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Abstract 
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Techniques and Information Theory  
 

Hodong Lee 

School of Chemical and Biological Engineering 

The Graduate School 

Seoul National University 

  

Process monitoring system is an essential component for efficient and safe 

operation. Process faults can affect the quality of the product or interfere with 

the normal operation of the process, hindering productivity. In the case of chem-

ical processes dealing with explosive and flammable materials, process fault 

can act as a threat to the process safety which should be the top priority. Mean-

while, modern processes demand a more advanced monitoring system as the 

scope of the process expands and the process automation and intensification 

progress. 

The framework of the process monitoring system can be classified into three 

stages. It is divided into process fault detection that determines the existence of 

process faults in a system in real time, fault diagnosis that identifies the root 

cause of the faults, and finally, process recovery that removes the cause of the 

fault and normalizes the process. In particular, various methodologies for fault 

detection and diagnosis have been proposed, and they can be categorized into 

three approaches. Data-driven methodologies are widely utilized due to the 
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general applicability and the conditions under which abundant process data are 

provided compared to analytical methods based on the detailed first principle 

models and knowledge-based methods on the specific domain knowledge. Fur-

thermore, the advantage of the data-driven methods can be prominent as the 

scale and complexity of the process increase. In this thesis, fault detection and 

diagnosis methodologies to improve the performance of existing data-driven 

methods are proposed.  

Conventional data-driven fault detection systems have been developed based 

on dimensionality reduction methods. The fault detection models using dimen-

sionality reduction identify the low dimensional latent space defined by features 

inherent in process data, performing process monitoring based on it. As the rep-

resentative methods, there are principal component analysis which is the con-

ventional multivariate process monitoring approach, and autoencoder which is 

one of the machine learning techniques. Although the monitoring systems using 

various machine learning techniques have been widely utilized thanks to suffi-

cient process data and good performance, a monitoring scheme that improves 

the performance of up-to-date methods is required due to the aforementioned 

factors. To improve the performance of such a data-driven monitoring system, 

approaches that change the structure of the model or learning procedure have 

been mainly discussed. Meanwhile, the nature that data-driven methods are ul-

timately dependent on the quality of the training dataset still remains. In other 

words, a methodology to enhance the completeness of the monitoring system 

by supplementing the insufficient information in the training dataset is required. 

Thus, a process fault detection method that combines data augmentation tech-

niques is proposed in the first part of the thesis.    

Data augmentation has been mostly employed to manage the deficiency of 

certain classes, between-class imbalance, in a classification problem. In this 
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case, data augmentation can be effectively applied to improve the training per-

formance by balancing the amount of each class. Data augmentation in this 

study, on the other hand, is applied to alleviate the within-class imbalance. The 

process data in normal operation has characteristics that the data samples in the 

borderline of normal and abnormal state are relatively sparse. Given that the 

modeling of the fault detection system corresponds to defining the low-dimen-

sional feature space and monitoring the system in it, it can be expected that the 

supplement of the samples on the boundary of the normal state would positively 

affect the training process. In this context, the proposed method is as follows.  

First, variational autoencoder which is a generative model is constructed to 

generate the synthetic data using the original training data. The sample vector 

corresponding to the boundary region of the low-dimensional distribution of 

the normal state learned by the generative model is generated as the synthetic 

data and augmented to the original training data. Based on the augmented train-

ing data the fault detection system is established using autoencoder, a machine 

learning algorithm for feature extraction. The feature learning of autoencoder 

can be performed more effectively by using the augmented training data, which 

can lead to the improvement of the fault detection system that distinguishes 

between normal and abnormal states.  

The dimensionality reduction methods have been also utilized as the fault 

isolation method known as the contribution charts. However, the approaches 

showed limited performance and inconsistent analysis results due to the infor-

mation loss during the dimension reduction process. To resolve the limitations 

of the conventional method, the approaches that directly figure out the causal 

relationships between process variables have been developed. As one of them, 

transfer entropy, an information-theoretic causality measure, is generally 

known to have good fault isolation performance in the fault isolation of nonlin-

ear processes because it is neither linearity assumption nor model-based method. 
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However, it has been limitedly applied to the small-scale process because of the 

drawback that the causal analysis using transfer entropy requires costly density 

estimation. To resolve the limitation, the method that combines graphical lasso 

which is a regularization method with transfer entropy is proposed.  

Graphical lasso is a sparse structure learning algorithm of the undirected 

graph model, which can be used to sort out the most relevant subgroup in the 

entire graph model. As graphical lasso algorithm presents the output as a highly 

correlated subgroup with the rest of the variables, the iterative application of 

graphical lasso can substitute the entire process into several subgroups. This 

process can greatly reduce the subject of causal analysis by excluding relation-

ships with little relevance in advance. Accordingly, the limitation of demanding 

cost of transfer entropy can be mitigated and thus the applicability of fault iso-

lation using transfer entropy can be expanded through this process.  

Combining the two methods, the following fault isolation method is pro-

posed. First of all, the entire process variables are divided into the five most 

relevant subgroups based on the data when the fault has occurred. The root 

cause variable can be isolated from the most significant relationship by calcu-

lating the causality measure using transfer entropy only within each subgroup. 

It is possible to significantly reduce the computational cost due to transfer en-

tropy by efficiently decreasing the subject of causal analysis through graphical 

lasso. Therefore, the proposed method is noteworthy in that it enables the ap-

plication of fault isolation using transfer entropy for industrial-scale processes.  

The proposed methodologies in each stage are verified by applying them to 

the industrial-scale benchmark process model, the Tennessee Eastman process 

(TEP). The benchmark process model is suitable to test the performance of the 

proposed methods because it is a process model with similar complexity as a 

real chemical process involving multiple unit operations, recycle stream, and 

chemical reactions in it. The performance test is performed with respect to the 
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28 predefined process faults scenarios in TEP model. Application results of the 

proposed fault detection method performed better than the case using the con-

ventional approach in terms of the fault detection rate. In some fault cases, the 

fault detection delay, the time required to first detect a fault since it occurred, 

also showed improvement. Fault isolation results by the proposed method inte-

grating transfer entropy with graphical lasso showed that it could effectively 

identify the cause of the process fault with only about 20% of the computational 

cost compared to the base case that directly applied the transfer entropy to the 

entire process for fault isolation. In addition, the demonstration results sug-

gested that the proposed method could outperform the base case in terms of 

accuracy in some particular cases. 
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1.  

Chapter 1 

 

Introduction 

1.1. Research Motivation  

Process monitoring system is an essential component for efficient and safe 

operation. Various types of faults such as sensor failure or process malfunction 

can happen in a certain module during the operation of a process, which could 

damage the reliability of the process operation. Due to either an increase in 

downtime to normalize process fault or an occurrence of a product that fails to 

meet necessary quality specifications, the productivity of a process can be ham-

pered. Furthermore, the safety of the process which is of the greatest importance 

cannot be assured in the case of the chemical process where it deals with flam-

mable and explosive materials. Meanwhile, modern processes demand a more 

advanced monitoring system due to the following factors: process automation 

based on the complex process control systems, intensification derived by pro-

cess integration and development, and expansion of monitoring scope. Further-

more, the chemical process generally includes plenty of recycle streams to in-

crease productivity, which makes it more difficult to appropriately monitor a 

process fault in a precise and timely manner. Thus, a process monitoring system 

should be prepared to efficiently detect and accurately diagnose process faults.  

The framework of the process monitoring system can be classified into four 

stages as Figure 1.1 [1]. As the first step, fault detection is performed in real 

time to determine whether a process fault has occurred. Once any fault would 

be detected, fault isolation and identification are conducted to pinpoint the root 

cause variable and analyze the type and scale, respectively. These two processes 

are commonly referred to as fault diagnosis. After the fault is properly diag-

nosed, the process can be restored to the normal operation by eliminating the 
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source of a fault. In particular, the first two among these four stages in the mon-

itoring workflow, fault detection and isolation (FDI), have been intensively 

studied. 
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Figure 1.1. Schematic diagram for workflow of process monitoring system. 
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FDI system can be categorized into three approaches: analytical approaches, 

knowledge-based method, and historical data-driven method. The analytical ap-

proaches utilize mathematical models based on the detailed first principle mod-

eling. However, the comprehensive first principle modeling is commonly una-

vailable for the large-scale industrial process. The knowledge-based monitoring 

systems are based on the prior domain knowledge to construct a monitoring 

system. Despite its interpretability about the output, the costly and time-con-

suming characteristics of knowledge-based methods have restricted their appli-

cation and progress in the industrial-scale process. Meanwhile, the historical 

data-driven monitoring systems provide better applicability because they only 

utilize the historical data in the construction of a monitoring system. The data-

driven methods have been widely adopted in the development of the monitoring 

system for the industrial process because a sufficient amount of data from the 

extensive sensor networks can be provided. Furthermore, the advantage of data-

driven methods in terms of applicability compared to knowledge-based meth-

ods becomes more pronounced as the complexity and scale of the process in-

crease. 

As the conventional data-driven methodologies, various dimensionality re-

duction methods for multivariate process monitoring systems such as principal 

component analysis (PCA), independent component analysis (ICA), Fisher dis-

criminant analysis (FDA) have been developed. These are the latent variable 

methods to investigate the intrinsic characteristics of the state in lower-dimen-

sional feature space. The latent variables can be obtained by extracting feature 

representation that can capture the variability of the data while preserving the 

structural correlations between the process variables. Fault detection systems 

to monitor process faults can be established by defining monitoring statistics 

using the feature representation and its reconstruction. For example, Hotelling's 

T2 and squared prediction error (SPE) correspond to the monitoring statistics of 
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the fault detection system using PCA. Most of them, however, have the com-

mon limitation that assumes the linearity of the process variables to characterize 

the representations in the feature space. It leads to the restriction of the moni-

toring performance with respect to the nonlinear process in general. Although 

kernel PCA(KPCA) [2] was suggested to tackle the nonlinear relationship, it is 

commonly considered impractical in the industrial-scale process as the exces-

sive computational burden and high sensitivity of the kernel trick.  

To manage the nonlinearity of the process, machine learning techniques em-

ploying the neural network framework have been recognized as an alternate 

approach for nonlinear feature extraction. As the representative scheme for ef-

ficient feature extraction, autoencoders (AEs) have shown better capability as 

a nonlinear monitoring system. AEs are neural networks with nonlinear activa-

tion functions to deal with the nonlinearity of the data. It can be also character-

ized by a bottleneck hidden layer which encourages the feature extraction, 

which can be achieved in an unsupervised fashion due to the network structure 

reconstructing input itself.  

Despite its superiority, it is bound to reach the limit of improvement. Thus, 

various approaches have been proposed to further enhance the performance of 

the monitoring systems from different perspectives. For example, the perfor-

mance of a model can be improved by adjusting the model capacity through the 

depth and width of the network. As a more fundamental approach to modify the 

training procedure, it can be also effective to adjust either the optimizer or the 

regularizer. Otherwise, a totally new type of layer such as a recurrent layer that 

takes into account the autocorrelation in the process data or a convolutional 

layer that extracts useful features preserving the spatial information could lead 

to an improvement in performance. Meanwhile, the nature that data-driven 

methods are ultimately dependent on the quality of the training data still re-

mains. In other words, an insufficient amount of training data or the data-rich 
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but the information-poor issue can hinder the successful modeling of monitor-

ing systems using machine learning techniques. Therefore, a methodology to 

enhance the completeness of the monitoring system by alleviating the insuffi-

cient information issue in the training dataset is required.  

The methods for fault isolation have been extensively studied as well. The 

contribution chart is an extension of dimensionality reduction methods used in 

the modeling of the fault detection system. It can be developed by investigating 

the contribution of the original process variables with respect to the faulty in-

stances detected from the fault detection system. These approaches, however, 

have shown inherent limitations such as information loss during the dimension-

ality reduction and inconsistency depending on sample points. To avoid these 

limitations, methodologies that directly analyze causal relationships between 

process variables have been suggested.  

Other methods include the use of Granger causality and transfer entropy, 

which are the predictive causality measures. Granger causality is a causal anal-

ysis tool that examines a causal relationship by quantifying the improvement 

due to additional predictors of the vector autoregressive (VAR) models. Trans-

fer entropy can be regarded as an information-theoretic interpretation of 

Granger causality. It was derived from mutual information, which is a common 

measure to estimate the correlation, by replacing the joint probability with con-

ditional probability. Transfer entropy shows better performance than Granger 

causality in general due to the fact that it is free from linearity assumptions and 

models such as the VAR model. In spite of its superiority, the application of 

transfer entropy in the industrial-scale process has been limited because it in-

cludes costly density estimation during the calculation of the measure. Also, the 

fact that such a high-cost evaluation should be made for all of the pairwise 

combinations for the entire process hinders the active applications of the indus-

trial process. 
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Therefore, a methodology that can be performed in a computationally effi-

cient way while preserving reliable causal analysis performance is required. 
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1.2. Research Objectives 

In this thesis, integrated methodologies for each component of FDI have been 

proposed to address the shortcomings, which can facilitate the general applica-

bility of industrial processes. The proposed methodology for fault detection 

systems comprises manifold learning via autoencoder and generative modeling 

for data augmentation using a variant of variational autoencoder. Another pro-

posed methodology for fault isolation includes transfer entropy for causality 

analysis from information theory and graphical lasso which is a regularization 

method to sort out the most relevant subset from the whole process.   

In the first part, a fault detection system integrated with data augmentation 

for the purpose of supplement insufficient information in manifold learning is 

proposed. To do so, variational autoencoder which is a generative model is em-

ployed to supplement the informative training samples into the original training 

dataset, and the augmented dataset is provided as the new training dataset for a 

manifold learning method based on autoencoder algorithm. The artificially gen-

erated samples corresponding to the boundary region of the normal samples are 

informative but rarely happened. Therefore, augmentation of data in this region 

allows building a more effective monitoring system by providing information 

to promote manifold learning especially in terms of detailed borderline. The 

monitoring system using autoencoder is constructed based on the augmented 

dataset. Finally, the proposed method is verified by comparing the monitoring 

performance to the base case without the data augmentation. 

Next, a fault isolation system that incorporates a regularization method for 

subset selection with a causality analysis that is transfer entropy is proposed. 

The proposed method is intended to leverage a reliable causality measure so 

that fault isolation could be performed efficiently even for industrial-scale pro-

cesses. Graphical lasso, which is a regularization technique for sparse structure 

learning of the undirected graphical model, is employed to divide the whole 
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process variables into several subgroups. Afterward, causal analysis for fault 

isolation using transfer entropy is carried out only for the relationships in the 

subgroups, by which the computational cost of the redundant relations in the 

causal analysis stage can be saved. To verify the effectiveness of the proposed 

method, it is applied to a benchmark process to assess the fault isolation perfor-

mance comparing to the conventional situation. The demonstrations of the pro-

posed methods for both fault detection and isolation use the widely used chem-

ical benchmark process, the Tennessee Eastman process.  
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1.3. Outline of the Thesis 

The outline of the thesis is as follows. In Chapter 2, the backgrounds and 

required preliminaries of the elementary components for the proposed methods 

in the remainders are introduced. Chapter 3 proposes a methodology for fault 

detection systems incorporating the data augmentation strategy. In this chapter, 

the detailed methods for data augmentation and fault detection modeling are 

presented with a comprehensive case study and discussion. Chapter 4 provides 

an integrated methodology for fault isolation. In addition, it includes a detailed 

description of the procedure for applying the proposed method, and application 

results about two types of industrial processes. Finally, the concluding remarks 

with suggestions for future work are presented in Chapter 5.   
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2.  

Chapter 2 

 

Backgrounds and Preliminaries 

2.1. Autoencoder 

Autoencoder(AE) is an unsupervised machine-learning technique for feature 

extraction. It encodes the input data onto low-dimensional latent features and 

reconstructs the data using only the encoded feature by squeezing the middle 

layer of the symmetric network, as shown in Figure 2.1. The compression part 

of the network in Figure 2.1, which produces a latent feature, is the encoder, 

and the opposite part, which is the decoder, applies the converse functionality. 

The encoder function mapping an input x ∈ 𝑅𝑛 into a latent vector h ∈  𝑅𝑚 

through general functions is as follows: 

 ℎ = 𝐹(𝑥) = 𝑓(𝑊1 ∙ 𝑥 + 𝑏1), (2.1) 

where 𝑊1  is an m × n  weight matrix, 𝑏1  is an m × 1  bias vector, and 

𝑓(∙) is an activation function. The activations for hidden layers typically em-

ploy nonlinear functions such as a sigmoid, tangent hyperbolic, and rectified 

linear units, except for the visible layers having linear activations. By adopting 

a bottleneck structure in the latent space, AE is guided to extract a rich repre-

sentation that is advantageous to the reconstruction of the input. The reconstruc-

tion of z is as follows:  

 𝑥′ = 𝐺(ℎ) = 𝑔(𝑊2 ∙ ℎ + 𝑏2), (2.2) 

where 𝑊2  is an n × m  weight matrix, 𝑏2  is an n × 1  bias vector, and 

g(∙) is an activation function. The weight matrices 𝑊1 and 𝑊2 have distinct 

weight values in general, but can be tied, i.e., 𝑊1 =  𝑊2
𝑇, in some cases. 
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Figure 2.1. Conceptual scheme of AE. 
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The objective function of an AE, which is the loss function that the optimizer 

should minimize, has different forms depending on the data type, such as the 

squared error and cross-entropy. Following the typical choices in the cases of 

linear regression, the reconstruction loss function across a given set of training 

samples, D, can be represented as follows:  

 

L =  min
𝑊,𝑏

 
∑ ‖𝑥 − 𝑧‖2

𝑥∈𝐷

‖𝐷‖
  

         = min
𝑊,𝑏

∑ ‖𝑥 − 𝑔(𝑓(𝑥))‖2
𝑥∈𝐷 /‖𝐷‖. 

(2.3) 

The network can be extended to an arbitrary number of hidden layers and 

nodes in both the encoding and decoding parts. Special attention is needed to 

determine the dimensions of networks depending on the applications to prevent 

underfitting and/or overfitting. As a typical approach in machine learning, reg-

ularization methods such as weight regularizations, where the objective func-

tion includes the norm of the weights [3], dropouts [4], batch normalization [5], 

and pruning [6] can implicitly help a network avoid overfitting starting from a 

network with sufficient model capacity.  

The operations through weights and biases used to reveal the latent vector 𝑧 

correspond to the projection of input data from the original to feature space in 

PCA. If the linear activation replaces the nonlinear functions, AE is reduced to 

PCA, which is conceptually equivalent [7]. Thus, AE is a nonlinear generaliza-

tion of PCA, which is a conventional dimensionality reduction method used for 

purposes such as feature extraction, visualization, and data compression. Alt-

hough KPCA [2], a nonlinear extension of PCA using kernel trick, can be com-

pared with AE using the same nonlinear dimensionality reduction method, the 

performance of KPCA depends entirely on the type of kernel and represents 

poor robustness against the kernel parameters depending on the applications. 

