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Abstract

Co-attentional Transtormers for Video

Story Understanding

Bjorn Bebensee
Computer Science and Engineering
The Graduate School

Seoul National University

Inspired by recent trends in vision and language learning, we explore the appli-
cation of co-attention mechanisms for visiolingual fusion within an application
of video story understanding. Like other video question answering (QA) tasks,
video story understanding requires agents to grasp complex temporal depen-
dencies. However, as it focuses on the narrative aspect of video it also requires
understanding of the interactions between different characters, as well as their
actions and their motivations.

In this thesis we introduce essential concepts from natural language process-
ing (e.g. multi-head attention) and carry out a comprehensive survey of relevant
work from adjacent fields such as visual question answering, visiolingual repre-
sentation learning, video representation learning and video question answering.
Based on our findings we propose a novel co-attentional Transformer model to
better capture long-term dependencies seen in visual stories such as dramas
and measure its performance on the video story understanding task in a video

question answering setting.



We evaluate our approach on the recently introduced DramaQA dataset
which features character-centered video story understanding questions. Our
model outperforms the baseline model by 6 percentage points in overall ac-
curacy and at least 3.8 and up to 12.1 percentage points in accuracy on all

difficulty levels and manages to beat the winner of the DramaQA challenge.

Keywords: Video story understanding, co-attention, video question answering,
multi-modal learning

Student Number: 2019-21343
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Chapter 1

Introduction

Both computer vision and natural language processing have seen several break-
throughs in recent years leading to large progress in tasks combining both these
modalities such as image retrieval, image captioning and visual question answer-
ing. In particular, visio-lingual representation learning has made great progress
benefiting these downstream tasks (Chen et al., 2020b, [Huang et al., 2020b| |Li
et al., 2020, |Lu et al.,|2019, |Su et al., 2020, Tan and Bansal, 2019). We will give
a broad overview over vision and language learning and a comprehensive survey
of recent works addressing visual question answering, video question answering
as well as visiolingual representation learning in Chapter

In visual question answering (VQA) an agent is provided an image along
with a natural language question about the image and should provide the cor-
rect answer (Antol et al., 2015)). This kind of multimodal question answering
setting requires the agent to resolve cross-modal references and selectively ex-
tract information from relevant areas of the image. Video question answering is
an extension of visual question answering in the temporal domain; rather than
a single image the agent should answer a question about a video which can be
limited to a sequence of frames but also include subtitles or audio. As such,
video question answering adds this additional dimension to an already chal-

lenging problem and has thus received considerably less attention. Not only



should models learn to utilize contextual information and references between
the vision and language input but also to perform multi-step and long-term
reasoning along the temporal axis.

Broadly speaking, an agent is presented with a video clip of a scene and, like
in visual question answering, has to infer the correct answer to a given question
in natural language but depending on the exact setting the difficulty can vary.
The given video clip can consist either of a single shot or multiple shots from
different angles or in different locations. While questions can be relatively sim-
ple, e.g. “What is the woman holding?”, they can also be far more complex and
require deeper understanding and multiple steps of reasoning, e.g. “Why is the
man in the overalls angry at the cyclist?”. Due to these temporal dependen-
cies that need to be resolved and understood in order to answer more complex
questions about the scene correctly, video question answering has remained a
very challenging problem.

One such dataset for video question answering is the TVQA dataset which
is build around short 60 to 90 seconds long video clips and questions bridging
vision and language clues (Lei et al., 2018). Agents have to infer the answers by
using multiple modalities (video frames, subtitle-based dialogue) as well as tem-
porally localize the relevant part of the video. TVQA+ adds additional bound-
ing boxes and objects annotations that link them directly to visual concepts
mentioned in questions and answers (Lei et al., [2020). While the TVQA(+)
dataset seems to be a popular choice for evaluation of video question answering
and video understanding models (Geng et al., 2020, Kim et al., 2019} Yang
et al.l [2020), it does not require story-level understanding. Most questions in
the dataset only require the agent to attend to a short part of the video clip
(15 seconds or less) due to its particular focus on temporal localization.

In this work we instead choose to focus on story-based video understanding



for a deeper understanding of long-term dependencies and characters’ actions
and intentions. In order to fuse vision and language in a meaningful way, we
adopt a two-stream co-attentional Transformer module inspired by recent work
in visual dialog (Nguyen et al., 2020) and vision-language representation learn-
ing (Lu et al., 2019, Tan and Bansal, |2019). We evaluate our approach on the
recent DramaQA dataset which aims to benchmark exactly this type of video
story understanding and focuses in particular on story-level questions that are
closely centered around the narrative and characters of a TV drama along with
character-level annotations. Unlike in TVQA, questions focus on longer-range
character interactions and aim to capture story understanding on a deeper level
at both the shot and the scene level. Moreover, DramaQA allows for evaluation
by difficulty level and can therefore give us a better understanding of where the
strengths and weaknesses of our method lie.

The remainder of the work is structured in the following way. In Chap-
ter [2| we introduce prerequisites necessary to understand our proposed method
and perform a comprehensive survey of methods related to vision and lan-
guage learning including visual question answering, video question answering
and vision and language representation learning. In Chapter 3| we give a general
overview over the DramaQA dataset, the key differences between video question
answering and video story understanding, formulate the problem setting and in-
troduce several baseline models that we compare our approach to. We introduce
the two-stream co-attentional Transformer architecture for video story under-
standing and describe it in detail in Chapter |4} In Chapter [5| we experimentally
evaluate our approach by comparing it to several baseline methods, the win-
ners of the “DramaQA challenge” which was held at ECCV 2020, perform an
ablation study along with several experiments to gain a deeper understanding

of how our method works, and provide several qualitative examples. Finally we



give an outlook on future work in Chapter [6]
We will first review work most closely related to our approach, introduce
the evaluation dataset, and finally our model architecture and experimental

results.
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Chapter 2

Related Work and Preliminaries

In this chapter we perform a comprehensive survey of related work in the field
of vision and language learning. We look at advances in natural language pro-
cessing (NLP) from recent years which have largely driven progress in research
at the intersection of vision and language. Starting with attention mechanisms
and the Transformer architecture we discuss related lines of research in ques-
tion and answering in NLP, visual question answering and visual dialog, vision
and language representation learning and more specifically adaptions of these
methods to video representation learning, and finally work most closely related

to ours in the field of video question answering.

2.1 Language models, Transformers and Question An-

swering

In order to understand many of the ideas from vision and language learning
and the context in which they lie it is first necessary to understand some of the
concepts that have enabled the great strides forward NLP has made in recent
years.

At the core of many of the advances in NLP, vision and tasks at the inter-
section of the two lies the mechanism of attention. Given some query vector x,

attention layers essentially retrieve the relevant information contained in a set



of context vectors {y;} (Bahdanau et al., 2015). We can for instance imagine a
translation task in which we would like the resulting translation words to con-
tain the same semantic information as their counterparts in another language,
i.e. the model should pay attention to the appropriate parts of the source sen-
tence during translation. In the case of image captioning we might be given
some context {y;} consisting of image regions or object features and want the
language generation module to retrieve different relevant contexts from these
features for each word generated in the caption (Xu et al., |[2015)).

In the case of visual question answering (see Section [2.2]) we are given a
question which can be thought of as being represented by some query vector x
and want the model to retrieve the appropriate context y formed by e.g. image
regions or objects in the image {y;} (Anderson et al., [2018).

Following |Bahdanau et al.| (2015) attention scores are computed as a match-

ing score e; between the query x and the context y; and then normalized.

e; = score(x, y;)

exp(e;) 1)

Y exp(er)

Finally, the output context vector c¢ is computed as the weighted sum of the

context vectors:

c=) ajy; (2.2)
j

An attention layer which computes the attention of a sequence {z;} to itself,
i.e. each query vector z; is also in the set of context vectors {y;}, is called a
self-attention layer.

