	ENASE	Q8NFI3	Cytosolic endo-beta-N-acety Iglucosaminidase	Y	N	N
87	ENO2	ENOG	P09104	Gamma-enolase	Y	N	N
88	EPO	EPO	P01588	Erythropoietin	Y	N	N
89	ERBB2	ERBB2	P04626	Receptor ty rosine-protein kinase erbB-2	Y	N	N
90	F10	FA10	P00742	Coagulation factor X	Y	Y	Y
91	F11	FA11	P03951	Coagulation factor XI	Y	Y	Y
92	F12	FA12	P00748	Coagulation factor XII	Y	Y	Y
93	F13A1	F13A	P00488	Coagulation factor XIII A chain	Y	Y	Y
94	F13B	F13B	P05160	Coagulation factor XIII B chain	Y	Y	Y
95	F2	THRB	P00734	Prothrombin	Y	Y	Y
96	F5	FA5	P12259	Coagulation factor V	Y	Y	Y
97	F7	FA7	P08709	Coagulation factor VII	Y	N	N
98	F8	FA8	P00451	Coagulation factor VIII	Y	N	N
99	F9	FA9	P00740	Coagulation factor IX	Y	Y	Y
100	FBLN1	FBLN1	P23142	Fibulin-1	N	Y	N
101	FCN2	FCN2	Q15485	Ficolin-2	N	Y	N
102	FCN3	FCN3	O75636	Ficolin-3		Y	N
103	FGA	FIBA	P02671	Fibrinogen alpha chain	Y	Y	Y
104	FGB	FIBB	P02675	Fibrinogen beta chain		Y	Y
105	FGF2	FGF2	Q60487	Fibroblast growth factor 2		N	N
106	FGG	FIBG	P02679	Fibrinogen gamma chain	Y	Y	Y
107	FN1	FINC	P02751	Fibronectin	Y	Y	Y
108	FSHB	FSHB	P01225	Follitropin subunit beta	Y	N	N
109	FTH1	FRIH	P02794	Ferritin heavy chain	Y	N	N
110	FTL	FRIL	P02792	Ferritin light chain	Y	N	N
111	GC	VTDB	P02774	Vitamin D-binding protein	Y	Y	Y
112	GGT1	GGT1	P19440	Gamma-glutamy Itranspeptidase 1	Y	N	N
113	GH1	SOMA	P01241	Somatotropin	Y	N	N
114	GHR	GHR	P10912	Growth hormone receptor	Y	N	N
115	GHRH	SLIB	P01286	Somatoliberin	Y	N	N
116	GIP	GIP	P09681	Gastric inhibitory polypeptide	Y	N	N
117	GLA	AGAL	P06280	Alpha-galactosidase A	Y	N	N
118	GOT1	AATC	P17174	Aspartate aminotransferase, cy toplasmic	Y	N	N
119	GPI	G6PI	P06744	Glucose-6-phosphate isomerase	Y	N	N
120	GPLD1	PHLD	P80108	Phosphatidy linositol-gly can-specific phospholipase D	N	Y	N
121	GPT	ALAT1	P24298	Alanine aminotransferase 1	Y	N	N
122	GPX1	GPX1	P07203	Glutathione peroxidase 1	Y	N	N
123	GPX3	GPX3	P22352	Glutathione peroxidase 3	N	Y	N
124	GSN	GELS	P06396	Gelsolin	N	Y	Y ^a

125	GUSB	BGLR	P08236	Beta-glucuronidase	Y	N	N
126	HABP2	HABP2	Q14520	Hyaluronan-binding protein 2	N	Y	N
127	HBA1	HBA	P69905	Hemoglobin subunit alpha	Y	Y	Y
128	HBB	HBB	P68871	Hemoglobin subunit beta	Y	Y	Y
129	HEXA	HEXA	P06865	Beta-hexosaminidase subunit alpha	Y	N	N
130	HEXB	HEXB	P07686	Beta-hexosaminidase subunit beta	Y	N	N
131	HP	HPT	P00738	Haptoglobin	Y	Y	Y
132	HPR	HPTR	P00739	Haptoglobin-related protein	N	Y	N
133	HPX	HEMO	P02790	Hemopexin	Y	Y	Y
134	HRG	HRG	P04196	Histidine-rich gly coprotein	N	Y	N
135	ICAM1	ICAM1	P05362	Intercellular adhesion molecule 1	Y	N	N
136	IFNG	IFNG	P01579	Interf eron gamma	Y	N	N
137	IGF1	IGF1	P05019	Insulin-like growth factor I	Y	N	N
138	IGF2	IGF2	P01344	Insulin-like growth factor II	Y	N	N
139	IGFBP1	IBP1	P08833	Insulin-like growth factor-binding protein 1	Y	N	N
140	IGFBP2	IBP2	P18065	Insulin-like growth factor-binding protein 2	Y	N	N
141	IGFBP3	IBP3	P17936	Insulin-like growth factor-binding protein 3	Y	Y	Y
142	IGHG2	IGHG2	P01859	Immunoglobulin heavy constant gamma 2	N	Y	N
143	IGHM	IGHM	P01871	Immunoglobulin heavy constant mu	N	Y	N
144	IGLC2	IGLC2	P0DOY2	Immunoglobulin lambda constant 2	N	Y	N
145	IL10	IL10	P22301	Interleukin-10	Y	N	N
146	IL11	IL11	P20809	Interleukin-11	Y	N	N
147	IL12A	IL12A	P29459	Interleukin-12 subunit alpha	Y	N	N
148	IL12B	IL12B	P29460	Interleukin-12 subunit beta	Y	N	N
149	IL13	IL13	P35225	Interleukin-13	Y	N	N
150	IL15	IL15	P40933	Interleukin-15	Y	N	N
151	IL16	Q9UME6	Q9UME6	Pro-interleukin-16 [Cleaved into: Interleukin-16	Y	N	N
152	IL18	IL18	Q14116	Interleukin-18	Y	N	N
153	IL1A	IL1A	P01583	Interleukin-1 alpha	Y	N	N
154	IL1B	IL1B	P01584	Interleukin-1 beta	Y	N	N
155	IL1R2	IL1R2	P27930	Interleukin-1 receptor type 2	Y	N	N
156	IL1RN	IL1RA	P18510	Interleukin-1 receptor antagonist protein	Y	N	N
157	IL2	IL2	P60568	Interleukin-2	Y	N	N
158	IL2RA	IL2RA	P01589	Interleukin-2 receptor subunit alpha	Y	N	N
159	IL3	IL3	P08700	Interleukin-3	Y	N	N
160	IL4	IL4	P05112	Interleukin-4	Y	N	N
161	IL5	IL5	P05113	Interleukin-5	Y	N	N
162	IL6	IL6	P05231	Interleukin-6	Ý	N	N
163	IL7	IL7	P13232	Interleukin-7	Y	N	N
164	IL9	IL9	P15248	Interleukin-9	Y	N	N
165	INHA	INHA	P05111	Inhibin alpha chain	Y	N	N
166	INHBA	INHBA	P08476	Inhibin beta A chain	Y	N	N
167	INHBB	INHBB	P09529	Inhibin beta B chain	Y	N	N

168	INS	INS	P01308	Insulin	Y	N	N
169	ITIH1	ITIH1	P19827	Inter-alpha-trypsin inhibitor heavy chain H1	N	Y	N
170	ITIH2	ITIH2	P19823	Inter-alpha-trypsin inhibitor heavy chain H2	N	Y	N
171	ITIH3	ITIH3	Q06033	Inter-alpha-trypsin inhibitor heavy chain H3	N	Y	N
172	ITIH4	ITIH4	Q14624	Inter-alpha-trypsin inhibitor heavy chain H4	N	Y	N
173	JCHAIN	IGJ	P01591	Immunoglobulin J chain	N	Y	N
174	KLK3	KLK3	P07288	Prostate-specific antigen	Y	N	N
175	KLKB1	KLKB1	P03952	Plasma kallikrein	N	Y	N
176	KNG1	KNG1	P01042	Kininogen-1	Y	Y	Y
177	KRT19	K1C19	P08727	Keratin, type I cytoskeletal 19	Y	N	N
178	LBP	LBP	P18428	Lipopoly saccharide-binding protein	N	Y	N
179	LDHA	LDHA	P00338	L-lactate dehy drogenase A chain	Y	N	N
180	LDHB	LDHB	P07195	L-lactate dehy drogenase B chain	Y	N	N
181	LEP	LEP	P41159	Leptin	Y	N	N
182	LHB	LSHB	P01229	Lutropin subunit beta	Y	N	N
183	LPA	APOA	P08519	Apolipoprotein A	Y	Y	Y
184	LRG1	A2GL	P02750	Leucine-rich alpha-2-gly coprotein	N	Y	N
185	LTA	TNFB	P01374	Lymphotoxin-alpha	Y	N	N
186	LTF	TRFL	P02788	Lactotransferrin	Y	N	N
187	LYZ	LYSC	P61626	Ly sozy me C	Y	Y	Y
188	MB	MYG	P02144	Myoglobin	Y	N	N
189	MBL2	MBL2	P11226	Mannose-binding protein C		Y	Y
190	MPO	PERM	P05164	Myeloperoxidase	Y	N	N
191	MSLN	MSLN	Q13421	Mesothelin		N	N
192	MUC1	MUC1	P15941	Mucin-1	Y	N	N
193	MUC16	MUC16	Q8WXI7	Mucin-16	Y	N	N
194	NAGLU	ANAG	P54802	Alpha-N-acety Iglucosaminidase	Y	N	N
195	NPPB	ANFB	P16860	Natriuretic peptides B	Y	N	N
196	ORM1	A1AG1	P02763	Alpha-1-acid glycoprotein 1	Y	Y	Y
197	ORM2	A1AG2	P19652	Alpha-1-acid gly coprotein 2	N	Y	N
198	OXT	NEU1	P01178	Oxy tocin-neurophy sin 1	Y	N	N
199	PGC	PEPC	P20142	Gastricsin	Y	N	N
200	PLA2G1B	PA21B	P04054	Phospholipase A2	Y	N	N
201	PLAT	TPA	P00750	Tissue-type plasminogen activator	Y	N	N
202	PLAU	UROK	P00749	Urokinase-type plasminogen activator	Y	N	N
203	PLG	PLMN	P00747	Plasminogen	Y	Y	Y
204	PNLIP	LIPP	P16233	Pancreatic triacy Igly cerol lipase	Y	N	N
205	PON1	PON1	P27169	Serum paraoxonase/ary lesterase 1	N	Y	N
206	PPBP	CXCL7	P02775	Platelet basic protein	Y	N	N
207	PRL	PRL	P01236	Prolactin	Y	N	N
208	PROC	PROC	P04070	Vitamin K-dependent protein C	Y	Y	Y
209	PROS1	PROS	P07225	Vitamin K-dependent protein S	Y	Y	Y
210	PROZ	PROZ	P22891	Vitamin K-dependent protein Z	N	Y	N

211	PRSS1	TRY1	P07477	Try psin-1	Y	N	N
212	PTH	PTHY	P01270	Parathy rold hormone	Y	N	N
213	RBP4	RET4	P02753	Retinol-binding protein 4	Y	Y	Y
214	REN	RENI	P00797	Renin	Y	N	N
215	RNASE3	ECP	P12724	Eosinophil cationic protein	Y	N	N
216	S100A8	S10A8	P05109	Protein S100-A8	Y	Y	Y
217	S100A9	S10A9	P06702	Protein S100-A9	Y	Y	Y
218	S100B	S100B	P04271	Protein S100-B	Y	N	N
219	SAA1	SAA1	P0DJI8	Serum amy loid A-1 protein	N	Y	N
220	SAA4	SAA4	P35542	Serum amy loid A-4 protein	N	Y	N
221	SERPINA1	A1AT	P01009	Alpha-1-antitry psin	Y	Y	Y
222	SERPINA3	AACT	P01011	Alpha-1-antichy motry psin	N	Y	N
223	SERPINA4	KAIN	P29622	Kallistatin	N	Y	N
224	SERPINA5	IPSP	P05154	Plasma serine protease inhibitor	N	Y	N
225	SERPINA6	CBG	P08185	Corticosteroid-binding globulin	Y	Y	Y
226	SERPINA7	THBG	P05543	Thy roxine-binding globulin	Y	Y	Y
227	SERPINB3	SPB3	P29508	Serpin B3	Y	N	N
228	SERPINC1	ANT3	P01008	Antithrombin-III	Y	Y	Y
229	SERPIND1	HEP2	P05546	Heparin cof actor 2	Y	Y	Y
230	SERPINE1	PAI1	P05121	Plasminogen activator inhibitor 1	Y	N	N
231	SERPINF1	PEDF	P36955	Pigment epithelium-derived factor	N	Y	N
232	SERPINF2	A2AP	P08697	Alpha-2-antiplasmin	Y	Y	Y
233	SERPING1	IC1	P05155	Plasma protease C1 inhibitor	Y	Y	Y
234	SHBG	SHBG	P04278	Sex hormone-binding globulin	Y	Y	Y
235	SORD	DHSO	Q00796	Sorbitol dehy drogenase	Y	N	N
236	TF	TRFE	P02787	Serotransferrin	Y	Y	Y
237	TFRC	TFR1	P02786	Transferrin receptor protein 1	Y	Y	Y
238	TG	THYG	P01266	Thy roglobulin	Y	N	N
239	TGFB1	TGFB1	P01137	Transforming growth factor beta-1	Y	N	N
240	TNF	TNFA	P01375	Tumor necrosis factor	Y	N	N
241	TNFRSF1A	TNR1A	P19438	Tumor necrosis factor receptor superfamily member 1A	Y	N	N
242	TNFRSF1B	TNR1B	P20333	Tumor necrosis factor receptor superfamily member 1B	Y	N	N
243	TNFRSF8	TNR8	P28908	Tumor necrosis factor receptor superfamily member 8	Y	N	N
244	TNNI3	TNNI3	P19429	Troponin I, cardiac muscle	Y	N	N
245	TNNT2	TNNT2	P45379	Troponin T, cardiac muscle	Y	N	N
246	TRH	TRH	P20396	Pro-thy rotropin-releasing hormone	Y	N	N
247	TSHB	TSHB	P01222	Thy rotropin subunit beta	Y	N	N
248	TTR	TTHY	P02766	Transthy retin	Ý	Ŷ	Ý
249	VEGFA	VEGFA	P15692	Vascular endothelial growth factor A	Y	N	N
250	VTN	VTNC	P04004	Vitronectin	N	Y	N
251	VWF	VWF	P04275	Von Willebrand Factor	Y	Y	Y
252	WFDC2	WFDC2	Q14508	WAP four-disulfide core domain protein 2	Y	N	N

			Infor	mation of target protein and peptide			AuDIT ana	alysis
N.	Gene symbol	Uniprot ID	Uniprot Accession	Protein Name	Peptide Sequence	Quantification ion ^a	P value	CV
1	AMBP	AMBP	P02760	Protein AMBP	ETLLQDFR	2.y6.1	0.2475	0.12
						2.y4.1	0.7607	0.04
						2.y3.1	0.8590	0.09
2	APOA2	APOA2	P02652	Apolipoprotein A2	SPELQAEAK	2.y6.1	0.1597	0.01
						2.y4.1	0.2184	0.02
						2.y8.2	0.9417	0.01
						2.b2.1	0.8037	0.03
3	A2M	A2MG	P01023	Alpha-2-macroglobulin	FEVQVTVPK	2.b2.1	0.5558	0.04
						2.y2.1	0.8219	0.03
						2.y4.1	0.9663	0.05
						2.y5.1	0.8625	0.12
						2.y6.1	0.8452	0.09
						2.y7.1	0.7624	0.09
4	APOB	APOB	P04114	Apolipoprotein B-100	ALVDTLK	2.b2.1	0.8989	0.03
						2.b3.1	0.9889	0.08
						2.y3.1	0.8733	0.13
						2.y4.1	0.7054	0.06
						2.y5.1	0.9873	0.09
						2.y6.1	0.9941	0.13

Table 1-2. Lists of interference-free product ions examined by AuDIT analysis.

5	APOE	APOE	P02649	Apolipoprotein E	LAVYQAGAR	2.y7.1	0.1785	0.04
						2.y6.1	0.4967	0.04
						2.y5.1	0.7550	0.03
						2.y4.1	0.0406	0.04
6	APOH	APOH	P02749	Apolipoprotein H	ATVVYQGER	2.y7.1	0.9676	0.04
						2.y6.1	0.3132	0.02
						2.y5.1	0.0122	0.02
						2.b3.1	0.0886	0.01
7	B2M	B2MG	P61769	Beta-2-microglobulin	VNHVTLSQPK	3.b3.1	0.8816	0.08
						3.b4.1	0.8615	0.13
						3.b5.1	0.8937	0.14
						3.y5.1	0.9900	0.08
						3.y6.1	0.9864	0.15
						3.y7.1	0.1545	0.19
8	BCHE	CHLE	P06276	Cholinesterase	IFFPGV SEFGK	2.b2.1	0.9261	0.09
						2.y5.1	1.0000	0.16
						2.y7.1	0.8531	0.08
						2.y8.1	0.7717	0.09
						2.y8.2	0.8399	0.14
						2.y9.1	0.9464	0.11
9	C1QA	C1QA	P02745	Complement C1q subcomponent subunit A	SLGFCDTTNK	2.b2.1	0.9845	0.08
						2.b3.1	0.6955	0.16
						2.y4.1	0.1842	0.11
						2.y5.1	0.6495	0.14

						2.y6.1	1.0000	0.10
						2.y8.1	0.9465	0.06
10	C2	CO2	P06681	Complement C2	LNINLK	2.b2.1	0.9967	0.19
						2.y1.1	0.8968	0.13
						2.y2.1	0.0187	0.15
						2.y3.1	0.3665	0.19
						2.y4.1	1.0000	0.15
						2.y5.1	1.0000	0.17
11	C3	CO3	P01024	Complement C3	DFDFVPPVVR	2.b2.1	0.5193	0.04
						2.b3.1	0.8248	0.05
						2.y5.1	0.1130	0.02
						2.y6.1	0.2954	0.04
						2.y7.1	0.2659	0.06
						2.y8.1	0.0298	0.08
12	C5	CO5	P01031	Complement C5	LQGTLPVEAR	2.b2.1	0.8622	0.06
						2.y2.1	0.9559	0.06
						2.y5.1	0.9605	0.02
						2.y6.1	0.9980	0.13
						2.y7.1	0.2553	0.06
						2.y8.1	0.9967	0.10
13	C6	CO6	P13671	Complement component C6	ALQEYAAK	2.b2.1	0.9866	0.15
						2.b3.2	0.6244	0.04
						2.y2.1	0.2904	0.08
						2.y4.1	0.8143	0.05

						2.y5.1	0.7735	0.15
						2.y6.1	0.6488	0.11
14	C7	CO7	P10643	Complement component C	LSGNVLSYTFQVK	2.b2.1	0.9129	0.08
						2.b4.1	1.0000	0.15
						2.b5.1	0.8935	0.19
						2.y7.1	0.9449	0.05
						2.y8.1	0.9997	0.14
						2.y6.1	0.9962	0.04
15	C8A	CO8A	P07357	Complement component C8 alpha chain	LYYGDDEK	2.b2.1	0.7556	0.09
						2.b4.2	0.9607	0.08
						2.y5.1	0.9992	0.07
						2.y6.1	0.9989	0.07
						2.y7.1	0.9533	0.15
16	C8B	CO8B	P07358	Complement component C8 beta chain	YEFILK	2.b2.1	0.4644	0.11
						2.y1.1	0.7428	0.14
						2.y2.1	0.8635	0.16
						2.y4.1	0.6131	0.13
						2.y4.2	0.0053	0.09
						2.y5.1	0.1309	0.18
17	C9	CO9	P02748	Complement component C9	VVEESELAR	2.b2.1	0.9089	0.07
						2.y2.1	0.8351	0.18
						2.y3.1	0.7394	0.17
						2.y5.1	0.6830	0.07
						2.y6.1	0.6030	0.08

						2.y7.1	0.9246	0.10
18	CFB	CFAB	P00751	Complement factor B	EELLPAQDIK	2.b2.1	0.8074	0.02
						2.b3.1	0.1088	0.05
						2.y2.1	0.0061	0.06
						2.y5.1	0.0251	0.09
						2.y6.1	0.2405	0.04
						2.y7.1	0.7291	0.03
19	CFH	CFAH	P08603	Complement factor H	VGEVLK	2.b2.1	0.2287	0.00
						2.b3.1	0.2661	0.07
						2.y1.1	0.0044	0.04
						2.y3.1	0.0011	0.07
						2.y4.1	0.1411	0.04
						2.y5.1	0.0908	0.03
20	CP	CERU	P00450	Ceruloplasmin	GAYPLSIEPIGVR	2.y10.1	0.0939	0.06
						2.y5.1	0.0006	0.17
						2.y6.1	0.0002	0.09
						2.y7.1	0.5150	0.13
						2.y8.1	0.7508	0.11
						2.y9.1	0.4158	0.12
21	CRP	CRP	P02741	C-reactive protein	ESDTSYVSLK	2.b2.1	1.0000	0.18
						2.y1.1	0.8434	0.12
						2.y3.1	0.9720	0.18
						2.y4.1	0.8565	0.12
						2.y5.1	0.1432	0.18

	2.y6.1	0.8422 0	0 18					
			0.10					
22 CST3 CYTC P01034 Cystatin-C ALDFAVG	GEYNK 2.b2.1	0.0414 0	0.06					
	2.b3.1	0.1042 0	0.18					
	2.y5.1	0.0469 0	0.10					
	2.y6.1	0.5433 0	0.17					
	2.y7.1	0.4308 0	0.11					
	2.y9.1	0.2989 0	80.0					
23 F2 THRB P00734 Prothrombin ELLESYID	OGR 2.b2.1	0.4727 0	80.0					
	2.y4.1	0.3316 0	0.12					
	2.y5.1	0.9522 0	0.16					
	2.y6.1	0.9694 0	0.06					
	2.y7.1	0.7167 0	0.09					
	2.y8.1	1.0000 0	0.18					
24 F9 FA9 P00740 Coagulation factor IX SALVLQY	'LR 2.b2.1	0.9643 0	0.19					
	2.b3.1	0.7667 0	0.01					
	2.y4.1	0.3665 0	0.05					
	2.y5.1	0.9711 0	0.07					
	2.y6.1	0.9635 0	0.13					
25 F10 FA10 P00742 Coagulation factor X TGIVSGF0	GR 2.b2.1	0.0425 0	0.16					
	2.b3.1	0.5520 0	0.12					
	2.y4.1	0.8154 0	0.13					
	2.y5.1	0.8076 0	0.07					
	2.y6.1	0.5761 0	0.11					
	2.y7.1	0.0366 0	0.10					
26	F11	FA 11	P03951	Coagulation factor XI	VVSGFSLK	2.b2.1	0.5930	0.13
----	--------	-------	--------	---	---------------	--------	--------	------
						2.y3.1	0.2553	0.20
						2.y5.1	0.2932	0.16
						2.y6.1	0.8633	0.10
						2.y7.1	0.0002	0.11
27	GSN	GELS	P06396	Gelsolin	AGALNSNDAFVLK	2.y9.1	0.5243	0.09
						2.y8.1	0.6882	0.16
						2.b3.1	0.0761	0.10
28	IGFBP3	IBP3	P17936	Insulin-like grow th factor-binding protein 3	FLNVLSPR	2.b2.1	0.4577	0.12
						2.b4.1	0.5577	0.01
						2.y3.1	0.0083	0.09
						2.y4.1	0.7284	0.08
						2.y5.1	1.0000	0.07
						2.y6.1	0.7592	0.07
29	LYZ	LYSC	P61626	Lysozyme C	WESGYNTR	2.b2.1	0.9843	0.11
						2.y5.1	0.3790	0.06
						2.y6.1	0.8789	0.09
30	PLG	PLMN	P00747	Plasminogen	LFLEPTR	2.b2.1	0.5997	0.05
						2.b3.1	0.3179	0.06
						2.y3.1	0.2521	0.11
						2.y4.1	0.4726	0.04
						2.y5.1	0.9868	0.05
						2.y6.1	0.8828	0.02
31	PROC	PROC	P04070	Vitamin K-dependent protein C	TFVLNFIK	2.b2.1	0.9564	0.19

						2.y3.1	0.6758	0.08
						2.y4.1	0.8704	0.19
						2.y5.1	1.0000	0.19
						2.y6.1	1.0000	0.04
32	PROS1	PROS	P07225	Vitamin K-dependent protein S	YLVCLR	2.b2.1	0.7924	0.12
						2.y3.1	0.4293	0.07
						2.y4.1	0.2902	0.04
						2.y5.1	0.8178	0.18
33	SERPINC1	ANT3	P01008	Antithrombin-III	FDTISEK	2.b2.1	0.2474	0.04
						2.b3.1	0.0332	0.11
						2.y3.1	0.0866	0.04
						2.y4.1	0.1437	0.09
						2.y5.1	0.4035	0.04
						2.y6.1	0.5806	0.05
34	SERPINF2	A2AP	P08697	Alpha-2-antiplasmin	LGNQEPGGQTALK	2.b3.1	0.9694	0.12
						2.b4.1	0.9198	0.09
						2.y1.1	0.9875	0.09
						2.y7.1	0.9974	0.16
						2.y8.1	0.6086	0.03
						2.y9.1	0.5700	0.02
35	SERPING1	IC1	P05155	Plasma protease C1 inhibitor	LLDSLPSDTR	2.b2.1	0.9683	0.17
						2.b3.1	0.8575	0.16
						2.y2.1	0.7104	0.12
						2.y5.1	0.4496	0.03

36 SHBG SHBG P04278 Sex hormone-binding globulin IALGGLLFPASNLR 2,92.1 0.9995 0.06 36 SHBG SHBG P04278 Sex hormone-binding globulin IALGGLLFPASNLR 2,02.1 0.9995 0.06 2,91.1 0.0400 2,05.1 0.2687 0.06 2,92.1 0.0400 0.15 2,92.1 0.0400 0.16 2,92.1 0.0400 0.16 2,92.1 0.0400 0.16 2,92.1 0.0400 0.16 2,92.1 0.0400 0.16 2,92.1 0.2755 0.01 37 TTR TTHY P02766 Transthyretin VLDAVR 2,02.1 0.2619 0.18 2,91.1 0.0182 0.114 0.1358 0.11 2,92.1 0.0141 0.0141 0.0141 0.0141									
36 SHBG SHBG P04278 Sex hormone-binding globulin ALGGLLFPASNLR 2.b2.1 0.0995 0.06 36 SHBG P04278 Sex hormone-binding globulin ALGGLLFPASNLR 2.b2.1 0.2687 0.06 2.y1.1 0.0040 0.15 2.y6.1 0.2755 0.01 37 TTR TTHY P02766 Transthyretin VLDAVR 2.b2.1 0.2619 0.08 2.y3.1 0.0182 0.18 0.14 0.15 0.14 0.15							2.y7.1	0.8073	0.11
36 SHBG SHBG P04278 Sex hormone-binding globulin IALGGLLFPASNLR 2.b2.1 0.9995 0.06 2.b5.1 0.2687 0.06 2.y1.1 0.0040 0.15 2.y6.1 0.2755 0.01 2.y7.1 0.8184 0.04 37 TTR TTHY P02766 Transthyretin VLDAVR 2.b2.1 0.2619 0.08 2.y3.1 0.0182 0.13 2.y3.1 0.1358 0.13 37 TTR TTHY P02766 Transthyretin VLDAVR 2.b2.1 0.2619 0.08 2.y3.1 0.1358 0.13 2.y3.1 0.1358 0.13 2.y5.1 0.0141 0.0852 0.041 0.0141 0.051							2.y8.1	0.9136	0.07
37 TTR TTHY P02766 Transthyretin VLDAVR 2.b5.1 0.2687 0.06 2.y6.1 0.0040 0.15 2.y7.1 0.8184 0.04 2.y8.1 0.8715 0.11 2.y8.1 0.2619 0.2619 2.y1.1 0.0182 0.18 2.y2.1 0.0182 0.13 2.y4.1 0.0185 0.13 2.y4.1 0.0852 0.04 2.y5.1 0.0141 0.055	36	SHBG	SHBG	P04278	Sex hormone-binding globulin	IALGGLLFPASNLR	2.b2.1	0.9995	0.06
37 TTR TTHY P02766 Transthyretin VLDAVR 2.y2.1 0.0040 0.15 37. TTR TTHY P02766 Transthyretin VLDAVR 2.b2.1 0.2619 0.018 2.y3.1 0.0182 0.118 0.018 0.018 0.018 2.y3.1 0.0182 0.118 0.118 0.118 2.y4.1 0.0182 0.118 0.118 2.y5.1 0.0141 0.0141 0.0141							2.b5.1	0.2687	0.06
37 TTR TTHY P02766 Transthyretin VLDAVR 2.y6.1 0.2755 0.01 37 TTR TTHY P02766 Transthyretin VLDAVR 2.b2.1 0.2619 0.08 2.y3.1 0.0182 0.18 0.1358 0.13 2.y4.1 0.0182 0.13 0.13 2.y5.1 0.0141 0.052 0.04							2.y1.1	0.0040	0.15
37 TTR TTHY P02766 Transthyretin VLDAVR 2.92.1 0.8184 0.04 37 TTR TTHY P02766 Transthyretin VLDAVR 2.b2.1 0.2619 0.08 2.93.1 0.0182 0.13 2.93.1 0.1358 0.13 2.94.1 0.0852 0.04 2.95.1 0.0141 0.05							2.y6.1	0.2755	0.01
37 TTR TTHY P02766 Transthyretin VLDAVR 2.92.1 0.2619 0.08 2.93.1 0.0182 0.11 0.0182 0.18 2.93.1 0.0158 0.13 2.94.1 0.0852 0.04 2.95.1 0.0141 0.051							2.y7.1	0.8184	0.04
37 TTR TTHY P02766 Transthyretin VLDAVR 2.b2.1 0.2619 0.08 2.y1.1 0.0182 0.13 2.y3.1 0.1358 0.13 2.y4.1 0.0852 0.04 2.y5.1 0.0141 0.05							2.y8.1	0.8715	0.11
2.y1.1 0.0182 0.18 2.y3.1 0.1358 0.13 2.y4.1 0.0852 0.04 2.y5.1 0.0141 0.05	37	TTR	TTHY	P02766	Transthyretin	VLDAVR	2.b2.1	0.2619	0.08
2.y3.1 0.1358 0.13 2.y4.1 0.0852 0.04 2.y5.1 0.0141 0.05							2.y1.1	0.0182	0.18
2.y4.1 0.0852 0.04 2.y5.1 0.0141 0.05							2.y3.1	0.1358	0.13
2.y5.1 0.0141 0.05							2.y4.1	0.0852	0.04
							2.y5.1	0.0141	0.05

AuDIT, automated detection of inaccurate and imprecise transitions; CV, coeffcient of variance. ^a The column title indicates the information of quantification ion, followed by the precursor ion charge, production ion type, and product ion charge.

1.3.2 Reverse response curves of targets in normal serum

Reverse response curves were generated to determine the limit of detection (LOD), limit of quantitation (LOQ), lower limit of quantitation (LLOQ), upper limit of quantitation (ULOQ), and linear range of the target peptides. These curves were constructed with a series of diluted SIS peptide mixtures (8–13 concentration points, 3 orders of magnitude) with pooled normal serum as matrices and analyzed at each concentration point in triplicate over 3 days. The peak area ratio (y) of SIS peptide to endogenous peptide was fit by linear regression using the "1/y" weighting option. The LOD and LOQ values were determined, based on the averaged peak area ratio of blank (matrix without SIS peptides) measurements plus 3 and 10 times the standard deviation, respectively. The LLOQ and ULOQ values were determined as the lowest and highest concentrations that satisfied the linearity ($R^2 > 0.99$) and precision (CV < 20%) estimates, respectively.

Of the 37 peptides, 36 peptides, except LYZ (WESGYNTR), met the aforementioned criteria (linearity and precision). A2M (FEVQVTPK) and C7 (LSGNVLSYTFQVK) fulfilled the criteria but were excluded because they were unsuitable for preparing medium-QC and high-QC samples due to their high LLOQ values (about 1928.9 and 412.95 ng/mL, respectively). The characteristics of the reverse response curves for 112 transitions that represented 34 peptides were determined according to CPTAC guidelines (Table 1-3 and 1-4); information on these transitions is listed in Table 1-5. The reverse response curves of the 34 peptides, which had endogenous concentrations that spanned over 4 orders of magnitude (39.3 ng/mL–118.2 μ g/mL) in the pooled normal serum, were generated. The median LOD, LOQ, LLOQ, and ULOQ values were 0.12 fmol/µL (8.01 ng/mL), 0.40 fmol/µL (21.4 ng/mL), 0.37 fmol/µL (16.0 ng/mL), and 249.37 fmol/µL (13.2 μ g/mL), respectively.

27

Table	1-3. Results	of res	ponse (curve	analysis.
					•/

					Results of response curv e	
			Information of Target Protein and Pep	tide	rv e fit (Normal-scale) Curv e fit (Log-scale) fmol/µL of peptide ng/mL of pro	Concentration of QC samples
N.	Gene symbol	Uniprot ID	t Uniprot Protein Name Accession	Peptide SequenceQuanificati	ope InterceptR squar(Slope Intercep/R squar(^P ointsLOD LOQLLOQULOQ LOD LOQ LLO no.	Q ULOQ Low QC ^{Medium} High QC Low Medium High QC QC QC QC QC (fmol/µL) ^{(fmol/µL)(fmol/µL)(ng/mL)} (ng/mL) (ng/mL)
1	AMBP	AMBP	P02760 Protein AMBP	ETLLQDFR 2.y6.1 2.y4.1	0598 0.0133 0.99933.2475 -3.9238 0.9993 10 0.070.41 0.24250.04 2.78 16.01 9.	52 9751.30 0.49 48.84 225.04 19.05 1904.55 8776.17 76 9751.30
2	APOA2	APOA2	2 P02652 Apolipoprotein A2	2.y3.1 SPELQAEAK 2.y6.1 2.y4.1 2.y8.2	121 -0.0039 0.99991.0173 -1.0000 0.9998 10 0.210.3 0.24230.04 0.06 12.09 9. 1018 0.0005 0.99970.9909 -2.7331 0.9998 10 0.331.36 1.55792.00 3.69 15.18 17. 1018 -0.0002 1.0000.9878 -2.7117 0.9992 11 0.450.90 0.77792.00 5.05 10.07 8. 1021 -0.0006 0.99983.3030 -8.8593 0.9983 11 0.711.40 0.77792.00 7.94 15.69 4.	29 8850.60 3.09 154.69 714.19 34.57 1728.63 7981.10 34 8850.60 32 8850.60
3	APOB	APOB	P04114 Apolipoprotein B-100	2.b2.1 ALVDTLK ^c 2.y5.1 2.y4.1 2.b2.1	0221 0.0023 1.00003.0817 -8.3817 0.9981 11 0.110.94 0.77792.00 1.18 10.55 8. 0045 -0.0005 0.99950.9976 -2.3546 0.9997 11 0.290.56 0.35360.00 151.20 290.12 181. 0087 0.0070 0.99970.9276 -19223 0.9956 8 1.77529 2.81360.00 8812827255 362.	34 8850.60 27185617.80 5.63 181.41 329.062900.2893533.971696666.27 53185617.80
4	APOE	APOE	P02649 Apolipoprotein E	LAVYQAGAR 2.y7.1 2.y6.1 2.y5.1	100 0.0262 0.99960.9229 -1.09460 0.9984 / 1.002.03 5.5300.00 655.941637.172900 705 -0.0114 0.99950.94056 -1.0707 0.9974 12 0.020.19 0.001912.88 0.76 6.88 3. 8867 0.0024 0.99960.9714 -1.0463 0.9990 12 0.030.10 0.09192.88 1.15 3.70 3. 771 -0.0229 0.99990.9601 -1.0510 0.9994 11 0.120.22 0.19192.88 4.30 8.88 6.	2010017.a. 40 6973.24 0.38 18.84 173.59 13.62 680.98 6275.92 40 6973.24 81 6973.24
5	APOH	APOH	P02749 Apolipoprotein H	ATVVYQGER 2.y4.1 2.y7.1 2.y6.1 2.y5.1	1720 0.0177 0.99990.9412 -1.0545 0.9976 11 0.060.52 0.09192.88 2.04 18.71 3. 0030 0.0003 0.99990.9961 -2.5165 0.9983 11 0.812.50 1.16594.00 31.11 95.76 22. 0028 -0.0007 1.00000.9792 -2.5041 0.9990 10 0.410.66 1.16594.00 35.55 25.09 44. 0036 0.0005 1.00000.9722 -2.3967 0.9993 12 0.190.71 0.29594.00 7.38 27.08 11.	40 6973.24 22 22749.01 2.32 116.02 535.64 88.86 4443.17 20514.10 43 22749.01 11 22749.01
6	B2M	B2MG	P61769 Beta-2-microglobulin	2.b3.1 VNHVTLSQPK 3.y6.1 3.y5.1 3.b3.1	1034 -0.0011 0.99973.2412 -8.0805 0.9966 11 1.001.51 1.16594.00 38.17 58.01 22. 754 0.0229 0.99650.9674 -0.7105 0.9982 10 0.110.50 0.49248.66 1.52 6.86 6. 892 0.1121 0.99830.9888 -0.6966 0.9983 10 0.141.23 0.49248.69 1.96 16.84 6. 852 0.0738 0.99960.9806 -0.6671 0.9975 10 0.130.85 0.49248.69 1.85 11.61 6.	22 22749.01 36 3410.80 0.97 48.57 224.26 13.32 666.17 3075.71 66 3410.80 66 3410.80
7	BCHE	CHLE	P06276 Cholinesterase	IFFPGVSEFGK 2.y8.1 2.y7.1 2.b2.1	3204 -0.0468 0.99881.0956 -0.6503 0.9967 9 0.310.45 0.48123.83 20.94 30.96 8. 3994 0.1439 0.99881.0870 -0.1748 0.9984 10 0.060.26 0.24123.83 4.07 17.48 16. 867 -0.020 0.99924.1184 -0.2888 0.9980 11 0.030.06 0.12123.83 1.04 3.80 8.	27 8472.50 0.97 62.16 111.89 16.55 1063.20 7655.03 55 8472.50 27 8472.50
8	C1QA	C1QA	P02745 Complement C1q subcomponent subunit A	ASLGFCDTTNK 2.y8.1 2.y6.1 2.b2.1	1110 0.0021 0.99890.9566 -1.8908 0.9984 10 0.030.35 0.42216.70 0.65 8.99 11. 1224 0.0048 0.99991.0039 -1.6425 0.9987 9 0.361.30 0.85216.70 9.30 33.80 22. 1427 0.0200 0.99690.9676 -1.3108 0.9985 10 0.020.82 0.42216.70 0.48 21.42 11.	01 5637.86 1.69 84.65 195.79 44.05 2202.29 5093.89 02 5637.86 01 5637.86
9	C2	CO2	P06681 Complement C2	LNINLK° 2.y5.1 2.y4.1 2.b2.1	7786 0.0594 0.99910.9777 -1.0567 0.9980 9 0.071.36 0.94241.50 5.56 113.46 78. 1730 -0.0141 0.99920.9868 -1.1164 0.9988 10 0.370.62 0.47241.50 30.61 51.65 39. 1887 0.0188 0.99980.9708 -0.5137 0.9992 10 0.100.38 0.47241.50 8.33 31.65 39.	55 20108.94 2.83 121.22 218.20 235.65 10093.74 18168.74 28 20108.94 28 20108.94
10	C3	CO3	P01024 Complement C3	DFDFVPPVVR 2.y8.1 2.y6.1 2.y5.1	0659 -0.0094 0.99971.1312 -2.5277 0.9975 8 1.631.69 3.09396.00 305.36315.81 72. 0044 -0.0062 0.99971.1437 -2.6680 0.9981 9 1.481.57 1.55396.00 276.75 293.94 144. 0035 -0.0043 0.99841.1265 -2.7350 0.9977 9 1.261.29 1.55396.00 236.20 240.61 72.	37 74110.61 3.09 77.34 357.79 72.37 1809.34 66960.09 75 74110.61 37 74110.61
11	C5	CO5	P01031 Complement C5	2.b2.1 2.b3.1 LQGTLPVEAR 2.y8.1 2.y6.1 2.y5.1	1106 -0.0165 0.99601.1365 -2.2802 0.9983 8 1.631.70 3.09396.00 304.42318.3 72. 117 -0.0166 0.99913.7670 -7.4128 0.9981 9 1.471.53 1.55396.00 275.12 286.32 36. 1888 0.0062 0.99970.9981 -1.0631 0.9987 11 0.070.16 0.34344.54 12.68 30.90 63. 1557 -0.0004 0.99950.9868 -1.2025 0.9996 10 0.100.17 0.67344.54 19.62 31.78 126. 1606 0.0006 0.09960.9739 -1.1953 0.9978 13 0.080.17 0.08344.54 15.27 32.63 15.	37 74110.61 19 74110.61 36 64878.17 1.35 67.29 310.69 253.43 12671.52 58504.39 72 64878.17 84 64878.17
12	C6	CO6	P13671 Complement component C6	2.b2.1 ALQEYAAK ^e 2.y6.1 2.b2.1	888 0.0004 0.99970.8822 -1.0256 0.9998 11 0.050.08 0.34344.54 8.91 15.85 63. 1124 0.0007 0.99900.9751 -1.8511 0.9979 9 0.110.31 0.83211.31 11.72 32.49 86. 1489 0.0041 0.99930.9503 0.5275 0.9981 7 1.182.57 1.65105.66 123.30 268.89 86.	36 64878.17 49 22141.83 4.95 82.54 190.92 518.95 8649.15 20005.49 49 11070.91
13	C8A	CO8A	P07357 Complement component O8 alpha chain	2.b3.2 LYYGDDEK ^c 2.y6.1 2.b2.1 2.b4.2	1459 0.0283 0.99940.9750 -0.7982 0.9988 10 0.240.81 0.41211.31 24.70 85.11 21.1 1155 0.0066 0.99910.9650 -1.7480 0.9995 9 0.121.14 1.02261.67 11.23 106.42 95. 5035 -0.0166 0.99710.9802 -1.2712 0.9979 9 0.560.86 1.02261.67 52.15 80.17 95. 1063 -0.0106 0.99970.9807 -1.1636 0.9986 10 0.220.23 2.04261.67 20.89 21.46 191.	32 22141.83 59 24471.02 6.13 102.22 237.34 573.54 9558.99 22195.98 59 24471.02 18 24471.02

1	4 C8B	CO8B	P07358	Complement component C8 beta chain	YEFILK°	2.y2.1	0.1567 0.0050	0.99821.0234 -0.8493	0.9993	10 0.12	0.32 0.38197.08	7.76 21.35	25.81 13213.53	2.31	98.73	178.06	154.85 6	619.67 1	1938.63
						2.y4.2	0.1091 0.0058	0.99910.9924 -0.9532	0.9978	12 0.05	0.23 0.10197.08	3.23 15.70	6.45 13213.53						
	F 00	000	000740	Quantum entry and the		2.b2.1	0.1771 -0.0475	0.99991.01/1 -0.7812	0.9994	9 0.39	0.58 0.77197.08	26.29 38.97	25.81 13213.53	0.05	47.07	000 07		007450	
1	5 C9	C09	P02748	Complement component C9	VVEESELAR	2.y/.1	0.04/1 -0.0061	0.99730.9711 -1.3240	0.9994	12 0.17	0.24 0.17355.69	10.64 15.28	10.97 22469.72	0.35	17.37	320.27	21.94 1	097.15 2	0232.62
						2.yo.1	0.0623 -0.0042	0.00002.0707 2.2246	0.9992	12 0.13	0.22 0.17355.09	2.57 10.00	5 40 22469.72						
1	e CER	CEAR	D00761	Complement faster B		2.02.1	0.0000 0.0100	1 00000 0001 2 6524	0.9970	13 0.00	0.30 0.09355.09	3.37 10.02	20.20.41560.04	0.05	17 16	127 02	01 10 /	050 40 2	7449 67
1	U CFB	UFAD	F00751	Complement laciol B	EELLFAQUIN	2.y0.1	0.0021 0.0002	0.00050.0609 1.2217	0.9990	12 0.00	0.24 0.24460.00	4.34 20.00	40 50 41509.04	0.95	47.40	437.03	01.19 4	039.40 3	07440.07
						2.02.1	0.0421 0.0030	0.00090.0326 -1.3217	0.9994	11 0.02	0.20 0.47480.00	14.63 46.22	40.59 41509.04						
1	7 CEH	СЕАН	D08603	Complement factor H		2.00.1	0.020/ 0.0040	0.00060.0223 -1.74227	0.0088	10 0.32	1 06 0 00/61 02	14.00 40.22	125 25 6/125 05	1.80	00.04	115 73	250 /0 1	2524 60 5	7826.07
1		OLAH	1 00000	Complement laciol II	VOLVEN	2.y0.1	0.0025 0.0074	0.00880.0874 -2.0553	0.0080	11 0.02	0.58 0.45461.02	11 05 80 00	62 62 64125 05	1.00	30.04	410.707	200.40 12	2024.00 0	11020.01
						2 h3 1	0.0452 0.0009	0.99950.9853 -1.3204	0.9988	11 0.00	0.57 0.45461.02	35.63 78.78	62 62 64125 95						
1	8 CP	CERU	P00450	Ceruloplasmin	GAYPI SIEPIGVR	2 v10 1	0.0047 -0.0081	0 99971 1001 -2 5705	0.9988	11 0.40	1 19 0 46468 00	48 53 418 45	55 85 57191 94	1.83	91 41	422 02 3	223 41 1	1170 30 5	1573 28
1	0.	02110		ooraropraorini		2 v8 1	0.0025 -0.0031	0 99933 7360 -9 5714	0.9981	10 0.64	1 93 0 91468 00	78 55 124 57	55 85 57191 94	1.00	0	122.02			
						2.v6.1	0.0052 0.0010	0.99951.0832 -2.4677	0.9984	11 0.04	0.32 0.46468.00	4.49 38.74	55.85 57191.94						
						2.v5.1	0.0034 -0.0008	0.99951.0845 -2.6573	0.9989	11 0.41	0.64 0.46468.00	49.59 78.64	27.93 57191.94						
1	9 CRP	CRP	P02741	C-reactive protein	ESDTSYVSLK	2.v6.1	0.3163 0.0242	0.99621.0002 -0.5015	0.9992	9 0.04	0.22 0.64163.77	1.10 5.51	16.02 4100.68	1.28	63.97	147.97	32.04 1	601.83	3705.03
1						2.y5.1	0.3351 0.0042	0.99680.9995 -0.4919	0.9981	11 0.09	0.16 0.16163.77	2.30 4.04	4.00 4100.68						
						2.y3.1	0.1834 -0.0056	0.99913.2499 -2.3487	0.9981	9 0.22	0.52 0.64163.77	5.48 12.94	16.02 4100.68						
2	20 CST3	CYTC	P01034	Cystatin-C	ALDFAVGEYNK°	2.y6.1	0.4733 -0.8167	0.99443.4198 -1.3531	0.9991	7 0.55	1.18 1.82116.39	8.69 18.59	28.73 1838.89	1.36	45.47	105.16	21.55	718.32	1661.46
						2.b2.1	0.5163 0.0917	0.99781.0258 -0.2985	0.9985	9 0.19	0.67 0.45116.39	3.01 10.62	7.18 1838.89						
						2.b3.1	0.5936 0.0816	0.99973.3307 -0.7477	0.9972	11 0.08	0.43 0.23116.39	1.28 6.84	3.59 1838.89						
2	21 F2	THRB	P00734	Prothrombin	ELLESYIDGR	2.y6.1	0.0523 -0.0318	1.00003.6708 -4.9217	0.9991	10 0.31	0.88 0.44226.48	21.61 61.54	15.49 15861.98	0.88	44.23	204.23	30.98 1	549.02 1	4303.67
						2.y5.1	0.0647 -0.0268	0.99971.1121 -1.4001	0.9987	10 0.42	0.79 0.44226.48	29.10 55.22	15.49 15861.98						
						2.b2.1	0.0869 0.0092	0.99931.0895 -1.2206	0.9992	11 0.05	0.19 0.22226.48	3.63 13.22	15.49 15861.98						
2	22 F9	FA9	P00740	Coagulation factor IX	SALVLQYLR	2.y5.1	0.2793 -0.0194	0.99971.0552 -0.6350	0.9988	11 0.09	0.12 0.10 98.28	4.67 6.46	4.97 5088.57	0.38	19.19	88.62	19.88	993.86	4588.66
						2.b2.1	0.8954 -0.0166	0.99641.0432 -0.1162	0.9985	10 0.11	0.24 0.19 98.28	5.82 12.23	9.94 5088.57						
						2.b3.1	0.7865 -0.0425	0.99903.5396 -0.6471	0.9983	10 0.07	0.08 0.19 98.28	3.47 4.16	9.94 5088.57						
2	23 F10	FA10	P00742	Coagulation factor X	TGIVSGFGR	2.y6.1	0.3063 0.0060	0.99930.9759 -0.4759	0.9993	11 0.07	0.22 0.10 98.30	4.07 11.90	5.25 5380.13	0.38	19.20	88.64	21.02 1	050.81	4851.57
						2.y5.1	0.2552 0.0115	0.99980.9945 -0.5888	0.9991	11 0.06	0.18 0.10 98.30	3.51 10.07	5.25 5380.13						
						2.y4.1	0.1588 0.0090	0.99850.9267 -0.7222	0.9958	10 0.05	0.21 0.19 98.30	2.94 11.61	10.51 5380.13						
			DODOCA			2.b3.1	0.2738 0.0157	0.99820.9624 -0.5196	0.9988	11 0.06	0.24 0.10 98.30	3.51 12.91	5.25 5380.13	0.47	00.54	400 70	00.04.4	050.00	7004 40
2	4 ⊢11	FA11	P03951	Coagulation factor XI	VVSGFSLK	2.y6.1	0.2866 -0.0230	0.99911.0094 -0.5553	0.9984	10 0.15	0.26 0.24120.55	10.78 18.40	16.51 8451.48	0.47	23.54	108.70	33.01 1	650.68	7621.19
				.		2.62.1	1.0483 0.0890	0.99900.9624 0.0717	0.9984	12 0.05	0.29 0.06120.55	3.20 20.11	4.13 8451.48						
2	25 GSN	GELS	P06396	Gelsolin	AGALNSNDAFVLK	2.y9.1	0.0318 0.0007	0.99961.0091 -1.5195	0.9987	12 0.07	0.19 0.18358.64	5.62 16.01	15.01 30734.40	0.70	35.02	323.09	60.03 3	001.41 2	7687.98
						2.y8.1	0.0309 -0.0058	0.99991.0210 -1.5600	0.9992	11 0.29	0.39 0.35358.64	24.55 33.52	30.01 30734.40						
		1000	D47000	In suffice the summable for stars have been been under the		2.D3.1	0.0383 0.0101	0.99991.0125 -1.4455	0.9989	11 0.11	0.59 0.35358.64	9.06 50.21	30.01 30734.40	0.00	44.00	404.45	0.04	450.04	4454.45
4	G IGFBP3	IBP3	P1/936	Insuitn-like growth factor-binding protein	3FLNVLSPR	2.yo.1	0.2810 -0.0089	0.00021.0102 0.5787	0.9994	11 0.06	0.09 0.14145.58	1.79 2.99	4.50 4611.22	0.28	14.22	131.15	9.01	450.31	4154.15
						2.y4.1	0.3110 0.0029	0.00701.0296 0.4001	0.9995	10 0.02	0.07 0.14145.56	0.71 2.10	4.50 4011.22						
1			D00747	Blasmingen		2.y3.1	0.0001 0.0172	0.00020.0760 1.6002	0.9992	10 0.02	0.13 0.20145.30	0.07 3.98	12 67 250/1 25	0.56	27.07	250 04	50 67 2	=	2270.01
14	I FLG		F00/4/	Flashinogen	LFLEFIK	2.y0.1	0.0243 0.0013	1 00000 9805 -1 7546	0.9950	12 0.01	0.06 0.14280.43	9.93 22.13	12.07 25941.35	0.50	21.91	200.04	50.07 2	.000.00 Z	.5570.01
						2 v4 1	0.0100 0.0000	0 99980 9941 -1 7081	0.0000	11 0.00	0.35 0.28286.43	8 10 31 46	25 33 25941 35						
						2 v3 1	0.0255 0.00022	0 99990 9715 -1 5519	0.0000	11 0.00	0.32 0.28286.43	13 40 28 93	25 33 25941 35						
						2 h2 1	0.0267 0.0004	0 99993 2559 -5 1392	0.9998	12 0.09	0 24 0 14286 43	8.39 21.89	12 67 25941 35						
2	8 PROC	PROC	P04070	Vitamin K-dependent protein C	TEVLNEIK	2.v6.1	0.1648 -0.0048	0.99981.0839 -0.8990	0.9945	10 0.09	0.18 0.16 79.59	4.43 9.31	8.09 4144.18	0.62	15.54	71.91	32.38	809.41	3744.33
1				·····		2.v5.1	0.3194 -0.0488	0.99911.0845 -0.6250	0.9987	9 0.18	0.23 0.31 79.59	9.60 11.78	8.09 4144.18						
						2.b2.1	0.6298 -0.0327	0.99771.0912 -0.2701	0.9991	10 0.07	0.08 0.16 79.59	3.57 3.98	8.09 4144.18						
2	9 PROS1	PROS	P07225	Vitamin K-dependent protein S	YLVCLR	2.v5.1	0.1371 -0.0125	0.99780.9703 -0.4086	0.9987	9 0.18	0.35 0.31 79.59	13.41 26.26	23.35 5978.82	0.62	31.09	71.91	46.71 2	335.48	5401.96
						2.v4.1	0.1052 0.0001	0.99901.0074 -0.5683	0.9994	11 0.08	0.20 0.08 79.59	5.74 14.76	5.84 5978.82						
						2.ý3.1	0.1262 0.0364	0.99810.9491 -0.3766	0.9965	9 0.28	1.01 0.31 79.59	20.85 75.83	23.35 5978.82						
						2.b2.1	0.2507 0.0183	0.99970.9899 -0.1638	0.9990	9 0.03	0.19 0.31 79.59	2.10 14.40	23.35 5978.82						
3	0 SERPIN	C1 ANT 3	P01008	Antithrombin-III	FDTISEK	2.y6.1	0.0156 -0.0012	0.99860.9975 -1.8087	0.9971	9 0.21	0.42 0.94241.82	10.97 21.87	49.69 12720.41	2.83	94.46	218.49	149.07 4	968.91 1	1493.09
						2.y5.1	0.0135 -0.0011	0.99860.9839 -1.8640	0.9982	9 0.23	0.43 0.94241.82	12.09 22.41	49.69 12720.41						
						2.b2.1	0.0337 0.0496	0.99970.9263 -1.3175	0.9986	9 0.66	4.61 0.94241.82	34.76 242.38	49.69 12720.41						
3	1 SERPIN	F2 A2AP	P08697	Alpha-2-antiplasmin	LGNQEPGGQTALK	2.y8.1	0.0261 0.0023	0.99980.9839 -1.5641	0.9993	13 0.05	0.19 0.07273.62	2.55 10.61	3.65 14930.45	2.14	106.88	247.22	116.64 5	832.21 1	3489.90
						2.y7.1	0.0617 0.0134	0.99950.9956 -1.1858	0.9993	9 0.24	1.07 1.07273.62	12.85 58.50	58.32 14930.45						
						2.b4.1	0.0731 0.0045	0.99890.9322 -1.0298	0.9966	11 0.09	0.26 0.27273.62	4.93 14.35	14.58 14930.45						
3	2 SERPIN	G1 IC1	P05155	Plasma protease C1 inhibitor	LLDSLPSDTR ^c	2.y7.1	0.0120 0.0169	0.99970.9755 -1.8634	0.9991	8 0.40	2.34 2.81360.00	21.81 128.82	155.12 19855.44	5.63	181.41	326.53	310.24 10	0005.28 1	8009.50
						2.y5.1	0.0116 -0.0015	0.99971.0181 -1.9727	0.9993	11 0.28	0.40 0.35360.00	15.21 21.87	19.39 19855.44						
						2.b2.1	0.0158 0.0168	0.99633.3644 -6.0090	0.9989	11 0.25	2.54 0.35360.00	13.59 140.33	19.39 19855.44						
3	3 SHBG	SHBG	P04278	Sex hormone-binding globulin	IALGGLLFPASNLF	2.y8.1	0.2906 -0.1897	0.99931.2067 -0.7816	0.9982	11 0.13	0.50 0.27278.79	5.74 21.96	11.92 12205.08	1.09	54.45	251.40	47.68 2	383.80 1	1006.03
L						2.y7.1	0.2903 -0.1329	0.99951.2015 -0.7692	0.9981	11 0.13	0.78 0.27278.79	5.60 34.13	11.92 12205.08						

			2.5	b5.1	0.7138 -0.3585	0.99831.2042 -0.3955	0.9979 1	10 0.201.62 0.54278.79	8.71	70.79 23.84 12205.08					
34	TTR	TTHY P02766 Transthyretin	VLDAVR 2.	y5.1	0.2971 -0.0515	0.99960.9970 -0.5500	0.9988 1	0.250.36 0.39201.75	3.98	5.66 6.26 3205.19	1.58	78.81	182.28	25.04 1252.03	3 2895.94
			2.	ý4.1	0.2141 0.0011	0.99980.9687 -0.6450	0.9991 1	13 0.050.14 0.05201.75	0.78	2.25 0.78 3205.19					
			2.	y3.1	0.1765 0.0955	0.99970.9644 -0.6913	0.9988	9 0.031.08 0.79201.75	0.42	17.08 12.52 3205.19					

LOD, limit of detection; LOQ, limit of quantitation; LLOQ, lower limit of quantitation; ULOQ, upper limit of quantitation; QC, quality control.

^a The column title indicates the information of quantification ion, followed by the precursor ion charge, production ion type, and product ion charge.

^bCalculated as "peptide concentration (fmol/µL) × molecular weight (g/mol) / 1000".

^c The concentration of low-QC is detemined as three times of LLOQ, not two times.

Table 1-4. Spike concentrations of heavy peptides for response curves.

			l	nformation of target protein and peptide					Theor	etical co	ncentrati	on of cı	ırve poi	nt sampl	es (fmol/	µL)ª			Endogenous level (fmol/µL) ^ь
N.	Gene symbol	Uniprot ID	Uniprot Accession	Protein Name	Peptide Sequence	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6 F	Point 7 F	Point 8	Point 9	Point 10	Point 11 P	oint 12	Point 13	
1	AMBP	AMBP	P02760	Protein AMBP	ETLLQDFR	1389.11	694.55	347.28	173.64	86.82	43.41	21.70	10.85	5.43	2.71	1.36	0.68	0.34	17.36
2	APOA2	APOA2	P02652	Apolipoprotein A2	SPELQAEAK	4400.00	2200.00	1100.00	550.00	275.00	137.50	68.75	34.38	17.19	8.59	4.30	2.15	1.07	438.76
3	APOB	APOB	P04114	Apolipoprotein B-100	ALVDTLK	360.00	180.00	90.00	45.00	22.50	11.25	5.63	2.81	1.41	0.70	0.35	0.18	0.09	229.27
4	APOE	APOE	P02649	Apolipoprotein E	LAVYQAGAR	1071.53	535.77	267.88	133.94	66.97	33.49	16.74	8.37	4.19	2.09	1.05	0.52	0.26	13.39
5	APOH	APOH	P02749	Apolipoprotein H	ATVVYQGER	3300.00	1650.00	825.00	412.50	206.25	103.13	51.56	25.78	12.89	6.45	3.22	1.61	0.81	324.56
6	B2M	B2MG	P61769	Beta-2-microglobulin	VNHVTLSQPK	248.69	124.35	62.17	31.09	15.54	7.77	3.89	1.94	0.97	0.49	0.24	0.12	0.06	5.83
7	BCHE	CHLE	P06276	Cholinesterase	IFFPGVSEFGK	123.83	61.92	30.96	15.48	7.74	3.87	1.93	0.97	0.48	0.24	0.12	0.06	0.03	3.92
8	C1QA	C1QA	P02745	Complement C1q subcomponent subunit A	SLGFCDTTNK	216.70	108.35	54.17	27.09	13.54	6.77	3.39	1.69	0.85	0.42	0.21	0.11	0.05	22.63
9	C2	CO2	P06681	Complement C2	LNINLK	241.50	120.75	60.37	30.19	15.09	7.55	3.77	1.89	0.94	0.47	0.24	0.12	0.06	13.53
10	C3	CO3	P01024	Complement C3	DFDFVPPVVR	396.00	198.00	99.00	49.50	24.75	12.38	6.19	3.09	1.55	0.77	0.39	0.19	0.10	267.88
11	C5	CO5	P01031	Complement C5	LQGTLPVEAR	344.54	172.27	86.13	43.07	21.53	10.77	5.38	2.69	1.35	0.67	0.34	0.17	0.08	11.62
12	C6	CO6	P13671	Complement component C6	ALQEYAAK	211.31	105.65	52.83	26.41	13.21	6.60	3.30	1.65	0.83	0.41	0.21	0.10	0.05	3.30
13	C8A	CO8A	P07357	Complement component C8 alpha chain	LYYGDDEK	202.79	101.39	50.70	25.35	12.67	6.34	3.17	1.58	0.79	0.40	0.20	0.10	0.05	15.36
14	C8B	CO8B	P07358	Complement component C8 beta chain	YEFILK	197.08	98.54	49.27	24.63	12.32	6.16	3.08	1.54	0.77	0.38	0.19	0.10	0.05	9.13
15	C9	CO9	P02748	Complement component C9	VVEESELAR	355.69	177.84	88.92	44.46	22.23	11.12	5.56	2.78	1.39	0.69	0.35	0.17	0.09	11.14
16	CFB	CFAB	P00751	Complement factor B	EELLPAQDIK	486.00	243.00	121.50	60.75	30.38	15.19	7.59	3.80	1.90	0.95	0.47	0.24	0.12	33.53
17	CFH	CFAH	P08603	Complement factor H	VGEVLK	461.02	230.51	115.25	57.63	28.81	14.41	7.20	3.60	1.80	0.90	0.45	0.23	0.11	77.75
18	CP	CERU	P00450	Ceruloplasmin	GAYPLSIEPIGVR	468.00	234.00	117.00	58.50	29.25	14.63	7.31	3.66	1.83	0.91	0.46	0.23	0.11	217.08

19	CRP	CRP	P02741	C-reactive protein	ESDTSYVSLK	163.77	81.89	40.94	20.47	10.24	5.12	2.56	1.28	0.64	0.32	0.16	0.08	0.04	2.56
20	CST3	СҮТС	P01034	Cystatin-C	ALDFAVGEYNK	116.39	58.20	29.10	14.55	7.27	3.64	1.82	0.91	0.45	0.23	0.11	0.06	0.03	2.49
21	F2	THRB	P00734	Prothrombin	ELLESYIDGR	226.48	113.24	56.62	28.31	14.16	7.08	3.54	1.77	0.88	0.44	0.22	0.11	0.06	21.92
22	F9	FA9	P00740	Coagulation factor IX	SALVLQYLR	98.28	49.14	24.57	12.28	6.14	3.07	1.54	0.77	0.38	0.19	0.10	0.05	0.02	4.00
23	F10	FA10	P00742	Coagulation factor X	TGIVSGFGR	98.30	49.15	24.57	12.29	6.14	3.07	1.54	0.77	0.38	0.19	0.10	0.05	0.02	3.07
24	F11	FA11	P03951	Coagulation factor XI	VVSGFSLK	120.55	60.27	30.14	15.07	7.53	3.77	1.88	0.94	0.47	0.24	0.12	0.06	0.03	3.55
25	GSN	GELS	P06396	Gelsolin	AGALNSNDAFVLK	1992.42	996.21	498.11	249.05	124.53	62.26	31.13	15.57	7.78	3.89	1.95	0.97	0.49	49.81
26	IGFBP3	IBP3	P17936	Insulin-like growth factor-binding protein 3	FLNVLSPR	145.58	72.79	36.40	18.20	9.10	4.55	2.27	1.14	0.57	0.28	0.14	0.07	0.04	3.69
27	PLG	PLMN	P00747	Plasminogen	LFLEPTR	286.43	143.21	71.61	35.80	17.90	8.95	4.48	2.24	1.12	0.56	0.28	0.14	0.07	61.59
28	PROC	PROC	P04070	Vitamin K-dependent protein C	TEVLNFIK	79.59	39.79	19.90	9.95	4.97	2.49	1.24	0.62	0.31	0.16	80.0	0.04	0.02	1.24
29	PROS1	PROS	P07225	Vitamin K-dependent protein S	YLVCLR	217.63	108.82	54.41	27.20	13.60	6.80	3.40	1.70	0.85	0.43	0.21	0.11	0.05	3.40
30	SERPINC1	ANT3	P01008	Antithrombin-III	FDTISEK	241.82	120.91	60.46	30.23	15.11	7.56	3.78	1.89	0.94	0.47	0.24	0.12	0.06	26.44
31	SERPINF2	A2AP	P08697	Alpha-2-antiplasmin	LGNQEPGGQTALK	273.62	136.81	68.41	34.20	17.10	8.55	4.28	2.14	1.07	0.53	0.27	0.13	0.07	38.89
32	SERPING1	IC1	P05155	Plasma protease C1 inhibitor	LLDSLPSDTR	360.00	180.00	90.00	45.00	22.50	11.25	5.63	2.81	1.41	0.70	0.35	0.18	0.09	86.62
33	SHBG	SHBG	P04278	Sex hormone-binding globulin	IALGGLLFPASNLR	278.79	139.39	69.70	34.85	17.42	8.71	4.36	2.18	1.09	0.54	0.27	0.14	0.07	4.36
34	TTR	TTHY	P02766	Transthyretin	VLDAVR	201.75	100.87	50.44	25.22	12.61	6.30	3.15	1.58	0.79	0.39	0.20	0.10	0.05	4.63

ITR, Ion transition ratio; %mean df, percentage of mean difference. ^a The concentration of samples for injection is marked and was calculated considering the endogenous level and purity of the SIS peptide. ^b The endogenous level was calculated using the most intense ion of target peptide.

Table 1-5. Target transitions and their parameters for MRM-MS assays with related diseases.

0	Helenat	11-1			Light p	peptide	Heavy	peptide	Ion char	ge state	D 1	-4	Related disease information	
symbol			Protein Name	Peptide Sequence							Production from			
Symbol		Accession			Precurso ion (m/z)	r Product ion (m/z)	Precurson ion (m/z)	r Product F ion (m/z)	Precurson ion	Product ion	ion typ	•	Diseases	References
AMBP ^a	AMBP	P02760	Protein AMBP	ETLLQDFR	511.3	791.4	516.3	801.4	++	+	y6	31.268.422.9	Not specifically but highly related disease	64, 65
APOA2ª	APOA2	P02652	Apolipoprotein A2	SPELQAEAK	511.3 511.3 486.8 486.8 486.8	565.3 437.2 659.4 418.2 443.2	516.3 516.3 490.8 490.8 490.8	575.3 447.2 667.4 426.2 447.2	+++ +++ +++ +++	+ + + +	y4 y3 y6 y4	31.268.424.9 31.268.424.9 19.866.623.5 19.866.625.5 19.866.627.5	Hypercholesterolemia; metabolic syndrome; autoimmune pancreatilis	66, 67
APOB	APOB	P04114	Apolipoprotein B-100	ALVDTLK	486.8 380.2 380.2 380.2	185.1 575.3 476.3 185.1	490.8 384.2 384.2 384.2	185.1 583.4 484.3 185.1	++ ++ ++ ++	+ + +	b2 y5 y4 b2	19.866.627.5 23.758.819.4 23.758.817.4 23.758.821.4	Cardiovas cular disease (CVD), type II diabetes	49, 51
APOE ^a	APOE	P02649	Apolipoprotein E	LAVYQAGAR	474.8 474.8 474.8 474.8	764.4 665.3 502.3	479.8 479.8 479.8 479.8	774.4 675.3 512.3	++ ++ ++	++++++	y7 y6 y5	21.465.722.8 21.465.722.8 21.465.720.8	Cardiovas cular disease (CVD); Alzheimer disease (AD)	68, 69
APOHª	APOH	P02749	Apolipoprotein H	ATVVYQGER	474.8 511.8 511.8 511.8	374.2 850.4 751.4 652.3	479.8 516.8 516.8 516.8	384.2 860.5 761.4 662.3	++ ++ ++ ++	+ + + +	y4 y7 y6 y5	20.268.422.9 20.268.422.9 20.268.422.9 20.268.422.9	Antiphospholipid syndrome; autoimmune diseases	70, 71
B2M	B2MG	P61769	Beta-2-microglobulin	VNHVTLSQPK	511.8 374.9 374.9	272.2 673.4 572.3	516.8 377.6 377.6	272.2 681.4 580.4	++ +++ +++	+ + +	b3 y6 y5	20.268.422.9 19.858.420.7 19.858.420.7	Multiple myeloma; leukemia; lymphoma; kidney damage	53, 57, 60
BCHE	CHLE	P06276	Cholinesteræe	IFFPGVSEFGK	614.3 614.3	351.2 820.4 723.4	618.3 618.3	351.2 828.4 731.4	+++ ++ ++	++++++	ыз у8 у7	19.858.420.7 35.175.924.8 35.175.926.8	Pseudocholinesterase deficiency	59
C1QA	C1QA	P02745	Complement C1q subcomponent subunit A	SLGFCDTTNK	614.3 571.8 571.8	261.2 942.4 738.3	618.3 575.8 575.8	261.2 950.4 746.3	++ ++ ++	+ + +	b2 y8 y6	35.175.934.8 23.072.824.3 23.072.824.3	Systemic lupus cythematosus (SLE); non-HAE C1 inhibitor deficiency	32, 33, 34
C2	CO2	P06681	Complement C2	LNINLK	571.8 357.7 357.7	201.1 601.4 487.3	575.8 361.7 361.7	201.1 609.4 495.3	++ ++ ++	+ + +	b2 y5 y4	23.072.828.3 24.557.218.1 24.557.218.1	Systemic Lupus Erythematosus (SLE)	32, 33, 34
С3	CO3	P01024	Complement C3	DFDFVPPVVR	357.7 595.8 595.8 595.8	228.1 928.5 666.4 567.4	361.7 600.8 600.8 600.8	228.1 938.5 676.4 577.4	+++ +++ ++	+ + + +	b2 y8 y6 y5	24.557.226.1 34.674.623.7 34.674.627.7 34.674.627.7	Systemic lupus erythemabsus (SLE); nephritis; partial lipodystrophy	32, 33, 34, 35
C5	CO5	P01031	Complement C5	LQGTLPVEAR	595.8 595.8 542.3 542.3 542.3	263.1 378.1 842.5 684.4 571.3	600.8 600.8 547.3 547.3 547.3	263.1 378.1 852.5 694.4 581.3	++ ++ ++ ++ ++	+ + + +	b2 b3 y8 y6 y5	34.674.621.7 34.674.621.7 23.170.726.6 23.170.726.6 23.170.726.6	Neisserial (Meningococcal/Gorococcal) susceptible	37
C6	CO6	P13671	Complement component O6	ALQEYAAK	542.3 447.2 447.2	242.2 709.4 185.1	547.3 451.2 451.2	242.2 717.4 185.1	++ ++ ++	+ + +	b2 y6 b2	23.170.726.6 20.163.719.2 20.163.729.2	Neisserial (Meningococca/Gonococca) susceptible	37
C8A	CO8A	P07357	Complement component C8 alpha chain	LYYGDDEK	447.2 501.7 501.7	157.1 726.3 277.2	451.2 505.7 505.7	157.1 734.3 277.2	++ ++ ++	++ + +	b3 y6 b2	20.163.729.2 21.067.722.3 21.067.724.3	Neisserial (Meningcocca/Gonoccca) susceptible	37
C8B	CO8B	P07358	Complement component C8 beta chain	YEFILK	501.7 406.7 406.7	249.1 260.2 260.7	505.7 410.7 410.7	249.1 268.2 264.7	++ ++ ++	+++ + +++	b4 y2 y4	21.067.724.3 29.660.818.9 29.660.826.9	Neisserial (Meningococcal/Gonococcal) susceptible	37
C9	CO9	P02748	Complement component C9	VVEESELAR	406.7 516.3 516.3	293.1 833.4 704.4	410.7 521.3 521.3	293.1 843.4 714.4	++ ++ ++	+ + +	b2 y7 y6	29.660.826.9 21.068.823.2 21.068.823.2	Neisserial (Meningococcal/Gonococcal) susceptible	37

					516.3	199.1	521.3	199.1	++	+	b2	21.068.825.2		
CFB	CFAB	P00751	Complement factor B	EELLPAQDIK	578.3	671.4	582.3	679.4	++	+	y6	26.173.324.7	Secondary C3 deficiency; partial lipodystrophy	36
					578.3	259.1	582.3	259.1	++	+	b2	26.173.318.7		
					578.3	372.2	582.3	372.2	++	+	b3	26.173.318.7		
CFH	CFAH	P08603	Complement factor H	VGEVLK	322.7	545.3	326.7	553.3	++	+	y5	20.154.616.1	Nephritis; atypical hemolytic-uremic syndromes (HUS)	38
					322.7	488.3	326.7	496.3	++	+	y4	20.154.010.1		
0.0	0500	D00450	O - m d - m l m in		322.7	286.1	326.7	286.1	++	+	D3	20.154.618.1	Mile	50
CP	CERU	P00450	Ceruloplasmin	GATPLSIEPIGVR	686.4	1080.6	691.4	1090.6	++	+	y10	31.981.228.9	wilson disease	50
					000.4	670.5	691.4	000.0	++	+	yo	31.901.234.9		
					000.4	541.2	691.4	00U.4	++	+	yo	31.901.230.9		
CPP	CPD	P02741	C-reactive protein	ESDTSVVSIK	564.8	541.5	568.8	201.4 704.4	++	+	y5 v6	31.901.230.9	Cardiovas cular disease (C\/D): arthrifis: autoimmune disease	46 47 48
ON	ON	1 02/41	C-leacine plotein	LODIGIVOL	564.8	609.4	568.8	617.4		÷	y0 v5	23.172.323.3	Cardiovascular disease (CVD), artilitis, autoiniture disease	40, 47, 40
					564.8	347.2	568.8	355.2	++	+	,0 V3	23 172 3 25 9		
CST3	CYTC	P01034	Cvstatin-C	ALDFAVGEYNK	613.8	709.4	617.8	717.4	++	+	v6	28,775,926,7	Acute kidney syndrome: Chronic renal failure	54.55
0010	00	1 01001	ojotatin o		613.8	185.1	617.8	185.1	++	+	b2	28.775.924.7	rioate namej ojnarenie, enianerena anare	01,00
					613.8	300.2	617.8	300.2	++	+	b3	28,775,924,7		
F2	THRB	P00734	Prothrombin	ELLESYIDGR	597.8	710.3	602.8	720.4	++	+	v6	30.274.727.8	Hypopro-thrombinemia	45
					597.8	623.3	602.8	633.3	++	+	v5	30.274.727.8		
					597.8	243.1	602.8	243.1	++	+	b2	30.274.725.8		
F9	FA9	P00740	Coagulation factor IX	SALVLQYLR	531.8	692.4	536.8	702.4	++	+	y6	32.869.924.0	Hemophilia B	46
			-		531.8	159.1	536.8	159.1	++	+	y5	32.869.922.0		
					531.8	272.2	536.8	272.2	++	+	b2	32.869.922.0		
					447.2	622.3	452.3	632.3	++	+	b3	24.863.7 19.2		
F10	FA10	P00742	Coagulation factor X	TGIVSGFGR	447.2	523.3	452.3	533.3	++	+	y5	24.863.721.2	Stuart-Prower factor deficiency	42
					447.2	436.2	452.3	446.2	++	+	y4	24.863.721.2		
					447.2	272.2	452.3	272.2	++	+	b3	24.863.721.2		
F11	FA11	P03951	Coagulation factor XI	VVSGFSLK	418.7	638.4	422.8	646.4	++	+	y6	25.561.621.6	Hemophilia C; plasma thromboplastin antecedent deficiency	46, 40
0011	051.0		o		418.7	199.1	422.8	199.1	++	+	b2	25.561.619.6		70 70
GSN ^a	GELS	P06396	Gelsolin	AGALNSNDAFVLK	660.4	1007.5	664.4	1015.5	++	+	y9	28.679.327.4	Multiple organ dysfunction syndrome; antagonistic sepsis	72, 73
					660.4	893.5	664.4	901.5	++	+	y8	28.679.327.4		
	1002	D17026	Inculin like arouth factor hinding matein 2		660.4	200.1	664.4	200.1	++	+	b3	28.679.331.4	Crowth homeone deficiency	64
IGFBP3	IDPS	P1/930	insum-ike growth actor-binding protein 5	FLINVLOPK	473.3	470.2	470.3	493.4	++	+	yo v4	29.705.020.7	Growth hormone deliciency	01
					473.3	472.3	470.3	402.3	++	+	y4	29.705.022.7		
PL C		P00747	Plasminmen		473.3	309.2	4/0.3	309.2	++	+	y3 1/6	29.700.022.7	Conceptal description deficiency: thrombosis	44
1 20		1 00141	ridshiniogen		438.3	615.3	443.3	625.4	++	+	y0 v5	26 763 1 22 7	congenital pasifiliogen denoreby, allembolis	
					438.3	502.3	443.3	512.3	++	+	y0	26 763 1 20 7		
					438.3	373.2	443.3	383.2	++	+	v3	26,763,120,7		
					438.3	261.2	443.3	261.2	++	+	b2	26,763,120,7		
PROC	PROC	P04070	Vitamin K-dependent protein C	TEVLNEIK	491.3	733.5	495.3	741.5	++	+	v6	35,766,919,7	Deep vein thrombosis (DVT)	43
					491.3	634.4	495.3	642.4	++	+	ý5	35.766.919.7		
					491.3	249.1	495.3	249.1	++	+	b2	35.766.923.7		
PROS1	PROS	P07225	Vitamin K-dependent protein S	YLVCLR	412.2	660.4	417.2	670.4	++	+	γ5	26.561.223.2	Deep vein thrombosis (DVT)	43
					412.2	547.3	417.2	557.3	++	+	ý4	26.561.223.2		
					412.2	448.2	417.2	458.2	++	+	ý3	26.561.219.2		
					412.2	277.2	417.2	277.2	++	+	b2	26.561.221.2		
SERPINC1	ANT3	P01008	Antithrombin-III	FDTISEK	420.2	692.3	424.2	700.4	++	+	y6	20.861.821.7	Deep vein thrombosis (DVT)	43
					420.2	577.3	424.2	585.3	++	+	y5	20.861.821.7		
					420.2	263.1	424.2	263.1	++	+	b2	20.861.819.7		
SERPINF2	A2AP	P08697	Alpha-2-antiplasmin	LGNQEPGGQTALK	656.8	771.4	660.9	779.5	++	+	y8	20.379.031.2	Liver cirrhosis (LC); disorder of fibrinolysis	41
					656.8	674.4	660.9	682.4	++	+	у7	20.379.033.2		
05550000		B05/55	B1 1 011111		656.8	413.2	660.9	413.2	++	+	b4	20.379.037.2		
SERPING1	IC1	P05155	Plasma protease C1 inhibitor	LLDSLPSDTR	558.8	775.4	563.8	785.4	++	+	y7	24.771.925.6	Hereditary angloedema (HAE)	39
1					558.8	575.3	563.8	585.3	++	+	y5	24.771.927.6		
0.000	0.000	B0 405-			558.8	227.2	563.8	227.2	++	+	b2	24.771.923.6		
SHBG	SHBG	P04278	Sex hormone-binding globulin	IALGGLLFPASNLR	721.4	917.5	726.4	927.5	++	+	y8	39.383.734.9	restosterone deficiency; type II diabetes	50, 52
1					721.4	804.4	726.4	814.4	++	+	y7	39.383.734.9		
	TTUN	D00700	The set of the set of the		721.4	412.3	726.4	412.3	++	+	b5	39.383.732.9	Quality containing and did all (QQA). All the image discusses	50.00
IIK	TIHY	P02766	i ranstnyrétin	VLDAVR	336.7	5/3.3	341.7	583.3	++	+	y5	20.355.7 14.9	Senire systemic amyloidosis (SSA); Alzheimer disease	58, 62
1					336.7	460.3	341.7	470.3	++	+	y4	20.355.7 14.9		
L					336.7	345.2	341./	355.2	++	+	y3	20.355.7 14.9		

1.3.3 Intra-assay and inter-assay repeatability

Three QC samples were prepared at low, medium, and high concentrations to evaluate the repeatability of the intraday and interday quantification assays. Low- and medium-QC samples were prepared by spiking SIS peptides at 2 or 3 times and 50-100 times the LLOQ, respectively. The high-QC samples were prepared to be less than 90% of the ULOQ and over 100 times of the LLOQ (see Table 1-3). Three types of QC samples were analyzed in triplicate each day (\geq 16 h apart) over 5 days.