However, AE copes inherently with nonlinearity through nonlinear activation 
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functions in each layer. Meanwhile, there exist variants of AE to improve the 

limitations in terms of robustness against process noise. Denoising autoencoder 

(DAE) [8] can improve the robustness by intentional random corruption of the 

input data to promote the reconstruction ability even under noisy situations. For 

a similar purpose, contractive autoencoder (CAE) [9] was devised by explicitly 

penalizing the objective function by adding a term representing the sensitivity 

of hidden representations to the input perturbations, ‖𝐽𝑓(𝑥)‖
𝐹

2
=  ∑ (

𝜕ℎ𝑗(𝑥)

𝜕𝑥𝑖
)2

𝑖𝑗 . 
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2.2. Variational Autoencoder 

Variational autoencoder(VAE) is a popular generative model that learns the 

data distribution to generate new samples aside from existing data in an unsu-

pervised manner. Once the training of VAE is completed, the latent code z to be 

used as the input for the generation process is sampled in the feature space. The 

main objective of VAE is to generate new synthetic samples of the original 

space using the latent code z sampled from a low-dimensional feature space 

through a generation network that corresponds to the decoder, as shown in Fig-

ure 2.2. Meanwhile, it is insufficient to train a generation network to generate 

plausible samples with only randomly sampled codes drawn from a prior dis-

tribution p(z), which is typically assumed as a normal distribution that pos-

sesses little information producing meaningful samples. Thus, the encoder net-

work is introduced to provide evidence to produce a latent code that allows the 

decoder to reconstruct at least the training samples well. At this point, the true 

posterior 𝑝(𝑧|𝑥) , which is generally intractable, is replaced by the approxi-

mated posterior 𝑞𝜙(𝑧|𝑥) parameterized by ϕ, which is typically assumed as 

a multivariate Gaussian, leading to a closed-form loss term, that is the varia-

tional inference method.  

As a result, the entire structure incorporating an inferential encoding network 

and a generative decoding network is analogous to AE in terms of compressing 

the input data into a low-dimensional latent space and then restoring the data. 

Thus, the methodology, which is an autoencoder with a variational inference 

method for generative modeling, is called a variational autoencoder. Given the 

ultimate purpose of development and the process of establishing a generative 

model, the basis of VAE has little to do with AE, except for the structural sim-

ilarity of the final form of the objective function [10]. 
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Figure 2.2. Conceptual scheme of VAE and reparameterization trick. 
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For a vanilla VAE, first introduced by Kingma et al. [11], the objective func-

tion is  

 
log𝑝𝜃(𝑥(𝑖)) =  𝐷𝐾𝐿[𝑞𝜙(𝑧|𝑥(𝑖))||𝑝𝜃(𝑧|𝑥(𝑖))] +

𝐿(θ, ϕ; 𝑥(𝑖)), 

(2.4) 

where the first term on the right-hand side, which represents the variational 

inference process, forces the approximate posterior 𝑞𝜙(𝑧|𝑥(𝑖)) to match the 

true posterior 𝑝𝜃(𝑧|𝑥(𝑖)) by using Kullback–Leibler (KL) divergence, and the 

second term is the evidence lower bound (ELBO) on the marginal likelihood of 

data point 𝑖 . Because the KL divergence is non-negative, the marginal likeli-

hood is greater than the ELBO. The ELBO can be further decomposed as fol-

lows: 

 

log𝑝𝜃(𝑥(𝑖))  ≥  𝐿(θ, ϕ; 𝑥(𝑖)) 

=   𝔼𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔𝑝𝜃(𝑥(𝑖)|𝑧)] − 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥(𝑖))||𝑝(𝑧)). 
(2.5) 

Instead of directly maximizing the marginal likelihood, the ELBO is maxim-

ized with respect to both the variational parameters ϕ and the generative pa-

rameters θ . It is noteworthy that the reparameterization trick suggested by 

Kingma et al. [11] makes it possible for the VAE formulation to jointly optimize 

both parameters in the encoder and decoder by utilizing the stochastic gradient 

descent method, even though it includes a non-differentiable sampling process, 

as shown in Figure 2.2. In addition, by assuming both the prior 𝑝𝜃(𝑧) and the 

inferential posterior 𝑞𝜙(𝑧|𝑥(𝑖)) as having a multivariate Gaussian distribution, 

and the generative posterior 𝑝𝜃(𝑥(𝑖)|𝑧)  as a multivariate Gaussian or Ber-

noulli distribution depending on the application, the ELBO can be represented 

as a closed form using the parameters of the encoder and decoder network. The 

detailed proof and formula can be found in the study by Kingma et al. and the 

appendix thereof [11]. In conclusion, the two terms in Eq. (2.5) can be respec-

tively interpreted as a reconstruction error and a regularization encouraging the 
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approximated posterior to fit into the prior, which will eventually be used as a 

sampling distribution. 
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2.3. Transfer Entropy 

Previous studies suggested various information-theoretic measures to quan-

tify informational content as part of the identification of a causal structure in 

the system. One of the basic and most important concepts of information theory 

is the Shannon entropy. It is defined as the measure of the average number of 

bits required to optimally encode the independent variable I of the process fol-

lowing a probability distribution p(i) [12]. The mathematical definition of the 

Shannon entropy is  

 𝐻𝐼 =  − ∑ 𝑝(𝑖) log 𝑝(𝑖)

𝑖

 (2.6) 

In information theory, the measure of information, the Shannon entropy, cor-

responds to the uncertainty of an event, which is inversely related to the prob-

ability of a state for a certain variable. In other words, the higher the probability 

of occurrence, the smaller the amount of information that observation can pro-

vide. Through the semantic relationship in the subsequent metrics, quantifica-

tion of the amount of information was used to identify the dependency structure 

between variables. 

For the system consisting of more than one variable, there may exist infor-

mation transfer if the subsystems interact with each other. Therefore, by meas-

uring the extent of information transference, one can figure out the inherent 

relationship that does not manifest itself. As the second fundamental concept of 

information theory, the Kullback entropy(𝐾𝐼) [13], also known as Kullback-

Leibler divergence, signifies an excess bit required by using a hypothetical dis-

tribution 𝑞(𝑖) instead of the original distribution 𝑝(𝑖) and is defined as  

 𝐾𝐼 =  ∑ 𝑝(𝑖) log
𝑝(𝑖)

𝑞(𝑖)
𝑖

 (2.7) 

As a special case of the Kullback entropy, mutual information (MI), the ex-

cess amount of code induced by erroneously assuming that the two subsystems 
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are independent, is defined as 

 𝑀𝐼,𝐽 =  ∑ 𝑝(𝑖, 𝑗) log
𝑝(𝑖, 𝑗)

𝑞(𝑖, 𝑗)
=  ∑ 𝑝(𝑖, 𝑗) log

𝑝(𝑖, 𝑗)

𝑝(𝑖)𝑝(𝑗)
 (2.8) 

The mutual information indicates the degrees of deviation from the assump-

tion of independence for each subsystem. With manipulations based on the def-

inition of the Shannon entropy, mutual information can be decomposed into 

separate terms of Shannon entropies. 

 𝑀𝐼𝐽 =  𝐻𝐼 + 𝐻𝐽 − 𝐻𝐼𝐽 (2.9) 

Although mutual information can discern whether the information can be 

mutually exchanged through the deviations from independence assumptions, its 

directionality cannot be confirmed due to its symmetric property under the ex-

change of two systems. This point mainly motivated the suggestion of the ad-

vanced information-theoretic measure, the transfer entropy, which is one of the 

two key components of the methodology proposed in this study. Another defi-

ciency of mutual information is that the static probabilities constructing mutual 

information are insufficient to reflect the structure of dynamical information 

transfer.  

Consequently, the transition probability can substitute the static probability 

in mutual information to incorporate the dynamical structure and clarify the 

direction of information flow. The probability of the occurrence of a particular 

subsequent state conditioned upon the prior state can represent the transition 

probability. By introducing conditional probability, we can calculate the en-

tropy rate, which measures the average number of bits required to express the 

successor state given all prior states [12]. The larger the entropy rate, the more 

bits are needed to express the relationship between the preceding and subse-

quent state, suggesting that there is a significant association between process 

data. The entropy rate can be interpreted as the difference between two Shannon 

entropies using Bayes’ rule, p (𝑖𝑛+1|𝑖𝑛
(𝑘)

) = 𝑝 (𝑖𝑛+1
(𝑘+1)

) 𝑝(𝑖𝑛
(𝑘)

)⁄ .  
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ℎ𝐼 =  − ∑ 𝑝 (𝑖𝑛+1, 𝑖𝑛
(𝑘)

) log 𝑝(𝑖𝑛+1|𝑖𝑛
(𝑘)

)

=  𝐻𝐼(𝑘+1) −  𝐻𝐼(𝑘)  

(n: time index, 𝑖𝑛
(𝑘)

= (𝑖𝑛, … , 𝑖𝑛−𝑘+1)) 

(2.10) 

To extend this discussion, the dynamics of shared information between sub-

systems in the target process need to be determined. In this case, contrary to the 

case of the mutual information rate, which measures the deviation from the in-

dependence assumption, transfer entropy evaluates the deviation from the gen-

eralized Markov property: 

 

p (𝑖𝑛+1|𝑖𝑛
(𝑘)

) =  p (𝑖𝑛+1|𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

) 

(𝑖𝑛
(𝑘)

= (𝑖𝑛, … , 𝑖𝑛−𝑘+1) , 𝑗𝑛
(𝑙)

= (𝑗𝑛, … , 𝑗𝑛−𝑙+1) ,  

k: embedding dimension of variable 𝑖,  

l: embedding dimension of variable 𝑗 ) 

(2.11) 

Based on the generalized Markov property, if there is no information transfer 

from subsystem J to I, the historical data of subsystem J are insignificant for 

predicting future states of subsystem I. Otherwise, the degrees of deviation 

from the generalized Markov property would not be negligible. The extent of 

deviation can also be quantified by the Kullback entropy, which is the definition 

of transfer entropy. Analogous to mutual information, Schreiber[12] formulated 

the transfer entropy, which utilizes two sets of augmented data of variables un-

der investigation. The two variables regarded as the cause and effect contain 

their previous k and l samples, respectively. Using conditional probability, 

transfer entropy incorporates the time dependency and thus predicts the next 

value of the dependent variable as shown in the definition (2.12). 

 𝑇𝐽→𝐼 =  ∑ 𝑝(𝑖𝑛+1, 𝑖𝑛
(𝑘)

, 𝑗𝑛
(𝑙)

) log
 p (𝑖𝑛+1|𝑖𝑛

(𝑘)
, 𝑗𝑛

(𝑙)
)

 p (𝑖𝑛+1|𝑖𝑛
(𝑘)

)
 (2.12) 

Transfer entropy, contrary to mutual information, has an asymmetric property, 
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and one can detect the direction of information transfer, i.e., causality, by com-

paring the magnitudes of information transfer in each direction.  

 𝑇𝐽→𝐼 = (𝐻𝐼(𝑘+1) −  𝐻𝐼(𝑘)) − (𝐻𝐼(𝑘+1),𝐽(𝑙) −  𝐻𝐼(𝑘),𝑗(𝑙)) (2.13) 

Many diagnosis methodologies were mainly developed based on Wiener's 

causality: “Process X could be termed as to cause process Y if the predictability 

of Y is improved by incorporating information about X” [14]. While Granger 

causality, which formulates predictability as a variance of an autoregressive 

model, is a mathematical interpretation of Wiener's principle, transfer entropy 

interprets predictability through uncertainty from the viewpoint of information-

theoretic understanding. In other words, the transfer entropy defines the causal 

relationship as a reduction of uncertainty. If the predictability of 𝑖𝑛+1 with the 

additional knowledge of another process, 𝑗𝑛
(𝑙)

, is improved, the numerator in 

Eq. (2.12) would be greater than the denominator. Then, the transfer entropy, 

𝑇𝐽→𝐼, becomes positive and one can deduce a causal relationship between the 

two processes according to its relative magnitude. As a new measure of causal-

ity, the net amount of transfer entropy was devised by Bauer et al. [15].  

 𝑡𝐼⇒𝐽 =  𝑇𝐽→𝐼 − 𝑇𝐼→𝐼 (2.14) 

A positive value of 𝑡𝐼⇒𝐽 means that process I serves as the cause of process 

J and vice versa. If the values of 𝑡𝐼⇒𝐽 are close to zero, the process is likely to 

have no causal relationship. 
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2.4. Graphical Lasso 

Least absolute shrinkage and selection operator (lasso) is known as a form 

of regression problem penalized by the 𝑙1-norm of the coefficient of predictors. 

Based on a previous study by Frank and Friedman [16], lasso originated from 

the bridge regression (𝑙𝑞-norm (q > 0)) by Tibshirani [17] as a special case of 

the bridge with q = 1. By means of regularization, lasso derives the coeffi-

cients of irrelevant predictors with respect to the response to be set to zero, 

which can increase the accuracy of regression models. Recently, with the im-

provement of computational power and advances in the algorithm, many vari-

ants of the lasso were suggested, including the implementation for graphical 

models.  

Graphical lasso, which was first introduced by Friedman et al. [18], is a meth-

odology to find a sparse inverse covariance of the design matrix of variables 

based on the Gaussian log-likelihood with lasso penalty. According to the fact 

that the zeros in the inverse covariance matrix of Gaussian distributed variables 

correspond to the conditional independence, a convex optimization problem 

can be formulated to obtain a sparse form of the maximum likelihood estima-

tion [19]. Assuming that 𝑦𝑖 , 𝑖 = 1, … , 𝑁  are independently sampled from 

𝑁(𝜇, Σ), the log-likelihood of the observations 𝐿(𝜇, Σ) = 𝑙𝑜𝑔 ∏ 𝑓(𝑦𝑖)𝑖  can be 

formulated as  

 

𝐿(𝜇, Σ) =  − 
𝑁

2
𝑙𝑜𝑔𝑑𝑒𝑡Σ −  

1

2
∑(𝑦𝑖 − 𝜇)𝑇Σ−1(𝑦𝑖 − 𝜇)

𝑁

𝑖=1

 

   =
𝑁

2
( 𝑙𝑜𝑔𝑑𝑒𝑡Σ−1 − 𝑡𝑟(𝑆Σ−1) − (𝜇 − �̅�)𝑇Σ−1(𝜇 − �̅�)) 

(2.15) 

where �̅� and 𝑆 are the sample mean and covariance 

�̅� =  
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 , 𝑆 =  

1

𝑁
∑ (𝑦𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑇𝑁

𝑖=1 . 

The maximum likelihood estimation of the log-likelihood can be represented 

as 
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 max
Σ−1

   𝑙𝑜𝑔𝑑𝑒𝑡Σ−1 − 𝑡𝑟(𝑆Σ−1) − (𝜇 − �̅�)𝑇Σ−1(𝜇 − �̅�).  (2.16) 

As the optimal value for mean is the sample mean �̅�, the last term in Eq. 

(2.16) can be dropped. By changing the inverse covariance Σ−1 to precision 

matrix Θ and introducing lasso penalty term ‖𝚯‖1 the graphical lasso prob-

lem can be completely formulated as  

 max
𝚯

log det(𝚯) − tr(𝐒𝚯) −  ρ‖𝚯‖1 (2.17) 

where tr denotes the trace operator and ‖Θ‖1 is the 𝑙1-norm (regulariza-

tion) term with the regularization parameter 𝜌. 

As a result, the graphical lasso problem in Eq. (2.17) is the Gaussian log-

likelihood expression of the precision matrix including the 𝑙1-norm regulariza-

tion. The estimated inverse covariance matrix using graphical lasso corresponds 

to a subset of the original graph, where irrelevant relationships are eliminated 

since a zero in the resulting precision matrix corresponds to a missing edge in 

the original graph. Accordingly, it allows for increasing the sparsity of the orig-

inal graph of the target process.  

To solve the optimization problem of the graphical lasso in Eq. (2.17), Fried-

man [18] adopted a block coordinate descent approach to estimate 

𝑾 (estimate of 𝚺) instead of 𝜣 (estimate of 𝚺−𝟏).  

 W= 𝑊11𝑤12𝑤12𝑇𝑤22 ,     S= 𝑆11𝑠12𝑠12𝑇𝑠22 (2.18) 

By partitioning W and S, they exploited the fact that 𝒘𝟏𝟐 satisfies Eq. (2.19). 

 𝑤12 =  argmin
𝑦

{𝑦𝑇𝑊11
−1𝑦 ∶  ‖𝑦 − 𝑠12‖∞  ≤  𝜌} (2.19) 

Using convex duality, Eq. (2.19) can be written as the equivalent dual prob-

lem of  

 min
𝛽

{
1

2
‖𝑊11

1 2⁄
𝜷 − 𝑏‖

2
+ 𝜌‖𝛽‖1} (2.20) 

where b =  𝑾𝟏𝟏
−𝟏 𝟐⁄

𝒔𝟏𝟐. Substituting the solution to Eq. (2.20), 𝛃, into Eq. 
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(2.19) yields 𝒘𝟏𝟐 =  𝑾𝟏𝟏𝜷. The subgradient equation of Eq. (2.17) can be de-

rived as Eq. (2.21) using the relation 𝐖𝚯 = 𝐈 and the fact that the derivative 

of logdet 𝚯 equals to 𝚯−𝟏,  

 W − S − ρ ∙ Γ = 0 (2.21) 

 

where  𝚪𝑖𝑗 ∈ 𝑠𝑖𝑔𝑛(𝚯𝑖𝑗) ; that is 𝚪𝑖𝑗 = 𝑠𝑖𝑔𝑛(𝚯𝑖𝑗)  if 𝚯𝑖𝑗  ≠ 0 ; otherwise, 

𝚪𝑖𝑗 ∈ [−1,1]. Similarly, the sub-gradient equation of the dual problem becomes 

 𝑊11β − 𝑠12 +  𝜌 ∙ 𝜈 = 0 (2.22) 

where ν ∈ 𝑠𝑖𝑔𝑛(𝛽).  

In conclusion, the irrelevant relationships are eliminated from the original 

graph, and the subgraph that contains only strongly associated relationships is 

formed by a single implementation of the graphical lasso. In addition, the 

uniqueness of the graphical lasso can be guaranteed under the same condition 

because it consistently estimates the strongly associated relationships as sug-

gested by Meinshausen [20] and Banerjee [21]. By iteratively applying graph-

ical lasso to the remaining variables that are not included in the subgraph in the 

previous implementation, the entire graph can be divided into subgraphs, which 

reduces the computational complexity by excluding the redundant relationships 

from the costly calculation of the causality measures.  
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3.  