More formally, following Vaswani et al. (2017) we can write an attention

function as a mapping of a query and a set of key-value pairs to an output, that



is, we preferentially retrieve values of matching queries and keys. This kind of

scaled dot-product attention can be written as

T

Attention(Q, K, V') = softmax( ¢

V/(dr)

for a query matrix ), key matrix K, value matrix V and dj being the

W (2.3)

dimension of queries and keys.

Transformers (Vaswani et al., [2017), which have had massive success in
NLP and since gained popularity in vision + language tasks and many other
fields as well, are a network architecture built entirely on top of this notion
of (self-)attention. For many sequential tasks the self-attention mechanism in
Transformers have proven to be more successful than recurrent architectures
since self-attention layers connect all positions with a constant number of se-
quentially executed operations rather than the O(n) steps required in recurrent
neural networks thus making it much easier to learn long-term dependencies in
data.

Transformers use an extension of the attention mechanism from Equation
called multi-head attention in which queries, keys and values are first pro-

jected to h different dimensions:

MultiHead Attention(Q, K, V') = Concat(heady, ..., headh)WO »
where head; = Attention(QWiQ, KwE vwY) 24
with parameter matrices WiQ, WZ-K , I/VZV. Our work applies the same kind of
multi-head attention to the multimodal setting.
The effectiveness of these Transformer architectures and self-supervised pre-
training methods on large corpora has been measured and demonstrated on a

variety of downstream tasks. One of these tasks is question answering on the



SQuAD dataset (Rajpurkar et al., 2016) where models are given a question and
have to retrieve the correct answer to the question from a given text passage.
We believe a similar kind of reasoning and understanding is necessary to extract
the right answers to a question from video stories.

Devlin et al.| (2019)) introduce several self-supervised pre-training tasks for
language modeling using Transformers and demonstrate the effectiveness thereof
during training on large-scale text corpora. Going beyond simple left-to-right
or right-to-left modeling they introduce (i) Masked Language Modeling (MLM)
in which input tokens are randomly masked and replaced by a [MASK] token or
another random token as well as (ii) Next Sentence Prediction (NSP) in which
the model predicts whether the two input sentences A, B to the model match.
In 50% of cases B has been replaced by another non-matching sampled sen-
tence B’. This task is supposed to help the model learn relationships between
sentences which is especially for relevant for downstream tasks such as question
answering (QA).

However, further research by |Liu et al. (2019)) disputes this claim and shows
that better performance in downstream tasks can be obtained without an ad-
ditional NSP loss. Furthermore, they demonstrate that BERT is still underfit
and a larger amount of training data as well as additional hyperparameter tun-
ing yields significantly better results using the same architecture. In our work
natural language understanding is key to understand both question, answers to
extract semantics of the story from subtitles. For these reasons we opt to use

the more robust and optimized RoBERTa (Liu et al., 2019).



2.2  Visual Question Answering

Rather than answering questions about language alone, we are interested in
answering questions about visual input. Visual Question Answering (VQA) is a
task in which, given an image and a natural language question about the image,
the agent should provide the correct answer (Antol et al., [2015)). This kind of
multimodal question answering setting requires the agent to resolve cross-modal
references and selectively extract information from relevant areas of the image.
An example question might for instance be “What color shirt is the woman
holding the baby wearing?” requiring the agent to find the correct person (i.e.
the woman holding the baby) among possibly multiple persons in the image
and extract the color of a specifically the shirt. The most popular such dataset
is the VQA dataset (Antol et al., [2015) consisting of around 250k images, 760k
questions and 10M different answers. The dataset provides a multiple-choice
and an open-ended answer setting.

A simple baseline for the multiple choice setting introduced in the original
VQA paper consists of an image feature extractor like VGGNet as well as an
LSTM to extract question features. The extracted feature vectors are fused by
element-wise multiplication and the correct answer is inferred using a multi-
layer perceptron and softmax on top of the fused features. More sophisticated
approaches extract object features using a feature extractor like Faster-RCNN
and selectively attend to them conditioned on the question (Anderson et al.|
2018). A major problem with the original VQA dataset was answer bias result-
ing in models which performed well based on the language modality alone and
without truly understanding the visual content. For instance, 41% of questions
starting with “What sport is...?” can correctly be answered with “tennis”, for

39% of questions asking “How many...?” the correct answer is “2” and blindly
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Figure 2.1 An attention module for many utilities introduced by [Nguyen et al.
(2020). A target utility X is attended to source utilities Y7,..., Yy—1 to obtain

an updated representation X. Figure from [Nguyen et al. (2020)).

answering “yes” to questions starting with “Do you see a...?” yields 87% ac-
curacy. To this end |Goyal et al.| (2017) introduce VQA 2.0 which balances the
original VQA dataset and provides two images which require different answers
for every question thus requiring the model to actually pay attention to the
visual modality. All subsequent mentions of the VQA task will refer specifically
to VQA on the VQA 2.0 dataset.

VQA and the video question answering and video story understanding tasks
are naturally related in that they both deal with cross-modal vision and lan-
guage data and require the modal to semantically understand the contents of
the visual modality to answer the natural language questions. Therefore, it is

naturally important to look at existing methods in VQA to make progress in

10



video question answering and video story understanding. We will look at more
methods (specifically cross-modal Transformers and self-supervised cross-modal
pre-training schemes) for VQA in Section

The Visual Dialog task is an extension of VQA that requires the agent
to hold a dialogue about an image, meaning that in addition to the current
question and the image the agent also has to extract relevant image from the
dialogue history to infer the correct answer (Das et al., [2017). Nguyen et al.
(2020) propose a modified multi-modal Transformer model which incorporates
information from all three different modalities (image, question and history) to
infer the correct answer (see Figure [2.1)). The modified two-stream co-attention
block that we propose for video story understanding in this work is similar
in nature to the attention mechanism introduced by [Nguyen et al. for many

utilities.

2.3 Vision and Language Representation Learning

Similar to how Transformers can be pre-trained on language in a self-supervised
manner as demonstrated by BERT to achieve better performance on down-
stream tasks such as question answering, it is possible to pre-train cross-modal
Transformer architectures in a BERT-like manner to learn better visiolingual
representations for downstream tasks such as VQA or image captioning. Al-
though we do not perform any pre-training in this work, we will look at some
of these models and their architectures which have proven to be highly effective
for VQA.

We adopt the categories introduced by Luo et al. (2020) to classify the
different vision and language representation learning approaches. As seen in

Figure there are three main categories (a) the single-stream share type in
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which a single encoder encodes a sequence of raw text and vision signals and
outputs a single sequence, (b) the two-stream cross type in which each modality
is first encoded by its own specific encoder, then cross-encoded by one cross-
modal encoder for each modality and finally outputting two cross-attended
sequences, and (c) the single-stream joint type which uses modality-specific
encoders but a single cross-modal encoder and which outputs a single cross-

encoded sequence.

Single-stream share type. The main advantage of single-stream share type
models is that they are relatively simple but still manage to learn useful rep-
resentations through pre-training tasks. VL-BERT (Su et al., 2020)) is a modi-
fication of the original BERT architecture to accommodate visual embeddings
in the same Transformer encoder. Specifically, they add a form of visual feature
embedding to the input features. To do this, they first extract region features
from objects in the image obtained from Faster R-CNN and add [IMG] tokens
to the token sequence to obtain a sequence like “[CLS] the man is standing
in front of the parked car [SEP] [IMG] [IMG] [IMG] [IMG] [IMG] [END]”.
A visual feature embedding is then added to all token inputs: full image fea-
tures for all language tokens and region specific features for the regions the
[IMG] tokens represent. The model is pre-trained in a self-supervised manner on
image-caption pairs using a BERT-like MLM task which is conditioned on the
visual modality however. This means the model can learn visual coreferences
by predicting masked words from visual context. Additionally a Masked Rol
Classification task is introduced in which the model has to predict the object
classes of masked [IMG] tokens using visual context. After fine-tuning the model
achieves good performance on down-stream vision and language tasks such as

VQA (Goyal et al.; 2017, Visual Commonsense Reasoning (VCR) (Zellers et al.,
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2019) and Grounding Referring Expressions (Yu et al., 2016]).

