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Abstract

The rise of deep neural networks has promoted tremendous advances in natural

language processing research. Natural language generation is a subfield of natural lan-

guage processing, which is inevitable in building a human-like artificial intelligence

since they take responsibility for delivering the decision-making of machines in natural

language. For neural network-based text generation techniques, which have achieved

most state-of-the-art performance, autoregressive methods are generally adapted be-

cause of their correspondence to the word-by-word nature of human language produc-

tion. In this dissertation, we investigate two different ways to train autoregressive text

generation models, which are based on deep neural networks. We first focus on a token-

level training of question generation, which aims to generate a question related to a

given input passage. The proposed Answer-Separated Seq2Seq effectively mitigates

a problem from the previous question generation models that a significant proportion

of the generated questions include words in the target answer. While autoregressive

methods are primarily trained with maximum likelihood estimation, they suffer from

several problems, such as exposure bias. As a remedy, we propose a sequence-level

GAN-based approach for text generation that promotes collaborative training in both

continuous and discrete representations of text. To aggregate the achievement of the

research mentioned above, we finally propose a novel way of training a sequence-level

question generation model, adopting a pre-trained language model, one of the most

significant breakthroughs in natural language processing, along with Proximal Policy

Optimization.
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Chapter 1

INTRODUCTION

Building a human-like artificial intelligence (AI) system has been a grand goal of hu-

man beings for an extended period of history. Great development of computer hard-

ware such as graphics processing unit (GPU) results in the revival of AI systems,

especially the rise of deep learning [8] based on artificial neural networks. Deep learn-

ing has changed classical AI systems a lot, from those rule-based systems supported

by several hand-crafted features to end-to-end systems which are often represented as

black-box models.

Natural language processing (NLP), one of the basic components of AI, is a medium

that makes machines understand and generate human language. The advances in NLP

research are gradually reflected in our real life; for example, Google Assistant is one

of the most famous AI-powered virtual assistants to which almost every smartphone

user can access. As shown in Figure 1.1, a series of complicated AI modules make

up a whole assistant system, such as speech recognition [9, 10, 11, 12] for converting

human voice to a written text, text classification [13, 14, 15, 16] to figure out what the

user asks to do, and lastly, text generation [17, 4] to answer the user in human language

rather than simply picking up from predefined sentences. As is described, text genera-

tion is an important subfield of NLP, which aims to generate textual output in natural

language. Depending on the purpose of tasks, text generation can be categorized into

1



“What is the 
weather today?”

Human User Voice Assistant

Engine

NLP

Figure 1.1: A virtual assistant comprises a series of AI modules, such as speech recog-

nition, text classification, and text generation. With the help of deep learning, the in-

teraction between each module is not limited to passing the processed features but is

trained in an end-to-end fashion and works as a whole.

machine translation [18, 1, 19, 20, 2, 21], dialogue model [22, 23, 24, 25, 26, 27],

text summarization [28, 29, 30, 31, 32] image captioning [33, 34, 35, 36] and etc.

Basically, many of those text generation models take two steps in common: natural

language understanding (NLU) and natural language generation (NLG).

In NLU, we first let a machine understand the meaning and structure of given

text input. In general, text input written in natural language is first separated into

tokens representing the (predefined) smallest units of text, such as words, charac-

ters, and morphemes. Subword-based tokenization is one of the frequently-used meth-

ods [37, 38, 39] these days since subwords help to find out the best trade-off between

vocabulary size and the unit tokens. Followed by tokenization is the embedding of

those tokens as vector representations. Embedding vectors are usually initialized with

random normal distribution or certain distributional functions such as Xavier initial-

ization [40]. The tokenization and the embedding process are shown in Figure 1.2.

Finally, various type of neural network structures is adopted to extract contextual fea-

2



Text
“The cat sat on the mat.”

Tokens
“The”, “cat”, “sat”, “on”, “the”, “mat”, “.”

Vector encoding of the tokens
0.0 0.0 0.4 0.0 0.0 1.0 0.0
0.0 0.0 0.4 0.0 0.0 1.0 0.0
0.0 0.0 0.4 0.0 0.0 1.0 0.0
The cat sat on  the mat  . 

Figure 1.2: An example of word tokenization and vector embedding. The text input

“The cat at on the mat.” is tokenized to a set of words and then embedded into 3-

dimensional vector representations.

tures. Nowadays, pre-trained language models (PLM) [5, 41, 42, 43, 44, 45, 7] are

mainly used as a feature extractor since they stand out against other models with the

help of pre-trained knowledge.

After the dominant feature, which is related to the target task, is extracted with

NLU, the corresponding response is generated during the NLG process. The network

can either take an autoregressive fashion to generate a token per time-step or generate

the whole response tokens at once in a non-autoregressive way [46, 47].

Various text generation models have been proposed under encoder-decoder [48, 18,

49] architectures which explicitly assign NLU and NLG to separate modules called en-

coder and decoder. Encoder and decoder are mostly based on neural networks that can

model sequential data, such as recurrent neural networks (RNNs) and convolutional

neural networks (CNNs). For a neural machine translation system as an example, as

shown in Figure 1.3, the encoder takes charge of NLU, encapsulating the information

from a human-written text as the internal state vectors. Then, the decoder interprets

3



The cat sat on the mat.

고양이가 매트 위에 앉았다.

Encode

Decode

Figure 1.3: An example of an encoder-decoder structure of neural machine transla-

tion. The encoder converts the text input as vector representations. Then, the decoder

deciphers the vectors to the target language.

the state vectors in the desired language, and this procedure represents NLG.

Textual data is treated as a type of sequential data since the human language is

represented with a series of words, and the order of words matters in delivering the

meaning. Since autoregressive approaches correspond to the word-by-word nature of

human language production and can capture the target output distribution, they have

prevailed in the early stage of modeling text generation. Figure 1.4 shows the mecha-

nism of autoregressive models, which condition each output word on previously gen-

erated words. Beam search [50], an effective local search method for finding approx-

imately optimal output, further strengthens autoregressive models and has achieved

state-of-the-art performance on various generation tasks.

1.1 Contributions

This dissertation provides a comprehensive investigation into some efficient methods

for training autoregressive text generation. From RNN-based encoder-decoder models

to pre-trained language models, we explore various cutting-edge neural architectures

4



ℎ𝑡

𝑥𝑡

𝑦𝑡

ℎ1

How

do

ℎ2

do

you

ℎ3

you

think

ℎ𝑛

Korea

?

…

Figure 1.4: Autoregressive text generation models condition each output word on pre-

viously generated words.

for text generation. Besides the inspiration that artificial neural networks have similar

architectural features to the biological neural networks, we are further inspired by

human’s way of learning text generation. We develop more human-like methods to

train a neural text generation model, evaluating the generated sentence as a whole

instead of evaluating each of generated tokens. Specifically, we focus on one practical

text generation task, question generation. In the following lines, we explain each part

of the contributions in detail.

First, we present our investigation of token-level training of an autoregressive ques-

tion generation. Neural question generation (NQG) is the task of generating a question

from a given passage with deep neural networks. Previous NQG models suffer from

a problem that a significant proportion of the generated questions include words in

the question target, resulting in the generation of unintended questions. In this study,

we propose Answer-Separated Seq2Seq, which better utilizes the information from

both the passage and the target answer. By replacing the target answer in the original

passage with a special token, our model learns to identify which interrogative word

should be used. We also propose a new module termed keyword-net, which helps the

model better capture the key information in the target answer and generate an appro-

priate question. Experimental results demonstrate that our answer separation method

significantly reduces the number of improper questions which include answers. Con-

5



sequently, our model significantly outperforms previous state-of-the-art NQG models.

Autoregressive text generation models are often trained with maximum likeli-

hood estimation (MLE). Even though autoregressive methods trained with MLE have

achieved great success, there still exist several drawbacks. The first problem is expo-

sure bias [51]: during training, the model sequentially generates the next word depend-

ing on the ground-truth words; however, the model relies on its previously generated

words at inference time. Therefore, the cumulative effect of incorrect predictions in

the text sequence results in low-quality samples. The second problem lies in that the

objective functions of MLE-based methods are rigorous [52]; the models are forced

to learn every word in the target sentence. Under this strict guidance, the ability of

language models to generate diverse samples can be severely limited.

In recent years, several approaches have been proposed to mitigate those short-

comings of sequence models trained with MLE methods. Among them, reinforcement

learning (RL) [53] and generative adversarial networks (GANs) [54] especially have

drawn attention as a remedy. Instead of getting feedback from the token-level loss dur-

ing training, RL and GANs enable the sequence-level or phrase-level evaluation of the

generated text.

