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Abstract

The size of deep neural network (DNN) models has been exploding rapidly,

demanding a colossal amount of memory capacity. For example, Google has

recently scaled its Switch Transformer to have a parameter size of up to 6.4

TB. However, today’s HBM DRAM-based memory system for GPUs and DNN

accelerators is suboptimal for these extreme-scale DNNs as it fails to provide

enough capacity while its massive bandwidth is poorly utilized. Thus, we pro-

pose Leviathan, a DNN inference accelerator, which integrates a cost-e↵ective

flash-based memory system, instead. We carefully architect the flash-based

memory system to provide enough memory bandwidth while preventing per-

formance drop caused by read disturbance errors. Our evaluation of Leviathan

demonstrates a 2.39⇥ throughput gain compared to the iso-FLOPS DNN ac-

celerator with conventional SSDs and up to 19.47⇥ higher cost-e�ciency than

the HBM-based DNN accelerator.
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Chapter 1. Introduction

Deep neural networks (DNNs) have become more than just cutting-edge tech-

nology. They have now permeated diverse domains such as natural language

processing (NLP) (16, 36, 38, 44), computer vision (24, 52, 61), and recom-

mendation systems (40). One of the most recent trends in DNNs is the increase

in their model sizes. In particular, Transformer-based models (57) have been

explosively expanding their sizes. For example, BERT (16) has hundreds of

millions of parameters, translating to 1.36 GB memory space requirements.

Similarly, GPT-3 (7) requires 350 GB memory space, and the most recent

Switch Transformer (17) requires 6.4 TB memory space. This scaling of model

size poses a significant challenge in the existing DNN inference systems having

a relatively small memory capacity of tens of GBs.

One straightforward way to secure more capacity is to increase the number

of sockets (i.e., scaling out). For example, to house a GPT-3 model requiring

350 GB memory capacity, one needs at least five NVIDIA’s A100 GPUs (1),

each having 80 GB memory to secure 400 GB memory space. However, such

a use of multiple devices incurs a high hardware cost. This is because HBM-

based memory in GPUs is costly for their high memory bandwidth; however,

this high memory bandwidth is underutilized for those extreme-scale DNNs as

their bandwidth requirements are often much smaller due to a higher degree of

data reuse (32).

NAND-based flash memory is an attractive alternative to the HBM-based

memory system for such large-scale DNN models as it provides a large memory

capacity at a low cost (4). However, several challenges need to be addressed.

First, a flash device exhibits far lower bandwidth than HBM DRAM and what

is necessary for DNN inference. For example, it takes 50 seconds to read all

weights in GPT-3 from a commercial SSD providing 7 GB/s (49), which is too
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slow. Second, as DNN inference necessitates repeated reads to the devices, a

chronic problem in NAND flash known as read-disturbance (RD) (6, 9, 21, 37,

53) is exacerbated and causes severe deterioration in their performance. RD-

induced errors are typically addressed with read reclaim (RR) (9, 23, 29). RR

in the prior work is designed for a generic case of non-uniformly distributed

reads across blocks. However, in a DNN inference system, memory reads are

distributed uniformly across blocks to reach the threshold of RD-induced errors

and call RRs simultaneously. These bursty RRs cause a significant drop in flash

throughput to increase performance variability.

To address these challenges, we present Leviathan, a NAND flash-based

DNN inference accelerator specialized for extreme-scale DNNs. To boost the

bandwidth of the storage system, we conduct vertical optimization from the

host to the storage system by leveraging the domain-specific characteristics of

DNN inference. Specifically, Leviathan exploits the read-intensive nature and

static data-access pattern to facilitate flash optimizations such as cache-read

and multi-plane operations for user I/O. Leviathan also resolves performance

degradation caused by RD. Identifying that bursty RR operations are the cause,

Leviathan e↵ectively distributes them over time in the course of multiple DNN

inference requests. Thus, it smooths out the peak bandwidth demanded from

RR operations and minimizes interference with user I/Os for computation.
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Chapter 2. Background and Motivation

2.1 Extreme-scale DNN Inference

To inference a DNN model is to exploit a trained model to carry out certain

tasks it was trained for. It does so by multiplying learned weights and input

data which is being propagated through the model in the form of activations.