Unicoder-VL (Li et al., 2020) works in essentially the same way but it adds
an additional Image-Text Matching (ITM) pre-training task. The authors sam-
ple both positive and negative image-caption pairs and the model has to predict
whether the caption describes the image. This additional task is meant to help

learn a better instance-level alignment.

Two-stream cross type. Although an approach like the single-stream share
type approach is conceptually appealing, it treats both modalities in the same
way without sufficiently addressing their different pre-processing needs and can
weaken the pre-trained BERT model used. Hence, a two-stream approach as in-
troduced in VILBERT (Lu et al., [2019) might be better suited to fuse informa-
tion from both modalities. In VILBERT an image represented by extracted ob-
ject region features vy, . .., v is merely projected to a lower dimension whereas
the sequence of word tokens is input into a Transformer encoder first (in this
case a pre-trained BERT model) to obtain text embeddings wy, . ..,wy. To at-
tend the visual features to the language features and vice versa the authors use
two co-attention Transformer blocks — one for each modality. As a result up-
dated hidden representations h, ..., hy,, and g, ..., by, that are attended
to the other modality respectively are obtained. To learn better representa-
tions they apply pre-training which again uses multi-modal masked modeling
as well as image-caption alignment prediction. One key difference is that in-
stead of learning to predict object classes directly, the model minimizes the KL
divergence between the distribution of classes predicted for the masked object
tokens and the classes predicted by the pre-trained object feature extractor. The
learned hidden representations can be fine-tuned and applied to down-stream

vision and language tasks like VQA, VCR, Grounding Referring Expressions,
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image retrieval (given a caption) as well as caption retrieval (given an iamge).

ERNIE-ViL (Yu et all [2020) uses the same architecture but they use a
scene graph parser to transform the given image caption into a scene graph first.
By masking and predicting objects (i.e. “girl”, “ball”), attributes (i.e. “blue”,
“round”, “small”) and relations (i.e. “on top of”, “in”, “holding”) selected from
the scene graph in the caption (rather than selecting words to mask from the
caption directly) the model can learn better semantic connections. Instead of
random words entire entities are masked (e.g. all of “on top of” is masked
instead of a single word) leading to better results. LXMERT (Tan and Bansal,
2019) uses an architecture similar to VILBERT but pre-trains on in-domain
(VQA) data with an additional task where the model predicts whether question

and image are matched.

Single-stream joint type. UNITER (Chen et al., 2020b)) uses vision-specific
and language-specific encoders along with a single-stream cross-modal encoder.
Both the vision and the text input are first encoded using the respective en-
coders and then, much like in the single-stream share-type, concatenated and
input to the cross-modal Transformer. While UNITER is pre-trained much like
all of the above models and although the underlying ideas are similar, one no-
table difference is that they carefully mask words or objects so that the instance
in the other modality remains intact. This is important as it helps avoid mis-
alignment that can result from both instances being masked at the same time
and the model being forced to attend to a different instance instead. UNITER
is pre-trained using MLM, Image-Text Matching, a novel Word Region Align-
ment (WRA) task in which they use Optimal Transport to minimize the cost
of "transporting” the contextualized image embeddings to word embeddings

and vice versa, and three Masked Region Modeling (MRM) tasks: classification
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of masked regions (similar to other methods above), classification with KL di-
vergence (similar to VILBERT), and lastly Masked Region Feature Regression
in which the Transformer output of masked regions is regressed to the visual
features extracted from Faster R-CNN.

Although our approach does not employ any pre-training schemes, it is
most similar in its architecture to the two-stream cross type approaches like
VIiLBERT which encode each modality individually and then co-attend with
separate cross-modal modules outputting representations for the vision modal-
ity which are attended to the language modality and vice versa. We believe it
is helpful in video question answering to have features which we can score for
each modality thus encouraging the model to extract useful information from

both modalities.

2.4 Video Representation Learning

Video representation learning is a new but active area of research which pursues
much of the same ideas as vision and language representation learning. In many
cases video subtitles or transcribed audio from automatic speech recognition
(ASR) are available and learned jointly with the sequence of image frames,
thus providing a setting which is very similar to what we have seen thus far in
Section 2.3

VideoBERT (Sun et al.l 2019) is a single-stream (share type) model using
a single Transformer encoder to jointly encode ASR text from video segments
and visual words extracted from video. While the model architecture is identi-
cal to BERT, the authors introduce a novel way of creating visual words. S3D
visual features (Xie et al., [2018) are first extracted from video using a spe-

cific convolutional network for video that adds temporal convolutions and then
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clustered using hierarchical k-means. Each video segment is represented by its
k-means cluster centroid, meaning similar video segments will be represented
by the same vector token. These centroid tokens are then added to BERT as
”visual words”. This allows the model to learn high-level ideas without get-
ting distracted by e.g. textures in the video. The model is pre-trained on the
same MLM task as BERT and an additional video-transcript alignment task
(i.e. predict whether they match or not) on a novel dataset consisting of 966
days worth of instructional YouTube videos and their transcripts obtained via
ASR. VideoBERT achieves good performance in downstream tasks like action
classification and video captioning.

Uni-VL (Luo et al., 2020|) takes a different single-stream joint type ap-
proach, first encoding each modality and then cross-encoding via a cross-modal
Transformer. For language features pre-trained BERT is used whereas video
features are extracted using S3D. Uni-VL is pre-trained on five pre-training
tasks. They employ MLM and Masked Frame Modeling (MFM) where instead
of feature reconstruction they aim to maximize mutual information between
the output and the masked target using a noise contrastive estimation (NCE)
loss (Gutmann and Hyvarinen, 2010, Sun et al., 2020). They adopt an MIL-
NCE loss (Miech et al.} [2020) to align modality-specific text encoder and video
encoder outputs using negative distractor samples (i.e. negative transcripts).
For video text alignment they use an additional NCE loss on the cross-modal
Transformer output to learn to discriminate positive and negative video-text
pairs. Lastly, they jointly train an auto-regressive Transformer decoder as well
which learns to reconstruct the original transcript, thus enabling use on down-
stream generation tasks as well. The model is pre-trained on the HowTo100M
dataset, a large-scale dataset of narrated (and transcribed) instructional videos

collected from YouTube. They fine-tune and evaluate their model on text-based
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video retrieval, video captioning, action segmentation and step localization as
well as multimodal sentiment classification with good results, e.g. significantly
outperforming VideoBERT on the video captioning task.

Notably none of the above approaches employs or experiments with a two-
stream Transformer architecture for video understanding as they are largely
focused on what is happening in the video modality alone for tasks like action
classification, video captioning or video retrieval. Since we want to model both
video and language jointly and since both modalities may be equally relevant to
understand an underlying video story, we believe a two-stream approach may

be better suited for video story understanding.

2.5 Video Question Answering

As an extension of VQA in the temporal domain, video question answering
(video QA) adds an additional dimension to an already challenging problem
and has thus far received considerably less attention than VQA. As models
should both learn to resolve and utilize contextual information and references
between the vision and language but also perform multi-step and long-term
reasoning in the temporal axis research on video QA has been sparse.

