

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Yunho Jin

Cost-e↵ective Extreme-scale DNN

Inference on a Flash-based Memory

System

�òl 0⇠ ®(� ��‹® xı‡Ω› ®x î` ‹§\

August 2021

Graduate School of Engineering

Seoul National University

Computer Science and Engineering

Yunho Jin

Abstract

The size of deep neural network (DNN) models has been exploding rapidly,

demanding a colossal amount of memory capacity. For example, Google has

recently scaled its Switch Transformer to have a parameter size of up to 6.4

TB. However, today’s HBM DRAM-based memory system for GPUs and DNN

accelerators is suboptimal for these extreme-scale DNNs as it fails to provide

enough capacity while its massive bandwidth is poorly utilized. Thus, we pro-

pose Leviathan, a DNN inference accelerator, which integrates a cost-e↵ective

flash-based memory system, instead. We carefully architect the flash-based

memory system to provide enough memory bandwidth while preventing per-

formance drop caused by read disturbance errors. Our evaluation of Leviathan

demonstrates a 2.39⇥ throughput gain compared to the iso-FLOPS DNN ac-

celerator with conventional SSDs and up to 19.47⇥ higher cost-e�ciency than

the HBM-based DNN accelerator.

Keywords: Neural Network, Flash Memory, Read Disturbance

Student Number: 2019-22004

i

Table of Contents

Abstract i

Table of Contents ii

Chapter 1 Introduction 1

Chapter 2 Background and Motivation 3

2.1 Extreme-scale DNN Inference 3

2.2 Reading from NAND-based memory 3

Chapter 3 Leviathan Overview 6

Chapter 4 Leviathan Flash System 8

4.1 Boosting Read Bandwidth . 8

4.2 Preventing RD-induced Performance Degradation 10

Chapter 5 Evaluation 13

5.1 Performance of DNN Inference 13

5.2 Bandwidth variability during RR 16

Chapter 6 Related Work 18

Chapter 7 Conclusion 20

Bibliography 21

m8�] 32

ii

Chapter 1. Introduction

Deep neural networks (DNNs) have become more than just cutting-edge tech-

nology. They have now permeated diverse domains such as natural language

processing (NLP) (16, 36, 38, 44), computer vision (24, 52, 61), and recom-

mendation systems (40). One of the most recent trends in DNNs is the increase

in their model sizes. In particular, Transformer-based models (57) have been

explosively expanding their sizes. For example, BERT (16) has hundreds of

millions of parameters, translating to 1.36 GB memory space requirements.

Similarly, GPT-3 (7) requires 350 GB memory space, and the most recent

Switch Transformer (17) requires 6.4 TB memory space. This scaling of model

size poses a significant challenge in the existing DNN inference systems having

a relatively small memory capacity of tens of GBs.

One straightforward way to secure more capacity is to increase the number

of sockets (i.e., scaling out). For example, to house a GPT-3 model requiring

350 GB memory capacity, one needs at least five NVIDIA’s A100 GPUs (1),

each having 80 GB memory to secure 400 GB memory space. However, such

a use of multiple devices incurs a high hardware cost. This is because HBM-

based memory in GPUs is costly for their high memory bandwidth; however,

this high memory bandwidth is underutilized for those extreme-scale DNNs as

their bandwidth requirements are often much smaller due to a higher degree of

data reuse (32).

NAND-based flash memory is an attractive alternative to the HBM-based

memory system for such large-scale DNN models as it provides a large memory

capacity at a low cost (4). However, several challenges need to be addressed.

First, a flash device exhibits far lower bandwidth than HBM DRAM and what

is necessary for DNN inference. For example, it takes 50 seconds to read all

weights in GPT-3 from a commercial SSD providing 7 GB/s (49), which is too

1

slow. Second, as DNN inference necessitates repeated reads to the devices, a

chronic problem in NAND flash known as read-disturbance (RD) (6, 9, 21, 37,

53) is exacerbated and causes severe deterioration in their performance. RD-

induced errors are typically addressed with read reclaim (RR) (9, 23, 29). RR

in the prior work is designed for a generic case of non-uniformly distributed

reads across blocks. However, in a DNN inference system, memory reads are

distributed uniformly across blocks to reach the threshold of RD-induced errors

and call RRs simultaneously. These bursty RRs cause a significant drop in flash

throughput to increase performance variability.

To address these challenges, we present Leviathan, a NAND flash-based

DNN inference accelerator specialized for extreme-scale DNNs. To boost the

bandwidth of the storage system, we conduct vertical optimization from the

host to the storage system by leveraging the domain-specific characteristics of

DNN inference. Specifically, Leviathan exploits the read-intensive nature and

static data-access pattern to facilitate flash optimizations such as cache-read

and multi-plane operations for user I/O. Leviathan also resolves performance

degradation caused by RD. Identifying that bursty RR operations are the cause,

Leviathan e↵ectively distributes them over time in the course of multiple DNN

inference requests. Thus, it smooths out the peak bandwidth demanded from

RR operations and minimizes interference with user I/Os for computation.

2

Chapter 2. Background and Motivation

2.1 Extreme-scale DNN Inference

To inference a DNN model is to exploit a trained model to carry out certain

tasks it was trained for. It does so by multiplying learned weights and input

data which is being propagated through the model in the form of activations.

One interesting aspect of this process is that the dataflow strictly adheres to a

predefined path. Therefore, it is easy to sequentialize data accesses. Also, the

task features a WORM (write-once-read-many) access pattern. It reads many

times from weight data that is written once. This is especially helpful in flash

memories where a typical read is over 10⇥ faster than write. Leviathan exploits

these properties to boost its flash bandwidth.

2.2 Reading from NAND-based memory

GPT-3 model introduced in 2020 contains 175 billion parameters, whereas

BERT model introduced in 2018 contains merely 110 million parameters. Just

within two years gap, the size of these Transformer-based models has scaled by

more than 1000⇥. To account for the enormous memory capacity demand from

the extreme-scale models, recent literature has been shifting the direction to

heterogeneous memory (5, 32, 48, 58). Specifically, solutions using NAND-based

SSDs (5, 32) have been announced. With gigantic memory capacity, these solu-

tions adequately addressed the memory capacity wall problem induced by the

extreme-scale models. However, the NAND-based storage also induces a few

problems of its own when being exploited to accommodate DNN models for

inference. In this section, we first provide some necessary background on read-

ing from NAND flash memory. Next, we discuss read disturb, a common error

which is more susceptible in read-intensive workloads such as DNN inference.

3

ER P1

!!

ER P1

!!