The intra-assay repeatability (CV_{intra}) was calculated as follows: first, 3 replicates of the low QC sample were analyzed each day for 5 days. The CV values of each replicate for a given day were calculated. Subsequently, mean CV values for each day were averaged to calculate the intra-assay repeatability. The first replicates from each day were averaged to calculate the intra-assay repeatability. The first replicates from each day were averaged to calculate the inter-assay repeatability (CV_{inter}). This process was repeated for all remaining QC samples. CV_{intra} and CV_{inter} values were used to calculate the total CV (CV_{total}) by determining the magnitude: ($\sqrt{(CV_{intra})^2 + (CV_{inter})^2}$).

The median *CV*_{intra}, *CV*_{inter}, and *CV*_{total} values were 11.6%, 13.4%, and 18.2% in low-QC; 7.7%, 9.4%, and 12.2% in medium-QC; and 7.2%, 7.9%, and 10.6% in high-QC samples, respectively (Figure 1-2A). Of the 112 transitions, 80 (71.4%), 103 (92.0%), and 111 (99.1%) had a CV < 20% in the low-, medium-, and high-QC samples, respectively, corresponding to 34 proteins (100%) (Table 1-6). For the low-, medium-, and high-QC samples in 45 measurements (3 QC samples × 3 replicates × 5 days), the mean %difference from the mean ion ratio ($\frac{2nd most intense ion}{most intense ion}$), which indicates the specificity of targets, was 13.1%, 4.34%, and 3.51%, respectively. The 34 proteins (100%), corresponding to 104 transitions (92.9%), were within 30% of the total mean ion ratio.

35

1.3.4 Selectivity of target peptides in six matrices

The 6 individual (men and women of 3 races) normal serum samples were used as matrices. Three QC samples (zero-QC, half medium-QC, and medium-QC) were prepared on the same day for each matrix: "zero-QC," which did not contain SIS peptides; "half-medium-QC," which was spiked with half of the concentration of the medium-QC; and "medium-QC," which was spiked with the same concentration as the medium-QC. These QC samples were analyzed in duplicate, which were then averaged for plotting on a linear scale.

First, the 3 QC samples of each matrix were used to generate a linear fit. The resulting slopes of the 6 matrices were then averaged. Then, the percent difference between the mean slope and individual slope was calculated for all 6 matrices. A total of 110 of 112 transitions (98.2%), representing all 34 proteins, were within 10% of the difference between the mean slope of all matrices and the slopes of the 6 individual matrices (Figure 1-2B and Table 1-7).

Then, the predicted values of the "half-medium-QC," which was one-half of the concentration value that was obtained by converting the peak area ratio (SIS/endogenous peptide) from the "medium-QC" sample, were compared with the actual values. Only 53 of 112 transitions (47.3%), representing 27 of 34 proteins (79.4%), passed the criterion of a difference of less than 10% (Figure 1-2B and Table 1-7)

Figure 1-2. Variability of assays and the difference in the response of analytes in six individual matrices

The intra- and interday assays analyzing 3 QC samples (low, middle, and high QC) were performed over 5 days in triplicate per day. The differences in slope among the 6 matrices are represented as %mean difference, and their distribution is shown in a box-whisker plot. For observing overall Repeatability (A) and Selectivity (B) of the target peptides, the box-whisker plots show the distribution of the CV results in experiment 2 and the %difference results in experiment 3. The bottom and top of the box are the first and third quartiles, and the band inside of the box is the median (second quartile). The outliers are indicated as lower than the first quartile min us 1.5 interquartile range (IQR) or higher than the third quartile plus 1.5 IQR. The criterion is that the variabilities must be lower than 20% CV.

Table 1-6. Intra- and inter-assay analytical repeatability of target peptides.

					Information of target protein and pepti	de		Average	Intra-assay	CV (%)	Average	Inter-assay	CV (%)	Тс	otal-CV (%)		
	N.	Gene symbol	Uniprot ID	Uniprot Accession	Protein Name	Peptide Sequence	Quantification ion ^a	Low	Medium	High	Low	Medium	High	Low	Medium	High	ITR⁵ (% mean df)
┢	1	AMBP	AMBP	P02760	Protein AMBP	ETLLQDFR	2.y6.1	17.4	15.5	12.0	20.8	12.7	12.8	27.1	20.0	17.5	13.4 ± 13.5
	2	APOA2	APOA2	P02652	Apolipoprotein A2	SPELQAEAK	2.y4.1 2.y3.1 2.y6.1 2.y4.1 2.y8.2	10.6 <u>25.5</u> 15.0 9.4 11.2	13.0 11.2 2.1 3.6 3.0	8.4 11.8 3.2 2.3 2.8	14.7 <u>24.2</u> 12.6 16.6 11.1	13.2 11.9 2.4 4.5 2.9	8.1 11.3 4.5 2.5 2.8	18.1 <u>35.2</u> 19.6 19.1 15.7	18.6 16.4 3.1 5.8 4.1	11.7 16.4 5.5 3.4 3.9	$5.6 \pm 5.9 \\9.1 \pm 12.2 \\4.5 \pm 5.6 \\3.7 \pm 3.6 \\3.3 \pm 3.7$
	3	APOB	APOB	P04114	Apolipoprotein B-100	ALVDTLK	2.b2.1 2.y5.1 2.y4.1	13.1 14.2 10.4	1.7 2.5 6.8	2.9 4.0 9.0	12.5 10.5 19.4	2.4 2.7 7.7	3.3 5.4 9.2	18.1 17.6 <u>22.0</u>	2.9 3.7 10.3	4.4 6.7 12.9	$5.6 \pm 5.7 \\ 27.3 \pm 13.4 \\ 6.6 \pm 4.9$
	4	APOE	APOE	P02649	Apolipoprotein E	LAVYQAGAR	2.b2.1 2.y7.1 2.y6.1 2.y5.1	7.2 8.5 11.5 12.1	5.8 3.5 4.5 5.1	4.0 2.6 5.1 3.3	12.1 <u>21.6</u> 16.2 14.7	5.6 4.1 5.7 5.8	4.8 3.3 4.7 6.3	14.1 <u>23.2</u> 19.9 19.1	8.1 5.3 7.3 7.7	6.2 4.2 6.9 7.1	9.6 ± 5.4 4 ± 5.1 7.7 ± 10 11.6 ± 11.7
	5	APOH	APOH	P02749	Apolipoprotein H	ATVVYQGER	2.y4.1 2.y7.1 2.y6.1 2.y5.1	18.0 14.1 12.6 9 9	4.2 3.5 2.9 2.4	5.2 4.2 2.6 2.1	19.2 17.9 13.0 8 5	5.9 6.2 3.3 2.5	7.5 4.5 2.8 1.8	26.3 22.8 18.2	7.2 7.2 4.4 3.4	9.1 6.1 3.8 2 7	12.6 ± 17.7 9.9 ± 10 4.4 ± 5.2 2.6 ± 2.9
	6	B2M	B2MG	P61769	Beta-2-microglobulin	VNHVTLSQPK	2.53.1 2.b3.1 3.y6.1 3.y5.1	10.2 13.7 17.3	4.4 12.6 9.2	2.3 6.1 10.7	16.8 18.1 14.6	3.9 14.4 9.4	5.1 7.1 12.1	19.7 <u>22.7</u> <u>22.6</u>	5.9 19.1 13.2	5.6 9.3 16.2	11.6 ± 9.2 8.2 ± 7.6 8.2 ± 9.6 4.8 ± 7.6
	7	BCHE	CHLE	P06276	Cholinesterase	IFFPGVSEFGK	2.y8.1 2.y7.1	8.6 7.8	13.7 14.7	10.2 11.7	6.6 8.3	6.3 13.8 18.4	10.9 14.8	10.8 11.4	19.5 23.6 20.2	14.9 18.9	4.8 ± 7.0 9.7 ± 10.8 16.5 ± 17.1
	8	C1QA	C1QA	P02745	Complement C1q subcomponent subunit A	SLGFCDTTNK	2.02.1 2.y8.1 2.y6.1	13.7 10.0	5.2 6.8	5.3 4.5	7.0 14.4 13.5	7.2 7.9	5.4 6.3	19.9 16.8	20.2 8.9 10.4	7.6	6.1 ± 8.1 5.6 ± 5.6
	9	C2	CO2	P06681	Complement C2	LNINLK	2.02.1 2.y5.1 2.y4.1	0.1 14.6 13.0	5.3 12.4 12.3	5.7 11.0 10.6	0.5 16.6 17.6	5.0 14.2 14.3	7.0 14.4 11.1	22.1 21.9	7.0 18.9 18.9	9.0 18.2 15.3	2.6 ± 2.6 8.2 ± 6.3 10.1 ± 9.5
	10	C3	CO3	P01024	Complement C3	DFDFVPPVVR	2.y8.1 2.y6.1 2.y5.1	7.3 11.0 9.1	8.7 6.6 8.6	6.4 4.9 5.0	9.1 12.3 12.7	8.3 8.3 11.0	6.9 5.7 5.6	10.0 11.6 16.5 15.6	10.4 12.0 10.6 14.0	9.4 7.5 7.5	4.0 ± 4.4 5.2 ± 4.1 3 ± 2.4 2.1 ± 1.5
	11	C5	CO5	P01031	Complement C5	LQGTLPVEAR	2.b2.1 2.b3.1 2.y6.1 2.y6.1 2.y5.1 2.b2 1	9.6 6.5 10.3 7.8 8.4	8.6 10.1 6.4 6.6 3.5 7.2	6.2 5.5 6.9 7.1 5.9	8.1 9.0 12.5 9.0 9.2 7.6	12.1 12.5 5.7 6.2 4.6 7.3	6.8 8.2 9.1 7.5 4.6	12.6 11.1 16.2 11.9 12.5 12.2	14.9 16.1 8.6 9.0 5.8 10.3	9.2 9.9 11.4 10.4 7.5 7 4	$\begin{array}{c} 4.1 \pm 3.5 \\ 4 \pm 3.9 \\ 2.5 \pm 1.8 \\ 4.2 \pm 3.6 \\ 3.1 \pm 2.9 \\ 3.1 \pm 2.6 \end{array}$
	12	C6	CO6	P13671	Complement component C6	ALQEYAAK	2.y6.1	18.3	7.4	4.8	<u>24.5</u>	9.7	6.4	<u>30.6</u>	12.3	8.0	11.1 ± 15.3

						2.b2.1	9.2	7.3	10.2	12.9	9.7	14.9	15.9	12.2	18.0 13.4 ± 9.1
						2.b3.2	13.2	6.1	5.3	12.0	6.9	4.4	17.8	9.2	6.9 6.3 ± 3.8
13	C8A	CO8A	P07357	Complement component C8 alpha chain	LYYGDDEK	2.y6.1	13.1	7.5	4.0	17.9	6.9	3.8	22.2	10.2	5.5 5.8 ± 7.1
						2.b2.1	10.0	6.9	10.3	15.4	9.2	10.1	18.3	11.5	14.4 9.9 ± 14
						2.b4.2	11.1	5.3	3.0	9.0	5.2	3.5	14.3	7.5	4.7 4.4 ± 5.4
14	C8B	CO8B	P07358	Complement component C8 beta chain	YEFILK	2.y2.1	13.0	10.7	11.2	13.1	10.8	12.4	18.5	15.2	16.7 5.6 ± 5.8
						2.y4.2	13.1	11.3	11.1	12.0	10.5	14.4	17.7	15.4	18.2 5.6 ± 6.8
						2.b2.1	12.3	11.5	9.9	13.0	14.4	10.2	17.9	18.4	14.2 5.5 ± 6.2
15	C9	CO9	P02748	Complement component C9	VVEESELAR	2.y7.1	11.6	5.0	5.5	11.4	5.6	5.7	16.3	7.5	7.9 5.7 ± 7.3
						2.y6.1	18.4	6.9	5.0	17.0	5.6	5.1	25.0	8.9	7.2 8.1 ± 9.6
						2.b2.1	10.5	4.6	4.6	15.0	4.6	5.2	18.3	6.5	6.9 3.8 ± 4.2
16	CFB	CFAB	P00751	Complement factor B	EELLPAQDIK	2.y6.1	20.2	6.6	10.1	10.7	9.6	9.6	22.9	11.6	13.9 7.9 ± 10.2
						2.b2.1	11.4	11.9	8.6	18.2	16.9	10.6	<u>21.4</u>	20.7	13.7 11.7 ± 14.3
						2.b3.1	8.5	12.6	10.1	11.0	13.6	13.6	13.9	18.5	16.9 11.5 ± 15.5
17	CFH	CFAH	P08603	Complement factor H	VGEVLK	2.y5.1	7.0	7.1	7.5	13.6	13.2	12.3	15.3	15.0	14.4 3.6 ± 2.7
						2.y4.1	16.2	6.1	6.0	14.2	7.3	5.7	21.6	9.5	8.3 <u>20.6 ± 15.3</u>
						2.b3.1	10.6	4.5	5.2	13.5	8.1	8.3	17.2	9.3	9.8 7.8 ± 5.8
18	CP	CERU	P00450	Ceruloplasmin	GAYPLSIEPIGVR	2.y10.1	9.7	4.9	6.1	11.8	8.4	6.3	15.3	9.7	8.8 6.6 ± 5
						2.y8.1	10.2	9.3	7.8	21.6	11.1	9.7	23.9	14.5	12.5 9.8 ± 9.1
						2.y6.1	12.1	9.7	9.3	15.0	12.5	8.7	19.3	15.8	12.7 5.2 ± 5.3
						2.y5.1	12.4	13.4	8.1	12.8	13.6	7.3	17.8	19.1	10.9 7.2 ± 7.9
19	CRP	CRP	P02741	C-reactive protein	ESDTSYVSLK	2.y6.1	11.2	7.7	12.9	14.9	11.6	13.1	18.6	14.0	18.4 5.4 ± 7
						2.y5.1	10.1	8.7	10.6	14.6	12.0	11.0	17.7	14.8	15.3 5.7 ± 6.2
						2.y3.1	14.4	11.4	11.6	12.6	11.7	10.7	19.1	16.4	15.8 10 ± 12.4
20	CST3	CYTC	P01034	Cystatin-C	ALDFAVGEYNK	2.y6.1	9.9	13.2	10.0	11.3	13.3	15.7	15.0	18.7	18.6 10.8 ± 13.2
						2.b2.1	15.1	11.6	13.0	15.8	16.7	12.6	<u>21.9</u>	20.3	18.2 7.5 ± 10.3
						2.b3.1	16.9	15.9	11.5	15.8	16.4	11.0	<u>23.1</u>	22.9	15.9 <u>16.3 ± 19.3</u>
21	F2	THRB	P00734	Prothrombin	ELLESYIDGR	2.y6.1	11.5	13.3	8.8	11.2	14.5	6.3	16.0	19.7	10.8 5.9 ± 4.8
						2.y5.1	11.7	12.9	8.6	14.5	11.1	8.6	18.6	17.0	12.2 9.6 ± 12
						2.b2.1	12.9	10.6	10.6	13.6	11.6	12.3	18.8	15.7	16.3 6.6 ± 5.9
22	F9	FA9	P00740	Coagulation factor IX	SALVLQYLR	2.y5.1	16.1	13.2	9.5	17.2	12.0	10.5	23.5	17.8	14.1 7.1 ± 7.8
						2.b2.1	15.8	14.7	11.4	32.1	14.6	20.3	<u>35.7</u>	20.8	<u>23.3</u> 11.8 ± 11.3
						2.b3.1	14.3	9.5	13.3	13.3	12.7	9.8	19.5	15.9	16.5 7.5 ± 7.8
23	F10	FA10	P00742	Coagulation factor X	TGIVSGFGR	2.y6.1	10.7	5.9	3.3	11.0	7.3	6.0	15.4	9.4	6.8 3.3 ± 3.9
						2.y5.1	12.9	5.1	6.5	16.4	5.9	5.7	20.9	7.8	8.7 5.4 ± 6.9
						2.y4.1	10.0	12.0	7.0	12.4	11.8	8.8	15.9	16.8	11.2 5.4 ± 6
						2.b3.1	11.4	7.4	8.5	12.2	5.6	11.9	16.7	9.3	14.6 7.2 ± 5.9
24	F11	FA11	P03951	Coagulation factor XI	VVSGFSLK	2.y6.1	11.6	8.7	6.5	13.0	11.1	5.7	17.4	14.1	8.7 5.7 ± 5.7
						2.b2.1	13.8	12.7	7.5	16.4	13.0	7.2	21.4	18.1	10.4 2.3 ± 2.3
25	GSN	GELS	P06396	Gelsolin	AGALNSNDAFVLK	2.y9.1	10.8	14.8	6.9	11.3	12.6	8.7	<u>15.7</u>	19.5	11.1 4.7 ± 4.9
1						2.y8.1	12.4	10.2	6.4	14.8	10.2	8.3	<u>19.3</u>	14.4	10.5 6 ± 5.6
						2.b3.1	9.3	10.4	7.7	10.5	13.1	7.8	<u>14.0</u>	16.7	11.0 4.5 ± 5.7
26	IGFBP3	IBP3	P17936	Insulin-like growth factor-binding protein 3	FLNVLSPR	2.y6.1	15.7	10.2	9.9	21.2	11.1	10.9	26.4	15.1	14.7 5.9 ± 7.7
1						2.y4.1	13.8	13.3	10.1	14.9	14.9	11.5	20.3	20.0	15.3 5 ± 6.1
						2.y3.1	11.3	11.9	11.5	11.4	13.9	11.9	16.0	18.3	16.5 8.6 ± 10.2
27	PLG	PLMN	P00747	Plasminogen	LFLEPTR	2.y6.1	16.2	6.6	7.4	15.6	7.8	6.4	22.5	10.3	9.8 9.7 ± 10.9
1						2.y5.1	12.2	4.1	5.9	12.3	3.4	5.0	17.3	5.4	7.8 4.2 ± 3.9
						2.y4.1	9.2	6.2	6.7	15.9	6.4	6.9	18.4	8.9	9.7 6 ± 7.3
1						2.y3.1	14.3	6.0	7.6	13.3	6.6	8.3	19.5	8.9	11.3 6 ± 6.8
						2.b2.1	13.0	5.6	6.4	14.3	7.1	6.2	19.4	9.1	8.9 4.6 ± 4.2
28	PROC	PROC	P04070	Vitamin K-dependent protein C	TFVLNFIK	2.y6.1	12.2	6.8	6.4	19.6	7.2	7.6	<u>23.1</u>	9.9	9.9 6.1 ± 6.5
						2.y5.1	10.3	9.2	9.5	17.1	12.2	8.4	20.0	15.3	12.7 8.8 ± 11.3
						2.b2.1	12.6	5.9	4.0	13.1	9.3	8.8	18.2	11.0	9.6 4.1 ± 4.7

29	PROS1	PROS	P07225	Vitamin K-dependent protein S	YLVCLR	2.v5.1	12.1	13.5	9.8	21.6	16.0	14.3	24.8	21.0	17.4 10.8 ± 10
						2.y4.1	11.5	10.8	8.3	12.8	12.5	6.9	17.2	16.5	10.8 5.4 ± 5.8
						2.y3.1	14.4	7.6	6.3	12.3	8.1	8.3	18.9	11.1	10.4 9.7 ± 9.5
						2.b2.1	9.6	8.8	10.9	11.5	8.8	10.8	15.0	12.4	15.4 7.5 ± 6.7
30	SERPINC1	ANT3	P01008	Antithrombin-III	FDTISEK	2.y6.1	13.0	2.7	4.2	11.9	4.8	6.5	17.6	5.5	7.7 4 ± 4.9
						2.y5.1	7.8	3.5	3.1	15.4	3.7	4.4	17.3	5.1	5.3 5.6 ± 6.3
						2.b2.1	7.9	2.8	3.9	11.1	3.0	4.3	13.6	4.1	5.8 2.4 ± 2.3
31	SERPINF2	A2AP	P08697	Alpha-2-antiplasmin	LGNQEPGGQTALK	2.y8.1	11.2	4.5	3.3	12.8	5.3	4.9	17.0	6.9	5.9 4.4 ± 5.3
						2.y7.1	24.8	8.0	7.6	23.3	11.1	10.2	34.0	13.7	12.8 16.7 ± 20.8
						2.b4.1	9.0	9.5	8.1	15.8	9.7	9.4	18.2	13.6	12.4 <u>17.1 ± 24.5</u>
32	SERPING1	IC1	P05155	Plasma protease C1 inhibitor	LLDSLPSDTR	2.y7.1	17.4	10.9	9.6	19.9	12.6	11.0	26.4	16.6	14.6 25.3 ± 20.1
						2.y5.1	9.4	6.4	7.2	9.3	8.2	6.2	13.3	10.4	9.5 5.1 ± 6.5
						2.b2.1	12.5	9.0	11.1	14.5	11.2	11.3	19.1	14.4	15.9 11.3 ± 14.3
33	SHBG	SHBG	P04278	Sex hormone-binding globulin	IALGGLLFPASNLR	2.y8.1	8.6	6.4	7.3	8.9	7.1	7.5	12.4	9.6	10.5 3.3 ± 2.8
						2.y7.1	6.7	6.1	6.9	9.5	6.4	7.6	11.6	8.8	10.3 2.6 ± 2.3
						2.b5.1	8.8	8.9	9.9	8.8	9.5	10.0	12.5	13.0	14.0 3.5 ± 2.8
34	TTR	TTHY	P02766	Transthyretin	VLDAVR	2.y5.1	12.2	10.0	9.6	14.5	13.3	11.0	18.9	16.6	14.6 13.9 ± 13.9
						2.y4.1	12.5	5.2	4.3	10.6	6.4	4.3	16.4	8.3	6.1 3.5 ± 3.4
						2.y3.1	18.5	10.6	9.5	<u>20.5</u>	13.1	8.9	27.6	16.8	13.0 <u>15.7 ± 18.3</u>

ITR, Ion transition ratio; %mean df, percentage of mean difference. ^a The column title indicates the information of quantification ion, followed by the precursor ion charge, production ion type, and product ion charge. ^b Mean ± standard deviation.

Underline indicates that the value did not meet the criteria.

				Information of target protein and peptide			_			6 i	ndividu	al sample	es		ITR⁵
N.	Gene symbol	Uniprot ID	Uniprot Accession	Protein Name	Peptide Sequence	Quantification ion ^a	Evaluatio	on Items	A	в	с	D	E	F	(% mean df)
1	AMBP	AMBP	P02760	Protein AMBP	ETLLQDFR	2.y6.1	Difference (%)	Slope	1.1	3.8	2.6	5.7	1.9	2.2	36+28
								Concentration	0.9	1.2	3.0	5.1	8.5	6.2	J.0 ± 2.0
						2.y4.1	Difference (%)	Slope	1.4	2.1	1.1	0.8	1.2	1.3	1.5 ± 1.2
						2\31	Difference (%)	Slope	0.1	3.Z 0.9	23	3.0 2.2	0.9	2.4	
						2.90.1	Diliciclice (70)	Concentration	2.2	6.7	2.6	1.3	9.6	3.7	2.5 ± 1.8
2	APOA2	APOA2	P02652	Apolipoprotein A2	SPELQAEAK	2.v6.1	Difference (%)	Slope	0.7	0.2	0.8	0.1	1.0	0.8	04.00
						,	()	Concentration	8.0	1.5	6.2	3.4	2.8	6.3	2.4 ± 2.3
						2.y4.1	Difference (%)	Slope	0.6	1.1	2.1	0.7	3.3	0.2	30 + 24
							D: () () () ()	Concentration	0.1	2.6	9.0	1.9	2.2	6.7	5.0 ± 2.4
						2.y8.2	Difference (%)	Slope	0.6	0.9	3.6	1.0	0.1	4.2	2.2 ± 1.8
						2621	Difference (%)	Concentration	4.1	0.8	5.3	14.3	0.3	0.6	
						Z.DZ. 1	Difference (%)	Concentration	0.2	5.0 6.5	0.9 4 9	18.5	9.8	3.8	2.3 ± 1.0
3	APOB	APOB	P04114	Apolipoprotein B-100	ALVDTLK	2.v5.1	Difference (%)	Slope	3.8	5.4	3.2	0.2	4.0	5.8	
				· · · · · · · · · · · · · · · · · · ·		,	()	Concentration	6.1	2.9	4.3	9.0	14.2	3.5	3.3 ± 3.2
						2.y4.1	Difference (%)	Slope	0.4	3.8	2.1	4.9	1.2	0.5	61 ± 11
								Concentration	4.1	0.1	20.7	3.2	4.5	6.1	0.4 ± 4.1
						2.b2.1	Difference (%)	Slope	1.8	5.7	1.1	6.1	6.7	6.5	2.2 ± 1.6
4			D02640	Analinapratain E		2171	Difference (%)	Concentration	3.3	1.8	0.6	9.5	1.7	9.5	21+24
4	AFOL	AFOL	F 02049	Apolipopi dell'E	LAVIQAGAN	2.97.1	Difference (70)	Concentration	0.0	2.7	2.2	3.6	13.0	J.Z 7 1	J.1 1 2.4
						2\v61	Difference (%)	Slope	4.0	0.0	23.0	2.0	0.5	67	2 + 1 8
						2.50.1	2110101000 (70)	Concentration	1.3	9.0	4.5	8.6	1.2	0.5	2 2 1.0
						2.y5.1	Difference (%)	Slope	3.2	9.1	4.4	0.1	0.7	2.4	4 ± 2.9
								Concentration	3.5	7.2	16.8	3.0	6.8	16.2	
						2.y4.1	Difference (%)	Slope	1.6	3.8	5.3	2.7	0.8	0.3	3.6 ± 2.9
F			000740	Analinemetein		0.71		Concentration	1.1	1.1	5.9	0.1	5.4	9.5	46 . 22
Э	APOH	APOH	P02749	Apolipoprolein H	AIVVIQGER	2.y/.1	Difference (%)	Concentration	1.5	0.3	0.3	3.9 7 9	2.1	4.0	4.0 ± 3.3
						2.v6.1	Difference (%)	Slope	0.4	1.0	5.1	4.7	1.0	0.8	2.5 ± 1.8
						,	()	Concentration	10.5	11.4	2.1	1.6	2.6	1.5	
						2.y5.1	Difference (%)	Slope	1.9	0.2	0.5	5.0	0.7	2.1	1.5 ± 1.1
								Concentration	5.3	0.8	3.8	8.5	1.8	1.5	
						2.b3.1	Difference (%)	Slope	0.1	5.7	3.8	2.1	0.8	1.1	4.2 ± 2.4
_	DOM	DOMO	D04700	Data O miana alabadia		0.04	D:#	Concentration	10.5	3.7	3.7	20.0	1.5	<u>10.1</u>	
6	BZM	BZMG	P61769	Beta-2-microglobulin	VINHVILSQPK	3.yo.1	Difference (%)	Slope	5.U	0.1	3.3	1.9 17.5	1.5	2.0	4.5 ± 3.7
						3\/51	Difference (%)	Slope	7.8	3.7 87	1.3	19	28	9.7 3.0	
						0.30.1	2.110101100 (70)	Concentration	9.3	5.6	4.8	9.8	1.3	12.1	3.9 ± 3.6
						3.b3.1	Difference (%)	Slope	7.1	0.9	5.0	0.8	7.4	5.4	2.7 ± 2.4

Table 1-7. Response of the targets in 6 different matrices.

								Concentration	2.7	11.5	5.2	0.3	9.2	4.5	
7	BCHE	CHLE	P06276	Cholinesterase	IFFPGVSEFGK	2.y8.1	Difference (%)	Slope	6.9	6.4	0.2	3.3	5.1	2.5	24 ± 16
								Concentration	2.6	0.4	1.6	6.8	15.6	2.3	2.4 ± 1.0
						2.y7.1	Difference (%)	Slope	8.8	4.9	0.7	4.0	4.5	3.7	27 . 24
						,	()	Concentration	4.3	1.0	5.1	5.7	0.8	2.8	2.1 ± 2.1
						2.b2.1	Difference (%)	Slope	7.1	7.3	0.3	2.9	5.7	2.9	
							()	Concentration	9.6	6.8	0.1	8.9	12.2	4.4	1.2 ± 0.9
8	C10A	C10A	P02745	Complement C1a subcomponent subunit A	SLGECOTTNK	2\/81	Difference (%)	Slope	0.6	3.9	27	2.3	23	0.6	
Ŭ	01001	01001	1 02140	Completional Org Subcomponent Subanit /	CECH OD THINK	2.90.1	Dilloronoo (70)	Concentration	17	0.0	0.2	6.5	0.0	4.1	6.0 ± 3.4
						0.61		COncerniation	1.7	0.3	0.0	0.0	0.9	4.1	
						2.yo. i	Difference (%)	Siope	3.0	0.9	3.0	4.9	Z. I	1.0	5.8 ± 3.9
						0104	D:#	Concentration	3.5	2.0	0.0	4.4	10.0	3.3	
						2.D2.1	Difference (%)	Siope	0.6	3.1	2.2	0.9	5.8	4.6	2.0 ± 1.4
								Concentration	0.1	3.0	7.6	5.6	9.0	1.1	
9	C2	CO2	P06681	Complement C2	LNINLK	2.y5.1	Difference (%)	Slope	3.1	5.9	1.6	0.8	4.6	5.0	41 + 32
								Concentration	13.9	15.2	7.8	1.2	8.7	3.4	4.1 ± 0.2
						2.y4.1	Difference (%)	Slope	6.2	1.1	1.9	3.1	0.9	0.9	26124
								Concentration	6.4	2.7	1.2	2.0	1.7	6.9	3.0 ± 2.4
						2.b2.1	Difference (%)	Slope	9.7	3.8	1.5	2.3	5.5	1.3	05.45
							()	Concentration	20.9	30	37	97	10.2	35	2.5 ± 1.5
10	C3	CO3	P01024	Complement C3	DEDEV/PP\//R	2\81	Difference (%)	Slope	27	2.0	21	0.9	57	6.2	
10	00	000	101024			2.90.1	Dilloronoo (70)	Concentration	Q./	8/	10.0	12.1	10.7	67	2.3 ± 2.1
						2161	Difference (%)	Slope	2.4	20	0.7	0.7	5.0	5.1	
						2.y0.1	Dillerence (70)	Concentration	2.4	2.5	0.7	0.7	0.5	0.1	1.2 ± 1.4
						0.54	D : 	COncentration	9.0	9.1	0.1	0.1	0.0	9.0	
						2.y5.1	Difference (%)	Slope	1.3	0.6	0.4	0.1	4.4	3.3	0.8 ± 0.6
								Concentration	7.4	9.9	6.4	6.0	5.5	9.2	
						2.b2.1	Difference (%)	Slope	1.4	2.7	0.3	0.3	4.2	6.1	09+07
								Concentration	9.2	<u>10.5</u>	12.9	1.5	4.8	6.5	0.3 ± 0.7
						2.b3.1	Difference (%)	Slope	2.1	1.8	1.0	1.1	2.7	4.5	10+07
								Concentration	10.5	8.4	9.9	1.5	10.8	8.4	1.0 ± 0.7
11	C5	CO5	P01031	Complement C5	LQGTLPVEAR	2.v8.1	Difference (%)	Slope	4.3	0.2	2.9	3.7	3.2	2.1	24.24
						,	()	Concentration	8.9	1.9	7.8	11.7	6.5	15.8	3.1 ± 2.4
						2.v6.1	Difference (%)	Slope	1.9	0.4	1.2	1.5	3.0	5.1	
						,		Concentration	5.6	0.7	15.1	16.7	17	4.5	5.7 ± 3.9
						2,51	Difference (%)	Slope	47	27	0.8	2.1	17	2.8	
						2.yJ. i	Dillerence (70)	Concentration	15.0	4.2	0.0	2.1	10.5	2.0	3.9 ± 3.5
						2 6 2 1	Difference (%)	Slope	12.2	4.J 6.1	2.5	2.5	10.6	2.0	
						Z.UZ. 1	Dillerence (%)	Concentration	12.2	0.1	2.1	3.0	10.0	2.1	3.9 ± 4.0
40	00	000	D40074	O-mail-mark and OC		0.04	D:#	Concentration	0.3	0.7	1.2	0.2	1.1	9.7	
12	60	006	P130/1	Complement component Co	ALQETAAN	2.yo. i	Difference (%)	Siope	0.9	0.9	1.0	1.4	2.1	2.0	5.6 ± 7.2
								Concentration	9.8	12.1	18.0	5.3	4.4	0.1	
						2.b2.1	Difference (%)	Slope	2.7	2.7	2.7	1.5	2.4	1.8	30 + 31
								Concentration	9.5	3.5	2.5	13.0	5.0	6.7	0.0 - 0.1
						2.b3.2	Difference (%)	Slope	5.1	0.3	3.5	0.2	4.8	3.8	16 + 15
								Concentration	4.2	13.1	1.2	2.7	12.6	14.2	1.0 ± 1.5
13	C8A	CO8A	P07357	Complement component C8 alpha chain	LYYGDDEK	2.v6.1	Difference (%)	Slope	5.0	0.9	1.7	1.7	1.9	1.2	20.02
						,	()	Concentration	3.5	4.7	0.6	0.4	7.8	17.5	3.0 ± 2.2
1						2.b2.1	Difference (%)	Slope	5.0	1.9	1.0	3.0	4.8	5.7	
								Concentration	59	5.6	43	49	7.5	94	3.0 ± 2.5
1						2 h4 2	Difference (%)	Slope	0.3	6.5	1.6	17	23	0.4	
1						2.07.2		Concentration	0.0	4.0	1.0	11 1	2.0	2.0	1.6 ± 1.2
14	COP	CORP	007050	Complement compensant CQ hote -1		2.01	Difference (0()		0.4	4.9	1.9	1.1	1.3	3.1	
14	CoB	CO8B	PU/358	Comprement component C8 beta chain	TEFILK	z.yz.1	Dillerence (%)	Siope	0.5	0.8	2.7	1.4	1.9	3.0	1.3 ± 0.9
1						0.40	D:#		6.9	1.0	0.9	9.9	3.3	1.4	
1						2.y4.2	Difference (%)	Siope	5.9	2.4	6.0	0.3	3.3	1.0	1.6 ± 1.3
								Concentration	6.3	5.4	0.2	3.9	11.9	1.2	

						2.b2.1	Difference (%)	Slope	7.1	0.4	4.0	1.9	1.5	3.0	40.44
								Concentration	2.2	3.2	2.7	1.3	4.7	2.3	1.3 ± 1.1
15	C9	CO9	P02748	Complement component C9	VVEESELAR	2.y7.1	Difference (%)	Slope	3.9	1.7	1.5	6.8	3.1	2.7	22.22
								Concentration	14.1	6.5	1.5	4.8	2.3	5.9	3.3 ± 2.3
						2.v6.1	Difference (%)	Slope	0.2	2.3	0.3	0.5	0.8	1.5	40.00
						,	()	Concentration	7.6	3.5	11.8	6.0	4.8	2.6	4.Z ± 2.9
						2.b2.1	Difference (%)	Slope	2.6	1.4	7.1	2.6	1.2	0.8	
							()	Concentration	44	2.5	79	31	4.5	82	1.6 ± 1.0
16	CEB	CEAR	P00751	Complement factor B		2\61	Difference (%)	Slope	11	13	12	12	0.6	0.6	
10	OLD		1 00/01			2.90.1	Difference (70)	Concentration	0.3	5.8	1.2	5.0	0.0	2.4	1.7 ± 1.3
						2 6 2 1	Difference (%)	Slope	3.0	2.0	4.0 2.1	1.0	0.9	2.4	
						Z.02. I	Difference (70)	Concentration	2.0	10.2	2.1	2.4	0.0 E /	2.5	2.7 ± 1.8
						2 6 2 1	Difference (%)	Slope	2.0	10.5	1.0	12	2.4	0.0	
						2.03. I	Difference (%)	Siope	5.0	1.0	1.0	4.5	3.2	0.0	2.2 ± 1.7
47	0511	05411	Baaaaa			0.54	D://	Concentration	2.0	2.4	4.4	1.1	8.5	7.9	
17	CFH	CFAH	P08603	Complement factor H	VGEVLK	2.y5.1	Difference (%)	Slope	6.3	0.9	7.1	0.7	1.8	0.6	1.6 ± 1.3
								Concentration	2.6	1.4	<u>12.0</u>	9.5	<u>13.8</u>	<u>11.7</u>	
						2.y4.1	Difference (%)	Slope	2.4	2.1	6.0	6.8	1.4	0.3	40 + 28
								Concentration	2.9	8.5	<u>15.2</u>	0.3	3.8	2.1	4.0 ± 2.0
						2.b3.1	Difference (%)	Slope	1.5	1.8	1.8	0.3	7.4	2.7	33 + 25
								Concentration	19.3	7.0	0.2	7.0	10.5	3.6	J.J I 2.J
18	CP	CERU	P00450	Ceruloplasmin	GAYPLSIEPIGVR	2.y10.1	Difference (%)	Slope	4.4	1.0	2.7	0.9	8.2	4.6	40.40
								Concentration	5.7	2.4	1.5	1.6	1.7	0.1	1.3 ± 1.2
						2.v8.1	Difference (%)	Slope	2.8	1.9	2.6	0.2	6.1	4.3	40.47
						,	()	Concentration	57	39	3.0	34	26	10.1	1.9 ± 1.7
						2\61	Difference (%)	Slope	3.3	2.6	43	15	9.0	57	
						2.90.1	Emerence (70)	Concentration	2.0	2.0	0.6	0.0	21	57	1.9 ± 1.7
						2\51	Difference (%)	Slope	3.4	0.0	2.5	22	8.1	5.5	
						2.30.1	Difference (70)	Concentration	23	8.4	2.0	0.6	10.0	10	1.3 ± 0.9
10			000744	C resetion protein		2.61	Difference (0/)	Concentration	2.0	4.5	7.4	0.0	10.0	4.0	
19	UKF	GRE	F02/41	C-reactive protein	ESDISIVSLK	2.y0.1	Difference (%)	Concentration	3.Z	1.0	1.4	2.4	1.0	1.0	2.5 ± 1.7
						0.54	D:# (0/)	Concentration	0.5	4.1	0.0	0.7	11.4	0.3	
						2.yo. i	Difference (%)	Siope	0.5	2.1	0.7	2.2	5.2	1.9	2.4 ± 1.9
						0.04	D://	Concentration	1.6	0.2	19.0	0.5	48.2	1.5	
						2.y3.1	Difference (%)	Slope	4.8	0.2	4.3	0.4	3.1	4.1	5.7 ± 4.0
								Concentration	0.6	8.3	<u>11.8</u>	<u>13.9</u>	2.1	1.0	
20	CST3	CYTC	P01034	Cystatin-C	ALDFAVGEYNK	2.y6.1	Difference (%)	Slope	4.6	4.9	1.2	1.8	2.4	2.2	15 + 12
								Concentration	7.8	10.8	7.4	4.4	2.1	9.6	
						2.b2.1	Difference (%)	Slope	4.4	1.9	3.8	2.8	2.0	0.6	12+00
								Concentration	6.8	7.4	17.0	<u>19.9</u>	0.4	1.3	1.2 ± 0.9
						2.b3.1	Difference (%)	Slope	1.3	1.8	2.8	1.5	1.6	3.3	10 ± 16
								Concentration	6.9	6.2	10.5	9.7	6.4	17.2	1.9 ± 1.0
21	F2	THRB	P00734	Prothrombin	ELLESYIDGR	2.y6.1	Difference (%)	Slope	0.2	3.7	0.2	0.2	5.8	2.3	10.11
						,	()	Concentration	6.6	1.9	3.6	1.9	0.6	7.8	1.2 ± 1.1
						2.v5.1	Difference (%)	Slope	0.4	0.8	0.6	2.0	5.6	1.9	
						,	()	Concentration	47	26	41	11 1	10.5	07	2.2 ± 1.6
						2 h2 1	Difference (%)	Slope	0.6	2.0	0.5	26	54	0.6	
						2.02.1		Concentration	53	13	0.0	33	20	8.2	1.4 ± 0.9
22	FQ	FΔQ	P00740	Coggulation factor IX	SALVLOVER	2\51	Difference (%)	Slope	4.6	 03	0.7	2.0	12	/ 1	
~~	19	1 /13	F 00740	Juagulation lactor in		2.y0.1		Concentration	4.0	3.0	3.0	2.0	9.7	0.7	1.2 ± 1.2
						0104	D://	CONCEINIANON	0.7	3.0	3.2	1.0	0.7	0.7	
1						2.02.1	Difference (%)	Siope	3.0	2.0	1.2	2.9	0.9	0.2	2.0 ± 1.3
1						0104	D . #	Concentration	2.3	3.0	3.7	6.6	1.5	10.1	
1						2.b3.1	Difference (%)	Slope	5.4	0.8	0.7	1.3	1.1	3.7	10+07
								Concentration	8.7	6.3	1.4	8.1	3.6	0.4	
23	F10	FA10	P00742	Coagulation factor X	TGIVSGFGR	2.y6.1	Difference (%)	Slope	1.8	0.1	3.2	1.0	2.4	0.0	1.1 ± 0.9

								Concentration	5.7	2.1	0.7	0.8	1.4	13.1	-
						2.y5.1	Difference (%)	Slope	1.7	2.4	4.1	1.1	2.1	3.2	45.44
								Concentration	2.9	2.1	1.4	7.4	1.3	7.1	1.5 ± 1.1
						2.v4.1	Difference (%)	Slope	2.0	0.3	3.4	0.4	3.6	3.0	00.04
						,	()	Concentration	2.8	1.7	3.9	3.1	2.1	9.5	2.6 ± 2.4
						2 b3 1	Difference (%)	Slope	0.7	21	2.3	31	1.8	54	
						2.00.1		Concentration	23	0.6	37	3.6	77	3.9	2.6 ± 2.0
24	E 11		D03051	Coogulation factor XI	MAGESI K	2161	Difference (%)	Slope	0.3	1 /	13	0.0	0.5	2.4	
24		1 All	1 00001	Coagulation lactor XI	VVOOI OEIX	2.y0.1	Difference (70)	Concentration	0.0	0.0	0.4	5.0	7.0	2.7	2.3 ± 1.7
						0101	D:# (0/)	Concentration	3.0	0.2	0.1	0.0	1.3	7.0	
						Z.DZ. I	Difference (%)	Siope	0.5	1.7	2.1	2.0	0.5	1.1	0.8 ± 0.5
05	0011		Daaaaa	0 L		0.04	D://	Concentration	1.4	3.7	1.0	0.5	5.9	2.3	10.10
25	GSN	GELS	P06396	Gelsolin	AGALNSNDAFVLK	2.y9.1	Difference (%)	Slope	5.8	1.5	3.0	3.4	5.8	0.9	1.9 ± 1.6
								Concentration	0.5	1.6	0.7	2.5	6.4	10.9	
						2.y8.1	Difference (%)	Slope	3.0	2.3	2.0	4.7	3.9	0.5	2.1 ± 2.0
								Concentration	0.4	3.2	0.6	8.2	8.7	0.2	
						2.b3.1	Difference (%)	Slope	2.9	3.5	0.7	3.6	1.5	0.7	1.1 ± 1.1
								Concentration	0.1	1.7	2.3	0.0	11.2	9.5	
26	IGFBP3	IBP3	P17936	Insulin-like growth factor-binding protein 3	FLNVLSPR	2.y6.1	Difference (%)	Slope	9.6	2.4	4.9	2.1	1.2	3.8	40.44
				• • • •		•		Concentration	1.7	5.3	0.7	2.5	0.7	2.3	1.8 ± 1.1
						2.v4.1	Difference (%)	Slope	10.3	0.8	3.0	4.4	0.4	4.1	
						,	()	Concentration	10	0.6	21	4.0	5.8	91	1.5 ± 1.1
						2131	Difference (%)	Slope	91	3.0	42	20	0.3	5.5	
						2.90.1	Enterence (70)	Concentration	21	1.8	4.8	3.1	3.1	0.0	3.0 ± 2.0
27	DIC	DIMN	D00747	Pleaminegen		2161	Difference (%)	Slope	0.0	0.6	17	0.1	2.1	2.0	
21	FLG	FLIVIN	F00/4/	Flashinogen		2.y0.1	Difference (70)	Concentration	1.6	2.0	1.7	4.2	2.2	2.0	2.0 ± 1.3
						2.51		COncerniation	1.0	3.0	1.7	4.2	9.9	1.0	
						2.yo. i	Difference (%)	Siope	2.0	1.0	2.3	0.1	2.0	1.2	0.6 ± 0.5
						0.11	D:# (0/)	Concentration	1.0	1.0	2.3	0.0	2.4	5.5	
						2.y4.1	Difference (%)	Siope	1.6	0.9	3.3	0.0	2.0	1.Z	1.2 ± 1.0
								Concentration	1.7	2.8	6.2	3.9	0.3	6.3	
						2.y3.1	Difference (%)	Slope	2.5	1.7	1.8	0.8	2.1	1.8	12 ± 0.9
								Concentration	1.7	6.2	2.4	4.0	7.3	3.7	
						2.b2.1	Difference (%)	Slope	1.6	0.1	1.9	0.1	0.3	0.4	06+05
								Concentration	2.7	5.1	0.3	0.2	3.0	1.4	0.0 ± 0.3
28	PROC	PROC	P04070	Vitamin K-dependent protein C	TFVLNFIK	2.y6.1	Difference (%)	Slope	2.7	7.3	2.3	3.8	1.9	4.1	16+14
						•		Concentration	0.7	2.5	4.6	1.7	5.6	2.1	1.0 ± 1.4
						2.v5.1	Difference (%)	Slope	2.5	1.7	1.8	0.8	2.1	1.8	
						, -	()	Concentration	1.7	6.2	2.4	4.0	7.3	3.7	2.3 ± 1.8
						2.b2.1	Difference (%)	Slope	1.6	0.1	1.9	0.1	0.3	0.4	
							()	Concentration	27	51	0.3	0.2	3.0	14	0.8 ± 0.7
20	PROS1	PROS	P07225	Vitamin K-dependent protein S	VIVCI R	2\51	Difference (%)	Slope	6.0	22	33	2.2	1 0	4.6	
25	11001	1100	1 07225	Manin Redependence protein o	TEVOEIX	2.y0.1	Difference (70)	Concentration	3.2	2.2	8.9	1.2	10.3	18.0	2.3 ± 1.7
						2 1/1	Difference (%)	Slope	9.Z	0.7	3.0	0.6	13	5.6	
						2.y4.1	Difference (70)	Concentration	0.1	20	1.1	2.0	1.5	1.5	1.3 ± 1.0
						0.04	D://	COncentration	2.1	2.0	1.1	2.0	2.0	4.5	
						2.y3.1	Difference (%)	Siope	8.5	2.1	2.3	3.0	1.8	2.9	1.9 ± 1.7
						0104	D . #	Concentration	2.2	0.6	2.1	14.3	1.6	5.9	
1						2.b2.1	Difference (%)	Slope	4.3	1.8	3.3	0.1	0.9	2.0	18 + 11
1								Concentration	1.6	1.6	9.3	1.6	3.6	7.4	1.0 ± 1.1
30	SERPINC1	ANT3	P01008	Antithrombin-III	FDTISEK	2.y6.1	Difference (%)	Slope	3.0	3.5	0.8	6.5	3.5	2.8	21 + 21
1								Concentration	1.0	1.8	1.8	9.0	0.2	7.2	2.4 ± 2.1
						2.y5.1	Difference (%)	Slope	1.4	0.9	1.8	2.7	0.1	3.1	21 + 16
1						•	()	Concentration	2.1	7.5	3.5	6.2	9.7	5.1	2.1 I 1.0
1						2.b2.1	Difference (%)	Slope	2.8	0.9	0.1	6.5	2.0	2.7	10.10
1							()	Concentration	1.0	3.3	1.9	10.5	11.3	4.9	1.3 ± 1.2
·											-	_	_		

31	SERPINF2	A2AP	P08697	Alpha-2-antiplasmin	LGNQEPGGQTALK	2.y8.1	Difference (%)	Slope	3.1	0.9	2.3	0.8	0.5	0.2	10 + 12
								Concentration	4.9	14.8	4.9	0.2	3.3	10.3	1.0 ± 1.3
						2.y7.1	Difference (%)	Slope	7.6	0.2	8.0	5.3	0.6	6.1	70 . 51
								Concentration	7.5	3.0	11.2	11.5	23.9	9.8	1.2 ± 5.1
						2.b4.1	Difference (%)	Slope	1.6	2.6	3.3	2.7	7.4	0.4	50.00
							()	Concentration	12.1	2.4	9.0	8.3	0.8	0.2	5.8 ± 3.8
32	SERPING1	IC1	P05155	Plasma protease C1 inhibitor	LLDSLPSDTR	2.v7.1	Difference (%)	Slope	4.7	5.8	3.4	1.7	4.5	1.0	
-				•		,	()	Concentration	10.1	2.6	3.6	8.7	5.5	6.5	4.0 ± 3.4
						2\/51	Difference (%)	Slope	59	13	41	19	10	4.0	
						2.90.1	Eniorenoe (70)	Concentration	0.0	3.3	1.0	21	2.6	0.9	1.9 ± 1.4
						2 h2 1	Difference (%)	Slope	24	29	0.2	0.3	14	1.0	
						2.02.1		Concentration	17	5.1	13	14	3.0	4.4	4.0 ± 2.9
33	SHBG	SHBG	P04278	Sex hormone-binding alobulin	IALGGU EPASNI R	2\81	Difference (%)	Slope	32	0.3	5.7	1.7	54	9.9	
	01120	GHEG	104210	Sox hornoric binang grobalin		2.90.1		Concentration	0.0	11.2	10.2	2.0	11.2	2.1	0.9 ± 0.6
						2171	Difference (%)	Slope	0.0	0.5	<u>10.2</u>	2.9	6.0	2.1	
						2.yr.1	Difference (70)	Concentration	4.1	12.7	14.0	2.2	11 /	9.4 10.7	0.7 ± 0.3
						2 65 1	Difference (%)	Slope	47	0.5	6.7	14.0	6.4	12.7	
						2.00.1	Difference (70)	Concentration	4.7	10.0	2.7	11.2	7.2	9.2	0.8 ± 0.5
	TTD	TTUN	D00700	Townshipson		0.54	D:#	Concentration	0.0	10.9	3.Z	11.5	1.5	4.2	
34	IIR	TIHY	P02766	Transtnyretin	VLDAVR	2.y5.1	Difference (%)	Siope	0.5	0.1	5.4	1.9	1.3	4.3	2.8 ± 2.0
							D://	Concentration	4.8	9.2	<u>15.1</u>	23.6	<u>11.2</u>	9.7	
						2.y4.1	Difference (%)	Slope	0.9	2.0	6.9	4.3	0.6	2.1	0.7 ± 0.4
								Concentration	3.0	<u>14.0</u>	5.2	2.1	2.8	5.7	0 = 0
						2.y3.1	Difference (%)	Slope	6.2	6.6	6.5	3.1	4.3	5.0	80 + 54
								Concentration	7.9	1.0	6.0	3.2	1.0	9.5	0.0 1 0.4

ITR, lon transition ratio; %mean df, percentage of mean difference. ^a The column title indicates the information of quantification ion, followed by the precursor ion charge, production ion type, and product ion charge.

^b Mean ± standard deviation.

Underline indicates that the value did not meet the criteria.

1.3.5 Stability of target peptides under conditions for storage or freeze-thawing

Pooled normal serum was used as a matrix to prepare 12 aliquots of lowand medium-QC samples. Three of the 12 aliquots were analyzed immediately (first batch, 0 h) in the autosampler (always at 4°C), after 6 h (first batch, 6 h), or after 24 h (first batch, 24 h). The remaining 9 aliquots were frozen in a deep-freezer at -80°C. Six of the 9 aliquots were thawed slowly on ice, 3 of which were promptly analyzed (second batch, 1 freezethaw cycle). The remaining 3 thawed aliquots were refrozen and stored in a deep-freezer prior to rethawing and analysis (third batch, 2 freeze-thaw cycles). The last 3 aliquots were stored frozen for 4 weeks and then slowly thawed on ice and analyzed (fourth batch). All analyses were repeated in duplicate.

The variability in measurements of low- and medium-QC was similar under the 6 conditions (Figure 1-3A). The median CVs at 0 h, 6 h, and 24 h at 4°C, 1 and 2 freeze-thaw cycles, and 4 weeks at -70°C were 8.8%, 9.7%, 9.6%, 9.5%, 9.4%, and 9.6% in low-QC and 4.0%, 4.0%, 3.2%, 3.2%, 4.2%, and 3.9% in medium-QC samples. When the CV values of the 6 conditions were compared with the total CV from the Repeatability evaluations, 68 transitions (60.7%) in low-QC and 102 transitions (91.1%) in medium-QC had CV values that were lower (Table 1-8). Then, the peak area ratios of time zero (first batch, 0 h) were compared with those of the other 5 conditions. The 78 transitions (69.6%) in low-QC and 108 transitions (96.4%) in medium-QC were within 80% to 120% of the percentage of the time zero sample. In total, 59 of 112 transitions (52.7%), representing 27 of 34 proteins (79.4%), were considered to be stable targets (Figure 1-3B).

4 6

Batch 1 was left on the autosampler for 0 h, 6 h, and 24 h (at 4°C) before analysis. Each batch was prepared under various conditions (eg, adjusting freeze-thaw cycles and storage duration) following guidelines. To validate whether target peptides are stable, (A) the CV values of targets at 2 concentrations should be lower than 20%, and the variability of every condition should not exceed that of 0 h. (B) Also, the peak area ratios should be constant across batches. Percentages of time 0 between each condition for all transitions are presented, and the range from 80% to 120% is marked by dashed lines. The outliers were determined as in Experiment 2.

Table 1-8. Stability of the targets under different conditions of storage.

										Low	w QC										Medium	QC		
			Information of target protein and p	oeptide		Comparing	with th	e variab	ility of r	epeatab	ility (%CV)	Comparin	g with T	ime Zei	ro (%)	Comp	aring v	vith the	variabil	ity of re	epeatabili	y (%CV) Comparin	g with T	`ime Zero (%)
						Batch 1						Batch 1				B	Batch 1					Batch 1		
Gene	e Unipro ol ID	ot Uniprot Accession	Protein Name	Peptide Sequence	Quantification iona	0h 6h	B 24 h	atch 2 B	atch 3 B	atch 4 r	CV of repeatability	6 h 24 h	Batch 2I	Batch 3I	Batch 4	0 h	6 h	B 24 h	atch 2B	atch 3B	atch 4 rep	CV of eatability 6 h 24 h	atch 2E	Batch 3Batch 4
AMB	P AMBI	P P02760	Protein AMBP	ETLLQDFR	2.y6.1 2.y4.1	$\frac{28.3}{14.0}$ $\frac{28.4}{10.4}$	8.4 10.3	15.9 10.9	19.0 6.7	27.6 5.6	27.1 18.1	90.998.0 96.61189	100.9 105.9	90.1 113.3	67.7 104.8	9.1 2.7	6.3 2.7	1.1 4.0	1.0 1.5	5.7 1.9	3.7 4.0	20.0101296.5 18.610461016	99.2 103.0	103.5 104.6 98.3 97.3
APOA	2 APOA	2 P02652	Apolipoprotein A2	SPELQAEAK	2.y3.1 2.y6.1 2.y4.1	9.6 17.1 7.6 0.8 3.1 5.4	34.5 16.9 9.5	9.6 6.3 18.9	3.5 4.6 0.7	26.7 16.1 10.0	35.2 19.6 19.1	83.11109 97.593.9 10431014	110.2 112.3 94.5	112.9 84.4 106.2	97.2 89.3 91.5	3.4 2.0 3.1	6.0 0.2 2.8	3.1 5.4 8.9	2.6 6.4 4.4	4.2 4.2 5.9	1.8 4.4 8.1	16.4101.01015 3.1 99.2 1004 5.8 95.2 1016 4.1 05 4.07 4	99.2 105.4 100.4	98.8 92.8 111.4 117.7 108.8 113.3
APOI	B APOE	B P04114	Apolipoprotein B-100	ALVDTLK	2.yo.2 2.b2.1 2.y5.1 2.y4.1	4.8 5.2 8.9 8.9 10.5 14.5 16.8 13.1	3.5 8.6 9.6	17.1 4.1 30.7	13.8 10.3 12.8	12.9 13.0 18.0	13.7 18.1 17.6 22.0	99.997.1 130.61209 74.466.9	99.5 97.5 79.5	103.0 101.4 95.2 89.0	98.6 96.7 65.6	2.6 3.6 5.1	5.4 2.8 2.1	0.5 1.5 4.1 4.5	3.5 2.4 3.2	6.9 2.3 3.2	4.6 5.9 7.2	4.1 93.4 97.4 2.9 96.8 98.5 3.7 98.9 1006 10.3 98.6 1028	98.0 99.2 104.6	111.5 112.8 112.4 105.3 88.5 88.7 98.1 89.8
APOI	E APOE	E P02649	Apolipoprotein E	LAVYQAGAR	2.b2.1 2.y7.1 2.y6.1	$\begin{array}{cccc} 1.8 & 8.5 \\ 17.6 & 2.7 \\ 18.2 & 4.3 \end{array}$	1.0 22.3 15.9	5.2 30.7 1.1	7.4 16.7 22.8	6.1 6.3 20.5	14.1 19.9 23.2	94.7100.4 118.6115.7 103.5101.5	107.1 91.5 108.3	110.1 103.1 99.9	119.2 95.8 99.5	1.4 9.3 5.0	5.1 8.2 5.3	2.3 3.8 5.5	2.5 3.5 1.5	6.4 7.0 4.4	$ \begin{array}{r} 0.9 \\ \underline{12.6} \\ \overline{5.7} \end{array} $	8.110121032 7.3 93.8 94.1 5.3 95.4 98.3	105.3 96.7 96.1	98.4 87.9 99.6 119.6 107.1 118.3
APOI	I APOI	H P02749	Apolipoprotein H	ATVVYQGER	2.y5.1 2.y4.1 2.y7.1 2.y6.1	$\begin{array}{r} \underline{29.8} \\ \underline{27.5} \\ \underline{27.5} \\ 14.6 \\ \underline{32.2} \\ 14.6 \\ \underline{4.9} \\ 11.0 \\ \underline{4.9} \\ 7.7 \end{array}$	$\frac{27.0}{36.2}$ 16.5 6.5	$\frac{22.6}{23.6}$ $\frac{23.0}{12.5}$	23.2 8.2 3.5 9.2	10.3 4.8 8.6 12.8	19.1 26.3 22.8 18.2	11961066 83.792.1 114695.9 98.11008	$ \frac{70.5}{136.2} 106.3 96.1 $	121.4 69.2 107.6 98.6 97.2	72.8 118.1 99.5	6.3 3.4 2.2 4.2	2.3 4.6 4.8 1.6	2.0 7.9 2.1 3.2	8.2 5.1 2.8 2.3	3.4 <u>13.0</u> 3.9 1.7	3.6 3.7 <u>12.4</u> 4.1	7.2 96.1 102.0 7.2 97.0 96.8 4.4 97.1 98.0 3 41035 1031	94.0 98.5 100.3 106.0	100.3 99.7 109.3 119.2 93.0 99.9 99.9 104.0
B2M	B2M0	G P61769	Beta-2-microglobulin	VNHVTLSQPK	2.93.1 2.b3.1 3.y6.1 3.y5.1	$\begin{array}{c} 4.9 \\ 12.9 \\ 3.8 \\ \underline{25.4} \\ 7.7 \end{array}$	4.6 22.9 11.3	$\frac{32.1}{36.4}$	30.0 16.6 7.8	8.6 16.9 6.3	19.7 22.7 22.6	100.192.5 106.61093 92.8 74.1	81.2 96.7 86.3	82.7 99.5 103.2	100.2 117.2 120.7	3.8 11.4 3.1	5.5 4.4 8.1	8.0 10.9 1.6	6.0 13.6 5.5	3.7 16.5 4.3	2.5 6.3 15.8	5.9 97.0 97.3 19.110551114 13.2 98.1 1083	98.4 104.7 93.0	100.9 97.8 101.0 104.3 100.0 88.2 93.5 88.1
BCH	E CHLE	E P06276	Cholinesterase	IFFPGVSEFGK	3.b3.1 2.y8.1 2.y7.1 2.b2.1	12.2 19.6 6.7 11.0 4.6 15.6 16.2 9.5	18.2 5.4 4.4 7.2	$\frac{11.1}{12.0}$ $\frac{12.3}{2.6}$	9.4 <u>12.3</u> <u>18.8</u>	8.0 <u>11.5</u> <u>12.0</u> 8.0	19.9 10.8 11.4	74.977.3 94.293.3 92.9100.7	106.7 104.4 108.4	93.6 86.8 93.3	104.2 101.9 103.4	7.6 3.3 9.4	2.2 3.1 3.2 5.7	1.4 0.8 9.0	3.0 1.7 8.2 2.8	7.7 4.5 1.2	3.3 0.1 4.0 2.2	12.0 97.4 1016 19.51007 96.8 23.6 93.4 90.3 20.21012 99.4	107.0 95.6 91.3	104.2 101.0 96.5 86.9 90.3 86.9
C1Q/	A C1QA	A P02745	ComplementClq subcomponent subunit A	SLGFCDTTNK	2.y8.1 2.y6.1 2.b2.1	$\frac{10.2}{15.0}$ 9.5 13.0 4.5 5.2 3.2	14.4 8.5 3.4	16.9 9.4	16.7 13.1 4 9	15.8 5.2 9.7	11.2 19.9 16.8	111.1107.1 96.3109.6 98.11029	106.5 103.3	105.5 109.7	89.0 103.1	1.6 7.4 7.4	8.1 3.0 2.3	3.4 7.2 2.1	2.8 3.6 6.8 4.8	5.7 6.1	2.4 3.0 5.7	8.91014 97.8 10.4 97.0 92.7 7 8 94 9 94 1	96.0 89.3 90.4	91.4 90.8 85.1 85.2 88.3 85.7
C2	CO2	P06681	Complement C2	LNINLK	2.y5.1 2.y4.1 2.b2.1	$17.8 4.5 \\ 18.5 23.6 \\ 6.6 15.7 \\ 15$	14.0 13.1 11.1	12.8 9.5	4.6 9.7 17.4	13.3 <u>37.0</u> 8.8	22.1 21.9 18.8	1104114.6 11131115 109187 2	90.9 86.7 92.3	94.6 88.4	85.1 83.4	6.8 4.3 5.0	4.3 5.6 9.6	6.9 5.8 5.0	7.8 4.4 5.2	1.1 7.1 7.0	15.0 3.9 3.6	18.9 99.6 96.4 18.9 95.0 92.6 16 41090 93 5	101.6 97.0 95.7	105.4 100.8 91.2 96.0 105.0 101.4
C3	CO3	P01024	Complement C3	DFDFVPPVVR	2.y8.1 2.y6.1 2.y5.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.3 2.3 0.7	4.9 2.5 2.4	3.3 3.0 0.8	3.8 1.6 2.5	11.6 16.5 15.6	10021015 10341029 97.01022	96.9 103.7 100.7	99.6 102.0 99.1	99.9 102.0 98.4	2.9 2.1 2.1	3.3 2.3 1.4	0.4 1.6 1.3	2.4 1.8 2.0	0.7 1.5 0.4	1.6 2.0 2.6	12.0101.11009 10.610141039 14.0103.1106.1	100.4 103.0 110.0	104.4 106.6 97.2 86.2 112.1 108.6
C5	CO5	P01031	Complement C5	LQGTLPVEAR	2.b2.1 2.b3.1 2.y8.1 2.y6.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9 2.6 5.4 7.3	0.9 1.1 2.7 2.2	3.3 3.9 6.3 7.4	2.9 5.0 2.4 6.1	12.6 11.1 16.2 11.9	97.81043 105.41019 101.31042 90.3101.0	99.1 101.2 116.2 99.4	98.6 101.0 114.1 100.3	$\frac{104.1}{101.4}$ $\frac{121.4}{115.5}$	2.2 5.5 2.8 5.9	4.1 5.1 4.1	0.9 2.1 4.3	1.7 1.4 4.2 2.5	3.8 1.4 2.2 6.0	1.8 1.3 2.6	14.910331003 16.110191012 8.696.8 94.8 9.010801018	98.6 101.5 95.2 101.6	100.1 95.5 100.1 94.3 99.9 101.4 93.6 85.4
C6	CO6	P13671	Complement component C6	ALQEYAAK	2.y5.1 2.b2.1 2.y6.1 2.b2.1	9.5 3.9 1.1 2.4 10.2 <u>36.6</u> 10.8 <u>33.7</u>	8.7 5.4 10.2 21.6	5.4 4.7 16.7 20.8	7.9 5.9 27.0 24.3	2.4 3.0 18.1 27.1	12.5 12.2 30.6 15.9	95.694.0 100.5105.8 105.01183 124.6116.0	95.5 102.2 100.4 90.4	96.3 102.5 <u>145.0</u> 108.2	93.8 106.5 <u>66.9</u> 85.5	4.3 0.5 5.3 5.9	2.6 2.9 10.2 16.7	5.2 1.9 11.3 3.5	5.2 2.0 1.2 10.0	5.3 2.6 10.6 8.8	2.5 9.9 10.3 7.0	5.81047105.1 10.3 98.8 103.1 12.31090 98.5 12.21180 95.2	105.6 101.1 107.8 114.3	105.6 102.2 102.0 101.0 95.3 85.2 99.0 93.5
C8A	CO8A	A P07357	Complement componentC8 alphachain	LYYGDDEK	2.b3.2 2.y6.1 2.b2.1	$\begin{array}{r} 6.1 \\ \underline{38.1} \\ 9.5 \\ \underline{50.0} \end{array}$	3.9 5.0 41.2	10.8 11.7 23.0	13.0 16.0 0.9	$\frac{21.6}{17.9}$ 28.8	17.8 22.2 18.3	1087 <u>1260</u> 100693.8 71.573.7	112.2 92.8 <u>79.0</u>	$\frac{127.6}{103.2}$ $\frac{125.9}{125.9}$	99.3 99.7 86.5	$\begin{array}{r} \underline{13.4}\\ \overline{7.8}\\ 1.0 \end{array}$	8.3 9.1 3.8	5.6 2.1 5.9	3.4 3.9 11.0	3.4 8.4 8.7	$\frac{9.3}{7.2}$ 3.4	9.2 99.5 96.7 10.21035 89.0 11.5 95.7 98.3	97.1 98.1 93.7	91.1 90.4 93.5 87.3 102.8 96.3

