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Abstract

Contact Wrench Estimation for Large-Size Operational Aerial
Skeleton System with Distributed IMUs

Hasun Lee
Mechanical Engineering
The Graduate School

Seoul National University

In this paper, we propose the novel external wrench estimator for large-size aerial
skeleton system with distributed rotor action (LASDRA) which exploits multiple
distributed IMUs. The proposed wrench estimator reduces the delay of a conven-
tional momentum-base observer, which using only velocity information, by fuse
the acceleration information from distributed IMUs with Kalman Filter. Also,
angular acceleration estimation utilizes multiple IMU signals are proposed to im-
prove external torque estimation accuracy. The delay reduction of the proposed
wrench estimator was verified in simulation and also experiment verification at

3-link LASDRA is proceed.

Keywords: Sensor fusion, Wrench estimation, Unscented Kalman filter, Aerial
manipulation
Student Number: 2019-20151
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Chapter 1

Introduction

1.1 Motivation

To expand the physical manipulation capabilities of humans into the air, research
about aerial manipulation with multi-rotor drone and manipulator systems [1] -
[2] or omni-directional drones [3]-[4] were introduced. However, multi-rotor drone
and manipulator systems and omni-directional drones have limitations with aerial
manipulation. They have limited operation time (10-15 minutes) and an insuf-
ficient payload due to the limited capacity of the battery. Also, the difficulty
of accurate onboard sensing and control can cause falls and collisions with the

environment.
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FI1GURE 1.1: Downsized LASDRA with joint locking device.

To overcome the limitations of these aerial manipulation platforms, Large-size
Aerial Skeleton with Distributed Rotor Actuation (LASDRA) [5] was proposed,
which is composed of multiple links of Omni-Directional Aerial Robot (ODAR)
[6]. Precise pose estimation [5] with kinematic constraints on LASDRA and dis-
tributed impedance control that allows compliant operation was demonstrated.
Also, a downsized LASDRA system with a novel joint locking device was devel-
oped, which increases the end-effector’s payload by distributing the external load.
With developed LASDRA, manipulation of lifting 1.2 kg weight was available as

shown in Fig. 1.1.

To manipulate with LASDRA, accurate force-torque control is required. To con-
trol the force and torque, a contact wrench between the effector of LASDRA
and the external environment should be measured. Although an external wrench
can also be measured by mounting a force-torque sensor (FT sensor) at the end-
effector of LASDRA, it is difficult to use in practice because FT sensor requires
high cost and can only measure the wrench at the mounted position. And also if
we use FT sensor at the end of LASDRA, a long connection wire ( 7 m) should

be mounted to connect base and the FT sensor at the end. A thick wire will



Chapter 1. Introduction 3

have to be used to transmit signals over a long distance, which will lead to a
reduction in the payload of LASDRA. For these reasons, the contact wrench of
LASDRA should be estimated using a wrench estimator that estimates external

forces only from onboard sensor information.

The wrench estimator uses the acceleration or velocity information from the
onboard sensors and with the dynamics to estimate the external wrench. There is
two typical wrench estimator, momentum-based observer (MBO) [7] and inverse
dynamics. MBO is an observer that converges to a constant wrench, by integrate
velocity information recursively. Typical robotic arms obtain the acceleration of
joints by differentiating joint angles measured from encoders. The acceleration
information obtained by differentiating encoder information twice is too noisy to
immediately substitute to inverse dynamics, so typical robotic arms use MBO
which uses velocity information to estimate external wrench. MBO gives accurate
and stable estimation when the external wrench changes slowly. But MBO gives
delayed estimation when the external wrench changes rapidly because it is the

form of the observer.

But in LASDRA, a better performance wrench estimator can be used by fusing
MBO and inverse dynamics method, because LASDRA has an inertial mea-
surement unit(IMU) at each link and provides both velocity and acceleration
information unlike with previous robotic arms. By exploiting this characteris-

tic, we propose a novel wrench estimator that fuses MBO and inverse dynamics
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with Unscented Kalman Filter(UKF) [8]. The proposed wrench estimator shows

showed less delay than MBO and less noise than inverse dynamics.