In video question answering an agent is presented with a video clip of a scene
and has to infer the correct answer to a given question in natural language. Such
a scene can consist either of a single shot or multiple shots from different angles
or in different locations. While questions can be relatively simple, e.g. “What
is the woman holding?”, or more complex and require deeper understanding
and multiple steps of reasoning, e.g. “Why is the man in the overalls angry
at the cyclist?”. Due to these temporal dependencies that need to be resolved

and understood in order to answer more complex questions about the scene
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correctly, video question answering has remained a very challenging problem.

Pre-neural. [Yang et al. (2003) introduce an early pre-neural approach and
one of the very first approaches to video QA which like most machine learning
research of the time relies heavily on hand-crafted video features as well as
transcriptions of spoken word. In their work [Yang et al. aim to retrieve news
videos the user is looking for by their contents as well as to retrieve answers to
question from the video transcripts. To accomplish this they use hand-crafted
feature such as face features, speaker change features, and color histograms and
classify videos at the shot-level into categories like interview, finance, weather
and sports using HMM analysis. To answer questions they first select the video
segment and then predict the correct answers from the associated transcripts

obtained via speech recognition.

Encoder-decoder and RNN-based. Going beyond hand-crafted features,
Zhu et al. (2017) introduce an approach based on recurrent neural networks
(RNNs) with an encoder-decoder architecture. Zhu et al. extract visual features
from each frame using a pre-trained convolutional neural network which are
then input into the encoder RNN. Based on the output of the encoder, three
decoder RNNs are pre-trained in an unsupervised way to reconstruct the present
(i.e. reconstruct the current frame’s features), the past (i.e. previous frames)
and predict the future (i.e. future frames). Finally, the encoder is fine-tuned
to answer ”fill-in-the-blanks” multiple-choice questions on a dataset collected
by the authors by ranking answer options constrastively with a dual-channel
ranking loss. It is worth nothing however that the questions are very simple
and that this type of "fill-in-the-blanks” approach to QA is prone to language

biases.
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Zeng et al. (2017) collect a novel dataset of ~18k open domain videos with
three to five description sentences per video. Additionally they extend multiple
LSTM-based methods for VQA to the video domain. To do this they first extract
spatiotemporal C3D frame features (Tran et al., 2015) which they then encode
with another LSTM. As video and descriptions may not be perfectly aligned
they also introduce a learning procedure which tries to mitigates the effects of
misaligned clips by identifying them at training time using a ratio test.

Zhao et al. (2017)) address video question answering in the open-ended set-
ting meaning that there are no answer options and the agent has to generate the
answer sequence from scratch. To this end, they propose an encoder-decoder
framework which first encodes the video hierarchically using GRU and tempo-
ral and spatial attention modules. Unlike Zeng et al. (2017)), Zhu et al. (2017)
they first extract object region features. The encoder first computes frame-level
representations by attending objects to the question via spatial attention across
ROlIs in a frame using the spatial attention module. Next a video-level represen-
tation is computed inferring which frames to pay attention to using a temporal
attention module. The decoder network generates the answer sequence con-
ditioned on the video context vector obtained from the encoder. To evaluate
the open-ended questions they compute accuracy (i.e. does the answer match
the ground-truth exactly) and WUPS which scores answers based on WordNet

similarity to the ground-truth answer.

Memory-networks. |Gao et al. (2018) propose a memory-based approach to
video QA which utilizes cues from both appearance and vision features. Videos
are segmented and for each segment visual features are extracted from the
middle frame using a pre-trained ResNet-152 architecture (He et al., |2016) as

appearance features and optical flow features are extracted using a pre-trained
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two-stream convolutional network (Simonyan and Zisserman, |2014) as motion
features. Using a “conv-deconv” network which subsequently convolutes and
deconvolutes and integrates temporal context they build “facts” which are then
used in their co-attention memory network. The co-attention memory network
updates its appearance and motion memory in multiple cycles for multiple steps
of reasoning (for each cycle attending facts to the existing memory). To update
the memory motion facts are attended both to the motion memory and to the
appearance memory and vice versa. Answers are computed using a linear layer
on top of the concatenated appearance and motion memory vectors. Gao et al.
train and evaluate their approach on the TGIF-QA dataset (Jang et al., 2017),
a large-scale dataset focusing on visual reasoning on short video clips with both
open-ended and multiple choice questions, outperforming previous methods by

a significant margin.

Graph-based. A slightly different approach is taken by Huang et al. (2020a))
who introduce a two-stream graph-based model for video QA. The language
modality, that is the question, is encoded with pre-trained GloVe embeddings
(Pennington et al. 2014) and a bidirectional LSTM while the video is encoded
using a location-aware graph convolutional network. More specifically, they ex-
tract object features from video frames and construct a fully connected graph
on the detected objects. Features in the graph encode both the bounding box
location information within the frame as well as the temporal location. The
video representation is computed using graph convolution. To compute interac-
tions between the visual and the question features they introduce an interaction
module which first computes the most relevant question words for visual repre-
sentations using an attention mechanism and then a cross-modal representation.

Finally, the answer to the question is predicted using a fully connected layer on
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top of the cross-modal representation output.

TVQA dataset. |[Lei et al. (2018) introduce the TVQA dataset consisting of
~150k QA pairs on ~22k video clips from six popular TV shows. The clips are
relatively short at 60 to 90 seconds and the questions bridge vision and language
clues. To answer correctly agents have to infer the answers by using information
from multiple modalities, namely video frames and dialogue subtitles as well
as temporally localize the relevant moment within the video. To this end Lei
et al. also introduce a baseline “Multistream” model in the original TVQA
paper. For visual features they extract objects and attributes in the image
using Faster R-CNN pre-trained on Visual Genome (Krishna et al., 2017) and
full frame features using a pre-trained ResNet model. To encode the resulting
visual sequences they employ a bidirectional LSTM. The question, answers
and subtitles are first encoded using a pre-trained GloVe embedding and then
similarly input to a bidirectional LSTM each. In order to model the different
modalities jointly they employ a context matching module which, given a query
vector, produce a context-aware query output (i.e. video-aware-question and
video-aware answer representations). The obtained context-matched features
are input into a linear layer with softmax to obtain answer scores. The final
scores are are obtained by summing the scores of each context-matching stream.
Specifically their model uses a question-video-answer stream which matches
both question and answers to the video as well as a question-subtitle-answer
stream which matches them to the subtitles. In experiments they find that their
baseline model reasons over the video clip reasonably well.

However, it is worth nothing that this model does not compute any inter-
actions between video and subtitles although they may be necessary to answer

some of the questions. For instance some things may be set in jest or angrily
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which might not be clear from the transcribed dialogue alone but might require
inference over the characters’ facial expressions as well.

(Yang et al.l [2020) take a different approach to video question answering
by leveraging a pre-trained BERT model. Instead of using video input directly,
Yang et al. use a two-stream BERT model for video QA which encodes the
semantic content of a video scene as the visual concept labels of the detected
objects given by Faster R-CNN. Using these language labels of objects (i.e.
“blonde hair”) instead of the visual features allows them to use the embeddings
produced by BERT, which have proven impressively effective in the language
domain, for visuals as well. In their experiments their model performs signifi-
cantly better than the TVQA baseline but it’s important to keep in mind that
the model is not truly reasoning over video frames but merely over the object
labels produced by Faster R-CNN and thus lacks actual understanding of what
is happening visually.

(Geng et al., 2020|) use a similar approach but instead first infer character
names for face bounding boxes through multi-instance co-occurrence matching.
Next, they infer relations between these characters and objects detected in the
image (e.g. “jLily, hold, flower;”) and embed them using a word embedding
layer. Finally, they take a Transformer-based encoder-decoder approach to en-
code question, answer, subtitles and visual relation features and compute scores
with a linear layer on the output of the Transformer decoder. While this ap-
proach manages to take into account which characters are present in the video
and how they relate to one another, it also does not use visual information
beyond the extracted object relations.