!"#

!"#

(a)

(b)

(c)

!$!%%

!$!%%

!&'(

"#)

"#*

"#+

"#,

$#, $#+ $#*

Sense Amplifiers

Figure 2.1: Reading from NAND array and read disturbance during the process

Read path. A typical NAND array in flash memory is laid out as a grid, as in

Figure 2.1(a) referred to as a block. To read from this block, a read reference

voltage Vref is applied to the target wordline (WL) that contains the page to

be read. The cells that are programmed with threshold voltages (Vth) lower

than Vref will be turned o↵ while others will be turned on. Sense amplifiers

at the bottom of the array will sense whether or not the cell placed on their

bitline (BL) is turned on and send the message to the memory controller.

This is the case of single-level cell (SLC) where each cell can represent only

one bit, namely two states. This is a simplification compared to its counterparts

such as multi-level (MLC) or triple-level (TLC) cells. These cells must apply

multiple di↵erent voltages to read a page in a block. Taking MLC which can

represent two bits, or four states, as an example, there are 3 Vth’s that sepa-

rate the four states in equal portions. First Vref that is equal to the middle Vth

is applied. The least significant bit (LSB) pages are determined in this step.

Afterward, other two Vth’s are applied sequentially to determine the most sig-

nificant bit (MSB) pages. With Vref applied three times, reading from MLCs

induces at least 3⇥ latency and 7⇥ for TLCs.

As mentioned earlier, the cell to be read from is connected to the sense

amplifier via a BL. This BL contains cells in other WLs. Thus, to read from

4

a cell, all other cells in the same BL must be turned on to allow current flow

into the sense amplifier. To turn the other cells, pass-through voltage (Vpass) is

applied to all other cells as in Figure 2.1. Vpass is set as the maximum possible

Vth to ensure that all cells receiving Vpass are turned on.

Read Disturbance (RD). Read disturb is an inherent problem in SSDs (6,

9, 21, 37, 53). Reading a page from a block necessitates applying Vpass to all

the other WLs. Applying such a high voltage to a cell will degrade its dioxide

which in turn shifts the threshold voltage due to charge loss. Figure 2.1(b)

shows the original distribution of cells right after being programmed. Cells

whose threshold voltage is lower than Va are sensed as in erased (ER) state

with a bit value of 1 and the others are sensed as P1 state with bit value of 0.

With the shift of Vth of cells due to repeated appliance of Vpass, the distribution

will be expanded as in Figure 2.1(c). When the reference voltage of Va is applied

to the cells, cells in the dashed region will be read incorrectly. Namely, cells

originally in P1 state will be read as in ER state, and cells originally in ER

state will be read as in P1 state. Thus read disturb errors have been generated.

5

Te
ns

or
 B

uf
fe

r
D

D
R

 D
R

AM

Accelerator

D
D

R
 D

R
AM

Compute Core

SR
AM

Control Logic

FMS
(Flash Memory

System)

ControllerPCIe

NAND NAND NAND NAND

NAND NAND NAND NAND

NAND NAND NAND NAND

NAND NAND NAND NAND

Leviathan Platform

M
AC

.

AC
T.

D
R

AM
c.

Control path
Data path

Figure 3.1: Overview of Leviathan

Chapter 3. Leviathan Overview

Overview. Leviathan is a specialized DNN inference platform designed to

accommodate extreme-scale models. It employs a low-cost storage medium that

satisfies the bandwidth demand of the workloads. As depicted in Figure 3.1,

Leviathan has multiple accelerators with DDR DRAM in place of HBM. Each

accelerator is connected to Leviathan Flash System (LFS) via 64 lanes of Gen4

PCIe (42).

DNN inference in Leviathan. Initially, a host analyzes the requested DNN

model (2, 43) to confirm that Leviathan’s LFS can provide the bandwidth de-

manded by the model inference. If so, it writes the trained model weights to

Leviathan’s LFS. Afterward, the host generates computation and DMA com-

mand sequences for each accelerator and LFS to execute the model. It then

passes the commands to Leviathan’s LFS, and the sequences guide operations

in the system. This sequence is stored in a separate stream (32) of LFS from

storing weight data.

The commands are first distributed to the accelerators they are assigned to.

Each accelerator is assigned a part of the model so that multiple accelerators

6

can process a single model in a model-parallel manner. For example, when three

accelerators are attached to a single LFS, a fully connected layer in the form

of 3M ⇥ N matrix is partitioned into three M ⇥ N matrices and distributed

to each accelerator. The result is accumulated in the last accelerator, which is

distributed to the Tensor Bu↵ers of the others for the computation of the next

layer.

The inside of an accelerator is depicted in Figure 3.1. Control Logic first

sequences the computation and DMA commands it was assigned. Computation

commands are issued to components in Compute Core after their dependen-

cies are met. Leviathan resembles the architecture of popular DNN accelera-

tors (10, 11, 12, 28) designed solely for multiply-accumulate (MAC) operations.

This MAC array is a massive grid of processing elements, each carrying out one

MAC operation every cycle. At every cycle, a part of activation is pumped into

the MAC array from SRAM bu↵er and multiplied to the stationed weights.

The generated result is then passed onto activation unit (ACT) if the layer in

computation contains an additional activation layer (3, 20) to apply the corre-

sponding activation function. The final product is saved in SRAM to maintain a

copy of the result and distributed to other accelerators through Tensor Bu↵ers.

DMA commands are issued to LFS controller, which corresponds to the

conventional SSD controller, and DRAM controller (DRAMc) to load weights

from LFS to Tensor Bu↵ers, then to SRAM in each accelerator respectively.

The weights are finally stationed in the MAC arrays. Tensor Bu↵er is a DRAM

bu↵er that acts as a staging area for weight data to smooth the tra�c be-

tween accelerator and LFS. LFS is a storage system designed to accommodate

extreme-scale models with its large capacity while at the same time providing

high enough bandwidth to support DNN inference. Both read and write datap-

ath of LFS is automated by hardware logic based on a DNN-specific lightweight

FTL (32). LFS is further delineated in Section 4.

7

Chapter 4. Leviathan Flash System

The main challenges in architecting NAND flash-based memory system (LFS)

for extreme-scale DNN inference are insu�cient read bandwidth and accel-

eration of read disturb (RD) errors due to the WORM access pattern. This

section describes how Leviathan FMS provides hundreds of GB/s read band-

width without deterioration from RD-induced errors caused by the WORM

pattern.

4.1 Boosting Read Bandwidth

NAND product with over 2.0GT/s (i.e., 2.0Gbps ⇥8 DDR bus) I/O band-

width (14, 25) and controller with automated read path (13) have been in-

troduced to support the high bandwidth in various storage applications. But

this still falls short of providing hundreds of GB/s required by DNN inference

workloads. Therefore, Leviathan augments the high bandwidth NAND device

and read path hardware automation with additional optimizations. Specifically,

Leviathan adopts widely known yet un- or partially used cache-read and multi-

plane operations to elicit the full potential of NANDs.

Cache-read operation. Cache read pipelines data read through channel and

sensing from NAND page to data register (41). Figure 4.1(a) and (b) show page

read without and with cache-read operation, respectively. Through the cache-

read operation, the channel transfer time is hidden by the page sensing time.