					2.b4.2	4.6 12.1 4.9	3.9 7.4	2.2	14.3 90.8 95.4 9	6.6 89.1 93.9	4.9	1.1 5.5	1.7	4.2	5.6	7.5104.7106.6 109.1	98.2 105.4
C8B	CO8B	P07358	Complement componentC8 beta chain	YEFILK	2.y2.1	14.7 6.9 9.3	15.3 34.8	38.7	18.5115.1108.0 10	9.3 99.1 91.5	2.7	5.7 2.4	3.1	2.4	6.6	15.2 97.1 96.3 99.0	91.3 86.6
					2.y4.2	16.3 19.6 18.5	53.9 2.1	23.7	17.7116.8112.0 12	<u>3.0</u> 96.6 <u>76.7</u>	5.8	0.9 3.0	2.6	2.2	1.4	15.4101.0100.4 105.5	93.1 84.0
					2.b2.1	13.6 8.4 23.7	27.0 26.8	52.9	17.9101393.3 8	9.8 90.2 81.3	3.8	6.4 4.5	3.3	0.6	12.3	18.4102.198.3 98.2	85.6 85.9
C9	CO9	P02748	Complement component C9	VVEESELAR	2.y7.1	31.3 23.0 27.6	13.6 29.5	21.4	16.396.31289 13	0.7 102.3 126.2	6.5	10.5 2.7	2.2	6.8	4.1	7.5 96.5 97.9 95.2	97.3 93.7
					2.y6.1	14.5 31.7 24.8	11.6 44.4	20.8	25.099.994.1 10	1.4 88.1 74.2	2.7	0.1 4.7	3.0	6.9	7.9	8.9 99.7 92.6 100.0	97.0 87.7
					2.b2.1	6.7 5.3 17.0	3.4 10.7	12.6	18.3111290.6 8	7.8 104.5 95.8	4.0	1.3 2.8	2.9	4.3	3.2	6.5 94.8 1013 100.4	99.4 97.0
CFB	CEAB	P00751	Complement factor B	EELL PAODIK	2 v6 1	10.5 0.9 6.8	53 155	5.6	22 9 83 7 86 4 10	0 2 87 2 82 9	4.0	37 15	3.2	1.9	4.5	11.610191023 103.2	94.4 85.5
01.0	ernu	100/01	comprendent motor B	LELLINQUIC	2.62.1	15.7 11.6 8.3	12.4 22.5	9.9	21.410281152 11	1.5 112.9 130.5	3.8	8.7 2.4	1.1	3.7	4.8	20.794.294.8 93.3	92.1 83.7
					2 6 2 1	60 85 73	4.0 11.0	13.6	13 0117208 0 10	0.5 084 1061	2.0	4.5 2.0	2 7	5.2	4.7	18 5 02 4 05 1 88 0	80.2 85.0
CEU	CEAU	D08602	Common footon H	VCEVIN	2.05.1	24 46 66	4.9 11.9	13.0	15.2100402.1 10	25 000 100.1	2.9	4.5 2.9	2./	10.0	7.7	15.002.01016 06.0	07.6 04.0
Сгп	СГАП	F08005	Complement factor H	VGEVER	2.95.1	4 1 10 0 0.0	0.1 10.2	25.4	21 6 96 2 95 6 8	12.5 90.9 100.0 18.6 04.2 81.5	3.9	4.0 7.9	3.6	10.0	2.0	0 5 0 2 2 0 2 4 88 2	83.2 76.0
					2.94.1	4.1 10.9 9.0	1.0 2.0	23.4	17 202 405 (0	0.0 94.3 01.3	2.0	10 22	2.7	4.0	2.0	0.2.05 (0.7.(0.0.2	00.2 70.3
	000011				2.03.1	10.3 9.7 6.4	1.0 5.0	5.9	17.292.495.6 9	0.0 97.4 95.2	3.0	4.0 2.3	2.7	8.8	3.9	9.595.697.6 88.2	90.2 80.3
CP	CERU	P00450	Ceruloplasmin	GAYPLSIEPIGVR	2.y10.1	5.1 6.6 0.4	10.6 1.6	6.7	15.3103./109.1 9	0.6 97.8 101.8	2.0	3.9 2.2	3.9	4.4	1.0	9./9/.6 9/.9 98.5	100.5 105.1
					2.y8.1	6.8 16.4 12.0	14.8 1.0	9.2	23.9103394.5 9	8.6 95.7 93.5	4.5	1.4 2.2	1.6	4.8	1./	14.510491036 105.0	105.5 113.2
					2.y6.1	4.7 15.0 13.6	5.5 1.8	5.7	19.389.796.3 9	7.6 105.2 93.5	4.5	0.6 1.3	0.8	1.9	7.0	15.810151023 99.9	100.5 99.9
					2.y5.1	3.1 11.2 15.1	8.6 9.4	1.4	17.895.591.4 9	8.9 93.2 98.8	5.6	0.9 3.2	0.8	4.1	2.4	19.195.997.6 95.3	92.2 83.9
CRP	CRP	P02741	C-reactive protein	ESDTSYVSLK	2.y6.1	5.7 6.0 4.6	8.7 3.8	9.5	18.693.7107.1 9	9.1 106.1 110.6	7.5	6.4 0.5	6.7	9.4	6.7	14.01082111.7 109.8	109.9 127.3
					2.y5.1	8.1 12.7 9.5	10.3 <u>21.9</u>	7.6	17.71009103.0 10	6.2 118.9 109.2	6.2	10.2 6.4	3.4	6.8	8.0	14.8 93.3 89.3 91.9	102.3 110.0
					2.y3.1	4.6 11.5 11.6	11.2 11.9	9.9	19.1111.71085 9	3.3 101.3 105.4	0.7	3.9 12.1	10.4	10.3	5.7	16.4 88.8 95.7 95.4	107.5 101.4
CST3	CYTC	P01034	Cystatin-C	ALDFAVGE YNK	2.y6.1	11.1 17.2 17.9	31.8 10.8	30.3	15.0 <u>120.6</u> 114.1 10	7.2 109.7 99.5	10.1	1.1 5.1	3.5	3.7	6.2	18.7 94.2 92.3 91.6	89.0 82.7
					2.b2.1	22.9 19.3 7.6	9.3 16.0	19.7	21.991.7101.0 10	3.0 107.6 93.9	1.3	13.4 8.6	3.4	12.9	5.5	20.3 98.4 93.9 96.7	99.0 85.4
					2.b3.1	13.9 8.6 11.1	1.3 7.5	12.6	23.1109.592.4 10	4.5 88.9 116.0	12.2	9.3 3.7	1.3	8.6	5.9	22.91007 89.6 95.3	97.5 82.9
F2	THRB	P00734	Prothrombin	ELLESYIDGR	2.y6.1	7.5 1.6 7.9	6.0 5.6	4.4	16.098.41042 9	9.3 93.7 108.4	5.2	2.5 1.4	4.0	0.7	3.6	19.7 98.5 94.4 93.2	92.0 84.8
					2.v5.1	24.2 9.5 20.6	6.4 19.4	3.2	18.6114.1110.2 11	2.9 117.1 113.5	5.6	5.5 1.0	3.4	3.7	2.3	17.096.998.8 98.8	103.9 109.1
					2.b2.1	5.1 6.3 14.4	10.3 15.9	11.2	18.811551096 10	6.5 108.8 108.2	7.6	4.0 4.5	1.5	3.4	5.0	15.794.0 90.6 91.6	90.3 87.8
F9	FA9	P00740	Coagulation factor IX	SALVLOYLR	2.v5.1	20.4 9.9 25.8	4.7 12.0	11.9	23.591.287.3 11	3.7 89.5 70.4	3.6	3.8 5.7	3.7	1.5	11.2	17.896.694.6 95.4	79.8 71.9
- /					2 h2 1	9 2 25 7 11 4	18.7 30.8	11.2	35 7110066 4 10	0.9 81.2 141.4	17.6	17 164	1.2	6.7	3.1	20 81108 95 7 110 7	94.5 91.3
					2 6 3 1	77 216 239	61 7.0	17.9	19 51 29 51 0 20 14	7 9 138 7 117 9	2.3	11.7 3.0	3.1	3.5	6.4	15 91042 97 7 95 4	94.3 92.7
E10	E410	P00742	Coagulation factor X	TGIVSGEGR	2 v6 1	$6.7 \frac{21.0}{17.0} \frac{23.9}{12.4}$	15.9 18.2	13.0	15 410281132 9	<u>1119</u> 1189	3 1	47 33	4.5	9.0	6.8	94969991 1006	96.5 91.6
110	17110	100742	Congulation metor X	101/00101	2.90.1	9.4 10.1 10.3	50.2 13.8	21.8	20.085.785.0 8	8 2 02 5 72 8	3.6	24 20	2.2	2.4	5.5	7 8 97 7 1042 103 8	05.2 86.8
					2.95.1	27.5 10.7 17.5	277 641	12.4	150704964 9	$\frac{10.5}{0.6}$ $\frac{92.5}{92.3}$ $\frac{12.6}{961}$	2.6	2.4 3.9	2.5	4.1	7.6	16 910221027 1021	95.2 80.8
					2.94.1	$\frac{27.5}{15.0}$ $\frac{19.7}{10.5}$ $\frac{17.5}{9.0}$	$\frac{37.7}{200}$ $\frac{04.1}{01}$	15.4	15.9 70.4 80.4 8	0.0 07.5 00.1	2.0	7.0 2.7	2.5	4.1	7.0	0.280.2.02.2 00.5	95.5 91.5
E1.1	EA11	D02051	Consultation for the VI	MICCECLE	2.03.1	13.0 19.3 8.0	<u>20.0</u> 0.1	3.4	17.496.697.5	<u>4 (02.0 152.1</u>	2.0	7.2 3.4	3.2	4.5	9.9	9.5 69.2 92.2 99.5	97.5 87.9
r i i	FAII	P03951	Coagulation factor Al	VVSGF5LK	2.y0.1	4.8 15.9 15.8	9.4 10.4	15.2	1/.480.08/.5 11	4.0 95.8 85.8	8.5	7.2 2.1	2.9	4.5	5.0	14.191.5 88.6 82.8	81.0 75.3
CONT	OFIC	D0(20)	0 L . F		2.62.1	17.0 7.1 9.5	9.6 6.5	7.4	21.4104.188.9 10	10.0 97.3 90.6	5.5	9.0 1.0	0.7	8.9	6.1	18.199.3100.8 94.3	92.2 80.9
GSN	GELS	P06396	Gelsolin	AGALNSNDAFVLK	2.y9.1	7.6 5.9 11.0	2./ 1./	7.5	15./96.0106.8 11	1.1 109.9 92.3	2.5	2.2 0.9	4.2	1.8	6.2	19.510001019 105.0	90./ 8/.0
					2.y8.1	19.0 0.5 2.9	6.4 3.0	4.1	19.395.992.0 10	4.2 110.7 96.6	2.0	6.2 5.8	0.9	2.0	3.8	14.4104.4104.9 105.2	101.6 96.0
LODD DA			TOTAL IN CALL		2.b3.1	9.2 8.0 7.2	2.8 2.3	8.3	14.095.799.3 10	2.4 109.8 98.8	2.4	0.5 2.4	1.5	2.7	4.9	16.7 94.7 98.2 97.1	97.6 94.1
IGFBP3	IBP3	P17936	IGF binding protein-3	FLNVLSPR	2.y6.1	4.0 0.7 6.8	8.4 10.1	8.5	26.486.598.7 9	3.6 94.3 101.6	3.5	1.6 3.3	2.8	7.4	1.0	15.1100.81019 99.0	104.0 106.3
					2.y4.1	7.6 6.2 6.8	8.2 11.4	9.0	20.3104.7107.5 10	07.3 99.7 107.4	2.1	5.4 2.7	4.3	3.4	3.8	20.01025105.6 104.5	103.3 101.7
					2.y3.1	3.4 13.5 7.3	12.8 6.9	12.3	16.094.91102 10	3.3 104.9 97.9	1.2	2.0 3.9	2.6	4.9	2.5	18.3107.11015 102.3	99.2 100.6
PLG	PLMN	P00747	Plasminogen	LFLEPTR	2.y6.1	3.8 3.3 20.3	11.0 22.7	6.8	22.580.191.7 9	9.7 91.4 <u>120.7</u>	4.2	1.1 7.0	3.0	2.2	3.9	10.3102998.8 97.4	91.6 85.4
					2.y5.1	8.8 3.7 12.0	5.1 2.9	10.6	17.398.91015 9	5.3 103.5 89.5	2.2	1.2 2.2	0.8	3.3	1.5	5.4 99.8 1022 100.6	91.8 86.9
1					2.y4.1	7.4 9.5 15.2	5.2 9.4	8.1	18.493.1100.1 7	<u>5.6</u> 80.7 <u>1</u> 65.4	3.3	4.8 1.0	1.3	0.9	1.8	8.9103.0101.0 101.4	99.8 96.8
1					2.y3.1	19.3 <u>21.0</u> 18.1	7.5 9.5	17.5	19.51114103.5 9	4.3 101.5 165.3	2.7	2.4 1.4	1.0	2.0	3.6	8.9 98.1 98.8 98.4	98.9 92.9
1					2.b2.1	11.3 13.6 4.6	6.1 10.5	6.4	19.4108.8112.4 9	8.4 103.4 89.6	2.9	2.2 1.9	1.2	2.0	2.6	9.199.41005 102.4	96.3 88.9
PROC	PROC	P04070	Vitamin K-dependent protein C	TFVLNFIK	2.y6.1	27.4 15.0 32.7	20.7 0.1	38.9	23.193.996.3 18	3.3 98.3 77.0	5.6	3.7 2.4	2.9	0.5	3.9	9.998.996.6 98.7	87.7 80.3
			1 1		2.y5.1	45.6 34.5 27.5	5.9 30.1	16.4	20.092.392.6 9	1.3 126.2 84.9	5.7	7.8 2.4	6.4	4.9	3.6	15.310431049 104.3	94.4 89.3
1					2.b2.1	11.5 10.8 16.3	19.3 25.1	12.7	18.288.81122 10	9.8 134.1 123.0	0.9	3.1 3.0	4.8	3.5	4.1	11.010571038 103.5	103.5 101.1
PROS1	PROS	P07225	Vitamin K-dependent protein S	YLVCLR	2.v5.1	12.9 26.5 20.7	10.9 13.8	7.6	24.812471201 11	5.4 105.7 96.9	9.9	4.4 2.4	4.9	5.3	4.8	21.097.41020 98.8	91.3 84.7
			······		2.v4.1	0.5 1.2 8.3	7.8 10.0	6.3	17.2 90.91031 8	7.7 92.4 81.7	3.8	4.2 1.8	1.2	4.0	9.6	16.510251061 100.7	92.4 83.3
1					2.v3.1	8.8 10.7 141	7.6 8.7	5.2	18.992.81125 10	3.1 113.1 80.6	5.3	4.1 2.3	2.9	6.1	1.2	11.197.296.0 97.9	82.9 80.5
					2.52.1	67 13 0 13 7	0.8 5.4	2.0	15 0 92 51022 8	50 804 852	5.2	7.5 4.7	8.5	8.0	2 2	12 4 98 2 99 8 95 5	02.2 04.0
CEDDING	ANT3	P01008	Antithrombin-III	FDTISEK	2 v6 1	57 81 33	75 46	14 7	17 6 87 8 90 0 8	74 893 804	3 2	01 25	2.5	7.8	5.8	5 51030 98 8 100 6	971 810
SERVINCI		101000	· mumonom m	1 D HOLIK	2 v 5 1	09 28 77	11.8 4.2	6.1	17 310671170 10	5 3 100 0 01 9	4.2	9.8 1.2	0.5	1.6	5.8	5 1 10 19 97 1 92 8	92 4 82 2
1					2.93.1	65 21 92	2 2 2 1	5.6	12 610221012 10	10 060 1041	2.5	2.0 ()	5.0	4.7	2.0	4 1 00 2 1025 00 0	02.7 03.2
1	1215	D08607	Alaha 2 anti-landia		2.02.1	0.5 5.1 8.3	5.5 6.1	5.0	13.010321012 10	90.0 104.1	3.3	5.9 0.6	5.1	4./	3.0	4.1 98.5 1055 99.8	95.5 80.2
SERPINF2	AZAP	FU809/	Aipiia-2-anupiasmin	LGNQEPGGQTALK	2.y8.1	0.1 3.7 2.3	4.5 5.1	4.9	17.0100./94.5 9	98.2 105.2	1.8	0.2 4.4	5.0	4.9	3.1	0.91013 93.9 98.0	95./ 89./
1					2.y7.1	15.4 28.4 29.8	10.8 43.0	13.4	34.0120488.1 10	8.8 104.2 125.6	7.4	6.0 11.5	7.8	14.9	2.2	13.7119.71173 116.9	107.1 114.4
1	101	D05155	DI CILLUI	LI DOL DODOO	2.b4.1	13.9 16.5 14.6	41.9 22.2	5.3	18.297.299.9 9	7.5 100.0 107.0	11.4	7.8 4.8	4.7	8.2	5.0	13.6 94.3 91.7 99.1	89.9 87.8
SERPING	1 IC1	P05155	Plasma protease Cl inhibitor	LLDSLPSDTR	2.y7.1	23.0 34.6 26.6	16.0 17.5	17.3	26.495.1111.4 10	13.5 109.7 <u>124.9</u>	1.9	4.6 2.1	3.1	9.2	5.8	10.691.198.7 101.7	95.0 92.6
					2.y5.1	7.3 4.8 6.6	11.0 13.2	0.9	13.3106.7104.5 10	8.7 109.4 119.7	3.7	3.6 4.2	1.6	1.9	2.8	10.41013104.7 105.0	111.3 119.5
I				_	2.b2.1	5.9 9.9 3.0	8.2 1.7	13.1	19.188.794.2 <u>7</u>	7.3 94.1 124.7	6.3	3.0 1.3	6.0	5.8	2.8	14.4100.798.0 100.0	103.5 104.8
SHBG	SHBG	P04278	Sex hormone-binding globulin	IALGGLLFPASNLR	2.y8.1	1.1 3.5 4.9	2.8 5.1	11.5	12.498.793.9 9	3.7 89.7 94.3	5.4	1.3 0.4	3.4	1.0	2.0	9.695.298.3 100.1	96.9 95.3

		2.y7.1	0.3 0.5 6.4	3.0	3.7	3.2	11.697.897.0	95.9	90.6	90.1	3.9	4.5	3.8	2.2	4.9	0.8	8.897.498.8	97.9	98.1	98.0
		2.b5.1	3.8 3.9 4.2	2.9	3.2	3.1	12.593.594.4	93.3	90.1	92.0	7.1	5.1	4.7	5.1	0.9	3.4	13.01005 96.9	104.2	99.0	93.0
TTR TTHY P02766 Transthyn	retin VLDAVR	2.y5.1	12.4 13.0 12.5	1.8	16.7	15.0	18.9110.8105.6	102.8	92.7	103.4	8.3	1.1	9.6	6.4	11.2	1.1	16.6 89.5 94.8	91.4	84.9	89.4
-		2.y4.1	4.0 6.8 6.4	5.3	4.1	2.0	16.410531025	99.2	100.4	113.6	6.5	2.1	4.1	4.6	2.4	2.4				
		2.y3.1	25.6 13.9 47.8	11.9	31.7	8.9	27.695.661.7	72.5	69.5	65.5	10.8	9.7	8.7	5.0	23.6	2.5				

QC, quality control; %CV, percentage of coefficient of variation. ^a The column title indicates the information of quantification ion, followed by the precursor ion charge, production ion type, and product ion charge.

Underline indicates that the value did not meet the criteria.

1.3.6 Evaluating reproducibility of the assay in the overall workflow

The variability of the entire MRM-MS assay workflow was evaluated by preparing and analyzing aliquots of the same sample on different days. Five aliquots (medium-QCs) were freshly prepared each day (16 h apart) and analyzed in triplicate over 5 days.

With the exception of IALGGLLFPASNLR (derived from SHBG), the CV_{intra} , CV_{inter} , and CV_{total} values of all target peptides were less than 20% (Figure 1-4A). The median CV_{intra} , CV_{inter} , and CV_{total} were 6.1%, 7.3%, and 9.8%, respectively. The CV_{intra} and CV_{inter} of all transitions were less than 20% (Figure 1-4B & Table 1-9). Although 3 of 112 transitions (2.7%) had a CV_{total} above 20% [y6+ ion of SPELQAEAK (APOA2), b5+ ion of IALGGLLFPASNLR (SHBG), y5+ ion of VLDAVR (TTR)], they were lower than 25%.

1.3.7 Comparison of assay performance with representative laboratories

We compared the performance of our assay with that of 4 representative laboratories (Johns Hopkins University, JHU; Broad Institute, Broad; Fred Hutchinson Cancer Research Center, FHCRC; UVic-Genome BC Proteomics Centre, UVGPC), uploaded to the CPTAC ASSAY PORTAL (Figure 1-5). Three of the 4 laboratories analyzed the same type of peptides as we did; the JHU laboratory analyzed glycosylated peptides. None of 34 target proteins was in common with those of FHCRC. We compared the results of 2 items (response curve and repeatability), provided by CPTAC ASSAY PORTAL for 24 proteins, which overlapped between our study and 2 laboratories (Broad and UVGPC). The differences in the specifications of the interlaboratory assay platforms are described in Table 1-10.

The results of the comparison of the 23 proteins that overlap between UVGPC and our study are shown in Figure 1-6 and Table 1-11. We

selected the top 3 transitions of each peptide for the data that were provided by the PORTAL. The median LOD in the response curve was 0.60 fmol and 0.68 fmol in our study and the UVGPC report, respectively (Figure 1-6A). The LOQ in our study (median LOQ, 1.75 fmol) was higher than that of the UVGPC study (median LOQ, 0.69 fmol). In the UVGPC study, the median CV values for the repeatability of the 3 QC samples was slightly lower than in our study (Figure 1-6B). The median CV_{total} values in low-, medium-, and high-QC samples were 18.2%, 10.9%, and 10.4% for our study and 14.1%, 9.7%, and 8.0% for the UVGPC study, respectively. Eleven of the 23 proteins were quantified by peptides that were shared in our study and the UVGPC study. The median LOD and LOQ of 11 shared peptides were 0.60 fmol and 1.42 fmol for our study and 0.65 fmol and 0.65 fmol for the UVGPC study, respectively. The median CV_{total} values in low-, medium-, and high-QC samples were 19.3%, 12.6%, and 10.9% for our study and 15.3%, 10.7%, and 8.8% for the UVGPC study.

In the Broad study and our study, CRP protein was analyzed with the GYSIFSYATK and ESDTSYVSLK peptides, respectively. The LOD and LOQ range of the Broad study was 1.20-2.30 fmol in 3 transitions (Table 1-11). The LOD and LOQ range in our study was 0.22-1.10 fmol and 0.81-2.58 fmol, respectively (Table 1-3). The median CV_{total} values for 3 transitions of the low-, medium-, and high-QC samples were 18.6%, 14.8%, and 15.8% and 8.70%, 5.40%, and 3.40%, respectively, for our study and the Broad study (Table 1-6 and 1-11).

Figure 1-4. Reproducible detection of endogenous analytes.

The 5 aliquots of normal pooled serum were digested and desalted on each of 5 days. The prepared samples were mass-analyzed on that day. (A) The distribution of the CV results is shown in the box-whisker plot. Comparing the variability in the validation of repeatability (Category 2), the entire assay workflow, including the sample preparation, influenced the variability to a lesser extent. (B) Averaged intra-, inter-, and total CV values were obtained from 5 analyses on each of 5 days for 34 targets. Only the total CVs of SHBG (IALGGLLFPASNLR) and TTR (VLDAVR) were above 20% (24.7% and 20.6%, respectively). The values above the bars indicate the number of target peptides within the range of CVs, on the x-axis.

Figure 1-5. The protein assays uploaded to the CPTAC Assay portal and validated in this study.

A total of 1582 assays for 830 unique proteins and 1503 unique peptides have been uploaded since the CPTAC Assay portal was launched. The assays for 193 unique proteins and 350 unique peptides were validated using plasma or serum specimens on 4 different assay platforms and laboratories: Broad Institute (Broad), Fred Hutchison Cancer Research Center (FHCRC), Johns Hopkins University (JHU), and University of Victoria Genome British Columbia Proteomics Centre (UVGPC). JHU validated the assays for 62 peptides derived from 51 proteins by N-linked glycosylation enrichment and parallel-reaction monitoring mass spectrometry (PRM-MS), another targeted MS technique. Broad and FHCRC quantified 34 (107) and 28 (38) proteins (peptides). To increase the sensitivity for the protein assays, they depleted high-abundance proteins using a MARS-14 column or by SISCAPA technique. UVGPC developed the assays for 164 peptides derived from 118 proteins using ultrahigh-pressure liquid chromatography (uHPLC, flow rate: 0.4 mL/min), unlike the nano-flow LC system of other groups.

To confirm that the validated assays of this study were proper to be submitted to the portal, their performance was compared with that of the assays for common targets in UVGPC. The top 3 transitions per peptide was selected to compare the validation results. (A) With regard to Response curve, the distribution of LOD values was similar in both groups —the median LOD was 0.60 fmol in our study and 0.68 fmol in UVGPC. The LOQ in our study (median LOQ, 1.75 fmol) was higher than in UVGPC (median LOQ, 0.69 fmol). (B) The median total CVs in three-QC samples (low, medium, and high-QC) were 19.3%, 12.6%, and 10.9% in our study and 15.3%, 10.7%, and 8.8% in UVGPC. The percentage of transitions, that had a total CV lower than 20% at the concentrations of the low-, medium-, and high-QC was 71.3%, 90.0%, and 98.8% (57, 72, and 79 of 80 transitions) in our study and 78.6%, 98.3%, and 100% (92, 115, and 117 of 117 transitions) in UVGPC.

		In	formation of target protein	and peptide		Average	Average	
	Como			Dontido	Quantification	intra-day	inter-day	Total CV
N.	Gene	Uniprot Uniprot	Protein Name	Peptide	Quantification	CV	CV	(%)
	symbol	ID Accession		Sequence	1011	(%)	(%)	
1	AMBP	AMBP P02760	Protein AMBP	ETLLQDFR	2.y6.1	4.6	4.9	6.7
					2.y4.1	3.4	3.5	4.8
					2.y3.1	3.9	4.6	6.0
2	APOA2	APOA2P02652	Apolipoprotein A2	SPELQAEAK	2.y6.1	8.7	19.3	21.2
					2.y4.1	6.7	17.6	18.9
					2.y8.2	6.8	18.5	19.7
					2.b2.1	5.7	16.7	17.6
3	APOB	APOB P04114	Apolipoprotein B-100	ALVDTLK	2.y5.1	5.0	5.1	7.1
					2.y4.1	5.7	6.8	8.9
					2.b2.1	5.4	6.9	8.7
4	APOE	APOE P02649	Apolipoprotein E	LAVYQAGAR	2.y7.1	4.8	6.4	8.0
					2.y6.1	7.0	7.7	10.4
					2.y5.1	5.1	5.8	/./
~	1 BOIL	1 DOLL DO2740	4 11 / TT	TRACCER	2.y4.1	5.9	/.1	9.2
5	АРОН	APOH P02749	Apolipoprotein H	ATVVYQGER	2.y/.1	4.6	6.6	8.0
					2.y6.1	4.0	4.3	5.8
					2.y5.1	5.8	4.5	5./
	DAN	DOMO D(17(0			2.63.1	5.4	5.5	/./
6	B2M	B2MG P61/69	Beta-2-mcroglobulin	VNHVILSQPK	3.y6.1	11.2	11.4	16.0
					3.y5.1	9.6	8.9	13.1
7	DOUE	CILLE DO(27)	Cl. I	IFFROMETON	3.03.1	12.0	11.2	10.4
/	BCHE	CHLE P062/6	Cholinesterase	IFFPGVSEFGK	2.y8.1	8.0	/.9	11.3
					2.y/.1	8.4	8.8	12.1
0	C104	C10A B02745	Complement Cla subunit A	SLCECDTTNIZ	2.b2.1	8.6	9.0	12.5
8	CIQA	CIQA P02/45	Complement C1q subunit A	SLGFCDTINK	2.y8.1	1.2	/.8	10.0
					2.y6.1	5.5	0.1	8.0
0	C2	CO2 B06681	Complement C2	I NINI V	2.02.1	4.9	/.0	8.3
9	02	CO2 F00081	Comprehent C2	LININLK	2.y 5.1	9.4	0./	12.0
					2.y4.1	0.0	9.4	12.9
10	C2	CO2 B01024	Complement C2		2.02.1	7.9	0.1	11.3
10	C3	CO3 P01024	Comptement C3	DFDFVPPVVK	2.y8.1	9.0	15.0	18.1
					2.y0.1	9.2	15.5	18.0
					2.y.5.1 2.h2.1	9.2	16.2	18.2
					2.02.1 2 b3 1	9.0	15.2	18.3
11	C5	CO5 P01031	Complement C5	LOGTLPVFAR	2.03.1 2 v8 1	6.5	71	9.6
11	05	005 101051	comprehent C5	EQUILI VEAK	2.y0.1	5.8	5.5	7.0
					2.y0.1	6.8	81	10.6
					2.b2.1	6.2	6.2	8.8
12	C6	CO6 P13671	Complement component C6	ALOEYAAK	2.v6.1	8.7	9.9	13.2
					2.b2.1	6.3	11.0	12.7
					2.b3.2	6.2	11.8	13.3
13	C8A	CO8A P07357	Complement C8 alpha chain	LYYGDDEK	2.v6.1	4.7	6.2	7.8
					2.b2.1	8.7	9.9	13.2
					2.b4.2	6.4	7.6	9.9
14	C8B	CO8B P07358	Complement C8 beta chain	YEFILK	2.v2.1	5.4	4.6	7.1
					2.y4.2	5.2	5.9	7.9
					2.b2.1	6.9	6.7	9.6
15	C9	CO9 P02748	Complement component C9	VVEESELAR	2.y7.1	6.4	7.5	9.9
					2.y6.1	7.0	7.1	10.0
					2.b2.1	7.6	8.2	11.2
16	CFB	CFAB P00751	Complement factor B	EELLPAQDIK	2.y6.1	4.7	6.2	7.8
					2.b2.1	6.1	7.0	9.3
					2.b3.1	4.8	6.5	8.1
17	CFH	CFAH P08603	Complement factor H	VGEVLK	2.y5.1	5.1	8.1	9.6
					2.y4.1	5.1	6.4	8.1
					2.b3.1	6.3	6.5	9.0
18	CP	CERU P00450	Ceruloplasmin	GAYPLSIEPIGVR	2.y10.1	4.0	4.0	5.7
					2.y8.1	3.7	3.6	5.2
					2.y6.1	3.3	3.9	5.1
					2.y5.1	3.7	4.3	5.7
19	CRP	CRP P02741	C-reactive protein	ESDTSYVSLK	2.y6.1	5.1	6.0	7.8
					2.y5.1	7.1	8.0	10.7
1					2.y3.1	9.3	9.6	13.4
20	CST3	CYTC P01034	Cystatin-C	ALDFAVGEYNK	2.y6.1	4.2	8.6	9.6
					2.b2.1	10.1	9.0	13.5
1.					2.b3.1	9.2	9.1	12.9
21	F2	THRB P00734	Prothrombin	ELLESYIDGR	2.y6.1	4.6	10.5	11.5
					2.y5.1	5.8	10.6	12.1
1					2.b2.1	5.4	11.3	12.5

Table 1-9. Reproducible detection of target analytes in overall workflow.

22	F9	FA9	P00740	Coagulation factor IX	SALVLQYLR	2.y5.1	4.3	5.1	6.7
						2.b2.1	7.7	7.1	10.5
						2.b3.1	6.9	8.1	10.7
23	F10	FA10	P00742	Coagulation factor X	TGIVSGFGR	2.y6.1	4.6	5.1	6.9
						2.y5.1	5.0	5.9	7.8
						2.y4.1	7.6	7.2	10.5
						2.b3.1	5.8	6.2	8.5
24	F11	FA11	P03951	Coagulation factor XI	VVSGFSLK	2.y6.1	3.5	4.9	6.0
						2.b2.1	5.6	4.8	7.3
25	GSN	GELS	P06396	Gelsolin	AGALNSNDAFVLK	2.y9.1	4.8	5.4	7.3
						2.v8.1	3.6	3.2	4.8
						2.b3.1	3.3	5.1	6.1
26	IGFBP3	IBP 3	P17936	IGF-binding protein 3	FLNVLSPR	2.y6.1	4.8	5.2	7.1
						2.v4.1	4.4	4.6	6.3
						2.v3.1	5.4	6.2	8.3
27	PLG	PLMN	P00747	Plasminogen	LFLEPTR	2.v6.1	5.8	7.4	9.4
				6		2.v5.1	3.7	5.3	6.5
						2 v4 1	4 7	6.4	79
						2.v3.1	3.4	4.8	5.9
						2.b2.1	3.2	4.6	5.6
28	PROC	PROC	P04070	Vitamin K-dependent protein	CTEVLNEIK	2 v6 1	77	9.2	12.0
				······································		2 v 5 1	97	10.4	14.2
						2.b2.1	6.9	8.0	10.6
29	PROS1	PROS	P07225	Vitamin K-dependent protein	SYLVCLR	2.v5.1	7.2	8.9	11.5
				1 1		2.v4.1	5.9	6.0	8.4
						2.v3.1	5.4	5.1	7.5
						2.b2.1	7.3	6.9	10.0
30	SERPINC1	ANT3	P01008	Antithrombin-III	FDTISEK	2.v6.1	6.7	10.0	12.0
						2.v5.1	5.5	8.0	9.7
						2.b2.1	5.9	10.6	12.1
31	SERPINF2	A2AP	P08697	Alpha-2-antiplasmin	LGNQEPGGQTALK	2.v8.1	5.7	5.5	7.9
_				1 1		2.v7.1	8.5	9.0	12.4
						2.b4.1	6.6	6.3	9.1
32	SERPING1	IC1	P05155	Plasma protease C1 inhibitor	LLDSLPSDTR	2.v7.1	8.5	12.4	15.0
-				1		2.v5.1	6.2	12.1	13.6
						2 h2 1	77	10.7	13.2
33	SHBG	SHBG	P04278	Sex hormone-binding globuli	n I ALGGLLEPASNUR	2.v8.1	11.8	11.7	16.6
55	5			gioball		2.v7.1	10.0	11.1	14.9
						2.b5.1	16.8	18.0	24.7
34	TTR	TTHY	P02766	Transthyretin	VLDAVR	2.v5.1	9.6	18.2	20.6
Ľ.						2 v4 1	7.9	14.2	16.2
						2.v3.1	10.2	15.3	18.4
1									

QC, quality control

^a The column title indicates the information of quantification ion, followed by the precursor ion charge, production ion type, and product ion charge.

Underline indicates that the value did not meet the criteria.

Information	Broad Institute (Broad)	UVic-Genome BC Proteomics Centre (UVGPC)	Seuol National University (our study)					
Liquid chromatography	Easy NanoLC1000 (Thermo)	1290 LC (Agilent)	Eksigent 2D MDLC (ABsciex)					
Mass spectrometer (vender)	Quantiva TSQ (Thermo)	6490 Triple Quad (Agilent)	4000 QTRAP (ABsciex)					
Column specifications	Reprosil C18, 3 µm, 120A (0.075 x 120 mm)	Zorbax Eclipse Plus C18, 1.8 µm (2.1 x 150 mm)	Reprosil C18, 5 μm, 200A (0.075 x 150 mm)					
flow rate of LC	300 nL/min	400 µL/min	300 nL/min					
Matrix type	Depleted digested plasma	plasma	Depleted digested serum					
Injection volume	1 µL	10 µL	5 µL					
Response curve type	Forward Curve	Reverse Curve	Reverse Curve					
Concentration range of curves	0.001 fmol/µL - 100 fmol/µL (Light peptide)	12.5 amol/μL - 1 pmol/μL (Heavy peptide)	Different depending upon targets (Heavy peptide)					
Number of response curve points	9	11	13 No spike					
Spiked concentration of synthetic peptide as internal standard	10 fmol/μL (Heavy peptide)	20 fmol/μL (Light peptide)						
Concentration of matrix	0.5 μg/μL	1.0 μg/μL	0.2 µg/µL					
Low QC	$0.9 \text{ fmol/}\mu\text{L}$	LLOQ x 3	LLOQ x 2 or 3					
Medium QC	$15 \text{ fmol/}\mu\text{L}$	LLOQ x 50	LLOQ x 50-100, 50% of linear range					
High QC	80 fmol/µL	LLOQ x 500	> LLOQ x 100, 90% of linear range					

 Table 1-10. Specifications for the Experiments 1 and 2 of the assays in 3 laboratories.

Table 1-11. Performance of assays in the portal for common target proteins with this study.

Information of target protein and peptide								eriment 1	(Respo	onse cur	ve)			Experiment 2 (Repeatability)							
No.	Gene	Uniprot	Uniprot	Protein Name	Pentide Sequence	Quantification	n	Curve fit	f	mol of p	eptide ^b A	Verage	Intra-assa	/ CV(%)	Average	Inter-assay	/ CV (%)	т	otal-CV (%)	
	symbol	ID	Accession			ionª	Slopein	ercept R	square	LOD	LOQ	Low	Medium	High	Low	Medium	High	Low	Medium	High	
1	AMBP	AMBP	P02760	Protein AMBP	ETLLQDFR	2.y3.1 2.y4.1 2.y5.1	2.28 2.43	0.20 0.28	1.00 1.00	0.51 0.22	0.52 0.23	7. 4.	1 5.1 0 5.2	5.9 5.1	11. 8.0	1 7.0 6.3	5.9 6.1	13.2 9.5	8.7	8.3 8.0	
					HHGPTITAK	3.b2.1 3.b3.1	1.96 1.73	0.19	1.00 1.00 1.00	1.30 2.80	1.30 2.80	7. 7.	5 7.3 2 5.3	6.9 5.8	12.0 11.0	10.4 10.4	11.2 14.6	14.2 14.4	12.7 11.6	13.2 15.7	
2	APOA2	APOA2	P02652	Apolipoprotein A2	EQLTPLIK	3.y3.1 2.y2.1 2.y4.1	1.9: 1.25 1.31	0.02 0.06 0.07	1.00 1.00 1.00	1.60 2.60 0.40	1.60 2.60 0.40	6. 5. 6.	4 4.8 3 3.3 7 5.1	6.1 5.0 6.1	8. 8.0 9.1	6.1 3.9 7 7.2	7.6 5.9 4.7	10.8 10.1 11.8	7.8 5.1 8 8.8	9.7 7.7 7.7	
					SPELQAEAK	2.y5.1 2.y2.1 2.y7.1	1.35 1.11 1.17	0.07 0.06 0.04	1.00 1.00 1.00	1.30 3.00 1.80	1.30 3.00 1.80	5. 7. 7.	4 4.7 4 4.3 4 7.8	5.0 5.8 5.0	8.8 10.8 12.0	8.3 4.1 9.3	5.4 8.4 6.2	10.3 13.1 14.6	9.5 5.9 12.1	7.4 10.2 8.0	
3	APOB	APOB	P04114	Apolipoprotein B-100	ATLYALSHAVNNYHK	2.y8.2 4.y12.2 4.y11.2	5.70 4.67	0.07 2.38 1.03	1.00 1.00 1.00	0.91	0.08	5. 6. 5.	5 5.0 5 6.2 5 6.0	5.7 3.6 5.6	8.0 7.0 8.7	1 5.9	7.0 5.1 4.8	10.8 9.8 10.0	8.8 10.8 8.4	9.0 6.2 7.4	
					FPEVDVLTK	4.y12.3 2.y8.1 2.y7.1 2.y2.1	4.20 3.22 3.31 3.35	0.92 0.14 0.13 0.16	1.00 1.00 1.00 1.00	0.07 0.91 0.34 0.70	0.08 0.91 0.35 0.70	5. 10. 4. 13	5 4.0 2 4.4 5 3.6 9 3.6	4.5 3.8 3.4 3.6	0.5 12.0 9.5	5.3 5.3 6.5	6.5 5.0 3.7 3.3	8.8 16.2 10.5 19.7	6.9 6.9 7.4 7.3	7.9 6.3 5.0 4.9	
					TGISPLALIK	2.y7.1 2.y6.1 2.h3.1	3.62 3.51 3.35	0.42 0.37 0.33	1.00 1.00 1.00	0.08 0.19 0.45	0.09 0.20 0.46	6. 5.	2 5.1 3 7.7 7 24	4.0 5.2 4.8	9.4 11.8	4 5.8 5.9 5.2	6.5 5.6 5.1	11.3 13.1 12.2	3 7.7 10.3	7.6	
4	APOE	APOE	P02649	Apolipoprotein E	LGPLVEQGR	2.y4.1 2.y5.1	2.55	0.08	1.00	0.34	0.35	6. 7.	1 3.6 1 3.9	2.8 6.1	9.9 11.5	6.4 5.5	4.6 5.7	11.6	7.3 6.7	5.4	
5	APOH	APOH	P02749	Apolipoprotein H	ATVVYQGER	2.y7.2 2.y5.1 2.y6.1	2.51 1.48 1.53	0.08	1.00 1.00 1.00	0.13 1.20 0.65	0.14 1.20 0.65	6. 7. 10.	5 3.8 7 7.3 6 8.8	4.2 8.2 4.8	10. 8.0 12.9	8.5 8.5	4.9 6.7 6.4	13.8 11.7 16.7	0.7 11.2 14.5	10.6 10.6 8.0	
6	BCHE	CHLE	P06276	Cholinesterase	YLTLNTESTR	2.y7.1 2.y8.1 2.y6.1	20.90 20.10	0.07 0.35 0.46	1.00 1.00 1.00	0.12 0.12	0.13 0.14	12. 14. 10.	5 7.4 1 6.4 3 6.9	4.6 5.3 4.8	13.9 13.9 13.9	8.2 8.2	6.5 7.0 7.9	19.9 19.8 17.5	10.4 10.4 10.4	8.0 8.8 9.2	
7	C2	CO2	P06681	Complement C2	HAFILQDTK	2.b2.1 3.y4.1 3.b3.1	21.00 8.07 7.01	0.49 0.47 0.34	1.00 1.00 1.00	0.11 0.18 1.20	0.12 0.19 1.20	12. 11. 10.	1 6.2 7 6.9 7 8.9	4.9 4.4 6.8	17. 6.0 14.0	1 7.7 7.8 7.7	9.4 7.7 7.4	<u>20.9</u> 13.4 18.1	9.9 10.4 11.8	10.6 8.9 10.0	
8	C3	CO3	P01024	Complement C3	SGIPIVTSPYQIHFTK	3.b4.1 3.y13.2 3.y13.3	7.63 1.23 1.35	0.47 0.40 0.42	1.00 1.00 1.00	0.12 0.31 0.44	0.12 0.31 0.44	10.: 6.: 5.:	2 7.4 D 4.5 D 3.4	5.8 3.6 4.3	8. 13. 13.	7 8.7 2 7.4 5 7.1	4.7 5.8 5.5	13.4 14.5 14.7	11.4 8.7 7.9	7.8 6.8 7.0	
					TGLQEVEVK	3.b3.1 2.y6.1 2.y2.1	1.19 1.19 1.13	0.22 0.03 0.03	1.00 1.00 1.00	2.20 0.94 1.50	2.20 0.95 1.50	5. 6. 4.	5 3.0 3 4.2 9 4.5	2.7 5.0 4.5	14.: 11.: 8.8	7.1 9.5 6.5	6.0 6.1 4.2	15.3 13.3 10.1	7.7 10.4 7.9	6.6 7.9 6.2	
					VHQYFNVELIQPGAVK	2.y7.2 3.y7.1	1.28 1.22	0.05 0.21	1.00 1.00	1.60 1.30	1.60 1.30	6. 9.	5 4.8 4 6.9	5.0 3.6	13.0 17.0	6.4 8.2	6.6 5.3	14.5 19.4	8.0 10.7	8.3 6.4	

						3.y6.1	1.25	0.12	1.00	2.50	2.50	6.2	4.8	5.4	17.0	9.8	5.7	18.1	10.9	7.9
۵	C5	CO5	P01031	Complement C5	FONSAILTIOPK	2,40.1	3.06	0.19	1.00	1.90	1.90	30.7	5.e	4.2	28.5	87	7.1	<u>21.1</u> /10	9.5	9.0
3	00	000	1 01001	Complement 05	I QNOALLING I K	2.910.1	4.04	0.02	1.00	1.00	1.00	36.8	75		20.C	0.7	6.0	51.1	11.9	7.0
						2.yz. i 2.h2.1	4.04	0.24	1.00	1.30	1.50	10.2	61	4.5	10.5	9.0	4.6	27.2	10.3	6.4
						2.02.1	3 70	0.37	1.00	0.10	0.1/	15.2	5.0	6.4	17/	71	4.0	23.0	0.3	0.4
					VI QI LEIX	2.90.1	3.71	0.36	1.00	0.10	0.14	14.1	5.6	3.6	15.0	53	4.6	21.3	77	5.8
						2.30.1	3.65	0.35	1.00	0.07	0.17	18.3	67	7.2	10.0	7.4	6.5	27.0	10.0	0.0
10	<u></u>	C 00	D027/18	Complement component CQ		2.02.1	3.02	0.00	1.00	0.10	0.17	10.0	75	87	11 6	0.6	0.0	15.8	12.1	12.7
10	09	009	F02/40	Complement component Ca	VVELSELAR	2.yr.1	3.65	0.23	1.00	2.40	2.40	28.4	6(5.4	38.5	9.0	9.3 7.5	17.0	10.8	0.2
						2,31	3.45	0.31	1.00	5 10	5.20	21.6	9.0	13.3	14 7	8.8	11.0	26.1	13.2	17.3
					I SPIYNI \/P\/K	2,92	3.70	0.67	1.00	0.06	0.07	27	45	3.5	8.8	49	3.3	92	6.5	4.8
						2 \31	3.52	0.42	1.00	0.32	0.33	6.3	54	2.9	11.5	6.4	3.2	12.9	84	4.3
						2 h2 1	2 9:	0.23	1.00	0.83	0.85	5.2	50	61	7(5.8	57	87	83	8.3
					TSNENAAISI K	2.02.1	2.30	0.20	1.00	1.80	1 90	87	6.6	5.3	94	9.0	5.5	12.8	11 9	7.6
						2 \31	3.21	0.10	1.00	1.00	1.00	57	8.3	5.8	15.7	91	6.2	16.7	12.3	8.5
						2 \ 9 2	3.2F	0.17	1.00	3 70	3.80	11.2	6.0	7.5	15.9	86	97	19.4	11.0	12.3
11	CFB	CFAB	P00751	Complement factor B	EELLPAQDIK	2.v6.1	2.06	0.11	1.00	0.22	0.22	10.8	6.0	5.3	13.4	9.2	7.7	17.2	11.0	9.3
						2 h2 1	1.98	0.11	1.00	0.96	0.97	15.4	76	5.8	17.9	7.5	6.5	23.2	10.7	87
						2.b3.1	2.04	0.10	1.00	1.40	1.40	20.3	9.5	5.0	21.2	11.1	7.2	29.4	14.6	8.8
12	CFH	CFAH	P08603	Complement factor H	SSQESYAHGTK	3.v3.1	1.39	0.16	1.00	21.00	21.00	10.1	7.3	5.6	13.5	8.0	7.7	16.9	10.8	9.5
				-		3.v9.2	1.20	0.10	1.00	7.80	7.90	3.9	3.2	2.2	8.9	6.0	3.2	9.7	6.8	3.9
						3.y7.2	1.50	0.19	1.00	15.00	15.00	23.7	12.0	9.3	27.6	24.2	17.7	36.4	27.0	20.0
13	CP	CERU	P00450	Ceruloplasmin	GAYPLSIEPIGVR	2.v10.1	1.25	0.14	1.00	2.30	2.30	9.2	2.1	4.6	10.9	4.3	3.3	14.3	4.8	5.7
						2.v11.2	1.39	0.14	1.00	2.00	2.00	9.5	5.2	5.0	12.0	7.3	6.4	15.3	9.0	8.1
						2.y10.2	1.71	0.29	1.00	0.26	0.26	7.3	3.6	4.7	11.2	6.2	4.6	13.4	7.2	6.6
					IYHSHIDAPK	3.y2.1	1.37	0.04	1.00	3.70	3.70	4.5	4.0	4.0	10.4	6.6	5.9	11.3	7.7	7.1
						3.y9.2	1.36	0.10	1.00	2.10	2.10	5.8	3.7	3.8	14.1	9.9	4.6	15.2	10.6	6.0
						3.v8.2	1.41	0.08	1.00	1.10	1.10	5.3	3.6	3.4	8.0	6.4	3.8	9.6	7.3	5.1
					NNEGTYYSPNYNPQSR	3.ý4.1	1.29	0.10	1.00	11.00	11.00	19.8	5.7	5.4	19.8	9.4	5.4	28.0	11.0	7.6
						3.y9.2	1.16	0.06	1.00	20.00	20.00	19.7	7.6	6.2	18.5	8.8	8.0	27.0	11.6	10.1
						3.y8.2	1.12	0.07	1.00	4.60	4.60	9.6	3.5	4.7	12.9	2.6	7.1	16.1	4.4	8.5
14	CRP	CRP	P02741	C-reactive protein	GYSIFSYATK ^a	2.y8.1	1.06	0.02	1.00	1.20	1.20	5.1	1.4	1.3	7.1	5.6	2.9	8.7	5.8	3.2
						2.y6.1	1.05	0.02	1.00	1.20	1.20	3.2	1.9	1.5	7.1	4.9	3.1	7.8	5.3	3.4
						2.y5.1	0.99	0.02	1.00	2.30	2.30	4.7	1.3	1.8	8.6	5.2	3.1	9.8	5.4	3.6
15	CST3	CYTC	P01034	Cystatin-C	ALDFAVGEYNK	2.y9.1	18.00	1.56	1.00	0.13	0.17	4.7	5.3	4.0	7.2	11.5	8.1	8.6	12.7	9.0
						2.y7.1	19.0C	1.39	1.00	0.11	0.15	14.5	6.5	5.5	13.9	9.9	5.6	20.1	11.8	7.8
						2.y6.1	18.00	1.35	1.00	0.10	0.15	10.7	7.1	5.5	13.1	11.2	8.4	16.9	13.3	10.0
16	F9	FA9	P00740	Coagulation factor IX	SALVLQYLR	2.y5.1	24.70	2.72	1.00	0.05	0.08	6.1	4.5	10.3	13.1	6.7	15.4	14.5	8.1	18.5
						2.y4.1	25.90	2.56	1.00	0.11	0.13	6.2	7.6	9.5	14.8	11.4	11.6	16.0	13.7	15.0
. –						2.y7.2	25.70	3.79	1.00	0.09	0.12	9.9	5.9	11.2	14.4	9.4	12.6	17.5	11.1	16.9
17	F10	FA10	P00742	Coagulation factor X	MLEVPYVDR	2.y5.1	9.02	0.62	1.00	0.10	0.12	5.5	3.4	4.9	12.6	7.3	6.9	13.7	8.1	8.5
						2.b3.1	8.97	0.56	1.00	0.20	0.22	10.3	4.4	6.2	16.2	6.4	8.9	19.2	7.8	10.8
						2.b4.1	10.71	0.46	1.00	0.20	0.20	8.4	6.4	2.9	10.2	9.8	6.9	13.2	11.7	7.5
18	GSN	GELS	P06396	Gelsolin	AGALNSNDAFVLK	2.b3.1	2.32	0.39	1.00	0.68	0.69	6.0	4.3	3.6	7.5	4.3	4.0	9.6	6.1	5.4
						2.y8.1	2.53	0.30	1.00	1.10	1.10	5.0	6.5	5.4	11.7	6.9	5.4	12.7	9.5	7.6
					TOADELLE	2.y9.1	2.46	0.39	1.00	0.98	0.99	4.7	4.5	3.9	9.7	5.4	4.8	10.8	7.0	6.2
1					IGAQELLR	2.b3.1	2.92	0.11	1.00	0.64	0.65	13.6	7.7	5.9	17.1	8.6	6.5	21.8	11.5	8.8
						2.y4.1	3.05	0.11	1.00	0.28	0.29	14.9	9.0	6.8	15.1	10.2	9.8	21.2	13.6	11.9
10			D007/-	S i :		2.y5.1	3.03	0.09	1.00	0.24	0.24	8.2	10.6	6.1	11.3	11.2	6.0	14.0	15.4	8.6
19	PLG	PLMN	P00747	Plasminogen	LFLEPIR	2.y5.1	6.45	0.29	1.00	0.04	0.05	10.2	5.1	7.7	12.2	8.2	5.9	15.9	9.7	9.7
						2.y3.1	6.22	0.22	1.00	0.09	0.10	8.5	7.t	6.7	8.8	9.0	6.7	12.2	11.8	9.5
L						Z.DZ. 1	6.50	0.30	1.00	0.04	0.05	6.1	5.4	0.U	0.3	1.5	0.3	ö.ö	9.2	ŏ./
20	PROS1	PROS	P07225	Vitamin K-dependent protein	SSFQTGLFTAAR	2.y5.1	3.92	0.31	1.00	0.95	0.98	5.9	5.9	6.1	8.8	7.4	7.8	10.6	9.5	9.9
----	----------	------	--------	------------------------------	-------------------	---------	------	------	------	------	------	-------------	------	-----	------	------	------	------	------	------
						2.y4.1	3.77	0.31	1.00	1.70	1.80	6.3	6.4	9.1	12.5	8.6	10.3	14.0	10.7	13.7
						2.ý9.2	3.82	0.25	1.00	0.65	0.68	11.1	5.3	6.3	17.3	8.4	9.0	20.6	9.9	11.0
21	SERPINC1	ANT3	P01008	Antithrombin-III	DDLYVSDAFHK	3.y9.2	1.73	0.17	1.00	0.72	0.72	4.5	4.0	3.0	6.6	5.5	3.7	8.0	6.8	4.8
						3.y8.2	1.68	0.19	1.00	0.60	0.61	4.0	2.6	3.4	8.1	5.7	3.6	9.0	6.3	5.0
						3.b2.1	1.56	0.13	1.00	0.91	0.92	4.3	1.8	2.9	6.9	4.9	3.1	8.1	5.2	4.2
					FATTFYQHLADSK	3.y2.1	1.79	0.37	1.00	0.63	0.65	5.1	4.2	4.4	10.C	9.3	5.0	11.2	10.2	6.7
						3.y11.2	1.74	0.45	1.00	0.32	0.35	7.4	7.5	5.8	8.3	10.1	6.5	11.1	12.6	8.7
						3.b2.1	1.81	0.42	1.00	0.44	0.46	5.9	6.3	3.6	7.4	7.4	4.0	9.5	9.7	5.4
					TSDQIHFFFAK	3.y6.1	1.77	0.57	1.00	0.85	0.86	6.4	4.1	5.5	12.6	5.4	5.1	14.1	6.8	7.5
						3.y10.2	1.77	0.78	1.00	0.19	0.20	4.8	4.7	5.4	11.6	7.3	5.6	12.6	8.7	7.8
						3.y9.2	1.56	0.38	1.00	0.52	0.53	6.7	4.8	4.3	10.7	5.9	4.6	12.6	7.6	6.3
22	SERPINF2	A2AP	P08697	Alpha-2-antiplasmin	LGNQEPGGQTALK	2.y8.1	2.15	0.13	1.00	0.58	0.59	12.9	6.7	7.0	17.8	7.4	7.0	22.0	10.0	9.9
						2.b4.1	2.01	0.09	1.00	7.50	7.60	26.4	20.0	9.3	36.0	21.7	8.5	44.6	29.5	12.6
						2.b5.1	1.93	0.06	1.00	2.80	2.80	24.5	7.6	4.6	21.1	12.9	5.8	32.3	15.0	7.4
23	SERPING1	IC1	P05155	Plasma protease C1 inhibitor	FQPTLLTLPR	2.y8.1	1.67	0.42	1.00	0.28	0.29	6.1	4.2	5.7	11.C	5.1	5.3	12.6	6.6	7.8
						2.y4.1	1.38	0.17	1.00	2.00	2.00	7.3	4.4	5.5	12.4	6.8	6.2	14.4	8.1	8.3
						2.y8.2	1.67	0.39	1.00	0.30	0.31	7.2	4.5	4.8	11.5	6.7	5.0	13.6	8.1	6.9
					GVTSVSQIFHSPDLAIR	3.y15.2	1.35	0.40	1.00	0.57	0.59	<u>21.6</u>	5.1	4.7	17.2	11.5	5.3	27.6	12.6	7.1
						3.y12.2	1.36	0.82	1.00	0.03	0.05	17.3	6.6	2.9	17.0	9.9	4.9	24.3	11.9	5.7
						3.y15.3	1.24	0.21	1.00	3.70	3.80	23.8	6.4	4.8	18.4	10.5	6.2	30.1	12.3	7.8
24	TTR	TTHY	P02766	Transthyretin	GSPAINVAVHVFR	3.y3.1	1.68	0.21	1.00	5.30	5.30	8.6	4.1	8.6	12.2	18.9	7.7	14.9	19.3	11.5
						3.y11.2	2.12	0.67	1.00	0.28	0.30	7.8	5.5	7.5	10.5	17.3	8.2	13.1	18.2	11.1
						3.y9.2	1.94	0.34	1.00	1.80	1.80	9.1	4.3	7.6	8.2	18.6	6.8	12.2	19.1	10.2

Transition marked with "P" were content with criteria of the items, "NP" were not content with, and "Y" were qualified in all the experiments. Exp1 to Exp5 indicate the 5 experimental categories in the guidelines. ^a The column title indicates the information of quantification ion, followed by the precursor ion charge, production ion type, and product ion

charge.

1.4 Discussion

Three tiers of targeted MS assays were defined at a workshop that was sponsored by the National Institutes of Health (NIH) under the auspices of the National Cancer Institute-Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) and National Heart, Lung, and Blood Institute (NHLBI) as "fitfor-purpose" with regard to validation strategies (19). Tier 1 and 2 assays have 2 properties that differentiate them from Tier 3 assays: (i) the ability to repeatedly measure sets of analytes of interest within and across samples and experiments and (ii) the ability to incorporate internal standards for each analyte for confident detection and precise quantification.

Tier 1 assays are designed to provide actionable information to medical practitioners. To ensure the credibility of these assays, the targets must be rigorously analyzed and validated in thousands of clinical samples in accordance with guidelines that are provided by organizations, such as the US FDA (39) and the CLSI (40). Hundreds to thousands of clinical samples must be analyzed reliably for a small number of targets that have been proven to be clinically useful.

Conversely, the purpose of Tier 2 assays is to narrow the range of potential targets that have clinical value by observing quantitative changes across various targets that have been identified in previous studies of tens or hundreds of clinical samples. To accomplish this, Tier 2 assays require high selectivity and repeatability, moderate sensitivity and reproducibility, and multiple analytical verification steps to establish confident and precise assays. The 5 experiments that are described in our study provide such an analytical validation of Tier 2 assays for preclinical applications (20).

The 34 protein markers used to develop MRM-MS assays are relevant to a variety of diseases (Table 1-5). Eleven of them (37.9%) were the components of the complement cascade, a part of the immune system. In Systemic Lupus Erythematosus (SLE), an autoimmune disease, serum

levels of C1q. C2 or C3 can be lower than normal (41-44). The deficiency of components of the Membrane Attack Complex (MAC): C5, C6, C8 and C9 are potentially associated with continuous bacterial infections (45). CFB, CFH, or SERPING1, which were complement regulatory proteins, were related to diseases such as Partial lipodystrophy, Nephritis, Atypical Hemolytic-uremic Syndromes (HUS), or Hereditary Angioedema (HAE) (46-48). Nine proteins (F2, F9, F10, F11, PLG, PROC, PROS1, SERPINC1, and SERPINF2: 31.0%) were components of the coagulation cascade and each of them were deficient in different diseases like Hemophilia, or disorders related to Thrombosis or Fibrinolysis (49-55). Another 9 proteins (31.0%) were mainly associated with Cardio-Vascular Diseases (CVD; APOB, CRP) (55-58), Type-II diabetes (APOB, SHBG) (59-61), Renal diseases (B2M, CST3) (62-64), or another several diseases (65-71). AMBP (72,73), APOA2 (74,75), APOE (76,77), APOH (78,79), and GSN (80,81) have also been studied as biomarkers of diseases, such as autoimmune disease, CVD, and organ dysfunction syndrome, despite their exclusion from the FDA lists. Quantifying the serum levels of the aforementioned markers in patients may serve a complementary role in aiding diagnosis. The disease relevance of the serum markers supports our finding that MRM-MS assays are a reproducible and transferrable analytical platform and also has pre-clinical potential.

Among 112 assays that represented 34 proteins, only 26 assays, representing 17 proteins, passed all 5 experiments (Table 1-12). Although 76 assays (67.9%) that quantified all 34 proteins were qualified by the first 2 experiments (Response curves and Repeatability), 50 of 76 assays (65.8%) and 17 proteins failed to pass all of the experiments, primarily due to Selectivity and Stability. However, the FLNVLSPR peptide (derived from IGFBP3), which had the lowest low QC concentration (LLOQ*2) of the 34 targets, with a value of 0.28 fmol/µL (9.01 ng/mL), was reliably quantified using the y3+ ion, as evidenced by its ability to pass all of the criteria. These results confirm that the protein assay is quantitatively reproducible within a sub-fmol/µL (or a single ng/mL) by MRM-MS.

Also, our validated assays were well-characterized and transferrable targe ted proteomics assays, based on the comparison with those that have been uploaded to the CPTAC assay portal (Figure 1-6). The analytical p latforms from UVGPC and our study performed similarly with regard to sensitivity and precision. But, our platform included MARS depletion and nano-flow LC, and we could claim following strengths in comparison wit h UVGPC. Twenty-four assays were validated in all 5 experiments in th e CPTAC assay guidelines, in contrast to the UVGPC assays, which we re validated only in the first 2 experiments (Response curve and Repea tability). Fourteen of 23 proteins passed all 5 experiments, and the rem aining 9 proteins passed at least 4 experiments. Our platform may be more transferrable to many laboratories that use nano-flow LC for MS a nalysis. The analytical performance was influenced significantly by the fl ow rate of the LC system; thus, having a similar flow rate and operatin g procedure is important in transferring established assays. Also, our pl atform could quantify low-abundance and moderate-high abundance pro teins simultaneously due to MARS depletion.

Our study has limitations. The quantification of proteins by MRM-MS assay is typically performed using 2 or more peptide assays, when possible, to improve the accuracy of the quantitation (82). However, only 1 peptide per protein was selected for analysis due to financial constraints. If we had used 2 or more peptides to validate them, the assays that represented more proteins could have been qualified in all of the experiments in the guidelines.

Another limitation is that homemade analytical columns were used for the method validation, which could have affected the reproducibility of the assays. A single column was used for all experiments in this study to minimize this concern. Although we used self-pack columns for our experiments, the conditions of the established assays must be optimized between lab settings with moderate effort if pre-packed columns with identical specifications are purchased from the same supplier that we used.

Also, serum proteins were quantified using nano-flow LC [0.1–1 μ L/min], which typically improves analytical sensitivity at the expense of throughput and robustness. If we had used a capillary-flow [1–100 μ L/min] or standard-flow [> 100 μ L/min] LC system, both of which have higher throughput and are more robust, the results would have been more reproducible, and more targets would have met the performance specifications in the CPTAC guideline (83).

We have developed a quantitative MRM-MS assay that can quantify 29 FDA-approved and LDT target proteins and 5 potential disease biomarkers. Among them, 26 assays (14 proteins) were validated with regard to all 5 items and thus transferable to the research community using the MRM-MS assay platform. Throughout the experiments, we confirmed the LOD, LOQ, LLOQ, ULOQ, and linear range of target peptides using our MRM-MS assay. The precision was good (CV < 20%) for the 3 QCs (low, medium, and high), and our MRM-MS assay was repeatable in the overall linear range. The protein assays were also stable and minimally affected by temperature and freeze-thaw cycles. In addition, we verified the reproducibility of the overall process of the MRM-MS assay. The results of this study indicate that our MRM-MS assay has the advantages of being highly validated, transferrable, and able to quantify high- to low-abundance proteins and has potential for use as a preclinical verification method

			Infor			E	xperime	nt				
N.	Gene symbol	Uniprot ID	Uniprot Accession	Protein Name	Peptide Sequence	Quantification ion ^a	Exp1	Exp2	Exp3	Exp4	Exp5	Pass
1	AMBP	AMBP	P02760	Protein AMBP	ETLLQDFR	2.y 6.1	Р	NP	Р	Р	Р	
						2.y4.1	Р	Р	Р	Р	Р	Y
						2.y 3.1	Р	NP	Р	Р	Р	
2	APOA2	APOA2	P02652	Apolipoprotein A2	SPELQAEAK	2.y 6.1	Р	Р	Р	NP	NP	
						2.y4.1	Р	Р	Р	Р	Р	Y
						2.y 8.2	Р	Р	NP	Р	Р	
						2.b2.1	Р	Р	NP	Р	Р	
3	APOB	APOB	P04114	Apolipoprotein B-100	ALVDTLK	2.y 5.1	Р	NP	NP	NP	Р	
						2.y 4.1	Р	NP	NP	NP	Р	
						2.b2.1	Р	Р	Р	Р	Р	Y
4	APOE	APOE	P02649	Apolipoprotein E	LAVYQAGAR	2.v7.1	Р	NP	NP	NP	Р	
						2.v 6.1	Р	Р	Р	Р	Р	Y
						2.y 5.1	Р	Р	NP	NP	Р	
						2.v4.1	Р	NP	Р	NP	Р	
5	APOH	APOH	P02749	Apolipoprotein H	ATVVYQGER	2.v7.1	Р	NP	NP	NP	Р	
-				· + - · F - F · - · · · · ·		2 v 6 1	P	P	NP	P	P	
						2.v 5.1	P	P	P	P	P	Y
						2.b3.1	Р	Р	NP	NP	Р	
6	B2M	B2MG	P61769	Beta-2-microglobulin	VNHVTI SOPK	3 v 6 1	P	NP.	NP	NP	P	
Ŭ	DEM	DEMO	101100	Bota 2 morogiosann		3 v 5 1	P	NP	NP	NP	P	
						3 b3 1	P	P	NP	NP	P	
7	BCHE	CHLE	P06276	Cholinesterase	IFFPGVSFFGK	2 v 8 1	P	P	NP	NP	P	
	DONE	OTTEL	1 00210			$2 \sqrt{7}$ 1	P	NP	P	NP	P	
						2 h2 1	P	NP	NP	NP	P	
8	C104	C10A	P02745	Complement C1g subcomponent subunit A	SLGECDTTNK	2 v 8 1	P	P	P	P	P	v
Ŭ	0 rd/r	O TOOT	1 021 10	Complement Cird subcomponent subunit A		2 y 6 1	P	P	NP	P	P	•
						2.y0.1 2.h2.1	Þ	Þ	D	Þ		v
9	C2	CO2	P06681	Complement C2	I NINI K	$2 \times 5 1$	P	NP	NP	P	P	
Ŭ	02	002	1 00001		Entitlet	$2 \times 4 1$	P	NP	P	NP	P	
						2.y +. 1 2 h2 1	Þ	D		D		
10	C3	CO3	D01024	Complement C3		2.02.1	D	D I		D		
10	03	003	F01024	Complement C5	DEDEVEEVVR	2.y0.1	Г D	F D		Г D	F D	v
						2.y0.1			Г			V I
						2.y 0. i	г D					T
					2.DZ. I 2.b2.1	Р D	P		Р D	P		
11	C5 C05 P01031 Complement C5			2.D3.1	г D							
	C5 CO5 P01031 Complement C5				LUGILFVEAR	2.yo.i	P	P			P D	
1						2.96.1	Р	Р	NP	Р	Р	

 Table 1-12. Protein assays qualified by 5 categories.

-						2 v 5 1	D	D	ND	D	D	
						2.90.1	1	, D		' n	, ,	
			B / 6 6 F /			Z.DZ. I	P	P	NP	P	P	
12	C6	CO6	P13671	Complement component C6	ALQEYAAK	2.y6.1	Р	NP	NP	NP	Р	
						2.b2.1	Р	Р	NP	NP	Р	
						2.b3.2	Р	Р	NP	NP	Р	
13	C8A	CO8A	P07357	Complement component C8 alpha chain	LYYGDDEK	2.v6.1	Р	NP	NP	NP	Р	
-						2 h2 1	Р	Р	Р	NP	Р	
						2 h/ 2	P	D	ND	P	D	
4.4	COD	COND	007050	Complement company CQ hate sheir		2.04.2	' 	' n			, 	
14	COD	COOD	P07336	Complement component Co beta chain	TEFILK	2.y 2.1	F			INF ND		
						2.y4.2	P	P	NP	NP	P	
						2.b2.1	Р	Р	Р	NP	Р	
15	C9	CO9	P02748	Complement component C9	VVEESELAR	2.y7.1	Р	Р	NP	NP	Р	
						2.y6.1	Р	NP	NP	NP	Р	
						2.b2.1	Р	Р	Р	Р	Р	Y
16	CFB	CFAB	P00751	Complement factor B	EELLPAQDIK	2.v6.1	Р	NP	Р	Р	Р	
						2 h2 1	P	NP	NP	NP	P	
						2.02.1	, D				, D	v
47	0511	OFALL	Doocoo	O annula mant fa atau lu		2.03.1	r D					I I
17	CFH	CFAH	P08603	Complement factor H	VGEVLK	2.y 5.1	P	P	NP	P	P	
						2.y 4.1	Р	NP	NP	NP	P	
						2.b3.1	Р	Р	NP	Р	Р	
18	CP	CERU	P00450	Ceruloplasmin	GAYPLSIEPIGVR	2.y 10.1	Р	Р	Р	Р	Р	Y
						2.y 8.1	Р	NP	NP	Р	Р	
						2.y6.1	Р	Р	Р	Р	Р	Y
						2v51	Р	Р	Р	Р	Р	Y
19	CRP	CRP	P02741	C-reactive protein	ESDTSY//SLK	2 v 6 1	P	P	NP.	NP.	P	
15	OIN	OIN	102141	0-leadine protein	LODIGIVOLIC	2.90.1	P	Þ	ND	ND	Þ	
						2.y J. 1	r D					
	0.070	0)(70	D 04004			2.y 3. I	P	P	NP	P	P	
20	CS13	CYIC	P01034	Cystatin-C	ALDFAVGEYNK	2.96.1	Р	Р	NP	NP	Р	
						2.b2.1	Р	NP	NP	NP	Р	
						2.b3.1	Р	NP	NP	Р	Р	
21	F2	THRB	P00734	Prothrombin	ELLESYIDGR	2.y6.1	Р	Р	Р	Р	Р	Y
						2.y 5.1	Р	Р	NP	NP	Р	
						2 h2 1	Р	Р	Р	Р	Р	Y
22	F9	FA9	P00740	Coagulation factor IX	SALVLOYLR	$2 \times 5 1$	P	NP.	P	NP	P	
				obugulation ration int	0,12120,1211	2 h2 1	P	ND	ND	ND	D	
						2.02.1	' I				, ,	
22	F10	EA 10	D00740	Consulation factor V	TON/OCEOP	2.03.1						
23	FIU	FAIU	P00742	Coagulation Factor X	IGIVSGFGR	2.90.1	P	P	NP	NP	P	
						2.y 5.1	Р	NP	Р	NP	Р	
						2.y 4.1	Р	Р	Р	NP	Р	
						2.b3.1	Р	Р	Р	NP	Р	
24	F11	FA11	P03951	Coagulation factor XI	VVSGFSLK	2.y6.1	Р	Р	Р	NP	Р	
				-		2.b2.1	Р	NP	Р	Р	Р	
						2 b2 1	P	NP	P	P	P	
25	GSN	GELS	P06306	Gelsolin		2 1 9 1	D	D		D	D	
25	001	GELS	F00390	OCISOIII	AGALINGINDARVLK	2.y 5. i 2 v 9 1	Г			Г	Г	v
						2.y0.i	Г	Г	Г	Г	Г	1

						2.b3.1	Р	Р	Р	Р	Р	Y
26	IGFBP3	IBP3	P17936	Insulin-like growth factor-binding protein 3	FLNVLSPR	2.y6.1	Р	NP	Р	Р	Р	
				0		2.y4.1	Р	NP	NP	Р	Р	
						2.y 3.1	Р	Р	Р	Р	Р	Y
27	PLG	PLMN	P00747	Plasminogen	LFLEPTR	2.y6.1	Р	NP	Р	NP	Р	
						2.y 5.1	Р	Р	Р	Р	Р	Y
						2.y4.1	Р	Р	Р	NP	Р	
						2.y 3.1	Р	Р	Р	NP	Р	
						2.b2.1	Р	Р	Р	Р	Р	Y
28	PROC	PROC	P04070	Vitamin K-dependent protein C	TEVLNEIK	2.y6.1	Р	NP	Р	NP	Р	
						2.y 5.1	Р	NP	Р	NP	Р	
						2.b2.1	Р	Р	Р	NP	Р	
29	PROS1	PROS	P07225	Vitamin K-dependent protein S	YLVCLR	2.y 5.1	Р	NP	NP	NP	Р	
						2.y4.1	Р	Р	Р	Р	Р	Y
						2.y 3.1	Р	Р	NP	Р	Р	
						2.b2.1	Р	Р	Р	Р	Р	Y
30	SERPINC1	ANT3	P01008	Antithrombin-III	FDTISEK	2.y6.1	Р	Р	Р	Р	Р	Y
						2.y 5.1	Р	Р	Р	Р	Р	Y
						2.b2.1	Р	Р	NP	Р	Р	
31	SERPINF2	A2AP	P08697	Alpha-2-antiplasmin	LGNQEPGGQTALK	2.y 8.1	Р	Р	NP	Р	Р	
						2.y7.1	Р	NP	NP	NP	Р	
						2.b4.1	Р	NP	NP	NP	Р	
32	SERPING1	IC1	P05155	Plasma protease C1 inhibitor	LLDSLPSDTR	2.y7.1	Р	NP	NP	NP	Р	
						2.y 5.1	Р	Р	Р	Р	Р	Y
						2.b2.1	Р	Р	Р	NP	Р	
33	SHBG	SHBG	P04278	Sex hormone-binding globulin	IALGGLLFPASNLR	2.y8.1	Р	Р	NP	Р	Р	
						2.y7.1	Р	Р	NP	Р	Р	
						2.b5.1	Р	Р	NP	Р	NP	
34	TTR	TTHY	P02766	Transthy retin	VLDAVR	2.y 5.1	Р	Р	NP	Р	NP	
				-		2.y4.1	Р	Р	NP	Р	Р	
						2.y 3.1	Р	NP	Р	NP	Р	

Transition marked with "P" were content with criteria of the items, "NP" were not content with, and "Y" were qualified in all the experiments. Exp1 to Exp5 indicate the 5 experimental categories in the guidelines. a The column title indicates the information of quantification ion, followed by the precursor ion charge, production ion type, and product ion

charge.

Chapter 2 A Clinically Applicable 24-Protein Model for Classifying Risk Subgroups in Pancreatic Ductal Adenocarcinomas using Multiple Reaction Monitoring-Mass Spectrometry

1.1 Introduction

Several studies have recently reported that classifying PDAC characteristics can stratify patient prognosis and improve therapeutic responses. Transcriptomic subtypes are the most frequently investigated with regard to classifying PDACs. Notably, Collisson et al. (2011) defined a classification system, comprising 3 subtypes: classical, quasi-mesenchymal, and exocrine-like(84). In another study, Moffitt et al. (2015) proposed an alternative stratification method that categorizes PDACs into tumor cell (classical and basal-like) and stromal subtypes (normal and activated)(85). In 2016, Bailey et al. and the International Cancer Genome Consortium (ICGC) identified 4 subtypes: pancreatic progenitor, squamous, ADEX, and immunogenic(6). The Cancer Genome Atlas (TCGA) consortium (2017) reproduced these subtypes and compiled several subtypes (exocrine-like or ADEX and immunogenic) with low cellularity (86). Puleo et al. (2018) proposed another system, composed of pure classical, immune classical, desmoplastic, stroma activated, and pure basal-like subtypes, using a larger number of formalin-fixed paraffin-embedded (FFPE) specimens from multiple cohorts(87).