In the initial period of GANs research, it has been considered that applying GANs

to text-related tasks is not promising due to the discrete nature of the text. In the in-

ference phase of the autoregressive text generation, the model iteratively samples the

next word from the distribution of vocabulary. As this step includes the sampling pro-

cess that hinders the backpropagation of the gradients from the discriminator, sev-

eral approximation methods have been proposed to avoid the non-differentiability is-

sue [55, 56, 17, 57]. GANs for text generation (text GANs) can be categorized into

two groups, depending on the data space in which the GAN’s discriminator operates:

discrete-space methods and continuous-space methods. The discrete-space methods

resolve the issue by employing RL and optimizing the next-word sampling policy di-

rectly in discrete action space. Such methods compute the rewards from complete sen-

6



tences and avoid error accumulation due to exposure bias. The continuous-space meth-

ods employ approximation techniques that map the text to continuous representation in

order to circumvent the non-differentiable discrete process. Particularly, autoencoder-

based methods effectively produce robust representations that can model complex dis-

crete structures. To enhance the benefit from both methods, we propose a novel text

GAN architecture that promotes the collaborative training of the continuous-space and

discrete-space methods [4]. Our method employs an autoencoder to learn an implicit

data manifold, providing a learning objective for adversarial training in a continu-

ous space. Furthermore, the complete textual output is directly evaluated and updated

via RL in a discrete space. The collaborative interplay between the two adversarial

training effectively regularizes the text representations in different spaces. The experi-

mental results on three standard benchmark datasets show that our model substantially

outperforms state-of-the-art text GANs with respect to quality, diversity, and global

consistency.

Finally, we explore the effect of sequence-level training methods on question gen-

eration. While pre-trained language models are the inevitable baselines for almost ev-

ery NLP task these days, we first fine-tune T5 [7], one of the most potent encoder-

decoder structured PLM, in an MLE manner. Then, we apply a sequence-level train-

ing method enhanced by Proximal Policy Optimization (PPO) [58, 59], an RL-based

training algorithm, to fine-tune the model with task-specific reward further. The task-

specific reward is given by another PLM-based question-answering (QA) model named

SpanBERT [60].

The remainder of this dissertation is organized as follows. Chapter 2 provides sev-

eral background knowledge related to text generation. In chapter 3, we explain the pro-

posed Answer-Separated Seq2Seq model for question generation. Chapter 4 explains a

GAN-based unconditional text generation model trained with sequence-level training.

Further investigation of RL-based sequence-level training of the question generation

model is presented in Chapter 5. Finally, the dissertation is concluded in Chapter 6.
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Chapter 2

BACKGROUND

In this chapter, we briefly introduce the underlying knowledge on which the disserta-

tion is based.

2.1 Sequence-to-Sequence model

Sequence-to-Sequence [37] (Seq2Seq) model is a family of machine learning ap-

proaches that are usually utilized as the baseline model for several NLP research.

Seq2Seq model, as the name denotes, takes as input a word sequence and generates a

new sequence that has some pre-defined relationship with the input sequence. In gen-

eral, Seq2Seq models are composed of two modules - an encoder and a decoder. First,

the encoder network is asked to understand the input sequence and make a vector rep-

resentation (or a set of vectors) of it. Then, the decoder generates a desired sequence

based on the encoded vector representation. Figure 2.1 shows an example of the RNN-

based Seq2Seq dialogue model.

2.1.1 Sequence-to-Sequence model with Attention Mechanism

In a vanilla Seq2Seq model, the encoder tries to compress all of the information in

the whole input sequence to a single vector. However, it is tough for a single vector to
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Figure 2.1: An example of the RNN-based sequence-to-sequence dialogue model.

represent the significant amount of important features in this procedure because of the

complexity of the human language. Furthermore, since the single vector representation

of the input sequence is usually the last hidden state of the encoder network, the early

part of the encoded information is easily forgotten.

For the decoder, it is another challenge to decipher the extremely compressed vec-

tor representation of human language. In every decoding step, the decoder should gen-

erate a token relevant to the different parts of the input sequence. However, in the

vanilla Seq2Seq setting, the decoder network can only refer to the last hidden state

of the encoder, which means that the decoder should generate output sequence only

based on “insufficient” and “over-compressed” vector representation.

Attention Mechanism [1, 61] is then proposed to address the fixed representation

problem. As the name denotes, the attention mechanism aims to let the decoder net-

work focuses on different parts of the input sequence at every decoding step. At each

decoder step, the attention mechanism computes which part of the source sequence is

more relevant to the current context of the output sequence. In this setting, the encoder

does not have to compress the whole sentence input into a single vector - it gives vector

9
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Figure 2.2: Graphical representation of how the Attention Mechanism [1] works.

representations for all input tokens. Attention Mechanism is formulated as:

ci =

Tx∑
j=1

αijhj (2.1)

αij =
exp(eij)∑Tx
k=1 exp(eik)

(2.2)

eij = v> tanh(Wasi−1 + Uahj), (2.3)

where hj is j-th encoder hidden state, si is i-th decoder hidden state. ci denotes the

context vector, αij denotes the attention weights, and eij denotes an alignment score

which represents how well the pair of input at position j and output at position i

matches. Figure 2.2 shows the graphical representation of how the Attention Mech-

anism works.
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2.2 Autoregressive text generation

Since the overall dissertation focuses on Seq2Seq-based text generation methods, we

explain the autoregressive text generation in terms of Seq2Seq modeling. Given a text

input X = {x1, ..., x′T }, an autoregressive Seq2Seq text generation model factors the

distribution over possible output sentences Y = {y1, ..., yT } into a chain of conditional

probabilities with a left-to-right causal structure:

pAR(Y |X; θ) =

T∏
t=1

p(yt|y0:t−1, x1:T ′ ; θ), (2.4)

Every conditional probability is parameterized as the single-step output of a neural

network with a recurrence structure. Typically, an RNN-based encoder-decoder archi-

tecture [18] is used to capture the causal structure of the input/output distribution.

2.2.1 Maximum Likelihood Training

Factorizing the generated output distribution in an autoregressive manner enables straight-

forward maximum likelihood training with a cross-entropy loss function applied at

each decoding step:

LML = − log pAR(Y |X; θ) =
T∑
t=1

log p(yt|y0:t−1, x1:T ′ ; θ). (2.5)

Each conditional probability prediction is provided with direct supervision from

the loss function.

2.2.2 Pros and cons of autoregressive methods

The autoregressive way of modeling sequence by conventional Seq2Seq text genera-

tion models has several benefits. Since the autoregressive factorization corresponds to

the word-by-word nature of human language production, it can effectively capture the
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Figure 2.3: Comparison of the structural difference between autoregressive text gen-

eration and non-autoregressive text generation. Autoregressive model generates out-

put tokens (“X”, “Y”, and “</s>”) in a word-by-word manner, while the non-

autoregressive model generates all output tokens in parallel.

distribution of output sequence. In addition, autoregressive models are easy to train.

Beam search, an effective local search method for finding approximately optimal out-

put sequence, further helps autoregressive models achieve state-of-the-art performance

on most of the large-scale corpora of NLP research.

However, structural similarity to human language production does not always mean

perfection. The word-by-word generation process of autoregressive decoding cannot

be implemented in parallel, increasing training time. Meanwhile, beam search suffers

from diminishing returns for increasing the beam size [62], and the introduction to the

computational dependence between beams gives rise to limited search parallelism [46].

12



2.3 Non-autoregressive text generation

Non-autoregressive methods for text generation are then proposed to make up for those

drawbacks of autoregressive methods. The most straightforward way of adopting non-

autoregressive text generation is to remove the recurrent connection from an existing

encoder-decoder model. Non-autoregressive modeling of text generation assumes that

the target sequence distribution can be factorized into a product of separate conditional

distribution p with pL:

pNAR(Y |X; θ) = pL(T |x1:T ′ ; θ) ·
T∏
t=1

p(yt|x1:T ′ ; θ) (2.6)

This modeling can still be trained with independent cross-entropy losses on each

output distribution since it has an explicit likelihood function. What is more, these

distributions can be computed in parallel at both training and inference time.

2.4 Transformers

[2] introduces a novel architecture called Transformer, a neural network architecture

that completely relies on Attention Mechanism. Like Seq2Seq models, the original

Transformer is a neural network-based encoder-decoder architecture for transforming

an input sequence into another one. However, unlike most previous sequence models,

Transformers do not rely on RNN-based architecture anymore.

RNNs used to be the most powerful structure to capture the sequential dependency

until the emergence of Transformers family. Transformers then adopt a brand new way

to base their main computation mechanism on the Attention Mechanism (described in

Section 2.1.1), achieving state-of-the-art performance on various NLP tasks. A typical

application of Transformer adoption in NLP is a language model called BERT [5].

The overall architecture of Transformer is illustrated in Figure 2.4. The main com-

ponent of both encoder and decoder is a module that is mainly composed of a multi-
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 2.4: Overall architecture of Transformer [2].

head attention layer and a feed-forward layer. The module can be stacked on top of

each other multiple times, enabling to form a deeper structure.