Chapter 3 

 

Process Fault Detection Using Autoencoder with Data 

Augmentation via Variational Autoencoder1 

3.1. Introduction 

Multivariate statistical process monitoring (MSPM) is an indispensable part 

of the successful operation of chemical processes used to guarantee the safety 

and quality of the products. There are various MSPM methods, which can be 

classified into two approaches: prior knowledge-based methods, such as first 

principle equations or empirical equations, and historical data-driven methods 

[22]. Historical data-driven methods have the advantage of generality, and thus 

there is no need for process-specific domain knowledge. These have the ad-

vantage of general applicability owing to the fast and straightforward model 

construction in general. Data-driven process monitoring models make use of 

the data under normal operation in developing the monitoring statistics and de-

fining a boundary of normal states that detect the process faults by checking 

whether the online monitoring statistics violate the boundary. Conventional 

multivariate statistical models using latent variables for process monitoring, 

such as PCA and partial least squares (PLS), have been widely used as dimen-

sionality reduction methods. PCA, which defines orthogonal latent variables 

that maximize the variance of the original data, is used as a dimensionality re-

duction method for monitoring in a reduced dimensional feature space. PLS is 

an extension of PCA and incorporates quality variables under inspection. ICA 

 
1 This chapter is an adapted version of H. Lee., C. Kim., D. H. Jeong., and J. 

M. Lee, “Data-driven Process Fault Detection for Chemical Processes Using 

Autoencoder with Data Augmentation”, Korean Journal of Chemical Engi-

neering, Accepted.  
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utilizing higher-order statistics, unlike PCA, which only employs second-order 

statistics such as the mean and variance, performs better on data following a 

non-Gaussian distribution. However, it still has certain limitations with respect 

to the nonlinearity of the data owing to a linearity assumption. To deal with 

nonlinearity, KPCA has been suggested [2]. KPCA exploits the kernel trick to 

map the nonlinear data into a higher dimensional linear space such that it can 

perform feature extraction better than a directly applied PCA on nonlinear data. 

However, it has a limitation in that the computational complexity in the kernel 

method increases exponentially as the number of dimensions and samples in-

creases. In addition, it is well known that the kernel method has limitations in 

that it exhibits an inconsistent performance that is significantly dependent on 

the kernel type and hyperparameters. Autoencoders (AEs), which are a type of 

neural network for unsupervised dimensional reduction, have recently been 

suggested as a notable alternative to overcome these limitations with the help 

of recent advances in machine learning techniques. Various studies have 

demonstrated that AEs show better performance compared to a conventional 

dimensionality reduction method in process monitoring [23].  

Hinton [11] compared the performances of the AEs and PCA as a conven-

tional dimensionality reduction technique for various types of data. Notable re-

sults also suggest that AEs achieve a better performance in reducing the dimen-

sionality of the data than conventional methods such as PCA, ICA, and KPCA 

when sufficient computational resources, sufficient numbers of training data, 

and a plausible initialization of the weight parameters are secured [11]. Since it 

was first reported by Hinton, many studies on process monitoring using AEs 

have been actively conducted and have proved the competitiveness of AEs 

when combined with nonlinear activations in terms of the effectiveness of non-

linear feature extraction in process monitoring [24,25]. Advancing from the 

classical form of AEs, various AEs used to cope with noisy process data have 



16 

been proposed, such as denoising autoencoder (DAE) [8], contractive autoen-

coder (CAE) [9], and robust autoencoder [26]. DAE and CAE were used to 

demonstrate the improvement in monitoring performance over the basic AE and 

PCA for the Tennessee Eastman process, a benchmark chemical process se-

lected as the target process in the present study [23]. The AEs were integrated 

with another averaging approximator such as k-nearest neighbor (kNN) to sug-

gest a newly refined monitoring metric [27] or combined with a regularization 

method such as elastic net to enhance the robustness of the monitoring model 

under abundant training data [28]. Even if sufficient amounts of training data 

can be provided, the data-rich but information-poor problem still remains, re-

sulting in a typical overfitting issue of the models [29]. For this reason, there 

have been diverse attempts to supplement information through data augmenta-

tion, which makes manifold learning robust for both overfitting and underfitting.  

Data augmentation techniques can be classified into two approaches: con-

ventional methods and generative models. Two representative methods for con-

ventional data augmentation have been developed in the fields of image pro-

cessing and computer vision applications: data warping [30] and the synthetic 

minority over-sampling technique (SMOTE) [31]. Data warping involves the 

synthesis of data by applying a deformation from intuitive features in the orig-

inal data space, such as translation, rotation, and skewing from existing samples. 

Whereas SMOTE can be applied in both the data space and the feature space to 

produce artificial samples, it was primarily proposed to alleviate class imbal-

ance problems during classification. Being implemented through an affine 

transformation in the feature space as well, SMOTE has the advantage of being 

applied independently of the applications owing to the fact that a feature space 

can represent the salient structure of the data. Wong [30] reported that both 

warping and SMOTE can improve the performance of a classification model.  

The generative model that belongs to the neural network-based method can 
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be categorized into two groups: variational autoencoder (VAE) and generative 

adversarial network (GAN). Unlike a conventional method, generative models 

generally estimate the underlying distribution in the feature space. Based on the 

feature space, new vectors, which are latent codes, are sampled and then fed 

into a generator unit corresponding to each generative model to create artificial 

data. By leveraging the inherent manifold knowledge rather than directly ma-

nipulating the sample data in the original space, the generative modeling ap-

proach has proven its superiority in terms of the quality and effectiveness of 

augmentation in previous studies conducted in diverse fields [32,33]. This prop-

erty becomes more significant as the number of dimensions increases because 

the Euclidean distance commonly used as the distance metric weakens the 

meaning as a similarity measure in the original space. To make use of the indis-

pensable merits of stable convergence of VAE in modeling compared to those 

of GAN, which possesses an adversarial training process between two networks, 

VAE has been employed to augment the supplementary training data. Because 

most of the chemical process data might not violate the assumption of VAE in 

which the class for encoding and the prior distribution are restricted as multi-

variate Gaussians, it makes use of the VAE characteristic in which the latent 

vectors can be sampled from the explicit distribution in the feature space. This 

enables the manipulation of the latent vectors to reflect the intentions of the 

data augmentation, such as selective sampling within the boundary regions of 

a normal distribution, which correspond to rare samples. The capability of a 

selective production of artificial data to convey the intention for augmentation 

can contribute to the improvement of the process monitoring modeling by 

providing insufficient information. 

Various studies have used generative models as tools for data augmentation, 

particularly in the field of computer vision. Several studies have improved the 

performance of image classifiers through data augmentation using generative 
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models, such as VAEs, GANs, and their variants [33,34,35]. The models for 

speech recognition [36] or translation [32] can be supported by data augmenta-

tion techniques to alleviate the class imbalance problem or allow the reuse in 

another domain, as applied in transfer learning. Although they applied a variant 

of GAN to construct a generative model, and not VAE, Gao et al. [37] suggested 

that augmentation in the case of process data can also contribute to improve-

ments as a classifier for process monitoring.  

This chapter was motivated by previous studies promoting the quality of 

manifold learning, which is an essential part of modeling for fault detection, 

through data augmentation. Integrated with the idea of an exclusive augmenta-

tion of data that rarely appears but should be classified as a normal state similar 

to the training dataset, the proposed method suggests a framework to boost the 

monitoring performance for fault detection by supplementing the insufficient 

information of the training dataset. Based on a specific strategy to reflect the 

intention of the augmentation, an edge-based oversampling scheme [38] is uti-

lized with a general transformation to explicitly aim the boundary region of the 

normal state within the feature space [10]. The synthetic samples generated 

from the latent codes of the border of a normal region are augmented in the 

training dataset to promote manifold learning by imposing more weight. 

The remainder of chapter 3 is organized as follows. In Section 2, the prelim-

inaries of the proposed method are introduced. A description of the Tennessee 

Eastman process which is the target process used in the case study, the imple-

mentation of the proposed methodology, and its discussion are presented in Sec-

tion 3. 
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3.2. Process Fault Detection Model Integrated with Data 

Augmentation 

In this section, we propose a method that makes use of the advantage of data 

augmentation, particularly of the boundary of the normal operation data, such 

that it can help the classifier generalize better in terms of the manifold learning 

of the normal state. The method for edge-based sampling and data generation, 

proposed under the term DOPING technique[38], showed an improvement of 

image classification for the well-known MNIST dataset. Although the study 

was tested in different domains and utilized a different type of generative model 

and classifier from this study, it revealed the effectiveness of data augmentation 

based on the edge of a certain class. The borderline-SMOTE[31], which is a 

modified minority over-sampling method used only to generate samples near 

the borderline of the minority class, also presents evidence of further improve-

ments with the help of borderline samples.  

In this study, we propose an approach to supplementing rare samples in the 

same class to mitigate the in-class data imbalance, unlike previous studies that 

augment the minority class to resolve the between-class imbalance. From the 

viewpoint of process fault detection, the proposed method was designed to aug-

ment relatively large amounts of rare samples that occur with low probability 

distributed within the boundary region of a normal state. As a result, by delib-

erately adding rare normal instances to the training data, the monitoring system 

can better perform in terms of increasing the fault detection rate (FDR) while 

keeping the false alarm rate (FAR) below the acceptable level.  

The workflow of the proposed method is summarized in Figure 3.1. To pre-

pare the data at similar scales and variabilities, a preprocessing step is first re-

quired. The generative model using Info-VAE was trained on the original data 

to generate artificial data for augmentation. Once the generative model is pre-

pared, various sets of data are generated by sampling in the latent space and 
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retrieving data of the original space through the decoder network. The gener-

ated data are merged with the original data as the augmented training data for 

modeling the fault-detection model using AE. 
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Figure 3.1. Flowchart of the proposed method for process fault detection model. 
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3.2.1. Info-Variational Autoencoder for Data Augmenta-

tion 

InfoVAE [39] has recently been proposed to improve the problem of vanilla 

VAE ignoring the latent vectors, i.e., so-called uninformative latent codes be-

cause it has been shown that a decoding network with sufficient capacity can 

take over the role of reconstructing inputs even with meaningless random codes. 

In other words, the latent codes, which must potentially retain significant infor-

mation needed to restore the data, are forced to fit the prior distribution by min-

imizing the second term in Eq. (2.5). This is a fatal limitation in that a latent 

vector cannot contain any data features, particularly when there is a significant 

manipulation to impose any intention in the latent space. Zhao et al. [39] intro-

duced an additional regularization term in the objective that allows the encoded 

distribution in the latent space to preserve the data features. Organizing the 

ELBO objective of the original VAE as an equation,  

 

𝐿𝐸𝐿𝐵𝑂(θ, ϕ; 𝑥(𝑖))  

=   𝔼𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔𝑝𝜃(𝑥(𝑖)|𝑧)]  

−  𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥(𝑖))||𝑝(𝑧)) 

=  − 𝐷𝐾𝐿(𝑞𝜙(𝑧)||𝑝𝜃(𝑧))

−  𝔼𝑞(𝑧)[𝐷𝐾𝐿(𝑞𝜙(𝑥(𝑖)|𝑧)||𝑝𝜃(𝑥(𝑖)|𝑧)] 

(3.1) 

The objective function of InfoVAE, including a mutual information maximi-

zation term that leads to meaningful features, is defined as follows: 

 

𝐿𝐼𝑛𝑓𝑜𝑉𝐴𝐸(θ, ϕ; 𝑥(𝑖))

≡   𝔼𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔𝑝𝜃(𝑥(𝑖)|𝑧)]  

−  𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥(𝑖))||𝑝𝜃(𝑧)) +  𝛼𝐼𝑞 

=  𝔼𝑝𝒟(𝑥)𝔼𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔𝑝𝜃(𝑥|𝑧)] − (1

− α)𝔼𝑝𝒟(𝑥)𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥(𝑖))||𝑝𝜃(𝑧)) 

(3.2) 
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−(𝛼 − 1)𝐷𝐾𝐿(𝑞𝜙(𝑧)||𝑝(𝑧)), 

where the scaling parameter λ in the original study [39] was assumed to be 

one for simplicity. According to the proof and derivation in InfoVAE, the final 

form of the objective function can be computed by replacing the last term in Eq. 

(3.2) with an equivalent divergence family, i.e., the maximum mean discrep-

ancy (MMD). Hence, an operation in the latent space can convey implications 

to be reflected on the generated data. It provides conditions under which oper-

ations in the learned latent space may have meaningful implications for the gen-

erated data, which cannot be utilized by an uninformative latent code. In other 

words, it is noteworthy that the characteristic of Info-VAE that promotes the 

extraction of the informative features enables the exclusive sampling and gen-

eration of the boundary samples which encourage high-fidelity manifold learn-

ing.  
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3.2.2. Autoencoder for Process Monitoring 

The construction of statistics for process monitoring using AE is carried out 

using the same procedure as that used in PCA. After completing the network 

training, test statistics defined in the two spaces are used to monitor the abnor-

mality of a process. One is 𝐻2, which is the squared scalar value of the latent 

vector corresponding to 𝑇2 in PCA calculated in the feature space by utilizing 

the output in the feature space calculated from Eq. (2.1) as follows:  

 𝐻2 =   ℎ𝑇 ∙ ℎ = 𝐹𝑇(𝑥) ∙ 𝐹(𝑥) (3.3) 

The other is the squared prediction error (SPE) defined in the residual space 

[23] based on the reconstruction error as follow: 

 𝑆𝑃𝐸 =   𝑒𝑇 ∙ 𝑒 =  (𝑥 − 𝐺(𝐹(𝑥)))𝑇 ∙ (𝑥 − 𝐺(𝐹(𝑥))) (3.4) 

Subsequently, the control limit used to characterize the normal operating re-

gion is defined by a non-parametric density estimator called kernel density es-

timation (KDE). Based on the KDE results for the normal operation training 

samples, the 95 percentile values for each space are typically determined crite-

ria for process monitoring. After finishing the offline training procedure based 

on a set of training samples, the test samples are mapped into the low-dimen-

sional manifold and reconstructed into the original dimensional space online. 

Process monitoring is conducted by comparing the statistics of the test data to 

the control limit in each space. 
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3.3. Case study and Discussion 

In this section, we demonstrate the proposed method on an industrial-scale 

benchmark process, Tennessee Eastman process to verify its effectiveness. The 

benchmark process to be used in a case study is first introduced. A detailed 

description of the fault detection modeling with the proposed method can be 

found in the subsequent section and the result of the implementation is also 

thoroughly discussed.  
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3.3.1. Tennessee Eastman Process 

TEP is a widely used benchmark chemical process for performance compar-

ison in process monitoring algorithms or control structures. It consists of five 

modules: a reactor, condenser, product separator, stripper, and compressor for 

the recycle stream, as shown in Figure 3.2. The irreversible and exothermic gas-

phase catalytic reactions of reactants A, C, D, and E occur to produce two liquid 

products, G and H. The following steps, including condensation, separation, 

and compression, recycle the unconverted reactants in the product streams and 

make up the fresh reactants rectified through the stripper. Some reactions in-

volve inert gas B and byproduct F, which are primarily removed by the purge 

stream. A detailed description of the TEP can be found in the original sugges-

tion of the Fortran [40] and revised MATLAB [41] models. The model used in 

this study contains the control strategy proposed by Ricker [42] based on the 

revised MATLAB model.  

There are 41 measurements, i.e., 22 continuous variables and 19 composition 

variables from the installed analyzers. The model also includes 12 manipulated 

variables used in the process control. In this study, 50 variables, excluding three 

manipulated variables remaining as fixed values (compressor recycle valve, 

stripper steam valve, and agitator speed), were investigated. The target varia-

bles for the analysis are listed in Table 3.1. The MATLAB model modified 

based on the original Fortran model includes 28 pre-defined fault cases, and 8 

(21–28) more fault cases were added to the 20 fault cases in the original model 

[40]. A total of 28 faults in the TEP cover various types, such as step change, 

random variation, slow drift, and sticking of a certain variable. The fault sce-

narios in the TEP are summarized in Table 3.2. The proposed methodology for 

process fault detection, which is described in detail in the following sections, is 

validated and analyzed using the TEP in the following sections. 
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Figure 3.2. Process flow diagram of Tennessee Eastman process [43]. 
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Table 3.1. Process variables of TEP subject to process monitoring. 

Variable 
No. 

Variable Name 
Variable 

No. 
Variable Name 

1 A feed flowrate (stream 1) 18 Stripper temperature 

2 D feed flowrate (stream 2) 19 Stripper steam flowrate 

3 E feed flowrate (stream 3) 20 Compressor work 

4 A & C feed flowrate (stream 4) 21 Reactor c/w outlet temperature 

5 Recycle flowrate (stream 8) 22 Condenser c/w outlet temperature 

6 Reactor feed rate (stream 6) 23–28 
Reactor feed analysis (A–F 
mol% ) 
(stream 6) 

7 Reactor pressure 29–36 
Purge gas analysis (A–H mol%) 
(stream 9) 

8 Reactor level 37–41 
Product analysis (D–H mol%) 
(stream 11) 

9 Reactor temperature 42 D feed flow valve (stream 2) 

10 Purge rate (stream 9) 43 E feed flow valve (stream 3) 

11 Product separator temperature 44 A feed flow valve (stream 1) 

12 Product separator level 45 A & C feed flow valve (stream 4) 

13 Product separator pressure 46 Purge valve (stream 9) 

14 
Product separator under flowrate 
(stream 10) 

47 
Separator pot liquid flow valve 
(stream 10) 

15 Stripper level 48 
Stripper liquid product flow valve 
(stream 11) 

16 Stripper pressure 49 Reactor c/w flow valve 

17 
Stripper under flowrate 
(stream 11) 

50 Condenser c/w flow valve 
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Table 3.2. Process faults in TEP. 

No. Description Type 

IDV(1) A/C feed ratio, B composition constant (stream 4) Step 

IDV(2) B composition, A/C ratio constant (stream 4) Step 

IDV(3) D feed temperature (stream 2) Step 

IDV(4) Reactor cooling water inlet temperature Step 

IDV(5) Condenser cooling water inlet temperature Step 

IDV(6) A feed loss (stream 1) Step 

IDV(7) C header pressure loss–reduced availability (stream 4) Step 

IDV(8) A, B, C feed composition (stream 4) Random variation 

IDV(9) D feed temperature (stream 2) Random variation 

IDV(10) C feed temperature (stream 4) Random variation 

IDV(11) Reactor cooling water inlet temperature Random variation 

IDV(12) Condenser cooling water inlet temperature Random variation 

IDV(13) Reaction kinetics Slow drift 

IDV(14) Reactor cooling water valve Sticking 

IDV(15) Condenser cooling water valve Sticking 

IDV(16) 
*Unknown  

(Deviation of heat transfer within stripper heat exchanger) 

*Unknown 

(Random variation) 

IDV(17) 
*Unknown  

(Deviation of heat transfer within reactor) 

*Unknown 

(Random variation) 

IDV(18) 
*Unknown  

(Deviation of heat transfer within condenser) 

*Unknown 

(Random variation) 

IDV(19) 
*Unknown (recycle valve, stripper steam valve, underflow 

separator (stream 10), underflow stripper (stream 11)) 

*Unknown 

(Sticking) 

IDV(20) *Unknown  *Unknown 

IDV(21) A feed temperature (stream 1) Random variation 

IDV(22) E feed temperature (stream 3) Random variation 

IDV(23) A feed pressure (stream 1) Random variation 

IDV(24) D feed pressure (stream 2) Random variation 

IDV(25) E feed pressure (stream 3) Random variation 

IDV(26) A & C feed pressure (stream 4) Random variation 

IDV(27) Reactor cooling water pressure Random variation 

IDV(28) Condenser cooling water pressure Random variation 

* Unknown: Uncovered by A. Bathelt in the revised version of MATLAB model.  
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3.3.2. Implementation of the Proposed Methodology 

As suggested in Figure 3.1 in section 3.2, the data scaling process comes first 

as the data preprocessing before employing the modeling of the generative and 

monitoring models. The data scaling process, which imposes equal importance 

against all variables in the model, works as a critical role, as in other machine 

learning algorithms. This is also important in terms of the stable convergence 

of the model, which is valid for all methods employed in this study. The stand-

ardization to scale each variable is as follows: 

 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑋− 𝜇

𝜎
, (3.5) 

where X is the original variable, and μ and σ are the mean and standard 

deviation of each variable based on the training data, respectively. To establish 

the stopping criteria of the training process, the original dataset was divided 

into training and validation sets, each having 6,000 and 1,200 samples out of a 

total of 7,200 samples.  