1.2 Related Works

The wrench estimators that use velocity or acceleration information of robot,
MBO and inverse dynamics, are introduced in [7]. And especially in multi-rotor
drone, Lyapnov based nonlinear wrench observer was introduced, which is a sim-
ilar form with MBO and use velocity and angular velocity information. These
estimators have limitations in delay or noise. Inverse dynamics with acceleration
show direct response, but also have a noisy response by inaccurate measurement
of acceleration. MBO with velocity shows the less noisy response at constant ex-
ternal wrench, but shows delayed response when external wrench change rapidly

because of its converge filter form.

Various researches are conducted to improve the performance of the wrench esti-
mator. The first method is to fuse velocity and acceleration information with high
order disturbance observer (HODO) which is introduced in [9]. HODO assumes
external wrench is following high order random work dynamics, and regard exter-
nal wrench as one of the state vector. States including external wrench corrected
with velocity and acceleration measurements. In [10] and [11], HODO using Ex-
tended Kalman filter (EKF) form has applied in drone and drone-manipulator

system. HODO shows more fast response and is less sensitive to noise than MBO
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in [10] and [11]. And in [12], UKF form HODO was applied to a drone, to improve
convergence by more accurate approximation of nonlinearity. But these HODO
methods cannot ensure convergence, because HODO is assuming external wrench

as random walk dynamics and approximate nonlinear dynamics to linear.

The second method is to measure velocity and acceleration more accurately by
attaching additional IMUs. In [13], accurate velocity and acceleration measure-
ment by attaching additional IMU at the joint of the robotic arm. By fuse joint
angle and IMU information with EKF, more accurate velocity and acceleration
measurements were possible. As a follow-up to this, collision detection by MBO
and inverse dynamics which use accurately measured velocity and acceleration
in [14]. It detects collision immediately by using inverse dynamics with measured
acceleration, but an estimated wrench is too noisy to use at control because the

wrench is calculated algebraically without any filters.

] 2 1_]|
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1.3 Contribution
The contributions of this research are :

e The novel wrench estimator is proposed, which shows a faster and sta-
ble response than typical wrench estimators (MBO, inverse dynamics) by

exploiting LASDRA’s distributed and multiple IMUs.

e Force estimation performance has increased by use acceleration informa-

tion with MBO.

e Torque estimation performance also increased by using angular acceleration

information obtained by multiple IMUs signals.

e The proposed wrench estimator is verified in simulation and experiment.

] 2 1_]|
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Chapter 2

Preliminary

2.1 LASDRA System

2.1.1 System Description

LASDRA system [15] is an aerial manipulation platform that is composed of
multiple links of ODAR [6]. Each link can generate arbitrary 6 degrees of free-
dom (DoF) wrench in any direction of posture as shown in Fig. 2.1, by using
redundant 8 rotors. Each link is connected with a joint locking device as shown
in Fig. 2.2, which can lock joints variably when manipulating. The joint locking
device distributes the payload of the distal link among the other links to increase

the payload of the end-effector [15].
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Preliminary

Ficure 2.1: LASDRA flight in various configurations
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FIGURE 2.2: 2-DoF joint locking device based on capstan brake and latch

2.1.2 Estimation of LASDRA

Each link is controlled and estimated with Raspberry Pi 3! and Pixhawk 2.4.82.
Pixhawk has an embedded IMU (Inertial Measurement Unit) and barometer.
Pixhawk estimates position, velocity, attitude, gyroscope bias, and accelerometer
bias by fuse onboard sensor data (accelerometer and gyroscope of IMU) and
external sensor data (GPS or MOCAP) with built-in EKF. Especially in outside,
the pose of each link are corrected by exploiting kinematic constraints with SCKF

(Smoothly Constrained Kalman Filter) [5].

"https://www.raspberrypi.org/
https://pixhawk.org

Rl ke T
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2.2 Wrench estimator

In this part, LASDRA dynamics and detailed formula of MBO and inverse dy-
namics will be described. Proposed wrench estimator fuse these estimators with

UKF form.