One interesting aspect of this process is that the dataflow strictly adheres to a

predefined path. Therefore, it is easy to sequentialize data accesses. Also, the

task features a WORM (write-once-read-many) access pattern. It reads many

times from weight data that is written once. This is especially helpful in flash

memories where a typical read is over 10⇥ faster than write. Leviathan exploits

these properties to boost its flash bandwidth.

2.2 Reading from NAND-based memory

GPT-3 model introduced in 2020 contains 175 billion parameters, whereas

BERT model introduced in 2018 contains merely 110 million parameters. Just

within two years gap, the size of these Transformer-based models has scaled by

more than 1000⇥. To account for the enormous memory capacity demand from

the extreme-scale models, recent literature has been shifting the direction to

heterogeneous memory (5, 32, 48, 58). Specifically, solutions using NAND-based

SSDs (5, 32) have been announced. With gigantic memory capacity, these solu-

tions adequately addressed the memory capacity wall problem induced by the

extreme-scale models. However, the NAND-based storage also induces a few

problems of its own when being exploited to accommodate DNN models for

inference. In this section, we first provide some necessary background on read-

ing from NAND flash memory. Next, we discuss read disturb, a common error

which is more susceptible in read-intensive workloads such as DNN inference.
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Figure 2.1: Reading from NAND array and read disturbance during the process

Read path. A typical NAND array in flash memory is laid out as a grid, as in

Figure 2.1(a) referred to as a block. To read from this block, a read reference

voltage Vref is applied to the target wordline (WL) that contains the page to

be read. The cells that are programmed with threshold voltages (Vth) lower

than Vref will be turned o↵ while others will be turned on. Sense amplifiers

at the bottom of the array will sense whether or not the cell placed on their

bitline (BL) is turned on and send the message to the memory controller.

This is the case of single-level cell (SLC) where each cell can represent only

one bit, namely two states. This is a simplification compared to its counterparts

such as multi-level (MLC) or triple-level (TLC) cells. These cells must apply

multiple di↵erent voltages to read a page in a block. Taking MLC which can

represent two bits, or four states, as an example, there are 3 Vth’s that sepa-

rate the four states in equal portions. First Vref that is equal to the middle Vth

is applied. The least significant bit (LSB) pages are determined in this step.

Afterward, other two Vth’s are applied sequentially to determine the most sig-

nificant bit (MSB) pages. With Vref applied three times, reading from MLCs

induces at least 3⇥ latency and 7⇥ for TLCs.

As mentioned earlier, the cell to be read from is connected to the sense

amplifier via a BL. This BL contains cells in other WLs. Thus, to read from

4



a cell, all other cells in the same BL must be turned on to allow current flow

into the sense amplifier. To turn the other cells, pass-through voltage (Vpass) is

applied to all other cells as in Figure 2.1. Vpass is set as the maximum possible

Vth to ensure that all cells receiving Vpass are turned on.

Read Disturbance (RD). Read disturb is an inherent problem in SSDs (6,

9, 21, 37, 53). Reading a page from a block necessitates applying Vpass to all

the other WLs. Applying such a high voltage to a cell will degrade its dioxide

which in turn shifts the threshold voltage due to charge loss. Figure 2.1(b)

shows the original distribution of cells right after being programmed. Cells

whose threshold voltage is lower than Va are sensed as in erased (ER) state

with a bit value of 1 and the others are sensed as P1 state with bit value of 0.