Although not as extensively as transcriptomic studies, PDAC subtypes have also been examined by proteomics and metabolomics(88). Daemen et al. (2015) discovered 3 metabolic subtypes (slow proliferating, glycolytic, and lipogenic) using 38 PDAC cell lines(89). Recently, Law et al. (2019) identified 4 proteomic microenvironment subtypes (metabolic, progenitor-like, proliferative, and inflammatory), based on their therapeutic response(90). Although many stratification systems have been proposed, the consensus leans toward 3 distinct subtypes—basal-like, classical, and exocrine-like—based on epithelial tumor content. The basal-like and classical subtypes have also been identified in other solid tumors, such as breast cancer and colorectal cancer(91).

Over the past decades, various hallmarks of cancer have been verified across multiple studies, including the avoidance of immune reactions, the activation of invasion and metastasis, and the factors associated with these mechanisms, and may represent credible biomarker candidates(92). In addition, various prognostic protein biomarkers have been discovered in tissues by immunohistochemistry (IHC) that have been correlated with the outcomes of resected PDAC and now play instrumental roles in the management of PDAC(93). Moreover, some of these proteins have been investigated as novel therapeutic targets during ongoing clinical trials(94). Molecular subtypes developed on the basis of these biomarkers and proteomics would be useful for predicting and improving the survival outcomes of PDAC patients.

In the present study, we identified risk subgroups and developed a classification model, based on 24 carefully selected proteins, to address the current limitations. The classification model is based on multiple-reaction spectrometry (MRM-MS), monitoring-mass а highly selective and reproducible technique for the simultaneous quantification of hundreds of proteins(31), to assess the levels of protein risk factors in PDAC tissue specimens. The model was validated using transcriptomic datasets from external cohorts, which implies the transferable potential to other methodologies. proteomics-based These risk subgroups showed association with transcriptomic subtypes, but displayed significantly differential survival outcome both in classical and basal-like tumors. Moreover, in the high purity dataset from an external cohort, the three risk subgroups, "Stable", "Activated", and "ECM-Remodeling", show upregulation of different signaling pathways that are targeted in ongoing clinical trials of anticancer therapies. The implementation of such a model could be used to predict the prognosis of patients and facilitate the identification of patients who are likely to benefit from various therapeutic regimens.

1.2 Materials and Methods

1.2.1 Patient Cohort and Data Collection

A total of 557 patients, who were diagnosed with pancreatic cancer and underwent surgery at Seoul National University Hospital (SNUH) between October 2009 and February 2018, were assessed for eligibility, and their data were reviewed. The inclusion criteria were as follows: (i) patients with pancreatic ductal adenocarcinoma, based on their final pathology reports; (ii) patients whose tissue was available via a biobank; and (iii) patients who provided written informed consent for the study. Among them, 300 patients, who had other malignancies; were histologically determined to have non-PDAC, such as intraductal papillary mucinous neoplasm (IPMN) and pancreatic neuroendocrine tumor (PNET); had no postoperatively retrieved tissue; or declined to enroll in the study, were excluded. Ultimately, 257 patients were included. All patients had sufficient clinical, radiological, and pathological information. This study was conducted in accordance with the guidance principles of the Declaration of Helsinki. This study protocols were approved by the internal review board of the SNUH, in Seoul, Korea (H-1705-031-852), and written informed consent was obtained from all participants who contributed biospecimens.

Clinicopathologic data were prospectively collected, using a web-based database, which included clinicopathological variables, such as gender, age at diagnosis, tumor site, preoperative assessment of clinical disease stage, type of operative procedure, tumor stage according to the American Joint Committee on Cancer, tumor, node, metastasis (TNM) classification, histologic grade, presence of lymphovascular invasion, perineural invasion, and relevant outcome parameters.

1.2.2 Tissue Protein Extraction and Sample Preparation

A total of 257 fresh-frozen, whole-tissue samples collected from the cohort that satisfied the inclusion criteria were selected for protein extraction. The samples were prepared in block-randomized batches, with respect to gender, age, and prognosis (good vs. poor; median recurrence time, 12 months). The tissue samples were weighed before lysis. An average wet weight of 23.2 mg (95% Cl, 15.4 to 30.9 mg) of each tumor sample was lysed in 300 µL 5% sodium deoxycholate (SDC) buffer, except for those tissue specimens that weighed less than 2 mg, which were lysed in 200 µL 5% SDC buffer. Samples were dissolved using Bioruptor Pico (Diagenode Inc. Denville, NJ, USA), utilizing a bath-based rotor. The total extracted protein concentrations were determined using the Pierce[™] BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA), and tissue lysates with concentrations below 1.67 µg/µL were excluded from trypsin digestion, due to projected deficiencies in peptide yields. The extracted proteins from 244 tissue samples were digested into peptides and purified using OASIS HLB (1 ml, 30 mg, Waters, Milford, MA, USA) cartridges. A volume of 5 µL crude stable isotope-labeled standard (SIS) peptide mixture (JPT Peptide Technology, Acton, MA, USA) was spiked into each 45 µL peptide sample, for MRM-MS analysis (See details in the Supplementary Information).

1.2.3 Protein Quantitation using MRM-MS

Each individual sample was analyzed in triplicate, and each replicate was distributed into block-randomized batches, based on gender, age, and prognosis (good vs. poor; median recurrence time, 12 months). Protein levels were calculated as the average peak area ratio of each triplicate, multiplied by the SIS standard quantity in each sample. Targets with interference signals were excluded, according to the AuDIT algorithm(34). The analytical quality of each protein was assessed based on its response curve and repeatability, according to the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) assay guidance document(95) and the bioanalytical method validation guidance for industry from U.S. Food and Drug Administration (https://www.fda.gov/media/70858/download). Variations between analytical batches were examined using the triplicate analyses. Additionally, 19 samples were excluded from the study due to poor MS spectra data. See the Supplementary Information for details regarding MRM-MS data processing, quantitation, and quality verification.

1.2.4 Proteomic Data Processing and Analysis

The levels of 115 qualified proteins were determined in 225 tumor samples, using MRM-MS. Univariate and multivariate survival analyses were performed in the survival package (Version 3.1-8). Differences of protein levels by standard prognostic factors were determined using ANOVA and Student's t-tests, in IBM SPSS Statistics (Version 23). The χ^2 test was used to verify associations between risk subgroups and standard prognostic factors or molecular subtypes identified by other studies. The proteomic risk subgroups were defined using hierarchical clustering analysis of principal components in the FactoMineR package (Version 2.2 in R) and factorextra package (Version 1.0.7 in R). Functional annotations of proteins enriched in each risk subgroup were identified using DAVID Bioinformatics Resources (Version 6.8). Principal component analysis (PCA) corresponding factor analysis was performed to compare the original transcriptomic subtypes, using protein levels in IBM SPSS Statistics (Version 23). The risk subgroups based on the tumor samples were obtained using a random forest (RF) model, developed by 10-round, 5-fold, cross-validation in the randomForest package (Version 4.6-14) in R. The MRM-MS raw files for all 225 tumors were deposited to PeptideAtlas (http://www.peptideatlas.org), along with the quantitation target lists (Dataset identifier: PASS01611; Password: SJ4748du). Details regarding the proteomic data processing and analysis protocols are available in the Supplementary Information, with external validation using published datasets.

1.3 Results

1.3.1 Characteristics of the Patient Population

Study sets were selected using the following steps (Figure 2-1A). (i) First, the total population of 557 prospectively collected patients was assessed for eligibility, and 257 patients were included in the study. Tumor purity was not considered, to facilitate the identification of purity-independent risk subgroups among PDAC patients, based only on the protein assay platform. (ii) Prior to analysis, 13 tumor samples were removed due to insufficient protein amounts. (iii) The 244 tumor samples were distributed into training and validation sets, each with similar characteristics, and the tissue protein levels were independently estimated. (iv) The data analysis was limited to 148 samples in the training set and 77 samples in the validation set, after the exclusion of 13 and 6 outliers, respectively, following the MRM-MS analysis quality control. The median follow-up time was 27.0 months (95% CI, 21.8-32.1) in the training set and 35.0 months (95% CI, 24.5-45.5) in the validation set, and 77 (52.0%) and 43 (55.8%) death events were observed during the overall follow-up period, respectively. The demographic and clinical characteristics of the 225 patients included in both the training and validation sets are summarized in Table 2-1, and the detailed clinicopathological characteristics of the cohort matched the general population of resectable PDAC patients (Table 2-2).

1.3.2 Overall Workflow of Target Protein Selection

Highly quantitative MRM-MS assays for protein biomarkers were developed, as shown in Figure 2-1B (See details in Figure 2-2). To identify those proteins whose expression patterns correlated with prognosis, 775 detectable proteins were selected from the following sources: (i) a compiled list of markers known to be associated with tumor development or progression, retrieved from the Cancer Genome Interpreter(96) and the

Early Detection Research Network (https://edrn.nci.nih.gov/biomarkers); (ii) targets related to tumor prognosis, from the Human Protein Atlas (97); (iii) prognostic biomarkers associated with PDAC(93); and (iv) a target list of marker candidates, derived from our previous study(5) (Table 2-3). Among these sources, 200 differentially expressed proteins (DEPs) between the good and poor prognostic pooled sample groups (median recurrence time, 12 months) were selected (see details in Table 2-4). A total of 115 of the 200 proteins met the criteria for quantification, based on their response curves and repeatability tests, according to the authorized guidelines, and were verified in individual samples (Table 2-5). The results of the response curve and repeatability analyses are detailed in Figures 2-3 and 2-4. Of the 115 verified proteins, 44 proteins were included in the hierarchical clustering analysis for the identification of proteomic risk subgroups. In addition, 14 DEPs between risk subgroups were selected for the development of the classification model. Subsequently, 24 of 58 (the 44 verified proteins and the 14 additional DEPs) proteins were included in the final Random Forest (RF) model, for the prediction of risk subgroups (Figure 2-1C).

Figure 2-1. Cohort and target protein selection.

(A) Sample inclusion diagram. The 148-sample training set and the 77-sample validation set were finally selected from among the 557 patients in the cohort. (B) Target selection workflow for prognostic and quantitative analysis. A total of 115 differentially expressed proteins between good and poor prognostic groups were verified by quantitative quality control. (C) Schematic workflow for developing risk subgroup classification model. PDAC, pancreatic ductal adenocarcinoma; NR, no recurrence; R, recurrence; mo, months; SIS, stable isotope-labeled standard; RT, retention time; AuDIT, automated detection of inaccurate and imprecise transitions; LLOQ, lower limit of quantitation; CV, coefficient of variance; QC, quality control.

Figure 2-2. Target protein selection workflow.

A. A total of 2,701 proteins were compiled from the four resources, and 775 proteins that were detectable by the MRM-MS analysis were selected. To reduce the number of analytical targets, pooled tissue lysates in groups with similar prognosis (median 12-month disease-free survival) were analyzed. A total of 200 differentially expressed proteins were selected to synthesize stable isotope-labeled standard (SIS) peptides for quantitation in individual samples. B. Through the quantitation quality check, based on the SIS peptide interference analysis, Response curve, Repeatability, and the number of samples above the lower limit of quantitation (LLOQ), 115 proteins were selected for data analysis. C. To define proteomic risk subgroups with protein clusters, 55 proteins with ward test p-values above 0.1 during the univariate survival analysis were filtered out, and 44 of 60 proteins were included in the final clustering analysis. D. To improve the performance of the random forest classification model, 14 proteins enriched in a risk subgroup were added, despite not being included in the hierarchical clustering analysis. Finally, 24 proteins were included in the classification model, through feature selection using the WGCNA and randomForest packages.

Figure 2-3. Quality Control of 115 proteins for response curve generation.

The response curves for each protein generated with continuous quantity of standard (femto-mole). Log2-transformed values were used to obtain a better view in the lower quantity of curves. Squared dots represent the points used to fit linear regression curves, and "x" marks show the points that do not meet the acceptance criteria for linearity (R squared > 0.98) or precision in the triplicate analysis (Coefficient of variance < 20%).

Figure 2-4. Quality Control of 115 proteins for repeatability analysis.

Distribution of the peak areas of the signals for intra- and inter-day assays performed for each protein. The scatter plots represent the triplicate analysis (circles, squares, and triangles) on each of 3 days (from left to right, in each QC). Quality check for repeatability was performed using concentrations of QC1 (1.5 x LLOQ), QC2 (3.0 x LLOQ), QC3 (midway between LLOQ and the high end of the range), and QC4 (high end of the range).

Descriptions	Training set (N = 148)	Validation set (N = 77)	P value
	Mean (range)	
Age, years	64.2 (40-83)	64.3 (41-87)	0.954
	Number of patier	nts, n (%percent)	0.500
Gender	68 (45 9%)	39 (50.6%)	0.596
Male	80 (54 1%)	38 (49 4%)	
Tumor location	00 (04.170)	00 (40.470)	0 089#
Head	92 (62.4%)	39 (50.6%)	
Body + Tail	42 (28.2%)	33 (42.9%)	
Diffused	14 (9.4%)	5 (6.5%)	
Resection margin			0.937
R0	129 (87.2%)	67 (87.0%)	
R1	16 (10.8%)	8 (10.4%)	
R2	3 (2.0%)	2 (2.6%)	
Differentiation	10 /0 10/)	E (C E0()	0.936
Mederately, differentiated	12 (8.1%)	5 (0.5%)	
Poorly differentiated	23 (15 5%)	12 (15.6%)	
Indifferentiated	23 (13.3%)	1 (1 3%)	
Unknown	4 (2.7%)	1 (1.3%)	
l ymphatic invasion	. ()	. ()	0.502
No	74 (50.0%)	41 (53.2%)	
Yes	73 (49.3%)	32 (41.6%)	
Unknown	1 (0.7%)	4 (5.2%)	
Venous invasion			0.172
No	76 (51.4%)	45 (58.4%)	
Yes	71 (48.0%)	27 (35.1%)	
Unknown	1 (0.7%)	5 (6.4%)	
Perineural invasion			0.782
No	23 (15.5%)	10 (13.0%)	
Yes	125 (84.5%)	66 (85.7%)	
	0 (0.0%)	1(1.3%)	0.260
	27 (18 2%)	10 (13 0%)	0.209
12	82 (55 4%)	38 (49 4%)	
T3	36 (24,3%)	28 (36 4%)	
T4	3 (2.0%)	1 (1.3%)	
TNM N	. ,	. ,	0.004**
NO	69 (46.6%)	36 (46.8%)	
N1	46 (31.1%)	36 (46.8%)	
N2	33 (22.3%)	5 (6.5%)	
Adjuvant chemotherapy			0.896
No	15 (10.1%)	9 (11.7%)	
Yes	133 (89.9%)	68 (88.3%)	0.504
Adjuvant radiotherapy	90 (EE 40/)	20 (50 69/)	0.591
Ves	66 (44.6%)	38 (49,4%)	
Tumor size	00 (44.070)	50 (49.470)	0 742
≤3 cm	76 (51 4%)	37 (48 1%)	0.742
>3 cm	72 (48.6%)	40 (51 9%)	
Death	12(10.070)	10 (01:070)	0.686
No	71 (48.0%)	34 (44,2%)	0.000
Yes	77 (52.0%)	43 (55.8%)	
Recurrence		. ,	0.582
No	55 (37.2%)	25 (32.5%)	
Yes	93 (62.8%)	52 (67.5%)	
Recurrence type			0.145
Local	20 (21.5%)	5 (9.6%)	
Systemic	73 (78.5%)	47 (90.4%)	

Table 2-1. Summary of clinicopathological information in training and validation sets.

Patient ID	Tumor Sample ID	Study Set	Sample Preparation Batch Set	MS Analysis Replicate Batch Set	MS Analysis 1Replicate : Batch Set	MS Analysis 2Replicate 3 t Batch Set	Total Protein Concentration (μg/μL)	Gender Age	Operation Date	Operation Name	Resection Margin	Diagnosis	тім т	TNM N	TNM M	Differentiation
11-14-061SN	U-PnBL-PDAC-TI	001 Training	G	Α	D	F	4.2223	Femal€ 66	26-Sep-14	Distal pancreatectomy	R0	Pancreas cancer	T2	N0	MO	Moderately Differentiated
11-15-016SN	U-PnBL-PDAC-T	002 Training	G	С	E	G	1.4850	Male 64	17-Apr-15	Distal pancreatectomy	R0	Pancreas cancer	Τ2	N1	MO	Moderately Differentiated
11-17-051SN	U-PnBL-PDAC-T	003 Training	В	С	F	F	1.3511	Femal∉ 70	28-Jul-17	Whipple	R0	Pancreas cancer	Τ2	N1	MO	Moderately Differentiated
11-17-053SN	U-PnBL-PDAC-T	004 Training	С	A	С	G	1.2119	Male 58	4-Jul-17	PPPD	R0	Pancreas cancer	T1	N0	MO	Poorly Differentiated
11-10-013SN	U-PnBL-PDAC-T	005 Training	F	В	С	В	1.1019	Male 63	12-Mar-10	PPPD	R0	Pancreas cancer	Т3	N2	MO	Moderately Differentiated
11-14-046SN	U-PnBL-PDAC-T	006 Training	В	В	A	C	1.0957	Femal€ 59	22-Jul-14	Whipple	R0	Pancreas cancer	T2	N0	MO	Moderately Differentiated
11-17-101SN	U-PnBL-PDAC-T	007 Training	E	G	A	A	1.3882	Female 71	15-Dec-17	PPPD	R0	Pancreas cancer	T1	N0	MO	Moderately Differentiated
11-18-0225IN		JUB Training	G	F	E	C	1.0354	Female 72	20-Feb-18	Whipple	R1	Pancreas cancer	12	NU NI	IVIU MO	Moderately Differentiated
11-17-0975IN		10 Training	5	A		Ę	1.2004	Female 76	20-INOV-17	Whipple	RU	Pancieas cancel	12	NO	MO	Moderately Differentiated
11-14-0493N	U-PhBL-PDAC-T	011 Training	Ä	Ē	F	Ē	2 0079	Male 76	22-Aug-14	PPPD	R0	Pancreas cancer	±2	NO	MO	Well Differenetiated
11-17-008SN	U-PnBL-PDAC-T	012 Training	G	Ğ	Ġ	Ė	1.2780	Female 58	3-Feb-17	Distal pancreatectomy	R0	Pancreas cancer	T1	N1	MO	Undifferentiated
11-17-041SN	U-PnBL-PDAC-T	013 Training	F	Ĕ	Ē	B	1.4589	Female 58	29-Jun-17	Whipple	R1	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-15-028SN	U-PnBL-PDAC-T	014 Training	Ē	D	Ā	Ğ	2.3400	Female 57	6-May-15	Whipple	R0	Pancreas cancer	Ť2	N2	MÖ	Poorly Differentiated
11-15-046SN	U-PnBL-PDAC-T	015 Training	в	D	F	E	3.1629	Femal€ 59	14-Aug-15	PPPD	R0	Pancreas cancer	T1	N1	MO	Moderately Differentiated
11-13-004SN	U-PnBL-PDAC-T	016 Training	D	В	E	E	3.7561	Male 59	22-Jan-13	PPPD	R0	Pancreas cancer	T1	N0	MO	Poorly Differentiated
11-17-084SN	U-PnBL-PDAC-T	017 Training	E	В	С	В	2.2292	Femal∉ 70	31-Oct-17	PPPD	R0	Pancreas cancer	T1	N0	MO	Moderately Differentiated
11-13-092SN	U-PnBL-PDAC-T	018 Training	E	A	D	G	1.2483	Femal€ 60	13-Dec-13	Distal pancreatectomy	R0	Pancreas cancer	Т3	N0	MO	Moderately Differentiated
11-14-082SN	U-PnBL-PDAC-T	019 Training	P	A	В	ç	0.7930	Male 54	17-Dec-14	Whipple	R0	Pancreas cancer	<u>T</u> 2	N1	MO	Moderately Differentiated
11-10-063SIN		J20 Training	E	P	в	В	1.1197	Male 53	18-NOV-16	Distal pancreatectomy	RU	Pancreas cancer	11	IN 1	IVIU	Poony Differentiated
11-17-075SIN		J21 Training	E	E	F	Č	1.3204	Iviale 60	10-Oct-17	Distal pancreatectomy	. RZ	Pancreas cancer	12	IN 1	IVI1	Poony Differentiated
11-15-0125IN	U-PIIBL-PDAGT	122 Training	B	C C	Ğ	G	1 3578	Female 66	20-Mai-10 29-Nov-16	Sublotal particleatectomy Whipple	R0	Pancreas cancer	±12	NO	MO	Moderately Differentiated
11-16-021SNI	I-PnBL-PDAC-T	124 Training	D	Ā	Ğ	č	1 7706	Male 74	20-Apr-16	Distal pancreatectomy	R0	Pancreas cancer	T2	N2	MO	Moderately Differentiated
11-13-002SNI	U-PnBL-PDAC-T	125 Training	č	ĉ	ñ	Ğ	1 4898	Male 54	11-Jan-13	Total pancreatectomy	R0	Pancreas cancer	T2	NO	MO	Moderately Differentiated
11-18-017SN	U-PnBL-PDAC-T	026 Training	Ă	Ď	F	Ĕ	1.8705	Female 64	6-Feb-18	Distal pancreatectomy	R2	Pancreas cancer	Ť3	N1	M1	Moderately Differentiated
11-18-030SN	U-PnBL-PDAC-T	027 Training	Α	А	E	D	2.0735	Male 78	6-Mar-18	Whipple	R0	Pancreas cancer	Τ2	N0	MO	Moderately Differentiated
11-15-033SN	U-PnBL-PDAC-T	028 Training	Α	D	С	E	1.5353	Male 56	30-Jun-15	Whipple	R0	Pancreas cancer	Τ4	N0	MO	Moderately Differentiated
11-15-004SN	U-PnBL-PDAC-T	029 Training	В	E	С	F	2.9692	Male 80	3-Feb-15	Whipple	R0	Pancreas cancer	Τ2	N0	MO	Moderately Differentiated
11-16-049SN	U-PnBL-PDAC-T	030 Training	E	С	В	D	1.1531	Femal€ 65	6-Sep-16	Total pancreatectomy	R0	Pancreas cancer	Т3	N1	MO	Poorly Differentiated
11-18-012SN	U-PnBL-PDAC-T	031 Training	В	C	G	D	1.3888	Male 56	25-Jan-18	Whipple	R0	Pancreas cancer	<u>T2</u>	N0	MO	Moderately Differentiated
11-17-072SN	U-PnBL-PDAC-T	32 Training	D	D	E	D	1.9681	Female 74	29-Sep-17	Distal pancreatectomy	R0	Pancreas cancer	T1 T0	N0	MO	Well Differenetiated
11-18-032SN	U-PhBL-PDAC-II	J33 Training	G	G	E	F	1.7608	Femal€ 54	9-Mar-18	Whipple	RU	Pancreas cancer	12	NU	MU	Moderately Differentiated
11-18-0305IN		34 Training	E E	Ę	A	P	2.2114	Female 75	13-Mar-18	PPPD Distal paparostostomy	RU	Pancreas cancer	11 T1	NU	MO	Woll Differenctiated
11-12-066SNI		36 Training		B	C		1.3749	Female 50	21-Dec-12	Total pancreatectomy	RO	Pancreas cancer	T 3	N2	MO	Moderately Differentiated
11-14-003SNI	I-PnBL-PDAC-TI	37 Training	ĥ	B	č	R	4.0021	Male 75	10-lan-14	PPPD	R0	Pancreas cancer	T2	NO	MO	Poorly Differentiated
11-18-020SN	U-PnBL-PDAC-T	038 Training	Ĕ	Ĕ	Ğ	Ď	1.2788	Female 51	13-Feb-18	Total pancreatectomy	R0	Pancreas cancer	τī	NO	MÖ	Moderately Differentiated
11-13-016SN	U-PnBL-PDAC-T	039 Training	B	F	Ē	Ē	1.2310	Male 60	12-Mar-13	Whipple	R0	Pancreas cancer	Ť1	NO	MO	Moderately Differentiated
11-12-062SN	U-PnBL-PDAC-T	040 Training	в	E	В	D	3.5148	Male 50	27-Nov-12	PPPD	R0	Pancreas cancer	Т3	N1	MÖ	Well Differenetiated
11-14-060SN	U-PnBL-PDAC-T	041 Training	В	A	G	A	2.8302	Male 59	26-Sep-14	PPPD	R0	Pancreas cancer	Τ2	N1	MO	Moderately Differentiated
11-17-050SN	U-PnBL-PDAC-T	042 Training	E	E	С	D	1.4033	Male 62	25-Jul-17	Whipple	R1	Pancreas cancer	T2	N0	MO	Moderately Differentiated
11-16-001SN	U-PnBL-PDAC-T	043 Training	G	E	F	D	0.8148	Male 76	5-Jan-16	Distal pancreatectomy	R0	Pancreas cancer	T2	N0	MO	Moderately Differentiated
11-17-028SN	U-PnBL-PDAC-T	044 Training	G	В	D	A	1.9365	Female 64	19-May-17	Whipple	R0	Pancreas cancer	12	N1	MO	Moderately Differentiated
11-15-025SN	U-PhBL-PDAC-II	J45 Training	D	D	Ę	A	1.1538	Female 78	19-May-15	Subtotal pancreatectomy	/ R1	Pancreas cancer	11	NU	MU	Moderately Differentiated
11-17-077SN		046 Training	E E	븜	Ě	C C	1.9425	Male 59	13-Oct-17	Whipple	RU	Pancreas cancer	12	N1	MO	Moderately Differentiated
11-12-030ENI		M8 Training	B	E	n n	C	1.4470	Mole 40	8-Jun-12	Subtotal pancreatectomy	/ P0	Pancreas carloer	T2	NO	MO	Moderately Differentiated
11-17-000ENI		M0 Training	ĉ	F	D	в	1 / 185	Mole 74	5-Dec-17	Distal pancreatectomy	R0	Dancreas cancor	T2	NO	MO	Moderately Differentiated
11-13-032SNI	U-PnBL-PDAC-T	350 Training	č	Ď	Å	E	1.2513	Male 69	24-May-13	Whipple	R0	Pancreas cancer	†2	NO	MO	Moderately Differentiated
11-15-059SNI	U-PnBL-PDAC-T	051 Training	Ă	č	F	D	2,4529	Female 76	13-Oct-15	PPPD	R0	Pancreas cancer	T2	N2	MO	Moderately Differentiated
11-17-039SNI	U-PnBL-PDAC-T	052 Training	ĉ	F	Ğ	F	1.4099	Male 64	27-Jun-17	Whipple	R1	Pancreas cancer	T3	N2	MO	Moderately Differentiated
11-17-055SN	U-PnBL-PDAC-T	053 Training	Ē	F	Ã	G	1.5135	Female 77	2-Aug-17	PPPD	RÓ	Pancreas cancer	Ť2	N2	MÖ	Moderately Differentiated
11-15-058SN	U-PnBL-PDAC-T	054 Training	D	F	С	С	0.7169	Male 64	13-Oct-15	Distal pancreatectomy	R0	Pancreas cancer	Τ2	N0	MO	Moderately Differentiated
11-15-022SN	U-PnBL-PDAC-T	055 Training	E	D	F	A	1.2624	Femal∉ 71	28-Apr-15	PPPD	R0	Pancreas cancer	Т3	N1	MO	Moderately Differentiated
11-17-058SN	U-PnBL-PDAC-T	056 Training	D	F	A	F	2.0293	Male 75	9-Aug-17	Distal pancreatectomy	R0	Pancreas cancer	T2	N0	MO	Poorly Differentiated

11-13-001SNU-PnBL-PDAC-T057 Trainin	ng A	G	D	В	1.7563	Male 56	4-Jan-13	Subtotal pancreatectomy	R0	Pancreas cancer	Τ2	N0	MO	Moderately Differentiated
11-13-096SNU-PnBL-PDAC-T058 Trainin	ng <u>C</u>	A	B	C	1.6677	Male 63	27-Dec-13	PPPD	R0	Pancreas cancer	T3	N0	MO	Moderately Differentiated
11-18-014SNU-PnBL-PDAC-T059 Trainin	ig F	C	В	В	1.4115	Femal€ 65	2-Feb-18	PPPD	R0	Pancreas cancer	12	N1	MO	Moderately Differentiated
11-16-065SNU-PnBL-PDAC-T060 Trainin	ig A	В	G	A	1.3350	Female 69	25-Nov-16	Distal pancreatectomy	R0	Pancreas cancer	12	N2	MO	Moderately Differentiated
11-15-026SNU-PnBL-PDAC-1061 Trainin	ig G	G	Ď	Ģ	0.8630	Female 68	6-May-15	PPPD Distal paparastastamu	RU	Pancreas cancer	11	NU	MU	Moderately Differentiated
11-15-029SNU-PhBL-PDAC-1062 Trainin	ig В	C C	A	E	1.4706	Female 55	29-Iviay-15	Distal pancreatectomy	RU	Pancreas cancer	13	NU NO	MU	Poorly Differentiated
11-15-030SNU-PhBL-PDAC-1063 Trainin	ig A	G	Б	В	1.3046	Male 40	2-Jun-15	PPPD	RU	Pancreas cancer	12	NZ NO	MU	Poorly Differentiated
11 17 0345 NU PRE PDAC-1004 Trainin	ig G		5	D E	1.0210	Male 79	13-Jun-17	Whipple	RU PO	Pancieas cancer	12	NO NO	IVIU MO	Mederately Differentiated
11 12 0900 NUL PopU DDAC TOSS Trainin		E	5	F C	1.7002	Molo 55	20-Jun-17		R0 P0	Pancieas cancer	T2	NO	MO	Roody Differentiated
11-13-06951N0-FTIBL-FDAG-1000 TTallilli 11-14-057SNIL PnBL-PDAC-T067 Trainin	ig B	G	B	G	0.0065	Male 71	16-Sep-14	Whipple	R0 R0	Pancreas cancer	T2	NI1	MO	Moderately Differentiated
11-17-047SNU-PnBL-PDAC-T068 Trainin	ig D ig G	Ğ	Ď	Ê	2 2078	Female 56	12-Jul-17	Whipple	R0	Pancreas cancer	T2	NO	MO	Moderately Differentiated
11-15-003SNU-PnBL-PDAC-T069 Trainin	ng F	n	Č	Å	1 8312	Male 61	23-Jan-15	Distal pancreatectomy	R1	Pancreas cancer	T3	N1	MO	Poorly Differentiated
11-17-070SNU-PnBL-PDAC-T070 Trainin	ng C	Ğ	F	ĉ	1 3818	Male 70	27-Sep-17	Whipple	R0	Pancreas cancer	Т3	N2	MO	Moderately Differentiated
11-15-011SNU-PnBL-PDAC-T071 Trainin	ig G	Ĕ	č	č	0.9041	Male 67	24-Mar-15	Whipple	R0	Pancreas cancer	Ť2	N1	MÖ	Moderately Differentiated
11-13-054SNU-PnBL-PDAC-T072 Trainin	ng C	F	F	E	2.0830	Male 48	7-Aug-13	Central pancreatectomy	R0	Pancreas cancer	T1	N0	MO	Well Differenetiated
11-13-059SNU-PnBL-PDAC-T073 Trainin	ng E	G	А	G	3.5382	Femal€ 52	13-Aug-13	PPPD	R1	Pancreas cancer	Τ2	N2	MO	Moderately Differentiated
11-14-065SNU-PnBL-PDAC-T074 Trainin	ng B	G	A	A	3.2743	Male 65	30-Sep-14	Whipple	R0	Pancreas cancer	Τ2	N2	MO	Moderately Differentiated
11-15-074SNU-PnBL-PDAC-T075 Trainin	ng C	F	В	С	1.5510	Male 55	29-Dec-15	Total pancreatectomy	R0	Pancreas cancer	Т3	N0	MO	Well Differenetiated
11-17-052SNU-PnBL-PDAC-T076 Trainin	ng B	С	Ç	С	1.6141	Male 59	28-Jul-17	Distal pancreatectomy	R0	Pancreas cancer	Τ2	N1	MO	Moderately Differentiated
11-14-079SNU-PnBL-PDAC-T077 Trainin	ng A	В	G	В	1.3108	Male 72	26-Nov-14	PPPD	R1	Pancreas cancer	T2	N1	MO	Not Applicable
11-13-010SNU-PnBL-PDAC-T078 Trainin	ng F	F	С	E	1.6758	Femal∉ 42	15-Feb-13	Whipple	R0	Pancreas cancer	T2	N0	MO	Moderately Differentiated
11-14-050SNU-PnBL-PDAC-T079 Trainin	ng G	Ę	Ē	E	2.7618	Male 77	13-Aug-14	PPPD	R0	Pancreas cancer	T2	N0	MO	Well Differenetiated
11-18-029SNU-PnBL-PDAG-1080 Trainin	ig D	A	E	D	1.4551	Female 53	2-Mar-18	PPPD Distal	RU	Pancreas cancer	13	N1	MU	Not Applicable
11-18-013SNU-PhBL-PDAC-1081 Trainin	ig A	C A	G	A	0.9875	Male 61	26-Jan-18	Distal pancreatectomy	RU	Pancreas cancer	11	NU	NU MO	Moderately Differentiated
11-14-0/55NU-PRBL-PDAC-1062 Trainin		A	Ę	D	2.3058	Male 59	27-OCt-14	Whitele	RU	Pancreas cancer	12	NZ N2	NU MO	Noderately Differentiated
11 12 09/SNU PrBL PDAC T09/ Trainin		~	E	G	2.1440	Molo 51	23-Jul-13		R0 P0	Pancieas cancer	T1	NO NO	MO	Mederately Differentiated
11-13-0645N0-FIBL-FDAC-1064 Hallin		Ê	E	B	1 6805	Female 83	30-400-17	Whipple	R0 R0	Pancreas cancer	T2	N2	MO	Not Applicable
11-16-068SNU-PhBL-PDAC-T086 Trainin	ig D	B	B	B	1.3138	Female 71	2-Dec-16	PPPD	R0	Pancreas cancer	T1	N0	MO	Moderately Differentiated
11-12-022SNU-PnBL-PDAC-T087 Trainin	a A	Ā	G	Ā	1 8643	Female 70	20-Apr-12	Distal pancreatectomy	R0	Pancreas cancer	Т3	N1	MO	Poorly Differentiated
11-17-089SNU-PnBL-PDAC-T088 Trainin	a A	F	B	B	1 9311	Male 56	15-Nov-17	Distal pancreatectomy	R0	Pancreas cancer	Т3	NO	MO	Moderately Differentiated
11-13-023SNU-PnBL-PDAC-T089 Trainin	ng C	Ď	Ğ	Ğ	4.0926	Male 70	16-Apr-13	Distal pancreatectomy	R0	Pancreas cancer	Ť3	N1	MÖ	Moderately Differentiated
11-15-005SNU-PnBL-PDAC-T090 Trainin	ng B	E	G	В	2.7348	Male 69	6-Feb-15	PPPD	R0	Pancreas cancer	Τ2	N2	MO	Poorly Differentiated
11-14-064SNU-PnBL-PDAC-T091 Trainin	ng C	E	F	G	0.6831	Femal∉ 75	30-Sep-14	Whipple	R1	Pancreas cancer	Т3	N1	MO	Moderately Differentiated
11-17-094SNU-PnBL-PDAC-T092 Trainin	ng A	A	С	В	1.3323	Male 61	21-Nov-17	Whipple	R0	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-12-016SNU-PnBL-PDAC-T093 Trainin	ng B	В	A	С	1.0847	Femal∉ 76	13-Mar-12	Whipple	R0	Pancreas cancer	Т3	N1	MO	Well Differenetiated
11-15-023SNU-PnBL-PDAC-T094 Trainin	ng G	E	G	F	1.4016	Femal€ 67	8-May-15	Subtotal pancreatectomy	R0	Pancreas cancer	T2	N0	MO	Well Differenetiated
11-17-105SNU-PnBL-PDAC-T095 Trainin	ng A	В	F	A	1.3942	Male 76	27-Dec-17	Distal pancreatectomy	R0	Pancreas cancer	T3	N0	MO	Moderately Differentiated
11-17-076SNU-PnBL-PDAC-T096 Trainin	ng F	A	В	G	1.8750	Male 46	10-Oct-17	PPPD	R0	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-18-025SNU-PnBL-PDAC-1097 Trainin	ig E	E	A	D	2.0469	Female 64	28-Feb-18	Subtotal pancreatectomy	R0	Pancreas cancer	12	N2	MO	Moderately Differentiated
11-17-013SNU-PhBL-PDAC-1098 Trainin	ig F	D	В	C A	1.4353	Female 70	28-FeD-17	Distal pancreatectomy	RU D1	Pancreas cancer	11	NU NI	MU	Well Differentiated
11-15-0165NU-PHBL-PDAC-1089 Trainin	ig C	D	G	A	1.9300	Female 72	17-Feb-15	Distal pancreatectomy		Pancieas cancer	12	IN I NI4	IVIU MO	Moderately Differentiated
11-17-0055NU-PHBL-PDAC-1100 Trainin	ig G	Č	F	Ğ	2.0076	Male 56	29-Dec-17	PPPD	R1	Pancreas cancer	T2	N2	MO	Not Applicable
11-15-007SNU-PnBL-PDAC-T102 Trainin	ng E	B	Ė	Ğ	4 9938	Female 74	2-Mar-15	PPPD	R1	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-18-004SNU-PnBL-PDAC-T103 Trainin		Č	B	Δ	1 3917	Male 72	10-lan-18	Whipple	RO	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-17-060SNU-PnBL-PDAC-T104 Trainin	ia F	č	Ă	Ē	1.4512	Female 72	18-Aug-17	PPPD	R0	Pancreas cancer	Ť2	N2	MÖ	Moderately Differentiated
11-17-038SNU-PnBL-PDAC-T105 Trainin	a D	Ē	A	G	1.4155	Female 47	23-Jun-17	PPPD	R0	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-17-035SNU-PnBL-PDAC-T106 Trainin	na G	Ď	E	Ď	1.4090	Female 69	16-Jun-17	Distal pancreatectomy	R0	Pancreas cancer	T3	N2	MO	Moderately Differentiated
11-16-034SNU-PnBL-PDAC-T107 Trainin	ig C	F	E	В	1.2162	Male 62	5-Jul-16	PPPD	R0	Pancreas cancer	T2	N2	MÖ	Moderately Differentiated
11-17-048SNU-PnBL-PDAC-T108 Trainin	ng G	A	D	A	1.5726	Male 54	18-Jul-17	PPPD	R0	Pancreas cancer	Τ2	N0	MO	Moderately Differentiated
11-15-020SNU-PnBL-PDAC-T109 Trainin	ng G	A	D	С	3.4922	Male 71	27-Feb-15	Whipple	R0	Pancreas cancer	Τ2	N2	MO	Moderately Differentiated
11-14-066SNU-PnBL-PDAC-T110 Trainin	ng A	E	D	E	3.8085	Male 62	1-Oct-14	PPPD	R0	Pancreas cancer	Т3	N0	MO	Moderately Differentiated
11-14-045SNU-PnBL-PDAC-T111 Trainin	ig D	С	A	F	1.0177	Male 61	18-Jul-14	Distal pancreatectomy	R0	Pancreas cancer	Τ2	N0	MO	Moderately Differentiated
11-14-037SNU-PnBL-PDAC-T112 Trainin	ng D	В	G	A	1.0031	Male 64	11-Jun-14	PPPD	R0	Pancreas cancer	<u>T1</u>	N0	MO	Moderately Differentiated
11-17-103SNU-PnBL-PDAC-T113 Trainin	ng E	G	С	С	1.2989	Femal∈ 73	20-Dec-17	PPPD	R1	Pancreas cancer	T1	N0	MO	Poorly Differentiated
11-18-023SNU-PnBL-PDAC-T114 Trainin	ig D	А	в	G	1.3699	Femal€ 69	23-Feb-18	Remnant Distal	R0	pancreas cancer	Τ2	N1	MO	Moderately Differentiated
11-13-018SNU-PnBL-PDAC-T115 Trainin	ng D	С	D	E	1.0661	Female 65	15-Mar-13	PPPD	R0	Pancreas cancer	T1	N0	MO	Moderately Differentiated
11-16-070SNU-PnBL-PDAC-T116 Trainin	ng E	A	С	D	1.2986	Female 80	2-Dec-16	Distal pancreatectomv	R0	Pancreas cancer	Τ4	N2	MO	Moderately Differentiated
11-15-015SNU-PnBL-PDAC-T117 Trainin	ng D	D	D	E	1.1633	Male 64	10-Apr-15	Whipple	R0	Pancreas cancer	Τ2	N0	MO	Moderately Differentiated
11-18-019SNU-PnBL-PDAC-T118 Trainin	ng C	В	A	F	1.2667	Femal€ 54	13-Feb-18	Total pancreatectomy	R0	Pancreas cancer	Τ2	N2	MO	Poorly Differentiated
								· · · · · ·						

11-17-032SNU-PnBL-	-PDAC-T119 1	Fraining	F	D	Α	В	1.4951	Male 54	30-May-17	Distal pancreatectomy	R0	Pancreas cancer	T2	N2	MO	Well Differenetiated
11-14-058SNU-PnBL-	-PDAC-T120 1	raining	A	G	Ç	F	0.9135	Male 59	16-Sep-14	Total pancreatectomy	R0	Pancreas cancer	T2	N0	MO	Moderately Differentiated
11-18-024SNU-PnBL-	-PDAC-T121	raining	ç	G	G	Ę	1.6046	Male 73	23-Feb-18	PPPD	R0	Pancreas cancer	12	N2	MO	Poorly Differentiated
11-13-058SNU-PhBL-	-PDAC-T122	raining	F	D	D	F	3.0662	Female 60	13-Aug-13	PPPD	RU	Pancreas cancer	12	N2	MU	Moderately Differentiated
11-14-08 ISNU-PRBL-	-PDAC-1123	raining	B	C A	В	A E	1.0467	Iviale 65	7 Oct 14	PPPD Whipplo	RU	Pancreas cancer	11 T2	NU N1	MO	Moderately Differentiated
11-15-032SNILPnBL	PDAC T124	Fraining	Ģ	G	E	r C	2.1029	Female 64	30-Jun-15	naaa	R0	Pancreas cancer	T2	N2	MO	Roody Differentiated
11-13-062SNULPnBL	PDAC T126 1	Fraining	Ē	۵ ۵	'n	Ē	1 1508	Male 73	21_Aug_13	Distal pancreatectomy	R0	Pancreas cancer	T3	N2	MO	Moderately Differentiated
11-13-094SNU-PnBL-	-PDAC-T127	Fraining	Å	Ê	F	F	1.3766	Male 72	24-Dec-13	Whipple	R0	Pancreas cancer with IPMN	T1	NO	MO	Moderately Differentiated
11-17-042SNU-PnBL-	-PDAC-T128 1	Fraining	F	Ē	Å	ċ	1 4333	Male 74	30-Jun-17	Distal pancreatectomy	R1	Pancreas cancer	T3	N1	MO	Moderately Differentiated
11-13-025SNU-PnBL-	-PDAC-T129 1	Fraining	Ğ	Ġ	A	Ď	0.8227	Female 50	7-May-13	Whipple	R0	Pancreas cancer	T3	NO	MO	Moderately Differentiated
11-14-071SNU-PnBL-	-PDAC-T130	raining	č	Ğ	E	ē	2.5237	Male 68	17-Oct-14	PPPD	R0	Pancreas cancer	Ť2	N1	MÖ	Poorly Differentiated
11-14-026SNU-PnBL-	-PDAC-T131 1	Fraining	D	A	G	F	3.9883	Male 69	22-Apr-14	Distal pancreatectomy	R0	Pancreas cancer	Т3	N1	MO	Poorly Differentiated
11-11-034SNU-PnBL-	-PDAC-T132	Fraining	E	В	Α	F	1.1099	Femal€ 65	27-Jun-11	Whipple	R0	Pancreas cancer	Т3	N1	MO	Moderately Differentiated
11-17-057SNU-PnBL-	-PDAC-T133	Fraining	E	F	D	E	1.4089	Male 70	8-Aug-17	Distal pancreatectomy	R2	Pancreas cancer	Т3	N0	M1	Moderately Differentiated
11-17-021SNU-PnBL-	-PDAC-T134	Fraining	E	F	D	A	2.1038	Male 70	4-Apr-17	PPPD	R1	Pancreas cancer	T2	N2	MO	Moderately Differentiated
11-17-091SNU-PnBL-	-PDAC-T135	raining	Ē	G	Ď	B	2.1475	Femal€ 60	14-Nov-17	Whipple	R0	Pancreas cancer	T2	N0	MO	Moderately Differentiated
11-17-096SNU-PhBL-	-PDAC-1130	raining	G	C	F	A	1.3908	Male 65	24-INOV-17	Distal pancreatectomy	RU	Pancreas cancer	13	NZ N4	IVIU MO	Moderately Differentiated
11-17-06 ISINU-PIIBL-	-PDAG-113/	Fraining	5	G	2	P A	1.2010	Iviale 03	20-001-17	Distal pancreatectomy	RU	Pancieas cancer	11	IN I	NO	Moderately Differentiated
11-18-009SNULPnBL	-PDAC-T130	Fraining	č	ĥ	Ē	ñ	1 4432	Female 76	19-Aug-14	PPPD	RO	Pancreas cancer	T2	NO	MO	Moderately Differentiated
11-15-006SNU-PnBL -	-PDAC-T140 1	Fraining	Ē	Ğ	B	B	1 9353	Male 54	17-Eeb-15	Distal pancreatectomy	R1	Pancreas cancer	T1	NO	MO	Moderately Differentiated
11-17-071SNU-PnBL-	-PDAC-T141	Fraining	Ē	F	Ă	Ē	1.4118	Male 55	28-Sep-17	PPPD	R0	Pancreas cancer	T2	NO	MO	Moderately Differentiated
11-15-038SNU-PnBL-	-PDAC-T142	Fraining	B	Ė	Ĝ	Ğ	4.0442	Male 67	28-Jul-15	Distal pancreatectomy	R0	Pancreas cancer	Ť2	N1	MÖ	Poorly Differentiated
11-18-034SNU-PnBL-	-PDAC-T143	Fraining	D	В	F	С	1.3627	Femal∉ 41	13-Mar-18	Whipple	R0	Pancreas cancer	Τ2	N0	MO	Well Differenetiated
11-13-042SNU-PnBL-	-PDAC-T144 1	Fraining	С	F	С	D	1.8625	Femal€ 60	9-Jul-13	Distal pancreatectomy	R0	Pancreas cancer	T2	N0	MO	Moderately Differentiated
11-14-069SNU-PnBL-	-PDAC-T145 1	Fraining	G	G	D	E	2.8215	Femal∉ 63	14-Oct-14	PPPD	R0	Pancreas cancer	Т3	N0	MO	Moderately Differentiated
11-15-068SNU-PnBL-	-PDAC-T146	Fraining	В	D	G	A	1.5628	Femal∉ 71	27-Nov-15	PPPD	R0	Pancreas cancer	Т3	N0	MO	Moderately Differentiated
11-17-102SNU-PnBL-	-PDAC-T147	raining	B	E	ç	Ģ	1.3363	Female 61	15-Dec-17	Distal pancreatectomy	R0	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-15-070SNU-PhBL-	-PDAC-1148	raining	F	G	в	F	1.1065	Male 53	4-Dec-15	PPPD	RU	Pancreas cancer	13	N1	MU	Moderately Differentiated
11-17-0255NU-PhBL-	-PDAC-VUUIV	alidation	J	J	н	ĸ	1.3087	Male 35	25-Apr-17	PPPD Distal constants to the mu	RU D1	Pancreas cancer	12	IN 1	IVIU MO	Moderately Differentiated
11-17-0005NU-PIIBL-	-PDAC-V002V	alidation	ů.	ĥ	J	ĥ	1.2020	Male 67	20-001-17 21-Feb-12	PPPD	R1	Pancreas cancer	12 T3	N1	MO	Moderately Differentiated
11-12-043SNU-PnBL		alidation	- ii	ч	ĸ	J	1 1727	Male 73	22-Aug-12	Whipple	RO	Pancreas cancer	T3	NO	MO	Moderately Differentiated
11-13-039SNU-PnBL-	-PDAC-V005V	alidation	J	н	Ĥ	.i	2 0302	Female 51	2-Jul-13	Whipple	R1	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-18-007SNU-PnBL-	-PDAC-V006V	alidation	ĭ	Ĥ	ĸ	ĸ	1.6115	Male 61	16-Jan-18	Distal pancreatectomy	R0	Pancreas cancer	Ť2	NO	MÖ	Moderately Differentiated
11-17-093SNU-PnBL-	-PDAC-V007V	alidation	J	J	1	J	1.1774	Male 67	21-Nov-17	Distal pancreatectomy	R0	Pancreas cancer	Τ2	N0	MO	Moderately Differentiated
11-13-037SNU-PnBL-	-PDAC-V008V	alidation	1	1	1	J	1.7788	Femal∉ 76	18-Jun-13	PPPD	R0	Pancreas cancer	Τ2	N1	MO	Moderately Differentiated
11-13-033SNU-PnBL-	-PDAC-V009V	alidation	н	J	J	н	2.0174	Femal∉ 78	28-May-13	PPPD	R0	Pancreas cancer	T1	N0	MO	Moderately Differentiated
11-14-077SNU-PnBL-	-PDAC-V010V	alidation	J	J	1	н	2.3445	Femal∉ 77	14-Nov-14	Distal pancreatectomy	R0	Pancreas cancer	Т3	N0	MO	Moderately Differentiated
11-14-056SNU-PnBL-	-PDAC-V011V	alidation	Ķ	-	K	ĸ	2.0429	Female 87	12-Sep-14	Distal pancreatectomy	R0	Pancreas cancer	<u>T3</u>	N1	MO	Moderately Differentiated
11-17-074SNU-PhBL-	-PDAC-V012V	alidation			ĸ	J	1.4016	Female 51	20-Sep-17	PPPD	RU	Pancreas cancer	12	NU	MU	Moderately Differentiated
11-16-0255NU-PhBL-	-PDAC-V013V	alidation	J		I K		0.6846	Female 58	13-May-16	PPPD Distal constants to the mu	RU	Pancreas cancer	12	NU	IVIU MO	Noderately Differentiated
11-17-0605NU-PIIBL-	-PDAC-V014V	alidation	ĸ	ĸ	ĥ	ĸ	1.5957	Female 47	9-Aug-13	Distal pancreatectomy	RO	Pancreas cancer	13 T2	NO	MO	Moderately Differentiated
11-17-036SNU-PnBL-	-PDAC-V016V	alidation	Ĥ	н	н	н	1 3609	Male 67	20-Jun-17	Distal pancreatectomy	R0	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-15-027SNU-PnBL-	-PDAC-V017V	alidation	н	ï	ï	Ĥ	3 9590	Male 55	22-Apr-15	Whipple	R0	Pancreas cancer	T3	N1	MO	Moderately Differentiated
11-13-052SNU-PnBL-	-PDAC-V018V	alidation	ĸ	j	ĸ	ï	2.8191	Male 42	6-Aug-13	Whipple	R0	Pancreas cancer	Ť2	NO	MÖ	Moderately Differentiated
11-16-072SNU-PnBL-	-PDAC-V019V	alidation	н	н	1	К	1.9860	Male 50	13-Dec-16	PPPD	R0	Pancreas cancer	T1	N0	MO	Moderately Differentiated
11-16-020SNU-PnBL-	-PDAC-V020V	alidation	K	к	J	н	1.2021	Femal∉ 73	20-Apr-16	Distal pancreatectomy	R0	Pancreas cancer	Т3	N1	MO	Moderately Differentiated
11-14-059SNU-PnBL-	-PDAC-V021V	alidation	ĸ	н	J	I	3.2623	Male 54	23-Sep-14	PPPD	R0	Pancreas cancer	Т2	N2	MO	Poorly Differentiated
11-11-074SNU-PnBL-	-PDAC-V022V	alidation	н	I	н	к	1.2022	Male 75	20-Dec-11	Distal pancreatectomy	R0	Pancreas cancer	Т3	N1	MO	Moderately Differentiated
11-11-040SNU-PnBL-	-PDAC-V023V	alidation		ĸ	K	н	0.8414	Male 67	22-Jul-11	Distal pancreatectomy	R0	Pancreas cancer	<u>T</u> 2	N1	MO	Poorly Differentiated
11-17-043SNU-PnBL-	-PDAC-V024V	audation		I	н	J	1.3597	Male 63	30-Jun-17	Distal pancreatectomy	RU DO	Pancreas cancer	11	NU NI	MU	Moderately Differentiated
11-13-0/45NU-PhBL-	-FDAG-V025V	alidation	н	ĸ		н	1.91//	remaic 64	22-0Ct-13	Whipple	RU PO	Pancreas cancer	12	N1 N2	MO	Moderately Differentiated
11-13-0035INU-PRBL-		andation	ĸ	ĸ	R J	ĸ	1.3903	Male 65	13-Feb-13	Distal papereatectomy	RU R0	Pancreas cancer	12	IN∠ N1	MO	Moderately Differentiated
11-17-082SNU-PhBL-	-PDAC-V02/V	alidation	ĸ		I I	н	1 7039	Female 68	27_Oct_17	Distal pancreatectomy	RO	Pancreas cancer	T3	N1	MO	Moderately Differentiated
11-13-007SNU-PnBL-	-PDAC-V(020V	alidation	.1	i	ĸ	ï	1 3999	Male 54	1-Feb-13	Distal pancreatectomy	R0	Pancreas cancer	Ť2	NO	MO	Well Differenetiated
11-16-064SNU-PnBL-	-PDAC-V030V	alidation	й	н́	ĸ	i	1.2804	Female 61	23-Nov-16	Distal pancreatectomy	R0	Pancreas cancer	Ť1	NŎ	MÕ	Moderately Differentiated
11-15-071SNU-PnBL-	-PDAC-V031V	alidation	н	ĸ	i i	ĸ	1.3863	Male 52	8-Dec-15	Distal pancreatectomy	R0	Pancreas cancer	тз	N1	MÖ	Poorly Differentiated
11-18-035SNU-PnBL-	-PDAC-V032V	alidation	н	I	н	н	1.4512	Female 80	13-Mar-18	PPPD	R0	Pancreas cancer	T2	N2	MO	Poorly Differentiated
11-14-080SNU-PnBL-	-PDAC-V033V	alidation	I	К	K	J	1.7819	Male 58	9-Dec-14	PPPD	R0	Pancreas cancer	T1	N0	MO	Moderately Differentiated

11-17-063SNILPnBL-PDAC-V034Validation	н	н	-	н	1 4471	Female 62	1-Sen-17	PPPD	R0	Pancreas cancer	Т2	NO	MO	Moderately Differentiated
11-13-040SNU-PnBL-PDAC-V035Validation	ï	Ĥ	н	ĸ	2 8249	Female 64	2-101-13	Total pancreatectomy	R1	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-17-045SNU-PnBL-PDAC-V06Validation	ĭ	ĸ	ii ii	î	1 2962	Male 52	27-Jun-17	Distal pancreatectomy	RO	Pancreas cancer	τ2	NO	MO	Undifferentiated
11-14-054SNU-PnBL-PDAC-V037Validation	i	ĩ	ĭ	i	3 1145	Male 58	29-Aug-14	PPPD	R0	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-12-049SNULPhBL-PDAC//099/alidation	- i	- i	ĭ	ĭ	0.7387	Female 75	18-Sep-12	Distal pancreatectomy	P1	Pancreas cancer	T/	N2	MO	Poorly Differentiated
11-15-02/SNULPnBL-PDAC//090/alidation	J	J I		j	2 1681	Female 70	10-May 15		PO	Pancreas cancer	±2	N1	MO	Moderately Differentiated
11 12 00/SNU PoPL PDAC V0/0 / alidation	÷.	J L	Ľ.		1 1460	Molo 52	10 lop 12	Whinplo	D1	Panaroas cancer	T2	NO	MO	Moderately Differentiated
11-12-0045NO-FIBL-FDAG-V040Valluation	п	п	п	J	1.1400	IVIAIRE 52	10-Jan-12	whipple	NI	Failcleas calicel	15	INU	IVIU	would all of the fertiliated
11-14-084SNU-PnBL-PDAC-V041Validation	I	н	н	I	3.5382	Femal€ 62	24-Dec-14	Whipple	R0	carcinoma	Т3	N0	MO	Not Applicable
11-13-087SNU-PnBL-PDAC-V042Validation	J	н	J	н	2.2848	Male 65	6-Dec-13	Distal pancreatectomy	R0	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-11-066SNU-PnBL-PDAC-V043Validation	J	J	н	н	1.8077	Femal∉ 43	15-Nov-11	Whipple	R0	Pancreas cancer	Т3	N0	MO	Moderately Differentiated
11-17-104SNU-PnBL-PDAC-V044Validation	1	1	н	I	1.4771	Femal∉ 78	27-Dec-17	Subtotal pancreatectomy	R2	Pancreas cancer	Т3	N0	MO	Moderately Differentiated
11-14-085SNU-PnBL-PDAC-V045Validation	ĸ	K	J	1	0.7675	Femal∉ 79	26-Dec-14	Distal pancreatectomy	R0	Pancreas cancer	T1	N0	MO	Moderately Differentiated
11-12-007SNU-PnBL-PDAC-V046Validation	1	J	J	J	1.0577	Male 66	13-Jan-12	Distal pancreatectomy	R0	Pancreas cancer	Т3	N2	MO	Moderately Differentiated
11-10-017SNU-PnBL-PDAC-V047Validation	1	1	J	к	1.2630	Femal∉ 75	31-Mar-10	Distal pancreatectomy	R0	Pancreas cancer	Т3	N0	MO	Moderately Differentiated
11-09-029SNU-PnBL-PDAC-V048Validation	н	К	J	н	1.4299	Male 64	16-Oct-09	PPPD	R0	Pancreas cancer	Τ2	N1	MO	Moderately Differentiated
11-13-076SNU-PnBL-PDAC-V049Validation	J	н	к	J	2.6956	Female 63	25-Oct-13	Total pancreatectomy	R1	Pancreas cancer	T1	N0	MO	Well Differenetiated
11-12-061SNU-PnBL-PDAC-V050Validation	ī	Ĥ	Ĥ	ī	3.1902	Male 61	13-Nov-12	Distal pancreatectomy	R0	Pancreas cancer	Ť2	NÖ	MÖ	Well Differenetiated
11-14-083SNU-PnBL-PDAC-V051Validation	к	J	к	н	1.8118	Female 64	23-Dec-14	Distal pancreatectomy	R0	Pancreas cancer	Т3	NÖ	MO	Poorly Differentiated
11-13-078SNILPnBL-PDAC-V052Validation	ĸ	ī	ĸ	ĸ	2 5679	Male 45	29-Oct-13	Whipple	R0	Pancreas cancer	T2	NO	MO	Moderately Differentiated
11-12-028SNU-PnBL-PDAC-V053Validation	ĸ	н́.	- Ĥ	1	1 1825	Male 72	23-May-12	Whipple	R0	Pancreas cancer	Ť3	N1	MO	Poorly Differentiated
11-15-014SNI I-PnBI -PDAC-V054Validation	ĸ	Ĥ	й	н	2 9280	Female 70	10-Apr-15	Distal nancreatectomy	R0	Pancreas cancer	T1	NO	MO	Moderately Differentiated
11-13-068SNIL PnBL-PDAC V059/alidation	ü	ĸ		i i i	2 1200	Male 62	25 Sep 13	Whipple	R0	Pancreas cancer	T 3	N1	MO	Moderately Differentiated
11-13-028SNU PnBL-PDAC/066/alidation	- 11	ĸ	ĸ	ů.	1 0682	Eemale 62	15 May 13	Whipple	R0	Pancreas cancer	±1	NO	MO	Well Differenetiated
11 17 050SNU BaBL BDAC V057/alidation	J K			K II	1.3002	Molo 75	16 Aug 17	Distal paparostostomy	PO	Panaroas cancer	T2	NO	MO	Mederately Differentiated
11 12 0492NUL Dept. DDAC V00/ Validation	K I		J	N I	1.4001	Male 70	10-Aug-17	Distal participatectomy		Paricieas cancer	72	NU NI	NO NO	Noderatery Differentiated
11-13-0465NU-PHDL-PDAC-V000Validation	J	ĸ	ŗ.	J	2.0201	Iviale 70	20-Jul-13	Distal pancreatectomy	RU	Paricieas caricer	13	IN I	IVIU MO	Poolly Differenctiated
11-13-07 33NO-FIBL-FDAG-V009Validation		n,			1.3000	Feilidit 44	22-001-13	T stal participatectority	RU DO	Failcleas calicel	13	NI	NO NO	Med antala Differentiate d
11-17-061SNU-PhBL-PDAC-V060Validation	I I		н	J	1.5066	Iviale 74	22-Aug-17	I otal pancreatectomy	RU	Pancreas cancer	12	NU	NU	Moderately Differentiated
11-17-078SNU-PhBL-PDAC-V061Validation	ĸ	j	н	j	1.5837	Female 51	17-Oct-17	Subtotal pancreatectomy	RU	Pancreas cancer	12	N1	MU	Moderately Differentiated
1-17-0495NU-PhBL-PDAC-V062Validation	1	J			1.5066	Female 51	18-Jul-17	vvnippie	RU	Pancreas cancer	12	NU	NU	Moderately Differentiated
11-15-019SNU-PnBL-PDAC-V063Validation	ĸ	J	ĸ	ĸ	2.3358	Femal€ 61	25-Feb-15	PPPD	R0	Pancreas cancer	12	N1	MO	Moderately Differentiated
11-17-046SNU-PnBL-PDAC-V064Validation	j		J	J	1.9431	Femal∉ 70	11-Jul-17	Distal pancreatectomy	RÜ	Pancreas cancer	T1	N1	MO	Moderately Differentiated
11-15-051SNU-PnBL-PDAC-V065Validation	I.	н	к	ĸ	2.5522	Male 68	9-Sep-15	whipple	R0	Pancreas cancer	12	NÜ	MO	Moderately Differentiated
11-13-003SNU-PnBL-PDAC-V066Validation	н	н	1	I	2.5267	Male 41	15-Jan-13	PPPD	R0	Pancreas cancer	Τ2	N1	MO	Moderately Differentiated
11-17-067SNU-PnBL-PDAC-V067Validation	н	н	н	н	2.1801	Femal€ 60	15-Sep-17	Distal pancreatectomy	R2	Pancreas cancer	Т3	N1	M1	Poorly Differentiated
11-14-055SNU-PnBL-PDAC-V068Validation	к	K	н	J	1.7479	Male 79	12-Sep-14	Whipple	R0	Pancreas cancer	Τ2	N1	MO	Moderately Differentiated
11-11-051SNU-PnBL-PDAC-V069Validation	J	J	н	н	0.7256	Femal€ 64	18-Aug-11	PPPD	R0	Pancreas cancer	Т3	N1	MO	Moderately Differentiated
11-14-074SNU-PnBL-PDAC-V070Validation	к	1	1	к	1.5930	Femal€ 69	24-Oct-14	PPPD	R0	Pancreas cancer	Τ2	N0	MO	Moderately Differentiated
11-17-004SNU-PnBL-PDAC-V071Validation	к	ĸ	I	J	1.2804	Male 69	31-Jan-17	Whipple	R0	Pancreas cancer	Т3	N1	MO	Moderately Differentiated
11-15-002SNU-PnBL-PDAC-V072Validation	J	J	н	1	4.8247	Femal∉ 78	21-Jan-15	Distal pancreatectomy	R0	Pancreas cancer	Τ2	N1	MO	Moderately Differentiated
11-11-033SNU-PnBL-PDAC-V073Validation	к	к	J	н	1.0217	Femal∉ 74	15-Jun-11	Whipple	R0	Pancreas cancer	Т3	N0	MO	Poorly Differentiated
11-16-016SNU-PnBL-PDAC-V074Validation	н	ĸ	Ĵ	ĸ	1.6084	Male 55	3-May-16	Whipple	R0	Pancreas cancer	ТĴ	NĨ	MÖ	Moderately Differentiated
11-14-072SNU-PnBL-PDAC-V075Validation	н	H	Ĵ	ĸ	3.5825	Female 60	21-Oct-14	PPPD	R0	Pancreas cancer	T2	NÖ	MÖ	Poorly Differentiated
11-17-017SNU-PnBL-PDAC-V076Validation			J	ĸ	1 3295	Female 73	24-Mar-17	Whipple	R0	Pancreas cancer	T2	N1	MO	Moderately Differentiated
11-17-022SNU-PnBL-PDAC-V077/alidation	ň	.1	ĸ	Ĥ	2 1108	Female 75	7-Apr-17	Distal nancreatectomy	R1	Pancreas cancer	±3	N1	MO	Moderately Differentiated
11-17-017SNU-PnBL-PDAC-V076Validation 11-17-022SNU-PnBL-PDAC-V077Validation	J H	J J	J K	K H	1.3295 2.1108	Femal∉ 73 Femal∉ 75	24-Mar-17 7-Apr-17	Whipple Distal pancreatectomy	R0 R1	Pancreas cancer Pancreas cancer	T2 T3	N1 N1	M0 M0	Moderately Differentiated Moderately Differentiated

Gene Name	Uniprot	Uniprot Entry name	Protein Name	Tumor marker	Human Protein Atlas	Jamieson et al.	Park et al.	Fold Change > 1.5	Selected Targets	Final targets
	Linuy	Entry name		(201)	(479)	(61)	(140)	(212)	(200)	(110)
A1CF	Q9NQ94	A1CF_HUMAN	APOBEC1 complementation factor	Yes	No	No	No	Yes	Yes	No
AASS	Q9UDR5	AASS_HUMAN	Alpha-aminoadipic semialdehyde synthase, mitochondrial	No	Yes	No	No	No	No	No
ABCB9	Q9NP78	ABCB9_HUMAN	ATP-binding cassette sub-family B member 9	No	Yes	No	No	No	No	No
ABHD12	Q8N2K0	ABD12_HUMAN	Lysophosphatidylserine lipase ABHD12	No	Yes	No	No	No	No	No
ABHD14A	Q9BUJ0	ABHEA_HUMAN	Protein ABHD14A	No	Yes	No	No	No	No	No
ABL1	P00519	ABL1_HUMAN	Tyrosine-protein kinase ABL1	Yes	No	No	No	No	No	No
ABL2	P42684	ABL2_HUMAN	Tyrosine-protein kinase ABL2	No	Yes	No	No	No	No	No
ABR	Q12979	ABR_HUMAN	Active breakpoint cluster region-related protein	No	Yes	No	No	No	No	No
ACACB	O00763	ACACB_HUMAN	Acetyl-CoA carboxylase 2	No	Yes	No	No	Yes	Yes	Yes
ACADM	P11310	ACADM_HUMAN	Medium-chain specific acyl-CoA dehydrogenase, mitochondrial	No	Yes	No	No	No	No	No
ACADS	P16219	ACADS_HUMAN	Short-chain specific acyl-CoA dehydrogenase, mitochondrial	No	Yes	No	No	No	No	No
ACADVL	P49748	ACADV_HUMAN	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial	No	Yes	No	No	Yes	Yes	Yes
ACAT1	P24752	THIL_HUMAN	Acetyl-CoA acetyltransferase, mitochondrial	No	Yes	No	No	No	No	No
ACE	P12821	ACE_HUMAN	Angiotensin-converting enzyme	Yes	No	No	No	No	No	No
ACO1	P21399	ACOC_HUMAN	Cytoplasmic aconitate hydratase	NO	Yes	No	No	Yes	Yes	No
ACSL5	Q9ULC5	ACSL5_HUMAN	Long-chain-fatty-acidCoA ligase 5	No	Yes	No	No	No	No	No
ACSS1	Q9NUB1	ACS2L_HUMAN	Acetyl-coenzyme A synthetase 2-like, mitochondrial	No	Yes	No	No	No	No	No
ACTN1	P12814	ACTN1_HUMAN	Alpha-actinin-1	No	No	No	Yes	No	No	No
ACTN4	043707	ACTN4_HUMAN	Alpha-actinin-4	NO	Yes	Yes	Yes	Yes	Yes	Yes
ACY1	Q03154	ACY1_HUMAN	Aminoacylase-1	No	Yes	No	No	No	NO	NO
ADAM9	Q13443	ADAM9_HUMAN	Disintegrin and metalloproteinase domain-containing protein 9	No	Yes	Yes	No	Yes	Yes	Yes
ADAM12	043184	ADA12_HUMAN	Disintegrin and metalloproteinase domain-containing protein 12	Yes	No	No	Yes	No	No	No
ADAM19	Q9H013	ADA19_HUMAN	Disintegrin and metalloproteinase domain-containing protein 19	NO	Yes	No	No	No	No	No
ADAM IS12	P58397	ATS12_HUMAN	A disintegrin and metalloproteinase with thrombospondin motifs 12	NO	No	No	Yes	No	NO	No
ADGRAZ	Q96PE1	AGRA2_HUMAN	Adnesion G protein-coupled receptor A2	NO	NO	NO	Yes	NO	NO	NO
ADH1B	P00325	ADH1B_HUMAN	All-trans-retinol dehydrogenase	No	No	No	Yes	No	No	No
ADIPOQ	Q15848	ADIPO_HUMAN	Adiponectin	Yes	No	No	Yes	No	NO	No
AEBP1	Q8IUX/	AEBP1_HUMAN	Adipocyte ennancer-binding protein 1	NO	NO Xaa	NO	Yes	NO No	NO	NO
AFDN	P55196	AFAD_HUMAN	Aladin Alaba fatamatain	NO	Yes	NO	NO	NO	NO	NO
AFP	P02//1	FETA_HUMAN	Alpha-letoprotein	res	INO Xee	NO	NO	INO No	NO	NO
AGA	P20933	ASPG_HUMAN	N(4)-(beta-in-acetyigiucosaminyi)-L-asparaginase	NO	Yes	NO	INO Xaa	INO Xee	NO Xee	NO
AGI	P01019	ANGI_HUMAN	Angiotensinogen	NO	NO	NO	Yes	Yes	Yes	Yes
	P21049		Diretoin ALINIAK2	NO	Yes	NO	NO	NO No	NO	NO
AHNAKZ	Q01VFZ		Alpha 2 HS alycoprotein	No	Vec	No	No	Voc	Voc	Vec
ALCADO	F02700		Alpha-2-m3-grycoprotein	No	Yes	No	No	Vee	Yes	Tes Ne
AKAP9	003053		A-kinase anchor protein 9	NO Yee	res	NO	NO	res	res	NO
	Q02952		A-Mildse anchor protein 12	Vee	No	NU Voo	No	Yee	Vee	NU Vee
	P31749		Delta aminolevulinic, acid debydratase	No	NU	No	No	Vec	Ves	Vec
	P00352		Retinal debudrogenase 1	No	Ves	No	No	Ves	Ves	Ves
	D20022		Delte 1 manualine E control deta debudrar energe mitechandrial	No	Vee	No	No	Ne	Ne	Ne
	P30030		Detta- 1-pyrionne-5-carboxyrate denydrogenase, mitochondrial Methylmalanata appriate byda, dabydrogenasa, lagylating i mitochondrial	NO	res	NO	NO	NO Yee	NO	NO
	QUZZ3Z		weunymaionaic-semialuenyue uenyu ogenase [acyraung], milochonunal Eructose bisphosphate aldelase A	No	NU	No	No	No	No	No
ALDOA ALG2	C0H552		Alpha-13/16-mannice vitrane faras e ALG?	No	Ves	No	No	No	No	No
ALG2	P05186	PPRT HUMAN	Alkaline nhosnhatase tissue-nonspecific isozume	Yes	No	No	No	No	No	No
	D02760		Protein AMRP (Cleaved into: Alpha 1 microalchulin	Vec	No	No	No	No	No	No
AMPH	P49418	AMPH HUMAN	Amphiphysin	No	Yes	No	No	No	No	No