The structure of the Info-VAE used in this study is summarized in Table 3.3. 

First, the distributions of the inferential posterior, 𝑞𝜙(𝑧|𝑥(𝑖)), and the genera-

tive posterior, 𝑝𝜃(𝑥(𝑖)|𝑧), are assumed to be multivariate Gaussians because 

process variables with continuous values are considered. The input layer di-

mension is matched with the dimensions of the benchmark process system, TEP, 

which has 50 variables, as suggested in Table 3.1. As one of the most critical 

parameters in the application of the autoencoders, the reduced dimensions of 

the latent space should be determined. There exist several heuristics to deter-

mine the dimensionality of the latent space such as the elbow of the scree plot, 

the cutoff of the eigenvalues greater than 1, or the cumulative percentage of 

explained variance (CPV). As shown in Figure 3.3, the first criteria, the elbow 

of the scree plot, is insufficient to account for the variance of the TEP data in 
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the latent space because it results in excessive loss of information during di-

mension reduction. Therefore, a case study was performed to decide the dimen-

sion of the latent space that is the most efficient in terms of the monitoring 

performance. Based on the settings of the base case which would be introduced 

later in this chapter, the case study was conducted by varying the dimensionality 

of the latent space from 60% to 90% CPV. According to each case, the averages 

of the FDR over the 28 fault cases in TEP were derived and compared as Figure 

3.4. According to the result of the case study, it can be concluded that the 80% 

CPV is enough to efficiently reduce the dimension of the latent space based on 

the monitoring performance. Thus, the number of nodes in the bottleneck layer 

was set to 30. The result is reflected in the output dimension of the second layer 

in the encoder. In this study, the number of hidden layers between the input and 

output, which is another essential hyperparameter determining the performance 

of the model, was determined to be one in both the encoding and decoding net-

works to prevent overfitting. The nonlinear activation functions for the hidden 

layers are set to the leaky rectified linear unit (ReLU), except for the output 

levels, such as the feature and reconstruction layers. In general, no activation 

function is adopted for the output layers in the regression models, which corre-

sponds to the linear activations to fit the means of a multivariate Gaussian for 

the feature code and reconstruction of the input. In the case of layers used to fit 

the standard deviations of the feature codes or the reconstructions, another type 

of activation function, i.e., a softplus activation, is employed to explicitly im-

pose a positive definite constraint for the standard deviations. The relevant hy-

perparameters for configuring the generative model using Info-VAE are listed 

in Table 3.4. The weight parameter adjusting the relative importance between 

the reconstruction loss term and the replaced divergence term from the KL di-

vergence, i.e., the MMD, should be selected to balance the relative scale of each 

element. 
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Figure 3.3. Scree plot for selection of the reduced dimension of the latent space. 
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Figure 3.4. Case study to decide the reduced dimension of the latent space. 

(The dimensionalities of the latent space in each case are represented in the parenthe-

sis.) 
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Table 3.3. Structure of the generative model using Info-VAE. 

Layer Dimension Activation Remarks 

Input 50 -  

Encoder 1 40 Leaky ReLU Alpha: 0.2 

Encoder 2 for Mean 30 Linear  

Encoder 2 for STD 30 Softplus  

Feature 30 -  

Decoder 1 40 Leaky ReLU Alpha: 0.2 

Decoder 2 for Mean 50 Linear  

Decoder 2 for STD 50 Softplus  

Output 50 -  
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Table 3.4. Hyperparameters of Info-VAE. 

Variable Name Value 

MMD weight 50 

Mini batch size 256 

Optimizer RMSProp 

Learning rate 0.001 
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After finishing the training process, the Info-VAE model was used to aug-

ment the original training dataset with artificial samples. The model generates 

samples that can help the manifold learning of AE by emphasizing the boundary 

of the training data based on the latent distribution. To selectively specify the 

boundary of the normal samples distributed by a multivariate Gaussian, a ring-

shape transformation is applied that can be easily extended to a shell of a sphere 

or a hypersphere within a higher space. First, random samples are extracted 

from the prior distribution, which has a multivariate normal distribution in a 

typical VAE having the same dimensionality as the feature space. A specific 

mapping of the samples from the Gaussian to ring-shape distribution is then 

applied to rearrange the sample codes based on the latent space, such that the 

sample codes suggest the meaning of the boundary region based on the original 

dimensional space. The mapping to the boundary is defined as follows: 

 𝑅(𝑧) =  
𝑧

𝑎
+ 𝑏 ∙

𝑧

‖𝑧‖
 , (3.6) 

where a and b are responsible for the scatteredness and radius of the resulting 

ring, respectively. 

The results of the case study for various sets of parameters a and b based on 

two-dimensional Gaussian data are shown in Figure 3.5. By using this mapping 

from the randomly sampled points from a normal distribution, as shown in Fig-

ure 3.5 (a), we can exclusively select the input codes representing boundaries 

in the latent space, which is based on the notion that the latent space contains 

the inherent features of the original data. By adjusting parameters a and b in Eq. 

(3.6) to point to the objective region corresponding to the boundaries of the 

normal state based on the two-dimensional feature space, the desired area in the 

feature space can be specified as shown in Figure 3.5 (b), (c), and (d) depending 

on the purpose. Although the case study is only demonstrated for two-dimen-

sional data, it can also be expanded into higher-dimensional data without a loss 

of generality.



38 

 

Figure 3.5. Case study for various parameters of boundary transformation in 2D Gaussian data. 
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The generated samples can be classified as distinct groups representing dif-

ferent regions of the normal samples to adjust the number of the different aug-

mentation groups by manipulating the scatteredness and radius through a and 

b, respectively. To flexibly control the number of augmented datasets with dif-

ferent characteristics, a strategy that divides boundaries into several specific 

groups and then merges a different number of samples for each group for aug-

menting into the original dataset was used in this study.  

The detailed methodology for augmenting the synthetic data is explained 

based on a case study of TEP. Although the dimension of the feature space is 

beyond the visualizable limit, the main idea of the proposed method for data 

augmentation can be conceptually explained in a two-dimensional space. The 

candidate groups for augmentation were divided into five groups, as shown in 

Figure 3.6. The groups were chosen to be able to thoroughly cover the areas 

that were originally described by the prior distribution while not overlapping 

each other. Each group can be distinguished based on its distance from the mean.  

The groups of infrequent samples that exist far from the mean have a higher 

weight among the augmented data to supplement the deficient information in 

the original data. The sample codes near the center, such as G1, G2, and G3, as 

well as the outer groups such as G4 and G5 representing the boundary, are also 

included in the samples to generate artificial data for augmentation to avoid a 

data imbalance problem owing to an excessive supplementation of the bound-

ary data indiscriminately. Instead, relatively high weights are assigned to the 

outer groups to emphasize the meaning of the augmentation of the boundary 

samples that correspond to rare normal samples. The parameters of the bound-

ary transformation in each group are presented in Table 3.5. 
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Figure 3.6. (a) Sampling from 2D Gaussian distribution  

(b) Candidate groups of samples transformed by the boundary mapping. 
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Table 3.5. Parameters of boundary groups for the TEP case study. 

Boundary groups 
Parameters 

a b 

G1 4 0.01 

G2 4 0.5 

G3 4 1.0 

G4 4 1.5 

G5 4 2.0 
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The total amount of the augmented training dataset was determined by a case 

study to analyze the sensitivity against the relative amount of the augmented 

samples. The augmentation of the training dataset for four relative sizes com-

pared to the original training dataset was tested as suggested in  

 

 

 

Table 3.6. To examine the effectiveness of the augmentation of the boundary 

samples, the average FDR on the 28 fault cases of the TEP based on the latent 

space was compared. As shown in Figure 3.7, the improvement of the monitor-

ing performance by the data augmentation can be maximized in the case of the 

half size of the original training dataset. Thus, the total amount of augmented 

samples was designed to be half of the original training data. The relative 

amounts of each group in the augmented samples were set to be linearly pro-

portional from the center to the outside. Hyperparameters such as the relative 

scale of the augmentation compared to the original data, the importance among 

the various groups, and the number of different groups suggested in Table 3.6 

are adjustable depending on the applications.  

After the augmented training dataset for the construction of the fault detec-

tion system using AE is prepared, the training of the normal state for the process 

fault detection system is performed by defining the normal manifold to be used 

as a monitoring model. The 6,000 samples for the training data out of the total 

7,200 samples of the original data from the TEP simulation model were set apart 

from the validation data after a random shuffling process, which is in accord 

with the structure of the AE assuming each sample as being independent. The 

validation data were used to determine the termination point of the training to 

prevent overfitting using the early stopping criteria. Both the training and vali-

dation data in the original dataset were the same as those used in the modeling 
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of Info-VAE, thus standardization was applied as a scaling process. Because the 

synthetic data obtained from the generative model are scaled, the data for aug-

mentation are attached to the original training and validation dataset resulting 

from the generation by Info-VAE. Finally, the detailed configuration of the 

training and validation datasets after the augmentation of the synthetic data are 

summarized in Table 3.6. The relative size of the total training dataset was set 

to five times that of the validation data, which was determined through a case 

study for various amounts of augmentation.  
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 Base case 
Case 1 

(25%) 

Case 2 

(50%) 

Case 3 

(75%) 

Case 4 

(100%) 

 
Training 

dataset 

Validation 

dataset 

Training 

dataset 

Validation 

dataset 

Training 

dataset 

Validation 

dataset 

Training 

dataset 

Validation 

dataset 

Training 

dataset 

Validation 

dataset 

Original 

dataset 
6,000 1,200 6,000 1,200 6,000 1,200 6,000 1,200 6,000 1,200 

Augmented 

datasets 

G1 - - 100 20 200 40 300 60 400 80 

G2 - - 200 40 400 80 600 120 800 160 

G3 - - 300 60 600 120 900 180 1,200 240 

G4 - - 400 80 800 160 1,200 240 1,600 320 

G5 - - 500 100 1,000 200 1,500 300 2,000 400 

Total 6,000 1,200 7,500 1,500 9,000 1,800 10,500 2,100 12,000 2,400 
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Figure 3.7. Case study to decide the relative amount of the augmentation to the origi-

nal training dataset.  

(Ratio of augmented data to the size of the original training dataset.) 
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Table 3.6. Configurations for the sensitivity analysis of the relative size of the augmented datasets to the original dataset. 

 Base case 
Case 1 

(25%) 

Case 2 

(50%) 

Case 3 

(75%) 

Case 4 

(100%) 

 
Training 

dataset 

Validation 

dataset 

Training 

dataset 

Validation 

dataset 

Training 

dataset 

Validation 

dataset 

Training 

dataset 

Validation 

dataset 

Training 

dataset 

Validation 

dataset 

Original 

dataset 
6,000 1,200 6,000 1,200 6,000 1,200 6,000 1,200 6,000 1,200 

Augmented 

datasets 

G1 - - 100 20 200 40 300 60 400 80 

G2 - - 200 40 400 80 600 120 800 160 

G3 - - 300 60 600 120 900 180 1,200 240 

G4 - - 400 80 800 160 1,200 240 1,600 320 

G5 - - 500 100 1,000 200 1,500 300 2,000 400 

Total 6,000 1,200 7,500 1,500 9,000 1,800 10,500 2,100 12,000 2,400 
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Figure 3.7. Case study to decide the relative amount of the augmentation to the original training da-

taset.  

(Ratio of augmented data to the size of the original training dataset.) 
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As the dimensions of the inner part, the number of nodes of the feature layer 

was set to 30, which is the same as in the case of generative modeling using 

Info-VAE. However, the intermediate structure of the monitoring system using 

AE can be set differently from that of the generative model, where the capacity 

of the model is limited owing to the lack of the original training data. To make 

full use of AE for the monitoring system, the number of hidden layers and the 

size of each layer can be adjusted according to the application. A case study to 

tune the hyperparameters, such as the number of hidden layers and nodes of the 

AE monitoring system, determined the final structure, as shown in  

Table 3.7. All layers employed a fully connected layer, and the weights in all 

cases were initialized using a truncated normal distribution. The nonlinear ac-

tivation functions of the AE monitoring model used to cope with the nonlinear-

ity of the chemical process data were set to a rectified linear unit (ReLU) with 

the same hyperparameters. The nonlinear activations for the output layers for 

the encoder and decoder of the AE monitoring model, which correspond to the 

feature and reconstruction layers, respectively, were not applied to leave them 

as linear units following the convention used in regression problems. Kernel 

regularizations were adopted in the first layers of the encoding and decoding 

networks to control the weight parameters from being excessively large by pe-

nalizing them.  
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Table 3.7. Structure of the monitoring system using AE. 

Layer Dimension Activation Remarks 

Input 50 -  

Encoder 1 46 ReLU Alpha: 0.2; Kernel_regularizer: L2(0.2) 

Encoder 2 42 ReLU Alpha: 0.2 

Encoder 3 38 ReLU Alpha: 0.2 

Encoder 4 34 ReLU Alpha: 0.2 

Feature 30 Linear  

Decoder 1 34 ReLU Alpha: 0.2; Kernel_regularizer: L2(0.2) 

Decoder 2 38 ReLU Alpha: 0.2 

Decoder 3 42 ReLU Alpha: 0.2 

Decoder 4 46 ReLU Alpha: 0.2 

Output 50 Linear  
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The additional hyperparameters used to set up the training conditions are 

listed in  

 

 

 

 

Table 3.8. The loss to be minimized during the training process is set by the 

mean squared error (MSE) between the input and its reconstruction at the end 

of the network. Adam with a default learning rate of 0.001 was applied as the 

optimizer. For the reproducibility of the monitoring system under the same con-

ditions, early stopping criteria were introduced during the training process. The 

early stopping criteria are a methodology suggesting the termination of the 

training process if no improvements more than the minimum changes are made, 

that is, min_delta in  

 

 

 

 

Table 3.8, during a predefined patience epoch by monitoring the validation 

loss. To compare the proposed method under the same conditions as the base 

case, which establishes the monitoring system using only the original training 

data, the same specifications for the training process are applied to the proposed 

case, as shown in  

 

 

 

 

Table 3.8.  
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Table 3.8. Hyperparameters for the training of AE. 

Variable Name Value 

Mini batch size 256 

Loss MSE 

Optimizer Adam 

Learning rate 0.001 

Early stopping 

min_delta 5*10-4 

patience 320 

mode min 
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The configurations of the KDE, which are used to determine the control limit 

for the monitoring system, are presented in  

 

 

 

 

Table 3.9. Although the original process data follow a Gaussian distribution, 

the hidden representations and reconstructions used to obtain the monitoring 

statistics might not follow the same distribution after passing through AE. 

Hence, KDE is utilized as the general approach to estimate the probability den-

sity function of the monitoring statistics, which is the basis of the decision of 

the control limit in each space. The Gaussian kernel, the most common type of 

kernel, was used to estimate the densities of each monitoring statistic. The 

bandwidths, which are the most significant parameters of KDE influencing the 

results of the estimation, were selected based on 20-fold cross-validation to 

cover all data samples in determining the hyperparameter. Since the control 

limits are determined based on the models of the base case and the proposed 

case respectively, they have different values in each case, as shown in  

 

 

 

 

Table 3.9. 
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Table 3.9. Settings for KDE and the control limits for each case. 

 Base case Proposed case 

Kernel type Gaussian Gaussian 

Bandwidth 

(20-fold  

cross-validation) 

𝐻2 6.158 2.335 

SPE 1.438 1.128 

Control Limits 
𝐻α

2 57.85 63.75 

𝑆𝑃𝐸α 31.40 32.25 



54 

To monitor the process fault, two monitoring statistics are defined in the fea-

ture space and the residual space, similar to that of PCA [44]. Instead of T2 in 

the case of PCA, H2 can be analogously defined based on the hidden represen-

tations in the feature space as follows: 

 
𝐻2 =  ℎ𝑇 ∙ ℎ, 

ℎ = 𝑓𝐸𝑛𝑀(𝑓𝐸𝑛𝑀−1 ∙∙∙ (𝑓𝐸𝑛1(𝑥))), 
(3.7) 

where 𝑓𝐸𝑛𝑖 represents the 𝑖𝑡ℎ hidden layer in the encoder network, and M 

is the number of intermediate layers between the input and feature layers. Sim-

ilar to the other statistics in PCA, the SPE can be calculated from the recon-

struction error between the input and its reconstruction as 

 
𝑆𝑃𝐸 =  𝑒𝑇 ∙ 𝑒, 

𝑒 = 𝑥 − 𝑔𝐷𝑒𝑀(𝑔𝐷𝑒𝑀−1 ∙∙∙ (𝑔𝐷𝑒1(ℎ))), 
(3.8) 

where 𝑔𝐷𝑒𝑖 denotes the 𝑖𝑡ℎ hidden layer in the decoder network. With the 

proposed method, the two statistics are observed in real time against the process 

data for fault detection.  

Once the training process is completed, the original training data under nor-

mal operating conditions are fed into the network. Based on the two statistics, 

H2 and SPE, calculated based on the original training data, KDE was applied to 

predefine the control limits for each monitoring chart [45]. The typical choice 

for a significance level of α = 0.05 is adopted such that the confidence limits 

in detecting the faulty conditions when the monitoring statistics of the new sam-

ples exceed the limits are set to 95%.  
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3.3.3. Discussion of the Results 

 In this section, the monitoring system based on the proposed method is 

tested on the TEP fault cases, and the monitoring results are analyzed. To 

demonstrate the advantage of data augmentation in building a fault detection 

system, the performance of the proposed method is compared to that of the base 

case, which only utilizes the original training data in constructing a monitoring 

system. The simulation was run for a total of 7200 samples with a sampling 

frequency of 0.01 hr/sample in the Simulink model, which corresponds to 72 

hr of plant operation. The simulation data of the faulty condition have the same 

size as the training data under normal operations, although the process faults 

are introduced at 1000 simulation times for all cases of faulty conditions.  