Most modern NAND chips employ multiple registers and additional commands

to enable cache read (14, 30, 41).

In spite of the availability of the hardware logic, most commodity SSDs

cannot use cache-read. This is because the SSD firmware or controller must

delay the current read I/O and append the next one unless multiple read I/Os

8

(a) Single-plane read

Single-plane Read CH transfer

Time

P0
P1
P2
P3
CH

P0
P1
P2
P3
CH

Time

P0
P1
P2
P3
CH

. . .

. . .

Time

P0
P1
P2
P3
CH

Time
(b) Single-plane w/ cache read

(c) Multi-plane read

(d) Multi-plane read w/ cache read

P (Plane) CH (Channel)

. . .

. . .

Multi-plane Read

Figure 4.1: A NAND chip read pipeline diagram according to read methods

are pending on the same plane (27). This demand for an extraneous scheduler

increases the read I/O latency (59). Thus, conventional SSDs do not employ

cache-read since they emphasize lowering latency for more common I/Os (e.g.,

small-sized random read with low queue depth (QD)) than large-sized high-QD

sequential reads.

In contrast, Leviathan only issues sequential read requests with high QD

and in large chunks to its LFS (e.g., 2MB command ⇥ 12 QD). It always

requests more than two pending read I/Os to a particular plane at any given

time. Therefore, LFS does not incur additional read latency while issuing cache-

read commands. This operation, coupled with multi-plane read operation based

on plane/channel/way (PCW) striping (54), dramatically increases the e↵ective

bandwidth.

Multi-plane operation. Multi-plane operation is a widely known technique

that partitions a NAND die into multiple planes to extract more parallelism.

The pages are sensed from multiple pages in parallel as depicted in Figure 4.1(c).

This technique is especially attractive because it significantly increases the write

bandwidth in NANDs where a program operation is over tens times slower than

a read operation. Also, it enhances the read/erase/program e�ciency of garbage

collection (GC) operations (50).

Unfortunately, this useful technique is restricted to reads in GC (i.e., non-

user read). There are three reasons for this. (1) The multi-plane read (and

9

program) operation is only allowed for pages that have the same page o↵set

in NAND blocks of the adjacent plane (26). This restriction makes it highly

unlikely that the pages, which can be read by multi-plane operation at a specific

time, are the data a user wants to read. That is, unless the user’s read request

refers to the pages in the order in which they were written (e.g., sequential read

after strict append-only sequential write). Additionally, (2) a multi-plane read

operation is slower than a single-plane read operation (i.e., bandwidth oriented

using large chunk) and (3) most commercial SSDs adopt channel/way/plane

(CWP) striping to maximize channel utilization and minimize latency during

user data reads (19).

Figure 4.2 shows the di↵erence between typical CWP striping and Leviathan’s

plane/channel/way (PCW) scheme that allows multi-plane read operation for

user data. In an SSD with M channels, N ways, and K planes, using CWP

scheme results in a distance of MN between two adjacent planes even in se-

quential writes as in Figure 4.2(a). This adds back pressure to the controller

or firmware because the initial read request to a chip has to wait for MN ⇥
(K�1)�1 subsequent read requests to request all pages in a particular stripe.

In contrast, as illustrated in Figure 4.2(b), sequential writes to a PCW-striped

SSD will have planes with contiguous pages. Therefore, reading from the PCW-

striped SSD will allow multi-plane read also for user data if the data is written

in sequential manner. As shown in Figure 4.1(d), the collaboration of cache-read

and multi-plane operation will boost the e↵ective bandwidth of the Leviathan.

4.2 Preventing RD-induced Performance Degradation

RD errors in DNN inference. Although DNN does provide opportunities

for specializing LFS to increase throughput, it is a double-edged sword. The

intensive reads and their WORM pattern accelerates the RD-induced reliability

problem in the flash-based memory system.

The WORM nature of DNN inference quickly fills the RD threshold. All

NAND blocks in the flash memory experience almost the same degree of read

stress as all weights are read once for a single inference. Therefore, every NAND

block containing model weights exceeds the RD threshold at the same time

10

(a) CWP stripping

CH 0 CH 63

(b) PCW stripping

Way
0

Chip

Logical Page Number

…

P 0

0

. . .

. . .
P (Plane), CH (Channel),

Way
7

…

P 1

512

…

P 2

1024

…

P 3
1536
(MN(K-1))

CH 0 CH 63

Way
0

. . .

. . .

Way
7

Chip

…

P 0

0
…

P 1

1

…
P 2

2

…

P 3
3
(K-1)

Figure 4.2: Logical page mapping with two striping schemes ((a) CWP, (B)

PCW) after sequential write on an SSD with 64 channels (M=64), 8 ways

(N=8), and 4 planes (K=4).

and necessitates read reclaim (RR) operation simultaneously. Such bursty RR

operations firing over a small time window severely impede the user because

RR for blocks that exceeded RD threshold must be given higher priority than

user read requests. In this case, RR operations significantly degrade the device’s

performance, thereby worsening end-to-end quality-of-service (QoS). Note that

this degradation continues until every block is reclaimed. Thus, we propose

a new RR smoothing technique that e↵ectively eliminates the performance

degradation induced by the bursty RR operations.

RR timing. The main di↵erence between the conventional and Leviathan’s

RR procedures is that the former migrates after and the latter migrates before

the read count reaches RD threshold (37). The static, deterministic pattern of

data accesses in DNN inference enables accurate prediction of read counts (i.e.,

RD stress) for all blocks. Exploiting this characteristic, Leviathan issues RR

operations alongside user read requests before read count in any block exceeds

the RD threshold. To put it another way, LFS gives the same priority to RR

requests and inference reads, unlike the RR priority scheduling in conventional

SSDs. The distribution is carefully tuned to prevent any inference performance

degradation and reprogram every NAND blocks only once before reaching the

RD threshold.

11

The RR timing is calculated by dividing the RD threshold associated with

a P/E cycle by pages per block. For example, 768 pages per block and 6M read

counts from 75K P/E cycles require full read reclaim of all blocks for every 7813

inference requests. Note that NAND block allocation policy for RR is based on

an existing proposal (32).

LFS resource reservation for RR. Though RR requests in the above exam-

ple is not frequent, the corresponding bandwidth must be reserved by the SSD

for execution of DNN inference without interruption via e↵ective RD resolution.

Unlike the DNN inference workload that only issues read requests sequentially,

a RR operation, which is a type of GC, reads source pages, erases a destina-

tion block, and programs into the block. This resource consumption calls for

the need to pay careful attention to factors such as NAND topology, channel

bandwidth, FTL scheme, and degree of hardware automation. Specifically, user

read I/O to a NAND chip is blocked for a few milliseconds during the block

erase operation for RR operation; thus a read prefetch bu↵er of appropriate size

is required for a host system (5) or an SSD. Otherwise, erase suspension tech-

nique (31, 60) can be adopted to meet the QoS requirement for DNN inference.