Table 2-3. The 775 detectable protein target candidates and target selection for MRM-MS analysis.
ANG	P03950 ANGI_HUMAN	Angiogenin	No	Yes	No	No	No	No	No
ANK2	Q01484 ANK2_HUMAN	Ankyrin-2	No	Yes	No	No	No	No	No
ANLN	Q9NQW6 ANLN_HUMAN	Anillin	No	Yes	No	No	No	No	No
ANO1	Q5XXA6 ANO1 HUMAN	Anoctamin-1	Yes	Yes	No	No	No	No	No
ANPEP	P15144 AMPN HUMAN	Aminopeptidase N	No	No	Yes	Yes	Yes	Yes	Yes
ANXA1	P04083 ANXA1_HUMAN	Annexin A1	Yes	No	No	Yes	No	No	No
AOX1	Q06278 AOXA_HUMAN	Aldehyde oxidase	No	Yes	No	No	No	No	No
AP2B1	P63010 AP2B1 HUMAN	AP-2 complex subunit beta	No	Yes	No	No	No	No	No
AP3S2	P59780 AP3S2 HUMAN	AP-3 complex subunit sigma-2	No	Yes	No	No	No	No	No
APC	P25054 APC HUMAN	Adenomatous polyposis coli protein	Yes	No	No	No	Yes	Yes	No
APLP1	P51693 APLPT HUMAN	Amyloid-like protein 1	No	Yes	No	No	No	No	No
APOA1	P02647 APOA1_HUMAN	Apolipoprotein A-I	Yes	No	No	No	Yes	No	No
APOB	P04114 APOB_HUMAN	Apolipoprotein B-100	Yes	No	No	No	No	No	No
APOC1	P02654 APOC1 HUMAN	Apolipoprotein C-I	No	No	No	Yes	Yes	No	No
APOC3	P02656 APOC3 HUMAN	Apolipoprotein C-III	No	Yes	No	No	No	No	No
APOH	P02749 APOH HUMAN	Beta-2-glycoprotein 1	No	Yes	No	No	No	No	No
APOL1	O14791 APOLT HUMAN	Apolipoprotein L1	No	Yes	No	No	No	No	No
APP	P05067 A4_HUMAN	Amyloid-beta precursor protein	No	Yes	No	No	No	No	No
APPL1	Q9UKG1 DP13A HUMAN	DCC-interacting protein 13-alpha	No	Yes	No	No	No	No	No
ARFGAP3	Q9NP61 ARFG3 HUMAN	ADP-ribosylation factor GTPase-activating protein 3	No	Yes	No	No	No	No	No
ARHGAP24	Q8N264 RHG24 HUMAN	Rho GTPase-activating protein 24	No	Yes	No	No	No	No	No
ARID1A	O14497 ARI1A HUMAN	AT-rich interactive domain-containing protein 1A	Yes	No	No	No	No	No	No
ARL6IP4	Q66PJ3 AR6P4 HUMAN	ADP-ribosylation factor-like protein 6-interacting protein 4	No	Yes	No	No	Yes	Yes	No
ARMCX3	Q9UH62 ARMX3 HUMAN	Armadillo repeat-containing X-linked protein 3	No	Yes	No	No	No	No	No
ARPC1A	Q92747 ARC1A HUMAN	Actin-related protein 2/3 complex subunit 1A	No	No	No	Yes	No	No	No
ARPC1B	O15143 ARC1B HUMAN	Actin-related protein 2/3 complex subunit 1B	No	Yes	No	No	No	No	No
ARPIN	Q7Z6K5 ARPIN HUMAN	Arpin	No	Yes	No	No	No	No	No
ARSB	P15848 ARSB HUMAN	Arylsulfatase B	No	Yes	No	No	No	No	No
AS3MT	Q9HBK9 AS3MT HUMAN	Arsenite methyltransferase	No	No	No	Yes	No	No	No
ASPN	Q9BXN1 ASPN HUMAN	Asporin	No	No	No	Yes	No	No	No
ASPSCR1	Q9BZE9 ASPC1 HUMAN	Tether containing UBX domain for GLUT4	No	Yes	No	No	No	No	No
ASS1	P00966 ASSY HUMAN	Argininosuccinate synthase	No	Yes	No	No	No	No	No
ATG4A	Q8WYN0 ATG4A HUMAN	Cysteine protease ATG4A	No	Yes	No	No	No	No	No
ATM	Q13315 ATM HUMAN	Serine-protein kinase ATM	Yes	No	No	No	No	No	No
ATP1A1	P05023 AT1AT HUMAN	Sodium/potassium-transporting ATPase subunit alpha-1	No	Yes	No	No	Yes	Yes	Yes
ATP2A3	Q93084 AT2A3 HUMAN	Sarcoplasmic/endoplasmic reticulum calcium ATPase 3	No	Yes	No	No	No	No	No
ATP2B4	P23634 AT2B4 HUMAN	Plasma membrane calcium-transporting ATPase 4	No	Yes	No	No	No	No	No
ATP5F1A	P25705 ATPA HUMAN	ATP synthase subunit alpha, mitochondrial	No	No	No	Yes	No	No	No
ATP8A1	Q9Y2Q0 AT8A1 HUMAN	Phospholipid-transporting ATPase IA	No	Yes	No	No	No	No	No
ATR	Q13535 ATR HUMAN	Serine/threonine-protein kinase ATR	Yes	Yes	No	No	No	No	No
AXL	P30530 UFO HUMAN	Tyrosine-protein kinase receptor UFO	No	Yes	No	No	No	No	No
B2M	P61769 B2MG HUMAN	Beta-2-microglobulin	Yes	No	No	No	No	No	No
BAX	Q07812 BAX HUMAN	Apoptosis regulator BAX	No	No	Yes	No	Yes	Yes	Yes
BBOF1	Q8ND07 BBOF1 HUMAN	Basal body-orientation factor 1	No	Yes	No	No	No	No	No
BCHE	P06276 CHLE HUMAN	Cholinesterase	Yes	No	No	No	No	No	No
BCL2	P10415 BCL2 HUMAN	Apoptosis regulator Bcl-2	Yes	No	Yes	No	Yes	Yes	No
BCL3	P20749 BCL3 HUMAN	B-cell lymphoma 3 protein	No	Yes	No	No	No	No	No
BCR	P11274 BCR HUMAN	Breakpoint cluster region protein	No	Yes	No	No	No	No	No
BICD1	Q96G01 BICD1 HUMAN	Protein bicaudal D homolog 1	No	No	No	Yes	No	No	No
BIRC3	Q13489 BIRC3 HUMAN	Baculoviral IAP repeat-containing protein 3	No	Yes	No	No	No	No	No
BLVRA	P53004 BIEA HUMAN	Biliverdin reductase A	No	Yes	No	No	No	No	No
BRAF	P15056 BRAF HUMAN	Serine/threonine-protein kinase B-raf	Yes	No	No	No	No	No	No
BRCA1	P38398 BRCAT HUMAN	Breast cancer type 1 susceptibility protein	Yes	No	No	No	No	No	No

BRCA2	P51587 BRCA2_HUMAN	Breast cancer type 2 susceptibility protein	Yes	No	No	No	No	No	No
BTD	P43251 BTD_HUMAN	Biotinidase	No	Yes	No	No	Yes	Yes	No
BTK	Q06187 BTK_HUMAN	Tyrosine-protein kinase BTK	Yes	No	No	No	No	No	No
C1QB	P02746 C1QB HUMAN	Complement C1g subcomponent subunit B	No	Yes	No	No	No	No	No
C1QC	P02747 C1QC HUMAN	Complement C1q subcomponent subunit C	No	Yes	No	No	No	No	No
C1R	P00736 C1R HUMAN	Complement C1r subcomponent	No	No	No	Yes	Yes	No	No
C1S	P09871 C1S HUMAN	Complement C1s subcomponent	No	No	No	Yes	No	No	No
C3	P01024 CO3 HUMAN	Complement C3	Yes	No	No	No	No	No	No
C4A	POCOLA CO4A HUMAN	Complement C4-A	No	No	No	Yes	No	No	No
C4BPA	P04003 C4BPA HUMAN	C4b-binding protein alpha chain	No	No	No	Yes	Yes	No	No
C5	P01031 CO5 HUMAN	Complement C5	No	No	No	Yes	Yes	No	No
C6	P13671 CO6 HUMAN	Complement component C6	No	No	No	Yes	Yes	No	No
C7	P10643 CO7 HUMAN	Complement component C7	Yes	No	No	Yes	No	No	No
C8B	P07358 CO8B HUMAN	Complement component C8 beta chain	No	Ves	No	No	No	No	No
C8G	P07360 CO8G HUMAN	Complement component C8 damma chain	No	Ves	No	No	No	No	No
		VMEA and cache domain-containing protein 1	No	No	No	Ves	No	No	No
	P5/289 CA2D1 HUMAN	Voltage_dependent_calcium_channel_subunit_alpha_2/delta_1	No	Ves	No	No	No	No	No
		Caldesmon	No	No	No	Ves	No	No	No
CALDI		Calcestion	No	No	No	Ne	Vee	No	No
	P2/79/ CALK_HUMAN	Calleucuin Caleium/aalmadulin danan dantu metain linaaa tuna 1D	res	NO	NO	NO	res	res	res
CANKID		Calcium/calmodulin-dependent protein kinase type TD	INO No	res	NO	NO	NO	NO	NO
	P2/624 CALA_HUMAN	Callexin	INO No	res	NO	NO	NO	NO	NO
CAPI		Adenyiyi cyclase-associated protein i	INO No	NO	NO	Yes	res	res	res
CAPINI	PU/364 CAN I_HUMAN		INO	res	NO	res	NO	NO	NO
CAI	P04040 CATA_HUMAN	Catalase	No	Yes	NO	No	No	NO	NO
CAV3	P56539 CAV3_HUMAN	Caveolin-3	NO	No	Yes	No	No	NO	No
CBL	P22681 CBL_HUMAN	E3 ubiquitin-protein ligase CBL	Yes	No	No	No	No	NO	No
CCDC69	A6NI/9 CCD69_HUMAN	Colled-coll domain-containing protein 69	Yes	NO	No	No	No	NO	No
CCDC149	Q6ZUS6 CC149_HUMAN	Colled-coll domain-containing protein 149	No	Yes	No	No	NO	NO	No
CCDC154	A6NI56 CC154_HUMAN	Coiled-coil domain-containing protein 154	No	Yes	No	No	Yes	Yes	No
CCNB1	P14635 CCNB1_HUMAN	G2/mitotic-specific cyclin-B1	No	Yes	No	No	Yes	Yes	No
CCND2	P30279 CCND2_HUMAN	G1/S-specific cyclin-D2	Yes	Yes	No	No	No	No	No
CCNE1	P24864 CCNE1_HUMAN	G1/S-specific cyclin-E1	Yes	No	Yes	No	Yes	Yes	Yes
CD2AP	Q9Y5K6 CD2AP_HUMAN	CD2-associated protein	Yes	Yes	No	No	No	No	No
CD5L	O43866 CD5L_HUMAN	CD5 antigen-like	No	Yes	No	No	No	No	No
CD14	P08571 CD14_HUMAN	Monocyte differentiation antigen CD14	Yes	No	No	No	No	No	No
CD19	P15391 CD19_HUMAN	B-lymphocyte antigen CD19	Yes	No	No	No	Yes	Yes	Yes
CD40	P25942 TNR5_HUMAN	Tumor necrosis factor receptor superfamily member 5	No	Yes	No	No	No	No	No
CD55	P08174 DAF_HUMAN	Complement decay-accelerating factor	No	Yes	No	No	No	No	No
CD68	P34810 CD68_HUMAN	Macrosialin	No	Yes	No	No	No	No	No
CD74	P04233 HG2A_HUMAN	HLA class II histocompatibility antigen gamma chain	No	No	Yes	No	No	No	No
CD274	Q9NZQ7 PD1L1_HUMAN	Programmed cell death 1 ligand 1	Yes	No	Yes	No	Yes	Yes	Yes
CDC20	Q12834 CDC20_HUMAN	Cell division cycle protein 20 homolog	No	Yes	No	No	No	No	No
CDH1	P12830 CADH1_HUMAN	Cadherin-1	Yes	No	Yes	No	Yes	Yes	Yes
CDH3	P22223 CADH3 HUMAN	Cadherin-3	Yes	Yes	No	No	No	No	No
CDH11	P55287 CAD11 HUMAN	Cadherin-11	No	No	No	Yes	No	No	No
CDH17	Q12864 CAD17 HUMAN	Cadherin-17	No	No	Yes	No	Yes	Yes	No
CDH23	Q9H251 CAD23 HUMAN	Cadherin-23	No	Yes	No	No	No	No	No
CDKN1B	P46527 CDN1B HUMAN	Cyclin-dependent kinase inhibitor 1B	Yes	No	Yes	No	Yes	Yes	No
CEACAM5	P06731 CEAM5 HUMAN	Carcinoembryonic antigen-related cell adhesion molecule 5	Yes	No	No	Yes	Yes	Yes	Yes
CENPB	P07199 CENPB HUMAN	Maior centromere autoantigen B	No	Yes	No	No	Yes	Yes	Yes
CENPF	P49454 CENPF HUMAN	, Centromere protein Ĕ	No	Yes	No	No	Yes	Yes	No
CEP55	Q53EZ4 CEP55 HUMAN	Centrosomal protein of 55 kDa	No	Yes	No	No	No	No	No
CFB	P00751 CFAB HUMAN	Complement factor B	Yes	No	No	No	No	No	No
		•							

CFH	P08603 CFAH HUMAN	Complement factor H	No	No	No	Yes	Yes	No	No
CFI	P05156 CFAI HUMAN	Complement factor I	No	No	No	Yes	No	No	No
CFL1	P23528 COF1 HUMAN	Cofilin-1	No	Yes	No	No	No	No	No
CELAR	O15519 CELAR HUMAN	CASP8 and EADD-like apontosis regulator	No	No	No	Yes	No	No	No
CGNI 1		Cinquin-like protein 1	No	Ves	No	No	Vec	Ves	No
CHAD		Chondroadherin	No	Ves	No	No	No	No	No
		Chondroduneini Chromodomain boliagae DNA binding protain 7	No	No	No	Vee	No	No	No
		Chaling debuter and a mitagendrial	NO	No	NO	Vee	No	No	NO
СПОН	QONEO2 CHDH_HUMAN	Choime denydrogenase, mitochondriai	INO	NO	INO	res	INO	INO	INO
CHEK2	O96017 CHK2_HUMAN	Serine/threonine-protein kinase Chk2	Yes	No	No	No	Yes	Yes	Yes
CHGA	P10645 CMGA_HUMAN	Chromogranin-A	Yes	Yes	No	No	Yes	Yes	No
CHI3L1	P36222 CH3L1_HUMAN	Chitinase-3-like protein 1	Yes	No	No	Yes	Yes	Yes	No
CHN2	P52757 CHIO_HUMAN	Beta-chimaerin	Yes	No	No	No	No	No	No
CIRBP	Q14011 CIRBP_HUMAN	Cold-inducible RNA-binding protein	No	Yes	No	No	No	No	No
CKB	P12277 KCRB HUMAN	Creatine kinase B-type	No	Yes	No	No	No	No	No
CKM	P06732 KCRM HUMAN	Creatine kinase M-type	Yes	No	No	No	No	No	No
CLCA1	A8K7I4 CLCA1 HUMAN	Calcium-activated chloride channel regulator 1	No	Yes	No	No	Yes	Yes	Yes
CLDN18	P56856 CLD18 HUMAN	Claudin-18	No	No	Yes	No	No	No	No
CLIC1	O00299 CLIC1 HUMAN	Chloride intracellular channel protein 1	No	No	No	Yes	No	No	No
CUU	P1000 CIUS HUMAN	Clusterin	No	No	No	Ves	Vec	No	No
COBU 1	OSSET COBIT HUMAN	Cordon-bleu protein-like 1	No	Ves	No	No	No	No	No
COLIAI		Collagen alpha 1(1) chain	No	No	No	Voc	Voc	Voc	No
COLIAI	PO2452 COTAT_TOWAN		Vee	No	No	No	Vee	Ves	Vee
COLZAI	P02456 CO2A1_HUMAN		Tes Ne	NO	NO	NU	i es	Tes Ne	Tes Ne
COLSAT	P02461 COSAT_HUMAN		NO	NO	NO	res	INO	NO	INO
COL4A1	P02462 CO4A1_HUMAN	Collagen alpha-1(IV) chain	NO	NO	No	Yes	Yes	Yes	NO
COL4A2	P08572 CO4A2_HUMAN	Collagen alpha-2(IV) chain	Yes	No	No	Yes	Yes	Yes	No
COL4A3	Q01955 CO4A3_HUMAN	Collagen alpha-3(IV) chain	No	Yes	No	No	No	No	No
COL4A6	Q14031 CO4A6_HUMAN	Collagen alpha-6(IV) chain	Yes	No	No	No	Yes	Yes	Yes
COL5A1	P20908 CO5A1_HUMAN	Collagen alpha-1(V) chain	No	No	No	Yes	No	No	No
COL5A2	P05997 CO5A2_HUMAN	Collagen alpha-2(V) chain	No	No	No	Yes	No	No	No
COL6A2	P12110 CO6A2 HUMAN	Collagen alpha-2(VI) chain	No	No	No	Yes	Yes	Yes	Yes
COL6A3	P12111 CO6A3 HUMAN	Collagen alpha-3(VI) chain	No	No	No	Yes	No	No	No
COL11A1	P12107 COBAT HUMAN	Collagen alpha-1(XI) chain	No	No	No	Yes	No	No	No
COL12A1	Q99715 COCA1 HUMAN	Collagen alpha-1(XII) chain	No	No	No	Yes	No	No	No
COI 17A1	OPUMD9COHA1 HUMAN	Collagen alpha-1(X)/II) chain	No	Yes	No	No	No	No	No
COL 18A1	P39060 COIA1 HUMAN	Collagen alpha-1(XVIII) chain	Yes	No	No	Yes	No	No	No
COL 28A1		Collagen alpha-1(XX)/III) chain	Vec	No	No	No	Vec	Ves	Vec
COMP		Cartilage diageneric matrix protein	No	Voc	No	No	No	No	No
COMT	P1064 COMT HUMAN	Catachal O methyltransferase	No	Vec	No	No	No	No	No
		Calection O-Inellight ansierase	NO	Tes No.	NO	NU	NU	NU	NU
CP	PU0450 CERU_HUMAN	Cerulopiasmin	res	NO	NO	NO	NO	INO	INO
CPA1	P15085 CBPA1_HUMAN	Carboxypeptidas e A1	NO	NO	No	Yes	Yes	Yes	Yes
CPB1	P15086 CBPB1_HUMAN	Carboxypeptidas e B	Yes	No	No	Yes	Yes	Yes	Yes
CPD	O75976 CBPD_HUMAN	Carboxypeptidas e D	No	No	No	Yes	No	No	No
CPM	P14384 CBPM_HUMAN	Carboxypeptidas e M	Yes	No	No	No	No	No	No
CPS1	P31327 CPSM_HUMAN	Carbamoyl-phosphate synthase [ammonia], mitochondrial	No	Yes	No	No	No	No	No
CPT2	P23786 CPT2 HUMAN	Carnitine O-palmitov/transferase 2, mitochondrial	No	Yes	No	No	No	No	No
CR2	P20023 CR2 HUMAN	Complement receptor type 2	No	Yes	No	No	Yes	Yes	Yes
CREBBP	Q92793 CBP HUMAN	CREB-binding protein	No	Yes	No	No	Yes	Yes	Yes
CRP	P02741 CRP HUMAN	C-reactive protein	Yes	No	No	No	No	No	No
CRYAB	P02511 CRYAB HUMAN	Alpha-crystallin B chain	Yes	No	No	No	No	No	No
CST3	P01034 CYTC HUMAN	Custatin-C	No	Yes	No	No	No	No	No
CSTR		Cystatin_B	No	Ves	No	No	No	No	No
CTNNP1	P35222 CTNB1 HUMAN	Catenin beta-1	Vec	No	No	No	Vec	Ves	Ves
CTDBO		Chimatruscingen B2	No	Vec	No	No	Voc	Voc	Voc
	QUELT CIRDZ_HUWAN		INU	162	INU	INU	165	105	162

CTSD	P07339 CATD_HUMAN	Cathepsin D	No	No	No	Yes	No	No	No
CTSF	Q9UBX1 CATF_HUMAN	Cathepsin F	No	Yes	No	No	No	No	No
CTSH	P09668 CATH_HUMAN	Pro-cathepsin H	No	No	No	Yes	No	No	No
CTSS	P25774 CATS_HUMAN	Cathepsin S	No	No	No	Yes	Yes	Yes	Yes
CXCR4	P61073 CXCR4_HUMAN	C-X-C chemokine receptor type 4	No	No	Yes	No	No	No	No
CYP1A2	P05177 CP1A2_HUMAN	Cytochrome P450 1A2	Yes	No	No	No	Yes	Yes	No
CYP3A5	P20815 CP3A5_HUMAN	Cytochrome P450 3A5	No	Yes	No	No	No	No	No
DAD1	P61803 DAD1_HUMAN	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit DAD1	No	Yes	No	No	No	No	No
DCN	P07585 PGS2_HUMAN	Decorin	No	No	No	Yes	Yes	Yes	Yes
DCXR	Q7Z4W1 DCXR_HUMAN	L-xylulose reductase	No	Yes	No	No	Yes	Yes	No
DEK	P35659 DEK_HUMAN	Protein DEK	No	Yes	No	No	No	No	No
DES	P17661 DESM_HUMAN	Desmin	No	Yes	No	No	No	No	No
DHTKD1	Q96HY7 DHTK1_HUMAN	Probable 2-oxoglutarate dehydrogenase E1 component DHKTD1, mitochondrial	No	Yes	No	No	No	No	No
DIAPH3	Q9NSV4 DIAP3_HUMAN	Protein diaphanous homolog 3	No	Yes	No	No	No	No	No
DLG5	Q8TDM6 DLG5_HUMAN	Disks large homolog 5	No	No	No	Yes	No	No	No
DNAJB4	Q9UDY4 DNJB4_HUMAN	DnaJ homolog subfamily B member 4	No	Yes	No	No	No	No	No
DNAJC15	Q9Y5T4 DJC15_HUMAN	DnaJ homolog subfamily C member 15	Yes	No	No	No	No	No	No
DPT	Q07507 DERM_HUMAN	Dermatopontin	No	Yes	No	No	No	No	No
DPYD	Q12882 DPYD_HUMAN	Dihydropyrimidine dehydrogenase	Yes	Yes	No	No	No	No	No
DSC2	Q02487 DSC2_HUMAN	Desmocollin-2	Yes	No	No	No	No	No	No
DSG1	Q02413 DSG1_HUMAN	Desmoglein-1	No	Yes	No	No	Yes	Yes	No
DSG2	Q14126 DSG2_HUMAN	Desmoglein-2	Yes	Yes	No	No	Yes	Yes	Yes
DSG3	P32926 DSG3_HUMAN	Desmoglein-3	No	Yes	No	No	No	No	No
DSP	P15924 DESP_HUMAN	Desmoplakin	No	Yes	No	No	Yes	Yes	No
DTNA	Q9Y4J8 DTNA_HUMAN	Dystrobrevin alpha	No	Yes	No	No	No	No	No
ECI2	O75521 ECI2_HUMAN	Enoyl-CoA delta isomerase 2, mitochondrial	No	Yes	No	No	Yes	Yes	No
ECM1	Q16610 ECM1_HUMAN	Extracellular matrix protein 1	Yes	Yes	No	Yes	No	No	No
ECT2	Q9H8V3 ECT2_HUMAN	Protein ECT2	No	Yes	No	No	No	No	No
EEF1B2	P24534 EF1B_HUMAN	Elongation factor 1-beta	No	Yes	No	No	No	No	No
EEF1D	P29692 EF1D_HUMAN	Elongation factor 1-delta	No	Yes	No	No	No	No	No
EEF2	P13639 EF2_HUMAN	Elongation factor 2	No	No	No	Yes	No	No	No
EGER	P00533 EGFR_HUMAN	Epidermal growth factor receptor	Yes	No	Yes	No	Yes	Yes	Yes
EIF2AK3	Q9NZJ5 E2AK3_HUMAN	Eukaryotic translation initiation factor 2-alpha kinase 3	Yes	NO	NO	No	Yes	Yes	No
EIF3G	O75821 EIF3G_HUMAN	Eukaryotic translation initiation factor 3 subunit G	No	Yes	No	No	No	No	No
ELN	P15502 ELN_HUMAN	Elastin	No	Yes	No	No	No	No	No
ELP1	095163 ELP1_HUMAN	Elongator complex protein 1	NO	Yes	NO	No	No	NO	No
ENG	P17813 EGLN_HUMAN		Yes	NO	NO	NO	INO X	NO Mar	NO
ENU2	P09104 ENOG_HUMAN	Gamma-enolase	res	NO	NO	NO	Yes	res	Yes
EPB41L4B	Q9H329 E41LB_HUMAN	Band 4.1-like protein 4B	No	Yes	NO	No	No	NO	No
EPB41L5	Q9HCM4 E41L5_HUMAN	Band 4.1-like protein 5	INO	Yes	NO	NO	Yes	Yes	NO
EPCAM	P16422 EPCAM_HUMAN	Epithelial cell adhesion molecule	res	NO	NO	NO	NO Vee	NO	NO
	P34913 HTES_HUMAN	Bilunctional eposite hydrolase 2	NO Yee	Yes	NO	NO	res No	res	res
ERDDZ	P04020 ERBB2_HUMAN	Receptor tyrosine-protein kinase erbb-2	res	res	res	NO	INO No	NO	NO NI-
ERBB3	P21860 ERBB3_HUMAN	Receptor tyrosine-protein kinase erob-3	Yes	NO	NO	NO	INO X	NO Mar	NO
ERCCI	P07992 ERCC1_HUMAN	DINA excision repair protein ERCC-1	Yes	NO	Yes	NO	Yes	Yes	NO
ERCC2	PI60/4 ERCC2_HUMAN	General transcription and DNA repair factor film hericase subunit APD	res	Yes	NO	NO	INO No	NO	NO
ERUIA	Q96HE7 ERUTA_HUMAN	ERU1-like protein alpha	NO	Yes	NO	Yes	NO	NO	NO
EIVO	P41212 ETV6_HUMAN		NO	res	NO	NO	INO	NO	NO
EXUSCIO	QUITRU EXUSX_HUMAN	Exosome component 10	NO	Yes	NO	NO	NO	NO	NO
EXII	Q10394 EXT1_HUMAN	EXOSTOSIO-1	INO	Yes	NO	INO No	Yes	res	NO
EZHZ		HISTORE-IVSINE IN-METRINTERASE EZHZ	res	INO Voc	INO Voc	NO No	NO No	NO No	NO
EZR E2		EZIII Drothromhin	NO	Yes	res	NO	NO	NO	NO
FZ	FUUI34 INKE_NUMAN	Prouniombin	INO	res	INO	INU	INO	INO	INU

F5	P12259 FA5_HUMAN	Coagulation factor V	No	Yes	No	No	No	No	No
F9	P00740 FA9_HUMAN	Coagulation factor IX	No	Yes	No	No	No	No	No
F10	P00742 FA10_HUMAN	Coagulation factor X	No	Yes	No	No	Yes	No	No
F12	P00748 FA12 HUMAN	Coagulation factor XII	No	Yes	No	No	No	No	No
F13A1	P00488 F13A HUMAN	Coagulation factor XIII A chain	No	Yes	No	No	Yes	No	No
F13B	P05160 F13B HUMAN	Coagulation factor XIII B chain	No	Yes	No	No	No	No	No
FAM13A	O94988 FA13A HUMAN	Protein FAM13A	No	Yes	No	No	Yes	Yes	No
FAM174B	Q3ZCQ3 F174B HUMAN	Membrane protein FAM174B	No	Yes	No	No	No	No	No
FAP	Q12884 SEPR HUMAN	Prolyl endopentidase. FAP	No	No	No	Yes	No	No	No
FAS	P25445 TNR6 HUMAN	Tumor necrosis factor receptor superfamily member 6	Yes	No	No	Yes	Yes	Yes	No
FAT1	Q14517 FAT1 HUMAN	Protocadherin Eat 1	Yes	No	No	No	No	No	No
FBI	P22087 FBRI HUMAN	rRNA 2'-O-methyltransferase, fibrillarin	No	Yes	No	No	No	No	No
FBN1	P35555 FBN1 HUMAN	Fibrillin-1	No	Yes	No	No	Yes	Yes	Yes
EBN2	P35556 EBN2 HUMAN	Fibrillin-2	No	Yes	No	No	No	No	No
FBX016	O8IX29 EBX16 HUMAN	E-box only protein 16	No	Yes	No	No	No	No	No
FCGBP	O9Y6R7 ECGBP HUMAN	In GEC-binding protein	No	No	No	Yes	No	No	No
FCGR3A	P08637 ECG3A HUMAN	Low affinity immunoglobulin, gamma Ec region recentor III-A	No	Yes	No	No	No	No	No
FECH	P22830 HEMH HUMAN	Eerrochelatase mitochondrial	No	Yes	No	No	No	No	No
ECE1		Eibroblast growth factor 1	No	No	Vec	No	Voc	Voc	No
ECEPS	PO200 FOLLINAN	Fibroblast growth factor recentor 3	Voc	No	No	No	No	No	No
ECERA	P22007 TGTRS_TOWAN	Fibroblast growth factor receptor 5	Voc	No	No	No	Vec	Voc	No
ECI 1		Fibringen like protein 1	No	Vec	No	No	No	No	No
		Pro mPNA 3' and processing factor EID1	No	Vec	No	No	No	No	No
		FIGHTING S-CIU-PLOCESSING INCOLUTIFI	Vee	Ne	No	Vee	No	No	No
	P21333 FLINA_HUMAN	Fildinin-A	Yes	NO	NO	res	NO	NO	NO
	P17946 VGFRI_HUMAN	Vascular endotrelial growth factor receptor 1	Yes	NO	res	NO	Yes	Yes	Yes
		Vascular endotrienal growth lactor receptor 5	res	NO	INO No	NO	res	res	res
			INO No	res	INO No	NO	NO	NO	NO
FINI	PUZ/ST FINC_HUMAN	Fibronecun	INO	res	INO	NO	NO	NO	NO
FNDC3A	Q9Y2H6 FND3A_HUMAN	Fibronectin type-III domain-containing protein 3A	Yes	NO	No	NO	No	No	No
FICD	095954 FICD_HUMAN	Formimidoyitransferase-cyclode a minas e	No	Yes	No	NO	No	No	No
FIHT	P02/94 FRIH_HUMAN	Ferritin heavy chain	NO	Yes	NO	NO	NO	NO	NO
FIL	PU2/92 FRIL_HUMAN		INO Xee	Yes	NO	NO	NO	NO	NO
G6PD	P11413 G6PD_HUMAN	Giucose-6-phosphate 1-denydrogenase	Yes	NO	NO	NO	NO	NO	NO
GALN 12	Q10471 GALI2_HUMAN	Polypeptide N-acetylg alactosaminyltransferase 2	No	Yes	No	No	No	No	No
GATA4	P43694 GATA4_HUMAN	I ranscription factor GATA-4	Yes	No	No	No	No	No	No
GAIM	P50440 GATM_HUMAN	Giycine amidinotransferase, mitochondrial	No	Yes	No	NO	Yes	Yes	Yes
GBP1	P32455 GBP1_HUMAN	Guanyiate-binding protein 1	No	Yes	No	NO	No	No	No
GC	P02774 VIDB_HUMAN	Vitamin D-binding protein	No	Yes	No	NO	No	No	No
GGA2	Q9UJY4 GGA2_HUMAN	ADP-ribosylation factor-binding protein GGA2	No	Yes	No	No	No	No	No
GIPC2	Q8TF65 GIPC2_HUMAN	PDZ domain-containing protein GIPC2	No	Yes	No	No	No	No	No
GLA	P06280 AGAL_HUMAN	Alpha-galactosidase A	No	Yes	No	No	No	No	No
GLB1	P16278 BGAL_HUMAN	Beta-galactosidase	No	Yes	No	No	No	No	No
GMPS	P49915 GUAA_HUMAN	GMP synthase	No	Yes	No	No	No	No	No
GNAZ	P19086 GNAZ_HUMAN	Guanine nucleotide-binding protein G(z) subunit alpha	No	Yes	No	No	No	No	No
GPD1L	Q8N335 GPD1L_HUMAN	Glycerol-3-phosphate dehydrogenase 1-like protein	No	Yes	No	No	No	No	No
GPI	P06744 G6PI_HUMAN	Glucose-6-phosphate isomerase	Yes	No	No	No	No	No	No
GPR137B	O60478 G137B_HUMAN	Integral membrane protein GPR137B	No	Yes	No	No	No	No	No
GPT	P24298 ALAT1_HUMAN	Alanine aminotransferase 1	No	Yes	No	No	No	No	No
GPX2	P18283 GPX2_HUMAN	Glutathione peroxidase 2	No	Yes	No	No	Yes	Yes	Yes
GPX3	P22352 GPX3_HUMAN	Glutathione peroxidase 3	No	Yes	No	No	No	No	No
GRB7	Q14451 GRB7_HUMAN	Growth factor receptor-bound protein 7	No	Yes	No	No	No	No	No
GRHPR	Q9UBQ7GRHPR_HUMAN	Glyoxylate reductase/hydroxypyruvate reductase	No	Yes	No	No	No	No	No
GRN	P28799 GRN_HUMAN	Progranulin	Yes	No	No	No	No	No	No

CST01 P7817 CST01 P1817 CST01 P1817 CST01 P1817 No No <th< th=""><th>GSN</th><th>P06396 GELS HUMAN</th><th>Gelsolin</th><th>No</th><th>Yes</th><th>No</th><th>No</th><th>Yes</th><th>Yes</th><th>Yes</th></th<>	GSN	P06396 GELS HUMAN	Gelsolin	No	Yes	No	No	Yes	Yes	Yes
CSTP1 P02CH1 CSTP1 Link Control No No <td>GSTO1</td> <td>P78417 GSTOT HUMAN</td> <td>Glutathione S-transferase omega-1</td> <td>No</td> <td>No</td> <td>No</td> <td>Yes</td> <td>No</td> <td>No</td> <td>No</td>	GSTO1	P78417 GSTOT HUMAN	Glutathione S-transferase omega-1	No	No	No	Yes	No	No	No
H10 P07305 H10, H10AN H10/E No No No No No No No H42FY OTSC H10/E P1201 P1201 <t< td=""><td>GSTP1</td><td>P09211 GSTP1 HUMAN</td><td>Glutathione S-transferase P</td><td>No</td><td>No</td><td>No</td><td>Yes</td><td>No</td><td>No</td><td>No</td></t<>	GSTP1	P09211 GSTP1 HUMAN	Glutathione S-transferase P	No	No	No	Yes	No	No	No
HARF PCST HAR Core histone macro-H2A1 No Yes No No <	H1-0	P07305 H10 HUMAN	Histone H1.0	No	Yes	No	No	No	No	No
HARS P1201 SYNC_FUNAN Histon-erRNA ligaes, clysdaamic No Yes No	H2AFY	075367 H2AY HUMAN	Core histone macro-H2A.1	No	Yes	No	No	No	No	No
HDGF Poils HDGF JULIAN Headom-derived gravminder No	HARS	P12081 SYHC HUMAN	HistidinetRNA ligase, cytoplasmic	No	Yes	No	No	No	No	No
HDLB Q0031 VIGLIN [®] Vglin [®] No Yes No No No No No HGA P0055 HGA HUMAN Hepatocke growth factor Yes No No No No Yes Yes Yes Yes Yes Yes Yes Yes No No No Yes No	HDGF	P51858 HDGF HUMAN	Hepatoma-derived growth factor	No	No	Yes	No	No	No	No
HEAR PROBE HEAR HUMAN Best-becamming sequential phane No Yes No No Yes No HIFE PACE DHGF HUMAN Hepode-inductible factor Yes No	HDLBP	Q00341 VIGLN HUMAN	Vigilin	No	Yes	No	No	No	No	No
HGF Pid210 HGF HGG HGG No No No Yes No	HEXA	P06865 HEXA HUMAN	Reta-hevosaminidase subunit alpha	No	Yes	No	No	Yes	Yes	No
HERA Othesis Hera Vess Vess Vess Vess Vess Vess Vess Vess No No <t< td=""><td>HGE</td><td>P14210 HGE HUMAN</td><td>Hepatocyte, growth factor</td><td>Yes</td><td>No</td><td>No</td><td>No</td><td>Yes</td><td>Yes</td><td>Yes</td></t<>	HGE	P14210 HGE HUMAN	Hepatocyte, growth factor	Yes	No	No	No	Yes	Yes	Yes
HLA 5 P01888 HLA Las HutkAn HLA class Instacromability and gan. B alpha chain No Yes No	HIE1A	016665 HIE1A HUMAN	Hypoxia-inducible factor 1-alpha	Yes	No	Yes	Yes	Yes	Yes	No
HMCAN PTOBE HMCAT PUNAN Protein HMC-HMC-Yam No Yes No	HLA-B	P01889 HLAB HUMAN	HIA class L histocompatibility antigen B alpha chain	No	Yes	No	No	No	No	No
HNRNK P6197 HNRPC_HUMAN Heargeneous nuclear inbunchegration K No No No Yes No	HMGA1	P17096 HMGA1 HUMAN	High mobility group protein HMG-I/HMG-Y	No	Yes	Yes	No	No	No	No
INCORM 201/03 INCORM IND No	LINDNOK	DE1078 HNIDDK HUMAN	Heterogeneous, puclear ribonucleoprotein, K	No	No	No	Voc	No	No	No
HOXB3 EPH483 HUXB3 HUXB3 <t< td=""><td></td><td></td><td>Protein Heak bornelog 1</td><td>No</td><td>Voc</td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td></t<>			Protein Heak bornelog 1	No	Voc	No	No	No	No	No
HO357 PDB26 HO37 HUMAN Homebox No	HOYB3		Homeobox, protein Hox B3	No	Vec	No	No	No	No	No
Imp PD0278 Info No Yes No			Homeobox protein Hox B7	No	No	No	Vec	No	No	No
Intro Double No			Hantoglobin	No	Voc	No	No	No	No	No
HTMC Point of the Church in the			Lamonavia	No	Vee	No	No	No	No	No
Intract FUIL2 Ites Index Ites No Ites No Ites Ites <t< td=""><td></td><td>P02790 HEINIO_HUIMAN</td><td></td><td>INO Vee</td><td>res</td><td>NO</td><td>NO</td><td>INO</td><td>INO</td><td>NO</td></t<>		P02790 HEINIO_HUIMAN		INO Vee	res	NO	NO	INO	INO	NO
mms putation mms mm	HRAS	POTTIZ RASH_HUMAN	GIPase Hias	res	NO	res	NO	res	res	res
Part Sourt Portsour Product		P04190 HRG_HUMAN	Histidine-rich grycoprotein	INO Vee	NO	NO No	res	INO	INO	NO
Prescub Prescub Enduplasitini Tes NO N	HSP90AA1	PU/900 HS90A_HUMAN	Finden Learnin	res	NO	NO No	NO	res	res	NO
H3PAD P11U21 BHP HUMAN Endoptamic reliculum chaperone bil ¹ No Yes No	HSP90B1	P14025 EINPL_HUMAN	Endoprasmin	res	INO	NO	NO	INO	NO	NO
H3P51 P04/92 H3P51 H3P51<	HSPA5	P11021 BIP_HUMAN	Endoplasmic reticulum chaperone BIP	NO	Yes	No	NO	No	No	No
HYI QS1013 HYI MXI Basement membrane-specific heparan sulfate proteopylcan core protein Yes No No Yes No	HSPB1	P04/92 HSPB1_HUMAN	Heat shock protein beta-1	Yes	No	No	Yes	Yes	Yes	Yes
HYI Cost U3 HYI HUMAN Putative ingroxpy/juvate isomerase No Yes No <	HSPG2	P98160 PGBM_HUMAN	Basement membrane-specific heparan sulfate proteoglycan core protein	Yes	No	No	Yes	No	No	No
ICAN Oxboxe No <	HYI	Q51013 HYLHUMAN	Putative hydroxypyruvate isomerase	No	Yes	No	No	No	No	No
ICAM1 P0532 ICAM1_HUMAN Intercellular adhesion molecule 1 Yes No No Yes No	ICA1	Q05084 ICA69_HUMAN	Islet cell autoantigen 1	NO	Yes	No	No	No	No	No
IDH1 O75874 IDH2 HUMAN Isocitrate dehydrogenase [NADP], mitochondrial Yes No No No Yes No No <td>ICAM1</td> <td>P05362 ICAM1_HUMAN</td> <td>Intercellular adhesion molecule 1</td> <td>Yes</td> <td>No</td> <td>No</td> <td>Yes</td> <td>No</td> <td>No</td> <td>No</td>	ICAM1	P05362 ICAM1_HUMAN	Intercellular adhesion molecule 1	Yes	No	No	Yes	No	No	No
IDH2 P48735 IDH2 HUMAN isocitrate dehydrogenase [NADP] Moc Yes No No Yes No <	IDH1	O75874 IDHC_HUMAN	Isocitrate dehydrogenase [NADP], cytoplasmic	Yes	No	No	No	Yes	Yes	Yes
IDUA P3547 IDUA_HOMAN Alpha-L-iduronidase No Yes No	IDH2	P48735 IDHP_HUMAN	Isocitrate dehydrogenase [NADP], mitochondrial	Yes	No	No	Yes	No	No	No
IF161Q16666IF16_HUMANGamma-Interferon-inducible protein 16NoYesNoNoYesYesYesIGF1RP00458IFRD1_HUMANInsulin-like growth factor 1 receptorYesNoN	IDUA	P35475 IDUA_HUMAN	Alpha-L-iduronidase	No	Yes	No	No	No	No	No
IFRD1C00438IFRD1_HUMANInterferon-related developmental regulator 1NoNoNoNoYesNoNoNoIGF1RP08069IGF1R_HUMANInsulin-like growth factor 1YesNoNoNoNoNoNoNoIGF2PP01344IGF2_HUMANInsulin-like growth factor binding protein 1YesNo </td <td>IFI16</td> <td>Q16666 IF16_HUMAN</td> <td>Gamma-interferon-inducible protein 16</td> <td>No</td> <td>Yes</td> <td>No</td> <td>No</td> <td>Yes</td> <td>Yes</td> <td>Yes</td>	IFI16	Q16666 IF16_HUMAN	Gamma-interferon-inducible protein 16	No	Yes	No	No	Yes	Yes	Yes
IGF1RP08009IGF1RHUMANInsulin-like growth factor 1 receptorYesNoNaNaInteriousInteriousInteriousInteriousInteriousInteriousNoYesNoNoNoNoNoNoNoNoNoNoNoNoNoNaNaInteriousInteriousInteriousInteriousInteriousInteriousInteriousInteriousInteriousInter	IFRD1	O00458 IFRD1_HUMAN	Interferon-related developmental regulator 1	No	No	No	Yes	No	No	No
IGF2P01344IGF2_HUMANInsulin-like growth factor IIYesNoNoNoNoNoNoNoIGFBP1P08833IBP1_HUMANInsulin-like growth factor-binding protein 1YesNoNoNoNoNoNoIGFBP3P17936IBP3_HUMANInsulin-like growth factor-binding protein 2YesNoNoNoNoNoNoNoIGFBP3P17936IBP3_HUMANInsulin-like growth factor-binding protein 3YesNoNoNoYes	IGF1R	P08069 IGF1R_HUMAN	Insulin-like growth factor 1 receptor	Yes	No	No	No	No	No	No
IGFBP1P08833IBP1_HUMANInsulin-like growth factor-binding protein 1YesNoNoNoNoNoNoNoIGFBP2P18065IBP3_HUMANInsulin-like growth factor-binding protein 2YesNo	IGF2	P01344 IGF2_HUMAN	Insulin-like growth factor II	Yes	No	No	No	No	No	No
IGFBP2P18065IBP2_HUMANInsulin-like growth factor-binding protein 2YesNoNoNoNoNoNoNoNoIGFBP3P17936IBP3_HUMANInsulin-like growth factor-binding protein 3YesNoNoYes	IGFBP1	P08833 IBP1_HUMAN	Insulin-like growth factor-binding protein 1	Yes	No	No	No	No	No	No
IGFBP3P17936IBP5_HUMANInsulin-like growth factor-binding protein 3YesNoNoYesYesYesYesIGFBP5P24593IBP5_HUMANInsulin-like growth factor-binding protein 5No<	IGFBP2	P18065 IBP2_HUMAN	Insulin-like growth factor-binding protein 2	Yes	No	No	No	No	No	No
IGFBP5P24393IBP5_HUMANInsulin-like growth factor-binding protein 5NoYesNoNoYesYesYesIL1BP01584IL1B_HUMANInterleukin-1 betaYesNoNoNoNoNoNoNoNoNoIL1RNP18510IL1RA_HUMANInterleukin-1 receptor antagonist proteinNoYesNoNoYesYesYesNoNoYesYesNo <td< td=""><td>IGFBP3</td><td>P17936 IBP3_HUMAN</td><td>Insulin-like growth factor-binding protein 3</td><td>Yes</td><td>No</td><td>No</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td></td<>	IGFBP3	P17936 IBP3_HUMAN	Insulin-like growth factor-binding protein 3	Yes	No	No	Yes	Yes	Yes	Yes
IL1BP01584IL1B, HUMANInterleukin-1 betaYesNoNoNoNoNoNoNoNoIL1RNP18510IL1RA, HUMANInterleukin-1 receptor antagonist proteinNoYesYesNoYesYesYesYesYesYesYesYesNoIL4RP24394IL4RA, HUMANInterleukin-4 receptor subunit alphaNoYesNoNoYesYesNo	IGFBP5	P24593 IBP5_HUMAN	Insulin-like growth factor-binding protein 5	No	Yes	No	No	Yes	Yes	Yes
IL1RNP18510IL1RA_HUMANInterleukin-1 receptor antagonist proteinNoYesYesNoYesYesYesYesYesNoIL4RP24394IL4RA_HUMANInterleukin-4 receptor subunit alphaNoYesNo <td>IL1B</td> <td>P01584 IL1B_HUMAN</td> <td>Interleukin-1 beta</td> <td>Yes</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td>	IL1B	P01584 IL1B_HUMAN	Interleukin-1 beta	Yes	No	No	No	No	No	No
ILARP24394ILAR_HUMANInterleukin-4 receptor subunit alphaNoYesNoNoYesYesNoIL5P05213IL5_HUMANInterleukin-5YesNoNoNoNoNoNoNoIL6P05231IL6_HUMANInterleukin-6YesNoNoNoNoNoNoNoILF2Q12905ILF2_HUMANInterleukin-enhancer-binding factor 2NoYesNoNoNoNoNoNoINHBAP08213INSR_HUMANInterleukin enhancer-binding factor 2NoYesNoNoNoNoNoNoINSRP06213INSR_HUMANInterleukin receptorNoYesNoNoNoNoNoNoINTS1QSVX2INT10_HUMANIntegrator complex subunit 10NoYesNoNoNoNoNoNoNoIQGAP1P46940IQGA1_HUMANRas GTPase-activating-like protein IQGAP2NoYesNoNoNoNoNoNoNoNoIQGAP2Q1376IQGA2 HUMANRas GTPase-activating-like protein IQGAP2NoYesNo	IL1RN	P18510 IL1RA_HUMAN	Interleukin-1 receptor antagonist protein	No	Yes	Yes	No	Yes	Yes	Yes
IL5P05113IL5_HUMANInterleukin-5YesNoNoNoNoNoNoNoNoIL6P05231IL6_HUMANInterleukin-6YesNoYesNoNoNoNoNoNoILF2Q12905ILF2_HUMANInterleukin-6YesNoYesNoNoNoNoNoNoNoINHBAP08476INHBA_HUMANInterleukin enhancer-binding factor 2NoYesNo <td>IL4R</td> <td>P24394 IL4RA_HUMAN</td> <td>Interleukin-4 receptor subunit alpha</td> <td>No</td> <td>Yes</td> <td>No</td> <td>No</td> <td>Yes</td> <td>Yes</td> <td>No</td>	IL4R	P24394 IL4RA_HUMAN	Interleukin-4 receptor subunit alpha	No	Yes	No	No	Yes	Yes	No
IL6P05231IL6 HUMANInterleukin-6YesNoNoNoNoNoNoNoNoNoILF2Q12905ILF2 HUMANInterleukin enhancer-binding factor 2NoNoYesNoNoNoNoNoNoNoINHBAP08476INHBA, HUMANInterleukin enhancer-binding factor 2NoYesNoNoNoNoNoNoNoINSRP08213INSR, HUMANInterleukin enhancer-binding factor 2NoYesNoNoNoNoNoNoINSRP08213INSR, HUMANIntegrator complex suburit 10NoYesNo	IL5	P05113 IL5_HUMAN	Interleukin-5	Yes	No	No	No	No	No	No
ILF2Q12905ILF2_HUMANInterleukin enhancer-binding factor 2NoYesNoNoNoNoNoNoINHBAP08476INHBA_HUMANInhibin beta A chainNoYesNoNoNoNoNoNoINSRP06213INSR_HUMANInsulin receptorNoYesNoNoYesYesNoINTS10Q9NVR2INT10_HUMANIntegrator complex subunit 10NoYesNoNoNoNoNoIQGAP1P46940IQGA1_HUMANRas GTPase-activating-like protein IQGAP1NoYesNoNoNoNoNoNoIQGAP2Q1376IQGA2_HUMANRas GTPase-activating-like protein IQGAP2NoYesNoNoNoNoNoNoITGA38P28006ITA3_HUMANIntegrin alpha-3NoYesNoNoYesYesYes	IL6	P05231 IL6_HUMAN	Interleukin-6	Yes	No	No	No	No	No	No
INHBAP08476INHBA HUMANInhibitin beta A chainNoYesNo	ILF2	Q12905 ILF2_HUMAN	Interleukin enhancer-binding factor 2	No	Yes	No	No	No	No	No
INSR P08213 INSR_HUMAN Insulin receptor No Yes No No Yes Yes Yes No INTS10 Q9NVR2 INT10_HUMAN Integrator complex suburit 10 No Yes No No No No No IQGAP1 P46940 IQGA1_HUMAN Ras GTPase-activating-like protein IQGAP1 No Yes No Yes No No No IQGAP2 Q1376 IQGA2_HUMAN Ras GTPase-activating-like protein IQGAP2 No Yes No No No No No ITGA2B P0854 ITA3_HUMAN Integrin alpha-1b Yes No No Yes Yes No ITGA3 P28006 ITA3_HUMAN Integrin alpha-3 No Yes No No Yes Yes	INHBA	P08476 INHBA HUMAN	Inhibin beta A chain	No	Yes	No	No	No	No	No
INTS10Q9NVR2INT0_HUMANIntegrator complex subunit 10NoYesNoNoNoNoNoNoIQGAP1P46940IQGA1_HUMANRas GTPase-activating-like protein IQGAP1NoYesNoYesNoNoNoNoIQGAP2Q13576IQGA2_HUMANRas GTPase-activating-like protein IQGAP2NoYesNoNoNoNoNoITGA2BP08514ITA2B_HUMANIntegrin alpha-libYesNoNoYesYesNoITGA3P20006ITA3_HUMANIntegrin alpha-3NoYesNoYesYesYes	INSR	P06213 INSR HUMAN	Insulin receptor	No	Yes	No	No	Yes	Yes	No
IQGAP1P46940IQGAT_HUMANRas GTPase-activating-like protein IQGAP1NoYesNoYesNoNoNoIQGAP2Q13576IQGA2 HUMANRas GTPase-activating-like protein IQGAP2NoYesNoNoNoNoNoITGA2BP08514ITA2B-HUMANIntegrin alpha-libYesNoNoNoYesNoITGA3P28006ITA3-HUMANIntegrin alpha-3NoYesNoNoYesYes	INTS10	Q9NVR2 INT10 HUMAN	Integrator complex subunit 10	No	Yes	No	No	No	No	No
IQGAP2Q13576IQGA2HUMANRas GTPase-activating-likeproteinIQGAP2NoYesNoNoNoNoNoITGA2BP08514ITA2BHUMANIntegrin alpha-libYesNoNoNoYesYesNoITGA3P26006ITA3HUMANIntegrin alpha-3NoYesNoNoYesYesYes	IQGAP1	P46940 IQGA1 HUMAN	Ras GTPase-activating-like protein IQGAP1	No	Yes	No	Yes	No	No	No
ITGA2B P08514 ITA2B HUMAN Integrin alpha- ^{li} b Yes No No No Yes Yes No ITGA3 P26006 ITA3 HUMAN Integrin alpha-3 No Yes No No Yes Yes Yes Yes	IQGAP2	Q13576 IQGA2 HUMAN	Ras GTPase-activating-like protein IQGAP2	No	Yes	No	No	No	No	No
ITGA3 P26006 ITA3_HUMAN Integrin alpha-3 No Yes No No Yes Yes Yes Yes	ITGA2B	P08514 ITA2B HUMAN	Integrin alpha-lib	Yes	No	No	No	Yes	Yes	No
	ITGA3	P26006 ITA3_HUMAN	Integrin alpha-3	No	Yes	No	No	Yes	Yes	Yes

ITGA5	POS648 ITAS HUMAN	Integrin alpha-5	Vec	No	Ves	No	Vec	Ves	Ves
ITCAS		Integrin alpha-5	No	No	Voc	No	Voc	Voc	Voc
ITILI2		Inter alpha truppin inhibitor beaw, chain H2	No	No	No	Voc	No	No	No
11112		Inter-alpha-trypsin inhibitor heavy chain 112	NU Xee	NU NI-	NU NI	165	NU NI-	NU NI	NU
IIIH4	Q14624 ITIH4_HUMAN	Inter-alpha-trypsin inhibitor neavy chain H4	Yes	NO	NO	Yes	NO	NO	NO
TI PRID2	P28290 11 PI2_HUMAN	Protein II PRID2	NO	Yes	NO	NO	No	NO	NO
IVD	P26440 IVD_HUMAN	Isovaleryl-CoA dehydrogenase, mitochondrial	No	Yes	No	No	No	No	No
JADE1	Q6IE81 JADE1_HUMAN	Protein Jade-1	No	Yes	No	No	No	No	No
JAK2	O60674 JAK2 HUMAN	Tyrosine-protein kinase JAK2	Yes	No	No	No	No	No	No
JCHAIN	P01591 IGJ HUMAN	Immunoglobulin J chain	No	No	No	Yes	Yes	No	No
JMY	O8N9B5 JMY HUMAN	Junction-mediating and -regulatory protein	No	Yes	No	No	Yes	Yes	Yes
JUP	P14923 PLAK HUMAN	Junction plakoglobin	No	Yes	No	No	No	No	No
KCNK3	O1/6/9 KCNK3 HUMAN	Potassium channel subfamily Kmember 3	No	Ves	No	No	No	No	No
KDR	P35968 VGER2 HUMAN	Vascular endothelial growth factor recentor 2	Ves	No	No	No	No	No	No
		Vascular chudulenar grown lactor receptor z	Yee	No	No	No	No	No	No
KIFIA	Q12756 KIF1A_HUMAN	Kinesin-like protein KiF IA	Yes	NO	NO	NO	NO	INO	NO
KIF2C	Q99661 KIF2C_HUMAN	Kinesin-like protein KiF2C	NO	Yes	NO	NO	Yes	Yes	NO
KIRREL1	Q96J84 KIRR1_HUMAN	Kin of IRRE-like protein 1	No	Yes	No	No	No	No	No
KIT	P10721 KIT_HUMAN	Mast/stem cell growth factor receptor Kit	Yes	No	No	No	Yes	Yes	Yes
KLB	Q86Z14 KLOTB_HUMAN	Beta-klotho	Yes	No	No	No	Yes	Yes	No
KLHDC2	Q9Y2U9 KLDC2 HUMAN	Kelch domain-containing protein 2	No	Yes	No	No	No	No	No
KLKB1	P03952 KLKB1 HUMAN	Plasma kallikrein	No	No	No	Yes	No	No	No
KNG1	P01042 KNG1 HUMAN	Kininoa en-1	No	Yes	No	No	No	No	No
KPNA2	P52292 IMA1 HUMAN	Importin subunit alpha-1	No	Yes	No	No	Yes	Yes	No
KRAS	P01116 RASK HUMAN	GTPase Kras	Yes	Yes	No	Yes	Yes	Yes	No
KPT1		Keratin type II cytoskeletal 1	Vec	No	No	No	No	No	No
		Korotin, type II cytoskeletal I	No	Vee	No	No	No	No	No
		Keratin, type ii Cytoskeletal 5	NU	Vee	NO	NU	NO	NU	NO
	P06/29 K2C/_HUMAN	Keratin, type ii Cytoskeletai 7	res	res	INO No	res	NO No	INO N.	INO
KR19	P35527 KIC9_HUMAN	Keratin, type i cytoskeletal 9	Yes	NO	NO	NO	NO	NO	NO
KR I 14	P02533 K1C14_HUMAN	Keratin, type I cytoskeletal 14	NO	Yes	No	NO	NO	NO	No
KRT17	Q04695 K1C17_HUMAN	Keratin, type I cytoskeletal 17	No	Yes	No	No	Yes	Yes	Yes
KRT18	P05783 K1C18_HUMAN	Keratin, type I cytoskeletal 18	No	Yes	No	Yes	No	No	No
KRT19	P08727 K1C19_HUMAN	Keratin, type I cytoskeletal 19	Yes	Yes	No	Yes	No	No	No
KRT20	P35900 K1C20 HUMAN	Keratin, type I cytoskeletal 20	No	No	Yes	Yes	Yes	Yes	No
LAMA2	P24043 LAMA2 HUMAN	Laminin subunit alpha-2	No	No	No	Yes	No	No	No
I AMA4	Q16363 LAMA4 HUMAN	Laminin subunit alpha-4	No	No	No	Yes	No	No	No
LAMB3	Q13751 LAMB3 HUMAN	Laminin subunit beta-3	No	Yes	No	No	No	No	No
LAMC2	013753 LAMC2 HUMAN	Laminin subunit damma-2	No	Yes	Yes	Yes	No	No	No
LAMP1	P11270 LAMP1 HUMAN	Lisosome-associated membrane discontatein 1	No	Ves	No	No	Vec	Ves	Ves
		LIM domain binding protein 3	Vec	No	No	No	Voc	Voc	No
		Livi donan-briding protein 5	Ne	Vee	No	No	Ne	Ne	No
LDHA	P00338 LDHA_HUMAN	L-lactate denydrogenase A chain	NO	Yes	NO	INO	NO	NO	NO
LDHB	P0/195 LDHB_HUMAN	L-lactate denydrogenase B chain	NO	No	No	Yes	No	NO	No
LDLR	P01130 LDLR_HUMAN	Low-density lipoprotein receptor	NO	Yes	No	No	No	NO	No
LEMD1	Q68G75 LEMD1_HUMAN	LEM domain-containing protein 1	No	Yes	No	No	No	No	No
LEP	P41159 LEP_HUMAN	Leptin	Yes	No	No	No	Yes	Yes	No
LEPR	P48357 LEPR HUMAN	Leptin receptor	Yes	No	No	No	No	No	No
LGALS3	P17931 LEG3 HUMAN	Galectin-3	No	No	Yes	No	No	No	No
LGALS4	P56470 LEG4 HUMAN	Galectin-4	No	Yes	No	No	Yes	Yes	Yes
LIFR	P42702 LIFR HUMAN	Leukemia inhibitory factor receptor	No	No	No	Yes	No	No	No
IMNA	P02545 IMNA HUMAN	Prelamin-A/C	Yes	No	No	No	No	No	No
LRG1	P02750 A2GL HUMAN	Leucine-rich alpha-2-alycoprotein	Ves	No	No	Ves	No	No	No
		Leucine rich reports and immunoglabulin like demoine metein 4	No	Vee	No	No	No	No	No
	QSULAT LKIGI_HUMAN	Leucine-rich repeats and minunogropulin-like domains protein 1	INU	res	INO No	INU	NO	INU No	NO
		Latent-u ansiorming growin lactor beta-binding protein 2	res	INU	INO No	res	NO	INU No	NO
	PUZ/08 IKFL_HUMAN	Lactotransterrin	INO No	res	NO	INO No	NO	NO	NO
LYZ	POTOZO LYSC_HUMAN	Lysozyme C	NO	Yes	NO	NO	NO	NO	NO

MACROD2	A1Z1Q3 MACD2_HUMAN	ADP-ribose glycohydrolase MACROD2	Yes	No	No	No	Yes	Yes	No
MAG	P20916 MAG_HUMAN	Myelin-associated glycoprotein	Yes	No	No	No	Yes	Yes	No
MALT1	Q9UDY8 MALT1_HUMAN	Mucosa-associated lymphoid tissue lymphoma translocation protein 1	Yes	No	No	No	Yes	Yes	No
MAML2	Q8IZL2 MAML2 HUMAN	Mastermind-like protein 2	No	Yes	No	No	No	No	No
MAN1A2	O60476 MA1A2_HUMAN	Mannosyl-oligosaccharide 1,2-alpha-mannosidase IB	No	Yes	No	No	No	No	No
MAP2K1	Q02750 MP2K1_HUMAN	Dual specificity mitogen-activated protein kinase kinase 1	Yes	No	Yes	No	No	No	No
MAP2K2	P36507 MP2K2_HUMAN	Dual specificity mitogen-activated protein kinase kinase 2	Yes	No	No	No	No	No	No
MAP4K4	O95819 M4K4_HUMAN	Mitogen-activated protein kinase kinase kinase kinase 4	No	No	Yes	Yes	Yes	Yes	No
MAPK1	P28482 MK01 HUMAN	Mitogen-activated protein kinase 1	No	No	Yes	No	Yes	Yes	Yes
MAPK8IP1	Q9UQF2 JIP1 HUMAN	C-Jun-amino-terminal kinase-interacting protein 1	No	Yes	No	No	No	No	No
MAST2	Q6P0Q8 MAST2 HUMAN	Microtubule-associated serine/threonine-protein kinase 2	No	Yes	No	No	No	No	No
MBL2	P11226 MBL2 HUMAN	Mannose-binding protein C	No	No	No	Yes	No	No	No
MBOAT2	Q6ZWT7 MBOA2 HUMAN	Lysophospholipid acyltransferase 2	No	Yes	No	No	No	No	No
MCCC1	Q96RQ3 MCCA HUMAN	Methylcrotonovl-CoA carboxylase subunit alpha, mitochondrial	No	Yes	No	No	No	No	No
MCM6	Q14566 MCM6 HUMAN	DNA replication licensing factor MCM6	No	Yes	No	No	No	No	No
MDK	P21741 MK HUMAN	Midkine	No	No	Yes	No	No	No	No
MECP2	P51608 MECP2 HUMAN	Methy-CpG-binding protein 2	No	Yes	No	No	Yes	Yes	No
MELK	Q14680 MELK HUMAN	Maternal embryonic leucine zipper kinase	No	Yes	No	No	No	No	No
MET	P08581 MET HUMAN	Hepatocyte growth factor receptor	Yes	Yes	No	No	No	No	No
MGAT4A	Q9UM21 MGT4A HUMAN	Alpha-1.3-mannosyl-glyc oprotein 4-beta-N-acetylglycosaminyltransferase A	No	Yes	No	No	Yes	Yes	No
MGLL	Q99685 MGLL HUMAN	Monoglyceride lipase	No	Yes	No	No	No	No	No
MIA	Q16674 MIA HUMAN	Melanoma-derived growth regulatory protein	No	Yes	No	No	Yes	Yes	Yes
MICAL2	O94851 MICA2 HUMAN	IF-actini-monooxygenase MICAL2	No	Yes	No	No	No	No	No
MKI67	P46013 KI67 HUMAN	Proliferation marker protein Ki-67	Yes	Yes	Yes	No	Yes	Yes	No
MIH1	P40692 MLH1 HUMAN	DNA mismatch, repair protein MIh1	No	Yes	No	No	Yes	Yes	Yes
MUT1	003111 ENI HUMAN	Protein ENI	No	Yes	No	No	No	No	No
MILT3	P42568 AF9 HUMAN	Protein AE-9	No	Yes	No	No	No	No	No
MIPH	09BV36 MELPH HUMAN	Melanophilin	No	No	No	Yes	No	No	No
MIXCD	O95822 DCMC HUMAN	Malonyl-CoA decarbowlase mitochondrial	No	Vec	No	No	No	No	No
MMP1	PO3056 MMP1 HUMAN		Ves	No	No	No	No	No	No
MMP2	P08253 MMP2 HUMAN	72 kDa type IV collagenase	Ves	No	No	Ves	No	No	No
MMP7	P00237 MMP7 HUMAN	Matrilysin	Ves	No	Ves	No	Ves	Vec	Ves
MMP9	P14780 MMP9 HI MAN	Matrix metallonroteinase-9	Yes	No	No	Yes	Yes	Yes	Yes
MMD11	P24347 MMP11 HI MAN	Stromolycin 3	No	Voc	No	No	Voc	Voc	No
MMD1/	P50281 MMP14 HIMAN	Matrix metalloproteinase 14	No	No	No	Voc	No	No	No
MDI		Mannese 6 phosphate isomerase	No	Voc	No	No	No	No	No
MPO		Mueloporoxidase	Vec	No	No	No	Voc	Vec	Vec
MDD1		55 kDa eruthrocute membrane protein	No	Voc	No	No	No	No	No
		MACHIC REF subferrily member 6	No	Vee	No	No	No	No	No
IVIPP0	Q9NZW5 MPP6_HUMAN	MAGUK p55 subfamily member 6	NO	Yes	NO No	NO	NO	NO	NO
		Magor pos sublamily member 7	NO	Yes	NO No	NO	NO	NO	NO
	Q909V6 MIRTFA_HUMAN	Myocardin-related transcription factor A	NO	Yes	NO No	NO	NO	INO	NO
MSAN I D3	Q96H12 MSD3_HUMAN	Nyd/SANT-like DivA-binding domain-containing protein 3	NO	Yes	NO	NO	Yes	Yes	NO
MSHZ	P43246 MSH2_HUMAN	DNA mismatch repair protein Mishz	NO	Yes	NO	NO	NO	NO	NO
MSH6	P52/01 MSH6_HUMAN	DNA mismatch repair protein Msh6	NO	Yes	No	NO	NO	No	No
MSLN	Q13421 MSLN_HUMAN	Mesothelin	Yes	Yes	No	Yes	No	No	No
MSN	P26038 MOES_HUMAN	Moesin	No	No	No	Yes	No	No	No
MTDH	Q86UE4 LYRIC_HUMAN	Protein LYRIC	No	Yes	No	No	No	No	No
MIHER	P42898 MIHR_HUMAN	Methylenetetrahydrofolate reductase	No	Yes	No	No	No	No	No
MUC1	P15941 MUC1_HUMAN	Mucin-1	Yes	Yes	No	No	No	No	No
MUC16	Q8WXI7 MUC16_HUMAN	Mucin-16	Yes	No	No	Yes	No	No	No
MXRA5	Q9NR99 MXRA5_HUMAN	Matrix-remodeling-associated protein 5	Yes	No	No	Yes	Yes	Yes	Yes
MYBPC3	Q14896 MYPC3_HUMAN	Myosin-binding protein C, cardiac-type	No	Yes	No	No	Yes	Yes	No
MYH6	P13533 MYH6_HUMAN	Myosin-6	No	Yes	No	No	Yes	Yes	No

MYH9	P35579 MYH9_HUMAN	Myosin-9	No	No	No	Yes	No	No	No
MYH11	P35749 MYH11_HUMAN	Myosin-11	No	Yes	No	No	Yes	Yes	Yes
MYL3	P08590 MYL3_HUMAN	Myosin light chain 3	No	Yes	No	No	No	No	No
MYLK	Q15746 MYLK_HUMAN	Myosin light chain kinase, smooth muscle	No	Yes	No	No	Yes	Yes	Yes
MYO1E	Q12965 MYO1E_HUMAN	Unconventional myosin-le	No	Yes	No	No	No	No	No
MYOF	Q9NZM1 MYOF_HUMAN	Myoferlin	No	Yes	No	Yes	Yes	Yes	No
MYRIP	Q8NFW9 MYRIP_HUMAN	Rab effector MyRIP	No	Yes	No	No	No	No	No
NAGLU	P54802 ANAG_HUMAN	Alpha-N-acetylglucosaminidase	No	Yes	No	No	No	No	No
NAT1	P18440 ARY1_HUMAN	Arylamine N-acetyltransferase 1	No	Yes	No	No	No	No	No
NCF4	Q15080 NCF4_HUMAN	Neutrophil cytosol factor 4	No	Yes	No	No	No	No	No
NDC80	O14777 NDC80_HUMAN	Kinetochore protein NDC80 homolog	No	Yes	No	No	No	No	No
NEFH	P12036 NFH_HUMAN	Neurofilament heavy polypeptide	No	Yes	No	No	Yes	Yes	Yes
NEFL	P07196 NFL_HUMAN	Neurofilament light polypeptide	No	Yes	No	No	No	No	No
NEXN	Q0ZGT2 NEXN_HUMAN	Nexilin	No	Yes	No	No	Yes	Yes	Yes
NF1	P21359 NF1_HUMAN	Neurofibromin	Yes	No	No	No	No	No	No
NGF	P01138 NGF_HUMAN	Beta-nerve growth factor	No	Yes	No	No	No	No	No
NIBAN1	Q9BZQ8 NIBA1_HUMAN	Protein Niban 1	No	Yes	No	No	No	No	No
NMU	P48645 NMU_HUMAN	Neuromedin-U	Yes	No	No	No	No	No	No
NOP53	Q9NZM5 NOP53_HUMAN	Ribosome biogenesis protein NOP53	No	Yes	No	No	No	No	No
NOP56	O00567 NOP56_HUMAN	Nucleolar protein 56	No	Yes	No	No	No	No	No
NPC1	O15118 NPC1_HUMAN	NPC intracellular cholesterol transporter 1	No	Yes	No	No	No	No	No
NPC2	P61916 NPC2_HUMAN	NPC intracellular cholesterol transporter 2	Yes	No	No	No	Yes	Yes	Yes
NPM1	P06748 NPM_HUMAN	Nucleophosmin	Yes	No	No	No	Yes	Yes	Yes
NR1D2	Q14995 NR1D2_HUMAN	Nuclear receptor subfamily 1 group D member 2	No	Yes	No	No	No	No	No
NRAS	P01111 RASN_HUMAN	GTPase Nras	Yes	Yes	No	No	Yes	Yes	No
NRP1	O14786 NRP1_HUMAN	Neuropilin-1	No	No	No	Yes	No	No	No
NRP2	O60462 NRP2_HUMAN	Neuropilin-2	No	Yes	No	No	No	No	No
NT5DC1	Q5TFE4 NT5D1_HUMAN	5'-nucleotidase domain-containing protein 1	No	Yes	No	No	No	No	No
NUCB2	P80303 NUCB2_HUMAN	Nucleobindin-2	No	Yes	No	No	Yes	Yes	Yes
NUF2	Q9BZD4 NUF2_HUMAN	Kinetochore protein Nuf2	No	Yes	No	No	No	No	No
NUP210	Q8TEM1 PO210_HUMAN	Nuclear pore membrane glycoprotein 210	No	Yes	No	No	No	No	No
NUP214	P35658 NU214_HUMAN	Nuclear pore complex protein Nup214	No	Yes	No	No	No	No	No
OLFM4	Q6UX06 OLFM4_HUMAN	Olfactomedin-4	No	Yes	No	No	Yes	Yes	Yes
ORC6	Q9Y5N6 ORC6_HUMAN	Origin recognition complex subunit 6	No	Yes	No	No	No	No	No
ORM1	P02763 A1AG1_HUMAN	Alpha-1-acid glycoprotein 1	Yes	No	No	No	No	No	No
OSBPL10	Q9BXB5 OSB10_HUMAN	Oxysterol-binding protein-related protein 10	Yes	Yes	No	No	No	No	No
OXCIT	P55809 SCOT1_HUMAN	Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial	No	Yes	NO	No	No	NO	No
P4HB	PU/23/ PDIA1_HUMAN	Protein disulfide-isomerase	No	No	No	Yes	NO	NO	No
PABPC4	Q13310 PABP4_HUMAN	Polyadenylate-binding protein 4	No	No	No	Yes	No	No	No
PACSIN2	Q9UNF0 PACN2_HUMAN	Protein kinase C and casein kinase substrate in neurons protein 2	No	Yes	No	No	Yes	Yes	Yes
PARD3	Q81EWU PARD3_HUMAN	Partitioning detective 3 homolog	No	Yes	NO	No	NO	NO	No
PARD6A	Q9NPB6 PAR6A_HUMAN	Partitioning detective 6 nomolog alpha	No	Yes	NO	No	Yes	Yes	No
PARP1	PU9874 PARP1_HUMAN	Poly [ADP-ribose] polymerase	NO	Yes	NO	NO	Yes	Yes	Yes
PARP4	Q9UKK3 PARP4_HUMAN	Protein mono-ADP-ribosyltransferase PARP4	No	Yes	No	No	No	No	No
PAWR	Q96IZ0 PAWR_HUMAN	PRKC apoptosis W11 regulator protein	No	No	NO	Yes	No	NO	No
PCBP2	Q15366 PCBP2_HUMAN	Poly(rC)-binding protein 2	No	Yes	NO	No	NO	NO	No
PCDH1	Q08174 PCDH1_HUMAN	Protocadherin-1	No	Yes	NO	No	NO	NO	No
PDCD4	Q53EL6 PDCD4_HUMAN	Programmed cell death protein 4	Yes	No	No	Yes	Yes	Yes	Yes
PDE4D	Q08499 PDE4D_HUMAN	cAMP-specific 3',5'-cyclic phosphodiesterase 4D	No	Yes	No	No	Yes	Yes	Yes
PDE4DIP	Q5VU43 MYOME_HUMAN	Myomegalin	No	No	No	Yes	No	No	No
PDGFB	PUTI2/ PDGFB_HUMAN	Platelet-derived growth factor subunit B	Yes	NO	NO	NO	NO	NO	NO
PDGFKA	PI6234 PGFRA_HUMAN	Platelet-derived growth factor receptor alpha	Yes	NO	NO	NO	NO	NO	NO
PDGFRB	PU9019 PGERB_HUMAN	Platelet-derived growth factor receptor beta	NO	Yes	NO	NO	NO	NO	NO

PDIA4	P13667	PDIA4 HUMAN	Protein disulfide-isomerase A4	No	Yes	No	No	Yes	Yes	Yes
PDX1	P52945	PDX1 HUMAN	Pancreas/duodenum homeobox protein 1	No	No	Yes	No	Yes	Yes	No
PER1	O15534	PER1 HUMAN	Period circadian protein homolog 1	Yes	No	No	No	Yes	Yes	No
PEKP	Q01813	PEKAP HUMAN	ATP-dependent 6-phosphofructokinase platelet type	No	Yes	No	No	No	No	No
PFN1	P07737	PROF1 HUMAN	Profilin-1	No	Yes	No	No	No	No	No
PGC	P20142	PEPC HUMAN	Gastricsin	Yes	No	No	No	Yes	Yes	Yes
PGD	P52209	6PGD HUMAN	6-phosphogluconate debydrogenase decarbox/lating	No	Yes	No	No	No	No	No
PGM3	095394	AGM1 HUMAN	Phosphoacetyla lucosa mine mutase	No	Yes	No	No	No	No	No
PHODH	0/3175		D 3 phosphoaluperate, debudrogenase	No	Vec	No	No	No	No	No
	043173		D-o-phosphogrycerate denydrogenase	No	Yes	No	No	No	No	No
	014032		Phylanoyi-CoA uloxygenase, peroxisonial Decembertal ling all the accomply protoin	No	Yes	No	No	No	No	No
	002500		Phospitaliuginosito-binding claunin assentity protein	No	Yes	No	No	No	No	No
PIEZOI	Q92000		Plezo-type mechanosensitive for channel component i	No	Yes	No	No	No	No	No
FIGR	F01655			INU	res	INU	NO	NU	NU	INU
PIK3CB	P42338	PK3CB_HUMAN	Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform	Yes	Yes	NO	No	No	No	No
PKHD1	P08F94	PKHD1_HUMAN	Fibrocystin	No	Yes	NO	NO	No	No	NO
PKM	P14618	KPYM_HUMAN	Pyruvate kinase PKM	No	Yes	NO	Yes	No	No	No
PKP2	Q99959	PKP2_HUMAN	Plakophilin-2	No	Yes	NO	No	No	No	No
PLA2R1	Q13018	PLA2R_HUMAN	Secretory phospholipase A2 receptor	No	Yes	No	No	No	No	No
PLAAT5	Q96KN8	PLAT5_HUMAN	Phospholipase A and acyltransferase 5	No	Yes	No	No	No	No	No
PLAT	P00750	TPA_HUMAN	Tissue-type plasminogen activator	No	Yes	No	No	No	No	No
PLEC	Q15149	PLEC_HUMAN	Plectin	Yes	No	No	Yes	No	No	No
PLEK2	Q9NYT0	PLEK2_HUMAN	Pleckstrin-2	No	Yes	No	No	No	No	No
PLEKHG2	Q9H7P9	PKHG2_HUMAN	Pleckstrin homology domain-containing family G member 2	No	Yes	No	No	No	No	No
PLEKHM1	Q9Y4G2	PKHM1_HUMAN	Pleckstrin homology domain-containing family M member 1	No	Yes	No	No	No	No	No
PLG	P00747	PLMN_HUMAN	Plasminogen	No	Yes	No	No	Yes	Yes	Yes
PLS1	Q14651	PLSI_HUMAN	Plastin-1	No	Yes	No	No	No	No	No
PLS3	P13797	PLST_HUMAN	Plastin-3	No	Yes	No	Yes	No	No	No
PLTP	P55058	PLTP_HUMAN	Phospholipid transfer protein	Yes	No	No	No	No	No	No
PMM2	O15305	PMM2 HUMAN	Phosphomanno mutase 2	No	Yes	No	No	No	No	No
PNLIP	P16233	LIPP HUMAN	Pancreatic triacylglycerol lipase	No	Yes	No	No	Yes	Yes	Yes
PNLIPRP1	P54315	LIPR1 HUMAN	Inactive pancreatic lipase-related protein 1	No	No	No	Yes	No	No	No
PNLIPRP2	P54317	LIPR2 HUMAN	Pancreatic lipase-related protein 2	No	Yes	No	No	Yes	Yes	Yes
POLR2H	P52434	RPAB3 HUMAN	DNA-directed RNA polymerases I, II, and III subunit RPABC3	No	Yes	No	No	No	No	No
PON1	P27169	PON1 HUMAN	Serum paraoxonase/arvlesterase 1	No	Yes	No	No	No	No	No
PPBP	P02775	CXCL7 HUMAN	Platelet basic protein	Yes	No	No	No	Yes	Yes	Yes
PPIB	P23284	PPIB HUMAN	Peptidyl-prolyl cis-trans isomerase B	No	Yes	No	No	No	No	No
PPOX	P50336	PPOX HUMAN	Protoporphyringgen oxidase	No	Yes	No	No	Yes	Yes	No
PPP2R1B	P30154	2AAB HUMAN	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform	No	Yes	No	No	No	No	No
PPT1	P50897	PPT1 HUMAN	Palmitovl-protein thioesterase 1	No	Yes	No	No	No	No	No
PRC1	043663	PRC1 HUMAN	Protein regulator of cytokinesis 1	No	Yes	No	No	No	No	No
PRDX1	006830	PRDX1 HUMAN	Peroviredovin-1	No	Yes	No	No	No	No	No
PRDY2	P32110	PRDY2 HUMAN	Perovinedovin-2	No	No	No	Ves	No	No	No
PRI	P01236		Prolactin	Ves	No	No	No	No	No	No
	042272		Dralina dahudraganaga 1 mitaahandrial	No	Vee	No	No	Vee	Vee	No
	D07225		Vitemin K dependent protein S	Vec	No	No	NU Voo	No	No	No
DEMDO	P0/220		Protocoomo aubunit hoto tino 9	No	NU	No	No	No	No	No
PONDO	F20002		Proteasone suburit beta type-o	No	Yes	NO	No	No	No	No
PSIVIDO	Q 10000	PSIVIDO_HUMAN	205 proteasome non-Arrase regulatory subunit o	NO	res	NO	NO	NO	NO	NO
PIDPI	P20099		Polypyrinidine tract-binding protein i	NO	res	INO	NO	INO	INO	INO
PIGS2	P35354	PGH2_HUMAN	Prostaglandin G/H synthase 2	No	Yes	No	No	No	No	No
PIK7	Q13308	PIK7_HUMAN	Inactive tyrosine-protein kinase 7	Yes	No	No	Yes	No	No	No
PIMA	P06454	PIMA_HUMAN	Prothymosin alpha	No	Yes	No	No	Yes	Yes	No
PTPN11	Q06124	PIN11_HUMAN	ryrosine-protein phosphatase non-receptor type 11	Yes	No	No	No	Yes	Yes	Yes
PIPRE	P23469	PIPRE_HUMAN	Receptor-type tyrosine-protein phosphatase epsilon	Yes	No	No	No	No	No	No