To compare the performance of the monitoring systems quantitatively, two 

performance metrics were set up: FDR and FAR [46]. These two metrics were 

defined based on the results of the binary classification test. The monitoring 

results of the data points can be classified into four groups, as shown in Figure 

3.8 [47]. FDR and FAR can be calculated based on the number of instances in 

each group as follows:  

 𝐹𝐷𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 𝐹𝐴𝑅 =  

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (3.9) 

FDR is the ratio of the samples exceeding the control limit to the entire sam-

ple time since the fault has been introduced. Conversely, FAR is the number of 

samples falsely going beyond the control limit per total number of normal op-

eration samples. It needs to maximize FDR on the abnormal data while keeping 

FAR for the normal data as low as possible, which is generally determined as 

5%. These two metrics should be compared simultaneously because a monitor-

ing system with a high FDR and high FAR under a normal state is undesirable. 
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Figure 3.8. Binary classification criteria based on the monitoring results of data points.
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For the first case, the monitoring chart of fault 1 of the TEP is shown in Fig-

ure 3.9. The blue and orange lines represent the monitoring statistics of the test 

samples in the feature space and residual space, 𝐻2  and SPE , respectively. 

The red horizontal lines in each monitoring chart are the respective control lim-

its, 𝐻𝛼
2 and 𝑆𝑃𝐸𝛼, as determined by KDE in  

 

 

 

 

Table 3.9. For fault 1 in the TEP, both statistics can detect the process fault 

immediately after the occurrence of the process anomaly, similar to other meth-

odologies used in previous research [23]. In the investigation during the first 

1000 sample times before the fault was introduced, it was confirmed that more 

than 95% of the samples were classified as being in a normal state, distributed 

within the control limits. Considering the scenario of fault 1, which incurs a 

step deviation of the feed ratio of streams A and C, it is obvious that the majority 

of the process variables deviate from their nominal values during normal oper-

ation. These results verify that the monitoring statistics in both spaces can 

properly define a normal manifold and differentiate the faulty process condition 

from it.  
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Figure 3.9. Monitoring charts of fault 1 for the base case ((a) and (b)) and the proposed case((c) and (d)). 
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For fault 11, which is the random variation of the reactor cooling water inlet 

temperature, the monitoring performance of the proposed method does not 

show a significant improvement in terms of the FDR or FAR compared to the 

base case. However, based on the results of the monitoring charts in the feature 

spaces shown in Figure 3.10 (a) and (c), the proposed method showed more 

pronounced isolation with a larger magnitude in the monitoring statistics for the 

faulty samples compared to the normal operation samples. The false-negative 

rate, similar to the type II error in the statistical analysis, was reduced from 10.9% 

to 5.5%. Therefore, data augmentation can improve monitoring systems. The 

improvement in the feature space is also noteworthy because it is in the feature 

space where data augmentation is designed to emphasize the boundary region 

of the normal space. 
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Figure 3.10. Monitoring charts of fault 11 for the base case ((a) and (b)) and the proposed case((c) and (d)). 



61 

The monitoring result of fault 14, which incurs the sticking of the reactor 

water cooling valve, is shown in Figure 3.11. Although more than 7.5% of the 

monitoring statistics of the base case in Figure 3.11 (a) improperly stay below 

the monitoring limit since a fault occurs in the 1000 sample time, the results of 

the proposed method in Figure 3.11 (c) neatly exceed the limit for all but 0.15% 

of the faulty samples. In terms of the fault detection rate, the fault was detected 

with high accuracy by the proposed method 99.85% of the time, with 92.37% 

being the base case. This demonstrates the effectiveness of the proposed method, 

particularly in the feature space. In addition, it can be confirmed that the pro-

posed method is effective with other types of faults, such as the sticking of a 

valve as fault 14. 
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Figure 3.11. Monitoring charts of fault 14 for the base case ((a) and (b)) and the proposed case((c) and (d)). 
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For fault 18, in which the deviation of the heat transfer within the condenser 

occurs as a random variation type, a similar result can be observed in the mon-

itoring result as shown in Figure 3.12. The monitoring charts in both cases have 

common trends where the fault pushes the state far from the normal condition, 

followed by the control actions compensating it iteratively. Given the control 

scheme applied to the TEP model used in this study [42], the trends of the mon-

itoring charts in Figure 3.12 are the result of controlling the separator tempera-

ture by utilizing the condenser coolant valve. Meanwhile, the proposed method 

showed a distinct result, minimizing the restoration of the normal state and em-

phasizing the magnitude of the fault compared to the base case result, as shown 

in Figure 3.12 (a) and (c). Considering the monitoring results in the residual 

space, Figure 3.12 (b) and (d) shows a better performance than that of the fea-

ture space in both cases, and the improvement of the monitoring performance 

in the feature space from the base case, as shown in Figure 3.12 (c), can be 

interpreted as evidence that the data augmentation encourages manifold learn-

ing. As another advantage of the proposed method, the monitoring indices ex-

hibit a larger magnitude of deviation in the monitoring statistics, which means 

that the proposed method can isolate the fault condition better.  

The fault detection rates for all 28 faults in the TEP are summarized in Table 

3.10. The results of PCA as the linear dimensionality reduction method are also 

included to compare the monitoring performance with the base case and the 

proposed case. While PCA based on the feature space represented slightly better 

monitoring performance than the base case which employed AE as the dimen-

sionality reduction method, the base case showed a much higher FDR than PCA 

based on the residual space, especially in the hard-to-detect cases. This demon-

strates the benefits of the nonlinear dimensionality reduction method of AE.  

The detection rate in the residual space, SPE, is slightly higher in the base 

case than in the proposed case, but the difference is negligible considering that 
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the base case maintains a relatively higher FAR of 8.58% on the normal opera-

tion data than that of the proposed case (6.92%). It is also noteworthy that the 

proposed method in the feature space outperforms the base case for most situ-

ations while maintaining a lower FAR than the base case, which means that it 

can distinguish between normal and abnormal states more accurately.  
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Figure 3.12. Monitoring charts of fault 18 for the base case ((a) and (b)) and the proposed case((c) and (d)). 
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Table 3.10. FDR (%) of PCA, the base case, and the proposed case for all 28 faults in the TEP model. 

(The value in the parenthesis corresponds to FAR (%) in each space.) 

Fault No. 

PCA Base case Proposed case 

 𝑻𝟐 

(1.00) 

 𝐒𝐏𝐄 

(2.80) 

 𝑯𝟐 

(4.45) 

 𝐒𝐏𝐄 

(8.58) 

 𝑯𝟐 

(3.50) 

 𝐒𝐏𝐄 

(6.92) 

1 99.82 99.85 99.69 99.95 99.90 99.90 

2 99.39 99.48 99.37 99.81 99.37 99.55 

3 0.53 12.33 1.63 25.98 1.53 15.26 

4 99.97 99.97 99.40 99.97 99.97 99.97 

5 0.84 9.69 2.90 26.95 2.79 17.38 

6 99.72 99.72 99.72 99.72 99.72 99.72 

7 99.97 99.97 99.97 99.97 99.97 99.97 

8 98.11 98.0 97.69 98.87 98.00 98.50 

9 1.55 13.53 2.21 32.24 7.08 20.79 

10 60.95 92.7 62.34 94.44 75.78 93.61 

11 96.37 98.36 89.15 98.87 94.48 98.68 

12 28.72 43.03 20.35 65.34 39.64 56.51 

13 99.18 99.27 98.15 99.47 99.29 99.40 

14 99.13 99.92 92.37 99.97 99.85 99.95 

15 0.61 7.51 2.06 22.21 1.32 14.47 

16 0.37 7.01 1.63 19.29 0.84 12.56 

17 95.50 98.47 91.69 98.69 97.5 98.61 

18 62.69 84.88 57.15 87.60 70.54 85.02 

19 97.23 99.39 92.45 99.45 97.94 99.39 

20 96.97 97.6 92.21 97.87 97.18 97.73 

21 1.05 7.13 4.55 22.98 2.87 14.92 

22 0.98 18.09 4.45 34.19 3.43 21.53 

23 0.74 8.58 3.21 24.77 2.64 15.93 

24 88.39 97.21 75.89 98.21 92.74 98.06 

25 45.84 89.73 36.09 92.90 67.39 89.92 

26 63.03 91.36 64.89 93.78 77.23 92.08 

27 71.19 90.50 50.43 94.05 63.55 92.84 

28 1.32 9.67 3.47 26.93 5.61 18.26 
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As another performance index for the monitoring system, we can investigate 

the detection delay, which is the time required to detect a fault for the first time 

since it occurred. Except for a few hard-to-detect fault cases, such as faults 3, 

9, and 15, for which the monitoring system could not effectively identify the 

process, the detection delay was significantly reduced by the proposed method 

in some fault cases. In terms of minimizing the loss of profitability due to pro-

cess faults and securing process safety, the proposed method can inform engi-

neers of faults more rapidly, allowing them to handle such faults as quickly as 

possible. Figure 3.13 shows that the delay was significantly reduced by the pro-

posed method. Fault 10, where a random variation in the temperature of the C 

feed occurs, is the case with the greatest reduction in the fault detection delay 

while improving the detection accuracy by more than 10%. The delay in the 

base case was 351 samples, which corresponds to 210 minutes considering the 

sampling frequency of the TEP, whereas the proposed method can cut down on 

it by 168 samples, thereby reducing the fault detection delay by approximately 

100 minutes. Even if the time when a large fault appears is equivalently as-

sumed in terms of the monitoring statistics in the feature space, the detection 

delay can be reduced by 51 samples, corresponding to 30 minutes.  
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Figure 3.13. Comparison of the fault detection delay to first alarm for fault 10. 

base case: 351 samples (210 min), proposed case: 300 samples (180 min). (A fault is introduced at 1000 samples.) 
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For fault 17, where the heat transfer within the reactor deviates from the 

nominal condition, the proposed method also shows an improvement in the de-

tection accuracy and a delay reduction. The monitoring charts in the feature 

space for both cases are shown in Figure 3.14. As shown in the enlarged view 

of the plots, the detection delay in the proposed case was decreased by 21 sam-

ple times, which corresponds to approximately 12 minutes; thus, the monitoring 

accuracy is also improved by the proposed method.  
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Figure 3.14. Comparison of the fault detection delay to first alarm for fault 17. 

base case: 137 samples (82 min), proposed case: 116 samples (70 min). (A fault is introduced at 1000 samples.) 
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4.  

Chapter 4 

 

Process Fault Isolation using Transfer Entropy and 

Graphical Lasso2 

4.1. Introduction 

 

 Statistical process monitoring (SPM) usually comprises three steps. The 

first step is fault detection that observes process faults in real-time. Once a cer-

tain process fault is detected, the root cause of the fault should be identified as 

quickly and accurately as possible in the second step, the fault diagnosis. At the 

final step of the process monitoring, process recovery, the root cause that was 

identified in the second step should be eliminated so that the process can re-

cover its original normal state. Even though the first and last steps of SPM cor-

responding to the process fault detection and process recovery are the crucial 

ones, the fault diagnosis step is notably challenging and difficult. To tackle fault 

diagnosis, various methodologies have been suggested, which can be catego-

rized into knowledge-based and historical data-based methods.  

Knowledge-based methods have the characteristics of computational tracta-

bility and human readability, and the collective knowledge of all ages based on 

experience is the most trustworthy resource for the knowledge-based method. 

The notable examples are adjacent matrix or reachability matrix which can be 

built by using process flow diagrams (PFD) or piping & instrumentation dia-

grams (P&ID), and such matrices are straightforward to construct and interpret-

 
2 This chapter is an adapted version of H. Lee., C. Kim., S. Lim., and J. M. 

Lee, “Data-driven fault diagnosis for chemical processes using transfer en-

tropy and graphical lasso.”, Computers & Chemical Engineering, 142, 

107064. 



72 

able. In addition, structural models composed of a set of fundamental first prin-

ciples can be used to capture the causal relations in the process together with 

process knowledge, which are commonly called grey-box models. 

However, knowledge-based methods that depend entirely on domain 

knowledge of experts are not only a waste of human resources, but they are 

becoming a more impractical and exhausting task as the complexity and scale 

of a process consistently increases. Although knowledge-based methods pro-

vide promising results in mechanical and aeronautical applications in which the 

mature linear theory works, they are unsuitable for the inherently nonlinear 

chemical process [22]. In addition, knowledge-based methods accompany the 

validation by process historical data [48].  

Process historical data-based methods show their advantage over knowledge-

based methods as the dimension and complexity of a process increases. When 

developing a diagnosis system for a nonlinear and large-scale process, the his-

torical data-based methods are more plausible than the knowledge-based meth-

ods since the diagnosis system requires relevant domain knowledge to build an 

explicit system model in different areas. In addition, doubtful or erroneous in-

formation may disturb a modeling result, which degrades the performance of 

the knowledge-based methods. As historical data-based methods do not require 

any prior knowledge of the process for diagnosis, they can be applied to general 

forms of nonlinear processes. Knowledge-based methods generally go through 

a qualitative procedure to infer the results of the diagnosis, while the historical 

data-based methods can carry out quantitative analysis to obtain more detailed 

analysis results without the exact knowledge of an expert. 

Various studies on historical data-based diagnosis methodologies were con-

ducted since the early development stage of SPM. PCA, proposed by Pearson 

and further developed by Hotelling, is the first multivariate statistical technique 

for a data-based diagnosis system. However, as a dimensionality reduction 

method, it is inevitable that the loss of information for capturing the root cause 
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of the fault would occur in the reconstruction process from the reduced to the 

original dimensional data space. Other representative studies using dimension-

ality reduction methods such as PLS, ICA, KPCA, multiway principal compo-

nent analysis (MPCA) [49], dynamic principal component analysis (DPCA), 

and vertices principal component analysis (VPCA) [50] are also confronted 

with the same limitations of information loss in the reconstruction. To alleviate 

these limitations, various studies exploited the use of neural networks to de-

velop diagnostic classifiers. The representative studies include incorporation of 

prior domain knowledge or expert system, data preprocessing, filtering, and in-

tegration of another type of neural network [22]. The fault diagnosis system, as 

the neural network is based on the supervised learning framework using an 

identified training database, is bound to have limitations exhibiting unreliable 

performance in unknown situations when it goes out of training data. To rectify 

these shortcomings the following methods that identify the causal relation of 

the abnormality in an unsupervised manner are proposed using the characteris-

tics of the data. Causal analysis was investigated from various viewpoints. 

Cross-correlation analysis [48], which calculates the correlation between a pair 

of time series, estimates the time delay on the basis of the corresponding lag. 

While cross-correlation analysis is practical and easy to implement, it is vulner-

able to non-linear relationships and it cannot reflect the trend in time series in 

the estimation of time delay. At the other end of the spectrum, Granger causality 

[51], a methodology based on regression models, can be used to reveal a causal 

relationship taking into account the dynamics. It concludes the causal relations 

between two variables by comparing the two regression models. One is the re-

gression model of variables based only on lagged values of itself and the other 

is the augmented regression model with the addition of lagged values of another 

variable. If a significant improvement in the regression performance compared 

to that of the original model exists, Granger causality would capture the causal 

relationship between those variables [52]. Although Granger causality makes 



74 

up for the weakness of cross-correlation, which is the inability to give consid-

eration to dynamics, it also assumes a linear relationship among the variables 

and the accuracy of the regression model considerably affects the result of 

Granger causality analysis. Apart from the time domain methodologies, fre-

quency domain methods to find causality were also attempted, which are rep-

resented by the directed transfer function (DTF) and partial directed coherence 

(PDC) [48]. However, the frequency domain methods also possess drawbacks 

similar to those of the time domain methods. Recently, transfer entropy [12], 

which is an information-theoretic approach of causality analysis, was suggested 

as an up-to-date analysis measure. Transfer entropy was first applied in the neu-

roscience area, in which an influential network between genes is difficult to 

infer due to internal stimuli and complexity of the system. As a new time do-

main data-based methodology, transfer entropy is a more effective way of deal-

ing with causal relationships in the nonlinear process than the previous ones 

based on the linearity assumption between subsystems. The application of 

transfer entropy to chemical processes started in the early 2000s and turned out 

to be a promising analysis measure [12].  

Various studies utilized the concept of transfer entropy for fault diagnosis 

problems in chemical processes. At the early stage of using transfer entropy 

diagnosis methodology, Bauer et al. [53] conducted a preliminary study that 

focused on the structural transition of information transfer from normal to ab-

normal state in transfer entropy. The results revealed the inconsistency issue of 

transfer entropy in a different condition of the process, which means that the 

direction of the causal relationship may change depending on the state. In ad-

dition, in the earlier studies transfer entropy was only applied to small-scale 

processes for demonstration due to the critical drawback that the calculations 

required immense computational cost when extended to industrial scale. The 

process demonstrated in the study of Bauer et al. [53] consisted of a total of 12 

variables, of which only 5 variables were used in causal analysis using transfer 
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entropy.  

Bauer et al. [15] suggested in a subsequent study that the fault propagation 

path can be resolved by proposing a causality measure utilizing transfer entropy 

without any observable time delay in a chemical process. Nevertheless, the 

causal map derived from the new measure was limited to presenting just the 

result of a reactor with 10 variables.  

By expanding the dimension of the process, Bauer and Thornhill [54] 

adopted transfer entropy to inspect the cause-effect relations of the data from 

TEP, which is a benchmark chemical process. However, the study analyzed 

causal relationships only for a subset of the entire set of variables. Due to the 

long sampling intervals, they excluded 19 concentration measurement variables 

(‘XMEAS #23~41’ in the 41 TEP) and exploited only 22 measurement varia-

bles, which is only half of the total measurement variable set. Recently, Lindner 

et al. [55] compared transfer entropy against Granger causality for a chemical 

process with seven process variables which was merely a simple water tank 

simulation, and observed the same limitation in terms of the scale of the target 

process. It is not a constructive way to exclude available measurable variables 

from the analyzed process, because it not only limits the scope of the process 

monitoring but also generalizes the methodology. Furthermore, the TEP has 12 

additional variables that represent manipulated variables used in the control 

loops. Even though these variables were also considered and put on record with 

the set of measured variables, the manipulated variables were not evaluated in 

this study. However, according to the guidance of Isermann [56], the input var-

iables of the control scheme corresponding to the manipulated variables should 

be included in the object of investigation because some types of fault may be 

compensated for by the control scheme.  