Leviathan reserves about 1% of channel bandwidth for the RR operation as the

use of low latency SLC NAND (15), automated read/write datapath (13, 32),

and bandwidth boost techniques (Section 4.1) place the bottleneck of LFS on

channel. Also, each accelerator reserves 1 GB space in its Tensor Bu↵ers to

prevent QoS degradation caused by block erase operations in RR.

12

Chapter 5. Evaluation

We use both MAESTRO (33) and MQSim (55) for cycle-level modeling DNN

accelerator and SSD, respectively, and PyTorch (43) DNN models. The eval-

uated system has 12 compute cores to process GPT-3 model in 1.3s, which

is 10⇥ of the known time constraint for a BERT model (46). This constraint

is conservative considering that GPT-3 model is about 500⇥ larger than the

BERT model.

We evaluate twelve workloads with Leviathan. The models represent two

types of widely adopted transformer-based models: 1) BERT/GPT-like and 2)

T5-like, as listed in Table 5.2. They are grouped in this way such that the

models in the group have identical architecture. More encoders/decoders are

stacked (Depth) and the dimensions in FC layers are expanded (Width) for

diverse comparison. They are referred as W ⇥D in the rest of this paper.

5.1 Performance of DNN Inference

Baseline system and Leviathan. To perform inference of extreme-scale

models such as GPT-3, both the compute capability and storage capacity

should match their demands. Thus, we configure Leviathan to accommodate

these demands. The baseline accelerator has the same compute capability as

Leviathan but with conventional SSDs. We also compare Leviathan with ac-

celerators equipped with additional HBM DRAM to run those models. The

accelerator and storage configurations are tabulated in Table 5.1 and Table 5.3,

respectively.

Overall inference throughput. Figure 5.1 illustrates the throughput of the

three systems. Leviathan achieves the same throughput as the HBM-based ac-

celerator in all cases, which is 2.39⇥ of the baseline throughput on average. In

1⇥1 case of the BERT/GPT-like model, the presented Leviathan system uti-

13

Table 5.1: Platform configurations for the cost evaluation of Leviathan.

NPU Parameters

Number of cores 12 cores (52.5 TFLOPs per core)

Number of PEs 393,216

Peak throughput 630 TFLOPs

Host I/F conf. PCIe Gen4 ⇥ 256 lane (42)

Memory Parameters

Resembled TPU (28) Leviathan

Bu↵er conf. 128GB HBM
16GB DDR4 DRAM +

2TB NAND flash

Peak bandwidth 2400GB/s 290GB/s

Table 5.2: DNN models evaluated with Leviathan. We use a sequence length of

2048 (tokens) for each model.

Model

Size

BERT/GPT-like T5-like

Act.

(GB)

Weight

(GB)
PFLOP

Act.

(GB)

Weight

(GB)
PFLOP

1⇥1 44 350 2.15 40 305 0.62

1⇥2 88 698 4.42 80 609 1.25

1⇥4 175 1393 8.56 160 1218 2.49

2⇥1 88 1395 8.56 80 1218 2.49

2⇥2 175 2786 17.12 160 2436 4.99

2⇥4 349 5569 34.21 319 4871 9.97

lized 282 GB/s aggregate memory system bandwidth. About 1% extra band-

width of the 282 GB/s is reserved for RR. Since Leviathan’s LFS can provide

290 GB/s bandwidth, the system maintains high throughput without being

limited by the LFS bandwidth.

Cost e�ciency. The di↵erence in memory cost between Leviathan and the

conventional HBM-based accelerator is shown in Figure 5.2. Here, we assume

$20/GB, $4/GB, and $0.81/GB for HBM DRAM, DDR4 DRAM, and NAND

flash, respectively (32). Note that Leviathan assumes 64Gb SLC NAND based

14

Table 5.3: LFS and conventional storage configuration.

Storage Parameters

Baseline SSD Leviathan LFS

NAND

Configurations

512B, 128 channels,

1 chips/channel, 1 die/chip

Channel

Speed Rate

2400MT/s

(MT/s: Mega Transfers per Second (14, 18))

NAND

Structure

32Gb SLC / die: 8 planes / die,

171 blocks / plane, 768 pages / block, 4KB page

NAND

Latency
Read: 3µs, Program: 100µs, Block erase: 5ms

Bu↵er

Configurations

DRAM 512GB:

FTL metadata

SRAM 8MB:

I/O bu↵er, GC Bu↵er

SRAM 16MB:

6MB for FTL metadata,

10MB for I/O bu↵er

Stripe

strategy (54)
Channel/Way/Plane Plane/Channel/Way

FTL

Schemes

Page mapping,

Preemtible GC (34)

Block mapping

Cache-read, Multi-plane

OP ratio 7% N/A

Firmware

Latency

Write:

1.45µs / a page (4KB)
N/A

Contoller

Latency

Read:

1.93µs / an NVMe Cmd

Read:

1.93µs / an NVMe Cmd,

Write:

1.18µs / an NVMe Cmd

on the same semiconductor process as the 128Gb SLC NAND ($0.67/GB) (32).

Therefore, we have added an appropriate NAND peripheral cost (30) to the

64Gb SLC NAND. The cost gap between the two systems widens with increas-

ing model size. The maximum cost di↵erence between the two systems is $109K
for BERT/GPT-like models and $94K for T5-like models.

15

0

0.25

0.5

0.75

1

1x1 1x2 1x4 2x1 2x2 2x4 1x1 1x2 1x4 2x1 2x2 2x4

BERT/GPT-like T5-like

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

c.
)

Baseline Leviathan w\ FMS Accelerator w\ HBM

Figure 5.1: Inference throughput comparison.

0

50

100

150

1 x 1 1 x 2 1 x 4 2 x 1 2 x 2 2 x 4

C
os

t (
x

$1
00

0)

GPT3 Accelerator w/ HBM GPT3 Leviathan w/ FMS
T5 Accelerator w/ HBM T5 Leviathan w/ FMS

Figure 5.2: Memory system cost comparison.