PTPRJ	Q12913 PTPRJ_HUMAN	Receptor-type tyrosine-protein phosphatase eta	No	No	No	Yes	No	No	No
PTPRN2	Q92932 PTPR2_HUMAN	Receptor-type tyrosine-protein phosphatase N2	No	Yes	No	No	No	No	No
QSOX2	Q6ZRP7 QSOX2_HUMAN	Sulfhydryl oxidase 2	No	Yes	No	No	No	No	No
RACK1	P63244 RACK1 HUMAN	Receptor of activated protein C kinase 1	No	Yes	No	No	No	No	No
RAD50	Q92878 RAD50 HUMAN	DNA repair protein RAD50	Yes	No	No	No	No	No	No
RAF1	P04049 RAF1 HUMAN	RAF proto-oncogene serine/threonine-protein kinase	Yes	No	No	No	No	No	No
RANBP17	Q9H2T7 RBP17 HUMAN	Ran-binding protein 17	Yes	No	No	No	Yes	Yes	No
RAP1GAP	P47736 RPGP1 HUMAN	Rap1 GTPase-activating protein 1	No	Yes	No	No	Yes	Yes	No
RB1	P06400 RB HUMAN	Retinoblastoma-associated protein	Yes	No	No	No	Yes	Yes	No
RBM15	Q96T37 RBM15 HUMAN	RNA-binding protein 15	No	Yes	No	No	No	No	No
RBP4	P02753 RET4 HUMAN	Retinol-binding protein 4	No	Yes	No	No	No	No	No
RECQL5	O94762 RECQ5 HUMAN	ATP-dependent DNA helicase Q5	No	Yes	No	No	No	No	No
REG1A	P05451 REG1A HUMAN	Lithostathine-1-alpha	No	Yes	No	No	Yes	Yes	Yes
RELA	Q04206 TE65 HUMAN	Transcription factor p65	No	No	Yes	No	Yes	Yes	Yes
REN	P00797 RENI HUMAN	Renin	No	Yes	No	No	No	No	No
RET	P07949 RET HUMAN	Proto-oncogene tyrosine-protein kinase receptor Ret	Yes	No	No	No	No	No	No
RFC1	P35251 RECT HUMAN	Replication factor C subunit 1	No	Yes	No	No	No	No	No
RFC4	P35249 RFC4 HUMAN	Replication factor C subunit 4	No	Yes	No	No	No	No	No
RGN	O15493 RGN HUMAN	Regulation	No	Yes	No	No	No	No	No
RNF144A	P50876 R144A HUMAN	E3 ubiquitin-protein ligase RNE144A	No	Yes	No	No	No	No	No
TROVE2	P10155 RO60 HUMAN	60 kDa SS-A/Ro ribonucleoprotein	No	Yes	No	No	Yes	Yes	Yes
RPI 5	P/6777 RI 5 HUMAN	60S ribosomal protein 15	No	Vee	No	No	Ves	Ves	No
RPI 6	002878 RI6 HUMAN	60S ribosomal protein L6	No	Yes	No	No	No	No	No
		60S ribosomal protein 17a	No	Vec	No	No	No	No	No
PDI 10	P02424 INL/A_HUMAN	60S ribosomal protein L10	No	Voc	No	No	Vec	Voc	Vec
		60S ribosomal protein L10	No	Vee	No	No	No	No	No
DDI 12	P30050 PL12 HUMAN	60S ribosomal protein L12	No	Voc	No	No	No	No	No
DDI 36		60S ribosomal protein L12	No	Voc	No	No	Vec	Voc	Vec
RFL30		600 esidia sitesemel esetein D0	No	Vee	No	No	Ne	Ne	Ne
	P05366 RLAU_HUMAN	Beliebid dinheenheelin eesenberide metein aluneeliteeneferees subunit 1	NO	Yes	NO No	NO	INO	NO	NO
		Dolichy-diphosphooligosaccharideprotein glycosyltransierase subunit 1	NO	res	NO No	NO	Yes	Yes	res
		200 ribosomal protain S2	No	No	No	NU Voo	No	No	No
		405 hbosomal protein S4 Viceform	No	NU Voo	No	No	No	No	No
RF34A		403 hbosoniai protein 34, X isoloini	NO	Tes	NO	NU	INU Xaa	NU Xee	NU
RPS5	P46/82 RS5_HUMAN	405 ribosomal protein 55	NO	Yes	NO	NO	Yes	Yes	Yes
RP3/	P02001 RS7_HUMAN	405 ribosomal protein 57	NO	res	NO No	NO	NO	NO	NO
RP313	POZZII ROIS_HUMAN	405 ribosomal protein 513	NO	res	NO No	NO	NO	NO	NO
RPS IDA	POZZ44 RSIDA_HUMAN	40S ribosomal protein S15a	NO	res	NO No	NO	NO	NO	NO
RF310	PO2209 RS18_HUMAN	403 Tibosofiai protein 318	NO	Tes	NO	NU	NU	NU	NU
RPS23	P62266 RS23_HUMAN	40S ribosomal protein S23	No	Yes	No	NO	NO	NO	NO
RPSA	P08865 RSSA_HUMAN	40S ribosomal protein SA	Yes	No	No	NO	No	NO	NO
RRBP1	Q9P2E9 RRBP1_HUMAN	Ribosome-binding protein 1	No	No	No	Yes	No	NO	No
RRM1	P23921 RIR1_HUMAN	Ribonucleoside-diphosphate reductase large subunit	No	No	Yes	No	No	NO	NO
RRM2	P31350 RIR2_HUMAN	Ribonucleoside-diphosphate reductase subunit M2	No	Yes	No	No	NO	NO	NO
RUNX1	Q01196 RUNX1_HUMAN	Runt-related transcription factor 1	No	Yes	No	No	Yes	Yes	Yes
S100A2	P29034 S10A2_HUMAN	Protein S100-A2	No	Yes	Yes	No	Yes	Yes	Yes
S100A4	P26447 S10A4_HUMAN	Protein S100-A4	Yes	No	Yes	No	Yes	Yes	Yes
S100A6	P06703 S10A6_HUMAN	Protein S100-A6	Yes	No	Yes	No	Yes	Yes	Yes
S100A9	P06702 S10A9_HUMAN	Protein S100-A9	No	Yes	No	No	No	No	No
SCG5	P05408 7B2_HUMAN	Neuroendocrine protein 7B2	No	Yes	No	No	No	No	No
SCGN	O76038 SEGN_HUMAN	Secretagogin	No	Yes	No	No	Yes	Yes	No
SDF4	Q9BRK5 CAB45_HUMAN	45 kDa calcium-binding protein	No	No	No	Yes	No	No	No
SDK1	Q7Z5N4 SDK1_HUMAN	Protein sidekick-1	No	Yes	No	No	No	No	No
SEC63	Q9UGP8 SEC63_HUMAN	Translocation protein SEC63 homolog	No	Yes	No	No	No	No	No

SEL1L	Q9UBV2 SE1L1_HUMAN	Protein sel-1 homolog 1	No	No	No	Yes	Yes	Yes	No
SELENOP	P49908 SEPP1_HUMAN	Selenoprotein P	No	Yes	No	No	No	No	No
SEMA6D	Q8NFY4 SEM6D_HUMAN	Semaphorin-6D	No	Yes	No	No	No	No	No
SEPTIN9	Q9UHD8 SEPT9 HUMAN	Septin-9 (MLL septin-like fusion protein MSF-A)	No	Yes	No	No	No	No	No
SERPINA1	P01009 A1AT HUMAN	Alpha-1-antitrypsin	No	Yes	No	No	No	No	No
SERPINA4	P29622 KAIN HUMAN	Kallistatin	No	Yes	No	No	No	No	No
SERPINA5	P05154 IPSP HUMAN	Plasma serine protease inhibitor	No	Yes	No	No	No	No	No
SERPINA6	P08185 CBG HUMAN	Corticosteroid-binding alobulin	Yes	No	No	No	Yes	Yes	No
SERPINB5	P36952 SPB5 HUMAN	Servin B5	No	Yes	Yes	No	Yes	Yes	Yes
SERPINC1	P01008 ANT3 HUMAN	Antithrombin-III	No	No	No	Yes	No	No	No
SERPIND1	P05546 HEP2 HUMAN	Henarin cofactor 2	No	Yes	No	No	No	No	No
SERPINE1	P05121 PAI1 HIMAN	Plasminogen activator inhibitor 1	Yes	No	No	No	No	No	No
SERPINE2	P07093 GDN HUMAN	Glia-derived nexin	No	No	No	Yes	No	No	No
SEDDINE1	P36055 PEDE HUMAN	Pigment epithelium derived factor	No	No	Voc	No	No	No	No
SERFINE 1	PO9607 A2AD HUMAN	Alpha 2 aptipleamin	No	NO	No	No	No	No	No
SERFINEZ		Alpid-2-dillipidsitiiti Splicing factor 2P. aubupit 1	Vee	No	No	No	Vee	Vee	NU Voo
SEN	D21047 14226 HUMAN	14.2.2 protoin aigma	Vee	NO	NO	No	No	No	No
SEDD1	09N/474 SEDD1 HUMAN	14-3-3 protein Signa Secreted frizzled related protein 1	No	Ves	No	No	No	No	No
OFTER		Secreted Inizzieu-related protein i	NU	Tes No.	NU No	NU	NU	NU	NU
SETPB	PU7988 PSPB_HUMAN	Pulmonary surfactant-associated protein B	NO	NO	NO	Yes	NO	NO	NO
SGPP2	Q8IWX5 SGPP2_HUMAN	Sphingosine-1-phosphate phosphatase 2	No	Yes	No	No	No	No	No
SGSH	P51688 SPHM_HUMAN	N-sulphoglucosamine sulphonydrolase	No	Yes	No	No	No	No	No
SH3BP4	Q9P0V3 SH3B4_HUMAN	SH3 domain-binding protein 4	No	Yes	No	No	No	No	No
SHISA5	Q8N114 SHSA5_HUMAN	Protein shisa-5	NO	Yes	No	No	No	No	No
SHMT2	P34897 GLYM_HUMAN	Serine hydroxymethyltransferase, mitochondrial	No	No	No	Yes	No	No	No
SIK2	Q9H0K1 SIK2_HUMAN	Serine/threonine-protein kinase SIK2	No	Yes	No	No	No	No	No
SKP2	Q13309 SKP2_HUMAN	S-phase kinase-associated protein 2	No	No	Yes	No	No	No	No
SLC1A4	P43007 SATT_HUMAN	Neutral amino acid transporter A	No	Yes	No	No	No	No	No
SLC2A1	P11166 GTR1_HUMAN	Solute carrier family 2, facilitated glucose transporter member 1	No	Yes	Yes	No	Yes	Yes	Yes
SLC3A1	Q07837 SLC31_HUMAN	Neutral and basic amino acid transport protein rBAT	No	Yes	No	No	No	No	No
SLC4A1	P02730 B3AT_HUMAN	Band 3 anion transport protein	No	Yes	No	No	Yes	Yes	Yes
SLC25A20	O43772 MCAT_HUMAN	Mitochondrial carnitine/acylcarnitine carrier protein	No	Yes	No	No	Yes	Yes	No
SLC25A4	P12235 ADT1_HUMAN	ADP/ATP translocase 1	No	Yes	No	Yes	No	No	No
SLC28A3	Q9HAS3 S28A3_HUMAN	Solute carrier family 28 member 3	No	No	Yes	No	No	No	No
SLC29A1	Q99808 S29A1 HUMAN	Equilibrative nucleoside transporter 1	Yes	No	Yes	No	No	No	No
SLC30A2	Q9BRI3 ZNT2 HUMAN	Zinc transporter 2	No	Yes	No	No	No	No	No
SLC38A1	Q9H2H9 S38A1 HUMAN	Sodium-coupled neutral amino acid transporter 1	No	Yes	No	No	No	No	No
SLC39A14	Q15043 S39AE HUMAN	Zinc transporter ZIP14	No	Yes	No	No	Yes	Yes	No
SLC43A1	O75387 LAT3 HUMAN	Large neutral amino acids transporter small subunit 3	No	Yes	No	No	No	No	No
SLK	Q9H2G2 SLK HUMAN	STE20-like serine/threonine-protein kinase	Yes	Yes	No	No	No	No	No
SMAD4	Q13485 SMAD4 HUMAN	Mothers against decapentaplegic homolog 4	No	No	Yes	No	Yes	Yes	Yes
SMPD1	P17405 ASM HUMAN	Sphingonvelin phosphodiesterase	No	Yes	No	No	No	No	No
SMPD4	09NXF4 NSMA3 HUMAN	Sphing onvelin phosphodiesterase 4	No	Yes	No	No	No	No	No
SND1	Q7KZF4 SND1 HUMAN	Staphylococcal nuclease domain-containing protein 1	No	Yes	No	No	No	No	No
SNRNP70	P08621 RU17 HUMAN	L11 small nuclear ribonucleoprotein 70 kDa	No	Yes	No	No	No	No	No
SNRPR	P1/678 RSMB HUMAN	Small nuclear ribonucleoprotein-associated proteins B and B'	No	Ves	No	No	No	No	No
SNTB1	013884 SNTB1 HUMAN	Beta-1-syntrophin	Ves	No	No	No	Vec	Ves	No
SNIY22		Sorting povin 22	No	Voc	No	No	No	No	No
5003		Extracellular superovide dismutase	Voc	No	No	No	No	No	No
SOD3		Tropportation factor On1	No	Vee	Voo	No	No	No	No
SPI	PUOU4/ SPI_HUMAN	i ranscription factor Spil	INO No	res	res	INO No	NO No	INO No	INO No
SPAG4	QUINTED SPAG4_HUMAN	Sperm-associated antigen 4 protein	NO No	Yes	INO No	NO No	INO No	NO	NO
SPATA13	QUENTED SPITS_HUMAN	Spermatogenesis-associated protein 13	NO No	Yes	INO No	NO No	INO	NO	NO Vee
SPTAN1	QISOIS SPINI_HUMAN	Spectrin alpha chain, non-erythrocytic 1	NO No	Yes	INO No	NO No	res	Yes	Yes
SKGAP2	U13044 SKGPZ_HUMAN	SLIT-KOBO KNO GTPase-activating protein 2	INO	res	INO	INO	INO	INO	INO

SRPRA	P08240 SRPRA HUMAN	Signal recognition particle receptor subunit alpha	Νο	Yes	No	No	No	No	No
SRPRB	09Y5M8 SRPRB HUMAN	Signal recognition particle receptor subunit depid	No	Yes	No	No	No	No	No
SSB	P05455 LA HUMAN	Lunus La protein	No	Yes	No	No	No	No	No
STAT1		Signal transducer, and activator, of transcription 1 alpha/beta	Voc	Vec	No	No	Voc	Voc	No
STATE	DE2620 STATE HUMAN	Signal transducer and activator of transcription 1-alpha/beta	Vee	No	No	No	No	No	No
STAT2	PS2030 STAT2_HUMAN	Signal transducer and activator of transcription 2	No	No	No	Xee	No	No	No
STATS	015469 STILLUMAN	Signal transducer and activator of transcription 5	No	NU Voo	No	No	Vee	NO	NU Voo
STIL		SCL-interrupting locus protein	INO	res	INO N -	NO	res	res	res
510.2	Q9P2F5 STUX2_HUMAN	Storknead-box protein 2	Yes	NO	NO	NO	res	res	NO
SIS	P08842 STS_HUMAN	Steryl-sultatase	No	Yes	No	No	No	No	No
SULF2	Q8IWU5 SULF2_HUMAN	Extracellular sulfatase Sulf-2	No	Yes	No	No	No	No	No
SUMF1	Q8NBK3 SUMF1_HUMAN	Formylglycine-generating enzyme	No	Yes	No	No	No	No	No
SURF6	O75683 SURF6_HUMAN	Surfeit locus protein 6	No	Yes	No	No	Yes	Yes	Yes
SYTL2	Q9HCH5 SYTL2_HUMAN	Synaptotag min-like protein 2	No	Yes	No	No	No	No	No
SZT2	Q5T011 SZT2_HUMAN	KICSTOR complex protein SZT2	No	Yes	No	No	No	No	No
TACSTD2	P09758 TACD2_HUMAN	Tumor-associated calcium signal transducer 2	No	No	Yes	No	No	No	No
TAL1	P17542 TAL1_HUMAN	T-cell acute lymphocytic leukemia protein 1	No	No	No	Yes	No	No	No
TAP1	Q03518 TAP1 HUMAN	Antigen peptide transporter 1	No	Yes	No	No	No	No	No
TBL1XR1	Q9BZK7 TBL1R HUMAN	F-box-like/WD repeat-containing protein TBL1XR1	No	Yes	No	No	No	No	No
TBX2	Q13207 TBX2 HUMAN	T-box transcription factor TBX2	No	No	No	Yes	No	No	No
TC2N	Q8N9U0 TAC2N HUMAN	Tandem C2 domains nuclear protein	No	Yes	No	No	No	No	No
TCAP	O15273 TELT HUMAN	Telethonin	No	Yes	No	No	Yes	Yes	No
TCEA3	O75764 TCEA3 HUMAN	Transcription elongation factor A protein 3	No	Yes	No	No	No	No	No
TDRD3	09H7E2 TDRD3 HUMAN	Tudor domain-containing protein 3	No	Yes	No	No	No	No	No
TEP1	000073 TEP1 HUMAN	Telomerase protein component 1	No	Ves	No	No	Vec	Ves	No
TEPT			Voc	No	No	No	No	No	No
		Serotransferrin	Ves	No	No	No	Voc	No	No
TEES	PI0532 TEES HIIMAN	Transcription factor E3	Ves	No	No	No	No	No	No
TEE2		Trafail factor 2	No	Vee	No	No	No	No	No
TEDO			NU NI-	165	NU	NU NI-	NU NI-	NU NI-	NU
TERC	P02786 TFR1_HUMAN	Transferrin receptor protein 1	NO	Yes	NO Xaa	NO	NO	NO	NO
TGFB1	P01137 IGFB1_HUMAN	Pransforming growth factor beta-1 proprotein	NO	INO Xaa	Yes	NO Xee	NO	NO	NO
TUPP	P21980 TGM2_HUMAN	Protein-glutamine gamma-glutamytransferase 2	INO Xee	Yes	NO	Yes	INO Xaa	NO	NO
THBD	P0/204 TRBM_HUMAN		Yes	NO	NO	NO Xee	Yes	Yes	NO
THEST	P0/996 ISP1_HUMAN	i nrombospondin-1	Yes	NO	NO	res	INO	INO	NO
TKT	P29401 TKT_HUMAN	Transketolase	No	Yes	No	No	Yes	Yes	Yes
TMED2	Q15363 TMED2_HUMAN	Transmembrane emp24 domain-containing protein 2	No	Yes	No	No	No	No	No
TMEM131L	A2VDJ0 T131L_HUMAN	Transmembrane protein 131-like	No	Yes	No	No	No	No	No
TNC	P24821 TENA_HUMAN	Tenascin	No	No	No	Yes	No	No	No
TNFRSF11B	O00300 TR11B_HUMAN	Tumor necrosis factor receptor superfamily member 11B	Yes	No	No	No	No	No	No
TNFRSF21	O75509 TNR21_HUMAN	Tumor necrosis factor receptor superfamily member 21	Yes	No	No	No	No	No	No
TNNC1	P63316 TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	Yes	No	No	No	Yes	Yes	No
TNS4	Q8IZW8 TENS4 HUMAN	Tensin-4	No	Yes	No	No	No	No	No
TOP1	P11387 TOP1 HUMAN	DNA topoisomerase 1	No	No	No	Yes	No	No	No
TOP2A	P11388 TOP2A HUMAN	DNA topoisomerase 2-alpha	Yes	Yes	No	Yes	No	No	No
TP53	P04637 P53 HUMAN	Cellular tumor antigen p53	Yes	No	Yes	No	Yes	Yes	No
TP63	Q9H3D4 P63 HUMAN	Tumor protein 63	Yes	No	No	No	No	No	No
TPD5211	Q16890 TPD53 HUMAN	Tumor protein D53	Yes	No	No	No	Yes	Yes	No
TPM1	P00403 TPM1 HIMAN	Tronomyosin alpha-1 chain	No	No	No	Ves	No	No	No
TPMT	P51580 TPMT HUMAN	Thionurine S-methyltransferase	Ves	No	No	No	No	No	No
		Tripontidul pontidado 1	No	Vee	No	No	No	No	No
		Tripepiloyi-pepiloase	NO	res	NO	NO	NO	NO	NO
		Largeling protein for Akipz	NO	res	NO	res	NO	NO	NO
		The action of the second secon	INU No	res	NO	INO No	NO	NO	NO
TRHUE	QUINT TRIDE HUMAN	Trivertite metif containing more and a set of the set o	NO	Yes	NO	INO	NO	NO No	NO
I KIWIZ9	Q14134 TRI29_HUMAN	i ripartite motif-containing protein 29	INO	res	INO	res	INO	INO	INO

TRPS1	Q9UHF7 TRPS1_HUMAN	Zinc finger transcription factor Trps1	No	Yes	No	Yes	No	No	No
TTN	Q8WZ42 TITIN_HUMAN	Titin	No	No	No	Yes	No	No	No
TTR	P02766 TTHY_HUMAN	Transthyretin	Yes	No	No	No	No	No	No
TXNL1	O43396 TXNL1 HUMAN	Thioredoxin-like protein 1	No	Yes	No	No	No	No	No
TYMP	P19971 TYPH HUMAN	Thymidine phosphorylase	No	No	Yes	No	Yes	Yes	Yes
TYMS	P04818 TYSY_HUMAN	Thymidylate synthase	No	No	Yes	No	Yes	Yes	No
UBE2C	O00762 UBE2C_HUMAN	Ubiquitin-conjugating enzyme E2 C	No	Yes	No	No	No	No	No
UBE2T	Q9NPD8 UBE2T_HUMAN	Ubiquitin-conjugating enzyme E2 T	No	Yes	No	No	No	No	No
UBE4B	O95155 UBE4B HUMAN	Ubiguitin conjugation factor E4 B	No	Yes	No	No	No	No	No
UCHL1	P09936 UCHL1 HUMAN	Ubiquitin carboxyl-terminal hydrolase isozyme L1	Yes	No	Yes	No	No	No	No
UCHL5	Q9Y5K5 UCHL5 HUMAN	Ubiquitin carboxyl-terminal hydrolase isozyme L5	No	Yes	No	No	Yes	Yes	No
UFL1	O94874 UFL1 HUMAN	E3 UFM1-protein ligase 1	Yes	No	No	No	Yes	Yes	Yes
UGT1A1	P22309 UD11_HUMAN	UDP-glucuronosyltransferase 1-1	Yes	No	No	No	No	No	No
UMPS	P11172 UMPS HUMAN	Uridine 5'-monophosphate synthase	No	No	Yes	No	No	No	No
UQCRC2	P22695 QCR2 HUMAN	Cytochrome b-c1 complex subunit 2, mitochondrial	No	Yes	No	No	Yes	Yes	Yes
UROD	P06132 DCUP HUMAN	Uroporphyrinogen decarboxylase	No	Yes	No	No	No	No	No
USP2	O75604 UBP2 HUMAN	Ubiquitin carboxyl-terminal hydrolase 2	No	Yes	No	No	No	No	No
UTRN	P46939 UTRO_HUMAN	Útrophin	No	Yes	No	No	No	No	No
VASP	P50552 VASP HUMAN	Vasodilator-stimulated phosphoprotein	No	Yes	No	No	No	No	No
VCL	P18206 VINC HUMAN	Vinculin	No	Yes	No	Yes	Yes	Yes	Yes
VCP	P55072 TERA HUMAN	Transitional endoplasmic reticulum ATPase	No	No	Yes	No	No	No	No
VEGFA	P15692 VEGFA HUMAN	Vascular endothelial growth factor A	Yes	No	Yes	No	Yes	Yes	Yes
VEPH1	Q14D04 MELT HUMAN	Ventricular zone-expressed PH domain-containing protein homolog 1	No	Yes	No	No	No	No	No
VIM	P08670 VIME HUMAN	Vimentin	No	No	No	Yes	No	No	No
VLDLR	P98155 VLDLR HUMAN	Very low-density lipoprotein receptor	No	Yes	No	No	No	No	No
VPS51	Q9UID3 VPS51 HUMAN	Vacuolar protein sorting-associated protein 51 homolog	No	Yes	No	No	Yes	Yes	No
VWF	P04275 VWF_HUMAN	von Willebrand factor	Yes	No	No	No	No	No	No
WDR60	Q8WVS4 WDR60_HUMAN	WD repeat-containing protein 60	Yes	No	No	No	Yes	Yes	No
XBP1	P17861 XBP1 HUMAN	X-box-binding protein 1	Yes	No	No	No	No	No	No
YIF1B	Q5BJH7 YIF1B HUMAN	Protein YIF1B	No	Yes	No	No	No	No	No
YWHAE	P62258 1433E HUMAN	14-3-3 protein epsilon	Yes	No	No	No	No	No	No
YWHAZ	P63104 1433Z HUMAN	14-3-3 protein zeta/delta	No	Yes	No	No	No	No	No
ZAP70	P43403 ZAP70_HUMAN	Tyrosine-protein kinase ZAP-70	No	Yes	No	No	No	No	No
ZBED3	Q96IU2 ZBED3 HUMAN	Zinc finger BED domain-containing protein 3	No	Yes	No	No	No	No	No
ZBTB16	Q05516 ZBT16 HUMAN	Zinc finger and BTB domain-containing protein 16	Yes	No	No	No	Yes	Yes	Yes
ZEB1	P37275 ZEB1 HUMAN	Zinc finger E-box-binding homeobox 1	No	No	No	Yes	No	No	No
ZNF22	P17026 ZNF22 HUMAN	Zinc finger protein 22	No	Yes	No	No	No	No	No
ZNF185	O15231 ZN185_HUMAN	Zinc finger protein 185	No	Yes	No	Yes	No	No	No
ZNF462	Q96JM2 ZN462_HUMAN	Zinc finger protein 462	No	Yes	No	No	Yes	Yes	Yes

Gene Name	Uniprot Entry	Uniprot Entry name	Protein Name	Peptide Name	Retention Time , Mean±SD (Min)	Good Prognostic Group , Mean±SD (Peak Area)	Poor Prognostic Group , Mean±SD (Peak Area)	Fold Change (Poor/Good)
A1CF	Q9NQ94	A1CF HUMAN	APOBEC1 complementation factor	LEVGGIPK	25.83±0.11	2657±1348	1725+1343	0.649
ACACB	O00763	ACACE HUMAN	AcetvI-CoA carboxvlase 2	IPAPVEK	15.64±0.06	41803±18460	63133±62099	1.510
ACADVL	P49748	ACADV HUMAN	Verv long-chain specific acvl-CoA dehvdrogenase. mitochondrial	AGLGSGLSLSGLVHPEL SR	27.26±0.28	2773±775	1730±852	0.624
ACO1	P21399	ACOC HUMAN	Cytoplasmic aconitate hydratase	GPFLLGIK	25.06±0.11	31444±20281	20283±4130	0.645
ACTN4	O43707	ACTN4 HUMAN	Alpha-actinin-4	NVNVQNFHISWK	23.73±0.18	1181±1353	2652±2038	2.246
ADAM9	Q13443	ADAM9_HUMAN	Disintegrin and metalloproteinase domain-containing protein 9	EVPIYANR	16.51±1.05	2223±1999	3631±3442	1.633
AGT	P01019	ANGT HUMAN	Angiotensinogen	ALQDQLVLVAAK	23.63±0.09	4099±1815	6649±1888	1.622
AHSG	P02765	FETUA HUMAN	Alpha-2-HS-glycoprotein	EHAVEGDCDFQLLK	22.02±0.31	5549±1360	3552±832	0.640
AKAP9	Q99996	AKAP9_HUMAN	A-kinase anchor protein 9	QQNQALEK	25.46±0.24	1167±924	593±263	0.508
AKT1	P31749	AKT1_HUMAN	RAC-alpha serine/threonine-protein kinase	NDGTFIGYK	18.84±0.56	7215±3807	11244±2280	1.558
ALAD	P13716	HEM2_HUMAN	Delta-aminolevulinic acid dehydratase	CVLIFGVPSR	26.31±0.19	4793±1209	2904±808	0.606
ALDH1A1	P00352	AL1A1_HUMAN	Retinal dehydrogenase 1	ELGEYGFHEYTEVK	20.27±0.12	20898±9674	12996±1682	0.622
ALDH6A1	Q02252	MMSA_HUMAN	Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial	AISFVGSNK	18.21±0.13	32592±21001	21597±9828	0.663
ANPEP	P15144	AMPN_HUMAN	Aminopeptidase N	YLSYTLNPDLIR	26.20±0.10	1654±1417	1060±1142	0.641
APC	P25054	APC_HUMAN	Adenomatous polyposis coli protein	VTSHTELTSNQQSANK	25.20±0.12	1485±386	894±356	0.602
ARL6IP4	Q66PJ3	AR6P4_HUMAN	ADP-ribosylation factor-like protein 6-interacting protein 4	GDGEVLEEIVTK	23.53±0.12	8733±3493	5596±1911	0.641
ATP1A1	P05023	AT1A1_HUMAN	Sodium/potassium-transporting ATPase subunit alpha-1	IVEIPFNSTNK	21.65±0.11	12755±6023	7613±1545	0.597
BAX	Q07812	BAX_HUMAN	Apoptosis regulator BAX	TGALLLQGFIQDR	29.09±0.09	2384±1510	4099±2222	1.720
BCL2	P10415	BCL2_HUMAN	Apoptosis regulator Bcl-2	FATVVEELFR	9.55±0.24	569±418	956±531	1.681
BTD	P43251	BTD_HUMAN	Biotinidase	VDLITFDTPFAGR	23.78±0.13	9223±4233	5277±1687	0.572
CALR	P27797	CALR_HUMAN	Calreticulin	GQTLVVQFTVK	24.09±0.10	3866±3556	2294±836	0.593
CAP1	Q01518	CAP1_HUMAN	Adenylyl cyclase-associated protein 1	LSDLLAPISEQIK	26.82±0.14	8535±3562	5154±859	0.604
CCDC154	A6N156	CC154_HUMAN	Coiled-coil domain-containing protein 154	ALQGQHEVGPGGR	24.13±0.13	2268±1444	1141±466	0.503
CCNB1	P14635	CCNB1_HUMAN	G2/mitotic-specific cyclin-B1	DIYAYLR	18.27±0.15	94256±35283	61266±6793	0.650
CCNE1	P24864	CCNE1_HUMAN	G1/S-specific cyclin-E1	DSLDLLDK	21.78±0.32	5850±3702	3457±748	0.591
CD19	P15391	CD19_HUMAN	B-lymphocyte antigen CD19	SSEGPSSPSGK	8.12±0.07	4364±2196	2784±1274	0.638
CD274	Q9NZQ7	PD1L1_HUMAN	Programmed cell death 1 ligand 1	LFNVTSTLR	22.82±0.42	2197±1410	4208±5805	1.915
CDH1	P12830	CADH1_HUMAN	Cadherin-1	TIFFCER	22.67±0.65	55847±19350	87932±12293	1.575
CDH17	Q12864	CAD17_HUMAN	Cadherin-17	DPEGLDISYSLR	29.04±0.07	1459±637	911±284	0.624
CDKN1B	P46527	CDN1B_HUMAN	Cyclin-dependent kinase inhibitor 1B	YEWQEVEK	35.06±0.12	186±135	282±208	1.518
CEACAM5	P06731	CEAM5_HUMAN	Carcinoembryonic antigen-related cell adhesion molecule 5	SDLVNEEATGQFR	18.86±0.11	11468±3034	21599±12625	1.883
CEACAM5	P06731	CEAM5_HUMAN	Carcinoembryonic antigen-related cell adhesion molecule 5	QIIGYVIGTQQATPGPAYSGR	22.32±0.12	7786±3650	13970±7031	1.794
CENPB	P07199	CENPB_HUMAN	Major centromere autoantigen B	AAGLPVK	16.12±0.08	63174±31666	31460±8782	0.498
CENPF	P49454	CENPF_HUMAN	Centromere protein F	HQASSSVFSWQQEK	17.40±0.35	15482±7758	9451±6309	0.610
CGNL1	Q0VF96	CGNL1_HUMAN	Cingulin-like protein 1	LIEVAELQR	18.51±0.20	3481±1710	5410±1731	1.554
CHEK2	096017	CHK2_HUMAN	Serine/threonine-protein kinase Chk2	LLVVDPK	18.52±0.48	32232±22699	19606±4200	0.608
CHGA	P10645	CMGA_HUMAN	Chromogranin-A	GYPEEK	18.73±0.21	14686±11716	27036±14284	1.841
CHI3L1	P36222	CH3L1_HUMAN	Chitinase-3-like protein 1	GIIGHHSPLFR	32.12±0.20	1327±1267	784±1004	0.591
CLCA1	A8K7I4	CLCA1_HUMAN	Calcium-activated chloride channel regulator 1	SIQLESK	16.00±0.08	50421±45424	29506±6411	0.585
COLIAI	P02452	CO1A1_HUMAN	Collagen alpha-1(1) chain	DGEAGAQGPPGPAGPAGER	9.69±0.11	2802±833	1780±1129	0.635
COLZAI	P02458	COZA1_HUMAN	Collagen alpha-1(II) chain	GPEGAQGPR	8.33±0.19	4859±4581	2296±2022	0.473
COL4A1	P02462	CO4A1_HUMAN	Collagen alpha-1(IV) chain	GSPGFPGEPGYPGLIGR	23.81±0.17	2221±1038	1362±588	0.613
COL4A2	P08572	CO4A2_HUMAN	Collagen alpha-2(IV) chain	GQIGFPGLIGPPGSQGELGR	9.61±0.06	3638±1755	2159±1090	0.593
COL4A6	Q14031	CO4A6_HUMAN	Collagen alpha-6(IV) chain	GLPGFPGLPGK	25.42±0.08	9620±1009	6078±2463	0.632
COL6A2	P12110	CU6A2_HUMAN	Collagen alpha-2(VI) chain	VFAVVIIDGR	22.84±0.13	6292±2323	34/2±1938	0.552
CUL28A1	Q20 Y09	COSAT_HUMAN	Collagen alpha-1(XXVIII) chain		17.00±0.29	2045±1790	4596±2521	1.738
CPA1 CPB1	P15085 P15086	CBPA1_HUMAN CBPB1 HUMAN	Carboxypeptidas e A1 Carboxypeptidas e B	ATCEETFLAIK	21.22±0.07 24.13±0.13	20208±24965 15252±8442	11526±7557 9896±6700	0.570 0.649

Table 2-4. The 200 differentially expressed proteins and target selection information.

CR2	P20023	CR2_HUMAN	Complement receptor type 2	VAACEATGR	8.87±0.09	17117±10575	11215±6069	0.655
CREBBP	Q92793	CBP_HUMAN	CREB-binding protein	DAAYYSYQNR	16.61±0.27	1048±614	1941±1742	1.852
CTNNB1	P35222	CTNB1_HUMAN	Catenin beta-1	LHYGLPVVVK	22.11±0.16	8804±3144	14457±5931	1.642
CTRB2	Q6GPI1	CTRB2_HUMAN	Chymotrypsinog en B2	TCSTTTPAVYAR	16.10±0.94	79866±68133	47534±38802	0.595
CTSS	P25774	CATS_HUMAN	Cathepsin S	YTELPYGR	18.14±0.33	1894±965	3322±1090	1.754
CYP1A2	P05177	CP1A2_HUMAN	Cytochrome P450 1A2	DTTLNGFYIPK	19.35±0.12	17333±3222	11304±2043	0.652
DCN	P07585	PGS2_HUMAN	Decorin	DLPPDTTLLDLQNNK	24.84±0.14	3486±929	2113±715	0.606
DCXR	Q7Z4W1	DCXR_HUMAN	L-xylulose reductase	AVTNHSVYCSTK	25.80±0.11	25810±9155	16716±4832	0.648
DSG1	Q02413	DSG1 HUMAN	Desmoglein-1	EQYGQYALAVR	23.12±0.38	631±175	1392±1070	2.207
DSG2	Q14126	DSG2 HUMAN	Desmoglein-2	AWITAPVALR	25.47±0.16	4510±1467	7085±2147	1.571
DSP	P15924	DESP HUMAN	Desmoplakin	QHLEIELK	9.58±0.07	31577±5188	59547±58738	1.886
ECI2	O75521	ECI2 HUMAN	Enoyl-CoA delta isomerase 2, mitochondrial	WLSDECTNAVVNFLSR	21.95±0.18	2523±677	1485±570	0.588
EGFR	P00533	EGFR_HUMAN	Epidermal growth factor receptor	CNLLEGEPR	18.46±0.31	4436±1181	2943±1390	0.663
EIF2AK3	Q9NZJ5	E2AK3 HUMAN	Eukaryotic translation initiation factor 2-alpha kinase 3	GQLYLQSSVR	25.71±0.12	16616±3159	10751±1986	0.647
ENO2	P09104	ENOG HUMAN	Gamma-enolase	IEEELGDEAR	16.08±1.02	7809±5059	14605±6321	1.870
EPB41L5	Q9HCM4	E41L5 HUMAN	Band 4.1-like protein 5	LPGLGEPEVEYETLK	27.64±0.17	6303±5820	4068±1733	0.645
EPHX2	P34913	HYES HUMAN	Bifunctional epoxide hydrolase 2	FLLDTLK	24.80±0.08	15718±13955	10174±3395	0.647
ERCC1	P07992	ERCC1 HUMAN	DNA excision repair protein ERCC-1	LEQDFVSR	23.43±0.18	6655±3135	4062±2137	0.610
EXT1	Q16394	EXT1 HUMAN	Exostosin-1	NSLIWNK	9.49±0.21	23276±12687	15414±7166	0.662
FAM13A	O94988	FA13A HUMAN	Protein FAM13A	DFEDNFFR	18.23±0.20	3303±2554	5663±1165	1.714
FAS	P25445	TNR6 HUMAN	Tumor necrosis factor receptor superfamily member 6	NDNVQDTAEQK	18.57±0.12	15169±5801	9496±2074	0.626
FBN1	P35555	FBN1 HUMAN	Fibrillin-1	GFIPNIR	23.06±0.19	115383±25538	174036±62341	1.508
FGF1	P05230	FGF1 HUMAN	Fibroblast growth factor 1	NWFVGLK	9.64±0.13	1449±523	900±842	0.621
FGFR4	P22455	FGFR4 HUMAN	Fibroblast growth factor receptor 4	YNYLLDVLER	26.73±0.22	2901±1371	4572±2028	1.576
FLT1	P17948	VGFR1 HUMAN	Vascular endothelial growth factor receptor 1	GFIISNATYK	21.22±0.52	1959±1205	4315±3614	2.203
FLT4	P35916	VGFR3 HUMAN	Vascular endothelial growth factor receptor 3	SGVDLADSNOK	18.29±0.15	3954±1050	5989+2613	1.515
GATM	P50440	GATM HUMAN	Glycine amidinotransferase mitochondrial	AFNACVPPETIEVK	24 17+0 13	27295+19879	15337+11271	0.562
GPX2	P18283	GPX2 HUMAN	Glutathione peroxidase 2	LIWSPVR	26.50±0.20	3377±3522	1682+682	0.498
GSN	P06396	GELS HUMAN	Gelsolin	EPGL OIWR	24 04+0 22	6117+858	3601+1056	0.589
HEXA	P06865	HEXA HUMAN	Beta-bexosaminidase subunit alpha	DEVIVEPI AFEGTPEOK	20.05+0.18	5182+1846	3357+1234	0.648
HGE	P14210	HGF HUMAN	Hepatocyte growth factor	DYFAWI GIHDVHGR	23 16+0 32	410575+508759	271521+26281.3	0.661
HIF1A	Q16665	HIF1A HUMAN	Hypoxia-inducible factor 1-alpha	GOVITGOYR	17 17+0 94	2690+1164	4092+1205	1.521
HRAS	P01112	RASH HUMAN	GTPase Hras	SYGIPYIETSAK	22 93+0 34	30362+19461	50242+24149	1 655
	P07000	HSQNA HUMAN	Heat shock protein HSP 00-alpha		23 21+0 28	1824+1404	1176+655	0.645
HSPR1	P0/702	HSPR1 HUMAN	Heat shock protein heta-1	OLSSGV/SEIR	17/3+0.10	20865+7268	46012+9081	1 5/1
IDH1	075874	IDHC HUMAN	Isocitrate debutrogenase [NADP] cytoplasmic	GOETSTNPIASIEAWTR	34 25+0 57	2026+1315	1324+1158	0.653
IEI16	016666		Gamma-interferon-inducible protein 16	SUSNDIK	10 86+0 28	52856+26470	3//38+8810	0.652
IGEBP3	P17936	IBP3 HUMAN	Insulin-like growth factor-binding protein 3	GLCVNASAVSR	17 18+0 09	7391+1455	11827+2287	1 600
ICEBP5	P24503		Insulin like growth factor binding protein 5	GICWCVDK	21 21+0 12	52/1+1908	8208+5636	1.500
II 1RN	P18510		Interleukin_1 recentor antagonist protein		25 35+0 47	2271+1202	1/89+622	0.656
	P2//30/		Interleukin-1 receptor antagonist protein	EWW/DOIPNIPAR	23.5510.47	2156+1781	6192+108/2	2 871
INSP	P06213	INSR HUMAN			24.66+0.56	901+754	1995+1/69	2.071
ITGA2B	P08514	ITA28 HUMAN	Integrin alpha-lib		24.0010.00	5337+26/1	3545+750	0.664
ITCA2	D26006		Integrin alpha-ito		7 02+0 24	1650+967	2725+1200	1 657
ITCAS	F20000		Integrin alpha-5		7.93±0.24	10001007	2733±1300	1.007
ITCAS	F00040		Integrin alpha 6		20.2 I±0.23	2402+2000	7552+2295	1.047
INAX	CONODE		Integrin apple-0		19.02±0.71	07492±2009	133313303	2.103
			Junction-mediating and -regulatory protein	SSAVIAEGGSPR	10.20±0.17	97 1020900	17344±0012	1.700
NF20	Q99001		Ninesin-like protein NirZO		20.0±C0.12	442012019	11400±2/10	2.00/
KII	P10/21	KII_HUMAN	Mast/stem cell growth factor receptor Kit	HGLSNSIYVFVR	23.62±0.24	4675±2078	/112±4503	1.521
KLB	Q86Z14	KLOTB_HUMAN	Beta-klotho	LAVIPWGVR	26.21±0.07	5575±2075	9793±1382	1.756
KPNA2	P52292	IMA1_HUMAN	Importin subunit alpha-1	ASLSLIEK	11.68±0.82	25030±8020	16349±8056	0.653
KRAS	P01116	RASK_HUMAN	GIPase Kras	SFEDIHHYR	20.77±0.11	6399±2101	9913±2177	1.549
KRT17	Q04695	K1C17_HUMAN	Keratin, type I cytoskeletal 17	ASLEGNLAETENR	18.40±0.14	2895±1615	4688±2087	1.619

KRT20	P35900	K1C20_HUMAN	Keratin, type I cytoskeletal 20	DAQLQNAR	16.51±1.02	2223±1999	3631±3442	1.633
LAMP1	P11279	LAMP1_HUMAN	Lysosome-associated membrane glycoprotein 1	ALQATVGNSYK	16.34±0.96	14251±6396	22645±6637	1.589
LDB3	075112	LDB3_HUMAN	LIM domain-binding protein 3	SWHPEEFTCAYCK	9.88±0.10	6212±1030	9946±5256	1.601
LEP	P41159	LEP HUMAN	Leptin	DLLHVLAFSK	23.35±0.34	2280±1267	1487±735	0.652
LGALS4	P56470	LEG4 HUMAN	Galectin-4	VVFNTLQGGK	18.98±0.25	43170±38398	23072±8932	0.534
MACROD2	A1Z1Q3	MACD2 HUMAN	ADP-ribose glycohydrolase MACROD2	YVIHTVGPIAR	9.63±0.10	2154±1199	1009±489	0.469
MAG	P20916	mag Human	Myelin-associated glycoprotein	SLELPFQGAHR	21.79±0.18	3877±1897	2438±813	0.629
MALT1	Q9UDY8	MALT1 HUMAN	Mucosa-associated lymphoid tissue lymphoma translocation protein 1	NAVDEFLLLLDK	23.66±0.15	31743±22025	21126±8579	0.666
MAP4K4	O95819	M4K4 HUMAN	Mitogen-activated protein kinase kinase kinase kinase 4	EDWIAYISR	18.11±0.12	10900+2518	7266±1443	0.667
MAPK1	P28482	MK01 HUMAN	Mitogen-activated protein kinase 1	LEPNADSK	16 69+0 29	13635+7562	40063+66746	2 938
MECP2	P51608	MECP2 HUMAN	Methyl-CpG-binding protein 2	GGSI ESDGCPK	24 13+0 24	21198+6274	13282+2983	0.627
MGAT4A	Q9UM21	MGT4A HUMAN	Alpha-1.3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase	A SSELNTIVQQFK	21.09±0.41	4219±1988	1792+1220	0.425
MIA	Q16674	MIA HUMAN	Melanoma-derived growth regulatory protein	LGYFPSSIVR	24,92+0,34	1873±753	3894+3212	2.079
MKI67	P46013	KI67 HUMAN	Proliferation marker protein Ki_67	FEADALEDI TGEK	23 80+0 14	26238+11123	17446+3197	0.665
MIH1	P40692	MIH1 HUMAN	DNA mismatch repair protein MIh1	LVESTSLR	16 20+0 37	1020+554	2085+557	2 043
MMP7	P09237	MMP7 HUMAN	Matrilysin	EIPI HER	19.96+0.12	2637+1125	3981+1278	1 510
MMP9	P14780	MMP9 HUMAN	Matrix metalloproteinase-9	OLSI PETGELDSATI K	23 73+0 15	893+174	514+120	0.576
MMP11	P24347	MMP11 HUMAN	Stromelysin_3	EPVHAAI VWGPEK	23 78+0 14	5066+1416	3330+560	0.657
MPO	P0516/	PERM HUMAN	Myelonerovidase	EPTDOL TPDOER	18 00+0 21	5003+2050	11687+5800	1 950
MPO	P05164	PERM HUMAN	Myeloperoxidase	M/LEGGIDPILR	2/ 20+0 20	15663+5449	27756+1/0/1	1.330
MSANTD3	O96H12		Mub/SANT-like DNA-binding domain-containing protein 3		23 68+0 20	2/13/18+16650	1617/+8337	0.664
MXRA5		MYRA5 HUMAN	Matrix-remodeling-associated protein 5	VIVOSPSTOPAEK	15 87+0 1/	6783+3104	1017410007	0.653
MVBPC3	01/1896		Mussin-binding protein C cardiac-tune		16 55+0 55	3005+2644	551/+3579	1.835
MVH6	D13533		Muccin 6		22 81±0 30	6506+2806	4246+767	0.644
	P35740		Myosin=0		16 03±0 27	1/677+18068	53/8±/00/	0.044
MVIK	015746		Myosin light chain kingse, smooth muscle		18 34±0.26	5/97±072	10246+5432	1 867
MYLK	015746	MYLK HUMAN	Myosin light chain kinase, smooth muscle	OISEGVEVILLK	9 68+0 03	1/522+50/1	9/91+2001	0.654
MYOE			Mundarlin	EDIVPOLK	9.64+0.08	15254+8047	23010+8400	1 509
NEEL	D12036		Neurofilament beau, polypentide		33 21+0 20	22653±15700	1/370+7105	0.635
NEYN	007GT2		Neuroinament neavy polypepilde		23 00+0 32	7/31+1910	11806+5124	1 580
NDC2	D61016		NPC intracellular cholesterol transporter 2	SCINCPIOK	15 81+0 23	8070+4412	1560/+0572	1.309
NDM1	P01910		NFC mulacentilar cholesteror transporter 2		16.76±0.25	08/3+8/63	1/81/+35/2	1.740
NDAS	P00740		GTPase Nras		22 58±0 62	1608+640	1103+380	0.650
NUCPO	D00202		Nucleobindin 2		16 57±0.02	20674+15507	16721+6225	0.000
	CELIXOE		Olfactomedia 4		10.37±0.37	29074±10007	10/21±0333	0.003
			Ullacioneurin-4		20.47±0.27	7072+4020	20010±10440	1.001
PACOINZ	QONDRE		Protein Mildse C and Caselli Mildse Substrate in neurons protein 2		19.30±0.13	197214029	0231900	0.030
	D0087/		Poly [ADD ribose] polymerase 1		18 23±0 31	3010+1113	1/25+081	0.370
	050014		Poly [ADF=Indose] polyinerase in	DIDELALDTOD	24 5010.31	301011113	14231301	0.475
			AMD apositio 2' 5' evolio abeanhadicaterase 4D		24.39±0.12	7402±4700 45095±17971	4003±2020	0.622
	Q00499		CAMP-specific 3,5-cyclic phosphodiesterase 4D		10.09±0.00	40200±17071	27290±10010	0.003
	P 13007		Protein disulide-isomerase A4		10.00±0.00	21221±23033	30040±20311	1.021
	P32943		Pariod airoadian protain homolog 1		9.01±0.10	2000±332	12341099	1 500
PERI	010004	PER I_HUMAN	Period circadian protein homorog 1	AVLSLHTQK	24.15±0.30	2970±1000	47 15±1500	1.000
PGC	P20142	PEPC_HUMAN	Gastricsin	GLLGEFLR	29.08±0.31	170431±236012	11094±17362	0.065
PLG	P00747		Plasininogen		17.04±0.20	21994±0192	33270±12040	1.513
PINLIP	P 10233		Pancreauc unacygryceror inpase	FINITINITINETLER	29.20±0.20	21495±26293	0040±12134	0.402
PNLIPRP2	P54317	LIPRZ_HUMAN	Pancreatic lipase-related protein 2	IALYGSNENSK	17.32±0.19	6004±6893	1882±1463	0.313
PPBP	P02//5	CXCL/_HUMAN	Platelet basic protein		18.09±0.10	6581±1759	4220±1694	0.641
PPOX	P50336	PPUX_HUMAN	Protoporphyrinogen oxidase	TLLLVSELGLDSEVLPVR	21.05±0.29	/655±159/	44/3±1085	0.584
PRODH	043272	PROD_HUMAN	Proline denydrogenase 1, mitochondrial	QLLWLELLK	26.62±0.11	812±440	2020±977	2.489
PIMA	PU6454	PIMA_HUMAN	Protnymosin alpha	EVVEEAENGR	20.67±0.46	2489±2051	4334±2945	1.742
PIPN11	QU6124	PINTI_HUMAN	i yrosine-protein phosphatase non-receptor type 11	SNPGDFILSVR	21.55±0.23	13490±3042	20832±3687	1.544
KANBP17	Q9H217	KBP1/_HUMAN	Kan-binding protein 17	GIAFALNTK	9.80±0.05	18113±11//9	9524±5706	0.526

RAP1GAP	P47736	RPGP1_HUMAN	Rap1 GTPase-activating protein 1	LPYTEGDAQQLQR	16.59±0.28	2965±2757	4774±1724	1.610
RB1	P06400	RB_HUMAN	Retinoblastoma-associated protein	FPSSPLR	9.59±0.15	2616±728	1490±1059	0.569
REG1A	P05451	REG1A_HUMAN	Lithostathine-1-alpha	ESGTDDFNVWIGLHDPK	26.32±0.31	3709±3088	2341±1628	0.631
RELA	Q04206	TF65 HUMAN	Transcription factor p65	DLEQAISQR	18.69±0.17	2757±1720	4164±3205	1.510
TROVE2	P10155	RO60 HUMAN	60 kDa SS-A/Ro ribonucleoprotein	YLEAVEK	16.46±0.05	6879±2642	12798±10466	1.860
RPL5	P46777	RL5 HUMAN	60S ribosomal protein L5	EFNAEVHR	9.73±0.10	10689±9694	6925±815	0.648
RPL10	P27635	RL10 HUMAN	60S ribosomal protein L10	EHVIEALR	16.68±0.20	25369±7658	16906±3253	0.666
RPL36	Q9Y3U8	RL36 HUMAN	60S ribosomal protein L36	EVCGFAPYER	19.28±0.11	10326±5901	6586±939	0.638
RPN1	P04843	RPN1 HUMAN	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1	SEDLLDYGPFR	27.51±0.31	10181±5091	6699±1841	0.658
RPN2	P04844	RPN2 HUMAN	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2	FELDTSER	18.58±0.11	10340±5217	6550±1608	0.633
RPS5	P46782	RS5 HUMAN	40S ribosomal protein S5	TIAECLADELINAAK	32.52±0.15	1277±796	681±498	0.533
RUNX1	Q01196	RUNX1 HUMAN	Runt-related transcription factor 1	LSELEQLR	19.42±0.14	97175±35173	227234±149704	2.338
S100A2	P29034	S10A2_HUMAN	Protein S100-A2	ELPSFVGEK	20.97±0.13	20088±7731	30384±6991	1.513
S100A4	P26447	S10A4 HUMAN	Protein S100-A4	TDEAAFQK	15.42±0.09	45832±15945	71420±17057	1.558
S100A6	P06703	S10A6 HUMAN	Protein S100-A6	ELTIGSK	16.33±0.18	61296±11322	96876±22782	1.580
SCGN	O76038	SEGN HUMAN	Secretagogin	LDLNDLAR	21.82±0.48	2674±1400	5483±2039	2.050
SEL1L	Q9UBV2	SE1L1_HUMAN	Protein sel-1 homolog 1	AASQGYTVAR	24.53±0.09	5582±3104	3618±1352	0.648
SERPINA6	P08185	CBG_HUMAN	Corticosteroid-binding globulin	GTWTQPFDLASTR	9.64±0.08	2343±953	1524±842	0.650
SERPINB5	P36952	SPB5 HUMAN	Serpin B5	ILVVNAAYFVGK	26.78±0.25	6510±1360	9911±3221	1.522
SF3B1	O75533	SF3B1 HUMAN	Splicing factor 3B subunit 1	LTPILK	18.69±0.15	14680±9731	24188±8135	1.648
SLC2A1	P11166	GTR1 HUMAN	Solute carrier family 2, facilitated glucose transporter member 1	VTILELFR	31.80±0.08	4159±1407	2732±765	0.657
SLC4A1	P02730	B3AT_HUMAN	Band 3 anion transport protein	VLLPLIFR	32.63±0.07	16084±4589	9852±4175	0.613
SLC25A20	O43772	MCAT_HUMAN	Mitochondrial carnitine/acylcarnitine carrier protein	LYQEFGIR	9.83±0.08	4402±2021	2909±684	0.661
SLC39A14	Q15043	S39AE HUMAN	Zinc transporter ZIP14	YGEGDSLTLQQLK	23.47±0.15	19467±5634	8196±2556	0.421
SMAD4	Q13485	SMAD4 HUMAN	Mothers against decapentaplegic homolog 4	IYPSAYIK	19.44±0.06	86766±26513	135391±31822	1.560
SNTB1	Q13884	SNTB1 HUMAN	Beta-1-syntrophin	QELGGLGISIK	25.06±0.15	23031±4389	14850±5666	0.645
SPTAN1	Q13813	SPTN1 HUMAN	Spectrin alpha chain, non-erythrocytic 1	FQFFQR	23.98±0.18	18381±7688	11241±2516	0.612
STAT1	P42224	STAT1_HUMAN	Signal transducer and activator of transcription 1-alpha/beta	NFPFWLWIESILELIK	25.86±0.10	23273±8377	15441±5681	0.663
STIL	Q15468	STIL HUMAN	SCL-interrupting locus protein	HSPEVEAGEPSLR	16.04±0.62	1988±730	4022±1387	2.023
STOX2	Q9P2F5	STOX2 HUMAN	Storkhead-box protein 2	LVQHHGAEPSSLDK	16.60±0.19	3299±2812	1900±1749	0.576
SURF6	O75683	SURF6 HUMAN	Surfeit locus protein 6	TQGSETAGPPK	8.45±0.08	6828±2203	4265±1867	0.625
TCAP	O15273	TELT_HUMAN	Telethonin	HETYHQQGQCQVLVQR	24.01±0.29	2079±2175	1345±658	0.647
TEP1	Q99973	TEP1_HUMAN	Telomerase protein component 1	TCDADASGTFR	27.11±0.71	5056±4951	3128±3117	0.619
THBD	P07204	TRBM HUMAN	Thrombomodulin	HIGTDCDSGK	21.62±0.51	6832±2102	4385±500	0.642
TKT	P29401	TKT_HUMAN	Transketolase	AVELAANTK	15.68±0.39	49033±16798	32349±10900	0.660
TNNC1	P63316	TNNC1_HUMAN	Troponin C, slow skeletal and cardiac muscles	NADGYIDLDELK	25.85±0.09	49868±14013	33176±9455	0.665
TP53	P04637	P53_HUMAN	Cellular tumor antigen p53	LGFLHSGTAK	9.88±0.04	56201±12940	37391±5223	0.665
TPD52L1	Q16890	TPD53_HUMAN	Tumor protein D53	THETLSHAGQK	18.02±0.29	5184±5748	13864±5295	2.675
TYMP	P19971	TYPH HUMAN	Thymidine phosphorylase	VAAALDDGSALGR	17.44±0.14	11983±2233	18530±11599	1.546
TYMS	P04818	TYSY_HUMAN	Thymidylate synthase	GVLEELLWFIK	27.48±0.16	265±98	803±752	3.030
UCHL5	Q9Y5K5	UCHL5_HUMAN	Ubiquitin carboxyl-terminal hydrolase isozyme L5	TLAEHQQLIPLVEK	27.35±0.08	2954±1153	1910±886	0.647
UFL1	O94874	UFL1_HUMAN	E3 UFM1-protein ligase 1	TQSTWVDSFFR	29.56±0.08	5242±1411	7997±2413	1.526
UQCRC2	P22695	QCR2_HUMAN	Cytochrome b-c1 complex subunit 2, mitochondrial	LTSSLTTK	15.65±1.02	223549±209963	113846±21254	0.509
VCL	P18206	VINC_HUMAN	Vinculin	AQQVSQGLDVLTAK	21.49±0.12	10150±1352	16237±4114	1.600
VEGFA	P15692	VEGFA_HUMAN	Vascular endothelial growth factor A	FMDVYQR	19.03±0.56	7215±3807	11244±2280	1.558
VPS51	Q9UID3	VPS51_HUMAN	Vacuolar protein sorting-associated protein 51 homolog	CVELGAYGQAVR	19.83±0.10	7171±2164	4677±1039	0.652
WDR60	Q8WVS4	WDR60_HUMAN	WD repeat-containing protein 60	IGELSLK	9.61±0.07	68110±55521	42397±26737	0.622
ZBTB16	Q05516	ZBT16_HUMAN	Zinc finger and BTB domain-containing protein 16	LGELAVGMK	19.68±0.14	14752±7043	24209±10138	1.641
ZNF462	Q96JM2	ZN462 HUMAN	Zinc finger protein 462	HTEELDSHLR	15.55±0.05	21028±9533	13247±5702	0.630

Gene Name	Response Curve , LLOQ (fmol)	Reference Range , 1st Quantile (fmol)	Reference Range , 2nd Quantile (fmol)	Reference Range , 3rd Quantile (fmol)	Triplicate Variance , 1st Quantile (CV%)	Triplicate Variance , 2nd Quantile (CV%)	Triplicate Variance , 3rd Quantile (CV%)	Percentage of Samples , Above LLOQ (%)	Percentage of Samples , no missing value (%)	Skewness Training Set	Skewness Validation Set
ACACB	0.3906	0.6951	1.0444	1.5693	9.8	19.5	28.8	91.1	100.0	-0.513	-0.177
ACADVL	0.7813	1.7993	2.4842	3.4211	10.0	16.7	24.5	95.6	100.0	0.241	-1.375
ACTN4	0.1953	4.9498	7.7940	13.6380	16.3	26.0	36.9	100.0	100.0	-0.329	-0.249
ADAM9	0.0977	0.2049	0.3148	0.5198	10.4	17.7	29.4	96.9	100.0	-0.359	-0.211
AGT	0.7813	1.4597	2.0499	2.9122	11.8	19.2	25.9	93.3	100.0	-0.430	-0.363
AHSG	1.5625	5.5482	7.6917	9.8452	12.8	19.5	28.3	100.0	100.0	-0.195	0.254
AKT1	0.1953	2.2679	2.9538	4.4139	16.0	24.6	35.4	100.0	100.0	-0.029	-0.648
ALAD	0.7813	3.2571	6.1026	8.9976	8.6	13.6	22.0	98.7	100.0	-0.391	-0.241
ALDH1A1	0.1953	3.6164	6.2592	9.4540	8.5	14.8	23.7	100.0	100.0	-0.445	-0.498
ALDH6A1	0.0977	0.8602	1.4568	2.1437	8.3	13.7	19.6	100.0	100.0	0.323	-0.224
ANPEP	0.1953	0.5960	0.9497	1.5801	14.0	23.0	35.0	96.9	100.0	0.471	-0.427
ATP1A1	0.0977	0.6770	1.0047	1.6030	14.6	23.7	35.3	100.0	100.0	-0.034	-0.233
BAX	0.0977	0.7374	0.9885	1.3850	10.5	17.8	26.9	100.0	100.0	-0.247	-0.565
CALR	0.7813	6.4307	12.4074	26.9824	18.2	29.7	40.9	100.0	100.0	-0.105	0.027
CAP1	0.0488	1.4641	2.9174	5.1160	11.6	19.5	28.7	100.0	100.0	-0.474	-0.484
CCNE1	0.1953	0.3073	0.4217	0.6059	12.6	19.9	27.0	95.6	100.0	-0.009	0.329
CD19	0.0977	0.1289	0.2094	0.3434	12.8	22.4	33.1	88.0	100.0	0.902	0.965
CD274	0.1953	0.4243	0.8225	1.3236	16.1	25.3	42.3	91.1	100.0	-0.500	-0.678
CDH1	0.7813	2.2582	3.2034	4.7503	12.0	21.5	31.6	99.6	100.0	0.185	-0.430
CEACAM5	0.3906	0.6145	2.6794	8.4019	10.5	17.2	25.0	83.6	99.6	-0.010	-0.019
CENPB	0.0977	0.1474	0.1963	0.2742	15.9	23.4	33.5	93.8	100.0	-0.060	-0.162
CHEK2	0.0977	0.2673	0.3303	0.4222	9.9	15.7	24.7	99.6	100.0	-0.164	0.510
CLCA1	0.7813	5.1657	6.8213	9.9869	8.3	13.5	19.9	100.0	100.0	-0.721	-0.017
COL2A1	0.1953	1.0252	1.4730	2.1563	15.0	23.3	32.9	100.0	100.0	1.291	0.710
COL4A6	0.7813	1.1609	1.5222	2.2127	10.7	17.2	27.7	88.9	100.0	-0.251	0.102
COL6A2	0.3906	1.2554	2.0940	3.6635	15.4	25.7	39.0	97.8	100.0	0.564	0.230
COL28A1	0.7813	2.5429	3.5476	5.3065	11.8	18.9	26.8	99.6	100.0	-0.307	0.095
CPA1	0.0977	0.3001	0.8001	4.7130	4.5	6.8	14.4	94.7	98.5	0.715	0.510
CPB1	0.3906	4.5441	6.4309	15.4905	9.5	15.2	25.5	100.0	100.0	1.297	1.082
CR2	0.0977	0.5363	0.7191	0.9848	16.1	26.1	44.3	100.0	100.0	-0.525	0.336
CREBBP	0.7813	5.6414	8.8387	17.3452	12.9	22.2	33.0	100.0	100.0	0.171	-0.380
CTNNB1	0.1953	0.3179	0.5576	1.0761	10.8	16.5	23.3	95.1	100.0	0.179	-0.249
CTRB2	0.3906	6.1292	12.2402	77.0468	10.1	19.4	37.8	99.6	100.0	0.699	0.599
CTSS	0.0977	0.3817	0.5537	0.8922	13.8	22.3	32.2	99.1	100.0	-0.078	-0.537
DCN	0.3906	8.1950	13.3145	21.2885	15.3	24.3	33.7	100.0	100.0	-0.031	-0.024
DSG2	0.1953	0.3326	0.6222	1.1530	6.3	9.9	17.0	92.4	100.0	-0.204	-0.259
EGFR	0.3906	15.1509	22.0130	31.1466	13.5	22.0	34.6	100.0	100.0	-0.359	0.105
ENO2	0.3906	2.1069	3.3340	5.3589	6.5	10.2	19.8	100.0	100.0	0.129	-0.443
EPHX2	0.0488	0.1326	0.1952	0.2927	16.1	30.8	44.9	99.6	100.0	0.926	0.786
FBN1	0.3906	75.8340	130.6415	284.2478	7.2	15.2	27.4	100.0	100.0	-0.256	-0.397
FLT1	0.0977	0.1774	0.2536	0.3814	18.3	29.6	45.1	96.4	100.0	0.038	-0.237
FLT4	0.1953	0.2141	0.4196	0.8491	13.1	23.7	33.2	79.1	99.5	-1.041	-0.573
GATM	0.7813	3.8991	8.1599	28.3969	11.7	24.5	38.6	98.2	100.0	0.779	0.365
GPX2	0.1953	0.3851	0.8183	1.6314	13.8	22.5	31.8	91.6	100.0	-0.053	-0.286
GSN	0.3906	2.4706	3.8559	5.5758	10.9	17.1	27.5	100.0	100.0	-0.440	-0.303

Table 2-5. Individual sample analysis in the training set and the validation set.

HGF	0.7813	3.1369	4.2756	5.7087	13.5	20.6	29.1	100.0	100.0	1.409	1.114
HRAS	0.3906	1.1017	1.6365	2.2933	11.5	17.6	27.6	99.1	100.0	0.092	-0.534
HSPB1	0.7813	17.4589	26.6933	43.4496	7.8	12.4	18.0	100.0	100.0	0.320	-0.436
IDH1	0.7813	4.0147	6.2299	8.5392	15.3	27.7	38.6	100.0	100.0	-0.714	0.070
IFI16	0.0977	0.5268	0.8141	1.2486	11.2	16.3	23.8	100.0	100.0	0.050	-0.534
IGEBP3	0.3906	1 8275	2 4911	3 4647	18.7	27.7	39.4	100.0	100.0	-0.821	-0.259
IGEBP5	0 1953	1 4684	2 4477	3 4458	12.2	18.9	28.8	100.0	100.0	-0 139	-0.245
II 1RN	0.7813	1 1646	6 2659	9.4454	10.8	17.8	29.9	99.1	100.0	-0.628	0.174
	0.0077	0.4492	0.2000	1 1167	11.0	10.0	20.0	100.0	100.0	-0.020	0.026
ITCAS	0.09/7	1.0629	1 5976	1.1107	10.7	19.0	30.1	100.0	100.0	-0.324	0.030
ITGAS	0.7013	1.0020	1.0070	2.3221	10.7	18.0	29.0	07.0	100.0	0.040	-0.700
II GAO	0.7613	2.4220	3.5940	4.9200	10.0	25.5	39.7	100.0	100.0	0.720	-0.002
	0.3900	2.1090	3.3034	0.0400	12.7	19.5	20.3	100.0	100.0	0.100	0.090
KII	0.7813	0.8790	1.3175	1.9812	17.1	26.1	43.6	79.6	100.0	1.093	0.723
KRT17	0.3906	0.5644	1.3222	3.6758	11.8	19.6	31.0	86.7	99.6	1.014	0.409
LAMP1	0.1953	4.8591	7.6344	10.5657	11.0	17.5	27.7	100.0	100.0	0.067	-0.643
LGALS4	0.0488	0.5952	1.3585	3.8176	11.1	17.4	27.7	99.6	100.0	-0.235	-0.133
MAPK1	0.1953	0.9370	1.5052	2.3895	8.1	13.1	21.6	100.0	100.0	-0.004	-0.319
MIA	0.0977	0.1353	0.2705	0.7009	18.5	29.4	42.0	86.2	100.0	0.070	-0.014
MLH1	0.0977	0.3941	0.7448	1.2973	8.9	16.0	25.4	97.8	100.0	-0.420	-0.262
MMP7	0.1953	1.5802	2.3302	3.7923	14.1	22.3	33.3	100.0	100.0	0.288	0.371
MMP9	0.3906	0.4034	0.7406	1.2942	12.2	18.4	27.9	76.9	94.7	0.202	0.013
MPO	0.1953	2.6538	4.9425	14.0439	12.0	18.6	28.5	100.0	100.0	0.715	-0.266
MXRA5	0.0977	0.4122	0.5796	0.8124	14.3	25.4	40.4	100.0	99.6	-0.334	-0.129
MYH11	0.1953	1.0149	1.6344	2,7118	15.0	24.1	32.6	99.6	100.0	0.959	-0.040
MYLK	0.0977	0.9389	1 2916	1.8766	14.3	24.7	35.7	100.0	100.0	1 421	0 137
NFFH	0 1953	0.3098	0.5692	0.8568	83	15.2	24.0	92.4	100.0	-0.340	0.217
NEXN	0 1953	1 9677	2 6070	3 8944	9.8	17.2	24.0	100.0	100.0	0 157	-0.652
NPC2	0.1953	6 1003	9 3074	13 4392	77	13.7	19.6	100.0	100.0	0.065	-0.674
NDM1	0.3006	5 3338	7 8220	12 3840	10.8	16.5	26.2	100.0	100.0	0.747	0.074
NULCP2	0.3900	1.5050	2 2047	2 1027	0.0	14.6	20.2	100.0	100.0	0.747	-0.427
	0.3900	0.7704	2.2047	J. 1937 7 7540	9.1	21.1	20.0	100.0	100.0	0.914	-0.143
	0.3900	0.7704	2.4312	1.7342	12.9	21.1	33.4 42.2	07.0	100.0	0.002	0.100
	0.3900	1 7025	0.9092	2 2000	21.4	30.8	42.3	90.0	100.0	0.314	-0.465
	0.3900	1.7920	2.4092	3.2009	20.0	29.1	41.0	100.0	100.0	-0.331	-0.210
PDCD4	0.0977	0.4220	0.6030	1.0333	10.9	17.7	27.0	100.0	100.0	0.700	-0.383
PDE4D	0.1953	1.3288	1.7252	2.2052	13.9	24.7	43.7	100.0	100.0	-0.992	-0.993
PDIA4	0.1953	3.5128	5.0177	7.6475	7.9	12.3	17.4	100.0	100.0	0.298	-0.441
PGC	0.0977	0.2103	0.4554	2.0906	10.9	19.2	30.8	97.8	100.0	1.433	0.948
PLG	0.0977	3.2857	4.7240	6.6106	10.8	18.3	31.8	100.0	100.0	0.828	-0.096
PNLIP	0.1953	0.4616	1.1945	3.8387	10.9	22.0	37.1	96.9	100.0	0.923	0.573
PNLIPRP2	0.0977	0.1635	0.2592	0.5346	12.0	21.2	31.5	94.7	98.7	1.215	0.593
PPBP	0.7813	2.0844	2.9409	4.8304	12.2	19.7	30.1	99.1	100.0	0.594	0.425
PTPN11	0.7813	0.9339	1.3053	1.8039	10.6	17.7	26.1	86.2	100.0	-0.113	-0.748
REG1A	0.7813	0.8963	2.0363	9.0869	11.1	16.8	25.2	78.7	99.6	0.709	0.300
RELA	0.1953	1.7117	2.0739	2.5443	12.2	17.0	23.4	100.0	100.0	-0.095	-0.073
RPL10	0.3906	0.9796	1.3893	2,1989	15.2	23.1	30.9	96.9	100.0	-0.860	-0.287
RPI 36	0 7813	2 4099	3 5902	5 1556	11.0	18.4	27.6	97.8	100.0	-0.391	-0.223
RPN1	0.3906	1 1319	1 9441	3,0100	11.8	20.3	27.5	96.0	100.0	-0.610	-0.520
RPN2	0.3906	0.8401	1 2023	1 8150	13.0	20.0	10.7	97.3	100.0	-0.010	-0.320
DDS5	0.0300	1/ 0570	24 2220	20.2520	10.0	20.0		100.0	100.0	-0.097	-0.109
RP30	0.3900	14.00/0	24.2220	39.3030	12.3	19.4	20.2	100.0	100.0	-0.547	-0.202
RUNX1	0.3906	1.5223	1.7024	1.9000	14.5	24.5	30.4	100.0	100.0	-0.640	0.331
S100A2	0.1953	0.4912	0.8859	1.7854	5.1	9.1	10.0	100.0	100.0	1.100	0.244
S100A4	0.3906	17.0969	27.5602	40.0929	4.8	8.4	21.6	100.0	100.0	0.695	-0.119
S100A6	0.1953	159.6607	252.7924	417.2014	3.6	9.6	20.6	100.0	100.0	-0.224	-0.812

SERPINB5	0.3906	0.9163	1.8133	3.3976	12.3	18.9	28.0	93.3	100.0	-0.098	-0.117
SF3B1	0.0488	0.4617	0.6983	1.0927	9.8	14.2	21.6	100.0	100.0	-0.377	-0.590
SLC2A1	0.0488	0.3345	0.6858	1.5749	12.7	23.7	37.8	97.3	100.0	-0.079	-0.528
SLC4A1	0.0488	0.6191	1.1558	2.0158	6.2	12.7	30.6	99.1	100.0	0.297	0.047
SMAD4	0.0488	0.2710	0.3757	0.5662	11.0	17.0	25.6	100.0	100.0	0.002	-0.143
SPTAN1	0.0488	1.7329	2.4316	3.5893	6.9	12.8	18.6	100.0	100.0	0.006	-0.871
STIL	0.3906	1.9559	2.6342	4.1541	12.7	21.7	28.9	100.0	100.0	-0.062	-0.438
SURF6	0.0977	0.1552	0.2646	0.3644	8.8	14.2	20.1	87.6	100.0	-0.883	-0.275
TKT	0.1953	4.4790	7.4575	11.3030	5.0	7.9	12.1	99.6	100.0	-0.772	-1.007
TROVE2	0.3906	0.5881	0.9815	1.5620	16.7	30.6	45.3	90.7	100.0	-0.206	-0.447
TYMP	0.3906	2.3734	3.7130	5.6881	8.5	14.5	22.5	99.1	100.0	-0.486	-0.469
UFL1	0.1953	0.4507	0.7503	1.2595	10.3	18.0	27.6	95.1	100.0	0.114	-0.462
UQCRC2	0.1953	1.4013	2.0534	3.1302	9.1	14.3	21.3	100.0	100.0	-0.306	-0.232
VCL	0.1953	3.8083	5.3108	7.9039	10.0	14.9	24.9	100.0	100.0	-0.067	-0.620
VEGFA	0.0977	0.2752	0.4170	0.5926	11.5	19.5	27.0	98.7	100.0	-0.054	-0.395
ZBTB16	0.1953	1.1668	1.4468	1.7330	16.7	29.8	44.2	100.0	100.0	-0.034	0.599
ZNF462	0.1953	8.0621	12.8977	25.5465	15.3	23.1	35.1	100.0	100.0	1.295	0.770

1.3.3 Revealing Proteomic Risk Subgroups, using Prognostic Biomarkers

To establish PDAC subtypes, co-expressed proteins associated with prognosis were chosen to classify PDAC tumors according to risk. Hazard ratios (for both recurrence and death) were calculated for the 115 proteins that were derived from the training set, comprised of 148 patients (Table 2-6). Of the 60 proteins identified by the univariate Cox regression with P-values less than 0.1, for either recurrence or death, 49 proteins had correlation coefficients (Pearson |r|) greater than 0.5, with at least one another protein subjected to hierarchical clustering. When the 44 proteins which composed significant clusters [Approximately Unbiased (AU) > 0.95] (Figure 2-5A) were clustered, 5 protein clusters and 4 subgroups of patients were identified, characterized by high correlations with prognosis and tumorigenesis (Figure 2-6A). The optimal cluster numbers were verified by determining the gap statistics for proteins (Figure 2-5B) and the significance of the log-rank test for patients (Figure 2-5C). The clusters demonstrated clear separation for both dimensions of principal components (Figure 2-5D).