TVQA+ adds additional bounding boxes and objects annotations that link
them directly to visual concepts mentioned in questions and answers ([Lei et al.,

2020). While the TVQA(+) dataset seems to be a popular choice for evaluation
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of video question answering and video understanding models (Geng et al., 2020,
Kim et al., 2019, [Yang et al., [2020)), it does not require story-level understand-
ing. Most questions in the dataset only require the agent to attend to a short
part of the video clip (15 seconds or less) due to its particular focus on temporal

localization.

DramaQA dataset As the TVQA(+) dataset largely focuses on questions
which require shorter video segments that need to be localized in the video
clip (cf. temporal localization in TVQA+), [Choi et al.| (2021) introduce the
DramaQA dataset for video story understanding. The DramaQA dataset aims
to benchmark understanding of story-level questions rather than those shorter
dependencies seen in the TVQA dataset. In particular, it is based on the Korean
TV show “Another Miss Oh”, consisting of 23 928 video clips, of which 803 are
scene-level and 23125 are shot-level clips, and spanning 18 episodes in total.
The questions are multiple-choice with five possible answers to choose from and
can be categorized into four difficulty levels. Depending on the level of difficulty
higher-level understanding of the scene may be necessary to answer correctly.
For a more detailed look at the DramaQA dataset see Chapter

As we aim to primarily address video question answering in the context of
video story understanding in this work we believe the DramaQA dataset is best
suited and we conduct our experiments on the DramaQA dataset (see Chapter
. Choi et al. also introduce a novel context matching model (Choi et al., [2021)
which they evaluate on this dataset and which will serve as a baseline for our
work. A more detailed explanation of this approach as well as further baselines

provided in the DramaQA paper follow in Chapter
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Chapter 3

Dataset and Problem Formulation

In this chapter we give a detailed overview over the DramaQA dataset (Choi
et al.l 2021)), why we have chosen it for our experiments of our video story

understanding model and several baseline methods introduced in the DramaQA

paper.

3.1 Dataset

In this work we focus on the more narrow problem of video question answering
in the video story understanding setting. In this setting an agent is presented
with a video clip that tells a story and has to answer questions about the story
as a whole. Instead of only focusing on motion or appearance alone like it is the
case in the short video clips of the TGIF-QA dataset (Jang et al., 2017), agents
are expected to resolve references between all modalities and perform multi-step
long-term reasoning to understand characters’ actions and intentions.

While many works in video question answering focus on what is observed
in the visual modality alone, the story understanding setting typically provides
transcriptions or subtitles of spoken dialogues which is often crucial to under-
stand interactions between characters. Moreover, it is naturally necessary to
understand who the different characters in the story are.

A natural choice for video stories are TV shows and dramas as they closely
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model real-world interactions and scenarios. As previously mentioned in Section
one such dataset for video question answering on TV show plots is the
TVQA(+) dataset which is build around short 60 to 90 seconds long video
clips and questions bridging vision and language clues (Lei et al., [2018, |2020).
Agents have to infer the answers by using all available modalities as well as
temporally localize the relevant part in the video clip. Additionally, in the
extended TVQA+ version of the dataset, additional bounding boxes and objects
annotations that link them directly to visual concepts mentioned in questions
and answers are provided. While it is a popular dataset for video question
answering, the TVQA(+) is largely focused on questions that revolve around
particular actions. In particular, most questions in the dataset only require the
agent to attend to a short part of the video clip of 15 seconds or less due to its
specific focus on temporal localization. We argue story understanding focuses on
more abstract ideas and while key parts or interactions in the story are relevant
to the understanding of the story as a whole an understanding of shorter video
sections does not require full story-level understanding.

To this end, |Choi et al.| (2021) introduced the DramaQA dataset (see also
Section [2.5) which aims to benchmark exactly this type of video story un-
derstanding and focuses in particular on story-level questions rather than the
shorter dependencies seen in the TVQA dataset. The DramaQA dataset is
based on the Korean TV show “Another Miss Oh”, consisting of 23 928 video
clips, of which 803 are scene-level and 23 125 are shot-level clips, and spanning
18 episodes and 20.5 hours of video in total. The dataset additionally provides
character-level annotations for each of the 217,308 frames.

The total number of questions contained is 17 983. All questions are multiple-
choice with five possible answers to choose from and can be categorized into

four logical complexity levels. Depending on the level of logical complexity of
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the question higher-level understanding of the scene may be necessary to answer
correctly. The logical complexity ranges from level 1 which only requires a single
supporting fact to answer the question (i.e. “Who is holding the phone?”), level
2 which requires multiple such supporting facts to level 3 and 4 which require
to reason across the temporal axis and to understand causal relationships be-
tween multiple supporting facts. Hereinafter, we will refer to logical complexity
levels simply as difficulty levels. An example of questions of each difficulty level
can be seen in Figure Additionally, questions can be categorized by the
memory capacity needed in order to answer the question and the dataset pro-
vides both shot-level and scene-level questions. Along with the image frames
the dataset provides the coreference-resolved dialogue scripts for each video
clip. Additionally, it provides bounding boxes for characters appearing in each
frames with visual metadata annotations containing name, behavior, emotion
i.e. “{Doegi, standing up, surprise}”.

As we focus primarily on video story understanding with an emphasis on
deeper understanding of long-term dependencies in video and characters’ ac-
tions and intentions in this work, we choose to evaluate our approach on the
DramaQA dataset which was specifically introduced for this type of video ques-
tion answering. Furthermore, DramaQA allows for evaluation by difficulty level
and can therefore give us a better understanding of where the strengths and

weaknesses of our method lie.

3.2 Problem formulation

Next, we will give a formal definition of the video question answering setting. We
formulate the problem of video QA for understanding of visual stories in manner

similar to|Choi et al. (2021)). That is, for a given question sequence @ and given
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the reference video clip’s sequence of transcribed subtitles S along with a visual
feature stream V' and visual metadata M, we want to infer the correct answer
sequence A; € {41,...,As}. Question, answer options, and subtitles are given
as a raw text sequence. The visual feature stream consists of a series of region
features extracted from the characters’ full body bounding box for each frame

in the reference video.

3.3 Baseline models

Choi et al. also introduced several baseline methods in the original DramaQA
paper. A first very simple baseline is given by encoding both the question and
answer using pre-trained GloVe embeddings, then taking the average across
the sequence and simply computing the dot product similarity between them
as an answer score. However, as this method ignores the subtitles and video
completely, answer accuracy is barely better than random.

A slightly better baseline is a simple multilayer perceptron model. Question-
answer pairs and subtitles are embedded using pre-trained GloVe embeddings
and then encoded individually using bidirectional LSTMs. Visual features are
encoded similarly. Finally, all of the context streams are mean-pooled across
time and the resulting vectors are concatenated and scores using a multilayer
perceptron. This model performs reasonably for lower difficulty questions but
poorly for higher difficulty questions.

Finally, Choi et al. introduce a more complex, multi-stream context match-
ing model which is based on the same context matching module that is also
used by [Lei et al. (2018) and focuses on character-guided representations. In
the visual modality, character bounding box features are extracted from video

frames using ResNet-18 and bounding box annotations consisting of behavior
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and emotion are converted to word embeddings and along with a one-hot vec-
tor denoting the character concatenated to the visual features. The resulting
visual stream is encoded via bidirectional LSTM to obtain a “low-level story
representation”. Similarly, question-answer pairs and subtitles are embedded
via pre-trained GloVe embeddings and then encoded via bidirectional LSTM.
In the case of subtitles an additional one-hot encoded vector annotating the
speaker of the script for each word in the sequence is concatenated to the em-
beddings before the sequence is input into the LSTM.