One slight but important part of the model is the positional encoding of the dif-

ferent tokens. Since the Attention Mechanism has no idea of the ordering of the input

sequence, additional technique to remember the sequence order is required. Positional
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encoding assigns every token in the sequence a feature vector representative of its rel-

ative position. These feature vectors are then added to the embedded representation of

each word.

Attention mechanism in the Transformer (Scaled Dot-product Attention) can be

seen as a variant of [61], and it is formulated as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (2.7)

where Q, K, and V are a query matrix, a key matrix, and a value matrix, respectively.

dk denotes the size of the feature dimension of the key matrix. The dot product between

Q and K computes the similarity between each token in the encoder input sequence

and decoder input sequence (encoder-decoder attention) or within a sequence (self-

attention). After scaling and normalization using the softmax function, the similarity

weights are then applied to all the tokens in the sequence introduced in V . Graphical

illustration of the Scaled Dot-product Attention is shown in Figure 2.5 (left)

Instead of single attention functions with dmodel-dimensional keys, values, and

queries, Multi-Head Attention (Figure 2.5 (right)) is utilized, allowing the model to

jointly attend to information from different representation subspaces at different posi-

tions:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2.8)

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ), (2.9)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , and WO ∈

Rhdv×dmodel . h is the number of parallel attention layers.

Transformer architecture has changed the entire NLP research paradigm from RNN-

based / CNN-based methods to attention-based methods. One representative and the

most significant change in NLP research since the propagation of Transformer is the

adoption of pre-trained language models for various NLP tasks.
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Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

√
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1√

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

�dk
i=1 qiki, has mean 0 and variance dk.

4

Figure 2.5: (left) Scaled Dot-product Attention. (right) Multi-head Attention consists

of several attention layers running in parallel [2].

2.5 Reinforcement Learning

Reinforcement Learning (RL) is a kind of machine learning problem that aims at max-

imizing a long-term objective, the cumulative reward. The basic scenario of an RL

system can be described as that an agent in state St which interacts with the environ-

ment via its actions At at discrete time steps and receives a reward Rt. Then, the agent

transfers to a new state St+1. A canonical agent-environment feedback loop is depicted

by Figure 2.6. The rationale behind RL is “trial and error”, which is quite similar to

how humans learn from the world.

Basically, many of RL theory is founded upon the reward hypothesis [53]: “That

all of what we mean by goals and purposes can be well thought of as the maximization

of the expected value of the cumulative sum of a received scalar signal (reward)”. The

reward here should be adequately defined depending on the final goal of a target task.

For CartPole as an example, we can give a fixed-size positive reward for all the stable

states and zero for losing balance.
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Figure 2.6: The canonical agent-environment feedback loop

Markov decision process (MDP) <S,A,P,R, γ >can formally describe an envi-

ronment for RL, where S is a finite set of states,A is a finite set of actions, P is a state

transition probability matrix,R is a reward function, Gt is the total discounted reward

from time-step t, and γ is a discount factor:

Pass′ = P[St+1 = s′|St = s,At = a] (2.10)

Ras = E[Rt+1|St = s,At = a] (2.11)

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... (2.12)

Thus, the entire interaction between the agent and the environment can be represented

as a sequence of states, actions, and rewards known as a trajectory <S0, A0, R1,

S1, A1, R2, ... >. MDP is based on the first-order Markov property: P[St+1|St] =

P[St+1|S1, S2, ..., St], which means that the future is independent of the past given

the present.

2.5.1 Policy Gradient

Policy gradient methods are a type of reinforcement learning technique that explicitly

models a parameterized function called policy πθ and optimizes the expected return

by gradient descent. A policy πθ is defined as the probability distribution over actions
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given states:

πθ(a|s) = P[At = a|St = s] (2.13)

The definition of the policy also indicates that the random dynamics of the environment

that a specific action given a state does not mean forwarding to a particular state. For

example, we can imagine standing on a windy field and fly a paper airplane. The plane

is unlikely to fly in the direction we throw it.

The first step of the policy gradient is to reformulate the gradient of the objective

function (one-step MDPs) with likelihood ratios:

J(θ) = Eπθ [r] (2.14)

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Rs,a (2.15)

∇θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∇θ log πθ(s, a)Rs,a (2.16)

= Eπθ [∇θ log πθ(s, a)r] (2.17)

Policy gradient theorem enables the generalization of the likelihood approach to multi-

step MDPs. We can directly change the instantaneous reward r with action-value func-

tion Qπ(s, a):

∇θJ(θ) = E[∇θ log πθ(s, a)Qπ(s, a)], (2.18)

where the expectation term can be approximated with Markov Chain Monte-Carlo

(MCMC) or Temporal Difference (TD) learning.
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Chapter 3

TOKEN-LEVEL TRAINING OF CONDITIONAL TEXT

GENERATION MODEL

Neural question generation (NQG) is the task of generating questions from a given

passage with deep neural networks. One of its key applications is to generate questions

for educational materials [63]. It is also used as a way to improve question answering

(QA) systems [64, 65, 66] or to engage chatbots to start and continue a conversation

[67].

Automatic question generation (QG) from a passage is a challenging task due to

the unstructured nature of textual data. One of major issues in NQG is how to take

the question target, referred to as the target answer, in the passage. Specifying the

question target is necessary for generating natural questions because there could be

multiple target answers in the passage as in the following example. In Figure 3.1(a),

the passage “John Francis O’Hara was elected president of Notre Dame in 1934.”

has various candidates to be asked such as the person “John Francis O’Hara”, the

location “Notre Dame”, and the number “1934.” Without taking the target answer as an

additional input, existing NQG models such as [68] tend to generate questions without

specific target. This is a fundamental limitation due to the fact that recent NQG systems

mostly rely on RNN sequence-to-sequence model [18, 1], and RNNs do not have the
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Figure 3.1: An example of overall idea for QG in this chapter. Generated questions

from existing NQG models tend to include words from the answer, resulting in the

generation of improper questions. Replacing the answer into a special token effectively

prevents the answer words from appearing in the question, resulting in the generation

of desired questions [3].

ability to model high-level variability [24].

To overcome this limitation, most recent NQG models incorporated the target an-

swer information by using the answer position feature [69, 70]. However, these ap-

proaches have a critical issue that a significant proportion of the generated questions

include words in the target answer. For example, Figure 3.1(b) shows the improperly

generated question “Who was elected John Francis?”1 which exposes some words in

the answer. This problem results from the tendency of the sequence-to-sequence model

to include all information from the passage [71]. It becomes severer with the recent

trend that NQG models use the copy mechanism [72] to encourage that many words

in the original passage appear in the question.

This study focuses on resolving this problem by separating the target answer from

the original passage. For example, the masked passage “<a> was elected president of

Notre Dame in 1934.” in Figure 3.1(c) still contains enough information to generate the

desired question in Figure 3.1(d), because the term “president” is mostly about some-
1This example is actually generated by our base model which will be introduced in the later part.
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one’s position. Interestingly, even though a target answer is replaced with a special

token <a> in a passage, we can infer the interrogative word through contextual infor-

mation from the remaining part of the passage. Therefore we expect that separating a

target answer will prevent the answer inclusion problem.

In this chapter, we develop a novel architecture named Answer-Separated Seq2Seq

which treats the passage and the target answer separately for better utilization of the

information from both sides. The first step in the proposed NQG model is an answer

masking. Literally, we replace the target answer with the mask token <a>, and keep

the corresponding target answer apart. The masked passage is encoded by an RNN

encoder inside of our model. This approach to separate the target answer from the pas-

sage helps our model to identify the question type related to the target answer because

the model learns to capture the position and contextual information of the target an-

swer with the help of the token <a>. Furthermore, we propose a new module called

keyword-net as a part of Answer-Separated Seq2Seq, which extracts key information

from the target answer kept apart before. The keyword-net makes our NQG model

be consistently aware of the target answer, supplementing the information deficiency

caused by answer separation. This module is inspired by how people keep the target

answer in mind when they ask questions. Lastly, we adopt a retrieval-style word gener-

ator proposed by [73] which better captures the word semantics during the generation

process.

When we evaluate our Answer-Separated Seq2Seq on the SQuAD dataset [74]),

our model outperforms previous state-or-the-art NQG models by a considerable mar-

gin. We empirically demonstrate the impact of the answer separation in following three

ways: the rare appearance of the target answer in the generated questions, the better

prediction of interrogative words, and the higher attention weights of the <a> token

to interrogative words. Furthermore, trained with the only questions generated by our

model, a machine comprehension system achieves a comparable results.
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3.1 Related Work

Recently, there have been several NQG models which are end-to-end trainable from

(passage, question, answer) triplets written in natural language. [68] first dealt with

end-to-end learning with regard to the question generation problem using a sequence-

to-sequence model with an attention mechanism, achieving better performance than

rule-based question generation methods in both automatic and human evaluations.