This study was motivated by the main shortcoming of previous studies that 

transfer entropy is only applicable to limited small-scale processes primarily 

due to the high computational cost. The proposed method for the root cause 
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analysis suggests an integrated use of transfer entropy with a regularization 

method, graphical lasso, to alleviate the drawback in the costs by eliminating 

redundant relationships among the entire variable set prior to costly calculation 

of causality measures. Therefore, in this study, a new methodology using trans-

fer entropy was designed to improve the viability of fault diagnosis that can be 

effectively applied to the industrial-scale process in terms of cost-effectiveness 

while embracing all of the available variables.  

The proposed method was tested for two processes to compare its perfor-

mance with that of the conventional transfer entropy method. The proposed 

method was first applied to a selective catalytic reduction (SCR) system, to test 

its performance and verify the operating mechanism during the fault diagnosis 

process on an open-loop small-scale process. Afterward, the method was ap-

plied to the widely used TEP benchmark problem to test its performance on a 

closed-loop industrial-scale process.  

This chapter is outlined as follows. In Section 2, the preliminaries essential 

for describing the proposed methodology are introduced. Then, in Section 3 the 

proposed methodology is applied to SCR system and the result of it is discussed. 

Finally, the case study and discussion about the TEP system are presented in 

Section 4.  
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4.2. Fault Isolation using Transfer Entropy Integrated 

with Graphical Lasso 

In a previous study by C. Kim et al.[47], a new fault detection algorithm that 

incorporates the Markov random field (MRF) and graphical lasso is proposed. 

With the help of the iterative graphical lasso, the proposed fault detection 

method improves monitoring performance while reducing the computational 

cost of constructing the MRF by extracting only the significant relationships 

between the highly related variables before the monitoring process. Meanwhile, 

transfer entropy, statistics for causal analysis, has an analogous limitation to 

estimate the probability density functions (PDFs). The inherent limitation of 

transfer entropy is that it incurs excessive computational cost in the pairwise 

calculation in terms of each process variable. This needs to be managed to make 

it practical for the industrial-scale process. Therefore, along with the basis of 

previous work, we propose a fault diagnosis methodology that takes advantage 

of the superior performance of the causal analysis of transfer entropy while re-

solving the limit of high cost by incorporating the regularization method. In 

addition, another issue with transfer entropy is that performance strongly de-

pends on the structural configuration which corresponds to the embedding pa-

rameters of the cause and effect variables and prediction horizon. Thus, the reg-

ularization method also has a positive effect in terms of making parameter tun-

ing feasible. 

The flowchart of the proposed methodology is shown in Figure 4.1. When a 

fault is detected by the real-time fault detection algorithm, the fault diagnosis 

proceeds according to the proposed method in the order shown in the gray 

shaded box. According to the study of Bauer et al. [53], the directionality of the 

causal relationship between process variables can be changed in abnormal pro-

cess conditions. The notable difference of the proposed fault diagnosis method 
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from the previous fault detection algorithm is that subgroups modeling via iter-

ative graphical lasso is performed based on the fault data rather than normal 

data. As the next step, transfer entropy is calculated with respect to each sub-

group. The causality measure proposed by Bauer et al. [15] is derived from the 

transfer entropy. Lastly, the root cause analysis is carried out based on the rela-

tive magnitude of the causality measures. After the fault diagnosis is done, the 

entire procedure of process monitoring should be completed through the pro-

cess recovery step. The detailed procedure of fault diagnosis in the gray box is 

described in the following sections for each case study. 
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Figure 4.1. Flowchart of process monitoring with proposed fault diagnosis method. 

(gray-shaded) 

 

  



80 

4.2.1. Graphical Lasso for Sub-group Modeling 

The elements of the inverse covariance matrix based on standardized data 

represent the structure of the undirected graphical model. The relationship be-

tween variables with high relevance can be obtained using the L1-penalized reg-

ularization, 𝐿𝐴𝑆𝑆𝑂, based on the undirected graph [18]. As the preprocessing 

of the proposed root cause methodology, subgroup modeling, which extracts 

relevant relationships among process variables in each fault condition, is per-

formed via the iterative graphical lasso. The variables that are excluded from 

the subgroup of the preceding iteration are reconstructed into subgroups by it-

eratively setting up the graphical lasso problem. The lasso penalty parameters 

(ρ, in Eq. (2.20) of section 2. 4.) for each iteration, an important hyperparameter 

that determines the sparsity of the resulting lasso problem, are determined by 

the number of pre-determined subgroups (G) such that a similar number of var-

iables is distributed to each subgroup. The number of subgroups (G) is deter-

mined by case studies based on process monitoring performance [47]. 
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4.2.2. Transfer Entropy for Fault Isolation 

After the preprocessing step, transfer entropies for each subgroup are calcu-

lated to obtain a metric for the causality analysis as in Eq. (2.13) and (2.14), 

respectively. In this study, the transfer entropy is computed using the algorithm 

suggested by Lindner et al [43,45]. The transfer entropy is calculated as the 

difference between the Shannon entropies with and without considering the ef-

fect of the cause variables as in Eq. (2.13). The probability density estimation 

in the Shannon entropy was performed by KDE, and the number of bins of KDE 

was set to 10. As mentioned before, the analytical performance of transfer en-

tropy depends heavily on hyperparameters, which include L and K, each corre-

sponding to the embedding parameters of the cause and effect variables. There 

are also prediction horizon, H, and the estimated time delay between the process 

variables X and Y, 𝜏. The embedding parameter of the effect variable, K, is 

generally set to one by the 'Self Prediction Optimality' requirement to identify 

the causal relationship that excludes the effect of its information storage [14]. 

When the system dynamics can be identified, the optimal parameters can be 

determined accordingly. However, if this is not the case, it is recommended to 

use the same value for the prediction horizon (H) and time delay (𝜏). In addition, 

the embedding parameter of the effect variable (L) is generally set as small a 

value as possible considering the computational cost [15]. The prediction hori-

zon and embedding parameter for the cause variable are determined depending 

on the system under consideration.  

Once the calculation of transfer entropy is completed within each subgroup, 

the causality measure is derived to perform the causal analysis. The causality 

measure between X and Y (Eq. (2.14)) is defined as the difference between the 

information transfer from X to Y and that of the opposite direction. The fact 

that the causality measure has a large positive value means that the causal in-

fluence of X on Y is significant, and if it is a large negative value, vice versa. 



82 

No causal relationship is captured if the causality measure is less than the 

threshold value. As the metric of transfer entropy has its meaning in relative 

magnitude rather than absolute value, the measures need to be scaled for com-

parison. Based on the largest value from the causality measure, all the values in 

subgroups are normalized and then significant causal relationships above the 

threshold value are classified.  
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4.3. Case study and Discussion 1  

In this section, we apply the proposed methodology to fault data of an indus-

trial process to verify its performance. The proposed root cause methodology is 

first applied to a relatively small-scale open-loop system, the SCR process. The 

description of the process and the detailed procedure for applying the proposed 

methodology can be found in the subsequent sections. 

 

4.3.1. Selective Catalytic Reduction Process 

The proposed methodology for root cause analysis of process fault is vali-

dated using a process model based on a real system. As the first case study for 

validation, the SCR process is utilized. The SCR process is the after-treatment 

system to reduce NOx in diesel engine exhaust, which is an essential part to 

satisfy the environmental regulations of diesel vehicles. The exhaust of diesel 

engines is injected into the catalytic reactor and the target material NOx is re-

duced by the redox reaction with the reductant NH3. The one-dimensional dy-

namic model for the SCR reactor is divided into four sections along with the 

flow direction to improve the accuracy of the simulation according to the 

Method of Lines as Figure 4.2. The governing equations of the model are de-

rived based on the previous work of Depcik et al. [58] and Kim et al. [59]. They 

include mass and energy balances in the bulk gas and catalytic surface phase 

and interfacial phenomena between the two phases. The main difference be-

tween the studies of Depcik et al. [58] and Kim et al. [59] is that the process 

itself considered in the former study is ‘Urea SCR’, which exploits the urea as 

the precursor of ammonia, rather than the Urealess SCR combined with a lean 

NOX trap (LNT) system. Therefore, the relevant reaction kinetics describing the 

whole SCR system are presented in  
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Table 4.1. The reactions include adsorption, desorption (R1–R4), and oxida-

tion (R5–R7) of NH3, oxidation of NO (R8), and reduction of NOx (R9–R12). 

The kinetic parameters of the model are estimated by the particle swarm opti-

mization algorithm using the chassis dynamometer test data. There are 18 var-

iables in the SCR model, and the details are provided in Table 4.2. The entire 

set of target variables subject to diagnosis is composed of 8 inlet variables and 

10 outlet variables. Various types of faults such as step deviation, random vari-

ation, and sticking can be applied in the inlet variables. To test the proposed 

method on the SCR system, a random variation fault in the mole fraction of 

NH3 of the SCR inlet gas was introduced and diagnosed using the proposed 

methodology.  
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Figure 4.2. Schematic diagram of the 1-dimensional dynamic SCR model. 

(𝐿𝑅: 𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ, 𝐿𝑧: 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛.) 

 



86 

 

Table 4.1. Reaction kinetics and kinetic parameters of selective catalytic reduction (SCR). 

(R1) 𝑁𝐻3 +  𝑆1 →  𝑁𝐻3 − 𝑆1 𝑟1 = 𝑘1𝑥𝑁𝐻3
(1 − 𝜃𝑚,1)𝜓1 

(R2) 𝑁𝐻3 − 𝑆1 →  𝑁𝐻3 +  𝑆1 𝑟2 = 𝑘2𝜃𝑚,1𝜓1 

(R3) 𝑁𝐻3 +  𝑆2 →  𝑁𝐻3 − 𝑆2 𝑟3 = 𝑘3𝑥𝑁𝐻3
(1 − 𝜃𝑚,2)𝜓2 

(R4) 𝑁𝐻3 − 𝑆2 →  𝑁𝐻3 +  𝑆2 𝑟4 = 𝑘4𝜃𝑚,2𝜓2 

(R5) 𝑁𝐻3 +  5 4⁄ 𝑂2  →  NO + 3 2⁄ 𝐻2𝑂 𝑟5 = 𝑘5 𝑥𝑁𝐻3
𝑥𝑂2

(𝑇𝑤𝑐𝐺)⁄  

(R6) 𝑁𝐻3 +  3 4⁄ 𝑂2  →  1 2⁄ 𝑁2 + 3 2⁄ 𝐻2𝑂 𝑟6 = 𝑘6 𝑥𝑁𝐻3
𝑥𝑂2

(𝑇𝑤𝑐𝐺)⁄  

(R7) 𝑁𝐻3 +  𝑂2  →  1 2⁄ 𝑁2O + 3 2⁄ 𝐻2𝑂 𝑟7 = 𝑘7 𝑥𝑁𝐻3
𝑥𝑂2

(𝑇𝑤𝑐𝐺)⁄  

(R8) NO +  1 2⁄ 𝑂2  ↔  𝑁𝑂2 𝑟8 = 𝑘8 (𝑥𝑁𝑂𝑥𝑂2

0.5 − 𝑥𝑁𝑂2
𝐾𝑝⁄ ) (𝑇𝑤𝑐𝐺)⁄ ∗ 

(R9) 𝑁𝐻3 − 𝑆2 + 𝑁𝑂 + 1 4⁄ 𝑂2 

 →  S2 + 𝑁2  +  3 2⁄ 𝐻2𝑂 
𝑟9 = 𝑘9 𝑥𝑁𝑂𝑥𝑂2

𝜃𝑚,2𝜓2 𝐺⁄  

(R10) 𝑁𝐻3 − 𝑆2 + 1 2⁄ 𝑁𝑂 + 1 2⁄ 𝑁𝑂2  

→  S2 + 𝑁2  +  3 2⁄ 𝐻2𝑂 
𝑟10 = 𝑘10𝑥𝑁𝑂𝑥𝑂2

𝜃𝑚,2𝜓2 

(R11) 𝑁𝐻3 − 𝑆2 + 3 4⁄ 𝑁𝑂2  

→  S2 + 7 8⁄ 𝑁2  +  3 2⁄ 𝐻2𝑂 
𝑟11 = 𝑘11𝑥𝑁𝑂2

𝜃𝑚,2𝜓2 

(R12) 𝑁𝐻3 − 𝑆2 + 5 4⁄ 𝑁𝑂2  

          →  S2 + 1 8⁄ 𝑁2 + 𝑁𝑂2 + 3 2⁄ 𝐻2𝑂 
𝑟12 = 𝑘12𝑥𝑁𝑂2

𝜃𝑚,2𝜓2 

𝜃𝑚,𝑘 ∶  Coverage fraction of ′k′ site (0~1), 𝜓𝑘: 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑘 𝑠𝑖𝑡𝑒 [𝑚𝑜𝑙 𝑚3⁄ ], 

G: Inhibition factor, 𝑘𝑖 ∶  Kinetic parameters. 

(𝑘 ∶  intermediate index (S1, S2), 𝑖 ∶  reaction index (1~12),  

  ∗ 𝐾𝑝 = exp[−∆G 𝑅𝑇𝑤𝑐⁄ ] , ∆G = ∆H − T∆S ) 
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Table 4.2. Process variables of the SCR model. 

Variable 

No. 
Variable Name 

Variable 

No. 
Variable Name 

1 Temperature of SCR inlet gas 10 Mole fraction of NO of SCR outlet gas 

2 Volumetric flow rate of SCR inlet gas 11 Mole fraction of NO2 of SCR outlet gas 

3 Mole fraction of NH3 of SCR inlet gas 12 Mole fraction of N2O of SCR outlet gas 

4 Mole fraction of NO of SCR inlet gas 13 Mole fraction of N2 of SCR outlet gas 

5 Mole fraction of NO2 of SCR inlet gas 14 Mole fraction of O2 of SCR outlet gas 

6 Mole fraction of N2 of SCR inlet gas 15 Mole fraction of H2O of SCR outlet gas 

7 Mole fraction of O2 of SCR inlet gas 16 Coverage fraction of S1 site 

8 Mole fraction of H2O of SCR inlet gas 17 Coverage fraction of S2 site 

9 Mole fraction of NH3 of SCR outlet gas 18 Temperature of SCR outlet gas 
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4.3.2. Implementation of the Proposed Methodology 

To apply the proposed methodology combining the graphical lasso and trans-

fer entropy, several parameters of each step must be determined. In this example, 

a total of 18 SCR variables were analyzed in two groups of nine each by adjust-

ing the hyperparameter ρ of the graphical lasso, thus reducing the unnecessary 

cost of transfer entropy calculations. With the help of the first step, the next step 

for the transfer entropy analysis requiring pairwise analysis about the whole 

variables can be reduced by more than 50%. The embedding parameters of 

transfer entropy such as 𝐿, 𝐻, and 𝜏 were determined through a case study of 

the various faults in terms of each parameter, which has a critical influence on 

the performance of the transfer entropy. The hyperparameters are provided in  

 

 

 

 

Table 4.3. The simulation was run for 2000 sample times, and a process fault 

for the SCR example started at the beginning of the simulation. The threshold 

of the causality measure, which is the cutoff value to filter out only meaningful 

causal relationships exceeding it, was set to 0.85. This value should be deter-

mined depending on the target process and can be adjusted to a smaller value 

to perform a more conservative diagnosis. 
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Table 4.3. Hyperparameters of transfer entropy in SCR. 

Hyperparameter Value 

Embedding dimension of cause variable (L) 2 

Embedding dimension of effect variable (K)* 1 

Prediction horizon (H) 2 

Estimated delay (τ = H) 2 

* Self Prediction Optimality: K = 1. 
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4.3.3. Discussion of the Results 

The fault scenario of random variation of the inlet mole fraction of NH3, var-

iable 3 in  

 

 

 

Table 4.2, was applied to the SCR system. For each subgroup divided in this 

condition, the result of causality measure from the proposed method is provided 

in Figure 4.3. Since it is the relative magnitude of the causality measures that 

have a significant meaning in the interpretation of the diagnosis result, the 

measures were shown as a bar graph after normalization based on the largest 

absolute value. The relationships exceeding the threshold value of the causality 

measure, indicated by the transparent yellow plane, are summarized in  

 

Table 4.4 in the order of magnitude. From the relationships detected in sub-

group 2, variable 3, the root cause of the process fault, is well identified as the 

cause variable. As the random variation occurs in the NH3 mole fraction of the 

inlet gas, the mole fraction of the other inlet gas components and that of NO2, 

the main component of the NOx, are mainly affected. It is also noteworthy that 

no causal relationship is identified in subgroup 1, given that the cause is dis-

tinctly isolated by the proposed method.  

 

Table 4.4 also includes the analysis result on all 18 variables, which indicates 

the proposed method requires only about half of the computational cost com-

pared to the conventional diagnostic method. Thus, the proposed method has 

the advantage of reducing the cost of diagnosis. In conclusion, the proposed 

methodology could capture the root cause of the process fault in the open-loop 
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system. 
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Table 4.4. Application results and causal analysis of SCR example. 

  Process variables 

in each group 

Calculation time 

(sec) 

Causal relationship 

( causality measure* ) 

Proposed Method 

Subgroup 1 1,2,9,10,12,14,15,16,17 55 - 

Subgroup 2 3,4,5,6,7,8,11,13,18 54 

3 → 8 (1) 

3 → 11(0.9347) 

3 → 7(0.9213) 

3 → 5(0.8675) 

 Total: 109  

Conventional 

Transfer Entropy 

Method 

Whole pro-

cess 
1 ~ 18 236 

3 → 14 (1) 

3 → 8 (0.9191) 

3 → 11 (0.8591) 

* Relative values of causality measure are represented in parenthesis. 
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Figure 4.3. Causality measure plot of fault scenario of SCR example. 
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4.4. Case study and Discussion 2 

In this section, we apply the proposed method to the fault data of TEP model, 

to validate the performance of the proposed method in the industrial-scale pro-

cess. It is also noteworthy that TEP is a closed-loop benchmark chemical pro-

cess that includes various control structures. The diagnosis of TEP, which in-

cludes recycle stream and complex control logic, was conducted to examine the 

applicability of the proposed methodology on the actual processes. 

4.4.1. Tennessee Eastman Process 

TEP is a benchmark process widely used for testing process monitoring and 

control algorithms. It consists of five process units, which are a reactor, con-

denser, separator, stripper, and recycle compressor, as shown in Figure 4.4. Four 

gaseous feeds, A, C, D, and E are used to produce two liquid products G and H 

through gas-phase catalytic reactions, followed by the separation process to ob-

tain the liquid products from the unconverted reactants. Some of the reactions 

involve inert gas 'B' and are accompanied by two side reactions producing by-

product 'F'. In this study, among three modes in the study of Downs and Vogel 

[40], the base case mode which produces two products at the ratio of 50:50 is 

adopted. The analysis was based on the revised MATLAB version [41], which 

contains a control structure proposed by Ricker [41]. There are 41 measured 

output variables with noise: 22 continuous measurements and 19 sampled com-

position measurements from analyzers. There are also 12 manipulated variables 

for process control. Of the total 53 parameters, 50 variables excluding three 

manipulated variables (compressor recycle valve, stripper steam valve, and ag-

itator speed) with a fixed value in the base case were analyzed. The 50 variables 

are listed in Table 4.5. The revised MATLAB model has a total of 28 fault cases, 

including 20 pre-defined faults equipped in the original TEP model. A total of 
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28 faults cover various fault types such as step change, random variation, and 

sticking, as well as multiple fault cases where more than one fault occurs sim-

ultaneously. All the types of disturbances defined in TEP are summarized in 

Table 4.6. 
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Figure 4.4. Process Flow Diagram of Tennessee Eastman process. Revised MATLAB version.
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Table 4.5. Process variables of TEP subject to causal analysis. 