In contrast to the model introduced by Lei et al., they use an additional con-
text matching module with character queries in order to obtain character-guided
higher-level representations of the story. Specifically, they learn an embedding
of main characters and construct queries for the context matching as the sum of
character representations occurring in the question-answer pair or in the video
depending on the stream. By context-matching the low-level representations to
the queries they obtain character-guided representations Eg and Ey for the
subtitle and the visual feature stream. Finally, each of the low-level and high-
level representations for subtitle and visual feature streams is context-matched
to the QA pair and a score is computed for each of the streams using a linear
layer and softmax. The total score is the sum of individual stream-scores.

In evaluations the final multi-level multi-stream model performs better than
the adopted multi-stream TVQA model which also uses the additional character
and visual metadata annotations.

We will introduce our model for video story understanding on the DramaQA
dataset in Chapter 4] and evaluate it and compare the results to the above

described baselines in Chapter
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Chapter 4

Proposed Method

Our method takes inspiration from the aforementioned recent advances in vision
and language fusion (see Section especially with applications to visual
question answering and visual dialog. Recent work by Nguyen et al. (Nguyen
et al., 2020) on the visual dialog task introduced a new type of co-attention
layer for three or more input modalities (that is, the image, question and dialog
history) with fewer trainable weights, that can be stacked in order to better
integrate dependencies between many different utilities. While VILBERT’s co-
attention layer (Lu et al., 2019) only takes two modalities as input, it co-attends
them in a similar fashion but uses more powerful language representations from
BERT as well as a multimodal pre-training scheme that enables the model to
learn better visiolingual representations.

We argue that video question answering and video story understanding re-
quire agents to fuse vision and language features to infer the correct answer to
a question in the same fashion and can benefit from a similar co-attention layer
as well. We will adopt such co-attention layer for the video story understanding
setting. Naturally, better comprehension of questions and what is being asked
for and answer options will lead to better results as well. Beyond that, specifi-
cally video story understanding requires a nuanced understanding of language

in order to fully incorporate information from dialogues between characters. To

31 :



this end, we base our model on a more powerful pre-trained language model
which can grasp said nuances on a much finer level.

For an overview over our proposed architecture see Figure [4.1l We intro-
duce a two-stream co-attentional Transformer model which first separately en-
codes each modality using a modality specific encoder, thus addressing the
specific pre-processing needs of each modality, and then co-attends the two
modalities using L co-attentional Transformer layers each consisting of two co-
attentional Transformer modules (see Figure . In these modules the visual
feature stream is attended to language features and vice versa the language
feature stream is attended to the visual features. The output of this two-stream
co-attentional Transformer are accordingly updated representations that incor-
porate information from the other modality. To obtain a single context vector
per stream we perform max pooling along the sequence dimension (rather than
the feature dimension). Finally, we obtain one score per stream using a single
linear layer which takes the modality’s context vector as input. To compute the

total answer score the vision and language scores are summed up.

4.1 Model architecture

Following |Choi et al. (2021) we use question features, subtitle features, answer
features, meta features (behavior and emotion) as well as visual features. Visual
features are extracted from the annotations of character bounding boxes given
in the dataset using a pre-trained image feature extractor such as ResNet (He
et al.,2016) yielding Dy -dimensional image representations. Questions, answers
and subtitles are raw text input as provided by the DramaQA dataset.

Meta features are annotations provided for each character bounding box

describing an action (i.e. “drink”, “eat”, “dance”) as well as an emotion (i.e.
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“fear”, “happiness”, “neutral”). In order for the language model to infer “who is
doing what and feeling how” from the meta features more easily we experiment
with transforming them to sentences by including the character name with both
the action and the emotion. We construct these sentences either as simple word
sequences, i.e. “Doegi standing up sadness.”, or full sentences, i.e. “Doegi is
standing up and feeling sadness”. We will compare both approaches in Chapter
5

As language plays a key role in understanding dialogue in video stories as
well as question and answering, we use a strong pre-trained Transformer model
to encode the language modality. In particular, to encode the given language
token sequences and to obtain language representations we use a pre-trained
RoBERTa model (Liu et al.| [2019), a variant of the widely successful BERT
model that achieves significantly better performance with the same architecture
but tuned hyperparameters and more training data. We leverage the powerful
language representations from the RoBERTa model to learn better visio-lingual
representations for video story understanding and to better reason across e.g.
longer subtitle sequences.

In order to predict the correct answer we will compute scores for each answer
individually and then select the highest scoring answer. Therefore, we will have a
distinct language feature stream l;, ..., [;, for each of the five provided answer

options along with the visual feature stream vy, ..., vps.

Language encoder. For each language feature stream we first fuse all textual
inputs as follows; for the i-th answer option we obtain the concatenation of

question @, subtitle sequence S, sentence-encoded metadata features M and
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the answer A; resulting in

li = [Q; S; M; Ayl (4.1)

During concatenation, we separate the tokenized sequences using RoBERTa’s

“start-of-sentence and “end-of-sentence” tokens as follows:

(s) @ (/s) (s) S (/s) (s) M (/s) (s)Ai{(/s) (4.2)

Although RoBERTa has not been pre-trained for more than two sentence types,
this separation will aid the model in differentiating between the different input
types. Moreover, we add a stream of segment IDs s, € {0,...4} for n € N,
where N is the language sequence length, signaling what type of input each of
the parts of the language stream belongs to (i.e. 0 for question tokens, 1 for sub-
title tokens, and so on). Fusing all textual inputs gives us a total of 5 language
token sequences [ = {lj,...,l5} containing the respective question-answer pair
along with the subtitles and meta features. Given the token sequence I; of length
N, we can now use RoBERTa to obtain language representations ¢; € RV*dz

for all 4 where dy, is the hidden size of the text representation.

¢; = RoBERTa(l;) (4.3)

Next, we use a linear layer projection to obtain representations in a joint

visio-lingual embedding space of dimension d

L; = Linear(¢;) (4.4)

with L; € RV*? and “Linear” denoting a fully connected linear layer.
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Figure 4.2 A single co-attention block attends a target utility X to a source
utilitiy Y. We use two of these blocks per layer, attending both the visual rep-

resentations to the language representations and vice versa. Given input repre-
) 1 k=1) k)

f for answer option i, we obtains new utilities Lgk), v

. k—1
sentations Lg g

that are attended to one another.
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Vision encoder. To obtain visual representations, we extract image region
features of the main characters for each frame from the annotated bounding
boxes using a pre-trained image feature extractor yielding feature representa-
tions of dy for each bounding box. We concatenate all of these bounding boxes
in the order of appearance, that is in the frame order, giving us a sequence of
visual features v € RM*9v  For these visual features we also use a linear layer to
project these dimensions from the image feature dimension dy to the joint visio-

lingual embedding space of dimension d yielding representations V € RM*d,

V = Linear(v). (4.5)

Co-attentional Transformer. In order to capture both dependencies be-
tween the two modalities and within the temporal axis, we use a co-attentional
Transformer (see Figure to obtain vision and language context represen-
tations that have been fused with the other modality. Given a tuple of vi-
sion and language representations in the joint embedding space (Lgk), Vi(k)) €
RN*d 5 RMXd_ for the k-th layer with & < K, we obtain the attended represen-
tations using a single co-attention layer consisting of two co-attention blocks as

follows:

L*Y = Cott(z, v (4.6)

v = Coatt(V R L) (4.7)

Naturally, it is possible to stack K of these co-attention layers to obtain
representations that are more deeply fused. However, we find that K =1, i.e.

a single co-attention layer, works best in our experiments (see Chapter . We

repeat this co-attention procedure for each language stream (i.e. for each answer
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option).
Finally, we take the maximum along the sequence for both the language-
attended visual and the vision-attended language stream and use a linear clas-

sifier to obtain a vision and language answer score for each answer.