2.2.1 Dynamics

The proposed wrench estimator distributedly estimates the external wrench of
each link and adds a base to the end to finally estimate the external force acting
on the end-effector. Therefore, for wrench estimation, we should use dynamics
that are expressed in maximum coordinate for each link. Translation and rota-

tional dynamics of each link are expressed in

ma = RBu —mge3 + f.
(2.1)

Ja=Jw X w4+ Bru —rem X mges + Te

First line of equation (2.1) is translation dynamics derived about space coordi-
nate. m is mass of link, R (= REp) is rotation matrix of link, u € R® is rotor
thrust input vector, By is mapping matrix from input u to thrust force, and f, is
external force. Second line of equation (2.1) is rotational dynamics derived about

body coordinate. J in momentum of inertia , w (= wy) is body angular velocity,
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B, is mapping matrix form input u to thrust torque, 7. is external torque, and

Tem (=18 ) is position vector from geographic center to center of mass.

2.2.2 Inverse dynamics

When accelerations a,« and angular velocity w measured, external force and

torque fe, 7 can be calculated algebraically as equation (2.2)

fe =ma — RBfu + mges
(2.2)

Te=Ja — Jo X O — Bru+ rem X mges

It is called inverse dynamics. Inverse dynamics can directly calculate external
wrench but is hard to use in control because it is too much sensitive to the noise

of a and «.

2.2.3 Momentum based observer

Momentum based observer is wrench observer that use velocity measurement v
and w. It converges estimated wrench fe, Te to fe, Te recursively by integrate recur-
sively with translational and rotational momentum p,, p;. The observer equation

of momentum based observer are

] 2 1_]|

-y
=]
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fo = K(pu — pr) = K(ma —ma)
. ‘ (2.3)
7A_e = K(pr - ﬁr)

By integral each side of (2.3), we can get a complete observer equation of MBO

as

t A A
fe = K(mo(t) — mo(0) —/0 fin + fe dt)

t
= K(mo(t) — / RBji — mges + fe dt)
0

. (2.4)
Te = K(Jw(t) — Jw(0) — / JW X W + Tip + Te dt)
0
t
= K(Jw(t) — / JW X W+ Bru — e X mges + Te dt)
0
Error dynamics of momentum based of observer are shown as
ef = Key + f
‘ (2.5)
ér =Ker +7¢

As seen in the (2.5), when external wrench changes slowly (fe, 7. ~ 0), MBO will
estimate external wrench correctly. But, in a dynamic situation, an error will
cause by delayed estimation. Our novel wrench estimator alleviates this limitation

by fuse momentum base observer with inverse dynamics.



Chapter 3

Wrench estimator algorithm

In this chapter, the detailed algorithm of the proposed wrench estimator will be
explained. The wrench estimator operates distributedly on each link. It measures
the external wrench of each link and then accumulates external wrenches from
the base to the end to obtain the wrench acting on the end. The wrench on the
base is necessarily measured by FT sensor. The first section is about the wrench
estimator algorithm at each link, and the second section is about accumulating

estimation results of each link.

13
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3.1 Wrench estimation of each link

3.1.1 Sensor measurements

To estimate the external wrench of each link of LASDRA, IMU in Pixhawk board,
MOCAP, and additional accelerometers in Fig. 3.1 are used. Pixhawk IMU at
the center of the mass of the link measures acceleration and angular velocity.
Additional accelerometers attached 0.5 m far away from the center measure ac-
celeration of the end of the link. MOCAP measures position and quaternion
posture data. By filtering these sensor measurements with the following pipeline,

an external wrench can be estimated.

FIGURE 3.1: Sensors of LASDRA

Rl ke T
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Apixs Wpix ;' -t T

Pixhawk built- [+ Pixhawk imu |
: Qubuy T 1
mERF B2 MocaP |

las

i Additional | Eff Angular acceleration
| accelerometer | estimation
l asl &b ﬁb, Wb
Inverse dynamics 7" [ Momentum based
Wrench estimation Wrench estimation

7
FIGURE 3.2: Pipeline of the wrench estimator at each link

3.1.2 Wrench estimator pipeline

The proposed wrench estimator has a pipeline of Fig. 3.2, at each link of LAS-
DRA.

First, Pixhawk estimates position, velocity, posture, and accelerometer, and gy-
roscope bias. Pixhawk fuse IMU and MOCAP measurements with built-in EKF.
Second, angular acceleration is estimated by the difference of an additional ac-
celerometer at the end of the link and Pixhawk accelerometer at the center of
the link. By get the difference of the acceleration, pure rotational acceleration
is obtained. Lastly, the external Wrench is estimated by use velocity, angular
velocity, acceleration, and angular acceleration information from the previous
step. MBO propagates wrench information with velocities, and inverse dynamics

correct propagated wrench information with accelerations. The correction with a
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directly measured wrench with acceleration makes more accurate wrench estima-
tion to be possible. Detailed equations of each step are explained in the following

sections.