Variable 

No. 
Variable Name 

Variable 

No. 
Variable Name 

1 A feed flowrate (stream 1) 18 Stripper temperature 

2 D feed flowrate (stream 2) 19 Stripper steam flowrate 

3 E feed flowrate (stream 3) 20 Compressor work 

4 A & C feed flowrate (stream 4) 21 Reactor c/w outlet temperature 

5 Recycle flowrate (stream 8) 22 Condenser c/w outlet temperature 

6 Reactor feed rate (stream 6) 23~28 

Reactor feed analysis 

( A~F mol% ) 

(stream 6) 

7 Reactor pressure 29~36 
Purge gas analysis ( A~H mol% ) 

(stream 9) 

8 Reactor level 37~41 
Product analysis ( D~H mol% ) 

(stream 11) 

9 Reactor temperature 42 D feed flow valve (stream 2) 

10 Purge rate (stream 9) 43 E feed flow valve (stream 3) 

11 Product separator temperature 44 A feed flow valve (stream 1) 

12 Product separator level 45 A & C feed flow valve (stream 4) 

13 Product separator pressure 46 Purge valve (stream 9) 

14 

Product separator under 

flowrate 

(stream 10) 

47 
Separator pot liquid flow valve 

(stream 10) 

15 Stripper level 48 
Stripper liquid product flow valve 

(stream 11) 

16 Stripper pressure 49 Reactor c/w flow valve 

17 
Stripper under flowrate 

(stream 11) 
50 Condenser c/w flow valve 
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Table 4.6. Process faults in Tennessee Eastman process (TEP). 

No. Description (Root Cause variable) Type 

IDV(1) A/C feed ratio, B composition constant (stream 4) Step 

IDV(2) B composition, A/C ratio constant (stream 4) Step 

IDV(3) D feed temperature (stream 2) Step 

IDV(4) Reactor cooling water inlet temperature Step 

IDV(5) Condenser cooling water inlet temperature Step 

IDV(6) A feed loss (stream 1) Step 

IDV(7) C header pressure loss – reduced availability (stream 4) Step 

IDV(8) A, B, C feed composition (stream 4) Random variation 

IDV(9) D feed temperature (stream 2) Random variation 

IDV(10) C feed temperature (stream 4) Random variation 

IDV(11) Reactor cooling water inlet temperature Random variation 

IDV(12) Condenser cooling water inlet temperature Random variation 

IDV(13) Reaction kinetics Slow drift 

IDV(14) Reactor cooling water valve Sticking 

IDV(15) Condenser cooling water valve Sticking 

IDV(16) 
*Unknown  

(Deviation of heat transfer within stripper heat exchanger) 

*Unknown 

(Random variation) 

IDV(17) 
*Unknown  

(Deviation of heat transfer within reactor) 

*Unknown 

(Random variation) 

IDV(18) 
*Unknown  

(Deviation of heat transfer within condenser) 

*Unknown 

(Random variation) 

IDV(19) 
*Unknown (recycle valve, stripper steam valve, underflow 

separator (stream 10), underflow stripper (stream 11)) 

*Unknown 

(Sticking) 

IDV(20) *Unknown  *Unknown 

IDV(21) A feed temperature (stream 1) Random variation 

IDV(22) E feed temperature (stream 3) Random variation 

IDV(23) A feed pressure (stream 1) Random variation 

IDV(24) D feed pressure (stream 2) Random variation 

IDV(25) E feed pressure (stream 3) Random variation 

IDV(26) A & C feed pressure (stream 4) Random variation 

IDV(27) Reactor cooling water pressure Random variation 

IDV(28) Condenser cooling water pressure Random variation 

* Unknown: Uncovered by A. Bathelt in revised MATLAB version model [41]. 
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4.4.2. Implementation of the Proposed Methodology 

To implement the proposed methodology, 50 variables of TEP were divided 

into five subgroups using the graphical lasso, and fault diagnosis was carried 

out for each of the groups. Like the previous case study, the hyperparameter ρ 

of the graphical lasso was adjusted to include ten process variables in each sub-

group on average. The embedding parameter L had the best diagnostic perfor-

mance through a case study of the various faults, as shown in  

 

Table 4.7. The remaining hyperparameters were specified by the values used 

in previous work by Bauer et al. [15]. and Wibral et al. [14]. The hyperparam-

eters used in this study are summarized in  

 

Table 4.7. The simulation was run during a total of 7200 sample points by 

setting the disturbance to occur with the start of the simulation. The cutoff value 

to find causal relationships was set to the same as the previous example of the 

chemical process, 0.85. 
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Table 4.7. Hyperparameters of transfer entropy in TEP. 

Hyperparameter Value 

Embedding dimension of cause variable (L) 4 

Embedding dimension of effect variable (K)* 1 

Prediction horizon (H) 4 

Estimated delay (𝜏 = H) 4 

* Self Prediction Optimality : K = 1 
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4.4.3. Discussion of the Results 

Upon implementation of the proposed methodology, the fault diagnosis re-

sults of IDV (4) are shown in Figure 4.5. The 11th variable of the second sub-

group, variable 49 in the original numbering of Table 4.5, was detected as the 

root cause variable that exceeded the threshold value of the transparent yellow 

plane, as summarized in  

 

 

Table 4.8. In addition, variables 21 and 9, which correspond to the 4th varia-

ble in the second subgroup and the 4th variable in the 5th subgroup, respectively, 

were indicated as the next most likely root cause variables, although they did 

not exceed the threshold value. IDV (4) is a fault case where a step change 

deviation occurs at the inlet water temperature of the reactor cooling water. 

Meanwhile, although the fault in the inlet water temperature is not represented 

by a specific variable, the proposed method successfully points out variable 49, 

'reactor cooling water flow valve', as the most relevant process variable of the 

actual root cause. The diagnosis result is reasonable considering the reactor 

temperature controller, the 16th control loop in the control strategy of the TEP 

model [41], in which the temperature of the reactor is controlled by the reactor 

cooling water flow used as a manipulated variable. Although the causality 

measure has a value less than the threshold and is not presented as a result of 

the diagnosis algorithm, considering that the 21st and 9th variables captured by 

the relatively high causality measure are 'reactor cooling water outlet tempera-

ture' and 'reactor temperature', respectively, the proposed methodology could 

pinpoint the root cause variable of IDV (4). 
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Figure 4.5. Causality measure plot of IDV (4) in each subgroup. 
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Table 4.8. Application results and causal analysis of IDV(4). 

 Process variables 

in each group 

Calculation time 

(sec) 

Causal relationship 

( causality measure* ) 

Subgroup 1 1,7,10,13,16,42,43,44,46 5,903 - 

Subgroup 2 11,18,20,21,22,29,35,38,47,48,49 9,996 48 → 49 (-1) 

Subgroup 3 2,3,4,24,28,31,34,40,45 6,579 - 

Subgroup 4 23,25,26,30,32,33,36,37,39,41 8,062 - 

Subgroup 5 5,6,8,9,12,14,15,17,19,27,50 10,027 - 

* Negative value means a causal relationship in the opposite direction. 

* Relative values of causality measure are represented in parenthesis. 
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Not only in the case of IDV (4) but also for most disturbance cases of TEP, 

process variables do not include the direct root cause variables of faults. Since 

not all the variables in the process are measured, it is not possible to present the 

variables that are precisely the cause, particularly the fault cases. Moreover, 

unlike the SCR system, which is an open-loop system, TEP is a closed-loop 

simulation that reflects the control strategy to satisfy the process specifications 

such as production rate, inventory control, and hard constraints of the process. 

It changes the process to alleviate the effect of disturbances, which makes it 

more difficult to identify the exact root cause variable. It is also a limitation that 

the faults can be propagated back to the upstream as well as the downstream of 

the process due to the presence of recycle streams. In contrast to the previous 

studies, which reported the diagnosis results by analyzing only some intention-

ally selected variables, it is worth noting that the proposed approach can be 

applied to an entire process without specifying candidate variables in general. 

Next, the diagnosis results of IDV(11) obtained by the proposed methodol-

ogy to verify the performance of random variation disturbances rather than step 

changes are presented in Figure 4.6 and  

 

 

Table 4.9. The location of the root cause in IDV (11) is the same as that in 

IDV (4), but there is a difference in the type of the disturbance which is a ran-

dom variation not a step change as IDV (4). Although there are some causal 

relationships monitored from the proposed method in the first subgroup, the 

prominent root cause variable with the largest relative causality measure was 

presented in the second subgroup, variable 49. In the first subgroup, the varia-

bles detected as a relationship exceeding the threshold value are 'D feed 

flowrate valve' and 'stripper pressure', indicated as variables 42 and 16, respec-

tively. As a result of a disturbance in the reactor cooling water, the selectivity 
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of the four reactions is upset, which affects the product quality. Consequently, 

according to the quality control strategy using feed rates, the D feed flow valve, 

which has the most availability among the feed streams, is primarily concerned. 

These changes caused by the shift of reaction rate result in composition changes 

of the unconverted reactants and products, affecting the pressure downstream 

of the reactor. It can be presumed that the stripper pressure is sensed as a con-

sequence considering the fact that the stripper has no mechanism controlling 

the pressure, unlike a separator that can indirectly control the pressure with a 

temperature controller. For this reason, it can be interpreted that the stripper 

pressure is presented as an additional candidate for the indirect root cause.  
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Figure 4.6. Causality measure plot of IDV (11) in each subgroup. 
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Table 4.9. Application results and causal analysis of IDV(11). 

 Process variables 

in each group 

Calculation time 

(sec) 

Causal relationship 

(causality measure*) 

Subgroup 1 1,7,9,10,13,16,21,42,43,44,46 5,391 
42 → 43 (0.923) 

9 → 16 (-0.855) 

Subgroup 2 11,12,14,18,20,22,35,47,49 3,514 20 → 49 (-1) 

Subgroup 3 3,4,28,30,34,39,40,41,45,48 4,397 - 

Subgroup 4 15,23,25,29,31,33,36,37,38 3,516 - 

Subgroup 5 2,5,6,8,17,19,24,26,27,32,50 5,373 - 

* Negative value means a causal relationship in the opposite direction. 

* Relative values of causality measure are represented in parenthesis. 
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It is also worth noting that in some cases, the proposed method improved the 

diagnosis performance compared to the conventional method which directly 

applies the transfer entropy analysis to the entire process. The transfer entropy 

analysis method for the entire TEP process with 50 variables in the case of IDV 

(11) is shown in Figure 4.7. A comparison of the results of the proposed diag-

nosis method and the conventional transfer entropy based on the same threshold 

value is displayed in  

 

Table 4.10. In the conventional method, the most significant causality meas-

ure suggested the D feed flow valve, variable 42, as the most likely indirect root 

cause, followed by variable 46, although it was only slightly below the thresh-

old. Hence, the diagnostic results derived from the proposed methodology out-

performed the results from the analysis of the conventional transfer entropy be-

cause it represented a more directly related variable to the root cause of the fault. 

The proposed approach required only 19% of the computational cost compared 

to the conventional transfer entropy method. This advocates that the proposed 

method is more competitive than the conventional method in terms of the per-

formance of the fault diagnosis and the computational cost. 
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Figure 4.7. Causality measure plot of IDV(11) in the overall process. 

 (Transparent yellow planes indicate the threshold value of causality measure.) 
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Table 4.10. Causal analysis of IDV(11) in the proposed method and conventional transfer entropy. 

 Calculation time (sec) 
Causal relationship 

(causality measure*) 

Proposed Method 

Subgroup 1 5,391 

20 → 49 (-1) 

42 → 43 (0.923) 

9 → 16 (-0.855) 

Subgroup 2 3,514 

Subgroup 3 4,397 

Subgroup 4 3,516 

Subgroup 5 5,373 

Total : 22,191 

Conventional 

Transfer Entropy 

Method 

119,727 

40 → 42 (-1) 

3 → 42 (-0.966) 

11 → 46 (-0.847) 

* Negative value means a causal relationship in the opposite direction. 

* Relative values of causality measure are represented in parenthesis. 

* Bold numbers in a causal relationship indicate the diagnosed root cause variables. 
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To consider the case of multiple faults, the case of IDV (18) that was invoked 

simultaneously with IDV (5) was analyzed following the instruction of the TEP 

model. In this multiple fault case, because the random variation in the heat 

transfer of the condenser and the step deviation in the temperature of the con-

denser cooling water inlet occurs, the 'condenser cooling water outlet tempera-

ture', variable 22, is deemed as the variable most related to the root cause vari-

able. In Figure 4.8, variable 22 in the second subgroup was detected as the high-

est priority for the root cause variable. Considering the comprehensive relation-

ships of the last four causal relationships of  

 

Table 4.11, variable 9, 'reactor temperature', is another indirect root cause. 

This result implies that the root cause of the fault mentioned above is attributed 

to the temperature change of the reactor located at the front end. Likewise, since 

there is no process variable corresponding to the root cause, it is reasonable to 

attribute the root cause to the process variable of the device directly upstream. 

The fault in the root cause variable can, of course, affect the downstream of the 

process and also be propagated upstream by the recycle stream in TEP. Even 

though it does not thoroughly match the process flow diagram, the diagnosis 

result can elucidate the propagation of the faults. Given the relationship be-

tween variable 18, ‘stripper temperature’, and variable 20, ‘compressor work’ 

in  

 

Table 4.11, it can be inferred that the root cause variable, the upstream vari-

ables of variable 9, ‘reactor temperature’, and variable 22, ‘condenser cooling 

water outlet temperature’, can cause another downstream process fault. 
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Figure 4.8. Causality measure plot of IDV (18) in each subgroup. 
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Table 4.11. Application results and causal analysis of IDV(18). 

 Process variables in each group 
Calculation time 

(sec) 

Causal relationship 

(causality measure*) 

Subgroup 1 1,7,10,11,13,16,42,43,44,46 7,794 - 

Subgroup 2 9,18,20,21,22,47,48,49,50 6,181 

21 → 22 (-1) 

9 → 18 (0.947) 

18 → 20 (0.947) 

18 → 21 (0.947) 

9 → 21 (0.947) 

Subgroup 3 3,4,24,28,30,31,34,35,36,40,45 9,458 - 

Subgroup 4 12,14,25,27,29,32,33,37,38,39,41 9,459 - 

Subgroup 5 2,5,6,8,15,17,19,23,26 6,175 - 

* Negative value means a causal relationship in the opposite direction. 

* Relative values of causality measure are represented in parenthesis. 
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As a representative case where the actual root cause variable is included 

within the monitored process variables, IDV (23) was tested. The result of the 

analysis is shown in Figure 4.9, and detailed information of each subgroup is 

provided in  

 

 

Table 4.12. IDV (23) is a random variation type fault in the pressure of the 

feed A streamline, and the effect appears in the form of a random variation of 

the feed A flowrate. To control the composition of the reactor feed stream, a 

ratio controller is installed to manipulate the flow valves of the A feed stream 

(stream 1) and the A & C feed stream (stream 4) to compensate for the influence 

of the fault. The A feed flow valve, variable 44 in the second subgroup, was 

correctly diagnosed having the highest causality measure value, presented in 

Figure 4.9. As the next priority, variable 46, the 'purge flow valve position', was 

captured as another cause variable candidate in the first subgroup. It can be 

understood that the manipulated variable of the pressure controller controlling 

the change in reactor pressure is captured as the feed composition changes.



115 

 

Figure 4.9. Causality measure plot of IDV (23) in each subgroup. 
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Table 4.12. Application results and causal analysis of IDV (23). 

 Process variables in each group Calculation time (sec) 
Causal relationship 

(causality measure*) 

Subgroup 1 7,10,11,13,16,18,40,42,43,46 7,349 

13 → 46 (-0.993) 

11 → 46 (-0.962) 

7 → 46 (-0.887) 

16 → 46 (-0.877) 

Subgroup 2 1,4,20,21,22,30,44,45,47,48,49 8,975 44 → 45 (1) 

Subgroup 3 2,3,23,24,27,28,29,31,34,37 7,343 - 

Subgroup 4 14,25,26,32,33,35,36,38,39,41 7,342 - 

Subgroup 5 5,6,8,9,12,15,17,19,50 5,873 - 

* Negative value means a causal relationship in the opposite direction. 

* Relative values of causality measure are represented in parenthesis. 
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Similar to IDV (4), (11), (18), and (23), the rest of the fault cases were diag-

nosed using the proposed method. The entire diagnostic results for 28 faults are 

presented in Table 4.13. The second column is the diagnosis result obtained 

from the proposed method, and the third column shows the analysis result of 

each fault. In some cases, the root cause is not captured by the transfer entropy 

analysis. One of the reasons for the difficulty in using the transfer entropy for 

particular examples is that the entire process is affected by a complex control 

structure to maximize the production rate while guaranteeing the inventory 

management of the process units. In this case, the knowledge of historical data 

of root cause variables cannot significantly decrease the uncertainty of the pre-

diction of the effect variables, which means a negligible amount of information 

is transferred. So, the root cause of the faults cannot be precisely diagnosed. 

Therefore, these fault cases need to be diagnosed by reflecting the control logic 

included in the TEP.  

In the case of IDV (3), (9), (21), and (22), although those are all of the dis-

turbances in feed temperature, the feed flow valves were consistently suggested 

as the result of the analysis. This corresponded to the product quality controller 

and the change in reaction rate induced by the temperature change as described 

above. In IDV (13), as the reactor pressure changes due to the drift in the reac-

tion kinetics, the result proposed the cancellation of the purge valve and flow 

rate, which are manipulated variables of the reactor pressure controller. The 

root cause of the IDV (20) was not revealed even in the revised TEP model, but 

the results of the fault diagnosis using the proposed methodology are included. 

Among all cases, it was difficult to find the root causes of the fault cases asso-

ciated with the condenser. The analysis is expected to be challenging because 

the condenser variables are associated with the secondary controller of the cas-

cade control loop for the reactor level. Besides, even when a disturbance occurs 

in the feed composition, the root cause cannot be deduced by the diagnostic 
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method because the analyzer was inappropriately positioned. Nonetheless, a 

thorough analysis of the results of the proposed methodology would provide 

insight to the process engineer to investigate the source of the fault.
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Table 4.13. Fault diagnosis result and analysis for the whole cases in the TEP. 