Sy (i) = Linear(max VZ.(K)) (4.8)
eM

Sp(i) = Linear(max L%y (4.9)
1€

The final scores are computed by simply taking the sum of the vision and

language answer scores for each answer option:

Score(i) = Sy (i) + SL() (4.10)

We select the answer with the highest score as our prediction of the correct

answer index 7, i.e.

j = argmax Score(i). (4.11)

(2

We evaluate the performance of this approach in the next chapter.

38



Chapter 5

Experiments

In this chapter we perform various quantitative and qualitative analyses to eval-
uate the performance of our proposed method. We evaluate on the DramaQA
dataset for video story understanding and compare our model to baselines from
the original DramaQA paper as well as the winners of the DramaQA challenge
held at ECCV QOQ(H For qualitative analyses we provide example outputs for
questions of varying difficulty. Furthermore, we perform several ablation studies
evaluating performance with a subset of features, different ways of encoding the
meta features, different number of co-attention layers as well as with a single-
stream (joint type) cross-modal Transformer encoder similar to those seen in
prior work discussed in Chapter [2| (Chen et al., 2020b, Luo et al., 2020, [Sun
et al., 2020)).

5.1 Implementation details

For our experiments we extract 2048-dimensional region features from the
bounding box annotations using a ResNet-152 model that has been pretrained
on ImageNet, meaning we set dy = 2048. For the linguistic stream we use

RoBERTagsg consisting of 12 Transformer encoder layers with a hidden size

!For more information about the DramaQA challenge at ECCV 2020 visit https://dram
aqa.snu.ac.kr/Challenge/2020 (Archived: https://web.archive.org/web/202105291420
58/https://dramaqa.snu.ac.kr/Challenge/2020)
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of dy, = 768 and 12 attention heads. We believe that the RoBERTa; pgeeg model
may lead to better results but have chosen the BASE model for our experiments
due to resource constraints. We use the pre-trained version of the dataset pro-
vided by Huggingfacdi] which has been pre-trained on the union of BookCorpus
(Zhu et al., 2015), WikipediaP}, CC-News!, OpenWebTex(P| and Stories (Trinh
and Le| 2018) datasets, a total of 160GB of text data.

We use a joint embedding space of dimension d = 300. We use a single co-
attentional transformer layer with 6 attention heads. For the maximum length
of the video input sequence we choose M = 300, for the maximum number
of tokens in the text input sequence N = 300. We train the model using two
Titan Xp GPUs with a batch size of 6 for a total of 5 epochs. We use the Adam
optimizer with a learning rate of 10™* and a weight decay of 1075. To train
the model we use a softmax and a cross-entropy loss on the predicted answer

Scores.
5.2 Quantitative results

We compare our co-attentional Transformer model against the baselines re-
ported by (Choi et al. (2021) on the test set. Namely we compare our model
with the multi-stream model from the TVQA paper (Lei et al., 2018) which
has been adopted to use the additional annotations in the DramaQA dataset

by Choi et al., multi-stream and multi-level context matching model which

Zhttps://huggingface.co/roberta-base (Archived: https://web.archive.org/web/20
210529144331 /https://huggingface.co/roberta-base)

*https://en.wikipedia.org/wiki/English Wikipedia (Archived: https://web.archiv
e.org/web/20210529144853/https://en.wikipedia.org/wiki/English Wikipedia)

‘https://commoncrawl.org/2016/10/news-dataset-available/ (Archived: https:
//web.archive.org/web/20210525052535/http://commoncrawl.org/2016/10/news-datas
et-available/)

Shttps://github.com/jcpeterson/openwebtext (Archived: https://web.archive.org/
web/20210529145507 /https://github.com/jcpeterson/openwebtext)
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Overall Difficulty Avg.

MCM (Choi et al., |2021) 0.7201 0.6421
Discriminative 0.7207 0.6654
Question + Answer 0.5630 0.5566

+ Subtitles + Video + Meta 0.7743 0.7360

Table 5.2 Evaluation results on the DramaQA validation set. We compare our
model to an additional discriminative baseline which adopts the discriminative
decoder from the visual dialog paper (Das et al., |2017) on top of the MCM
baseline as well as a simple RoOBERTa question + answer baseline.

uses character-guided representations (here “Multi-Stream Context Matching”
or MCM for short) and two more simple baselines, i.e. a “Dot product” baseline
which simply computes scores as the dot product similarity of mean-averaged
question and answer word embeddings as well as a “MLP” baseline which en-
coded language embeddings and visual features using LSTM modules and com-
putes scores using an MLP on top. For detailed explanations of the baseline
models see Section [3.3] Results of our evaluation can be seen in Table 5.1l Our
model outperforms all of the baselines. We improve upon the Multi-Stream
Context Matching baseline on all difficulty levels; at least by about 3.8 percent-
age points and at most by 12.1 percentage points. Overall on the entire test set
we can see a large improvement of ~6 percentage points and an ~8 percentage
point improvement in difficulty average.

Across the difficulty levels we see the largest improvement over levels 3
and 4 where causal and long-term reasoning is necessary to infer the correct
answer. We attribute this to the stronger fusion of vision and language resulting
from the co-attentional Transformer model, thus allowing the classifier to take
advantage of more complex cross-modal clues. Additional results obtained on

the validation data set can be seen in Table [5.21
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DramaQA challenge. We also compare our model to the three winners of
the DramaQA challenge at ECCV 2020. Evaluation results on the scoreboard of
the DramaQA challenge are rounded to two decimal places so we report them
similarly here. Although the overall evaluation results on the full dataset are
very similar to the first place winner, our model outperforms the winning model

on difficulty average, the winning criteria of the challenge.
5.3 Qualitative results

We perform an analysis of qualitative results do gain a deeper understanding of
how our model operates. The first two qualitative examples for inference on the
validation set can be seen in Figure The video clip at hand is a relatively
long, scene-level clip and questions have difficulty levels 3 and 4. We can see
that for both of the questions long-term reasoning is necessary.

The first question requires close attention to the video clip with additional
clues being given in the subtitles as Haeyoungl does simply not respond to the
angry comments made by Deogi. Our model correctly infers that Haeyoungl
simply leaves the room while ignoring Deogi’s outburst. The second question
focuses more strongly on the subtitles. Our model incorrectly predicts that
Deogi is mad at Haeyoungl for leaving the laundry. While it can be seen from
the subtitles that she does indeed leave the laundry this is not the reason Deogi
is mad but rather a consequence of it. As the predicted answer is related to
something mentioned in the subtitles it seems our model has been confused
and could not correctly infer the reason Deogi is angry.

Another set of inference examples is shown in Figure The first question
asks for the reason behind Deogi telling Haeyoungl to wear a mask and requires
the model to pay attention particularly to the subtitles. Our proposed model

answers the question correctly and does not get distracted by Haeyoungl’s
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mention of using make up. The second question asks for what Deogi is doing in
the video clip. This question also requires information from the subtitles while
the fact that she is in the kitchen and holding a pan in some frames needs to be
ignored. Our model correctly predicts the answer (i.e. she is asking a question)
from the given inputs.

The last example can be seen in Figure [5.3] and shows an example of a
form of bias present in the DramaQA dataset. The question asks for the name
of the character who performs a simple action (i.e. putting the glasses back
on). As the answer to this is not mentioned in the subtitles, the model should
pay attention to the video to infer the correct answer. We find that our model
correctly infers the person performing the action. However, it is worth noting
that this particular example exhibits some bias and the answer can be easily
inferred from the meta features due to the fact that only Haeyoungl and Sungjin
appear in the video frames. It is then easy to deduce that the one performing
the action is in fact Sungjin as none of the other answer options contain a

person that appears in the frames.
5.4 Ablation study and additional experiments

We perform an ablation studies as well as several experiments to see which

components and modalities contribute most to the scores achieved by our model.