However, their model did not take the target answer into account, resulting in gen-

eration of the questions which were full of randomness.

To generate more plausible questions, [69] utilized answer positions to make the

model aware of the target answer and used NER tags and POS tags as additional fea-

tures. [70] utilized the multi-perspective context matching algorithm of [75] to employ

the interaction between the target answer and the passage for collecting the relevant

contextual information. Both works employed a copy mechanism [72] to reflect the

phenomenon by which many of the words in the original passage are copied to the

generated question. However, none of them dealt with the issue of many of generated

questions including target answers, and the copy mechanism could intensify this prob-

lem. To tackle this problem, this chapter focuses on developing an NQG model that

utilizes the target answer as a separated knowledge.

Additionally, there have been several works which utilize question generation to

improve the question answering system. [64] crawled an external QA dataset and gen-

erated questions from it through their retrieval-based and generation-based question

generation methods. With the generated questions as additional data for training the

QA system, they demonstrated that their question generation model helps to improve

QA systems. More recently,[66] presented a joint training algorithm that improves

both the question answering system and the question generation model.

To the best of our knowledge, none of the previous works has focused on the issue

that a significant proportion of generated questions include words in the target answers.
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3.2 Task Definition

Given a passage Xp = (xp1, ..., x
p
n) and a target answer Xa = (xa1, ..., x

a
m) as input,

the NQG model aims to generate a question Y = (y1, ..., yT ) asking about the target

answer Xa in the passage Xp. The NQG task is defined as finding the best Y that

maximizes the conditional likelihood given the Xp and the Xa:

Y = argmax
Y

P (Y |Xp, Xa) (3.1)

= argmax
Y

T∑
t=1

P (yt|Xp, Xa, y<t) (3.2)

3.3 Base Model: Encoder-Decoder with Attention

Following previous works, we base our model on the RNN encoder-decoder architec-

ture [18], which is an RNN-based sequence-to-sequence learning model. It generates a

task-specific sequential output from a given sequential input and is widely adopted in

sequence generation tasks such as neural machine translation [18, 1], text summariza-

tion [29] and dialogue model [22, 24]. In neural question generation, the model takes a

passageXp as an input and outputs a question Y which is relevant to the input passage

Xp. Note that the base model does not take the target answer as the input.

An RNN encoder-decoder model consists of two parts: an encoder and a decoder.

The encoder is used to represent the variable-length input sequence as a fixed-length

vector which includes contextual features of the input sequence, reflecting dependency

among each input token. The decoder then generates an output sequence based on the

encoder output.

In general, attention mechanism [1], which functions as visual attention mecha-

nisms found in human, is combined with the encoder-decoder model. The mechanism

alleviates the bottleneck that the decoder only relies on a fixed-size vector to generate

sequences. With the attention mechanism, the decoder is able to pay attention to the
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most relevant parts of the given input sequence while generating an output sequence. In

the following section, we describe the structure of the encoder-decoder with attention

in details.

Encoder

The encoder is used to extract contextual features from the given input passageXp. We

use an one-layer bi-directional LSTM as the encoder. A bi-directional LSTM consists

of a forward LSTM and a backward LSTM:

→
hpi =

−−−−→
LSTM(xpi ,

→
hpi−1) (3.3)

←
hpi =

←−−−−
LSTM(xpi ,

←
hpi+1) (3.4)

hpi = [
→
hpi ;

←
hpi ] (3.5)

For each time step i, forward hidden state
→
hpi and backward hidden state

←
hpi are con-

catenated to form a hidden state of bi-LSTM.

Decoder

Given the extracted features from the encoder, the decoder generates the corresponding

question Y . We utilize a one-layer uni-directional LSTM with attention:

st = LSTM(yt−1, st−1, ct) (3.6)

P (yt|y<t, Xp) = Softmax(Wost) (3.7)

For each time step t, the output token of previous time step yt−1, the hidden state of

previous time step st−1 and the context vector of current time ct are passed through

the decoder LSTM to compute the decoder hidden state of current time step st. Each

hidden state of decoder st is then linearly projected with a trainable weight matrix

Wo and passed through a softmax layer to compute the probability of output yt. The

context vector ct is used to reflect the most relevant feature from the input passage Xp
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while generating the current question token yt. In Eq. (3.8), the alignment score eti is

computed as the matching score between st−1 and hpi , where Wc and Uc are trainable

weight matrices and v> is a trainable vector. As in Eq. (3.9), the alignment weight αti

is computed with normalization and we take the weighted average of hpi as context

vector:

eti = v> tanh(Wcst−1 + Uch
p
i ) (3.8)

αti =
exp(eti)∑n
k=1 exp(etk)

(3.9)

ct =

n∑
i=1

αtih
p
i (3.10)

3.4 Answer-Separated Seq2Seq

Previous encoder-decoder based neural question generation models take the whole

passage Xp as an input. However, RNN encoders tend to pass all of the information

in the passage to the decoder, causing a serious issue: the generated question often

includes the target answer Xa. Therefore, we propose Answer-Separated Seq2Seq

which treats the target answer and the passage separately for better utilization of the

information from both sides. With a simple pre-processing of data, we separate the tar-

get answer from the input passage. Encoded with two individual encoders of Answer-

Separated Seq2Seq, contextual feature of the passage and the target answer are passed

to the decoder. We further propose keyword-net as another part of Answer-Separated

Seq2Seq, which is used to extract the key information from target answer. In every de-

coding step, the decoder utilizes both the contextual feature of the passage from the at-

tention mechanism and the keyword feature of the target answer from the keyword-net

to generate a question that is related to the target answer in the passage. Furthermore,

we adopt a retrieval style word generator by [73] as the output layer of the decoder to

better capture the word semantics.
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Different from the general RNN encoder-decoder, our Answer-Separated Seq2Seq

consists of :

• Two encoders each to extract contextual feature from the passage Xp and the

target answer Xa.

• Answer-Separated decoder which combines both the information from the pas-

sage and the target answer.

In the following section, we give a detailed description on how Answer-Separated

Seq2Seq works. An overview of our Answer-Separated Seq2Seq is shown in Figure

3.2.

3.4.1 Encoder

Answer-Separated Seq2Seq contains two individual encoders each for encoding the

passage Xp and the target answer Xa. Similar to the base model, we use two one-

layer bi-LSTMs as encoders.

Answer-Separated Passage Encoder

Rather than feeding the passage encoder with additional features to emphasize the an-

swer position, we first extract the target answer inside the passage and simply replace

the corresponding target answer with a special <a> token as in Figure 3.1(c). In this

way, the model learns to capture the position and contextual information of the target

answer, knowing which part of the passage should be focused by the generated ques-

tion. As a result, the probability that the generated question includes the target answer

is reduced. This has a direct effect of preventing generation of questions irrelevant to

the given target answer. We use the same one-layer bi-LSTMs as in Eq. (3.1) and Eq.

(3.2).
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Answer encoder

We use another one-layer bi-LSTM to encode the target answer Xa. In the last time

step of the answer encoder, the hidden state of each LSTM is concatenated to form the

final hidden state hafinal , which represents the overall feature of the answer Xa:

→
haj =

−−−−→
LSTM(xaj ,

→
haj−1) (3.11)

←
haj =

←−−−−
LSTM(xaj ,

←
haj+1) (3.12)

s0 = hafinal = [
→
ham;

←
ham] (3.13)

3.4.2 Answer-Separated Decoder

To exploit sufficient information from both the passage and the target answer, we de-

sign the Answer-Separated decoder. Based on LSTM, Answer-Separated decoder em-

ploys features of the passage and the target answer in the following three ways.

Decoder Initialization

We initialize the decoder state with the final answer vector hafinal.

Incorporating the Key Feature of the Answer

We extract the key information in the target answer to disambiguate the question target.

For example, given a passage “Steve Jobs is the founder of Apple” and the target

answer “founder of Apple”, we want to generate a question like “Who is Steve Jobs?”.

Then “founder” in “founder of Apple” is a keyword which defines the representative

characteristic of the whole answer. In every decoding step, we use an attention-based

module, termed keyword-net, to extract the key information from the target answer.

For each layer of the keyword-net, a normalized matching score between output vector

of last layer ol−1t and answer hidden states haj is computed. We then take the weighted

average over haj as the extracted keyword feature olt in current layer l. We initialize
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o0t with context vector ct of current decoding step. Following equations describe the

mechanism of keyword-net:

o0t = ct (3.14)

pltj = Softmax((ol−1t )>haj ) (3.15)

olt =
∑
j

pltjh
a
j (3.16)

st = LSTM(yt−1, st−1, ct, o
L
t ) (3.17)

Retrieval Style Word Generator

Based on the current decoder structure, we further adopt an architecture which can

generate words by querying distributed word representation, with the purpose of cap-

turing the semantic information of the according words.