No. 
Diagnosis result 

of the proposed methodology 
Analysis of the result Remarks 

IDV(1) Subgroup 3 ( 38, 47 ) Feed composition disturbance  

IDV(2) Subgroup 1 ( 10, 46 ) Purge rate due to the change of inert gas (‘B’ component)  

IDV(3) Subgroup 1 ( 42, 44, 46 )  Feed valves due to the feed temperature disturbance  

IDV(4) Subgroup 2 ( 49 ) Reactor cooling water valve due to the change of the inlet temperature disturbance  

IDV(5) Subgroup 2 ( 18 ) Temperature disturbance due to the disturbance in condenser  

IDV(6) Subgroup 5 ( 1 ) ‘A’ feed flow rate due to the loss  

IDV(7) Subgroup 1 ( 42 ) Feed valve due to reduction of availability  

IDV(8) Subgroup 1 ( 1, 44 ) ‘A’ feed flow rate due to feed composition disturbance  

IDV(9) 
Subgroup 1 ( 46 ) 

Subgroup 2 ( 18 ) 
Feed temperature disturbance  

IDV(10) Subgroup 1 ( 18 ) 
Stripper temperature due to  

the feed temperature disturbance 
 

IDV(11) 
Subgroup 2 ( 49 ) 

Subgroup 1 ( 16, 42 ) 

Reactor cooling water flow valve due to  

the disturbance in the inlet temperature 
 

IDV(12) Subgroup 1 ( 1, 44 ) Temperature disturbance  

IDV(13) Subgroup 1 ( 10, 46 ) Purge flow and valve due to the reaction kinetics drift  

IDV(14) Subgroup 1 ( 9, 49 ) Reactor temperature and cooling water valve due to the valve sticking IDV(4) 

IDV(15) 
Subgroup 1 ( 46 ) 

Subgroup 2 ( 18 ) 
Temperature disturbance IDV(5) 

IDV(16) Subgroup 1 ( 18 ) 
Stripper temperature due to the deviation of heat transfer and temperature disturb-

ance 
IDV(10) 

IDV(17) Subgroup 2 ( 21 ) Reactor cooling water outlet temperature due to the temperature disturbances IDV(11) 

IDV(18) Subgroup 2 ( 18, 22 ) Temperature disturbance in condenser IDV(5) 
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IDV(19) Subgroup 3 ( 47 ) Underflow of separator due to the valve stiction  

IDV(20) 
Subgroup 2 ( 20 ) 

Subgroup 1 ( 13, 16 ) 
Compressor work due to the pressure disturbance in separator  

IDV(21) Subgroup 1 ( 42, 44 ) Feed temperature disturbance  

IDV(22) Subgroup 1 ( 42, 46 ) Feed temperature disturbance  

IDV(23) 
Subgroup 2 ( 44 ) 

Subgroup 1 ( 46 ) 
‘A’ feed flow valve due to the pressure disturbance in feed stream  

IDV(24) Subgroup 2 ( 42, 18 ) ‘D’ feed flow valve due to the pressure disturbance in feed stream  

IDV(25) Subgroup 1 ( 43 ) ‘E’ feed flow valve due to the pressure disturbance in feed stream  

IDV(26) Subgroup 2 ( 45 ) ‘A&C’ feed flow valve due to the pressure disturbance in feed stream  

IDV(27) 
Subgroup 1 ( 42 ) 

Subgroup 2 ( 49 ) 

Reactor cooling water flow valve due to the pressure disturbance in cooling water 

stream 
 

IDV(28) 
Subgroup 1 ( 46 ) 

Subgroup 2 ( 18 ) 
Temperature disturbance  

*Remarks indicate common disturbance used with the existing one.   
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5.  

Chapter 5 

 

Concluding Remarks 

5.1. Summary of the Contributions 

This thesis focused on the improvement of the existing FDI systems. In par-

ticular, different approaches that can improve performance from viewpoints 

that have not been noted in traditional studies for process monitoring were sug-

gested in each part of the process monitoring system. In addition, it can relieve 

the computational burden significantly, leading to the extension of applicability 

on large-scale processes.  

The previous studies for fault detection systems mainly focused on the inno-

vation in the model structure to better characterize the given data while keeping 

the given training data intact. Meanwhile, in the first part of the thesis, the given 

training data was targeted as the object to be improved through the data aug-

mentation scheme. Data augmentation has been extensively studied to alleviate 

the class imbalance problem, especially for classification problems where there 

exists an imbalance between classes in the training data. Under the situation, 

data augmentation to balance the amount of data in each class allows utilizing 

all of the training data in a balanced manner, which can provide a favorable 

condition for classifier modeling. On the other hand, data augmentation has 

been employed in the proposed method to alleviate the within-class imbalance 

where the normal samples presenting the borderline of normal and abnormal 

state are relatively sparse compared to the typical normal sample distributed in 

the center of the normal manifold. Given that the modeling of the fault detection 

system corresponds to the manifold learning of the normal state, it can be ex-

pected that the supplement of the samples on the boundary of the normal state 

would positively affect the training process.   
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In this context, a monitoring framework was proposed that integrates mani-

fold learning with data augmentation to supplement insufficient information for 

training. The main idea is to augment the synthetic data into the original training 

data using a generative model, Info-VAE, to supplement the training data for 

the construction of the fault detection system using AE. The synthetic data for 

augmentation is aimed at the region of the boundary of the normal training data, 

which contains infrequent but informative samples. The sample vectors for the 

augmentation were designed into several groups with different characteristics 

from center to boundary based on the latent space. At this moment, it should be 

noted that the total amount of the augmented samples on the boundary section 

needs to be carefully adjusted to avoid skewness of the original characteristics 

of the normal state. Moreover, the relative weights of the augmentation groups 

need to be considered as one of the critical factors that affect the performance 

of the proposed method. The effectiveness of the proposed method was verified 

by the improvement of the monitoring performance through the demonstration 

of the benchmark process. The analysis results showed that the fault detection 

accuracy was improved for most fault cases in the feature space in accord with 

the intention of the data augmentation, and the fault detection delay was also 

reduced.  

In another work for fault isolation, a methodology was proposed in which 

the transfer entropy, the information-theoretic measure for causal analysis, was 

integrated with the graphical lasso to mitigate the downside of the costly causal 

evaluation. By sorting out the most relevant relationship to be analyzed in fault 

diagnosis among the whole relations, the graphical lasso reduces the load from 

the unnecessary causal analysis. The proposed method first divides the entire 

set of process variables into several related subgroups by iteratively applying 

graphical lasso to the remaining parts in each step, and then performs the root 
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cause analysis based on the subsets using transfer entropy. The root cause var-

iable can be isolated if the causality measure exceeds the predefined threshold 

based on the relative magnitude. It should be noted that the proposed method 

inevitably possesses a tradeoff between the benefit from the sparsity in the cor-

relations and the fidelity of the diagnostic performance. Therefore, the hyperpa-

rameters related to the graphical lasso are needed to be carefully determined 

depending on the applications. Nevertheless, the applicability of transfer en-

tropy analysis for industrial-scale processes could be extended by significantly 

reducing the computational cost of transfer entropy which has been the most 

critical restriction. Furthermore, it is noteworthy that the diagnostic perfor-

mance of the proposed method was superior to that of the conventional method 

in some fault cases.  
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5.2. Future Work 

Although the proposed methodologies were able to mitigate the practical is-

sues and improve the performance, there remain various future works for fur-

ther improvement. Several issues can be suggested with respect to each part as 

follows. 

First of all, the generative model can be further investigated to improve the 

fidelity of the synthetic sample for data augmentation. As the hybrid of VAE 

and GAN, adversarial autoencoder(AAE) [60] was proposed, which replaces 

the KL divergence penalizing the encoding distribution to fit the prior distribu-

tion with the discriminative network. By the modification, the assumption that 

the encoding posterior 𝑞𝜙(𝑧|𝑥) should be multivariate Gaussian is no longer 

constrained, thus allowing the arbitrary distribution for the latent vector z. As 

AAE retains the structure of VAE that can fit the data distribution in the latent 

space to certain distribution, selective sampling and generation such as the 

boundary region of the data distribution still can be achieved. 

Regarding the study of the fault detection systems, the model structure could 

be altered to a more sophisticated type. Recurrent neural networks (RNN), for 

example, can be effectively applied to improve the performance of the fault 

detection system considering the dynamics of the process data. This can be also 

a valuable approach for generative modeling as well as fault detection system 

modeling in terms of being able to obtain more reliable samples. Even though 

the hyperparameters such as the ratio of the augmented samples and the total 

amount of them were tuned by case studies, they could be determined optimally 

by formulating an optimization problem, where the objective function is the 

performance index and the decision variables are set to those parameters in data 

augmentation process.  
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There are also some issues that can be further investigated to boost the per-

formance of the proposed fault isolation method. First of all, the most critical 

parts of the transfer entropy measure, the hyperparameters such as the predic-

tion horizon and the embedding dimensions of each variable, could be opti-

mized. Considering that the isolation process based on the conventional way 

for the entire 50 variables with the current hyperparameters takes more than 24 

hours, it is practically impossible to perform comprehensive sensitivity analysis 

about other various settings of hyperparameters for more demanding conditions. 

Thanks to the advantage of saving the computational cost by the regularization 

process in the proposed method, there is room for an iterative investigation to 

find the optimal settings depending on the applications. In addition, another 

concern in the fault diagnosis, the fault propagation path, could be analyzed 

based on the subgroups in the context of the proposed method. Because the 

variables within a subgroup are closely related in terms of the physical principle, 

process control scheme, and layout of the process, the analysis between the 

subgroups could suggest meaningful information about the fault propagation 

path which is valuable evidence for the following process recovery.   
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초 록 

 

공정 모니터링 시스템은 효과적이고 안전한 공정 운전을 위한 필수

적인 요소이다. 공정 이상은 목표 생성물의 품질에 영향을 주거나 공

정의 정상 가동을 방해하여 생산성을 저해할 수 있다. 폭발성 및 인화

성 물질을 주로 다루는 화학공정의 경우 공정 이상은 가장 중요한 요

소인 공정의 안전을 위협하는 요소로 작용할 수 있다. 한편, 현대의 

공정의 범위가 확장되고 자동화와 고도화가 진행됨에 따라 점점 더 

신뢰도 높은 모니터링 시스템이 요구되고 있다. 

공정 모니터링은 크게 세 단계로 구분될 수 있다. 실시간으로 공정

의 이상 여부를 판단하는 공정 이상 감지, 다음으로 감지된 이상의 원

인을 파악하는 이상 진단, 마지막으로 공정 이상의 원인을 제거하고 

정상 상태로 회복시키는 복원으로 나뉘어진다. 특히 공정 이상 감지와 

진단 시스템을 위해 다양한 방법론들이 제안되어왔으며, 그 방법론들

은 크게 세 가지로 구분할 수 있다. 물리 이론을 기반으로 한 모델 분

석 방법과 특정 분야의 경험 지식을 바탕으로 한 지식 기반 방법론에 

비해 범용적인 적용 가능성과 현대 공정의 풍부한 공정 데이터가 제

공되는 조건의 충족으로 인해 데이터 기반 방법론이 널리 활용되어지

고 있다. 또한, 데이터 기반 공정 모니터링 방법론들은 공정의 규모와 

복잡도가 증가함에 따라 그 장점이 더욱 극대화되는 특징을 갖는다. 

본 연구에서는 기존의 데이터 기반 공정 모니터링 방법론들의 성능을 

개선하기 위한 공정 이상 감지 방법론과 이상 진단 방법론을 제안한

다.  

전통적인 공정 이상 감지 시스템은 차원 축소방법들을 기반으로 개

발되었다. 차원 축소를 기반으로 한 공정 이상 감지 모델은 공정 데이

터에 내재되어 있는 특징으로 정의되는 저차원의 잠재 공간을 정의하

고, 이를 기준으로 모니터링을 수행한다. 대표적인 방법으로는 전통적

인 다변량 공정 모니터링 방법인 주 성분 분석과 머신 러닝 기법인 
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오토인코더가 있다. 최근 풍부한 학습 데이터와 우수한 성능 덕분에 

다양한 머신 러닝 기법을 사용한 이상 감지 시스템이 널리 활용되고 

있지만, 앞서 소개한 현대 공정의 다양한 특징으로 인해 더욱 향상된 

성능의 모니터링 기법의 개발이 요구되어지고 있다. 이러한 데이터 기

반 모니터링 시스템의 성능 향상을 위해서 모델의 구조를 변경하거나 

모델의 학습 절차를 변형하는 접근법들이 주로 제안되었다. 하지만, 

데이터 기반 방법론들은 궁극적으로 학습 데이터의 품질에 의존적이

라는 특성은 여전히 남아있다. 즉, 학습 데이터의 부족한 정보를 보완

함으로써 모니터링 시스템의 완성도를 높일 수 있는 방법론이 요구된

다. 따라서, 본 연구는 첫 번째 주제로 데이터 증강 기법을 결합한 공

정 이상 감지 방법론을 제안한다.  

데이터 증강 기법은 여러 집합을 구분하는 분류기 모델링시에 특정 

집합의 학습 데이터가 부족한 경우에 주로 활용되었다. 이러한 경우 

데이터 증강을 통해 학습 데이터의 균형을 맞춤으로써 모델의 학습 

효율을 증진시킬 수 있다. 반면에, 본 연구에서의 데이터 증강은 한 

집합 내에서의 불균형을 완화하기 위한 목적으로 사용되었다. 정상 조

건의 공정 데이터는 정상과 이상의 경계에 분포하는 데이터가 희박하

게 존재하는 특징을 갖는다. 이상 감지 시스템이 정상 상태의 저차원 

특징 공간을 학습하고, 이를 통해 정상과 이상을 구분하는 모델이라는 

점을 고려하면 경계 영역의 데이터의 증강이 특징 공간 학습에 긍정

적으로 작용할 것을 기대해 볼 수 있다. 이와 같은 맥락에서 제안된 

방법론은 다음과 같다.  

먼저, 기존의 학습 데이터를 이용하여 인공 데이터를 생성하기위한 

생성모델인 변분 오토인코더를 학습한다. 생성 모델로 학습한 정상 운

전 데이터의 저차원 분포의 경계영역에 해당하는 데이터들을 인공 데

이터로 생성하여 학습데이터에 증강시킨다. 이렇게 증강된 학습 데이

터를 기반으로 이상 감지 모델을 위한 머신 러닝 기반 차원 축소 방

법인 오토인코더를 학습하여 이상 감지 시스템을 구축한다. 증강된 학

습 데이터를 사용함으로써 오토인코더의 잠재 공간 학습이 더 효과적
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으로 수행될 수 있고, 이는 곧 정상과 이상 상태를 구분하는 이상 감

지 시스템의 성능 개선으로 이어질 수 있다.  

차원 축소 기법은 전통적인 이상 진단 방법으로도 활용되었다. 하지

만, 이는 차원 축소시의 정보의 손실로 인해 저조하고 일관성이 부족

한 성능을 보였다. 전통적인 방법의 한계점을 개선하기 위해 공정 변

수 간의 인과 관계를 직접적으로 분석하는 기법들이 개발되었다. 그 

중 하나인 정보 이론 기반의 전달 엔트로피는 특정 모델이나 선형 가

정을 기반으로 하지 않기 때문에 비선형 공정의 이상 진단에 대해 일

반적으로 우수한 성능을 보인다고 알려져 있다. 하지만, 전달 엔트로

피를 이용한 인과관계 분석 방법은 고비용의 밀도 추정을 필요로 한

다는 단점으로 인해 소규모 공정에 대해서만 제한적으로 적용되어 왔

다. 이러한 한계점을 개선하기 위한 방안으로 그래프 라쏘라는 조정 

방법을 전달 엔트로피와 결합한 방법론을 제안하였다.  

그래프 라쏘는 비 방향성 그래프 모델에서 성긴 구조를 학습하기 

위한 방법론으로 전체 공정 그래프로부터 상관 관계가 높은 부분 그

래프를 추출해낼 수 있다. 가장 높은 상관 관계를 갖는 부분 그래프와 

독립된 나머지 변수들이 그래프 라쏘의 출력으로 제시되기 때문에, 나

머지 변수들에 대한 반복적인 적용을 통해 전체 공정 변수들을 연관

성이 높은 몇몇의 부분 그래프로 변환할 수 있다. 연관성이 낮은 관계

를 사전에 배제함으로써 인과 관계 분석의 대상을 크게 축소할 수 있

다. 즉, 이 단계를 통해 고비용의 전달 엔트로피의 한계점을 완화하고, 

그 적용 가능성을 확장할 수 있도록 한다.  

두 방법을 결합하여 다음과 같은 이상 진단 방법론을 제안하였다. 

먼저, 공정 이상이 발생한 데이터를 대상으로 반복적 그래프 라쏘를 

적용하여 전체 공정 변수들을 연관성이 높은 5개의 부분 집합으로 구

분한다. 구분된 각각의 부분 집합을 대상으로 전달 엔트로피를 이용한 

인과관계 척도를 계산하고, 가장 유력한 원인 변수를 판별해낸다. 즉, 

그래프 라쏘를 통해 효과적으로 인과관계 분석의 대상을 축소함으로

써 불필요한 전달 엔트로피 계산으로 발생하는 비용을 크게 절감할 
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수 있다. 따라서, 제안된 방법론은 대규모 산업 공정에 대해서도 전달 

엔트로피를 이용한 이상 진단 기법의 적용을 가능하게 했다는 점에서 

의의가 있다.  

본 연구에서 제안된 방법론의 성능을 검증하기 위하여 산업 규모의 

벤치마크 공정 모델인 테네시 이스트만 공정에 이를 적용하고 결과를 

분석하였다. 벤치마크 공정 모델은 다수의 단위 공정을 포함하고, 재

순환 흐름과 화학 반응을 포함하고 있어 실제 공정과 같은 복잡도를 

갖는 공정 모델로서 제안한 방법론들의 성능을 시험해보기에 적합했

다. 성능 테스트는 테네시 이스트만 공정 모델에 포함되어 있는 사전

에 정의된 28개 종류의 공정 이상에 대하여 수행하였다. 제안한 데이

터 증강을 접목한 공정 이상 감지 방법론은 기존 방법론 대비 높은 

이상 감지율을 보였다. 일부의 경우 이상 감지 지연측면에서도 개선을 

확인할 수 있었다. 또한, 이상 진단을 위해 전달 엔트로피와 그래프 

라쏘를 결합한 제안한 방법론은 전체 공정에 전달 엔트로피를 직접 

적용한 기존의 방법론 대비 약 20%의 계산 비용만으로도 효과적으로 

이상의 원인을 파악해내는 것을 확인할 수 있었다. 또한, 성능 테스트 

결과는 일부 공정 이상의 경우 제안한 방법론이 기존의 방법보다 더 

정확한 이상 진단 결과를 제시할 수 있음을 보였다. 
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