With the shift of Vth of cells due to repeated appliance of Vpass, the distribution

will be expanded as in Figure 2.1(c). When the reference voltage of Va is applied

to the cells, cells in the dashed region will be read incorrectly. Namely, cells

originally in P1 state will be read as in ER state, and cells originally in ER

state will be read as in P1 state. Thus read disturb errors have been generated.
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Figure 3.1: Overview of Leviathan

Chapter 3. Leviathan Overview

Overview. Leviathan is a specialized DNN inference platform designed to

accommodate extreme-scale models. It employs a low-cost storage medium that

satisfies the bandwidth demand of the workloads. As depicted in Figure 3.1,

Leviathan has multiple accelerators with DDR DRAM in place of HBM. Each

accelerator is connected to Leviathan Flash System (LFS) via 64 lanes of Gen4

PCIe (42).

DNN inference in Leviathan. Initially, a host analyzes the requested DNN

model (2, 43) to confirm that Leviathan’s LFS can provide the bandwidth de-

manded by the model inference. If so, it writes the trained model weights to

Leviathan’s LFS. Afterward, the host generates computation and DMA com-

mand sequences for each accelerator and LFS to execute the model. It then

passes the commands to Leviathan’s LFS, and the sequences guide operations

in the system. This sequence is stored in a separate stream (32) of LFS from

storing weight data.

The commands are first distributed to the accelerators they are assigned to.

Each accelerator is assigned a part of the model so that multiple accelerators
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can process a single model in a model-parallel manner. For example, when three

accelerators are attached to a single LFS, a fully connected layer in the form

of 3M ⇥ N matrix is partitioned into three M ⇥ N matrices and distributed

to each accelerator. The result is accumulated in the last accelerator, which is

distributed to the Tensor Bu↵ers of the others for the computation of the next

layer.

The inside of an accelerator is depicted in Figure 3.1. Control Logic first

sequences the computation and DMA commands it was assigned. Computation

commands are issued to components in Compute Core after their dependen-

cies are met. Leviathan resembles the architecture of popular DNN accelera-

tors (10, 11, 12, 28) designed solely for multiply-accumulate (MAC) operations.

This MAC array is a massive grid of processing elements, each carrying out one

MAC operation every cycle. At every cycle, a part of activation is pumped into

the MAC array from SRAM bu↵er and multiplied to the stationed weights.

The generated result is then passed onto activation unit (ACT) if the layer in

computation contains an additional activation layer (3, 20) to apply the corre-

sponding activation function. The final product is saved in SRAM to maintain a

copy of the result and distributed to other accelerators through Tensor Bu↵ers.

DMA commands are issued to LFS controller, which corresponds to the

conventional SSD controller, and DRAM controller (DRAMc) to load weights

from LFS to Tensor Bu↵ers, then to SRAM in each accelerator respectively.

The weights are finally stationed in the MAC arrays. Tensor Bu↵er is a DRAM

bu↵er that acts as a staging area for weight data to smooth the tra�c be-

tween accelerator and LFS. LFS is a storage system designed to accommodate

extreme-scale models with its large capacity while at the same time providing

high enough bandwidth to support DNN inference. Both read and write datap-

ath of LFS is automated by hardware logic based on a DNN-specific lightweight

FTL (32). LFS is further delineated in Section 4.
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Chapter 4. Leviathan Flash System

The main challenges in architecting NAND flash-based memory system (LFS)

for extreme-scale DNN inference are insu�cient read bandwidth and accel-

eration of read disturb (RD) errors due to the WORM access pattern. This

section describes how Leviathan FMS provides hundreds of GB/s read band-

width without deterioration from RD-induced errors caused by the WORM

pattern.

4.1 Boosting Read Bandwidth

NAND product with over 2.0GT/s (i.e., 2.0Gbps ⇥8 DDR bus) I/O band-

width (14, 25) and controller with automated read path (13) have been in-

troduced to support the high bandwidth in various storage applications. But

this still falls short of providing hundreds of GB/s required by DNN inference

workloads. Therefore, Leviathan augments the high bandwidth NAND device

and read path hardware automation with additional optimizations. Specifically,

Leviathan adopts widely known yet un- or partially used cache-read and multi-

plane operations to elicit the full potential of NANDs.