[73] proposed a retrieval style word generation layer which can remedy a short-

coming of the sequence-to-sequence model that sequence-to-sequence model has ten-

dency to memorize the sequence pattern rather than reflecting word meanings. They

made use of word embeddings to tackle the problem. Their word generator produces

words by querying the distributed word representations, hoping to capture the meaning

of used words. We then borrow the idea behind this novel word generator to replace

the existing output layer in our decoder.

The query qt is computed as a combination of the decoder hidden state st and the

context vector ct. By querying qt to each of the word embedding ek, we can com-

pute the relevance score between qt and ek where Wa is a trainable parameter matrix.

Then the normalized value of score function denotes the generation probability of each

word. Since the original output layer takes the most of model parameters, we can dra-

matically reduce the parameter size and the time of model convergence by using this
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word retrieval layer:

qt = tanh(Wq[st; ct]) (3.18)

score(qt, ek) = q>i Waek (3.19)

p(yt) = Softmax(score(qt, ek)) (3.20)

3.5 Experimental Settings

In this section, we first introduce the dataset we conduct experiments on. Then we give

a detailed description of hyperparameter settings of our model. Lastly, several evalua-

tion methods mainly used to assess the quality of generated questions are introduced.

3.5.1 Dataset

For fair comparison, we use the same dataset that is used by previous works [68, 69,

70]: two processed versions of SQuAD[74] dataset. The original SQuAD dataset con-

tains 23,215 paragraphs from 536 articles with over 100k questions and their answers,

which are originally created by crowd-workers. Since the original dataset is divided

into train/dev splits, [68, 69] re-divided them into train/dev/test splits, and extracted

passages from the paragraph that contains the target answer, each of which we call

data split-1 and data split-2 in the following lines. For the data split-1, since [68]

does not include the target answers, [70] extracted them from each passage to make

(passage, question, answer) triplets. As a result, data split-1 and data split-2 contains

70,484/10,570/11,877 triplets and 86,635/8,965/8,964 triplets respectively. We tok-

enize both data splits with Stanford CoreNLP [76] and then lower-case them.

3.5.2 Implementation Details

We implement our models in Tensorflow 1.4 and train the model with a single GTX

1080 Ti. The hyperparameters of our proposed model are described as follows.
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Our model consists of two one-layer encoders each for encoding passages and tar-

get answers, and a one-layer decoder to generate questions. The number of hidden

units in both encoders and the decoder are 350. For both encoder and decoder, we

use 34k most frequent words appeared in training corpus, replacing the rest with the

<UNK> token. We use 300-dimensional pre-trained GloVe [77] embeddings trained

on 6 billion-token corpus for initialization and freeze it when training. Weight normal-

ization is applied to the attention module and dropout with Pdrop = 0.4 is applied for

both RNNs and the attention module. The layer size of keyword-net is set as 4.

Training and Inference

During training, we optimize the cross-entropy loss function with the gradient descent

algorithm using Adam [78] optimizer, with an initial learning rate of 0.001. The mini-

batch size for each update is set as 128 and the model is trained for up to 17 epochs.

When testing, we conduct beam search with beam width 10 and length penalty

weight 2.1. Decoding stops when the generated token is <EOS>. The Performances

of all our models are reported as mean and standard derivation values (Mean ± Std).

Named Entity Replacement

To further improve the model performance, we pre-process the data with a very simple

technique. Since most named entities do not appear often, by replacing those named

entities with representative tokens, we can not only reduce unknown words but also

capture the grammatical structure. We look for the named entity tags for tokens in the

given passage and replace each of them with the corresponding tag. We make sure that

the same entity is assigned the same tag. NER tags are extracted with named entity tag-

ger in Stanford CoreNLP. For those passages that have different named entities with the

same tag, we distinguish them with different subscripts such as Person1, P erson2.

We store a matching table between named entities and tags, which is used to post-

process the generated questions.
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3.5.3 Evaluation Methods

Following [69, 70], we compare the performance of NQG models with 3 evaluation

metrics: BLEU-4, Meteor and RougeL, which are standard evaluation metrics of ma-

chine translation and text summarization. We use the evaluation package published by

[79].

BLEU-4

BLEU-4 measures the quality of the candidate by counting the matching 4-grams in

the candidate to the 4-grams in the reference text.

Meteor

Meteor compares the candidate with the reference in terms of exact, stem, synonym,

and paraphrase matches between words and phrases.

RougeL

RougeL assesses the candidate based on longest common subsequence shared by both

the candidate and the reference text.

3.6 Results

3.6.1 Performance Comparison

We compare our model with previous state-of-the-art NQG models. Since there exists

two different data splits processed by [68, 69], we conduct experiments on both data

splits. To figure out the effect of each module, we also conduct ablation tests against

some key modules: ASs2s denotes the complete Answer-Separated Seq2Seq model.

ASs2s-< a> is the Answer-Separated Seq2Seq without replacing the target answer

in the original passage. ASs2s-keyword is the Answer-Separated Seq2Seq without
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keyword-net. ASs2s-ASdec is the Answer-Separated Seq2Seq without the Answer-

Separated decoder but with a general LSTM decoder.

Table 3.1: Evaluation of the proposed model and previous NQG models with three

metrics: BLEU-4, METEOR and ROUGE-L

Model
Split-1 Split-2

BLEU METEOR ROUGE-L BLEU

NQG [68] 12.28 16.62 39.75 -

MPQG [70] 13.98 18.77 42.72 13.91

NQG++ [69] - - - 13.29

ASs2s-ASdec 12.30 ± 0.26 16.70 ± 0.22 40.32 ± 0.26 12.25 ± 0.24

ASs2s-keyword 13.95 ± 0.29 19.34 ± 0.24 40.60 ± 0.25 13.86 ± 0.30

ASs2s-<a> 14.37 ± 0.28 18.95 ± 0.24 42.06 ± 0.27 14.05 ± 0.30

ASs2s 16.20 ± 0.32 19.92±0.20 43.96 ± 0.25 16.17 ± 0.35

As shown in Table 3.1, ASs2s outperforms all of the previous NQG models on

both data splits by a great margin, showing that separate utilization of target answer

information plays an important role in generating the intended questions. With the

help of Answer-Separated decoder, ASs2s-<a> still outperforms the previous NQG

models except for ROUGE-L on data split-1. However, there is a considerable de-

crease in all metrics compared to the complete model. This results from the fact that

answer separation prevents generated question from including the answer. Similarly,

ASs2s-keyword has a big drop in performance and this verifies that the keyword-net

has actual impact on improving the performance. ASs2s-ASdec has greater decrease

in all metrics compared to the ASs2s. This is a very natural result because without

the Answer-Separated decoder, the model has to generate questions by only relying on

context around the target answer position without knowledge of the target answer.
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Table 3.2: Percentage of complete/partial inclusion of the target answer in generated

questions

Model Complete Partial

seq2seq+AP 0.8% 17.3%

MPQG [70] 2.9% 24.0%

ASs2s 0.6% 9.5%

3.6.2 Impact of Answer Separation

Answer separation helps the model generate the right question for the given target

answer. Since the base model does not utilize the target answer information, we further

define Seq2Seq+AP(Answer Position) as base model with answer position feature

[69] for comparison. We show the benefits of Answer-Separated Seq2Seq in three

aspects.

Answer Copying Frequency

If a NQG model captures the question target well, the generated question will rarely

include the target answer. We verify the assumption by computing the percentage of

generated questions including target answers. Since [68] ignores the target answer,

we choose Seq2Seq+AP to represent [68] with answer position feature. Further, we

choose the previous state-of-the-art [70] for comparison because both [69] and [70]

use the copy mechanism.

As shown in Table 3.2, the percentage that the target answers are either com-

pletely or partially included in the generated questions is significantly lower in our

model. We also figure out an interesting observation: even though [70] is the previous

state-of-the-art NQG model, it generates more irrelevant questions to the target answer

when compared to Seq2Seq+AP. This observation indicates the negative effect of copy

mechanism that the target answer inside the passage is unintentionally copied to the
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generated question.

Interrogative Word Prediction

To figure out the effect of Answer-Separated Seq2Seq on question type prediction, we

compare the recall of each interrogative word prediction between the generated ques-

tions of Answer-Separated Seq2Seq and Seq2Seq+AP. We group questions into 8 cat-

egories: “what”, “how”, “when”, “which”, “where”, “who”, “why” and “yes/no”. As

shown in Table 3.3, Answer-Separated Seq2Seq has better recall score over Seq2Seq+AP

in all categories. Especially, the recall of question types “how”, “when”, “where” and

“who” improved in big magnitude. Both model’s recall of question type “what” is very

high because “what” takes up more than half of the whole training set (55.4%). Both

model’s recall of type “which” is very low. This may result from the fact that some

combinations like “which year” and “which person” may be generated as “where” and

“who” respectively. For question types “why” and “yes/no” which only take up 1.5%

and 1.2% of the training set respectively, both models did not perform well due to the

small amount of data.