3.1.3 Pixhawk built-in EKF

Pixhawk flight controller uses IMU and MOCAP to estimate the state of the
drone with EKF. Built-in EKF of Pixhawk tracks position, velocity, orientation,
accelerometer bias, and gyroscope bias [16]. It uses accelerometer and gyroscope
measurement to the propagation of state and correction with MOCAP. So from
the built-in EKF, position, orientation, velocity, angular velocity, acceleration

are obtained.

3.1.4 Angular acceleration estimation

To estimate external torque, angular acceleration should be measured. Differen-
tiate angular velocity shows very noisy results and is impossible to use at torque
estimation. So we attach additional IMUs at the end of the link and get a dif-
ference of acceleration between the center and the end of the link. i** additional

accelerator gives acceleration measurement a; as

a; = joi[ab + ap X 1y + wp X (wb X rb,i) + nz] (3.1)
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Ry ; and 7y, are rotation matrix and position vector between link body to an
accelerometer. ap, ap, and wy are body acceleration, angular acceleration, a nd
angular velocity of link. n; is accelerometer noise. a; and wy are expressed by sub-
tract sensor bias from the gyroscope and accelerometer measurements as (3.2),

which estimated with built-in EKF of Pixhawk.

ay = Gpiz — Qbjas,piz T Na

(3.2)

Wy = Wpiz — Whigs,piz T Nw
ng and mn,, are sensor noise of Pixhawk accelerometer and gyroscope. By subtract

(3.2) to (3.1), simple measurement equation about «y is expressed as

Ry ja; — ap — wy X (wp X 1p5) (3.3)

=y = —["bi]xop + N;

N; is fused noise, which contains n, and uncertainty of wy x 7y ;. Uncertainty of
wy X 1p; obtained by Unscented Transform(UT). Also numerical differential of

wyp gives equation about oy as

wy(t) —wp(t — 1) = ap(t) + ny + Ny (3.4)

By stack (3.3) and (3.4), final estimation equation about oy, is written as
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Y1 [ro,1]
Y = —Huyp+N=| =~ |w+N (3.5)
yn [Tbyl]x
_wb(t) — wb(t — 1)_ i IAt ]

Note that an additional accelerometer can’t measure angular acceleration’s par-
allel component with r(b,4), so minimum 2 additional accelerometers are required
to measure accurate 3D angular acceleration. Finally, optimal estimation of ay

will obtained by using a pseudo-inverse method as

ap = (H'R'H)'HTR 'Y
(3.6)
var(ay) = (HYR™*H)™!

3.1.5 Wrench estimator

Specific algorithm of proposed wrench estimator will be explained in this section.
Like see in (2.4), MBO integerates fe and 7. implicitly. To discretize it, let’s call

the integral terms of (2.4) as ps and p,. Discretized MBO for force is written as

pre1 = pr + [fer + mg + RByuldt

fert1 = K(muvgs1 — pret)

And for torque,

2] 2 1_l|
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Pro1 = Pt + [Teqw X (Jw) + Biaut — Tem X Byuldt (3.5

7A_e,t+1 = K(Jwt+1 - ﬁt+1)

It is the same structure with a non-linear Kalman filter. We can write a wrench
estimator that propagates state ; recursive summation step about p, correct by
fe and 7. measured with inverse dynamics. more specific explain about each steps

are following.

Let’s see about force estimation for example. At the propagation step, estimation

of p,—1 and its variance P propagate to p; with
(57 s Pry) = UT(L = K dilpy, + [Kmiy1] +mg + RBpuldt)  (3.9)

© and R are estimated variable from Pixhawk and it is nonlinear. So we have to

apply unscented transform to calculate transformed uncertainty.

Next step is correction with inverse dynamics. To correct p, fe and its uncertainty

Niny Will be measured with a as
(fe; Qiny) = UT(ma —mg — ]:ZBfu) (3.10)
With this measurement about f., measurement function about p is written as

fe = K<mvt - pt) + Ninw
(3.11)

= _Kpt + Km@t + Ninv,w
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Ninv,v 18 fused noise of n4e. and n,. We can correct propgated p; from (3.9) with

obtained f. from (3.10), as

Ky =Py H'(HP; H” + Qinv) ™"
pi = pi + Ki(fe = 12) (3.12)

P =P -~ K.HP

Finally, corrected f. will be obtained from corrected p; .