Cache-read operation. Cache read pipelines data read through channel and

sensing from NAND page to data register (41). Figure 4.1(a) and (b) show page

read without and with cache-read operation, respectively. Through the cache-

read operation, the channel transfer time is hidden by the page sensing time.

Most modern NAND chips employ multiple registers and additional commands

to enable cache read (14, 30, 41).

In spite of the availability of the hardware logic, most commodity SSDs

cannot use cache-read. This is because the SSD firmware or controller must

delay the current read I/O and append the next one unless multiple read I/Os
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Figure 4.1: A NAND chip read pipeline diagram according to read methods

are pending on the same plane (27). This demand for an extraneous scheduler

increases the read I/O latency (59). Thus, conventional SSDs do not employ

cache-read since they emphasize lowering latency for more common I/Os (e.g.,

small-sized random read with low queue depth (QD)) than large-sized high-QD

sequential reads.

In contrast, Leviathan only issues sequential read requests with high QD

and in large chunks to its LFS (e.g., 2MB command ⇥ 12 QD). It always

requests more than two pending read I/Os to a particular plane at any given

time. Therefore, LFS does not incur additional read latency while issuing cache-

read commands. This operation, coupled with multi-plane read operation based

on plane/channel/way (PCW) striping (54), dramatically increases the e↵ective

bandwidth.

Multi-plane operation. Multi-plane operation is a widely known technique

that partitions a NAND die into multiple planes to extract more parallelism.

The pages are sensed from multiple pages in parallel as depicted in Figure 4.1(c).

This technique is especially attractive because it significantly increases the write

bandwidth in NANDs where a program operation is over tens times slower than

a read operation. Also, it enhances the read/erase/program e�ciency of garbage

collection (GC) operations (50).

Unfortunately, this useful technique is restricted to reads in GC (i.e., non-

user read). There are three reasons for this. (1) The multi-plane read (and
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program) operation is only allowed for pages that have the same page o↵set

in NAND blocks of the adjacent plane (26). This restriction makes it highly

unlikely that the pages, which can be read by multi-plane operation at a specific

time, are the data a user wants to read. That is, unless the user’s read request

refers to the pages in the order in which they were written (e.g., sequential read

after strict append-only sequential write). Additionally, (2) a multi-plane read

operation is slower than a single-plane read operation (i.e., bandwidth oriented

using large chunk) and (3) most commercial SSDs adopt channel/way/plane

(CWP) striping to maximize channel utilization and minimize latency during

user data reads (19).

Figure 4.2 shows the di↵erence between typical CWP striping and Leviathan’s

plane/channel/way (PCW) scheme that allows multi-plane read operation for

user data. In an SSD with M channels, N ways, and K planes, using CWP

scheme results in a distance of MN between two adjacent planes even in se-

quential writes as in Figure 4.2(a). This adds back pressure to the controller

or firmware because the initial read request to a chip has to wait for MN ⇥
(K�1)�1 subsequent read requests to request all pages in a particular stripe.

In contrast, as illustrated in Figure 4.2(b), sequential writes to a PCW-striped

SSD will have planes with contiguous pages. Therefore, reading from the PCW-

striped SSD will allow multi-plane read also for user data if the data is written

in sequential manner. As shown in Figure 4.1(d), the collaboration of cache-read

and multi-plane operation will boost the e↵ective bandwidth of the Leviathan.

4.2 Preventing RD-induced Performance Degradation

RD errors in DNN inference. Although DNN does provide opportunities

for specializing LFS to increase throughput, it is a double-edged sword. The

intensive reads and their WORM pattern accelerates the RD-induced reliability

problem in the flash-based memory system.