Table 3.3: Recall of interrogative word prediction

Model
Question type

what how when which where who why yes/no

seq2seq+AP 77.3% 56.2% 19.4% 3.4% 12.1% 36.7% 23.7% 5.3%

ASs2s 82.0% 74.1% 43.3% 6.1% 46.3% 67.8% 28.5% 6.2%

Attention from<a>

We verify the effect of replacing answer with <a> by comparing attention matri-

ces. Given the passage “john francis o’hara was elected president of notre dame in

1934.” and the target answer “john francis o’hara”, following Figure 3.3(a) and Figure
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3.3(c) show the attention matrices produced by our Answer-Separated Seq2Seq and

Seq2Seq+AP respectively.

As shown in Figure 3.3(a), the interrogative word ”who” gets most of the atten-

tion weights(higher attention weights) from the <a> token in our Answer-Separated

Seq2Seq. Further more, Our model can generate a question that is exactly related to

the target answer. With additional answer position features as in Figure 3.3(c), only a

part of answer is attended while generating the interrogative word “who”. In this case,

if the answer has some contextual information, then the model may omit it, generating

an unintended question. Also, the generated question contains “john francis” which is

a part of the target answer. We infer that the encoder tends to utilize more informa-

tion from the word embeddings rather than answer position features, since the word

embedding has far more information than answer position features.

3.6.3 Question Generation for Machine Comprehension

By training a machine comprehension system on the synthetic data generated by our

model, we verify that our model has an enough ability to generate natural and fluent

questions. By changing the position of the <a> token, we can easily produce various

questions with our model. Figure 3.3(a) and Figure 3.3(b) shows one example where

we use our model to generate two different questions corresponding to different target

answers from the same input passage.

We experiment with QANet [80] on SQuAD dataset to verify whether the gener-

ated questions from our model are valid or not. Since most of the answers correspond

to named entities, we use words and phrases that are named entities from training part

of data split-1 as target answers. Then, we pair those answers with corresponding pas-

sages. We also make sure that selected answers are not overlapped with answers in

the original SQuAD dataset because our NQG model is trained with the target answer

provided with SQuAD dataset. If answers are overlapped, our model may generates

exact the same questions as the golden questions. then we pair those answers with
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Table 3.4: Performance of the machine comprehension system which is trained only

with synthetic data generated by the proposed model

Answers Exact Match (EM) F1 score

ALL 22.72 31.58

NER 49.09 56.57

corresponding passages.

To organize the dataset in the same way as SQuAD dataset, (paragraph, question,

answer position) triplets, we trace the passage in data split-1 in the original paragraph

and re-compute the answer position as well. We finally make a synthetic data with

about 50k questions and train the machine comprehension system only with our syn-

thetic data.

As shown in Table 3.4, the machine comprehension system achieves EM/F1 score

of 22.72/31.58 in public SQuAD dev set. This result is far below the result 68.78/78.56

of the case when the model is trained with the original training set. However, consid-

ering our synthetic data only consists of target answers with single named entity, we

further check EM/F1 score of partial dev set that only has a single named entity as the

answer. We find that in the 10k dev set, about 40 percent of the data has an answer with

a single named entity and the machine comprehension system achieves EM/F1 score

of 49.09/56.57 with those parts of the data. Since the SQuAD dataset is a human-made

dataset, this result sufficiently shows that our Answer-Separated Seq2Seq can gener-

ate valid questions that can be acceptable both by human and machine comprehension

systems.

3.7 Conclusion

In this chapter, we investigate the advantages of answer separation in neural question

generation. We observe that existing NQG models suffer from a serious problem: a
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significant proportion of generated questions include words in the question target, re-

sulting in the generation of unintended questions. To overcome this problem, we intro-

duce a novel NQG architecture that treats the passage and the target answer separately

to better utilize the information from the both sides. Experimental results show that our

model has a strong ability to generate the right question for the target answer in the

passage. As a result, it yields a substantial improvement over previous state-of-the-art

models.
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Chapter 4

SEQUENCE-LEVEL TRAINING OF UNCONDITIONAL

TEXT GENERATION

Generating realistic text is an important task with a wide range of real-world appli-

cations, such as machine translation [19], dialogue generation [23], image captioning

[81], and summarization [82]. A language model is the most common approach for

text generation, and it is typically trained via maximum likelihood estimation (MLE),

specifically in an autoregressive fashion.

Although MLE-based methods have achieved great success in text generation,

there are two fundamental issues that call for further research. The first problem is that

MLE suffers from exposure bias [51]: during training, the model sequentially gener-

ates the next word depending on the ground-truth words; however, the model relies on

its previously generated words at inference time. Therefore, the cumulative effect of

incorrect predictions in the text sequence results in low-quality samples. The second

problem lies in that the objective functions of MLE-based methods are rigorous [52];

the models are forced to learn every word in the target sentence. Under this strict

guidance, the ability of language models to generate diverse samples can be severely

limited.

In recent years, Generative Adversarial Networks (GANs) [54] have drawn atten-
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tion as a remedy to the above problems. However, applying GANs to text-related tasks

is challenging due to the discrete nature of text. In the inference phase of the text gener-

ation, the model iteratively samples the next word from the distribution of vocabulary.

As this step includes the sampling process that hinders the backpropagation of the gra-

dients from the discriminator, several approximation methods have been proposed to

avoid the non-differentiability issue [55, 56, 17, 57].

Depending on the data space in which the GAN’s discriminator operates, text

GANs can be categorized into two groups: continuous-space methods and discrete-

space methods. For discrete spaces, one prominent research line adopts the reinforce-

ment learning (RL) technique to address the non-differentiability issue directly [55,

56, 83]. In the RL setting, GANs treat the generator as a stochastic policy to syn-

thesize realistic samples. The generator is optimized via policy gradient methods by

incorporating the reward signals from the discriminator. These signals are computed

from a complete sequence rather than individual words in text. This RL approach can

consider the final form of the text, thus it resolves the discrepancy between the training

and inference stages in the MLE method. However, it has significant limitations, such

as an excessive dependency on MLE pretraining, and severe mode collapse [84].

Other methods employ approximation techniques to transform discrete text into

continuous representation. Such approaches include substituting next-word sampling

in the generation phase with continuous relaxation [85, 86] or adopting an autoencoder

architecture to learn an implicit data manifold in a continuous space instead of directly

modeling the discrete text [17, 87]. In these approaches, the discriminator distinguishes

between the synthetic and real text representations in the continuous space. As the

discriminator only learns to distinguish an approximated representation of text, these

approaches cannot provide direct feedback concerning the entire text’s correctness.

In this work, we propose a novel text GAN architecture, called ConcreteGAN,

which promotes the collaborative training of the continuous-space and discrete-space

methods. Specifically, in the continuous space, a latent code representation of the
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synthetic text is learned jointly with an autoencoder. Then, the textual output gener-

ated from the latent code is further updated via RL training. In this way, Concrete-

GAN simultaneously regularizes the text generation process within the continuous

and discrete data spaces. The interplay between adversarial trainings in the two data

spaces takes the following advantages; 1) it reduces RL training variance through the

regularization of the latent code representation; and 2) it alleviates exposure bias in

continuous-space methods. To the best of our knowledge, our proposed method is the

first work to train a text GAN combining both continuous-space and discrete-space

methods.

We evaluate our model on three benchmark datasets: the COCO Image Caption

corpus, the Stanford Natural Language Inference corpus, and the EMNLP 2017 WMT

News corpus. Extensive experiments show that our model surpasses the existing text

GAN models and achieves a substantial improvement with respect to quality, diversity,

and global consistency. In addition, we provide comprehensive analyses of the latent

code space. Compared to the GANs that work only in a continuous space, the synthetic

code space generated by our model is more similar to the latent code space of real

text. This behavior demonstrates that the proposed approach effectively regularizes

the latent code space, which helps to reduce the variance of RL training.

4.1 Background

In this section, we first give a brief description of GANs. Then we introduce two lines

of research for text generation, including continuous-space methods and discrete-space

methods.

4.1.1 Generative Adversarial Networks

GANs are one of the implicit generative models that do not require a tractable likeli-

hood function. Thus, they can be applied to practical situations such as imitating the
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Figure 4.1: Illustration of structure of a generative adversarial network (GAN). GAN

is basically composed of a generator which tries to generate real-looking samples, and

a discriminator which aims at distinguishing generated samples from the real data.

distribution of high-dimensional complex data.