5.2 Bandwidth variability during RR

Figure 5.3 depicts the bandwidth of four SSD configurations. We align the

start time of RR operations at n for all four configurations. Originally, the

start times are di↵erent due to the di↵erent speeds in reaching RD thresh-

old as they provide disparate read speeds for inference. In normal situations,

applying cache-read only maintains 60% of LFS bandwidth. Integration with

multi-plane operation, the bandwidth reaches that of LFS. However, during

16

0

100

200

300

n-10 n-5 n n+5 n+10 n+15 n+20 n+25

Ba
nd

w
id

th
 (G

B/
s)

Baseline SSD Baseline SSD + Cache-read
Baseline SSD + Cache-read, Multi-plane FMS

Time (sec)

Figure 5.3: Bandwidth variations during read reclaim (RR). RR starting time

of each storage configuration (n) is (1) Baseline: 4,180, (2) Cache-read: 2,608,

(3) Cache-read, Multi-plane: 1,615, (4) LFS: 1,615 (sec)

RR, all systems but LFS show severe bandwidth deterioration (maximum of

88%) from bursty RRs after n seconds for a maximum of 16 seconds. This is

the time needed to reprogram all weight tensors. All three systems maintain

comparable bandwidth during RR since multi-plane operation is already being

carried out for RR thus cache-read is the sole factor for increasing the band-

width during this period. In contrast, LFS shows more robust performance,

free from RD-induced bandwidth drop �by distributing RR operations over

time.

17

Chapter 6. Related Work

Extreme-scale DNN model.With the advent of extreme-scale models, much

prior literatures have focused on processing these models, mostly from industry.

Megatron-LM (51), from NVIDIA, proposes an enlarged version of GPT2 (44),

the largest model at the time of its writing. Due to the memory capacity wall,

they were forced to adopt their massive fleet of GPUs in a model parallel man-

ner. Microsoft followed up with Turing-NLG (56), and proposed ZeRO (45)

and subsequently, ZeRO-o✏oad (47). These techniques devised by Microsoft

enabled the data parallel training of the enormous model. Each device held a

contiguous portion of the model and distributed it to other devices when the

portion was next in line to be processed. Within a year, OpenAI introduced

GPT3 (7), a model with phenomenal size, which was soon topped by Google’s

GShard (35). All of the prior work was focused on training in model- arallel

manner but Microsoft. They required the use of expensive HBM to store the

model, leading to a cost-e�cacious system. Behemoth (32) was the first to mit-

igate this with NAND-based flash. However, as it focused on training of DNN

models, it does not mention the unique problem generated in DNN inference

system with NAND-based memory.

Read Disturbance. The problem of RD was given much attention relative

to its counterpart, write-induced disturbance. However, some prior works take

interesting approaches to tackle this issue. Cai’s team (8) introduces read-retry,

where the device reads the read-disturbed cells with the shifted reference volt-

ages to adapt to the changed threshold voltages. Park (41) et al. advances this

technique using pipeline and by adaptive reduction of chip-level read latency.

On the other hand, read-refresh technique is presented in WARM (39), which

our work is based upon. Ha (22) et al. proposes to isolate the read-hot data

from the cold data, such that the blocks with cold data are not a↵ected when

18

reading from hot data. Liu (37) et al. focuses on reducing the number of RD-

induced rewrites by examining the application’s expected read throughput.

With the exception of (37), all prior literature does not leverage the appli-

cation’s characteristics to specialize the NAND flash. In contrast to all prior

works, Leviathan fully takes advantage of the deterministic nature of DNN and

use it to completely hide RD induced latency and throughput issues.

19

Chapter 7. Conclusion

This paper presents Leviathan, a DNN inference platform designed to fully

accommodate extreme-scale models using cost-e�cient NAND flash memory.

Leveraging the static, deterministic access pattern of DNN inference, it suc-

cessfully increases the flash memory bandwidth and averts detrimental cases

arising from simultaneous, bursty read reclaims. The bandwidth is boosted us-

ing cache-read and multi-plane operations, while RD related issue is taken care

of by distributing RR between user read requests. With Leviathan, DNN in-

ference can be run on a much cheaper memory system than the conventional

HBM-based memory system.

20

Bibliography

[1] a100. NVIDIA A100 GPU. https://www.nvidia.com/en-us/data-center/

a100/.

[2] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg Corrado, Andy Davis, Je↵rey Dean, Matthieu

Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. CoRR, 2015.

[3] Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU).

arXiv e-prints, art. arXiv:1803.08375, March 2018.

[4] J. Bae, H. Jang, J. Gong, W. Jin, S. Kim, J. Jang, T. J. Ham, J. Jeong,

and J. W. Lee. Ssdstreamer: Specializing i/o stack for large-scale machine

learning. IEEE Micro, 39(5):73–81, 2019. doi: 10.1109/MM.2019.2930497.

[5] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son, Shine Kim, Hakbeom

Jang, Tae Jun Ham, and Jae W. Lee. Flashneuron: Ssd-enabled large-

batch training of very deep neural networks. In 19th USENIX Conference

on File and Storage Technologies (FAST 21), pages 387–401. USENIX

Association, February 2021. ISBN 978-1-939133-20-5. URL https://www.

usenix.org/conference/fast21/presentation/bae.

[6] A. Brand, K. Wu, S. Pan, and D. Chin. Novel read disturb failure mech-

anism induced by flash cycling. In 31st Annual Proceedings Reliability

Physics 1993, pages 127–132, 1993. doi: 10.1109/RELPHY.1993.283291.

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish

Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen

21

https://www.nvidia.com/en-us/data-center/a100/%20
https://www.nvidia.com/en-us/data-center/a100/%20
https://www.usenix.org/conference/fast21/presentation/bae
https://www.usenix.org/conference/fast21/presentation/bae

Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,

Je↵rey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,

Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-

pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario

Amodei. Language models are few-shot learners. arXiv e-prints, art.

arXiv:2005.14165, May 2020.

[8] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Threshold voltage distri-

bution in mlc nand flash memory: Characterization, analysis, and model-

ing. In 2013 Design, Automation Test in Europe Conference Exhibition

(DATE), pages 1285–1290, 2013. doi: 10.7873/DATE.2013.266.

[9] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu. Read disturb errors in mlc nand

flash memory: Characterization, mitigation, and recovery. In 2015 45th

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, pages 438–449, 2015. doi: 10.1109/DSN.2015.49.

[10] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. A

survey of accelerator architectures for deep neural networks. Engineer-

ing, 6(3):264–274, 2020. ISSN 2095-8099. doi: https://doi.org/10.1016/j.

eng.2020.01.007. URL https://www.sciencedirect.com/science/article/pii/

S2095809919306356.

[11] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial archi-

tecture for energy-e�cient dataflow for convolutional neural networks. In

Proceedings of the 43rd International Symposium on Computer Architec-

ture, page 367–379. IEEE Press, 2016.

[12] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam.

DianNao family: Energy-e�cient hardware accelerators for machine learn-

ing. Commun. ACM, 59(11):105–112, October 2016. ISSN 0001-0782. doi:

10.1145/2996864. URL https://doi.org/10.1145/2996864.