The WORM nature of DNN inference quickly fills the RD threshold. All

NAND blocks in the flash memory experience almost the same degree of read

stress as all weights are read once for a single inference. Therefore, every NAND

block containing model weights exceeds the RD threshold at the same time

10
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Figure 4.2: Logical page mapping with two striping schemes ((a) CWP, (B)

PCW) after sequential write on an SSD with 64 channels (M=64), 8 ways

(N=8), and 4 planes (K=4).

and necessitates read reclaim (RR) operation simultaneously. Such bursty RR

operations firing over a small time window severely impede the user because

RR for blocks that exceeded RD threshold must be given higher priority than

user read requests. In this case, RR operations significantly degrade the device’s

performance, thereby worsening end-to-end quality-of-service (QoS). Note that

this degradation continues until every block is reclaimed. Thus, we propose

a new RR smoothing technique that e↵ectively eliminates the performance

degradation induced by the bursty RR operations.

RR timing. The main di↵erence between the conventional and Leviathan’s

RR procedures is that the former migrates after and the latter migrates before

the read count reaches RD threshold (37). The static, deterministic pattern of

data accesses in DNN inference enables accurate prediction of read counts (i.e.,

RD stress) for all blocks. Exploiting this characteristic, Leviathan issues RR

operations alongside user read requests before read count in any block exceeds

the RD threshold. To put it another way, LFS gives the same priority to RR

requests and inference reads, unlike the RR priority scheduling in conventional

SSDs. The distribution is carefully tuned to prevent any inference performance

degradation and reprogram every NAND blocks only once before reaching the

RD threshold.
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The RR timing is calculated by dividing the RD threshold associated with

a P/E cycle by pages per block. For example, 768 pages per block and 6M read

counts from 75K P/E cycles require full read reclaim of all blocks for every 7813

inference requests. Note that NAND block allocation policy for RR is based on

an existing proposal (32).

LFS resource reservation for RR. Though RR requests in the above exam-

ple is not frequent, the corresponding bandwidth must be reserved by the SSD

for execution of DNN inference without interruption via e↵ective RD resolution.

Unlike the DNN inference workload that only issues read requests sequentially,

a RR operation, which is a type of GC, reads source pages, erases a destina-

tion block, and programs into the block. This resource consumption calls for

the need to pay careful attention to factors such as NAND topology, channel

bandwidth, FTL scheme, and degree of hardware automation. Specifically, user

read I/O to a NAND chip is blocked for a few milliseconds during the block

erase operation for RR operation; thus a read prefetch bu↵er of appropriate size

is required for a host system (5) or an SSD. Otherwise, erase suspension tech-

nique (31, 60) can be adopted to meet the QoS requirement for DNN inference.

Leviathan reserves about 1% of channel bandwidth for the RR operation as the

use of low latency SLC NAND (15), automated read/write datapath (13, 32),

and bandwidth boost techniques (Section 4.1) place the bottleneck of LFS on

channel. Also, each accelerator reserves 1 GB space in its Tensor Bu↵ers to

prevent QoS degradation caused by block erase operations in RR.
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Chapter 5. Evaluation

We use both MAESTRO (33) and MQSim (55) for cycle-level modeling DNN

accelerator and SSD, respectively, and PyTorch (43) DNN models. The eval-

uated system has 12 compute cores to process GPT-3 model in 1.3s, which

is 10⇥ of the known time constraint for a BERT model (46). This constraint

is conservative considering that GPT-3 model is about 500⇥ larger than the

BERT model.

We evaluate twelve workloads with Leviathan. The models represent two

types of widely adopted transformer-based models: 1) BERT/GPT-like and 2)

T5-like, as listed in Table 5.2. They are grouped in this way such that the

models in the group have identical architecture. More encoders/decoders are

stacked (Depth) and the dimensions in FC layers are expanded (Width) for

diverse comparison. They are referred as W ⇥D in the rest of this paper.