Ablation study. In the ablation study we only train the model using a sub-
set of the features provided in the DramaQA dataset. Results of the ablation
study can be seen in Table All models that do not include video but only
the language modality (i.e. Question + Answer + Meta) do not use our co-
attentional transformer module but instead simply compute the score directly

on the language representations obtained from RoBERTa. Interestingly it can
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Overall Difficulty Avg.

MCM (Choi et al., 2021) 0.7201 0.6421
Discriminative 0.7207 0.6654
Question + Answer 0.5630 0.5566
+ Subtitles 0.6410 0.6398
+ Meta 0.7403 0.6980
+ Meta + Video 0.7462 0.7036
+ Meta + Video + Subtitles 0.7743 0.7360

Table 5.4 Ablation study on the DramaQA validation set.

Overall Difficulty Avg.

K=1 0.7743 0.7360
K=2 0.7699 0.7300
K=3 0.7673 0.7204
K =1 (RoBERTa frozen’) 0.7512 0.7054
K =2 (RoBERTa frozen') 0.7521 0.7097
K = 3 (RoBERTa frozen!)  0.7535 0.7085

Table 5.5 Experiments with different numbers K of co-attentional Transformer
layers on the DramaQA validation set. Rows marked with T indicate that the
first 10 layers of RoBERTa have been frozen and only the last two layers are
being fine-tuned. In all other rows RoBERTa is being fine-tuned fully.
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be seen that the model using only the question, the answer as well as the
meta features already outperforms the baseline model which explicitly uses all
modalities to compute answer scores. This can be attributed to the fact that
there may be some amount of bias in the questions with regard to emotions
and actions by the characters that are given in the meta features which the
powerful language model is then able to fully take advantage of. We can also
see that meta features are indeed more useful than the subtitles of the dialogue
which can be attributed to the same as well as the fact that subtitles are likely
to be more noisy and lengthy. We note that all modalities contribute to the
total score obtained by our model. However, despite the fact that the model
is able to answer more complex questions it is clear that the model is still not
able to fully utilize dependencies between the modalities and future research is
needed to develop models that can fully take advantage of interactions between

different modalities.

Number of co-attention layers. We experiment with a varying number
K of co-attention layers in Figure to find the optimal number of layers.
We evaluate with K € {1,...,3} both while fully fine-tuning RoBERTa and
only fine-tuning the last two layers of RoBERTa and freezing the first 10 lay-
ers. We find that regardless of the number of layers, fine-tuning the entirety of
RoBERTa works better than not fine-tuning RoBERTa. Additionally we find
that performance of our model is highest with K = 1. The rest of the exper-
iments in this sections are performed with K = 1 and fine-tune all layers of

RoBERTa.

Meta feature encoding. We evaluate different ways of encoding the meta

features which are provided in the DramaQA dataset along with the visual
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Overall Difficulty Avg.

Meta feature sentences 0.7743 0.7360
Meta feature words 0.7691 0.7314
Numerical meta features 0.7623 0.7312

Table 5.6 Experiments with various textual and numerical encodings of meta
features on the DramaQA validation set.

Overall Difficulty Avg.
Single-stream 0.7597 0.7156
Ours, two-stream 0.7743 0.7360

Table 5.7 Comparison of our two-stream co-attention Transformer approach to
a simple single-stream Transformer on the DramaQA validation set.

bounding boxes in language. Meta features are annotations describing an action
(i.e. “drink”, “eat”, “dance”) as well as an emotion (i.e. “fear”, “happiness”,
“neutral”). To better infer “who is doing what and feeling how” we transform
them to sentences by including the character name with both the action and
the emotion. We compare simple word sequences consisting of the simple con-
catenation of name, behavior and emotion, i.e. “Doegi standing up sadness.”,
transforming them into full sentences, i.e. “Doegi is standing up and feeling
sadness.” as well as encoding them numerically, i.e. “7 12 23” to probe to what
extent the language model priors help in leveraging the meta features. Results
can be seen in Table We observe that in overall accuracy meta features as
full sentences perform only slightly better than encoding them simply as words.
Only encoding them numerically performs slightly worse. In terms of difficulty

average all methods perform similarly.

Single-stream transformer. To gain a deeper understanding of the per-

formance of our two-stream co-attentional Transformer approach we compare
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it with a single-stream (joint type) cross-modal Transformer encoder similar

to those seen in prior work (Chen et al., |2020bl Luo et al., 2020, Sun et al.,

. Specifically, we encode both visual and language stream in the same way
as described in Chapter [4] but replace our co-attention module with a regular
Transformer. Scores are also computed similarly on the resulting single output
stream. Results can be seen in Table[5.7l We observe that our two-stream model
outperforms the single-stream approach by around 1 percentage point overall
and 1.56 percentage points in difficulty average demonstrating the effectiveness

of emphasizing vision and language scores equally.
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Chapter 6

Conclusion and Future Work

In this work we have performed a comprehensive survey of works lying at the
intersection of vision and language learning, dealing with visual question an-
swering, video question answering, vision and language representation learning,
and video representation learning. Based on our findings, we have introduced a
novel two-stream co-attentional Transformer architecture for story-based video
understanding that successfully learns long-term dependencies present in video
stories as well as cross-modal relationships. We have evaluated our architecture
in a video question answering setting with character-centered annotations and
questions on the DramaQA dataset. Our model outperforms the Multi-Stream
Context Matching baseline model on every difficulty level by at least 3.8 and up
to 12.1 percentage points on higher difficulty levels that require more complex
reasoning. Moreover, our method beats the winners of the DramaQA challenge
held at ECCV 2020. To gain a deeper understanding of how our method works,
we have presented several qualitative examples along with an ablation study and

additional experiments demonstrating the efficacy of our architectural choices.
6.1 Future work

Possible future directions for this work include the use of BERT-like pre-training

strategies such as seen in e.g. VILBERT (Lu et al., [2019), ERNIE-ViL (Yu et al.,
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2020), LXMERT (Tan and Bansal, [2019), and UNITER (Chen et al., |2020b)
for single-image vision and language learning as well as e.g. UniVL (Luo et al.,
2020), VideoBERT (Sun et al., 2019), and CBT (Sun et al., 2020) for video
representation learning. We believe such a pre-training strategy may help to
obtain better fused representations before applying them to downstream tasks
such as video question answering and video story understanding. Similarly, it
may be useful to employ proxy tasks such as masked character prediction or
masked object prediction to better align visual and lingual representations.

Similarly to the approach taken by ERNIE-ViL (Yu et al., 2020) it may be
possible to construct and predict scene graphs that describe what is happening
in the visual domain from video descriptions; this can either be on a fine-grained
level or on a more coarse level depending on the video descriptions provided with
the latter being more appropriate for the video story understanding setting. By
masking and predicting entities or relations in the resulting scene graph models
may be able to better align vision and language representations.

Recent work (Chen et al., 2020a, [Sun et al., 2020) has also explored the use
of contrastive learning for video and multimodal learning and it may be viable
in the context of video story understanding and video question answering as
well.

Lastly, we believe a more structured approach using spatiotemporal scene
graphs to represent who is in the scene, what their intentions are and who and
what objects they interact with throughout the scene may aid in video story
understanding as well. We believe this may especially be useful in settings
with less training data (e.g. the DramaQA, TVQA datasets) as graphs are
able to make use of the inherent structures in video data such as characters
remaining consistent across frames, but also across modalities where a name in

language refers to the same character seen in the frame. However, in order to
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apply graph representations to such multimodal settings, some questions will
have to be resolved: 1) What is the best way to encode language features (e.g.
from subtitles) in graph form? 2) How can we use graphs to fuse the different
modalities? 3) How can we do inference on this graph to obtain the correct

answer? We hope to address these questions in future work.
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