[13] Wooseong Cheong, Chanho Yoon, Seonghoon Woo, Kyuwook Han, Dae-

hyun Kim, Chulseung Lee, Youra Choi, Shine Kim, Dongku Kang, Ge-

unyeong Yu, Jaehong Kim, Jaechun Park, Ki-Whan Song, Ki-Tae Park,

22

https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://doi.org/10.1145/2996864

Sangyeun Cho, Hwaseok Oh, Daniel DG Lee, Jin-Hyeok Choi, and Jae-

heon Jeong. A flash memory controller for 15µs ultra-low-latency SSD

using high-speed 3D NAND flash with 3µs read time. In Proceedings of

the IEEE International Solid-State Circuits Conference, pages 338–340.

IEEE, 2018. doi: 10.1109/ISSCC.2018.8310322.

[14] J. Cho, D. C. Kang, J. Park, S. W. Nam, J. H. Song, B. K. Jung, J. Lyu,

H. Lee, W. T. Kim, H. Jeon, S. Kim, I. M. Kim, J. I. Son, K. Kang,

S. W. Shim, J. Park, E. Lee, K. M. Kang, S. W. Park, J. Lee, S. H. Moon,

P. Kwak, B. Jeong, C. A. Lee, K. Kim, J. Ko, T. H. Kwon, J. Lee, Y. Lee,

C. Kim, M. W. Lee, J. y. Yun, H. Lee, Y. Choi, S. Hong, J. Park, Y. Shin,

H. Kim, H. Kim, C. Yoon, D. S. Byeon, S. Lee, J. Y. Lee, and J. Song.

30.3 a 512gb 3b/cell 7th -generation 3d-nand flash memory with 184mb/s

write throughput and 2.0gb/s interface. In 2021 IEEE International Solid-

State Circuits Conference (ISSCC), volume 64, pages 426–428, 2021. doi:

10.1109/ISSCC42613.2021.9366054.

[15] Client 0ZSSD. Samsung Z-SSD SZ985. https://www.samsung.com/

semiconductor/global.semi.static/Brochure Samsung S-ZZD SZ985 1804.

pdf.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of deep bidirectional transformers for language un-

derstanding. arXiv e-prints, art. arXiv:1810.04805, October 2018.

[17] William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers:

Scaling to Trillion Parameter Models with Simple and E�cient Sparsity.

arXiv e-prints, art. arXiv:2101.03961, January 2021.

[18] Alan Freedman. MT/sec. The Computer Desktop Encyclopedia. https:

//www.computerlanguage.com/results.php?definition=MT/sec.

[19] Congming Gao, Liang Shi, Chun Jason Xue, Cheng Ji, Jun Yang, and

Youtao Zhang. Parallel all the time: Plane level parallelism exploration

for high performance ssds. In 2019 35th Symposium on Mass Storage

23

https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.computerlanguage.com/results.php?definition=MT/sec
https://www.computerlanguage.com/results.php?definition=MT/sec

Systems and Technologies (MSST), pages 172–184, 2019. doi: 10.1109/

MSST.2019.000-5.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[21] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H.

Siegel, and J. K. Wolf. Characterizing flash memory: Anomalies, obser-

vations, and applications. In 2009 42nd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), pages 24–33, 2009. doi:

10.1145/1669112.1669118.

[22] Keonsoo Ha, Jaeyong Jeong, and Jihong Kim. A read-disturb management

technique for high-density nand flash memory. In Proceedings of the 4th

Asia-Pacific Workshop on Systems, APSys ’13, New York, NY, USA, 2013.

Association for Computing Machinery. ISBN 9781450323161. doi: 10.1145/

2500727.2500743. URL https://doi.org/10.1145/2500727.2500743.

[23] Keonsoo Ha, Jaeyong Jeong, and Jihong Kim. An integrated approach for

managing read disturbs in high-density nand flash memory. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 35

(7):1079–1091, 2016. doi: 10.1109/TCAD.2015.2504868.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual

Learning for Image Recognition. arXiv e-prints, art. arXiv:1512.03385,

December 2015.

[25] Tsutomu Higuchi, Takuyo Kodama, Koji Kato, Ryo Fukuda, Naoya

Tokiwa, Mitsuhiro Abe, Teruo Takagiwa, Yuki Shimizu, Junji Musha, Kat-

suaki Sakurai, Jumpei Sato, Tetsuaki Utsumi, Kazuhide Yoneya, Yasuhiro

Suematsu, Toshifumi Hashimoto, Takeshi Hioka, Kosuke Yanagidaira,

Masatsugu Kojima, Junya Matsuno, Kei Shiraishi, Kensuke Yamamoto,

Shintaro Hayashi, Tomoharu Hashiguchi, Kazuko Inuzuka, Akio Suga-

hara, Mitsuaki Honma, Keiji Tsunoda, Kazumasa Yamamoto, Takahiro

Sugimoto, Tomofumi Fujimura, Mizuki Kaneko, Hiroki Date, Osamu

Kobayashi, Takatoshi Minamoto, Ryoichi Tachibana, Itaru Yamaguchi,

24

http://www.deeplearningbook.org
https://doi.org/10.1145/2500727.2500743

Juan Lee, Venky Ramachandra, Srinivas Rajendra, Tianyu Tang, Sid-

dhesh Darne, Jiwang Lee, Jason Li, Toru Miwa, Ryuji Yamashita, Hi-

roshi Sugawara, Naoki Ookuma, Masahiro Kano, Hiroyuki Mizukoshi,

Yuki Kuniyoshi, Mitsuyuki Watanabe, Kei Akiyama, Hirotoshi Mori,

Akira Arimizu, Yoshito Katano, Masakazu Ehama, Hiroshi Maejima, Koji

Hosono, and Masahiro Yoshihara. 30.4 a 1tb 3b/cell 3d-flash memory

in a 170+ word-line-layer technology. In 2021 IEEE International Solid-

State Circuits Conference (ISSCC), volume 64, pages 428–430, 2021. doi:

10.1109/ISSCC42613.2021.9366003.

[26] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping Zhang.

Performance impact and interplay of ssd parallelism through advanced

commands, allocation strategy and data granularity. In Proceedings of

the International Conference on Supercomputing, ICS ’11, page 96–107,

New York, NY, USA, 2011. Association for Computing Machinery. ISBN

9781450301022. doi: 10.1145/1995896.1995912. URL https://doi.org/10.

1145/1995896.1995912.

[27] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: A disk schedul-

ing framework to overcome deceptive idleness in synchronous i/o. In Pro-

ceedings of the Eighteenth ACM Symposium on Operating Systems Princi-

ples, SOSP ’01, page 117–130, New York, NY, USA, 2001. Association for

Computing Machinery. ISBN 1581133898. doi: 10.1145/502034.502046.

URL https://doi.org/10.1145/502034.502046.