5.1 Performance of DNN Inference

Baseline system and Leviathan. To perform inference of extreme-scale

models such as GPT-3, both the compute capability and storage capacity

should match their demands. Thus, we configure Leviathan to accommodate

these demands. The baseline accelerator has the same compute capability as

Leviathan but with conventional SSDs. We also compare Leviathan with ac-

celerators equipped with additional HBM DRAM to run those models. The

accelerator and storage configurations are tabulated in Table 5.1 and Table 5.3,

respectively.

Overall inference throughput. Figure 5.1 illustrates the throughput of the

three systems. Leviathan achieves the same throughput as the HBM-based ac-

celerator in all cases, which is 2.39⇥ of the baseline throughput on average. In

1⇥1 case of the BERT/GPT-like model, the presented Leviathan system uti-

13



Table 5.1: Platform configurations for the cost evaluation of Leviathan.

NPU Parameters

Number of cores 12 cores (52.5 TFLOPs per core)

Number of PEs 393,216

Peak throughput 630 TFLOPs

Host I/F conf. PCIe Gen4 ⇥ 256 lane (42)

Memory Parameters

Resembled TPU (28) Leviathan

Bu↵er conf. 128GB HBM
16GB DDR4 DRAM +

2TB NAND flash

Peak bandwidth 2400GB/s 290GB/s

Table 5.2: DNN models evaluated with Leviathan. We use a sequence length of

2048 (tokens) for each model.

Model

Size

BERT/GPT-like T5-like

Act.

(GB)

Weight

(GB)
PFLOP

Act.

(GB)

Weight

(GB)
PFLOP

1⇥1 44 350 2.15 40 305 0.62

1⇥2 88 698 4.42 80 609 1.25

1⇥4 175 1393 8.56 160 1218 2.49

2⇥1 88 1395 8.56 80 1218 2.49

2⇥2 175 2786 17.12 160 2436 4.99

2⇥4 349 5569 34.21 319 4871 9.97

lized 282 GB/s aggregate memory system bandwidth. About 1% extra band-

width of the 282 GB/s is reserved for RR. Since Leviathan’s LFS can provide

290 GB/s bandwidth, the system maintains high throughput without being

limited by the LFS bandwidth.

Cost e�ciency. The di↵erence in memory cost between Leviathan and the

conventional HBM-based accelerator is shown in Figure 5.2. Here, we assume

$20/GB, $4/GB, and $0.81/GB for HBM DRAM, DDR4 DRAM, and NAND

flash, respectively (32). Note that Leviathan assumes 64Gb SLC NAND based

14



Table 5.3: LFS and conventional storage configuration.

Storage Parameters

Baseline SSD Leviathan LFS

NAND

Configurations

512B, 128 channels,

1 chips/channel, 1 die/chip

Channel

Speed Rate

2400MT/s

(MT/s: Mega Transfers per Second (14, 18))

NAND

Structure

32Gb SLC / die: 8 planes / die,

171 blocks / plane, 768 pages / block, 4KB page

NAND

Latency
Read: 3µs, Program: 100µs, Block erase: 5ms

Bu↵er

Configurations

DRAM 512GB:

FTL metadata

SRAM 8MB:

I/O bu↵er, GC Bu↵er

SRAM 16MB:

6MB for FTL metadata,

10MB for I/O bu↵er

Stripe

strategy (54)
Channel/Way/Plane Plane/Channel/Way

FTL

Schemes

Page mapping,

Preemtible GC (34)

Block mapping

Cache-read, Multi-plane

OP ratio 7% N/A

Firmware

Latency

Write:

1.45µs / a page (4KB)
N/A

Contoller

Latency

Read:

1.93µs / an NVMe Cmd

Read:

1.93µs / an NVMe Cmd,

Write:

1.18µs / an NVMe Cmd

on the same semiconductor process as the 128Gb SLC NAND ($0.67/GB) (32).

Therefore, we have added an appropriate NAND peripheral cost (30) to the

64Gb SLC NAND. The cost gap between the two systems widens with increas-

ing model size. The maximum cost di↵erence between the two systems is $109K
for BERT/GPT-like models and $94K for T5-like models.
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Figure 5.1: Inference throughput comparison.
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Figure 5.2: Memory system cost comparison.