£ = Kty — o) (313)
External torque 7. obtain with the same process, based on angular dynamics on
(2.1). Especially angular acceleration & use in correction part will be obtained
from angular acceleration estimation by the additional accelerometers in 3.1.4.

Also, estimated 7, will be expressed in the link body frame.

3.2 Wrench propagation

In 3.1, external wrench of each link is estimated. By accumulating these estimated
wrenches, wrench load at the end effector and each joint can be obtained. And
LASDRA for operation [15] are fixed in the base with spherical joint, so the

wrench applies to the first link from the base should be measured with F'T sensor

2] 2 1_l|
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and accumulate with an estimated external wrench of each link. Equation about
accumulate FT sensor measurement at the base and external wrench estimations

are

fi=fie s

= o o | (3.14)
Th=T1.4 RiTRi—lTﬁ_l — L¢ [Rin}_l] — Le % [R] f]]

f§ and T} are wrench at the joint, which i + 1** link applying to i** link. fiand
7! are estiamted external wrench of i‘" link. R; is rotation matrix of i link and
Ec is position vector from the center to end of the link, for example [0.5m, 0, 0]

at LASDRA in our experiment.

Forces f are expressed in world frame and torque 7 are expressed in body frame
of each link. If we iterate calculation of (3.14) for i = 1 to ¢ = N, external
wrench at the end effector (fend, Teng) Will be obtained, which expressed in last
link’s frame. In i = 1, f9 and Tf,] is wrench measured from the base FT sensor.
If we multiply Ry to obtained 7,4, external wrench at the end effector will be

expressed in world frame finally.



Chapter 4

Simulation Results

4.1 Simulation setup

Before the experimental verification, the proposed wrench estimator was verified
in the simulation environment. The simulation was built in MATLAB for dynam-
ics of 1 link of ODAR as shown in Fig. 4.1. In the simulation for the ODAR, the
proposed wrench estimator shows noiseless and faster response than traditional

wrench estimators, inverse dynamics, and MBO.

Simulation integrates dynamics with passive midpoint integration (PMI) [17] in

500Hz, which guarantees passivity of simulation. Simulation provides the same

22
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sensor data with real experiments explained in 2.1.1. IMU at the center, addi-
tional IMUs, and MOCAP. IMU sensor noise and bias drift follow the specifi-
cation of MPU9250 and MOCAP estimation accuracy was set similar with real

word as shown in Table. 4.1

In the simulation, we apply a step-typed external wrench and obtains noised
sensor data while ODAR following the sinusoidal trajectory for position and ori-
entation. The proposed angular acceleration estimation and wrench estimation of

3 were applied with provided sensor data, including the built-in EKF of Pixhawk.

-0.5

05 X (m)

y (m) 0.5

F1GURE 4.1: ODAR dynamics simulation

Rl ke T
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H Parameters ‘ Noise variance
IMU accelerometer noise (m?/s%) diag([0.05%, 0.05%, 0.05%])
IMU accelerometer bias drift (m?/s%) diag([0.00052, 0.00052, 0.0005%] )
IMU gyroscope noise (rad?/s?) diag([0.012,0.01%,0.012])
IMU gyroscope bias drift (rad?/s*) | diag([0.0000092,0.000009%, 0.000009?%])
MOCAP position noise (m?) diag([0.001%,0.0012,0.0017])
MOCAP orientation noise (rad?) diag([0.032,0.03%,0.032])

TABLE 4.1: Sensor noise assumed in simulation

Estimation proceeds in the same bandwidth with the real world, Pixhawk built-
in EKF in 500Hz and the wrench estimator in 100Hz. And to give identification

error, 10% reduced momentum of inertia was used in the estimator.

Estimated results for angular acceleration and external wrench were compared
with ground truth data from the simulation. Also, wrench estimation with MBO
and inverse dynamics were proceeded to compared with the proposed wrench

estimator.

4.2 Angular acceleration estimation

Simulation results for acceleration estimation are following. Data from the IMU
of centered pixhawk and 2 additional IMUs place at the end of the link ([0.5m;

0; 0], [0.25m; 0; 0.25m] in the acceleration estimation.