The protein clusters and risk subgroups were characterized by activated biological functions (Figure 2-7A) and prognostic relevance. The risk subgroup designations were chosen according to their differentially enriched signatures (Figure 2-7B). The right-most subgroup (N = 67) exhibited elevated expression levels in protein cluster-4 and cluster-5, whose members showed lower hazard ratios, associated with early-stage tumors and the low overall prevalence of death or recurrence. Hence, this group was named "Stable" because stable disease corresponds with a low prevalence of death or recurrence. The left-most subgroup (N = 17), which was named "Exocrine-like", was associated with signaling pathways that are activated in aggressive tumors (Cluster-3) and with high levels of pancreatic enzymes (Cluster-5). The second subgroup (N = 44) was enriched in proteins associated with tumorigenic programs (Cluster-2 and Cluster-3) and the interaction and organization of the extracellular matrix (ECM, Cluster-1). The third subgroup (N = 20) exhibited the high

expression of Cluster-1 proteins and the downregulation of proteins in Cluster-2 and Cluster-3. This subgroup was primarily associated with advanced-stage tumors and poor outcomes, despite its association with Cluster-4. Because the third subgroup was significantly enriched in the Cluster-1 proteins compared with the second subgroup (Figure 2-7C), the second and third subgroups were named "Activated" and "ECM-Remodeling", respectively. Kaplan-Meier estimates of cumulative survival showed that the risk subgroups were associated with patient outcomes [Log-rank test, P = 1.7E-08 for overall survival (OS), P = 7.5E-05 for disease-free survival (DFS), Figure 2-6B]. Patients in the "ECM-Remodeling" group had shorter median OS (11 months [95% CI, 6.9-15.1]) than the patients in the other subgroups. No patient in the "ECM-Remodeling" subgroup survived beyond 23 months. All risk subgroups were associated with T and N stages, and the T3-4 and N2 stages comprised 60% and 40% of the "ECM-Remodeling" subgroup, respectively (Table 2-7). In the multivariate survival analysis that included the most relevant standard prognostic factors, the identified risk subgroups remained significantly associated with survival, along with resection margin, T stage, and lymphatic invasion (Table 2-8).

Figure 2-5. Evaluating hierarchical clustering analysis for proteins and proteomic risk subgroups.

A. Dendrogram, generated after hierarchical clustering, using multiscale bootstrap resampling (n = 1,000). The 49 of 60 proteins that were correlated with at least one another protein (Pearson's |r| > 0.5) were included in the clustering analysis. Red values on the edges of the clustering are AU (Approximately Unbiased) P-values. The 44 proteins in the clusters that were significantly supported by the data (Red boxes, P < 0.05) were selected for the final clustering analysis. B. The optimal number of protein clusters for hierarchical clustering, using Gap statistics. Five protein clusters appear to be optimal. C. Log-rank test for recurrence and survival based on the number of clusters for PDAC patients. Four clusters of samples (risk subgroups) were the most significantly related to prognosis. D. Partitioning clusters, based on principal components, to validate interactions among the proteins in each of the five protein clusters or between individuals in each of the four risk subgroups.

Figure 2-6. Identifying proteomic risk subgroups associated with prognosis and original tumor subtypes.

(A) Hierarchical clustering analysis (HCA), using 44 proteins in the training set, identified 4 risk subgroups (X-axis of the heatmap) of tumors associated with 5 protein clusters (Y-axis of the heatmap). Protein names are colored according to significant associations with increased risk (Red, HR > 1) or reduced risk (Blue, HR < 1). Enriched representative biological processes, according to Gene Ontology analysis, in the five protein clusters (right side of the heatmap) and the prognostic information for individual patients (below the heatmap) are also presented. (B) Kaplan-Meier survival curves for death and recurrence in each risk subgroup. "ECM-remodeling" had the worst outcomes, followed by "Activated", "Exocrine-like", and "Stable" based on the numbers at risk, the median survival rate, and the log-rank test. "Not Applicable" indicates that the number of patients who experienced the event did not reach 50% in the overall follow-up.

A. Gene ontology functional analysis for biological process, according to the proteins in each cluster. Fisher's exact test P-values (EASE score < 0.1) are shown. B. Averaged Z-scores of the twenty expression blocks formed by proteins and individual sample clusters. The highly expressed blocks were considered to be signatures and were used to name the risk subgroups, according to the enriched biological processes. C. Mean difference (with 95% CI bar) between cluster 1 protein expression levels between the "Activated" and "ECM-remodeling" subgroups.

Gene Name	DFS, Hazard Ratio	DFS, 95% CI	DFS, P-value	OS, Hazard Ratio	OS, 95% CI	OS, P-value	Resection Margin , Expression	Resection Margin n, P-value	TNM T , Expression	TNM T n, P-value	TNM N , Expression	TNM N n, P-value	Differentiati on , Expression	Differentiati on n, P-value	Lymphatic Invasion , Expressio	Lymphatic Invasion n, P-value	Venous Invasion , Expression	Venous Invasion ı, P-value	Perineural Invasion , Expressio	Perineural Invasion n , P-value	Reccurence Recurrence Type Type , Expression, P-value
ACACB	3.6	1.3 to 9.7	0.011	5.8	1.9 to 18	0.0023		0.095		0.83		0.49		0.57		0.21		0.65		0.31	Elevated 0.0099
ACADVL	0.90	0.3 to 2.7	0.86	1.0	0.32 to 3.3	0.96		0.21	El contro d	0.56	N	0.71	Elevated	0.02		0.20	El contro d	0.47		0.95	0.15
ACTN4	1.7	0.74 to 3.9	0.21	1.7	0.62 to 4.4	0.31		0.66	Elevated	0.00014	Not Linear	0.043	Elevated	0.02		0.19	Elevated	0.049		0.051	U.12
ADAM9	3.3	1.5 to 7.4	0.0034	0.1	2.4 to 15 0.75 to 9.7	0.00010		0.63	Elevated	0.050		0.29	Not Linear	0.07		0.10		0.15	Elevated	0.098	Elevated 0.0093
AHSC	0.78	0.32 to 4.9	0.42	0.82	0.75 to 9.7	0.095		0.51		0.23		0.43	NULLINEA	0.00		0.99		0.22	Elevated	0.0028	0.80
	1.6	0.24 to 2.0	0.03	2.0	0.22 to 3	0.70		0.00		0.16		0.12		0.00		0.22		0.73	Lievaleu	0.001	0.060
	0.37	0.47 to 0.79	0.011	0.30	0.13 to 0.72	0.0065		0.57	Elevated	0.0053		0.30		0.02		0.38		0.097		0.20	Not Linear 0.024
ALDH1A1	0.46	0.22 to 0.94	0.033	0.51	0.24 to 1.1	0.082		0.31	Liolatoa	0.43		0.49	Down	0.03		0.65		0.37		0.61	0.31
ALDH6A1	1.2	0.57 to 2.6	0.62	1.3	0.59 to 3	0.49		0.31		0.56		0.68		0.82		0.90		0.90		0.55	0.14
ANPEP	0.49	0.25 to 0.99	0.046	0.48	0.22 to 1	0.057		0.35	Elevated	0.034		0.30	Elevated	0.00		0.33		0.30		0.58	0.22
ATP1A1	1.2	0.45 to 3.3	0.70	0.46	0.15 to 1.4	0.16		0.85	Elevated	0.0024		0.23		0.26		0.062		0.23		0.25	0.47
BAX	2.1	0.63 to 7.1	0.23	1.8	0.46 to 7.2	0.39		0.53		0.25		0.20		0.27		0.85		0.71		0.15	0.060
CALR	0.63	0.35 to 1.1	0.12	0.46	0.23 to 0.88	0.020		0.84	Elevated	6.71E-05	Elevated	0.046		0.26		0.44		0.22		0.25	0.19
CAP1	0.55	0.3 to 1	0.066	0.39	0.19 to 0.78	0.0079		0.59	Elevated	0.00049	Elevated	0.035	Elevated	0.00		0.072		0.055	Elevated	0.031	0.19
CCNE1	0.41	0.14 to 1.2	0.097	0.45	0.15 to 1.3	0.13		0.19		0.15		0.20		0.54		0.21		0.11		0.33	0.76
CD19	0.44	0.25 to 0.78	0.0049	0.37	0.19 to 0.74	0.0051	D	0.37		0.63		0.77		0.19		0.52		0.47		0.27	0.28
CD274	2.2	1.2 to 4.1	0.0086	2.7	1.4 to 5.3	0.0046	Down	0.0038		0.98	Flounted	0.87		0.82		0.71		0.65		0.66	Elevated 0.00009
CEACAM	2.2	0.65 10 5.9	0.096	2.3	0.02 to 0.3	0.11		0.00	Flowated	0.099	Elevated	0.020		0.55		0.13		0.55	Elevated	0.43	Not Linear 0.042
CENPR	20	0.6 to 7	0.26	0.93	0.25 to 3.4	0.007		0.22	Lievaleu	0.027		0.077		0.13		0.70		0.70	Lievaleu	0.0000	0.042
CHEK2	0.67	0.18 to 2.5	0.20	0.35	0.059 to 1.2	0.076		0.22	Down	0.43		0.21		0.50		0.04		0.33		0.14	0.000
CLCA1	0.94	0.32 to 2.8	0.91	0.96	0.29 to 3.2	0.95		0.97	Down	0.074		0.56		0.09		0.20		0.33	Elevated	0.013	0.64
COL2A1	0.38	0.17 to 0.83	0.015	0.30	0.13 to 0.7	0.0052		0.66	Elevated	0.00022		0.79		0.81		0.88		0.11		0.41	0.37
COL4A6	1.3	0.38 to 4.6	0.67	0.70	0.18 to 2.7	0.60		0.91	Not Linear	0.00017		0.18	Elevated	0.01	Elevated	0.015		0.20		0.18	0.22
COL6A2	0.55	0.29 to 1	0.061	0.48	0.25 to 0.91	0.026		0.73	Elevated	3.71E-05		0.54		0.30		0.79		0.098		0.38	0.95
COL28A1	0.75	0.29 to 1.9	0.54	1.2	0.42 to 3.4	0.74		0.75		0.19		0.96		0.29		0.24		0.55	Elevated	0.011	0.60
CPA1	0.86	0.69 to 1.1	0.16	0.73	0.57 to 0.93	0.012		0.32	Down	0.0032		0.29		0.55		0.21	Down	0.023	Down	0.015	Not Linear 0.030
CPB1	0.75	0.49 to 1.1	0.18	0.69	0.42 to 1.1	0.14		0.46	Down	0.013		0.60		0.71		0.40	Down	0.020	Down	0.0018	Not Linear 0.029
CR2	0.40	0.15 to 1.1	0.069	0.22	0.077 to 0.61	0.0036		0.24	Elevated	0.0040		0.055		0.81		0.63		0.43		0.93	0.52
CREBBP	4.7	43872	0.00028	4.9	1.9 to 13	0.00084		0.20	Not Linear	0.0077		0.32		0.16		0.17		0.42	Elevated	0.029	Elevated 6.55E-05
CTDD2	1.0	0.72 to 3.5	0.20	1.5	0.03 10 3.0	0.30		0.40	Dave	0.31		0.20		0.50		0.30	Daum	0.00	Dave	0.19	U.II
CTEE	1.0	0.74 to 1.2	0.76	0.95	0.71101.5	0.70		0.13	Down	0.0070		0.20	Floveted	0.55		0.71	Down	0.044	Elovated	0.0055	NOLLINEAR 0.030
DCN	0.62	0.43 to 2.5	0.94	0.65	0.00 to 4.5	0.20		0.35	Flevated	0.39		0.13	Elevaleu	0.04		0.41		0.75	Elevaleu	0.032	0.57
DSG2	2.2	1 1 to 4 4	0.018	1.9	0.88 to 4.1	0.10		0.44	Elevated	0.0018	Not Linear	0.021		0.10	Elevated	0.027		0.19	Elevated	0.027	0.067
EGER	0.39	0.16 to 0.96	0.040	0.27	0.1 to 0.71	0.0080		0.98	Elevated	0.018	Hot Eniodi	0.11		0.15	Elolatod	0.27		0.77	Lioiatoa	0.82	0.099
ENO2	3.6	1.6 to 8.4	0.0026	7.0	2.7 to 18	0.000067		0.12		0.57		0.15	Elevated	0.03		0.68		0.32	Elevated	0.045	Elevated 4.82E-05
EPHX2	1.0	0.45 to 2.3	0.98	0.79	0.33 to 1.9	0.59		0.34		0.44		0.86		0.09		0.46		0.31		0.094	0.78
FBN1	1.1	0.63 to 1.8	0.83	1.3	0.72 to 2.2	0.43		0.96		0.23		0.57	Not Linear	0.00		0.70		0.53		0.24	0.95
FLT1	1.6	0.65 to 3.7	0.26	2.0	0.77 to 5.1	0.11		0.36		0.74		0.50		0.15		0.88		0.79		0.058	0.12
FLT4	1.4	0.88 to 2.10	0.17	1.1	0.69 to 1.91	0.60	-	0.42		0.11		0.80		0.89		0.29		0.35		0.815	0.16
GATM	0.90	0.66 to 1.2	0.52	0.91	0.65 to 1.3	0.57	Down	0.071		0.11		0.64		0.35		0.85		0.20		0.13	Not Linear 0.0037
GPX2	1.1	0.66 to 1.9	0.70	1.2	0.7 to 2.2	0.47		0.20	El control	0.052		0.29	El constant	0.34		0.91		0.77	Electronic	0.052	0.77
GSN	0.63	0.26 to 1.5	0.31	0.26	0.096 to 0.73	0.011		0.71	Elevated	0.00017		0.18	Elevated	0.05		0.86		0.54	Elevated	0.032	0.80
	1.6	0.19 to 1.0	0.20	2.0	13838	0.15		0.20		0.05		0.46		0.02		0.90		0.097		0.55	Elevated 0.023
HSDB1	1.0	0.81 to 1 1	0.33	17	0.75 to 4	0.044		0.23		0.062		0.30	Down	0.07		0.37		0.04		0.41	0.24
IDH1	0.29	0.11 to 0.73	0.0093	0.27	0.097 to 0.78	0.015		0.62	Elevated	0.0014	Elevated	0.049	DOWIT	0.38	Elevated	0.027		0.33		0.45	Not Linear 0.034
IFI16	2.1	0.8 to 5.7	0.13	0.91	0.31 to 2.6	0.86		0.50		0.083		0.11	Elevated	0.03		0.54		0.50		0.17	Not Linear 0.025
IGFBP3	2.8	0.86 to 9.1	0.088	4.8	1.3 to 18	0.020		0.85	Elevated	0.00090		0.32	Not Linear	0.03		0.32		0.22	Elevated	0.033	0.22
IGFBP5	3.1	1.4 to 6.8	0.0063	2.8	1.1 to 7	0.024		0.68	Elevated	0.041		0.26		0.29		0.70		0.22	Elevated	0.018	Not Linear 0.035
IL1RN	1.1	0.46 to 2.5	0.87	0.76	0.3 to 1.9	0.55		1.00	Not Linear	0.00093		0.58		0.32		0.26		0.70		0.78	0.062
IT GA3	1.3	0.62 to 2.8	0.47	1.3	0.54 to 2.9	0.60		0.67		0.99		0.61		0.79		0.24		0.97		0.67	Elevated 0.0043
IT GA5	4.4	1.7 to 12	0.0025	4.3	1.4 to 13	0.0098		0.74	Not Linear	0.00073	Not Linear	0.026	Elevated	0.00		0.070		0.081	Elevated	0.0017	Elevated 4.80E-05

Table 2-6. Association of 115 protein levels with recurrence, death, and prognostic factors.

Incol 2.2 0.3 bis A.2 0.4 bis																						
num 12 0.48 0.43 0.44 3 0.45 0.44 0.43 0.44 0.43 0.44<	ITGA6 2.0	0.73 to 5.4	0.18	1.4	0.48 to 4.3	0.51		0.49	Not Linear	0.00022	Elevated	0.032	Elevated	0.04		0.092		0.14		0.45	Elevated	0.11
Cht11 Ch Ch Ch Ch Ch	JIVIT 2.5 KIT 1.2	0.58 to 2.4	0.0047	3.5 1.4	0.64 to 3.3	0.00030		0.64		0.40		0.77		0.41		0.77		0.55		0.40	Elevated	0.00065
LAMP 2 1 0.5 1 0.6	KRT17 1.6	1.1 to 2.2	0.0078	1.3	0.87 to 1.9	0.21		0.29	Elevated	9.28E-07		0.15	Elevated	0.01		0.16	Elevated	0.010	Elevated	0.034		0.054
LGALS 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.66 0.64 0.65 0.64 0.64 0.65 0.64 <t< td=""><td>LAMP1 2.9</td><td>1 to 8.3</td><td>0.041</td><td>4.6</td><td>1.5 to 14</td><td>0.0083</td><td>Down</td><td>0.046</td><td></td><td>0.96</td><td></td><td>0.30</td><td></td><td>0.91</td><td></td><td>0.80</td><td></td><td>0.83</td><td>Elevated</td><td>0.017</td><td>Not Linear</td><td>3.12E-05</td></t<>	LAMP1 2.9	1 to 8.3	0.041	4.6	1.5 to 14	0.0083	Down	0.046		0.96		0.30		0.91		0.80		0.83	Elevated	0.017	Not Linear	3.12E-05
DMA 1 1 1 1 1 1 1 0	LGALS4 0.98	0.66 to 1.5	0.94	1.0	0.64 to 1.6	0.99		0.81	Elevated	0.035		0.52	Not Linear	0.03		0.31		0.80	Elevated	0.026	El contro d	0.82
NLTH 19 118 <td>MAPK1 3.1 MIA 13</td> <td>1.1 to 8.9 0.83 to 2</td> <td>0.032</td> <td>3.7</td> <td>1.1 to 12 0.93 to 2.5</td> <td>0.035</td> <td></td> <td>0.38</td> <td></td> <td>0.43</td> <td></td> <td>0.03</td> <td></td> <td>0.20</td> <td></td> <td>0.39</td> <td></td> <td>0.45</td> <td></td> <td>0.12</td> <td>Elevated</td> <td>0.0092</td>	MAPK1 3.1 MIA 13	1.1 to 8.9 0.83 to 2	0.032	3.7	1.1 to 12 0.93 to 2.5	0.035		0.38		0.43		0.03		0.20		0.39		0.45		0.12	Elevated	0.0092
MAPP 0.3 0.686 bit 6 0.616 bit 6 0.616 bit 6 0.636 bi	MLH1 1.9	1.1 to 3.3	0.031	2.9	1.5 to 5.6	0.0012		0.28		0.79		0.75		0.99		0.97		0.17		0.73	Elevated	0.020
MAPS 0.53 0.55 0.54 0.75 0.10 Elevated 0.02 0.10 Elevated 0.02 0.10 Elevated 0.02 0.03 Elevated 0.03<	MMP7 2.1	0.96 to 4.5	0.065	2.1	0.86 to 5	0.11		0.54	Elevated	7.74E-05		0.25	Elevated	0.03		0.096		0.41	Elevated	0.00096	Elevated	0.014
MPCA 1.2 0.858 1.7 0.859 0.71 0.058 Elevated 0.64 0.55 0.54 0.58 0.658 0.068 0.068 Elevated 0.10 0.34 0.358 Elevated 0.17 0.072 0.03 MTKH 0.3 0.456 0.2 0.77 0.57 0.16 0.44 0.77 0.50 0.46 0.77 0.50 0.46 0.77 0.70 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.70 0.77 0.70 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.78 0.77 0.78 <td>MMP9 0.93</td> <td>0.55 to 1.6</td> <td>0.78</td> <td>1.1</td> <td>0.62 to 1.9</td> <td>0.76</td> <td></td> <td>0.91</td> <td>Not Linear</td> <td>0.031</td> <td>Elevated</td> <td>0.021</td> <td></td> <td>0.10</td> <td>Elevated</td> <td>0.022</td> <td></td> <td>0.19</td> <td>Elevated</td> <td>0.0031</td> <td></td> <td>0.42</td>	MMP9 0.93	0.55 to 1.6	0.78	1.1	0.62 to 1.9	0.76		0.91	Not Linear	0.031	Elevated	0.021		0.10	Elevated	0.022		0.19	Elevated	0.0031		0.42
MYHK 0.75 0.84 0.47 0.76 0.73 0.03 0.03 0.04 0.01 0.34 0.32 Elevated 0.01 0.34 0.32 Elevated 0.01 0.34 0.34 0.32 Elevated 0.01 0.34 0.34 0.32 Elevated 0.01 0.34 0.32 Elevated 0.01 0.34 0.34 0.32 Elevated 0.01 0.34 0.34 0.32 Elevated 0.01 0.34 0.34 0.34 0.34 0.35 0.34 0.34 0.34 0.34 0.35 0.34 0.34 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.36 0.34 0.35 0.34 0.35 0.36 0.34 0.35 0.34 0.35	MPO 1.0	0.63 to 1.7	0.88	1.1	0.61 to 1.9	0.79		0.86		0.058		0.065	Elevated	0.04		0.58		0.35	Elevated	0.014		0.092
IMIK 10 0.49 0.47 0.39 0.44 0.37 0.36 0.46 0.77 Elevate 0.78 NEH 0.39 0.48 0.58 0.44 0.31 0.35 0.	MYH11 0.75	0.38 to 1.5	0.42	0.88	0.49 to 3.3	0.01		0.57		0.080		0.10		0.01		0.32		0.88	Elevated	0.071		0.63
NEFN 14.1 0.38 0.18 0.28 0.14 0.27 0.08 0.46 Not Linear 0.03 NEXN 1.3 0.48 0.3 0.14 7 0.47 0.33 0.44 0.25 0.34 0.46 0.057 NPMI 1.3 0.44 0.3 0.24 0.44 0.025 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.44 0.44 0.44 0.44 0.45 0.44	MYLK 1.0	0.49 to 2.1	0.97	1.3	0.57 to 3	0.54		0.96		0.44		0.97		0.30		0.46		0.17	Elevated	0.019		0.19
MEXA 1.4 0.38 0.49 0.49 0.49 0.52 0.17 M 0.057 MPWH 1.3 0.44 0.37 0.63 0.03 0	NEFH 0.39	0.18 to 0.82	0.014	0.21	0.09 to 0.5	0.00043		0.30	Elevated	0.0011		0.43		0.17		0.35		0.35		0.40	Not Linear	0.039
NPMA 2.3 0.44 0.57 0.77 Notlinear 0.024 0.76 0.76 0.16 0.76 0.76 0.86 0LG2 0.31 0.27 0.35 0.24 0.24 0.24 0.65 0.51 0.76 0.81 0.37 0LFAM 0.37 0.71 3.0 0.47 0.77 0.88 Elevated 0.64	NEXN 1.4	0.38 to 4.8	0.64	1.7	0.4 to 7	0.49		0.52		0.22		0.41		0.26		0.96		0.52		0.17	Elevated	0.056
LUCE2 0.51 0.56 0.57 0.70 0.83 0.18 PACSM2 0.57 0.71 0.30 0.71 0.30 0.71 0.70 0.83 0.71 PACSM2 0.57 0.71 0.30 0.71 0.30 0.71	NPC2 2.1 NPM1 1.3	0.85 to 5.2 0.44 to 3.7	0.11	3.0 0.88	1.4 to 9.1 0.26 to 2.9	0.0073		0.47	Not Linear	0.73	Not Linear	0.20	Elevated	0.13		0.44		0.72		0.18	Elevated	0.027
CLFM 0.79 0.71 0.71 0.74 <th< td=""><td>NUCB2 0.91</td><td>0.36 to 2.3</td><td>0.83</td><td>0.84</td><td>0.3 to 2.4</td><td>0.75</td><td></td><td>0.58</td><td>not Emou</td><td>0.48</td><td>Hot Emode</td><td>0.24</td><td>Liotatou</td><td>0.65</td><td></td><td>0.51</td><td></td><td>0.70</td><td></td><td>0.83</td><td></td><td>0.18</td></th<>	NUCB2 0.91	0.36 to 2.3	0.83	0.84	0.3 to 2.4	0.75		0.58	not Emou	0.48	Hot Emode	0.24	Liotatou	0.65		0.51		0.70		0.83		0.18
PACSN0 0.82 0.84 0.85 0.84 0.85 0.84 0.85 0.85 0.84 0.85 0.85 0.85 0.84 0.85 0.85 0.85 0.84 0.85 0.85 0.85 0.84 0.85 0.85 0.85 0.85 0.84 0.84 0.84 0.85 0.85 0.85 0.84 0.85 0.85 0.84 0.85 <	OLFM4 0.97	0.7 to 1.3	0.87	1.0	0.72 to 1.5	0.90		0.86	Elevated	0.00081	Elevated	0.014	Elevated	0.04	Elevated	0.042		0.42	Elevated	0.012		0.35
PPCDD 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 PDEMD 0.12 0.41 0.03 0.27 0.67 0.63 0.97 0.43 0.14 PDEMD 0.12 0.41 0.70 0.24 0.31 0.43 0.14 0.85 0.51 PDIA 0.10 0.50 0.220 0.82 0.53 0.54 0.43 0.43 0.55 0.51 PPLIC 0.10 0.54 0.43 0.54 0.44 <th0.44< th=""> <th0.44< th=""> <th0.44< th=""></th0.44<></th0.44<></th0.44<>	PACSIN2 0.82	0.26 to 2.6	0.74	0.78	0.21 to 2.9	0.71		0.89	Elevated	0.038		0.085		0.32		0.24		0.078		0.21		0.75
PDEF 12 0.41 0.50 0.42 0.068 0.085 0.63 PCIA4 1.7 0.716 1.41 0.23 0.08 0.044 0.50 0.24 0.31 0.82 0.048 0.048 PCG 0.30 0.010 2.5 0.68 0.75 0.65 0.004 0.016 0.49 0.10 0.49 0.10 0.49 0.10 0.49 0.10 0.24 0.31 0.63 0.008 0.035 0.049 0.11 0.10 0.49 0.10 0.49 0.10 0.49 0.11 0.10 0.49 0.01 0.26 0.008 0.035 0.09 0.05 0.43 0.09 0.05 0.43 0.93 0.30 0.43 0.30 0.16 0.05 0.43 0.30 0.30 0.43 0.30 0.30 0.43 0.30 0.30 0.43 0.30 0.16 0.30 0.16 0.33 0.30 0.16 0.30 0.16 0.30	PARP1 0.74 PDCD4 0.43	0.23 to 2.4	0.62	0.24	0.07 to 0.85	0.024		0.77	Not Linear	0.013		0.23		0.54		0.83		0.69		0.41		0.10
PPAC 1.7 0.7 1b 1.1 0.21 0.81 bit 0.81 bit 0.81 bit 0.62 bit 0.64 bit 0.61 b	PDE4D 1.2	0.4 to 3.8	0.73	0.97	0.29 to 3.2	0.95		0.20		0.12	Not Linear	0.041		0.50		0.42		0.098		0.085		0.51
PCG 0.79 0.69 lo 1.1 0.616 0.49 0.016 0.49 0.10 0.279 0.279 0.279 0.281 lo 1.3 0.249 0.016 0.499 0.101 0.37 0.249 0.270 0.249 0.270 0.249 0.270 0.249 0.270 0.249 0.270 0.246 0.270 0.246 0.270 0.246 0.270 0.246 0.270 0.246 0.270 0.246 0.270 0.247 0.270 0.247 0.270 0.247 0.270 0.247 0.270 0.247 0.270 0.247 0.270 0.247 0.261 0.270 0.271 0.261	PDIA4 1.7	0.71 to 4.1	0.23	2.0	0.82 to 5	0.13		0.39		0.95		0.70		0.24		0.31		0.81		0.52	Elevated	0.0048
Phulip 3/2 13 b 13 b 10 0 0.01 0 24 0 0.02 0 24 0 0.02 0 24 0 0.02 0 24 0 0.02 0 25 0 0.02 0 25 0 0.02 0 25 0 0.02 0 25 0 0.02 0 25 0 0.02 0 25 0 0.02 0 25 0 0.02 0 25 0 0.02 0 25 0 0.02 0 25 0 0.02 0 25 0 0.02 0 25 0 0.03 0	PGC 0.79	0.59 to 1.1	0.11	0.69	0.49 to 0.97	0.033		0.56		0.75		0.65	Down	0.0016		0.49		0.10		0.49		0.15
PNLIPPE2 bit 03 0.34 0.57 0.33 0.46 0.77 Elevated 0.045 0.41 0.41 0.41 0.43 0.63 0.035 0.025 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.043 0.093 0.35 0.045 0.035 0.0	PLG 3.0 PNLIP 0.73	0.54 to 0.99	0.010	2.5	0.99 to 0.2	0.052		0.01	Down	0.43		0.41		0.10		0.37	Down	0.35	Down	0.27	Not Linear	0.21
PPEPP 0.54 0.28 to 1.1 0.083 0.78 0.35 to 1.7 0.54 0.50 0.17 Down 0.39 0.65 0.43 Down 0.098 0.65 0.30 Leade 0.009 0.30 Leade 0.000 Leade 0.009 0.43 Down 0.038 Leade 0.009 0.30 Leade 0.009 Leade 0.01 Leade 0.009 Leade 0.021 Leade 0.01 Leade 0.009 Leade 0.024 0.024 0.024 0.024 0.024 0.024 0.01 Leade 0.024 0.024 0.024 0.024<	PNLIPRP2 0.80	0.51 to 1.3	0.34	0.57	0.33 to 0.99	0.046		0.77	Elevated	0.049		0.13		0.61		0.40	Down	0.15	Down	0.35	Not Elliour	0.29
PTPN11 6.3 1.7 ho 23 0.0056 6.6 1.5 ho 29 0.012 0.15 0.26 0.33 0.30 0.43 0.93 0.30 0.43 0.93 0.30 Elevated 0.0075 RELA 2.0 0.28 to 14 0.49 1.7 0.19 to 16 0.63 0.37 0.074 0.255 0.87 Elevated 0.0075 RPL30 1.0 0.43 to 2.5 0.92 0.41 0.66 0.44 0.22 0.46 0.46 0.42 0.71 0.26 0.77 0.51 0.25 0.37 0.51 0.25 0.37 0.51 0.25 0.35 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.57 0.66 0.054 0.054 0.032 0.11 Elevated 0.025 0.064 0.33 0.36 0.55 0.36 0.51 0.020 0.034 0.11 Elevated 0.0054 0.11 Elevated 0.025<	PPBP 0.54	0.26 to 1.1	0.083	0.78	0.35 to 1.7	0.54		0.50		0.17	Down	0.039		0.95		0.43	Down	0.0098		0.63		0.058
http://htttpicon/htttp://http://http://http://http://http://http://http://htt	PTPN11 6.3	1.7 to 23	0.0056	6.6	1.5 to 29	0.012		0.15		0.26		0.33		0.30		0.43		0.93		0.30	Elevated	0.00053
RPL10 1.4 0.57 is 37 0.44 0.83 0.32 is 22 0.71 0.64 0.027 0.64 0.22 0.46 0.46 0.82 0.07 0.51 0.935 RP1.8 0.67 0.29 is 1.5 0.34 0.30 0.12 is 0.75 0.010 0.77 NotLinear 0.033 0.81 Elevated 0.028 0.035 0.51 0.55 0.16 0.51 0.55 0.55 0.16 0.51 0.55 0.55 0.55 0.16 0.51 0.55 0.55 0.55 0.55 0.51 0.55 0.55 0.51 0.55 0.55 0.51 0.55 0.55 0.54 0.055 0.16 0.55 0.55 0.55 0.51 0.03 0.075 0.072 0.80 NotLinear 0.011 0.91 0.65 0.54 0.55 0.51 0.51 0.55 0.51	REGIA 0.74 RELA 2.0	0.53 to 1 0.28 to 14	0.065	0.60	0.41 to 0.88 0.19 to 16	0.0093		0.46		0.15		0.16		0.092		0.95		0.085	Elevated	0.078	Flevated	0.0075
RPL36 1.0 0.43 to 2.5 0.92 0.41 0.16 to 1.5 0.34 0.35 0.55 0.71 0.35 RPN1 0.49 0.16 to 1.5 0.24 0.20 0.081 0.092 0.16 0.51 0.55 0.57 RPS5 0.58 0.27 to 1.2 0.15 0.34 0.092 0.16 0.32 0.041 Elevated 0.021 0.092 0.16 0.51 0.055 0.66 RN1 0.42 0.43 to 1.4 0.43 0.44 0.20 0.054 0.012 0.65 0.32 0.41 0.035 0.066 0.054 0.032 0.41 0.035 0.004 0.16 0.23 0.65 0.24 0.32 0.41 0.035 0.004 0.17 0.007 0.017 0.58 0.21 0.54 0.53 0.24 0.65 0.36 0.41 0.020 0.41 0.020 0.04 0.014 0.020 0.14 0.020 0.04 0.010 0.102 0.11 0.016 0.016 0.016 0.014 0.014 0.014 0.014 0.014<	RPL10 1.4	0.57 to 3.7	0.44	0.83	0.32 to 2.2	0.71		0.46	Not Linear	0.044		0.22		0.46		0.46		0.82	Liolatoa	0.17	Elolatou	0.087
HPN1 0.67 0.29 0.15 0.30 0.12 0.05 0.16 0.51 0.55 RPN2 0.49 0.16 1.5 0.21 0.28 0.021 0.055 0.016 0.012 0.055 0.16 0.51 0.55 RPN2 0.49 0.16 1.5 0.21 0.24 0.49 0.16 0.11 Elevated 0.0072 0.80 Elevated 0.0076 0.056 0.054 0.13 0.32 0.41 0.035 0.073 S100A2 2.9 1.6 to 5.1 0.0002 2.9 1.6 to 5.3 0.00048 0.98 Not Linear 0.021 0.023 0.65 0.66 0.34 Elevated 0.0073 Not Linear 0.0016 S100A2 2.9 1.6 to 5.1 0.00025 2.9 0.55 0.054 0.23 Not Linear 0.028 0.63 0.34 Elevated 0.0073 Not Linear 0.0016 0.42 0.66 0.33 0.41 0.40 0.72 0.42 0.66 0.53 0.66 0.53 0.54 0.001 0.001 <td>RPL36 1.0</td> <td>0.43 to 2.5</td> <td>0.92</td> <td>0.41</td> <td>0.16 to 1.1</td> <td>0.064</td> <td></td> <td>0.47</td> <td>Not Linear</td> <td>0.029</td> <td></td> <td>0.14</td> <td></td> <td>0.32</td> <td></td> <td>0.20</td> <td></td> <td>0.37</td> <td></td> <td>0.51</td> <td></td> <td>0.35</td>	RPL36 1.0	0.43 to 2.5	0.92	0.41	0.16 to 1.1	0.064		0.47	Not Linear	0.029		0.14		0.32		0.20		0.37		0.51		0.35
Mr N2 0.49 0.16 0.12 0.12 0.20 0.03 0.11 Elevated 0.035 0.06 RPS5 0.65 0.27 0.12 0.13 0.32 0.13 0.32 0.41 0.035 0.041 0.073 RUNX1 0.42 0.043 0.41 0.42 0.36 0.36 0.36 0.36 0.36 0.34 0.41 0.0023 S100A2 2.9 1.6 to 5.1 0.0002 2.4 1.3 to 4.6 0.0075 0.36 0.54 0.33 0.81 0.04 0.91 0.14 0.23 Not Linear 0.0013 0.38 0.34 Elevated 0.031 0.14 Elevated 0.0023 0.44 0.44 0.011 0.41 0.0023 0.44 0.44 0.016 0.54 0.33 0.36 0.34 Elevated 0.031 0.34 Elevated 0.0023 S100A6 2.0 0.42 0.33 1.6 1.02.7 0.350 0.37 0.36 0.23 0.46 0.013 0.33 0.31 0.41 0.01 0.35	RPN1 0.67	0.29 to 1.5	0.34	0.30	0.12 to 0.75	0.010		0.72	Not Linear	0.033	Flounted	0.081	Elevated	0.021		0.055		0.16	Floueted	0.51		0.55
RUNX1 0.42 0.043 to 4.1 0.46 3.4 0.24 to 40 0.37 0.62 Not Linear 0.0011 0.97 0.65 0.36 0.36 0.15 0.21' S100A2 2.9 1.6 to 5.1 0.0026 2.9 1.6 to 5.1 0.0026 2.9 1.6 to 5.1 0.0026 2.9 1.6 to 5.2 0.0048 0.98 Not Linear 0.028 0.65 0.40 1.00 Not Linear 0.00023 S100A4 2.0 0.95 to 4.2 0.067 2.3 0.98 to 5.3 0.054 0.38 0.54 0.29 0.42 0.68 0.34 Elevated 0.0031 0.16 Elevated 0.009 0.16 Elevated 0.012 0.89 0.10 Elevated 0.0097 0.085 Elevated 0.0097 0.16 Elevated 0.012 0.89 0.11 0.80 0.12 0.85 SLC2A1 </td <td>RPN2 0.49 RPS5 0.58</td> <td>0.16 to 1.5</td> <td>0.21</td> <td>0.20</td> <td>0.063 to 0.97</td> <td>0.044</td> <td></td> <td>0.97</td> <td>Elevated</td> <td>0.00077</td> <td>Elevated</td> <td>0.041</td> <td>Elevated</td> <td>0.020</td> <td></td> <td>0.092</td> <td></td> <td>0.11</td> <td>Elevated</td> <td>0.035</td> <td></td> <td>0.00</td>	RPN2 0.49 RPS5 0.58	0.16 to 1.5	0.21	0.20	0.063 to 0.97	0.044		0.97	Elevated	0.00077	Elevated	0.041	Elevated	0.020		0.092		0.11	Elevated	0.035		0.00
S100A2 2.9 1.6 to 5.1 0.00028 2.9 1.6 to 5.3 0.00048 0.98 Not Linear 0.044 0.23 Not Linear 0.028 0.65 0.40 1.00 Not Linear 0.0023 S100A4 2.0 0.95 to 4.2 0.067 2.3 0.98 to 5.3 0.054 0.36 0.54 0.29 0.42 0.86 0.34 Elevated 0.009 0.10 Not Linear 0.0016 S100A4 2.0 0.86 to 6.1 0.98 to 4.1 0.36 to 3.3 0.64 0.98 0.94 0.029 0.42 0.86 0.31 Elevated 0.009 0.11 0.10 Not Linear 0.016 0.83 0.92 0.97 0.85 0.98 0.93 0.92 0.97 0.98 0.97 0.98 0.93 0.99 0.92 0.97 0.98 0.93 0.99 0.97 0.98 0.93 0.99 0.97 0.98 0.93 0.99 0.97 0.98 0.93 0.99 0.97 0.98 0.93 0.93 0.99 0.97 0.98 0.97 0.98 0.92 0.33 0.93 <t< td=""><td>RUNX1 0.42</td><td>0.043 to 4.1</td><td>0.46</td><td>3.4</td><td>0.24 to 49</td><td>0.37</td><td></td><td>0.92</td><td>Not Linear</td><td>0.0011</td><td></td><td>0.91</td><td></td><td>0.87</td><td></td><td>0.65</td><td></td><td>0.36</td><td></td><td>0.15</td><td></td><td>0.21</td></t<>	RUNX1 0.42	0.043 to 4.1	0.46	3.4	0.24 to 49	0.37		0.92	Not Linear	0.0011		0.91		0.87		0.65		0.36		0.15		0.21
S100A4 2.1 1.1 to 3.9 0.016 2.4 1.3 to 4.6 0.0075 0.36 0.58 0.30 Elevated 0.0013 0.38 0.34 Elevated 0.033 Not Linear 0.0013 S100A6 2.0 0.95 to 4.2 0.067 2.3 0.86 to 5.3 0.95 to 3.2 0.95 to 3.2 0.98 to 3.3 0.64 0.029 0.42 0.69 0.14 Elevated 0.020 0.14 SERPINES1.7 1 to 2.6 0.033 1.6 1 to 2.7 0.050 0.17 Elevated 0.029 0.42 0.69 0.13 Elevated 0.020 0.18 SLC2A1 0.86 to 2.5 0.16 1.3 0.72 to 2.3 0.41 0.88 Elevated 0.57 0.44 0.0051 Elevated 0.0051 Elevated 0.012 0.85 0.44 0.40 0.72 Elevated 0.012 0.47 Elevated 0.04 0.40 0.72 Elevated 0.012 0.44 0.40 0.45 0.44 0.40 0.45 0.42 0.45 0.45 0.44 0.45 0.45 Elevated </td <td>S100A2 2.9</td> <td>1.6 to 5.1</td> <td>0.00026</td> <td>2.9</td> <td>1.6 to 5.3</td> <td>0.00048</td> <td></td> <td>0.98</td> <td>Not Linear</td> <td>0.044</td> <td></td> <td>0.23</td> <td>Not Linear</td> <td>0.028</td> <td></td> <td>0.65</td> <td></td> <td>0.40</td> <td></td> <td>1.00</td> <td>Not Linear</td> <td>0.00023</td>	S100A2 2.9	1.6 to 5.1	0.00026	2.9	1.6 to 5.3	0.00048		0.98	Not Linear	0.044		0.23	Not Linear	0.028		0.65		0.40		1.00	Not Linear	0.00023
STORNO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 Elevated 0.000 0.029 0.025 0.025 0.025 0.025 0.01 Elevated 0.000 0.01 Elevated 0.000 0.029 0.025	S100A4 2.1	1.1 to 3.9	0.016	2.4	1.3 to 4.6	0.0075		0.36		0.58		0.30	Elevated	0.0013		0.38		0.34	Elevated	0.033	Not Linear	0.0016
SF3B1 2.3 0.86 to 6.1 0.005 1.1 0.36 to 3.3 0.89 0.19 Not Linear 0.047 0.23 0.46 0.13 0.32 0.010 Elevated 0.012 SLC2A1 0.66 0.25 0.16 1.3 0.27 to 2.3 0.46 0.035 Elevated 0.0099 0.12 0.85 SLC2A1 0.68 0.4 to 1.2 0.16 0.68 0.64 to 1.3 0.21 0.88 Elevated 0.0051 Elevated 0.035 Elevated 0.0099 0.12 0.86 SLC2A1 0.68 0.4 to 1.2 0.16 0.68 0.5 to 7.6 0.33 0.29 0.57 0.94 0.40 0.70 0.98 0.72 Elevated 0.012 STRAN 0.43 0.16 0.81 to 1.3 0.21 0.44 1.00 0.13 0.22 0.34 0.40 0.70 0.98 0.72 Elevated 0.002 STRAN 0.44 0.30 0.23 0.47 0.23 0.44 0.40 0.70 0.98 0.72 Elevated 0.002 0.22 <td>SERPINB517</td> <td>1 to 2 6</td> <td>0.007</td> <td>2.3</td> <td>1 to 2 7</td> <td>0.054</td> <td></td> <td>0.38</td> <td>Elevated</td> <td>0.04</td> <td>Elevated</td> <td>0.29</td> <td></td> <td>0.42</td> <td></td> <td>0.09</td> <td></td> <td>0.31</td> <td>Elevated</td> <td>0.0091</td> <td></td> <td>0.14</td>	SERPINB517	1 to 2 6	0.007	2.3	1 to 2 7	0.054		0.38	Elevated	0.04	Elevated	0.29		0.42		0.09		0.31	Elevated	0.0091		0.14
SLC2A1 1.5 0.86 to 2.5 0.16 1.3 0.72 to 2.3 0.41 0.88 Elevated 9.59E-05 Not Linear 0.00051 Elevated 0.0051 Elevated 0.009 0.12 0.85 SLCAA1 0.68 0.46 to 1.2 0.61 0.517.5 0.33 0.29 0.57 0.94 0.43 0.43 0.43 0.59 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.45 0.44 0.44 0.44 0.44 0.43 0.44 0.45 0.44 0.44 0.44 0.44 0.44 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.46 0.45 0.44 0.45 0.45 0.46 0.42 0.45 0.45 0.44 0.45 0.45 0.45 0.46 0.42 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.	SF3B1 2.3	0.86 to 6.1	0.095	1.1	0.36 to 3.3	0.89		0.19	Not Linear	0.047	Lioidiou	0.23		0.46		0.13		0.32	Liolatoa	0.10	Elevated	0.012
SLCAA1 0.68 0.47 0.68 0.47 0.68 0.47 0.52 0.31 0.48 SMADA 2.3 0.67 to 7.8 0.9 0.57 0.97 0.55 0.36 0.43 0.52 0.31 0.48 SPTAN1 0.43 0.14 to 1.3 0.14 0.61 0.18 to 2.1 0.44 1.00 0.57 0.94 0.40 0.70 0.98 0.27 0.24 0.44 0.40 STIL 0.0 0.16 to 5.5 0.61 0.52 0.86 to 7.3 0.991 0.57 0.22 0.34 0.46 0.45 0.27 0.24 0.46 0.40 SURD6 0.64 0.31 to 1.3 0.23 0.47 0.55 0.57 0.94 0.46 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.45 0.44 0.45 0.46 0.42 0.46 0.45 0.46 0.45 0.46 0.42 0.46 0.46 0.22	SLC2A1 1.5	0.86 to 2.5	0.16	1.3	0.72 to 2.3	0.41		0.88	Elevated	9.59E-05	Not Linear	0.0083	Elevated	0.00051	Elevated	0.035	Elevated	0.0099		0.12		0.85
Simple 2.5 0.57 0.54 0.40 0.70 0.96 0.72 Elevated 0.72 SPT AN 10 43 0.14 0.13 0.13 0.24 0.40 0.44 0.40 0.40 0.96 0.72 Elevated 0.74 STI AN 10 0.43 0.14 0.13 0.13 0.22 0.34 0.96 0.44 0.15 0.24 0.24 0.082 STR N 0.64 0.31 to 1.3 0.23 0.47 0.23 to 99 0.46 0.60 0.95 0.12 0.96 0.44 0.15 0.46 0.22 0.82 TKT 1.0 0.41 to 2.5 1.00 1.0 0.39 to 2.7 0.96 0.60 0.95 0.12 0.96 0.44 0.60 0.82 TKT 1.0 0.41 to 2.5 1.00 1.0 0.39 to 2.7 0.96 0.60 0.93 0.40 0.992 0.11 0.60 0.46 0.25 TROVE2 2.4 16 5.8 0.46 0.96 0.66 0.65 0.66 0.55 0.71 0.88 <t< td=""><td>SLC4A1 0.68</td><td>0.4 to 1.2</td><td>0.16</td><td>0.68</td><td>0.36 to 1.3</td><td>0.21</td><td></td><td>0.89</td><td></td><td>0.97</td><td></td><td>0.55</td><td></td><td>0.36</td><td></td><td>0.43</td><td></td><td>0.52</td><td></td><td>0.31</td><td>Floumted</td><td>0.48</td></t<>	SLC4A1 0.68	0.4 to 1.2	0.16	0.68	0.36 to 1.3	0.21		0.89		0.97		0.55		0.36		0.43		0.52		0.31	Floumted	0.48
STIL 2.0 0.76 to 5.5 0.16 2.5 0.86 to 7.3 0.091 0.57 0.22 0.34 0.96 0.44 0.15 0.45 Elevated 0.090 SURF6 0.64 0.31 to 1.3 0.23 0.47 0.23 to 0.99 0.046 0.60 0.95 0.12 0.98 Elevated 0.022 0.82 0.78 0.82 TKT 1.0 0.41 to 2.5 1.0 1.0 0.39 to 2.7 0.96 0.60 0.93 0.40 0.992 0.11 0.60 0.45 0.25 TROVE2 2.4 1 to 5.8 0.045 2.4 0.88 to 6.7 0.96 0.60 0.93 0.45 0.55 0.71 0.98 0.18 Elevated 1.00E-04 TYMP 1.8 0.8 to 4 0.16 1.3 0.52 to 3.5 0.54 0.95 0.065 0.065 0.068 0.11 0.98 0.12 0.98 0.12 0.98 0.11 0.98 0.11 0.98 0.22	SPTAN1 0.43	0.14 to 1.3	0.19	0.61	0.18 to 2.1	0.33		1.00		0.13		0.94		0.40		0.95		0.96		0.72	Elevated	0.48
SURF6 0.64 0.31 to 1.3 0.23 0.47 0.23 to 0.99 0.046 0.60 0.95 0.12 0.88 Elevated 0.022 0.82 0.78 0.82 TKT 10 0.41 to 2.5 1.00 0.39 to 1.0 0.393 0.43 0.45 0.98 Elevated 0.02 0.46 0.46 0.25 TROVE2 2.4 1 to 5.8 0.045 2.4 0.85 0.46 0.933 0.45 0.55 0.71 0.98 0.46 0.25 TYMP 1.8 0.8 to 4 0.16 1.3 0.52 to 3.5 0.54 0.95 0.065 0.063 Elevated 2.75E-05 0.088 0.12 Elevated 0.046 0.22 UFL1 1.5 0.71 to 3.3 0.71 0.38 0.47 0.38 0.46 0.41 0.48 0.22 0.48 0.22 0.18 0.37 0.27 0.47 0.30 0.46 0.24 0.24 0.24 Elevated 0.24 <t< td=""><td>STIL 2.0</td><td>0.76 to 5.5</td><td>0.16</td><td>2.5</td><td>0.86 to 7.3</td><td>0.091</td><td></td><td>0.57</td><td></td><td>0.22</td><td></td><td>0.34</td><td></td><td>0.96</td><td></td><td>0.44</td><td></td><td>0.15</td><td></td><td>0.45</td><td>Elevated</td><td>0.0090</td></t<>	STIL 2.0	0.76 to 5.5	0.16	2.5	0.86 to 7.3	0.091		0.57		0.22		0.34		0.96		0.44		0.15		0.45	Elevated	0.0090
IKI 1.0 0.41 to 2.5 1.00 1.00 0.39 to 2.7 0.96 0.60 0.93 0.40 0.092 0.11 0.60 0.46 0.25 TROVE2 2.4 10 5.8 0.045 2.4 0.88 to 4 0.16 1.3 0.52 to 3.5 0.54 0.033 0.23 0.45 0.55 0.71 0.98 0.18 Elevated 0.046 0.20 TYMP 1.8 0.8 to 4 0.16 1.3 0.52 to 3.5 0.54 0.95 0.065 0.063 Elevated 0.75 0.088 0.12 Elevated 0.046 0.20 UFL1 1.5 0.71 to 3.3 0.71 to 3.3 0.27 1.4 0.88 to 2.2 0.31 0.27 0.46 0.20 0.27 0.46 0.20 0.27 0.46 0.20 0.27 0.46 0.20 0.27 0.47 0.30 0.49 0.22 0.88 0.51 0.57 0.47 0.30 VCL 1.8 0.63 to 5.2 0.27 2.0 0.59 to 7 0.26 0.67 Elevated 0.029 0.32 Elevate	SURF6 0.64	0.31 to 1.3	0.23	0.47	0.23 to 0.99	0.046		0.60		0.95		0.12		0.98	Elevated	0.022		0.82		0.78		0.82
TYMP 1.8 0.8 to 4 0.16 1.3 0.52 to 3.5 0.45 0.45 0.45 0.17 0.96 0.16 Elevated 1.00-24 UPL1 1.8 0.8 to 4 0.16 1.3 0.52 to 3.5 0.54 0.95 0.065 0.065 0.053 0.22 0.18 0.37 0.27 0.46 UQCRC2 0.82 0.33 to 2 0.66 0.66 0.25 to 1.8 0.47 0.30 0.22 0.18 0.37 0.27 0.46 UQCRC2 0.82 0.33 to 2 0.66 0.26 to 1.8 0.40 0.33 0.69 0.73 0.68 0.51 0.57 0.47 0.30 VCL 1.8 0.63 to 5.2 0.27 2.0 0.59 to 7 0.26 0.67 Elevated 0.029 0.32 Elevated 0.0091 0.22 Elevated 0.041 Elevated 0.031 VEGFA 4.1 1.6 to 11 0.0038 4.6 1.6 to 13 0.0043 0.64 Elevated 0.021 0.45 0.65 0.44 Elevated 0.032 Elevated <td>TKT 1.0</td> <td>0.41 to 2.5</td> <td>1.00</td> <td>1.0</td> <td>0.39 to 2.7</td> <td>0.96</td> <td>Davin</td> <td>0.60</td> <td></td> <td>0.93</td> <td></td> <td>0.40</td> <td></td> <td>0.092</td> <td></td> <td>0.11</td> <td></td> <td>0.60</td> <td></td> <td>0.46</td> <td>Elevated</td> <td>0.25</td>	TKT 1.0	0.41 to 2.5	1.00	1.0	0.39 to 2.7	0.96	Davin	0.60		0.93		0.40		0.092		0.11		0.60		0.46	Elevated	0.25
UFL1 1.5 0.71 to 3.3 0.27 1.4 0.56 to 3.2 0.48 0.76 0.01 0.50 0.22 0.18 0.37 0.27 0.46 UQCRC2 0.82 0.33 to 2 0.66 0.66 0.25 to 1.8 0.40 0.33 0.69 0.73 0.68 0.51 0.57 0.47 0.30 VCL 1.8 0.63 to 5.2 0.72 0.69 0.67 Elevated 0.029 0.32 Elevated 0.0016 0.22 Elevated 0.41 Elevated 0.028 0.31 VEGFA 4.1 1.6 to 11 0.0038 4.6 1.6 to 13 0.0043 0.64 Elevated 0.021 0.45 0.65 0.44 Elevated 0.032 Elevated 0.0017 ZBTR462 0.91 0.6 to 1.4 0.67 to 31 0.12 0.69 Elevated 0.401 0.31 0.91 0.75 Elevated 0.0017 ZBTR462 0.91 0.6 to 1.4 0.67 to 31 0.12 0.69 Elevated 0.401 0.31 0.91 0.75 Elevated 0.0047 <td>TYMP 18</td> <td>0.8 to 4</td> <td>0.045</td> <td>2.4</td> <td>0.66 to 0.7</td> <td>0.000</td> <td>Down</td> <td>0.033</td> <td></td> <td>0.23</td> <td></td> <td>0.45</td> <td>Elevated</td> <td>0.55 2.75E-05</td> <td></td> <td>0.71</td> <td></td> <td>0.90</td> <td>Flevated</td> <td>0.16</td> <td>Elevated</td> <td>0.20</td>	TYMP 18	0.8 to 4	0.045	2.4	0.66 to 0.7	0.000	Down	0.033		0.23		0.45	Elevated	0.55 2.75E-05		0.71		0.90	Flevated	0.16	Elevated	0.20
UQCRC2 0.82 0.33 to 2 0.66 0.66 0.25 to 1.8 0.40 0.33 0.69 0.73 0.68 0.51 0.57 0.47 0.30 VCL 1.8 0.63 to 5.2 0.27 2.0 0.59 to 7 0.67 Elevated 0.0091 0.22 Elevated 0.012 0.31 VEGFA 4.1 1.6 to 11 0.0038 4.6 1.6 to 13 0.0043 0.64 Elevated 0.029 0.32 Elevated 0.0091 0.22 Elevated 0.044 Elevated 0.028 Elevated 0.0017 ZBTF46 4.1 1.6 to 1.4 0.67 0.51 0.12 0.69 Elevated 0.021 0.45 0.65 0.44 Elevated 0.023 Elevated 0.017 ZBTF462 0.91 0.61 to 1.4 0.67 to 31 0.12 0.69 Elevated 0.016 0.31 0.91 0.75 Elevated 0.023 Elevated 0.024 0.31 2NF462 0.91	UFL1 1.5	0.71 to 3.3	0.27	1.4	0.58 to 3.2	0.48		0.76		0.11		0.59	Elevated	0.22		0.18		0.37	Lievated	0.27		0.46
VCL 1.8 0.63 to 5.2 0.27 2.0 0.59 to 7 0.26 0.67 Elevated 0.029 0.32 Elevated 0.0091 0.22 Elevated 0.041 Elevated 0.028 0.31 VEGFA 4.1 1.6 to 11 0.0038 4.6 1.6 to 13 0.0043 0.64 Elevated 0.031 0.22 0.45 0.65 0.44 Elevated 0.002 Elevated 0.017 Elevated 0.016 0.40 0.31 0.91 0.75 Elevated 0.027 0.13 ZNF462 0.91 0.6 to 1.4 0.67 0.85 0.53 to 1.3 0.48 0.77 Elevated 0.49 0.31 0.91 0.75 Elevated 0.02 0.23	UQCRC2 0.82	0.33 to 2	0.66	0.66	0.25 to 1.8	0.40		0.33		0.69		0.73		0.68		0.51		0.57		0.47		0.30
ZBTB16 4.2 0.78 0.22 0.094 4.6 0.67 to 31 0.12 0.69 Elevated 0.0016 0.40 0.31 0.91 0.75 Elevated 0.047 0.13 ZNF462 0.91 0.6 to 1.4 0.67 0.85 0.53 to 1.3 0.48 0.77 Elevated 0.49E-06 0.61 0.83 0.86 0.13 0.24 0.23	VCL 1.8	0.63 to 5.2	0.27	2.0	0.59 to 7	0.26		0.67	Elevated	0.029		0.32	Elevated	0.00091		0.22	Elevated	0.041	Elevated	0.028	Elouated	0.31
ZNF462 0.91 0.6 to 1.4 0.67 0.85 0.53 to 1.3 0.48 0.77 Elevated 6.49E-06 0.61 0.83 0.86 0.13 0.24 0.23	78TR16 42	0.78 to 22	0.0036	4.0	0.67 to 31	0.0043		0.64	Elevated	0.0016		0.22		0.45		0.00		0.44	Elevated	0.032	Flevared	0.0017
	ZNF462 0.91	0.6 to 1.4	0.67	0.85	0.53 to 1.3	0.48		0.77	Elevated	6.49E-06		0.61		0.83		0.86		0.13	210 40100	0.24		0.23

Description	Stable	Exocrine-like	Activated	ECM-Remodeling	P-value
Description	(N = 67)	(N = 17)	(N = 44)	(N = 20)	-value
Age, years [Mean (95% CI)]	64.3(62.2-66.5)	60.0(56.6-63.4)	65.3(62.7-67.9)	64.7(59.8-69.6)	0.295
Gender					0.035*
Female	3552.2%	317.6%	1840.9%	1260.0%	
Male	3247.8%	1482.4%	2659.1%	840.0%	
TNM T					0.003**
T1	1217.9%	741.2%	613.6%	210.0%	
T2	3958.2%	952.9%	2863.6%	630.0%	
Т3	1522.4%	15.9%	1022.7%	1050.0%	
T4	11.5%	00.0%	00.0%	210.0%	
TNM N					0.083#
NO	3552.2%	1058.8%	2147.7%	315.0%	
N1	1826.9%	317.6%	1534.1%	945.0%	
N2	1420.9%	423.5%	818.2%	840.0%	
Differentiation					0.847
Well differentiated	710.8%	15.9%	37.0%	15.3%	
Moderately differentiated	5076.9%	1376.5%	3274.4%	1368.4%	
Poorly differentiated	710.8%	317.6%	818.6%	526.3%	
Un-differentiated	11.5%	00.0%	00.0%	00.0%	
Lymphatic invasion					0.620
No	3552.2%	952.9%	2352.3%	736.8%	
Yes	3247.8%	847.1%	2147.7%	1263.2%	
Venous invasion					0.159
No	3856.7%	1164.7%	2147.7%	631.6%	
Yes	2943.3%	635.3%	2352.3%	1368.4%	
Perineural invasion					0.539
No	1217.9%	423.5%	511.4%	210.0%	
Yes	5582.1%	1376.5%	3988.6%	1890.0%	
N events (% percent)					
Death	1319.4%	1164.7%	4090.9%	1365.0%	
Recurrence	3247.8%	1058.8%	3886.4%	1365.0%	
Median survival time (95% CI)					
OS (Month)	NA(NA)	32(22.5-41.5)	16(11.4-20.6)	11(6.8-15.1)	
DFS (Month)	22(17.7-26.3)	19(5.0-33.0)	7(2.4-11.6)	6(2.1-9.8)	

Table 2-7. Clinicopathological characteristics of the four classified subgroups in the training set.

Significance level is represented as "#" for P-value < 0.10; "*" for P-value < 0.05; and "**" for P-value < 0.01; Numerical variable (Age) was analyzed using Levene's Test for equality of variance, and Categorical variables were analyzed using χ^2 Test.

Covariate		Univariate Analysis (Overall Survival)					Multivariate Analysis (Overall Survival)				
		β	Standard Error	P-value	Exp(β)	95% CI of Exp(β)	β	Standard Error	P-value	Exp(β)	95% CI of Exp(β)
Age		0.008	0.014	0.5352	1.01	0.9821 to 1.0355					
Gender	Female	0.404	0.000	0 4070	1.00	Reference					
	Male	0.181	0.233	0.4373	1.20	0.7609 to 1.8873					
Resection margin	RU	0.000	0.045	0.0474	4.00	Reference	0.000	0.070	0.0140	0.50	Reference
	RI	0.686	0.345	0.0471	1.99	1.0124 to 3.8923	0.926	0.379	0.0146	2.52	1.2054 to 5.2882
	R2	0.560	1.012	0.5798	1.75	0.2434 to 12.5970	1.817	1.059	0.0861	0.10	0.7806 to 48.5466
INM I	11	0.007	0.074	0.0176	0.40	Keterence	1 0 2 0	0.447	0.0144	0.77	A 1932 to 6 0752
	12	0.007	0.374	0.0176	2.43	1.1714 LO 5.0300	1.020	0.417	0.0144	2.11	1.1032 10 0.0733
	13	2.051	0.393	< 0.0000	2.91	1.3320 10 0.2372	1.140	0.440	0.0103	3.13 27.12	2 2045 to 91 2247
	14	3.001	0.009	<0.0001	21.14	J.J130 10 01.0322	3.300	0.790	<0.0001	21.12	3.2043 10 01.3347
	INU NI	0.005	0.077	0 4502	1.00						
	N1	0.205	0.277	0.4593	1.23	0.7154 to 2.1054					
Differentiation	NZ	0.620	0.204	0.0037	2.20	1.3114 10 3.9/5/					
Differentiation	VVell differentiated	0.001	0.510	0 1005	2.20						
	Rooly differentiated	1.002	0.516	0.1000	2.30	0.0304 10 0.3010					
Lemmbertie in meier	Poory differentiated	1.002	0.574	0.0609	2.12	0.0091 10 0.34/1					Deferrer
Lymphauc invasion	INO	0.545	0.000	0.0404	4.70	Relerence	0.445	0.040	0.00.17		Relerence
	Yes	0.545	0.233	0.0194	1.72	1.0946 to 2.7147	0.415	0.248	0.0947	1.51	0.9331 to 2.45/2
Venous invasion	No					Reterence					
	Yes	0.748	0.236	0.0015	2.11	1.3333 to 3.3482					
Perineural invasion	No					Reference					
	Yes	0.574	0.355	0.1063	1.77	0.8878 to 3.5480					
Risk subgroup	Stable					Reference					Reference
	Exocrine-like	0.789	0.414	0.0564	2.20	0.9827 to 4.9346	1.291	0.446	0.0038	3.64	1.5232 to 8.6747
	Activated	1.562	0.320	< 0.0001	4.77	2.5564 to 8.8943	1.645	0.332	< 0.0001	5.18	2.7113 to 9.9068
	ECM-Remodeling	1.912	0.400	< 0.0001	6.76	3.0989 to 14.7626	1.531	0.470	0.0011	4.62	1.8500 to 11.5576

 Table 2-8. Univariate and multivariate survival analysis for risk subgroup classification in the training set.

1.3.4 Classification Model Development and Prognostic Relevance of Risk Subgroups

To assess risk subgroups of patients based on protein levels, in an objective manner, a random forest classification model was established using the training set (148 patients), by performing 10 iterations of 5-fold cross-validation. Fourteen DEPs (Bonferroni post hoc test, P < 0.05) identified in at least one subgroup were added to a list of features in addition to 44 proteins that were used in a clustering analysis to improve model performance (Figure 2-8). In summary, 33 of 58 proteins were selected, according to associations with risk subgroups and the eigenproteins of each module in weighted gene correlation network analysis (WGCNA) (Figure 2-9A and B, and Table 2-9). Considering the variable importance and error rates of cross-validation, a final 24-protein model was developed (Figure 2-9C-F). The fully detailed methods are described in the Supplementary Information.

We confirmed the model using an internal validation set (77 patients) and an external validation set, from Puleo et al. (87), which represents the largest (N = 309) PDAC cohort of FFPE tissue samples, to date. The four risk subgroups were represented in all three sets (training, validation, and Puleo et al.), along with the differential expression of the 24-protein model (Figure 2-10A). The risk subgroups in the validation set were significantly correlated with differentiation (χ^2 test, P = 0.017) and were associated with both T stage and N stage; however, the stage-based associations (χ^2 test, P = 0.056 and 0.059, respectively) did not reach significance (Table 2-10). In the Puleo et al. set, the risk subgroups were associated with differentiation (χ^2 test, P = 0.022) but were not associated with T stage or N stage (χ^2 test, P = 0.805 and 0.170, respectively) due to the high proportion of late stages (81.6% in T3 stage and 74.8% in N1 stage). Moreover, the risk subgroups showed strong prognostic relevance to survival (Log-rank test, P = 3.0E-09 for training set, 4.6E-04 for validation set, and 3.2E-12 for Puleo et al.) and recurrence (Log-rank test, P = 9.0E-06 for training set,

4.5E-05 for validation set, and 3.5E-10 for Puleo et al.) (Figure 2-10B and C).

Similar to the clustering analysis results, the "ECM-Remodeling" subgroup had the worst outcome, with median OS values of 10.0, 8.0, and 11.9 months and survival rates of 25.0%, 20.0%, and 30.0% in the training, validation, and Puleo et al. sets, respectively. The "Stable" subgroup had a better prognosis than the other subgroups, with median OS values of NA (did not reach survival probability of 50%), 55.0, and 33.6 months and survival rates of 77.8%, 69.7%, and 41.3% in the training, validation, and Puleo et al. sets, respectively. The "Stable" risk subgroup in Puleo et al. experienced earlier and higher mortality than the training and validation sets, due to its higher proportion of late-stage cases and longer overall follow-up time (over 140 months).

The inclusion of our risk subgroups into a multivariate Cox regression, in addition to the subtypes identified by Puleo et al., improved the predictive power (OS, Wald test, P = 4.2E-09 to 5.3E-11), which implied that the two classification systems were independent predictors of survival and were highly associated with one another. In addition, the prognostic relevance of the predicted risk subgroups was verified in the external validation sets of Bailey et al.(6), Moffitt et al.(85), and TCGA(86) (Figure 2-11).

Further, we characterized the risk subgroups using 8 cases of FFPE tissues, matched with whole tumor tissues. The 4 representative markers for poor prognosis [NSE (ENO2), HRAS, GLUT1 (encoded by SLC2A1), and ACTN4] showed differential expression between risk subgroups by IHC (Figure 2-12A and B). Protein expression by MRM-MS correlated significantly between whole fresh frozen and FFPE tissues with regard to the 115 quantified proteins (Pearson r = 0.337, P = 1.4E-27) and the 24 proteins in the RF model (Pearson r = 0.493, P = 3.7E-13). The expression pattern was replicated in FFPE tissues, which was apparent when comparing the heatmaps of the training set, validation set, and Puleo et al. dataset in Figure 2-10A (Figure 2-12C and D). In addition, the RF model classified risk subgroups using the 24-marker expression of FFPE tissues with discriminatory predictive ability between risk subgroups (Figure 2-12E).

 $1\ 2\ 7$

Figure 2-8. Selection of additional proteins that are highly expressed in each risk subgroup, to improve the performance of the classification model.

Fourteen proteins, which were not included in hierarchical clustering analysis due to P-values higher than 0.1 during the univariate survival analysis or Pearson's |r| lower than 0.5, were selected to improve the performance of the random forest classification model. Differences in protein expression between subgroups were measured by Bonferroni's post hoc test, and the fourteen proteins with significantly high expression (P < 0.05) in any risk subgroup were selected. Significance levels are represented as * for P < 0.05, ** for P < 0.01, and *** for P < 0.001.

Figure 2-9. Development of the Random Forest classification model.

A. Student's asymptotic P-value for the correlation between protein modules and risk subgroups (Trait), for feature selection. Five protein modules were identified, using 58 proteins, and each module was significantly associated with binarized risk subgroups. B. Important genes in the modules were selected according to the significance of each protein associated with traits, and with membership with the eigenprotein of the module. Then, 33 (56.9%) proteins were selected to develop the random forest model. C. A 5-fold, cross-validated prediction performance, with sequentially reduced numbers of variables, ranked by variable importance. D. Similar error rates were derived using between 12 and 31 variables. E. The 24-protein model, which showed most high accuracy and the best chi-square value in the log-rank test, was finally selected. F. Confusion matrix of the risk subgroup classification, based on the 24-protein optimized model parameters (ntree = 200, mtry = 2).

Figure 2-10. Prediction of proteomic risk subgroups.

(A) Heatmap, showing the 24 proteins identified for subgroup classification, in the training set (N = 148), the internal validation set (N = 77), and the external Puleo et al. set (N = 309). Prognostic factors (T stage, N stage, and differentiation) are plotted below the heatmap. Samples are ordered by their OS time and death events, in each subgroup (low- to high-risk, from the left). The colors of the proteins are equal to the module colors in WGCNA. Kaplan-Meier curves of the predicted risk subgroups in all three cohorts are shown for OS (B) and DFS (C). "Not Applicable" indicates that the number of patients who experienced the event did not reach 50% in the overall follow-up.

Figure 2-11. External validation of the Random Forest classification model.

Additional model evaluation, using the three external PDAC subtype studies. Heatmap represented the expression of the 24 proteins for subgroup classification, in the Moffitt et al. (N = 145), Bailey et al. (N = 96), and TCGA (N = 150). Kaplan-Meier curves of the predicted risk subgroups are shown for OS. The predicted risk subgroups presented similar survival outcomes using external datasets as with our study cohort, despite the low proportion of the "Exocrine-like" subgroup.

Figure 2-12. Risk subgroups in formalin-fixed paraffin-embedded tissues.