[28] Norman P. Jouppi, Cli↵ Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-

den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Cli↵ord Chao, Chris

Clark, Jeremy Coriell, Mike Daley, Matt Dau, Je↵rey Dean, Ben Gelb,

Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert

Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,

Dan Hurt, Julian Ibarz, Aaron Ja↵ey, Alek Jaworski, Alexander Kaplan,

Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve

Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,

Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire

25

https://doi.org/10.1145/1995896.1995912
https://doi.org/10.1145/1995896.1995912
https://doi.org/10.1145/502034.502046

Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray

Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,

Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-

ani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan

Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Ho-

ria Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,

Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis

of a tensor processing unit. SIGARCH Comput. Archit. News, 45(2):

1–12, June 2017. ISSN 0163-5964. doi: 10.1145/3140659.3080246. URL

https://doi.org/10.1145/3140659.3080246.

[29] Bryan S. Kim, Jongmoo Choi, and Sang Lyul Min. Design tradeo↵s for

SSD reliability. In 17th USENIX Conference on File and Storage Tech-

nologies (FAST 19), pages 281–294, Boston, MA, February 2019. USENIX

Association. ISBN 978-1-939133-09-0.

[30] Chulbum Kim, Ji-Ho Cho, Woopyo Jeong, Il-han Park, Hyun-Wook Park,

Doo-Hyun Kim, Daewoon Kang, Sunghoon Lee, Ji-Sang Lee, Wontae

Kim, Jiyoon Park, Yang-lo Ahn, Jiyoung Lee, Jong-hoon Lee, Seungbum

Kim, Hyun-Jun Yoon, Jaedoeg Yu, Nayoung Choi, Yelim Kwon, Nahyun

Kim, Hwajun Jang, Jonghoon Park, Seunghwan Song, Yongha Park, Jin-

bae Bang, Sangki Hong, Byunghoon Jeong, Hyun-Jin Kim, Chunan Lee,

Young-Sun Min, Inryul Lee, In-Mo Kim, Sung-Hoon Kim, Dongkyu Yoon,

Ki-Sung Kim, Youngdon Choi, Moosung Kim, Hyunggon Kim, Pansuk

Kwak, Jeong-Don Ihm, Dae-Seok Byeon, Jin-yub Lee, Ki-Tae Park, and

Kye-hyun Kyung. 11.4 a 512gb 3b/cell 64-stacked wl 3d v-nand flash mem-

ory. In 2017 IEEE International Solid-State Circuits Conference (ISSCC),

pages 202–203, 2017. doi: 10.1109/ISSCC.2017.7870331.

[31] Shine Kim, Jonghyun Bae, Hakbeom Jang, Wenjing Jin, Jeonghun Gong,

Seungyeon Lee, Tae Jun Ham, and Jae W. Lee. Practical erase suspension

for modern low-latency ssds. In 2019 USENIX Annual Technical Confer-

ence (USENIX ATC 19), pages 813–820, Renton, WA, July 2019. USENIX

Association. ISBN 978-1-939133-03-8.

26

https://doi.org/10.1145/3140659.3080246

[32] Shine Kim, Yunho Jin, Gina Sohn, Jonghyun Bae, Tae Jun Ham, and

Jae W. Lee. Behemoth: A flash-centric training accelerator for extreme-

scale dnns. In 19th USENIX Conference on File and Storage Tech-

nologies (FAST 21), pages 371–385. USENIX Association, February

2021. ISBN 978-1-939133-20-5. URL https://www.usenix.org/conference/

fast21/presentation/kim.

[33] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman

Parashar, Vivek Sarkar, and Tushar Krishna. Understanding reuse, per-

formance, and hardware cost of DNN dataflow: A data-centric approach.

In Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, page 754–768. ACM, 2019. ISBN 9781450369381.

doi: 10.1145/3352460.3358252. URL https://doi.org/10.1145/3352460.

3358252.

[34] Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, and Jong-

man Kim. Preemptible I/O scheduling of garbage collection for solid

state drives. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 32(2):IEEE, 247–260, 2013. ISSN 0278-0070. doi:

10.1109/TCAD.2012.2227479.

[35] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan

Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen.

GShard: Scaling Giant Models with Conditional Computation and Auto-

matic Sharding. arXiv e-prints, art. arXiv:2006.16668, June 2020.

[36] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Ab-

delrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettle-

moyer. BART: Denoising sequence-to-sequence pre-training for natural

language generation, translation, and comprehension. arXiv e-prints, art.

arXiv:1910.13461, October 2019.

[37] Chun-Yi Liu, Yunju Lee, Myoungsoo Jung, Mahmut Taylan Kandemir,

and Wonil Choi. Prolonging 3d nand ssd lifetime via read latency relax-

ation. In Proceedings of the 26th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASP-

27

https://www.usenix.org/conference/fast21/presentation/kim
https://www.usenix.org/conference/fast21/presentation/kim
https://doi.org/10.1145/3352460.3358252
https://doi.org/10.1145/3352460.3358252

LOS 2021, page 730–742, New York, NY, USA, 2021. Association for Com-

puting Machinery. ISBN 9781450383172. doi: 10.1145/3445814.3446733.

URL https://doi.org/10.1145/3445814.3446733.

[38] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi

Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.

RoBERTa: A robustly optimized BERT pretraining approach. arXiv e-

prints, art. arXiv:1907.11692, July 2019.

[39] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu. Warm: Improving nand

flash memory lifetime with write-hotness aware retention management. In

2015 31st Symposium on Mass Storage Systems and Technologies (MSST),

pages 1–14, 2015. doi: 10.1109/MSST.2015.7208284.

[40] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu

Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit

Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, An-

drey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krishnamoor-

thi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen,

Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy.

Deep Learning Recommendation Model for Personalization and Recom-

mendation Systems. arXiv e-prints, art. arXiv:1906.00091, May 2019.

[41] Jisung Park, Myungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim,

and Onur Mutlu. Reducing solid-state drive read latency by optimizing

read-retry. In Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems,

ASPLOS 2021, page 702–716, New York, NY, USA, 2021. Association

for Computing Machinery. ISBN 9781450383172. doi: 10.1145/3445814.

3446719. URL https://doi.org/10.1145/3445814.3446719.

[42] pcie. PCI Express 4. https://pcisig.com.

[43] pytorch. PyTorch. https://pytorch.org.

[44] Alec Radford, Je↵rey Wu, Rewon Child, David Luan, Dario Amodei, and

28

https://doi.org/10.1145/3445814.3446733
https://doi.org/10.1145/3445814.3446719
https://pcisig.com
https://pytorch.org

Ilya Sutskever. Language models are unsupervised multitask learners. Ope-

nAI Blog, 1(8):9, 2019.

[45] Samyam Rajbhandari, Je↵ Rasley, Olatunji Ruwase, and Yuxiong He.

ZeRO: Memory Optimizations Toward Training Trillion Parameter Mod-

els. arXiv e-prints, art. arXiv:1910.02054, October 2019.

[46] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C. Wu,

B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka, C. Cole-

man, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gardner,

I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee,

J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Osborne,

G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao, F. Sun, H. Tang,

M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu, G. Yuan, A. Zhong,

P. Zhang, and Y. Zhou. Mlperf inference benchmark. In 2020 ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA),

pages 446–459, 2020. doi: 10.1109/ISCA45697.2020.00045.