Fig. 4.2 shows angular acceleration results of the proposed estimator and sim-

ple differential of angular velocity. Simply differentiated angular velocity shows
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6.8rad/s? of RMS error. it is an extremely large error to use at the wrench es-
timator. But the proposed estimator with additional IMUs shows 0.56rad/s? of
RMS error. We can see the proposed angular acceleration estimation method

providing much more accurate estimation for the angular acceleration.

Angular acceleration estimation

w

Angular acceleration estimation

—_—
T

1
—
T

2

Ang.Accel. (radfsQ)
;

o

[&)]

|
a

Ang.Accel. (rad/s 2)
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0 2 - 6 8 10

FIGURE 4.2: Angular acceleration estimation results



Chapter 4. Simulation Results 26

4.3 External wrench estimation

Simulation results for 3 types of wrench estimators (proposed, MBO, and inverse
dynamics) are shown in Fig. 4.3. Estimation for force of z direction and torque

of x direction are presented.

Like written in 2.2, inverse dynamics shows un-delayed but noisy estimation, with
0.13N of RMS error. MBO shows noiseless but delayed estimation, with 0.02 N of
RMS error and 0.22sec of 10% settling time. The proposed estimator shows more
less delay than MBO and noiseless than inverse dynamics, with 0.04N of RMS
error and 0.06sec of 10% settling time. This results verifies delay reducing with
optimally fusing acceleration data to MBO. In the next section, experimental

results in the real world will be presented.
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FIGURE 4.3: Wrench estimation results
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Experimental Results

5.1 Experiment setup

To verify the proposed wrench estimator in experiments, 3-link LASDRA and
sensors are constructed as shown in Fig. 5.1. Pixhawk uses IMU (MPU9250) and
MOCAP data (Optitrack) to estimate its pose and velocity with EKF. And 2
additional IMUs of each link are connected with RaspberryPi directly as shown
in Fig. 3.1. FT sensor sensors to measure the wrench at the base are mounted
between the first link and the base. The external wrench at the end is measured

with another FT sensor.

28
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FIGURE 5.1: 3-link LASDRA

s B 8 kLT
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FIGURE 5.2: Momentum of inertia identification

5.1.1 LASDRA setup

LASDRA used in the experiment use MPU9250 IMU and Optitrack MOCAP.
Phidget IMU ! are used for additional IMU, which can directly connected with
RaspberryPi by USB. The IMUs are attached with gel to alleviate the noise of

the vibration of propellers.

"https:/ /www.phidgets.com
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H \ Link 1 \ Link 2 \ Link 3 H

M (kg) 2.09 | 2.114 | 1.598
Iz (kg m?) | 0.0121 | 0.1715 | 0.1664
I,, (kg m?) | 0.0121 | 0.1229 | 0.1262
I.. (kg m?) | 0.0106 | 0.1120 | 0.1087

TABLE 5.1: Identification results of each link

Accurate identification of mass and momentum of inertia of each link is important
for accurate wrench estimation. Mass of each link is measured by a scale and
momentum of inertia is calculated by measure the frequency of a bifilar torsional
pendulum as shown in Fig. 5.2. The measured mass and momentum of inertia of

each link are shown in Table. 5.1.
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5.1.2 FT sensors setup

2 FT sensors are used in the experiments. ATT gamma FT sensor is mounted at
the base. The sensor and base joint are connected with the gel to alleviate noise

of the vibration, as shown in Fig.5.3.

ATT mini FT sensor is mounted at the independent handle as shown in Fig. 5.4.
While LASDRA is hovering in a specific configuration, an external wrench is

applied to the end effector with the handle as shown in Fig. 5.6. F't sensor at the

‘(“ ‘\

/A

FIGURE 5.3: FT sensor at the base
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handle measures the ground truth external wrench applied at the end effector.
But a measured wrench is expressed in the body frame of the handle, so MOCAP
markers are attached to the handle and measure the real-time pose of the handle.
By multiplying the rotation matrix of the handle to the measured wrench, the

ground truth external wrench expressed in MOCAP frame is obtained.

The gel tape are attached on the end effector as shown in Fig. 5.5 to alleviate

noise of the vibration.