5.2 Bandwidth variability during RR

Figure 5.3 depicts the bandwidth of four SSD configurations. We align the

start time of RR operations at n for all four configurations. Originally, the

start times are di↵erent due to the di↵erent speeds in reaching RD thresh-

old as they provide disparate read speeds for inference. In normal situations,

applying cache-read only maintains 60% of LFS bandwidth. Integration with

multi-plane operation, the bandwidth reaches that of LFS. However, during
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of each storage configuration (n) is (1) Baseline: 4,180, (2) Cache-read: 2,608,

(3) Cache-read, Multi-plane: 1,615, (4) LFS: 1,615 (sec)

RR, all systems but LFS show severe bandwidth deterioration (maximum of

88%) from bursty RRs after n seconds for a maximum of 16 seconds. This is

the time needed to reprogram all weight tensors. All three systems maintain

comparable bandwidth during RR since multi-plane operation is already being

carried out for RR thus cache-read is the sole factor for increasing the band-

width during this period. In contrast, LFS shows more robust performance,

free from RD-induced bandwidth drop �by distributing RR operations over

time.
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Chapter 6. Related Work

Extreme-scale DNN model.With the advent of extreme-scale models, much

prior literatures have focused on processing these models, mostly from industry.

Megatron-LM (51), from NVIDIA, proposes an enlarged version of GPT2 (44),

the largest model at the time of its writing. Due to the memory capacity wall,

they were forced to adopt their massive fleet of GPUs in a model parallel man-

ner. Microsoft followed up with Turing-NLG (56), and proposed ZeRO (45)

and subsequently, ZeRO-o✏oad (47). These techniques devised by Microsoft

enabled the data parallel training of the enormous model. Each device held a

contiguous portion of the model and distributed it to other devices when the

portion was next in line to be processed. Within a year, OpenAI introduced

GPT3 (7), a model with phenomenal size, which was soon topped by Google’s

GShard (35). All of the prior work was focused on training in model- arallel

manner but Microsoft. They required the use of expensive HBM to store the

model, leading to a cost-e�cacious system. Behemoth (32) was the first to mit-

igate this with NAND-based flash. However, as it focused on training of DNN

models, it does not mention the unique problem generated in DNN inference

system with NAND-based memory.

Read Disturbance. The problem of RD was given much attention relative

to its counterpart, write-induced disturbance. However, some prior works take

interesting approaches to tackle this issue. Cai’s team (8) introduces read-retry,

where the device reads the read-disturbed cells with the shifted reference volt-

ages to adapt to the changed threshold voltages. Park (41) et al. advances this

technique using pipeline and by adaptive reduction of chip-level read latency.

On the other hand, read-refresh technique is presented in WARM (39), which

our work is based upon. Ha (22) et al. proposes to isolate the read-hot data

from the cold data, such that the blocks with cold data are not a↵ected when

18



reading from hot data. Liu (37) et al. focuses on reducing the number of RD-

induced rewrites by examining the application’s expected read throughput.

With the exception of (37), all prior literature does not leverage the appli-

cation’s characteristics to specialize the NAND flash. In contrast to all prior

works, Leviathan fully takes advantage of the deterministic nature of DNN and

use it to completely hide RD induced latency and throughput issues.
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Chapter 7. Conclusion

This paper presents Leviathan, a DNN inference platform designed to fully

accommodate extreme-scale models using cost-e�cient NAND flash memory.

Leveraging the static, deterministic access pattern of DNN inference, it suc-

cessfully increases the flash memory bandwidth and averts detrimental cases

arising from simultaneous, bursty read reclaims. The bandwidth is boosted us-

ing cache-read and multi-plane operations, while RD related issue is taken care

of by distributing RR between user read requests. With Leviathan, DNN in-

ference can be run on a much cheaper memory system than the conventional

HBM-based memory system.
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