[47] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji

Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. ZeRO-

O✏oad: Democratizing Billion-Scale Model Training. arXiv e-prints, art.

arXiv:2101.06840, January 2021.

[48] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and

Stephen W. Keckler. vDNN: Virtualized deep neural networks for scalable,

memory-e�cient neural network design. In Proceedings of the 49th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 18:1–

18:13. IEEE, 2016.

[49] Samsung. Samsung SSD 980 PRO. https://www.samsung.com/

semiconductor/minisite/ssd/product/consumer/980pro/, 2020.

[50] Narges Shahidi, Mahmut T. Kandemir, Mohammad Arjomand, Chita R.

Das, Myoungsoo Jung, and Anand Sivasubramaniam. Exploring the poten-

tials of parallel garbage collection in ssds for enterprise storage systems. In

SC ’16: Proceedings of the International Conference for High Performance

29

https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro/

Computing, Networking, Storage and Analysis, pages 561–572, 2016. doi:

10.1109/SC.2016.47.

[51] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,

Jared Casper, and Bryan Catanzaro. Megatron-LM: Training Multi-Billion

Parameter Language Models Using Model Parallelism. arXiv e-prints, art.

arXiv:1909.08053, September 2019.

[52] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional

Networks for Large-Scale Image Recognition. arXiv e-prints, art.

arXiv:1409.1556, September 2014.

[53] K. Takeuchi, S. Satoh, T. Tanaka, K. Imamiya, and K. Sakui. A nega-

tive vth cell architecture for highly scalable, excellently noise immune and

highly reliable nand flash memories. In 1998 Symposium on VLSI Cir-

cuits. Digest of Technical Papers (Cat. No.98CH36215), pages 234–235,

1998. doi: 10.1109/VLSIC.1998.688097.

[54] Arash Tavakkol, Pooyan Mehrvarzy, Mohammad Arjomand, and Hamid

Sarbazi-Azad. Performance evaluation of dynamic page allocation strate-

gies in ssds. ACM Trans. Model. Perform. Eval. Comput. Syst., 1(2),

June 2016. ISSN 2376-3639. doi: 10.1145/2829974. URL https://doi.org/

10.1145/2829974.

[55] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata

Ghose, and Onur Mutlu. MQSim: A framework for enabling realis-

tic studies of modern multi-queue SSD devices. In Proceedings of the

16th USENIX Conference on File and Storage Technologies, pages 49–

66. USENIX Association, 2018. ISBN 978-1-931971-42-3. URL https:

//www.usenix.org/conference/fast18/presentation/tavakkol.

[56] turing-NLG. turing-NLG Microsoft. https:

//www.microsoft.com/en-us/research/blog/

turing-nlg-a-17-billion-parameter-language-model-by-microsoft/.

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

30

https://doi.org/10.1145/2829974
https://doi.org/10.1145/2829974
https://www.usenix.org/conference/fast18/presentation/tavakkol
https://www.usenix.org/conference/fast18/presentation/tavakkol
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

is all you need. In Proceedings of the 30th International Conference on

Neural Information Processing Systems, NIPS, 2017.

[58] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon

Song, Zenglin Xu, and Tim Kraska. SuperNeurons: Dynamic GPU mem-

ory management for training deep neural networks. In Proceedings of the

23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 41–53. ACM, 2018. ISBN 978-1-4503-4982-6. doi:

10.1145/3178487.3178491.

[59] Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. D2fq: Device-

direct fair queueing for nvme ssds. In 19th USENIX Conference on File and

Storage Technologies (FAST 21), pages 403–415. USENIX Association,

February 2021. ISBN 978-1-939133-20-5.

[60] Guanying Wu and Xubin He. Reducing SSD read latency via NAND

flash program and erase suspension. In Proceedings of the 10th USENIX

Conference on File and Storage Technologies, FAST’12, pages 117–123.

USENIX Association, 2012.

[61] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.

Aggregated Residual Transformations for Deep Neural Networks. arXiv

e-prints, art. arXiv:1611.05431, November 2016.

31

m8�]

xı‡Ω› ®x‰X l0� çXå ù�h– 0| t– ¡QXî p�\ ©…

t îl¸¥ƒ‰. �‹\, l�–⌧ \¸– ⌧\\ Switch Transformerî 6.4 TB

X l0| �¿‡ à‰. X¿Ã, ¸òX GPU 9@ DNN �ç0– —¨⇠¥ àî

HBM DRAM 0⇠ T®¨ ‹§\@ tÏ\ ��‹® DNN ®x‰D �•X0

–î ©…t ëD –TÏ í@ �ÌÌt ©Ñà \©⇠¿ JD Ä�iX‰. t

¨‰– 0⇠XÏ, ¯ |8–⌧î ®(�x �òl 0⇠ T®¨ ‹§\D —¨\

DNN î` �ç0x Leviathan D ⌧H\‰. DNN î`X π1D \©XÏ 0t

X�òl0⇠‹§\X�ÌÌD©Ñàù�‹§p}0)t–Xt⌧›Xî

1• �X| �)\‰. Leviathan X 1• Ñ�D µt Ÿ| ∞ •%– 0t

SSD| •)\ DNN �ç0– Dt 2.39⇥ ò¨(D Ï1X‡ HBM 0⇠ DNN

�ç0– Dt 19.47⇥ �© ®(1D �¿î ⇣D Ux\‰.

¸î¥: xı‡Ω›, �òl T®¨, }0)t

Yà: 2019-22004

32

	Chapter 1 Introduction
	Chapter 2 Background and Motivation
	2.1 Extreme-scale DNN Inference
	2.2 Reading from NAND-based memory

	Chapter 3 Leviathan Overview
	Chapter 4 Leviathan Flash System
	4.1 Boosting Read Bandwidth
	4.2 Preventing RD-induced Performance Degradation

	Chapter 5 Evaluation
	5.1 Performance of DNN Inference
	5.2 Bandwidth variability during RR

	Chapter 6 Related Work
	Chapter 7 Conclusion
	Bibliography
	국문초록

<startpage>6
Chapter 1 Introduction 1
Chapter 2 Background and Motivation 3
 2.1 Extreme-scale DNN Inference 3
 2.2 Reading from NAND-based memory 3
Chapter 3 Leviathan Overview 6
Chapter 4 Leviathan Flash System 8
 4.1 Boosting Read Bandwidth 8
 4.2 Preventing RD-induced Performance Degradation 10
Chapter 5 Evaluation 13
 5.1 Performance of DNN Inference 13
 5.2 Bandwidth variability during RR 16
Chapter 6 Related Work 18
Chapter 7 Conclusion 20
Bibliography 21
국문초록 32
</body>