In general, GANs have a generator and a discriminator as their basic components,

as shown in Figure 4.1. The generator tries to imitate the real data distribution, and

the discriminator tries to distinguish generated samples from real data. The iterative

interplay between these two components improves their strength against each other

and provides significant performance enhancement in each of them. One can formulate

the objective function of the GAN as a minimax game:

min
G

max
D

F (D,G) = Ex∼data[logD(x)]

+ Ex∼noise[log(1−D(G(x)))],

(4.1)

where G and D are the functions for the generator and discriminator, respectively.

GANs have shown significant achievements in various deep learning applications,

especially in computer vision research [88, 89, 90]. However, when applied to text

generation, GANs suffer from the non-differentiability issue due to the discrete nature

of text. Recently, various methods have been proposed to circumvent this issue, which

can be broadly classified into two categories: continuous-space methods and discrete-

space methods.
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4.1.2 Continuous-space Methods

Several studies on GANs sidestep the non-differentiability by reformulating the learn-

ing objective in a continuous space. The adversarially regularized autoencoder (ARAE)

[17], as a representative model, employs an autoencoder to learn an implicit data man-

ifold, mapping discrete text into a continuous latent representation. In this model, the

encoder and the generator are trained adversarially. Based on the ARAE, LATEXT-

GAN [87] uses an additional approximated representation of text called soft-text,

which is the reconstructed output of the autoencoder. Then, they employs two dis-

criminators for each approximated representation in the continuous spaces.

Another line of work exploits a differentiable continuous relaxation, (i.e., Gumbel-

softmax [85, 91] or soft-argmax [86]), to replace next-word sampling in the generation

phase.

4.1.3 Discrete-space Methods

SeqGAN [55] is the first work addressing the non-differentiablity issue within a dis-

crete space by introducing an RL technique into GAN training. Specifically, this ap-

proach considers the generated words as the current state and the generation of the

next word as an action. In this scenario, the generator is optimized via a policy gradi-

ent, where the reward is computed by the discriminator through a Monte Carlo search.

MaliGAN [92] proposes a normalized maximum likelihood objective. Combined with

several reduction techniques, it reduces the variance of the reinforcement learning re-

wards and the instability of the GAN training dynamics. LeakGAN [93] devises a

hierarchical architecture for the generator to address the sparsity issue in the long text

generation. The generator is guided by the latent feature leaked from the discriminator

at all generation steps. RankGAN [56] relaxes the binary restriction of the discrimina-

tor by exploiting relative ranking information between the real sentences and generated

ones. This increases the diversity and richness of the sentences. All of the above meth-

ods use the maximum likelihood pretraining, followed by small amounts of adversarial
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fine-tuning. ScratchGAN [83] first achieved a performance comparable to that of MLE

methods without any pretraining.

4.2 ConcreteGAN

In this work, we propose a novel text GAN architecture that promotes the collaboration

of two adversarial trainings in a continuous space and a discrete space, respectively.

We adopt the alternating training of the two methods in each iteration, rather than MLE

pretraining commonly used for discrete-space methods. The architecture of our model

is shown in Figure 4.2.

Our model consists of the following four components: (1) RNN-based autoencoder

is composed of an encoder and a decoder. The encoder provides a latent code repre-

sentation of real text in a continuous space. The decoder, as a text-generator, yields

textual outputs by interpreting the latent code from encoder or code-generator. (2)

Code-generator maps a random noise to a latent code representation with the goal to

imitate the distribution of the encoder. (3) Code-discriminator is the code-generator’s

opponent, and is adversarially trained to distinguish between latent codes from en-

coder and code-generator. (4) Text-discriminator evaluates complete sequences from

real data distribution or decoder(or text-generator) distribution. The computed scores

are used as the rewards to train the decoder via the policy gradient algorithm. The in-

terplay between two adversarial trainings has a complementary effect, improving both

the quality and the diversity of generated text.

4.2.1 Autoencoder Reconstruction

Let x ∈ X be the input sequence and z ∈ Z be the latent code of an autoencoder. We

use a conventional RNN autoencoder that consists of two parts: an encoder network

and a decoder network. The encoder network fφ : X 7→ Z (parameterized by φ) maps

the input sequence x to the latent code z, which is represented as the last hidden state.
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The decoder function fψ : Z 7→ X (parameterized by ψ) reconstructs the original

input x conditioned on the encoded latent code z. Here, we use a gated recurrent unit

(GRU) for both the encoder and decoder networks, whose parameters are trained using

the cross-entropy loss function:

z = fφ(x) (4.2)

min
φ,ψ

Lrec(φ, ψ) = −E[log pψ(x|z)] (4.3)

4.2.2 Adversarial Training in the Latent Code Space

The next step of autoencoder reconstruction is the adversarial training of code-generator

Gθ(µ) and code-discriminator Dω(z). The code-generator aims to imitate the distri-

bution of real text in the continuous latent code space that is represented as the last

hidden state of the encoder. Given a random noise vector µ from a fixed distribution,

such as a standard Gaussian distribution, the code-generator Gθ(µ) outputs a vector

z̃ that has the same shape as the last hidden state of the encoder. On the other hand,

the code-discriminator Dω(z) learns to distinguish code-generator’s output from the

latent representations of real text. We use multilayer perceptrons (MLPs) with residual

connections for both Gθ(µ) and Dω(z). Since WGAN, a variant of GAN which uses

the 1-Wasserstein distance to measure the difference between the model and target

distributions, showed better performance in terms of training stability and reduction of

mode collapse, we adopt WGAN with gradient penalty (WGAN-GP) for optimization.

z̃ = Gθ(µ) (4.4)

min
ω

Lω = E
z̃∼PG

[Dω(z̃)]− E
z∼Pfφ

[Dω(z)]

+ λ E
ẑ∼Pẑ

[(‖∇ẑDω(ẑ)‖2 − 1)2]

(4.5)

min
θ

Lθ = − E
z̃∼PG

[Dω(z̃)], (4.6)

where ẑ = tz̃+ (1− t)z with 0 ≤ t ≤ 1
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4.2.3 Adversarial Training with Textual Outputs

Along with the adversarial training in the latent code space, we build another adver-

sarial training loop that operates on the discrete textual outputs.

Given a code-generator with fixed weights, we model the decoder, which yields the

textual outputs, as a policy and apply policy gradient method to optimize it. The text-

discriminator Dρ is utilized to evaluate the generated sequence and provide the reward

Rt. Following previous works, we use REINFORCE [94], a Monte Carlo (MC) variant

of the policy gradient algorithm, for gradient estimation of the decoder training.

Since the reward signal can be calculated only when the entire sequence is com-

pletely generated, several approximation methods are proposed to obtain an interme-

diate reward for each generated token. While an MC search with a roll-out policy [55]

is the method adopted in most research, it is computationally expensive even with

a feed-forward discriminator. From our preliminary experiments, we find that GRU-

based sequential discriminator shows better performance than a CNN discriminator

with MC search in terms of computation time and evaluation results. With this empir-

ical intuition, we use GRU-based discriminator as follows:

min
ρ

Lρ = −
T∑
t=1

Ex∼data[logDρ(xt|x1, ..., xt−1)]

+
T ′∑
t=1

Ex̃∼fψ(z̃)[logDρ(x̃t|x̃1, ..., x̃t−1)]

(4.7)

Rt =
T∑
s=t

γs−tDρ(x̃t|x̃t−1, ..., x̃1) (4.8)

∇ψ =
T∑
t=1

N∑
n=1

∇ψ log fψ(x̃t|x̃1, ..., x̃t−1, z)Rt, (4.9)

where γ is a discount factor such that 0 < γ < 1 and N is the size of the mini-batch.

The overall learning procedure is shown in Algorithm 1.

As a result of adversarial training in a continuous space, code-generator can pro-

vide an regularized latent representation of text sequence. This leads to the effective
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Algorithm 1 ConcreteGAN Training
Require: text encoder fφ; shared decoder fψ; code-generator Gθ; code-discriminator

Dω; text-discriminator Dρ; real text data x ∈ X; random noise vector µ;

for each training iteration do

(1) Train the autoencoder for reconstruction (fφ, fψ)

Compute x′ = fψ(fφ(x))

Backprop loss Lrec(x,x′)

(2) Adversarial training in the code space (Gθ, Dω)

Compute z = fφ(x) and z̃ = Gθ(µ)

Backprop loss Lω(z, z̃) to update Dω

Backprop loss Lθ(z̃) to update Gθ

(3) Adversarial training with textual output (fψ, Dρ)

Compute x̃ = fψ(Gθ(µ))

Backprop loss Lρ(x, x̃)

Train fψ via policy gradient∇ψ
end for

restriction on the search space of the RL-policy decoder, acting as a guideline for gen-

erating a sentence within bounded space. In adversarial training in a discrete space, the

decoder learns to better capture the structure of text, such as a phrase, rather than the

choice of words. This process contributes to mitigate the exposure bias of autoencoder,

which further affects the training process of continuous space.