FIGURE 5.4: FT sensor with the handle
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FIGURE 5.6: Pushing end effector with handle
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5.1.3 Experiments scenario

In the experiments, the external force is applied at the end effector while LAS-
DRA hovering in 3 different configurations as shown in Fig. 5.7.3 directions of

external force are applied at the end effector as shown in Fig. 5.8.

FIGURE 5.7: 3 configurations of LASDRA. Straight, zigzag, and middle raised.

3§ A1 =t 8}

& -
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FIGURE 5.8: 3 directions of pushing end effector
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5.2 Wrench estimation results

In this section, experiment results about the wrench estimator are presented. The
external wrench of LASDRA was estimated with 3 types of wrench estimators
(proposed, MBO, inv dynamics) and compared with ground truth. Ft sensor data

received in 400Hz, IMU data received in 50Hz, and the estimator run in 100Hz.

Fig. 5.9 - 5.11 are wrench estimation results with the proposed wrench estimator
at configuration of straight, zigzag, middle raised. We can the external wrench
are estimated as same as ground truth in variable configurations. But bias of
y direction force estimation is increasing slowly in the time. It is because of
unmodeled tension of the power lines shown in Fig. 5.3. To make unmodeled
tension of the powerline to zero, we tie power line next to the pillar. But power

line bent at the flying and additional tension is generated and make biased error.

And also results about MBO and inverse dynamics are shown in Fig. 5.12, 5.13,.
Inverse dynamics is showing much noisy estimation compare to MBO. And MBO
is showing a similar delay with the proposed wrench esitimator. It is because

external wrench was slowly applied to LASDRA, because of its control stability.

So the proposed wrench esimator has verified through the experiment with 3-link

LASDRA,
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this paper, contact wrench estimator using distributed IMUs for LASDRA
(Large-size Aerial Skeleton with Distributed Rotor Actuation) and simulation
verification have proceeded. Conventional robot arm measures acceleration by
differentiating encoder information twice. Twice differentiated acceleration is too
noisy to use at wrench estimation. So momentum based observer are convention-
ally used at wrench estimation, which recursively integrates velocity. But it has
a delay at dynamically changing external wrench because it is the form of the

observer.

43
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Multiple, distributed IMUs of LADSRA can solve this limitation. LASDRA mea-
sure acceleration directly with IMUs, so by fuse acceleration information to mo-
mentum based observer, a delay will be reduced. The proposed wrench estimator
fuses acceleration information with Kalman Filer form, which uses momentum
based observer as propagation step and inverse dynamics as the correction step.
The proposed estimator fuses momentum based observer and inverse dynamics

corresponding to its uncertainties.

To verify the proposed wrench estimator, PMI based ODAR simulation is built.
Realistic sensor noised are assumed and 10% of identification error of momentum
of inertia are applied. Through the simulation, the proposed wrench estimator
shows reduced delay than momentum based observer and is less noisy than in-

verse dynamics.

Experimental verification in the real world also proceeded. 3-link LASDRA with
MOCAP is built. FT sensor has mounted on the base to measure wrench between
the base and the first link. 3 directions of external force were applied at the end
effector while LASDRA hovering in 3 different configurations. Ground truth of
external wrench is obtained by FT sensor mounted on the MOCAP tracked han-
dle. The measured external wrench is transformed to MOCAP frame. Through
the experiments, the external wrench was estimated similar to ground truth by
FT sensor. But y direction force estimation shows 2N of bias because of the

unmodeled tension of the powerline. And external wrench was changed slowly

] 2 1_]|

-y
=]

1
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to guarantee the stability of control, momentum based observer shows similar

behavior with the proposed wrench estimator.

Finally, we develop a novel wrench estimator that has reduced delay than conven-

tional momentum based observer and verify in simulation and real experiments.

6.2 Future work

The proposed wrench estimator can also be applied to a typical robot arm by at-
taching IMUs to it. It will make a faster response that momentum based observer
same as at LASDRA. Also, it will show a more accurate wrench estimation than

at the LASDRA because it has much fewer vibrations than aerial platforms.

In the perspective of control, force-torque control of LASDRA is possible by using
the proposed wrench estimator. And the proposed wrench estimator loaded the
wrench of each joint because of its distributed structure. By using an estimated
joint loaded wrench, a control algorithm alleviates the load of the joint when the

joints are locked.
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