A. Histology and immunohistochemistry (IHC) images of risk subgroup tumors. Representative images were demonstrated for NSE, HRAS, GLUT1 and ACTN4 immunohistochemistry. B. Summary of the immunohistochemical stain results for the 8 PDAC cases. C. Correlation between protein expression of whole resected tissues and protein expression of matched FFPE tissue samples in 8 PDAC cases. Pearson correlation was observed using all 115 quantified proteins and the 24 proteins in the RF model. D. Heatmap of expression of 24 proteins in FFPE tissue from 8 PDAC cases. Protein-wise z-score normalization was performed. E. Risk subgroup prediction using FFPE samples in 8 PDAC cases. Probabilities of prediction are represented for risk subgroups. Mean probability in each risk subgroup tumors is represented by a horizontal line.

Proteins in MEblue	Proteins in MEturquoise	Proteins in MEbrown	Proteins in MEgreen	Proteins in MEgrey
ACACB	ALDH1A1	CR2	ALAD	ACTN4
ADAM9	ALDH6A1	IDH1	CAP1	AGT
CREBBP	CD274	ITGA6	COL4A6	CCNE1
ENO2	CEACAM5	NPM1	JMY	CDH1
FBN1	CPA1	PLG	NEFH	CHEK2
FLT1	CPB1	RPL36	SLC2A1	DSG2
HRAS	CTRB2	RPS5		IGFBP3
ITGA5	EPHX2			IGFBP5
LAMP1	GATM			KRT17
MAPK1	PDCD4			MMP7
MLH1	PNLIP			PARP1
NPC2	PNLIPRP2			PGC
PTPN11	REG1A			PPBP
S100A2	SERPINB5			SURF6
S100A4				TYMP
VEGFA				

Table 2-9. Protein features in the modules from WGCNA.

Table 2-10). Clinicopathological	c har acteristics	of the	four	classified subgroups	in	the
validation	set.						

Description	Stable (N = 33)		Exocrine-like (N = 13)		Activated (N = 21)		ECM-Remod (N = 10)	deling	P- value
Age, years [Mean (95% Cl)]	64.2	(60.8-67.6)	68.3	(61.6-75.0)	59.0	(54.0-63.9)	70.2	(65.2-75.2)	0.369
Gender									0.648
Female	14	42.4%	7	53.8%	12	57.1%	6	60.0%	
Male	19	57.6%	6	46.2%	9	42.9%	4	40.0%	
TNM T									0.056 #
T1	4	12.1%	3	23.1%	3	14.3%	0	0.0%	
T2	16	48.5%	8	61.5%	12	57.1%	2	20.0%	
тз	13	39.4%	2	15.4%	6	28.6%	7	70.0%	
Т4	0	0.0%	0	0.0%	0	0.0%	1	10.0%	
TNM N									0.059 #
NO	16	50.0%	7	53.8%	9	42.9%	4	40.0%	
N1	16	50.0%	5	38.5%	12	57.1%	3	30.0%	
N2	0	0.0%	1	7.7%	0	0.0%	3	30.0%	
Differentiation									0.017 *
Well differentiated	0	0.0%	2	15.4%	3	14.3%	0	0.0%	
Moderately differentiated	29	90.6%	9	69.2%	15	71.4%	5	50.0%	
Poorly or Un-differentiated	4	12.5%	2	15.4%	2	9.5%	5	50.0%	
Lymphatic invasion									0.637
No	18	58.1%	9	69.2%	9	47.4%	5	50.0%	
Yes	13	41.9%	4	30.8%	10	52.6%	5	50.0%	
Venous invasion									0.451
No	20	66.7%	9	69.2%	12	63.2%	4	40.0%	
Yes	10	33.3%	4	30.8%	7	36.8%	6	60.0%	
Perineural invasion									0.186
No	4	12.1%	4	30.8%	1	5.0%	1	10.0%	
Yes	29	87.9%	9	69.2%	19	95.0%	9	90.0%	
Nevents (%percent)									
Death	10	30.3%	7	53.8%	18	85.7%	8	80.0%	
Recurrence	17	51.5%	8	61.5%	19	90.5%	8	80.0%	
Median survival time (95% CI)									
OS (Month)	55.0	(23.0-87.0)	35.0	(20.2-49.8)	27.0	(0.0-56.9)	8.0	(0.0-17.3)	
DFS (Month)	27.0	(15.1-38.9)	21.0	(11.0-31.0)	8.0	(5.0-11.0)	4.0	(2.1-5.9)	

Significance level is represented as "#" for P-value < 0.10; and "*" for P-value < 0.05; Numerical variable (Age) was analyzed using Levene's Test for equality of variance, and Categorical variables were analyzed using χ^2 Test.

1.3.5 Association of Risk Subgroups with Original Transcriptomic Subtypes

To identify associations between the risk subgroups defined in this study and the original transcriptomic subtypes (classical, exocrine-like, basal-like, normal stroma, and activated stroma), 20 out 115 proteins were selected to represent each transcriptomic subtype, according to the subtype scores of the relevant genes, which were retrieved from the studies by Moffitt et al. and Puleo et al. (Figure 2-13A). The original subtypes were classified using subtype components, which were determined based on factor analysis, using principal components (Figure 2-13B and C). Both tumor cell subtypes (OS, Log-rank test, P = 0.002) and stromal subtypes (OS, Log-rank test, P= 0.036) were significantly associated with survival (Figure 2-13D). The associations between subtype components and the original subtypes (classical versus basal-like and activated stroma versus normal stroma) were verified by logistic regression, using the data from Moffitt et al. and Puleo et al. [area under the curve (AUC) > 0.8 for all comparisons] (Figure 2-13E).

After the inclusion of the original subtype classifications in our dataset, the following observations were made (Figure 2-14A). The exocrine-like subtype was associated with our defined "Stable" and "Exocrine-like" subgroups, whereas the basal-like subtype was associated with our "Activated" and "ECM-Remodeling" subgroups, in both the training and validation sets (χ^2 test, P < 1.0E-4 for all comparisons). In contrast, the classical subtype showed no association with any risk subgroups (χ^2 test, P = 0.6352 for training set and 0.4235 for validation set). Stromal subtypes (both activated and normal) showed weaker relevance for defining risk subgroups than tumor cell subtypes (χ^2 test, P = 0.004 for training set and 0.102 for validation set). These identified associations between predicted risk subgroups and the originally defined subtypes were repeated in all four external validation sets and high-purity tumors were found to be significantly enriched in the "Activated" and "ECM-Remodeling" subgroups

(Figure 2-14B). Moreover, among the high-purity datasets from TCGA and Puleo et al., we observed that classical subtypes were associated with "Stable" subgroups, whereas the association of exocrine-like subtypes with risk subgroups was insignificant (Figure 2-14C). By cross-referencing the original subtypes, the risk subgroups could be defined as follows (Figure 2-14 and Figure 2-15A). First, the two high-risk subgroups ("Activated" and "ECM-Remodeling") had high tumor contents and were associated with basal-like subtypes and activated stroma subtypes. Second, the "Stable" subgroups overlapped with classical subtypes and tumor microenvironment subtypes, such as the immunogenic, immune classical, and desmoplastic subtypes defined in other studies. Third, our "Exocrine-like" subgroups appeared to have low tumor contents, with high levels of pancreatic enzymes, such as pancreatic lipase (PNLIP) and carboxypeptidase A1 (CPA1), which were absent from high-purity tumor sets. Thus, poor prognosis-associated basal-like subtypes were mainly categorized in the "Activated" and "ECM-Remodeling" subgroups, whereas subtypes that contain contents from the microenvironment were categorized in the "Stable" subgroup, along with a significant proportion of classical subtypes.

Figure 2-13. Principal component analysis for the classification of original transcriptomic PDAC subtypes based on protein expression.

A. Pearson's correlation analysis between the 20 proteins selected for the classification of transcriptomic subtypes, according to the subtype scores reported by Moffitt et al. and Puleo et al.. B. The five subtype components (CPs) in a heatmap, obtained using the 20 proteins in the training set. Samples are ordered by their weight in each of the five components (first raw, from low [white] to high [blue]). C. 3D scatter plot of the CPs used to classify the three tumor cell subtypes, and a simple scatter plot showing the CPs for the classification of the two stromal subtypes. D. Kaplan-Meier curves for the original tumor cell or stromal cell subtypes are associated with higher death rates than other subtypes, which is identical to the results of previous studies. E. The prediction of subtypes in the data sets reported by Moffitt et al. and Puleo et al., based on the logistic regression model, using the principal components of subtypes.

Figure 2-14. Comparison between risk subgroups and original subtypes.

A. Heatmap showing the risk subgroups and their associations with the original tumor cell and stromal cell subtypes, classified according to subtype components (CPs). B. Predicted risk subgroups in the four external validation sets and their associations with the original subtypes classified in each study. In the external-TCGA set, the sample groups were classified into three subtypes, [Moffitt et al.(M), Collisson et al.(C), and Bailey et al.(B)], which were used for comparison. Tumor purity classifications (Low and High) were available in the external-TCGA and the external-Puleo et al. subsets. C. Predicted risks subgroups in the high-purity samples of the external-TCGA and the external-Puleo et al. data sets and their associations with the original subtypes that were classified in each study. Desmoplastic did not remain in the high-purity set from Puleo et al. Significance levels of the chi-square test is represented as * for P < 0.05, ** for P < 0.01, and *** for P < 0.001.

(A) Associations between risk subgroups and the original tumor cell subtypes (classical, basal-like, and others) and the stromal subtypes (activated stroma and others). (B) Hierarchical clustering of the three risk subgroups ("Stable", "Activated", and "ECM-Remodeling") in the high-purity tumor sets from Puleo et al. The top 300 genes in each subgroup were used to perform clustering and for gene enrichment analysis (right side of the heatmap). KRAS mutation, TP53 mutation, and high-purity classifications based on Puleo et al. are shown below the heatmap. (C) Prognostic markers or therapeutic targets representative of the risk subgroups. Asterisks denote significant differences compared with the other subgroups, according to Student's t-test (* P < 0.05; ** P < 0.01; *** P < 0.001).

1.3.6 Molecular Characterization of Risk Subgroups

To define the molecular mechanisms of tumor progression, the top 300 genes, according to expression, in each risk subgroup (Q-value < 0.01 and ordered by fold change) were compiled in the high-purity data set from Puleo et al. (Figure 2-15B and Figure 2-16). The hierarchical clustering analysis, using the expression of 900 genes (300 unique genes from each risk subgroup), was able to classify the three risk subgroups with high significance (χ^2 test, P = 4.1E-25). The driver gene mutations in KRAS and TP53 occurred evenly in all three risk subgroups (χ^2 test, P = 0.2254 and 0.3645, respectively). In the gene enrichment analysis, performed using the DAVID functional annotation tool(98), different biological terms were enriched in each risk subgroup. The two high-risk subgroups ("Activated" and "ECM-Remodeling"), which overlapped primarily with basal-like distinct subtypes. were associated with very pathways. The phosphoinositide-3 kinase (PI3K)-protein kinase B (AKT) and mitogenactivated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways were highly enriched in the "Activated" subgroup, whereas the WNT/ β -Catenin and NOTCH signaling pathways were enriched in the "ECM-Remodeling" subgroup. In addition, transcriptional network analysis was performed, using the genes in these pathways differentially expressed between the risk subgroups (Q-value < 0.05), and the upregulation of these processes were verified in the "Activated" and "ECM-Remodeling" subgroups (Figure 2-17).

In contrast, gene ontology terms related to numerous metabolic pathways, such as retinol metabolism, xenobiotic metabolic process, and steroid hormone-mediated signaling, consistent with the pancreatic progenitors identified by Bailey et al., and pancreatic secretion or digestion were enriched in the "Stable" subgroups (Figure 2-18A). Among the four categories of proteins, classical marker proteins, retinol metabolism proteins, exocrine-like marker protein, and pancreatic secretion proteins, the pancreatic secretion proteins were the only category that did not

correlate with the other categories of proteins (Figure 2-18B). Meanwhile, classical subtype tumors with higher levels of pancreatic enzymes were associated with a better prognosis than the other groups (Log-rank test, P = 0.073, HR [95%CI]: 0.42 [0.14-1.25]) (Figure 2-18C).

Furthermore, the risk subgroups were associated with PDAC prognostic markers and therapeutic targets (Figure 2-15C and Table 2-11). We observed a significant association between the classical subtype biomarkers [GATA-binding protein 6 (GATA6) and galectin 4 (LGALS4)], aldehyde dehydrogenase 1 A1 (ALDH1A1), pancreatic enzymes (PNLIP and CPA1), and the "Stable" risk subgroup. The proteins involved in the PI3K-AKT and MAPK/ERK signaling pathway [Fms-related receptor tyrosine kinase 1 (FLT1), CD274, HRAS, vascular endothelial growth factor A (VEGFA), and integrin alpha 5 (ITGA5)] were expressed at higher levels in the "Activated" risk subgroup, along with markers of poor prognosis [S100 calcium-binding protein A2 (S100A2) and enolase 2 (ENO2)]. The "ECM-Remodeling" risk subgroup displayed the high enrichment of proteins related to the cytoskeleton [keratin 17 (KRT17)], glucose transport [solute carrier 2A1 (SLC2A1)], ECM disassembly [protein tyrosine kinase 2 (PTK2), disintegrin and metalloproteinase domain-containing protein 9 (ADAM9). and matrix metalloproteinase 7 (MMP7)], and WNT/β-Catenin signaling [frizzled 1 (FZD1) and catenin beta 1 (CTNNB1)].

Figure 2-16. Re-defining risk subgroups and transcriptional networks in the highpurity tumor sets.

A. Volcano plots for the transcriptomic expression in the three risk subgroups. Colored dots represent the top 300 genes. B. Protein-Protein (P-P) interaction networks involving the top overexpressed proteins in the three risk subgroups. A line between nodes signifies that the corresponding proteins encoded by genes could interact physically (STRING database score > 0.3).

Figure 2-17. Sub-network of differentially expressed genes between the two high-risk subgroups.

The listed gene sets from the KEGG pathway analysis associated with the PI3K-AKT, MAPK/ERK, NOTCH and WNT/ β -Catenin signaling pathways. The differentially expressed genes among the three risk subgroups (Q-value < 0.05 for at least one risk subgroup) were included in the gene network analysis, using Cytoscape (Ver 3.8.0). Node colors denote the mean Z-score of gene expression in the risk subgroups, and node sizes denote the significance of the difference between a given risk subgroup and other risk subgroups (-log10 Q-value). A line between nodes signifies that the corresponding proteins encoded by the genes could interact physically (STRING database score > 0.5).

Figure 2-18. Molecular characterization of the stable-risk subgroups.

A. Sub-networks of differentially expressed genes in the stable-risk subgroups. B. The expression pattern (ordered according to the average expression levels of three pancreatic secretion genes) and correlations among the genes from the four categories (pancreatic secretion, markers of exocrine-like subtype, retinol metabolism, and markers of classical subtype). C. Prognostic relevance of pancreatic enzyme concentrations in the classical tumors associated with the stable-risk subgroups. Pancreatic enzyme classes were determined by the median level of three-gene expression averages.

Drug name	Company	Target protein(s)	Identifier	Recuitment status	Sponsor	Combination partner(s)	bhase
Bevacizumab	Genetech	VEGFA	NCT00614653	Completed	M.D. Anderson Cancer Center	Erlotinib and Capecitabine	
			NCT00047710	Completed	M.D. Anderson Cancer Center	Capecitabine with Radiotherapy	i i
			NCT00460174	Completed	Northwestern University	Gemcitabine with Radiotherapy	ii ii
			NCT00365144	Completed	University of California. San Francisco	Erlotinib	ii ii
			NCT00417976	Completed	Tony Bekaii-Saab	Gemcitabine and Infusional 5-Fluorouracil	μ
			NCT00112528	Completed	Alliance for Clinical Trials in Oncology	Gemcitabine and Oxaliplatin	0
			NCT00602602	Active, and not recruiting	Abramson Cancer Center of the University of Pennsylvania	Gemcitabine, Fluorouracil, and Oxaliplatin with Radiotherapy	μ
			NCT00126633	Completed	University of California, San Francisco	Gemcitabine and Cisplatin	l I
			NCT00366457	Completed	Massachusetts General Hospital	Gemcitabine and Erlotinib	p -
			NCT00222469	Completed	University of Oklahoma	Gemcitabine and Oxaliplatin	r I
			NCT00066677	Completed	Fox Chase Cancer Center	Docetaxel	1
			NCT00114179	Completed	National Cancer Institute (NCI)	Gemcitabine and Capecitabine with Radiotherapy	ť
			NCT 00260364	Completed	Royal Marsden NHS Foundation Trust	Gemcitabine, Capecitabine, and Erlotinib	/11
			NCT00028834	Completed	National Cancer Institute (NCI)	Generatable	ť –
			NCT00925709	Completed	Holimani-La Roche	Capecitabile and Endurind	h.
			NCT01214720	Completed	Ponual Park Cancer Institute	None Compitation and Constitution	ť" –
			NOTOOTOOTO	Completed	Nosweii Park Gancer Institute		ť –
			NCT00091026	Completed	National Cancer Institute (NCI)	Gemericable, Eriotinio, Cetuximab	ť.
			NCT 0000094	Completed	National Cancer Institute (NCI)	Generatabile	ť" –
			NGT 00303077	Completed	National Cancer Institute (NCI)	Generatione, Capeciatorie and Celuxinato with Radiotherapy	ť –
			NCT03351296	Recruiting	Gustave Roussy, Cancer Campus, Grand Paris	LV5FU2, Streptozocin, Capecitabile, and Temzolomide	ť –
			NCT 00336648	Completed	M.D. Anderson Cancer Center	Gernorabine with Readoutherapy	ť
			NCT 02020000	Completed	Cagene	5-r 0, Nao-pacinaxei, carcium eucovorni, oxaipatim	i
			NCT03127124	Recruiting	NantPharma, LLC	NANI-JUB, Fluorouracii, Leucovorin, and Eloxatin	/11
			NC100735306	Completed	Duke University		l
Axitinib	Pfizer	RTKs (VGFR1-3, c-KIT, PDGFR)	NCT00471146	Completed	Pfizer	Gemchabile	ť"
			NC100219557	Completed	Pfizer	Gernetabine	Ľ
Sunitinid	Pfizer	RIKS (PDGERS, VGERS)	NCT00967603	Completed	IRUUS San Ramaele	None O ana bablas	ť –
			NCT00673504	Completed	Ventral European Society for Anticancer Drug Research	Gernclabine	ť –
			NCT00397707	Completed	National Cancer Institute (NCI)	None Compitaliza	ť
Carofonih	Dever/Omai	RTKs (VCERs RRCERs Red kinsess (s Ref. RRAE)	NCT 00402333	Completed	Vanderbilt Ingreen, Censer, Center		h
Sorarenio	bayer/Onyx	RINS (VOERS, POOERS, Rau kilases (C-Rai, DRAF)	NCT00789763	Completed	Gruno Espanol Multidisciplinario, del Cancer Digestivo	Elocition	ť
			NCT00696696	Completed	NYLLLangone Health	Genericabile and Fidinib	ii -
			NCT00375310	Completed	Indiana University School of Medicine	Genericable with Badiotherapy	ť –
			NCT00095966	Completed	National Cancer Institute (NCI)	Gencitabine	ii -
			NCT00981162	Completed	Roswell Park Cancer Institute	Everolimus (mTOR inhibitor)	É
			NCT00634751	Completed	University of Wisconsin, Madison	Oxaliplatin or Capecitabine	/11
Tipifarnib	Kura Oncology	Ras	NCT00005832	Completed	Southwest Oncology Group	None	í –
			10700005040	O	Johnson & Johnson Pharmaceutical Research &		Ĺ.
			NC100005648	Completed	Development, L.L.C.	Genciable	ſ
			NCT00026104	Completed	National Cancer Institute (NCI)	Gemcitabine and Paclitaxel with Radiation therapy	l I
			NCT00005843	Completed	National Cancer Institute (NCI)	None	1
Atezolizumab	Roche	PD-L1	NCT04161755	Recruiting	Memorial Sloan Kettering Cancer Center	R07198457 and mFOLFIRINOX	(
		1	NCT03915678	Not yet recruiting	Institut Bergonié	G 100+Radiotherapy	l I
			NCT03829501	Recruiting	Kymab Limited	KY1044	l I
Avelumab	Pfizer	PD-L1	NCT03637491	Recruiting	Pfizer	Binimetinib (MEK inhibitor) and Talazoparib	1
Durvalumab	AstraZeneca	PD-L1	NCT03572400	Recruiting	Do-Youn Oh	Gemcitable	1
			NCT02734160	Completed	Eli Lilly	Galunisertib (TGFβ antagonist)	i i
			NCT04156087	Not yet recruiting	Baki Topal	Gemcitabine and Tremelimumab(CTLA-4 inhibitor)	r I
		1	NCT02311361	Active, and not recruiting	National Cancer Institute (NCI)	Tremelimumab (CTLA-4 inhibitor)	/11
		1	NCT02639026	Recruiting	Abramson Cancer Center of the University of Pennsylvania	Tremeliimumab (CTLA-4 inhibitor)	i
			NCT02403271	Completed	Pharmacyclics LLC	Ibrutinib (BTK inhibitor)	/11
		1	NC102777710	Active, and not recruiting	Centre Leon Berard	Pexidartinib (CSF1R inhibitor)	i
			NC101693562	Active, and not recruiting	Medimmune LLC	None	/11
PRI-724	PRISM	CBP/p-Catenin	NC101/644/7	Completed	PRISM		┝───
Vantictumab	OncoMed	FZD receptors (FZD-1, -2, -5, and -7)	NCT02050178	Completed	OncoMed	Nab-Paclitaxel and Gemcitabine	I
Defactinib	Verastem	FAK/BTK	NCT 02546531	Active, and not recruiting	Washington University School of Medicine	Pembrolizumab and Gemcitabine	i
			NC102758587	Recruiting	NHS Greater Glasgow and Clyde	Pembrolizumab	/11
G\$K2256098	GlaxoSmithKline	FAK/BTK	NCT02428270	Active, and not recruiting	University Health Network, Toronto	Trametinib	il –
PF-00562271	Verastem	FAK	NCT00666926	Completed	Verastem, Inc.	None	1

Table 2-11. Completed or ongoing clinical trials for pancreatic cancer associated with the highly expressed proteins in the risk subgroups.

1.3.7 Prognostic Prediction Features of Risk Subgroups

High-risk subgroups were identified in both basal-like and classical tumors (Figure 2-19). To demonstrate the strength of risk subgroups for predicting survival outcomes, survival analysis was performed for each original subtype (classical and basal-like), subdivided into risk subgroups, for our study cohort and two external data sets (TCGA and Puleo et al.), including the classification of high-purity tumors (See details in Supplementary Information). Interestingly, the "Activated" and "ECM-Remodeling" risk subgroups consistently displayed significantly poor prognosis in classical (Log-rank test, P = 1.0E-06 for our study, 9.8E-05 for TCGA, and 5.0E-06 for Puleo et al.) and basal-like tumor subtypes (Log-rank test, P = 6.8E-03 for our study, 2.9E-02 for TCGA, and 4.3E-05 for Puleo et al.). Those prognostic associations were modestly replicated among high-purity classical tumors (Log-rank test, P = 6.8E-04 for TCGA and 1.4E-03 for Puleo et al.), but not among high-purity basal-like tumors (Log-rank test, P = 0.3787 for TCGA and 0.1819 for Puleo et al.).

Figure 2-19. Prognostic comparisons between original tumor cell subtypes and proteomic risk subgroups.

(A) The proportions of risk subgroups among classical and basal-like tumors and their Kaplan-Meier curves, in our study cohort. Exocrine-like subtypes were excluded from this analysis. (B) The proportions of the risk subgroups among classical and basal-like tumors and their Kaplan-Meier curves, in the TCGA cohort. Both whole-tumor and high-purity tumor classifications were considered. Other subtypes, such as exocrine-like/ADEX and immunogenic, were excluded from this analysis. (C) The proportions of the risk subgroups among classical and basal-like tumors and their Kaplan-Meier curves, in the Puleo et al. cohort. Both whole-tumor and high-purity tumor classifications were classified as either classical or basal-like tumors (N = 309), using the two centroid classifiers for classical and basal-like subtypes and Spearman's rank correlation method. "Not Applicable" indicates that the number of patients who experienced the event did not reach 50% in the overall follow-up.

1.4 Discussion

To date, numerous approaches have been attempted to improve the outcomes of pancreatic cancer treatment. Neoadjuvant chemotherapy has been attempted in resectable pancreatic cancer, and various radiation therapies have been introduced(99-101). In addition, paradigm shifts in treatment options have occurred, such as the performance of conversion surgery in locally advanced pancreatic cancer and metastatic pancreatic previously which were deemed impossible(4). In these cancer. circumstances, determining the subtype and tumor biology of PDAC can facilitate the design of personalized therapies. Collisson et al. (84) initially proposed three PDAC subtypes, and several investigations have reported that the stratification of patients based on subtypes can have clinical value when choosing a treatment strategy. The COMPASS trial, performed in Canada, used a tumor classification scheme that separated classical from basal-like subtypes and found that basal-like tumors were less likely to respond to first-line therapy(102). Recently, a study by Puleo et al.(87) proposed novel subtypes in a large prospective cohort, based on previous studies, to improve the clinical applicability of tumor categorization.

However, the application of tumor classifications during routine clinical implementation has been hampered by inapplicable classification platform. In addition, conventional tumor cell subtypes have generally been classified into either classical or basal-like tumors; however, the discovery of risk subgroups demonstrates the complexity of PDAC, which displays a level of heterogeneity that cannot be fully captured by the current classification methods. This notion has been supported by previous studies, which have indicated that PDAC progress from IPMN, through several different pathways(103,104). Furthermore, subpopulations of malignant ductal cells that were analyzed using single-cell RNA-seq revealed that components of multiple tumor-related pathways were differentially expressed during PDAC progression(105,106).

Our study proposed a random forest model, using 24 protein expression patterns that could be used to classify four PDAC risk subgroups, "Stable", "Exocrine-like", "Activated", and "ECM-Remodeling". This approach differs from previous approaches due to its increased emphasis on previous prognostic studies and the quality controls that were performed during model development. To develop an accurate and consistent risk subgroup and an MRM-MS-based model, we utilized biomarkers that have been thoroughly reviewed by numerous studies. We conducted a rigorous proteomic analysis, using MRM-MS, and validated the quality of the quantitation and the precision of the protein assays while satisfying standard guidelines, which is crucial for providing a reliable diagnostic evaluation in clinical settings. As advances in proteomics have rendered sample preparation protocols simpler and more economical, an MS-based proteomic assay might serve as an alternative platform and complement existing transcriptome-based assays by producing results faster-with several hours of measuring time and a total turnaround of several days(107).

Moreover, although our classification shows similarities with the originally defined subtypes, our subgroups possess distinct features that differ from the original classification groups. For instance, the "Stable" risk subgroup approximately encompassed classical tumor subtypes and lower-purity tumors that included contents from the tumor microenvironment, such as immune, stroma, and pancreatic enzymes. Puleo et al. suggested that the exocrine-like/ADEX subtype is more likely to be derived from normal acinar cells, which predominantly constitute the pancreas and produce digestive enzymes(87). Pancreatic enzymes (PNLIP and CPA1) that were enriched in the "Stable" and "Exocrine-like" subgroups were associated with good prognosis in our study and the high-purity tumors reported by Puleo et al. (Table 2-6 and Figure 2-18C). During pancreatic diseases, pancreatic acinar cells are prone to apoptosis, induced by endoplasmic reticulum stress(108), and pancreatic enzyme replacement therapy (PERT) could improve the prognosis of patients with pancreatic exocrine insufficiency

(PEI) due to chronic pancreatitis(109). Thus, the identification of low-purity tumors that are highly enriched in PNLIP and CPA1 in the "Stable" and "Exocrine-like" risk subgroups may be able to predict risk among PDAC patients. In addition, better response to first-line chemotherapy (FOLFIRINOX or Gemcitabine) in patients with classical subtype has been observed in other earlier studies(102). Hence, improved survival outcome could be observed in first-line chemotherapy treated "Stable" risk subgroups which mainly overlapped with classical subtypes.

The two high-risk subgroups, "Activated" and "ECM-Remodeling", were distinguished by differences in signal transduction, associated with tumor progression, such as the PI3K-AKT, MAPK/ERK, and WNT/β-Catenin signaling pathways (Figure 2-17). In addition, the mechanisms for ECM disassembly appeared to be more activated in the "ECM-Remodeling" subgroup. Understanding tumor characteristics may improve the prediction of drug response in completed or ongoing PDAC treatment trials (Table 2-11). Clinical trials examining FDA-approved, targeted therapeutic agents, such as bevacizumab(110) and axitinib(111), which are in phase III, and sunitinib(112) and sorafenib(113), which are in phase II, have been conducted for advanced-stage PDAC, but none of these treatments have demonstrated significant improvements in OS. A phase III clinical trial for tipifarnib, which targets "Ras" proteins, was discontinued in 2005, for similar reasons(114). Drugs targeting programmed death-ligand 1 (PD-L1) are currently in clinical trials. These drugs all target receptor tyrosine kinases (RTKs) that function in the PI3K-AKT and MAPK/ERK signaling pathways and may improve the survival outcomes of the "Activated" subgroup by hindering RTKs during tumor progression. Drugs that target WNT/ β -Catenin signaling, such as PRI-724(115) and vantictumab(116), could improve the survival outcomes of the "ECM-Remodeling" subgroup. Moreover, detactinib, GSK2256098, and PF-00562271, which target focal adhesion kinase (FAK), may hinder interactions between "ECM-Remodeling" tumors and the ECM.

Many prognostic markers for PDAC have been studied, especially by IHC,

and have been instrumental in the clinic (93.117). In this study, we have proposed 24 protein markers that are associated with the survival of PDAC patients. Twenty of 24 proteins were reported by prior studies as prognostic markers, and their survival patterns were closely replicated in our data (Table 2-12). Moreover, the 20 proteins are hallmarks of cancer that influence its prognosis, such as angiogenesis, differentiation, cell cycle progression, immune competence, metabolic reprogramming, tumor suppression, tumor invasion, and metastasis(92). In addition, the expression of well-known prognostic markers, such as cyclin E1 (CCNE1), E-cadherin (CDH1), carcinoembryonic antigen (CEACAM5), MutL-homolog 1 (MLH1), matrilysin (MMP7), poly [ADP-ribose] polymerase 1 (PARP1), and thymidine phosphorylase (TYMP), defined our risk subgroups. Further study of the correlation of the risk subgroups with conventional markers that are associated with tumor suppressors, apoptosis, and DNA mismatch repair would provide insights into the mechanism of standard chemotherapeutic agents, such as 5-fluorouracil, cisplatin, and gemcitabine.

Our study primarily used surgically resected, whole, fresh-frozen tissues, without considering tumor purity, in a single-assay platform, rendering our method applicable to (FNA) samples (118). Also, the small amount of samples (1 µg of protein) that was required for our method further supports its applicability to FNA samples, identifying and adding cell type-specific markers that improve the panel's performance(119). In addition, the results of the panel on FFPE tissue samples were comparable with those of whole, fresh-frozen tissues(120) (Figure 2-12), and the dataset of Puleo et al. (Figure 2-10A) validates our method beyond whole, fresh-frozen tissue.

Using previously reported datasets, the 24 proteins that were discovered in our study correlated highly with the corresponding mRNA in cancer cell lines, human tissues, and PDAC PDX tissues (Table 2-13). Considering the highly heterogeneous nature of PDAC tumors, which could hinder the identification of the driving factors of cancers, comparing proteomic- and transcriptomic-based methods is important(121), and high correlations between protein and transcript levels support the reliability of our markers and risk subgroups. However, the concern over FNA samples having low cellularity and the high intratumoral heterogeneity of PDAC remains, necessitating testing of our method in a large cohort of FNA samples.

Various treatments, such as neoadjuvant therapy(3), FOLFIRINOX(122), and stereotactic ablative radiotherapy(123), have been administered to improve the prognosis but have had varying responses between patients. If a prospective treatment-responding risk subgroup is determined, especially at the time of diagnosis, and if a predictive model for the projected treatment response for each risk subgroup is developed, these achievements could form the basis of patient-specific treatment and drastically improve the survival outcomes of pancreatic cancer patients.

In conclusion, we proposed novel PDAC risk subgroups and a classification model that has the potential for clinical applications at an individual level. Our risk subgroup identification indicates the importance of incorporating the findings of previous studies and original prognostic biomarkers, by subclassifying groups associated with higher death risk among classical or basal-like subtypes. This risk classification model may improve the accuracy with which clinicians identify patients who are likely to benefit from strenuous first-line therapy or targeted therapy.

Gene Name	Tumorigenic function	Prognostic marker study	DOI	Cancer type	Quantitation method	Reference group (Case)	HR for OS	95% CI	P-value	Log rank test , P-value	Sampl e size
ACTN4	Tissueinvasion and metastasis	Kikuchi et al. 2008	10.1158/1078-0432.COR-08- 0075	Pancreatic cancer	IHC	Negative (Positive)	2.27	1.57 to 3.27	< 0.001***	< 0.001***	173
ACTN4	Tissueinvasion and metastasis	Watanabe et al. 2015	10.1038/bjc.2014.623	Pancreatic cancer	IHC	Negative (Positive)	1.53	0.92 to 2.53	0.1004	0.116	91
ADAM9	Tissue invasion and	Grützmann et al. 2004	10.1038/sj.bjc.6601645	Pancreatic cancer	IHC	Negative (Positive)	3.94	1.72 to 9.05	< 0.001***	< 0.001***	51
ALDH1A1	Differentiation	Kahlert et al. 2011ª	10.1186/1471-2407-11-275	Pancreatic cancer	IHC	Low (High)	0.40	0.22 to 0.71	0.002**	0.012*	97
CAP1	Tissue invasion and metastasis	Yamazaki et al. 2009	10.1038/labinvest.2009.5	Pancreatic cancer	IHC	Low (High)	Not available; Pcor prognosis in with hig	hNot available	Not available	e0.021*	73
CAP1	Tissue invasion and metastasis	Bergqvist et al. 2020	10.1186/s13058-020-01307-5	Breast cancer	IHC	High (Moderate; Low)	0.73; 0.54	0.55 to 0.99; 0.38 to 0.78	0.04*; 0.001**	0.002**	718
CD274	Immunocompetence	Nomi et al. 2007ª	10.1158/1078-0432.CCR-06- 2746	Pancreatic cancer	IHC	Negative (Positive)	2.30	Not available	0.022*	0.016*	51
DSG2	Tissueinvasion and metastasis	Ormanns et al. 2015	10.1038/bjc.2015.362	Pancreatic cancer	IHC	Low (High)	1.24	0.82 to 1.88	0.31	0.029*	165
FLT1 IDH1	Angiogenesis Metabolic reprogramming	Chung et al. 2006 Liu et al. 2018⋼	10.1002/cncr.21783 10.1186/s13058-018-0953-7	Pancreatic cancer Breast cancer	TMA IHC	Bottom (Top) High (Low)	4.43 1.64	1.53 to 12.86 1.14 to 2.38	0.0062** 0.008**	0.0038** 0.008**	76 249
IDH1	Metabolic reprogramming	Laba et al. 2018	10.1186/s12885-018-4747-1	Renal cell carcinoma	TMA	Low (High)	0.50	0.25 to 0.99	0.046*	0.004**	285
IT GA5	Tissueinvasion and metastasis	Kuninty et al. 2019	10.1126/sciadv.aax2770	Pancreatic cancer	IHC	Low (High)	1.87	1.27 to 2.76	0.002**	0.008**	137
IT GA6	Tissueinvasion and metastasis	Sawai et al.2006∘	10.1186/1471-2121-7-8	Pancreatic cancer	IHC	Without strong (With strong)	Not available; Pcor prognosis in with strong	Not available	Not availab	e< 0.001***	42
KRT17	Tissueinvasion and metastasis	Roa-Peña et al. 2019	10.1038/s41598-019-47519-4	Pancreatic cancer	IHC	Low (High)	2.96	Not available	0.008**	Not available	74
NPM1	Cell cycle progression	Qin et al. 2020	10.1038/s41467-020-15364-z	Breast cancer	IHC	Low (High)	Not available; Poor prognosis in high	Not available	Not available	e0.002**	133
NPM1	Cell cycle progression	Liu et al. 2012	10.1186/1423-0127-19-53	Colon cancer	IHC	Negative (Positive)	Not available; Poor prognosis in positive	Not available	Not available	e0.017*	31
PDCD4	Tumor supprossor	Nagao et al. 2012	10.1038/modpathol.2011.142	Pancreatic cancer	IHC	Negative (Positive)	0.44	0.28 to 0.69	< 0.001***	available	65
S100A2	Cell cycle progression	Biankin et al. 2009 ^b	10.1053/j.gastro.2009.04.009	Pancreatic cancer	IHC	Negative (Positive)	1.87	1.25 to 2.81	0.002**	< 0.001***	296
S100A4	Cell cycle progression	Oida et al. 2006	PubMed ID: 16865243	Pancreatic cancer	IHC	Negative (Positive)	1.81	1.01 to 3.27	0.048*	0.014*	72
SLC2A1	Metabolic reprogramming	Sharen et al. 2017	10.18632/oncotarget.15035	Pancreatic cancer	IHC	Negative (Positive)	1.79	1.19 to 2.70	0.005**	Not available	538
VEGFA	Angiogenesis	lkeda et al. 1999	10.1038/sj.bjc.6690248	Pancreatic cancer	IHC	Positive (Negative)	0.17	0.03 to 0.96	0.044*	Not available	40
ALAD	Differentiation	Ge et al. 2017	10.1111/cas.13180	Breast cancer	mRNA expression	Low (High)	Not available; Poor prognosis in low	Not available	Not availab	e< 0.001***	188
ENO2	Metabolic reprogramming	Daemen et al. 2015	10.1073/pnas.1501605112	Pancreatic cancer	mRNA expression	Lipogenic (Glycolytic)	Not available; Pcor prognosis in glycolytic	Not available	Not availab	e available	38
NEFH	Tumor supprossor	van Vlodrop et al. 2016	10.1158/1078-0432.COR-16- 1236	Renal cell carcinoma	Gene methylation	Unmethylated (Methylated) in population-based series	2.80	1.7 to 4.6	< 0.001***	Not available	185
NEFH	Tumor supprossor	Huang et al. 2018	10.1002/ijc.31580	Ovarian cancer	Gene methylation	L-methyl (H-methyl)	2.37	1.17 to 4.83	0.017*	0.014*	84

Table 2-12. Prognostic markers in the Random Forest classification model.

IHC, immunohistochemistry; TMA, tissue microarray; HR, hazard ratio; 95% CI, 95% confidence interval; * P-value < 0.05; ** P-value < 0.01; *** P-value < 0.001; a Relative risk was presented instead of HR; b Disease specific survival was used to survival analysis instead of overall survival; c Wilcoxon test was used to calculate significance of difference between groups in Kaplan-Meier curves

Gene Name	375 cell-lines from CCLE ^a , Pearson's correlation (<i>r</i>)	29 human tissues from HPA ^b , Pearson's correlation (<i>r</i>)	29 human tissues from HPA ^b , Pearson's correlation (P-value)	10 PDAC PDXs from Le Large et al. ^c and Dijk et al. ^d , Pearson's correlation (<i>r</i>)	10 PDAC PDXs from Le Large et al. ^c and Dijk et al. ^d , Pearson's correlation (P-value)
ACTN4	0.750	0.335	0.075	0.828	0.0058
ADAM9	0.840	0.436	0.018	0.395	0.29
ALAD	0.640	0.719	1.1E-05	0.675	0.046
ALDH1A1	0.840	0.874	5.7E-10	0.913	6.0E-04
CAP1	0.692	0.718	1.1E-05	0.919	5.0E-04
CD274	0.789	0.521	0.068	Not Available	Not Available
CPA1	Not Available	0.758	0.011	Not Available	Not Available
DSG2	0.788	0.741	1.5E-05	0.481	0.19
ENO2	0.697	0.841	3.9E-08	Not Available	Not Available
FLT1	0.566	0.784	1.1E-05	Not Available	Not Available
HRAS	0.308	0.067	0.74	Not Available	Not Available
IDH1	0.692	0.813	8.4E-08	-0.332	0.38
ITGA5	0.781	0.571	0.0012	0.642	0.062
ITGA6	0.789	0.723	9.3E-06	0.865	0.0026
KRT17	0.577	0.678	0.031	0.783	0.013
NEFH	0.200	0.523	0.18	Not Available	Not Available
NPM1	0.448	0.342	0.070	0.913	6.0E-04
PDCD4	0.713	0.720	1.1E-05	0.828	0.0059
PNLIP	Not Available	0.878	0.0018	Not Available	Not Available
RPS5	0.276	-0.090	0.64	0.422	0.26
S100A2	0.724	0.841	6.1E-04	0.492	0.18
S100A4	0.762	0.584	8.9E-04	0.948	1.0E-04
SLC2A1	0.760	0.465	0.013	0.727	0.027
VEGFA	0.511	0.594	0.054	Not Available	Not Available

Table 2-13. Correlation of 24 markers between mass spectrometry-based protein expression and RNA-seq-based mRNA expression.

CCLE, Cancer Cell Line Encyclopedia; HPA, Human Protein Atlas; PDAC, Pancreatic Ductal Adenocarcinomas; PDXs, Patient Derived Xenografts; ^a Nusinow DP, Szpyt J, Ghandi M, Rose CM, McDonald ER 3rd, Kalocsay M, et al. Quantitative Proteomics of the Cancer Cell Line Encyclopedia. *Cell* 2020;180(2):387-402. doi: 10.1016/j.cell.2019.12.023; ^b Wang D, Eraslan B, Wieland T, Hallström B, Hopf T, Zolg DP, et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. *Mol Syst Biol* 2019 Feb 18;15(2):e8503. doi: 10.15252/msb.20188503; ^c Le Large TY, Mantini G, Meijer LL, Pham TV, Funel N, van Grieken NC, et al. Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. *JCl insight* 2020;5(15) doi 10.1172/jci.insight.138290; ^d Dijk F, Veenstra VL, Soer EC, Dings MPG, Zhao L, Halfwerk JB, et al. Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems. *Scientific reports* 2020;10(1):337 doi 10.1038/s41598-019-56826-9.

References

- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: a cancer journal for clinicians 2018;68(1):7-30 doi 10.3322/caac.21442.
- 2. Kindler HL. A Glimmer of Hope for Pancreatic Cancer. *The New England journal of medicine* 2018;**379**(25):2463-4 doi 10.1056/NEJMe1813684.
- 3. Jang JY, Han Y, Lee H, Kim SW, Kwon W, Lee KH, *et al.* Oncological Benefits of Neoadjuvant Chemoradiation With Gemcitabine Versus Upfront Surgery in Patients With Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. *Annals of surgery* 2018;**268**(2):215-22 doi 10.1097/sla.00000000002705.
- 4. Faris JE, Blaszkowsky LS, McDermott S, Guimaraes AR, Szymonifka J, Huynh MA, *et al.* FOLFIRINOX in locally advanced pancreatic cancer: the Massachusetts General Hospital Cancer Center experience. *The oncologist* 2013;**18**(5):543-8 doi 10.1634/theoncologist.2012-0435.
- 5. Park J, Choi Y, Namkung J, Yi SG, Kim H, Yu J, *et al.* Diagnostic performance enhancement of pancreatic cancer using proteomic multimarker panel. *Oncotarget* 2017;**8**(54):93117-30 doi 10.18632/oncotarget.21861.
- 6. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, *et al.* Genomic analyses identify molecular subtypes of pancreatic cancer. *Nature* 2016;**531**(7592):47-52 doi 10.1038/nature16965.
- 7. Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. *Clinical chemistry* 2010;**56**(2):177-85 doi 10.1373/clinchem.2009.126706.
- Duffy MJ, van Dalen A, Haglund C, Hansson L, Holinski-Feder E, Klapdor R, et al. Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. European journal of cancer 2007;43(9):1348-60 doi 10.1016/j.ejca.2007.03.021.
- 9. Hudler P, Kocevar N, Komel R. Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. *TheScientificWorldJournal* 2014;**2014**:260348 doi 10.1155/2014/260348.
- 10. Srivastava S, Verma M, Henson DE. Biomarkers for early detection of colon cancer. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2001;**7**(5):1118-26.
- 11. Kim H, Yu SJ, Yeo I, Cho YY, Lee DH, Cho Y, *et al.* Prediction of Response to Sorafenib in Hepatocellular Carcinoma: A Putative Marker Panel by Multiple Reaction Monitoring-Mass Spectrometry (MRM-MS). *Molecular & cellular proteomics : MCP* 2017;**16**(7):1312-23 doi 10.1074/mcp.M116.066704.
- 12. Yu SJ, Kim H, Min H, Sohn A, Cho YY, Yoo JJ, *et al.* Targeted Proteomics Predicts a Sustained Complete-Response after Transarterial Chemoembolization and Clinical Outcomes in Patients with Hepatocellular Carcinoma: A Prospective Cohort Study. *Journal of proteome research* 2017;**16**(3):1239-48 doi 10.1021/acs.jproteome.6b00833.
- 13. Yurkovetsky Z, Skates S, Lomakin A, Nolen B, Pulsipher T, Modugno F, et al. Development of a multimarker assay for early detection of ovarian cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2010;**28**(13):2159-66 doi 10.1200/JCO.2008.19.2484.
- 14. Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C, *et al.* Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. *Nature methods* 2014; **11**(2):149-55 doi

10.1038/nmeth.2763.

- 15. Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: work flows, potential, pitfalls and future directions. *Nature methods* 2012;**9**(6):555-66 doi 10.1038/nmeth.2015.
- 16. Abbatiello SE, Mani DR, Schilling B, Maclean B, Zimmerman LJ, Feng X, et al. Design, implementation and multisite evaluation of a system suitability protocol for the quantitative assessment of instrument performance in liquid chromatography-multiple reaction monitoring-MS (LC-MRM-MS). *Molecular & cellular proteomics : MCP* 2013;**12**(9):2623-39 doi 10.1074/mcp.M112.027078.
- 17. Abbatiello SE, Schilling B, Mani DR, Zimmerman LJ, Hall SC, MacLean B, *et al.* Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma. *Molecular & cellular proteomics : MCP* 2015;**14**(9):2357-74 doi 10.1074/mcp.M114.047050.
- 18. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, *et al.* Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. *Nature biotechnology* 2009;**27**(7):633-41 doi 10.1038/nbt.1546.
- Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, et al. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-forpurpose approach. *Molecular & cellular proteomics : MCP* 2014;**13**(3):907-17 doi 10.1074/mcp.M113.036095.
- 20. Whiteaker JR, Halusa GN, Hoofnagle AN, Sharma V, MacLean B, Yan P, *et al.* CPTAC Assay Portal: a repository of targeted proteomic assays. *Nature methods* 2014;**11**(7):703-4 doi 10.1038/nmeth.3002.
- 21. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, *et al.* Gene expression profiling predicts clinical outcome of breast cancer. *Nature* 2002;**415**(6871):530-6 doi 10.1038/415530a.
- 22. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 2009;**27**(8):1160-7 doi 10.1200/jco.2008.18.1370.
- 23. Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M, Sokal I, *et al.* A targeted proteomics-based pipeline for verification of biomarkers in plasma. *Nature biotechnology* 2011;**29**(7):625-34 doi 10.1038/nbt.1900.
- 24. Chen Y, Zhang Y, Yin Y, Gao G, Li S, Jiang Y, *et al.* SPD--a web-based secreted protein database. *Nucleic Acids Res* 2005;**33**(Database issue):D169-73 doi 10.1093/nar/gki093.
- 25. Jackson GS, Burk-Rafel J, Edgeworth JA, Sicilia A, Abdilahi S, Korteweg J, *et al.* Population screening for variant Creutzfeldt-Jakob disease using a novel blood test: diagnostic accuracy and feasibility study. *JAMA neurology* 2014;**71**(4):421-8 doi 10.1001/jamaneurol.2013.6001.
- 26. Werner S, Krause F, Rolny V, Strobl M, Morgenstern D, Datz C, *et al.* Evaluation of a 5-Marker Blood Test for Colorectal Cancer Early Detection in a Colorectal Cancer Screening Setting. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2016;**22**(7):1725-33 doi 10.1158/1078-0432.CCR-15-1268.
- 27. Brennan DJ, O'Connor DP, Rexhepaj E, Ponten F, Gallagher WM. Antibody-based proteomics: fast-tracking molecular diagnostics in oncology. *Nature reviews Cancer* 2010;**10**(9):605-17 doi 10.1038/nrc2902.
- 28. Stahl-Zeng J, Lange V, Ossola R, Eckhardt K, Krek W, Aebersold R, *et al.* High sensitivity detection of plasma proteins by multiple reaction

monitoring of N-glycosites. *Molecular* & *cellular proteomics : MCP* 2007;**6**(10):1809-17 doi 10.1074/mcp.M700132-MCP200.

- 29. Li H, Bergeron S, Juncker D. Microarray-to-microarray transfer of reagents by snapping of two chips for cross-reactivity-free multiplex immunoassays. *Analytical chemistry* 2012;**84**(11):4776-83 doi 10.1021/ac3003177.
- 30. Pla-Roca M, Leulmi RF, Tourekhanova S, Bergeron S, Laforte V, Moreau E, et al. Antibody colocalization microarray: a scalable technology for multiplex protein analysis in complex samples. *Molecular & cellular proteomics : MCP* 2012;**11**(4):M111 011460 doi 10.1074/mcp.M111.011460.
- 31. Gillette MA, Carr SA. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. *Nature methods* 2013;**10**(1):28-34 doi 10.1038/nmeth.2309.
- 32. Yang T, Chen F, Xu F, Wang F, Xu Q, Chen Y. A liquid chromatographytandem mass spectrometry-based targeted proteomics assay for monitoring P-glycoprotein levels in human breast tissue. *Clinica chimica acta; international journal of clinical chemistry* 2014;**436**:283-9 doi 10.1016/j.cca.2014.06.013.
- 33. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, *et al.* Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. *Bioinformatics* 2010;**26**(7):966-8 doi 10.1093/bioinformatics/btq054.
- 34. Abbatiello SE, Mani DR, Keshishian H, Carr SA. Automated detection of inaccurate and imprecise transitions in peptide quantification by multiple reaction monitoring mass spectrometry. *Clinical chemistry* 2010;**56**(2):291-305 doi 10.1373/clinchem.2009.138420.
- 35. Hortin GL, Sviridov D, Anderson NL. High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance. *Clinical chemistry* 2008;**54**(10):1608-16 doi 10.1373/clinchem.2008.108175.
- 36. Kim K, Yu J, Min H, Kim H, Kim B, Yu HG, *et al.* Online monitoring of immunoaffinity-based depletion of high-abundance blood proteins by UV spectrophotometry using enhanced green fluorescence protein and FITC-labeled human serum albumin. *Proteome science* 2010;**8**:62 doi 10.1186/1477-5956-8-62.
- 37. Stein SE, Scott DR. Optimization and testing of mass spectral library search algorithms for compound identification. *Journal of the American Society for Mass Spectrometry* 1994;**5**(9):859-66 doi 10.1016/1044-0305(94)87009-8.
- 38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *Journal of molecular biology* 1990;**215**(3):403-10 doi 10.1016/s0022-2836(05)80360-2.
- FDA. Guidance for Industry Bioanalytical Method Validation. Volume Draft Guidance. Rockville, MD: United States Food and Drug Administration; 2013.
- 40. C62-A. Liquid Chromatography-Mass Spectrometry Methods; Approved Guideline. Wayne, PA: Clinical and Laboratory and Standards Institute (CLSI); 2014.
- 41. Unsworth DJ. Complement deficiency and disease. *Journal of clinical pathology* 2008;**61**(9):1013-7 doi 10.1136/jcp.2008.056317.
- 42. Walport MJ. Complement. First of two parts. *The New England journal of medicine* 2001;**344**(14):1058-66 doi 10.1056/nejm200104053441406.
- 43. Walport MJ. Complement. Second of two parts. *The New England journal of medicine* 2001;**344**(15):1140-4 doi 10.1056/nejm200104123441506.
- 44. Yavuz S, Acarturk TO. Acquired partial lipodystrophy with C3

hypocomplementemia and antiphospholipid and anticardiolipin antibodies. *Pediatric dermatology* 2010;**27**(5):504-8 doi 10.1111/j.1525-1470.2010.01255.x.

- 45. Inai S, Akagaki Y, Moriyama T, Fukumori Y, Yoshimura K, Ohnoki S, *et al.* Inherited deficiencies of the late-acting complement components other than C9 found among healthy blood donors. *International archives of allergy and applied immunology* 1989;**90**(3):274-9.
- 46. Pereira de Carvalho Florido M, Ferreira de Paula P, Isaac L. Simple method to distinguish between primary and secondary C3 deficiencies. *Clinical and diagnostic laboratory immunology* 2003;**10**(2):216-20.
- 47. Thurman JM. Complement in kidney disease: core curriculum 2015. American journal of kidney diseases : the official journal of the National Kidney Foundation 2015;**65**(1):156-68 doi 10.1053/j.ajkd.2014.06.035.
- 48. Zuraw BL. Clinical practice. Hereditary angioedema. *The New England journal of medicine* 2008;**359**(10):1027-36 doi 10.1056/NEJMcp0803977.
- 49. Asakai R, Chung DW, Ratnoff OD, Davie EW. Factor XI (plasma thromboplastin antecedent) deficiency in Ashkenazi Jews is a bleeding disorder that can result from three types of point mutations. *Proceedings of the National Academy of Sciences of the United States of America* 1989;**86**(20):7667-71.
- 50. Carpenter SL, Mathew P. Alpha2-antiplasmin and its deficiency: fibrinolysis out of balance. *Haemophilia : the official journal of the World Federation of Hemophilia* 2008;**14**(6):1250-4 doi 10.1111/j.1365-2516.2008.01766.x.
- 51. Gupta PK, Kumar H, Kumar S. Hereditary Factor X (Stuart-Prower Factor) Deficiency. *Medical journal, Armed Forces India* 2008;**64**(3):286-7 doi 10.1016/s0377-1237(08)80123-2.
- 52. Margaglione M, Grandone E. Population genetics of venous thromboembolism. A narrative review. *Thrombosis and haemostasis* 2011;**105**(2):221-31 doi 10.1160/th10-08-0510.
- 53. Mehta R, Shapiro AD. Plasminogen deficiency. *Haemophilia : the official journal of the World Federation of Hemophilia* 2008;**14**(6):1261-8 doi 10.1111/j.1365-2516.2008.01825.x.
- 54. Montgomery RR, Otsuka A, Hathaway WE. Hypoprothrombinemia: case report. *Blood* 1978;**51**(2):299-306.
- 55. Yousuf O, Mohanty BD, Martin SS, Joshi PH, Blaha MJ, Nasir K, et al. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? *Journal of the American College of Cardiology* 2013;**62**(5):397-408 doi 10.1016/j.jacc.2013.05.016.
- 56. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. *The New England journal of medicine* 1999;**340**(6):448-54 doi 10.1056/nejm199902113400607.
- 57. Macy EM, Hayes TE, Tracy RP. Variability in the measurement of Creactive protein in healthy subjects: implications for reference intervals and epidemiological applications. *Clinical chemistry* 1997;**43**(1):52-8.
- 58. Walldius G, Jungner I. The apoB/apoA-I ratio: a strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy--a review of the evidence. *Journal of internal medicine* 2006; **259**(5):493-519 doi 10.1111/j.1365-2796.2006.01643.x.
- 59. Ding EL, Song Y, Manson JE, Hunter DJ, Lee CC, Rifai N, *et al.* Sex hormone-binding globulin and risk of type 2 diabetes in women and men. *The New England journal of medicine* 2009;**361**(12):1152-63 doi 10.1056/NEJMoa0804381.
- 60. Ley SH, Harris SB, Connelly PW, Mamakeesick M, Gittelsohn J, Wolever TM, *et al.* Association of apolipoprotein B with incident type 2 diabetes in

an aboriginal Canadian population. *Clinical chemistry* 2010;**56**(4):666-70 doi 10.1373/clinchem.2009.136994.

- 61. Ruokonen A, Alen M, Bolton N, Vihko R. Response of serum testosterone and its precursor steroids, SHBG and CBG to anabolic steroid and testosterone self-administration in man. *Journal of steroid biochemistry* 1985;**23**(1):33-8.
- 62. Acchiardo S, Kraus AP, Jr., Jennings BR. Beta 2-microglobulin levels in patients with renal insufficiency. *American journal of kidney diseases : the official journal of the National Kidney Foundation* 1989;**13**(1):70-4.
- 63. Hojs R, Bevc S, Ekart R, Gorenjak M, Puklavec L. Serum cystatin C as an endogenous marker of renal function in patients with mild to moderate impairment of kidney function. *Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association European Renal Association* 2006;**21**(7):1855-62 doi 10.1093/ndt/gfl073.
- 64. Keevil BG, Kilpatrick ES, Nichols SP, Maylor PW. Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. *Clinical chemistry* 1998;**44**(7):1535-9.
- 65. deWilde A, Sadilkova K, Sadilek M, Vasta V, Hahn SH. Tryptic peptide analysis of ceruloplasmin in dried blood spots using liquid chromatographytandem mass spectrometry: application to newborn screening. *Clinical chemistry* 2008;**54**(12):1961-8 doi 10.1373/clinchem.2008.111989.
- 66. Garewal H, Durie BG, Kyle RA, Finley P, Bower B, Serokman R. Serum beta 2-microglobulin in the initial staging and subsequent monitoring of monoclonal plasma cell disorders. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 1984;**2**(1):51-7 doi 10.1200/jco.1984.2.1.51.
- 67. Li X, Buxbaum JN. Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease? *Molecular neurodegeneration* 2011;**6**:79 doi 10.1186/1750-1326-6-79.
- 68. Maiorana A, Roach RB, Jr. Heterozygous pseudocholinesterase deficiency: a case report and review of the literature. *Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons* 2003;**61**(7):845-7.
- 69. Rodriguez J, Cortes J, Talpaz M, O'Brien S, Smith TL, Rios MB, et al. Serum beta-2 microglobulin levels are a significant prognostic factor in Philadelphia chromosome-positive chronic myelogenous leukemia. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2000;**6**(1):147-52.
- 70. Shen Y, Zhang J, Zhao Y, Yan Y, Liu Y, Cai J. Diagnostic value of serum IGF-1 and IGFBP-3 in growth hormone deficiency: a systematic review with meta-analysis. *European journal of pediatrics* 2015;**174**(4):419-27 doi 10.1007/s00431-014-2406-3.
- 71. Westermark P, Sletten K, Johansson B, Cornwell GG, 3rd. Fibril in senile systemic amyloidosis is derived from normal transthyretin. *Proceedings of the National Academy of Sciences of the United States of America* 1990;**87**(7):2843-5.
- 72. Logdberg LE, Akerstrom B, Badve S. Tissue distribution of the lipocalin alpha-1 microglobulin in the developing human fetus. *The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society* 2000;**48**(11):1545-52 doi 10.1177/002215540004801111.
- 73. Penders J, Delanghe JR. Alpha 1-microglobulin: clinical laboratory aspects and applications. *Clinica chimica acta; international journal of clinical chemistry* 2004;**346**(2):107-18 doi 10.1016/j.cccn.2004.03.037.
- 74. Keramat L, Sadrzadeh-Yeganeh H, Sotoudeh G, Zamani E, Eshraghian M,

Mansoori A, *et al.* Apolipoprotein A2 -265 T>C polymorphism interacts with dietary fatty acids intake to modulate inflammation in type 2 diabetes mellitus patients. *Nutrition (Burbank, Los Angeles County, Calif)* 2017;**37**:86-91 doi 10.1016/j.nut.2016.12.012.

- 75. Kobayashi T, Sato Y, Nishiumi S, Yagi Y, Sakai A, Shiomi H, *et al.* Serum apolipoprotein A2 isoforms in autoimmune pancreatitis. *Biochemical and biophysical research communications* 2018;**497**(3):903-7 doi 10.1016/j.bbrc.2018.02.170.
- 76. Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. *Pathology* 2018 doi 10.1016/j.pathol.2018.11.002.
- 77. Morris JC, Schindler SE, McCue LM, Moulder KL, Benzinger TLS, Cruchaga C, *et al.* Assessment of Racial Disparities in Biomarkers for Alzheimer Disease. *JAMA neurology* 2019 doi 10.1001/jamaneurol.2018.4249.
- 78. Kamboh MI, Manzi S, Mehdi H, Fitzgerald S, Sanghera DK, Kuller LH, *et al.* Genetic variation in apolipoprotein H (beta2-glycoprotein I) affects the occurrence of antiphospholipid antibodies and apolipoprotein H concentrations in systemic lupus erythematosus. *Lupus* 1999;**8**(9):742-50 doi 10.1191/096120399678840909.
- 79. Vogrinc Z, Trbojevic-Cepe M, Coen D, Vitale K, Stavljenic-Rukavina A. Apolipoprotein H (apoH)-dependent autoantibodies and apoH protein polymorphism in selected patients showing lupus anticoagulant activity. *Clinical chemistry and laboratory medicine* 2005; **43**(1):17-21 doi 10.1515/cclm.2005.002.
- Horvath-Szalai Z, Kustan P, Muhl D, Ludany A, Bugyi B, Koszegi T. Antagonistic sepsis markers: Serum gelsolin and actin/gelsolin ratio. *Clinical biochemistry* 2017;**50**(3):127-33 doi 10.1016/j.clinbiochem.2016.10.018.
- 81. Huang LF, Yao YM, Li JF, Dong N, Liu C, Yu Y, *et al.* Reduction of plasma gelsolin levels correlates with development of multiple organ dysfunction syndrome and fatal outcome in burn patients. *PLoS One* 2011;**6**(11):e25748 doi 10.1371/journal.pone.0025748.
- 82. Wu C, Shi T, Brown JN, He J, Gao Y, Fillmore TL, *et al.* Expediting SRM assay development for large-scale targeted proteomics experiments. *Journal of proteome research* 2014;**13**(10):4479-87 doi 10.1021/pr500500d.
- 83. Percy AJ, Chambers AG, Yang J, Domanski D, Borchers CH. Comparison of standard- and nano-flow liquid chromatography platforms for MRM-based quantitation of putative plasma biomarker proteins. *Anal Bioanal Chem* 2012;**404**(4):1089-101 doi 10.1007/s00216-012-6010-y.
- 84. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, *et al.* Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. *Nature medicine* 2011;**17**(4):500-3 doi 10.1038/nm.2344.
- 85. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, *et al.* Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. *Nature genetics* 2015;**47**(10):1168-78 doi 10.1038/ng.3398.
- 86. Network. TCGAR. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. *Cancer cell* 2017;**32**(2):185-203.e13 doi 10.1016/j.ccell.2017.07.007.
- 87. Puleo F, Nicolle R, Blum Y, Cros J, Marisa L, Demetter P, et al. Stratification of Pancreatic Ductal Adenocarcinomas Based on Tumor and Microenvironment Features. *Gastroenterology* 2018;**155**(6):1999-2013.e3 doi 10.1053/j.gastro.2018.08.033.

- 88. Collisson EA, Bailey P, Chang DK, Biankin AV. Molecular subtypes of pancreatic cancer. *Nature reviews Gastroenterology & hepatology* 2019;**16**(4):207-20 doi 10.1038/s41575-019-0109-y.
- 89. Daemen A, Peterson D, Sahu N, McCord R, Du X, Liu B, *et al.* Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. *Proceedings of the National Academy of Sciences* 2015;**112**(32):E4410 doi 10.1073/pnas.1501605112.
- 90. Law HC, Lagundžin D, Clement EJ, Qiao F, Wagner ZS, Krieger KL. The Proteomic Landscape of Pancreatic Ductal Adenocarcinoma Liver Metastases Identifies Molecular Subtypes and Associations with Clinical Response. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2020;**26**(5):1065-76 doi 10.1158/1078-0432.ccr-19-1496.
- 91. Martens S, Lefesvre P, Nicolle R, Biankin AV, Puleo F, Van Laethem JL, *et al.* Different shades of pancreatic ductal adenocarcinoma, different paths towards precision therapeutic applications. *Annals of oncology : official journal of the European Society for Medical Oncology* 2019;**30**(9):1428-36 doi 10.1093/annonc/mdz181.
- 92. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell* 2011;**144**(5):646-74 doi 10.1016/j.cell.2011.02.013.
- 93. Jamieson NB, Carter CR, McKay CJ, Oien KA. Tissue biomarkers for prognosis in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2011;**17**(10):3316-31 doi 10.1158/1078-0432.ccr-10-3284.
- 94. Nevala-Plagemann C, Hidalgo M, Garrido-Laguna I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. *Nature reviews Clinical oncology* 2020;**17**(2):108-23 doi 10.1038/s41571-019-0281-6.
- 95. Whiteaker JR, Halusa GN, Hoofnagle AN, Sharma V, MacLean B, Yan P, *et al.* CPTAC Assay Portal: a repository of targeted proteomic assays. *Nature methods* 2014;**11**(7):703-4 doi 10.1038/nmeth.3002.
- 96. Dienstmann R, Jang IS, Bot B, Friend S, Guinney J. Database of genomic biomarkers for cancer drugs and clinical targetability in solid tumors. *Cancer discovery* 2015;**5**(2):118-23 doi 10.1158/2159-8290.cd-14-1118.
- 97. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science (New York, NY) 2015;**347**(6220):1260419 doi 10.1126/science.1260419.
- 98. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nature protocols* 2009;**4**(1):44-57 doi 10.1038/nprot.2008.211.
- 99. Versteijne E, Suker M, Groothuis K, Akkermans-Vogelaar JM, Besselink MG, Bonsing BA, *et al.* Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 2020;**38**(16):1763-73 doi 10.1200/jco.19.02274.
- 100. Yu Z, Hong Z, Zhang Q, Lin LC, Shahnazi K, Wu X, *et al.* Proton and carbon ion radiation therapy for locally advanced pancreatic cancer: A phase I dose escalation study. *Pancreatology : official journal of the International Association of Pancreatology (IAP)* [*et al*] 2020;**20**(3):470-6 doi 10.1016/j.pan.2020.01.010.
- 101. Jacob R, McDonald A, Manne U, Reddy S, Vickers S, Heslin M, *et al.* P-324 - Stereotactic body radiotherapy in locally advanced pancreatic

adenocarcinoma: A single institution experience. *Annals of Oncology* 2019;**30**:iv89 doi https://doi.org/10.1093/annonc/mdz155.323.

- 102. Aung KL, Fischer SE, Denroche RE, Jang GH, Dodd A, Creighton S, et al. Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial. Clinical cancer research : an official journal of the American Association for Cancer Research 2018;**24**(6):1344-54 doi 10.1158/1078-0432.ccr-17-2994.
- 103. Omori Y, Ono Y, Tanino M, Karasaki H, Yamaguchi H, Furukawa T, *et al.* Pathways of Progression From Intraductal Papillary Mucinous Neoplasm to Pancreatic Ductal Adenocarcinoma Based on Molecular Features. *Gastroenterology* 2019;**156**(3):647-61.e2 doi 10.1053/j.gastro.2018.10.029.
- 104. Reichert M, Rustgi AK. Pancreatic ductal cells in development, regeneration, and neoplasia. *The Journal of clinical investigation* 2011;**121**(12):4572-8 doi 10.1172/jci57131.
- 105. Bernard V, Semaan A. Single-Cell Transcriptomics of Pancreatic Cancer Precursors Demonstrates Epithelial and Microenvironmental Heterogeneity as an Early Event in Neoplastic Progression. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2019;**25**(7):2194-205 doi 10.1158/1078-0432.ccr-18-1955.
- 106. Peng J, Sun BF, Chen CY, Zhou JY, Chen YS. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. *Cell research* 2019;**29**(9):725-38 doi 10.1038/s41422-019-0195-y.
- 107. Doll S, Kriegmair MC, Santos A, Wierer M, Coscia F, Neil HM, *et al.* Rapid proteomic analysis for solid tumors reveals LSD1 as a drug target in an end-stage cancer patient. *Molecular oncology* 2018;**12**(8):1296-307 doi 10.1002/1878-0261.12326.
- 108. Tamura K, Yu J, Hata T, Suenaga M, Shindo K, Abe T, *et al.* Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. *Proceedings of the National Academy of Sciences of the United States of America* 2018;**115**(18):4767-72 doi 10.1073/pnas.1720588115.
- 109. Kim H, Yoon YS, Han Y, Kwon W, Kim SW, Han HS, *et al.* Effects of Pancreatic Enzyme Replacement Therapy on Body Weight and Nutritional Assessments After Pancreatoduodenectomy in a Randomized Trial. *Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association* 2020;**18**(4):926-34.e4 doi 10.1016/j.cgh.2019.08.061.
- 110. Van Cutsem E, Vervenne WL, Bennouna J, Humblet Y, Gill S, Van Laethem JL, *et al.* Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 2009;**27**(13):2231-7 doi 10.1200/jco.2008.20.0238.
- 111. Kindler HL, loka T, Richel DJ, Bennouna J, Létourneau R, Okusaka T, *et al.* Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: a double-blind randomised phase 3 study. *The Lancet Oncology* 2011;**12**(3):256-62 doi 10.1016/s1470-2045(11)70004-3.
- 112. Reni M, Cereda S, Milella M, Novarino A, Passardi A, Mambrini A, *et al.* Maintenance sunitinib or observation in metastatic pancreatic adenocarcinoma: a phase II randomised trial. *European journal of cancer* (*Oxford, England : 1990*) 2013;**49**(17):3609-15 doi 10.1016/j.ejca.2013.06.041.
- 113. Cascinu S, Berardi R, Sobrero A, Bidoli P, Labianca R, Siena S, et al.

Sorafenib does not improve efficacy of chemotherapy in advanced pancreatic cancer: A GISCAD randomized phase II study. *Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver* 2014;**46**(2):182-6 doi 10.1016/j.dld.2013.09.020.

- 114. Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, *et al.* Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 2004;**22**(8):1430-8 doi 10.1200/jco.2004.10.112.
- 115. Ko AH, Chiorean EG, Kwak EL, Lenz H-J, Nadler PI, Wood DL, et al. Final results of a phase lb dose-escalation study of PRI-724, a CBP/beta-catenin modulator, plus gemcitabine (GEM) in patients with advanced pancreatic adenocarcinoma (APC) as second-line therapy after FOLFIRINOX or FOLFOX. Journal of Clinical Oncology 2016;34(15_suppl):e15721-e doi 10.1200/JCO.2016.34.15_suppl.e15721.
- 116. Fischer MM, Cancilla B, Yeung VP, Cattaruzza F, Chartier C, Murriel CL. WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. *Science advances* 2017;**3**(6):e1700090 doi 10.1126/sciadv.1700090.
- 117. Garcea G, Neal CP, Pattenden CJ, Steward WP, Berry DP. Molecular prognostic markers in pancreatic cancer: a systematic review. *European journal of cancer (Oxford, England : 1990)* 2005;**41**(15):2213-36 doi 10.1016/j.ejca.2005.04.044.
- 118. Rashid NU, Peng XL, Jin C, Moffitt RA, Volmar KE, Belt BA, *et al.* Purity Independent Subtyping of Tumors (PurIST), A Clinically Robust, Singlesample Classifier for Tumor Subtyping in Pancreatic Cancer. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2020;**26**(1):82-92 doi 10.1158/1078-0432.ccr-19-1467.
- 119. Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, *et al.* Highthroughput generation of selected reaction-monitoring assays for proteins and proteomes. *Nature methods* 2010;**7**(1):43-6 doi 10.1038/nmeth.1408.
- 120. Zhu Y, Weiss T, Zhang Q, Sun R, Wang B, Yi X, *et al.* High-throughput proteomic analysis of FFPE tissue samples facilitates tumor stratification. *Molecular oncology* 2019;**13**(11):2305-28 doi 10.1002/1878-0261.12570.
- 121. Nesvizhskii Al. Proteogenomics: concepts, applications and computational strategies. *Nature methods* 2014;**11**(11):1114-25 doi 10.1038/nmeth.3144.
- 122. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, *et al.* FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. *The New England journal of medicine* 2011;**364**(19):1817-25 doi 10.1056/NEJMoa1011923.
- 123. Goldsmith C, Plowman PN, Green MM, Dale RG, Price PM. Stereotactic ablative radiotherapy (SABR) as primary, adjuvant, consolidation and re-treatment option in pancreatic cancer: scope for dose escalation and lessons for toxicity. *Radiation oncology (London, England)* 2018;**13**(1):204 doi 10.1186/s13014-018-1138-3.

Abstract in Korean

국문 초록

연구 목적: 췌장선도암(PDAC)의 아형은 현재까지 다양한 방법론을 사용 하여 확인되고 있다. 그러나 일상적으로 임상에 적용 가능한 분류 체계 를 확립하는 일이 아직까지 어려운 실정이다. 본 연구에서는 분자적 특 성을 기반으로 췌장암 위험군을 식별하고 임상적 응용이 더 적합한 분류 모델을 개발하는 것을 목표로 하였다.

연구 방법: 2009년 10월부터 2018년 2월까지 서울대학교 병원에서 수술 을 받은 225명의 환자를 대상으로 췌장암 절제 표본을 수집하였다. 종양 의 진행 및 예후와 연관된 단백질들을 엄격한 정량분석 검정을 통하여 정량 하였다. 계층적 군집분석을 통하여 췌장암 위험군을 식별하였다. 확인된 위험군을 예측하기 위하여 랜덤 포레스트(Random Forest) 알고 리즘을 사용한 모델을 개발하였으며, 생존분석과 더불어 전사체 외부 코 호트(N = 700)에서 모델을 검증하였다.

연구 결과: 본 연구에서는 24 개 단백질 정량변수를 사용하여 네 가지 위험군인 Stable; Exocrine-like; Activated; Extracellular matrix(ECM)-Remodeling 을 분류할 수 있는 것을 확인하였다. "Stable" 위험군은 종양 분화와 종양억제인자와 연관된 단백질들로 특징지어졌다. "Exocrine-like" 위험군은 췌장 효소를 높게 발현하는 것을 확인하였다. 두 가지 고위험 군인 "Activated"와 "ECM-Remodeling" 위험군은 세포주기, 혈관신생, 면 역회피, 종양 침윤-전이 및 대사 변화 등 다양한 기능들이 발현되는 것 을 확인하였다. 이러한 기능을 포괄하는 위험군 분류 모델은 다중 코호 트에서 상대적으로 높은 정확도와 정밀도를 보이는 것을 확인하였다.

결론: 본 연구에서 췌장선도암 위험군을 제안하고, 개별환자 수준에서 임상적인 사용에 잠재적으로 유용할만한 분류 모델을 개발할 수 있었다. 이 임상 체계는 췌장선도암 환자의 예후 예측 및 치료 지침의 효과를 향 상시킬 수 있을 것으로 기대한다.

 $1 \ 6 \ 3$