4.3 Experiments

To demonstrate the efficacy of our proposed method, we evaluate our model on various

real-world datasets. In what follows, we give a detailed description of the whole eval-

uation process, from the experimental settings to the experimental results. We provide

a performance comparison with state-of-the-art models as well as several analyses on
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Table 4.1: Statistics of the standard benchmark datasets for evaluating text GANs

COCO SNLI EMNLP

Vocabulary size 4,682 42,423 5,255

Sequence length <37 <81 <51

# of sentences (train) 10k 701k 270k

# of sentences (dev) 10k 13k 10k

# of sentences (test) 10k 13k 10k

the code space.

4.3.1 Dataset

We carry out experiments on three standard benchmark datasets for evaluating text

GANs: COCO Image Caption (COCO) dataset [79], Stanford Natural Language In-

ference (SNLI) corpus [95] and EMNLP 2017 WMT News (EMNLP) dataset. The

statistics of each dataset are presented in Table 4.1.

For the SNLI dataset, considering the data distribution, we set a maximum sentence

length of 15 and a vocabulary size of 11k. Each dataset represents different experimen-

tal environments, which have a critical impact on the unsupervised training of the text

generation model: COCO for small-sized data with short text, SNLI for big-sized data

with short text, and EMNLP for mid-sized data with long text.

4.3.2 Experimental Settings

We implement our model using TensorFlow 1.15 and train the model with up to

200,000 iterations. For all experiments, we use the same model, loss function, and

hyperparameters across the set of datasets, but different vocabulary sizes.
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Autoencoder

The autoencoder is made up of an encoder GRU and a decoder GRU with 300 hidden

units. We use 300-dimensional GloVe word embeddings trained on 840 billion tokens

to initialize both the encoder and the decoder, and they are fine-tuned separately dur-

ing training. The encoder output is normalized with l2-normalization. The input to the

decoder is augmented by the output of the previous time step with a residual connec-

tion at every decoding time step. Additive Gaussian noise is injected into the encoder

output and decays with a factor of 0.995 every 100 iterations. We use ADAM [78] op-

timizer with an initial learning rate of 1e−03. Gradient clipping is applied if the norm

of gradients exceed 5.

Generator & Discriminators

The code-generator and the code-discriminator are 2-layer 300-dimensional MLPs

with residual connections between each layer. We use a Leaky ReLU for the activation

function. The text-discriminator is a 1-layer GRU with 300 hidden units that has the

same structure as the decoder. We use ADAM [78] optimizers and set the initial learn-

ing rate of the code-generator and two discriminators as 5e−06 and 5e−03 respectively.

Gradient clipping is applied to the text-discriminator if the norm of gradients exceed

5.

4.3.3 Evaluation Metrics

The evaluation of natural language generation models is difficult since there is no

single metric to measure the quality of various features of the language. In general,

there are two aspects of natural language to be evaluated: quality and diversity.

51



BLEU & Backward BLEU

Following previous works, we use BLEU score [96] as the metric of quality. For each

dataset, we first sample the same amount of generated text as the held-out test data.

Then, for each generated text, the corpus-level BLEU score is calculated with the entire

test data as a reference data [97]. Reference [98] have proposed to use backward BLEU

(B-BLEU) for the measurement of diversity. For the B-BLEU score, we evaluate each

of the test data given the entire generated data as a reference. Intuitively, the BLEU

score measures the precision of generated text, while the B-BLEU score measures the

recall of generated text. For both scores, a larger value indicates better performance.

Fréchet distance

Reference [99] proposed an automatic evaluation metric called the Fréchet InferSent

Distance (FD), which evaluates the outputs of text generation models. The FD cal-

culates the Fréchet distance between real text and generated text in the pretrained

embedding space. This metric can capture both quality and diversity along with the

global consistency of the text. Since the metric is known to be robust to the embedding

model, as suggested in [83], we use Universal Sentence Encoder [100] to compute the

sentence embedding of texts for our experiments.

4.3.4 Experimental Results for Quality & Diversity

We compare our model with an MLE baseline along with other state-of-the-art text

GANs, such as SeqGan [55], RankGan [56], MaliGan [92], and ScratchGan [83] based

on Texygen [97], which is an evaluation platform for text GANs. The MLE baseline

is an RNN with MLE objective which has the same structure as the decoder of the

proposed model. In addition, we detach the text-discriminator from our model and

train the remaining part with the same training strategy as for the ARAE [17], which is

one of the most representative continuous-space text GANs. Our RL-detached model

shows superior performance over the original ARAE model (detailed information is
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provided in Appendix 7.2. We call the model ARAE* in the following sections. Every

score is averaged over five runs, and they have a standard deviation smaller than 0.005.

Table 4.2 reports BLEU and B-BLEU scores of text GANs trained on the EMNLP

dataset. While recently proposed ScratchGan surpasses the previous state-of-the-art

text GANs by a significant margin, ConcreteGAN shows superior performance over

ScratchGan. Interestingly, our implementation of an ARAE-like model (see “ARAE*”

in the table) performs better than most of the discrete-space methods. The effect of our

model stands out in larger n-grams, which means that commonly-used combinations

of words, such as phrases, can be generated with better quality and diversity.

Then, we compare the performance on another commonly used corpus, which is

a part of the original COCO image caption dataset, and has a very small amount of

training data. As shown in Table 4.3, ConcreteGAN performs better than most of the

discrete-space methods in generating longer combinations of words. However, we find

that all of the BLEU and B-BLEU scores of ARAE* are higher than those of discrete-

space methods, including the proposed model. We conjecture that the lack of training

data (i.e., 10k samples) cannot provide enough guidance for the RNN-based RL dis-

criminator.

To see the effect on the dataset size, we conduct an additional experiment on the

SNLI dataset, which is composed of a large amount of data with short sentences(i.e.,

701k samples). In addition to the MLE baseline, We choose ScratchGAN, ARAE*, and

ConcreteGAN, which represent the discrete-space methods, continuous-space meth-

ods, and combined approaches respectively, for comparison. Table 4.4 shows the BLEU

and B-BLEU scores of these three models. With a large data for training the models,

our proposed method surpasses ARAE* and achieves the best performance compared

to other text GANs and the MLE baseline.
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Table 4.4: Comparison of the quality and diversity of sentences generated by state-of-

the-art text GANs with BLEU and B-BLEU scores on the Stanford Natural Language

Inference dataset. A larger value indicates the better quality / diversity

Metrics MLE ScratchGan ARAE* Ours

BLEU-2 0.843 0.814 0.848 0.871

BLEU-3 0.641 0.604 0.639 0.681

BLEU-4 0.440 0.410 0.422 0.466

BLEU-5 0.307 0.277 0.272 0.311

B-BLEU-2 0.831 0.808 0.821 0.817

B-BLEU-3 0.634 0.594 0.635 0.636

B-BLEU-4 0.439 0.400 0.435 0.446

B-BLEU-5 0.290 0.269 0.288 0.301

4.3.5 Experimental Results for FD score

We compare FD score between the real text distribution and the generated text distri-

bution in the Universal Sentence Embedding space. Table 4.5 shows the FD score of

each state-of-the-art model with different learning paradigm. Analogous to the results

in the Experimental results for Quality & Diversity Evaluation, the FD scores of all

three models on the COCO corpus are fairly high. We explain this result as a natu-

ral outcome of the lack of training data. In other corpora with large training data, our

model shows the best performance, which means that it can generate text that has the

most similar distribution to the real text.

4.3.6 Human Evaluation

We further conduct a human evaluation for textual sample quality of ConcreteGAN

and other methods. Following previous work [91], we randomly sample 100 sentences

from each model and ask ten different people to score each sample on Amazon Me-

chanical Turk. We provide detailed criteria of human evaluation in Appendix 7.3. As
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Table 4.5: Comparison of the Fréchet distance between the real text distribution and

generated text distribution in the Universal sentence embedding space. A lower value

indicates the a smaller distance between the two distributions.

Dataset MLE ScratchGan ARAE* Ours

COCO
0.245

(±0.003)
0.259 (±0.005)

0.238

(±0.004)

0.235

(±0.004)

SNLI
0.010

(±0.002)
0.011 (±0.001)

0.011

(±0.001)

0.008

(±0.001)

EMNLP
0.021

(±0.002)
0.021 (±0.001)

0.022

(±0.001)

0.019

(±0.001)

Table 4.6: Human evaluation score of state-of-the-art models on the EMNLP 2017

WMT News dataset. One hundred random samples generated by each model are eval-

uated by 10 English native workers on Amazon Mechanical Turk.

Methods MLE ScratchGan ARAE* Ours

Human score
3.157

(±1.043)
3.157 (±1.048)

3.204

(±1.040)

3.337

(±0.946)

shown in Table 4.6, the samples from ConcreteGAN are rated with the highest score

compared to the state-of-the-art models of continuous-space and discrete-space mod-

els. Along with the experimental results in the previous sections, the human evaluation

further demonstrate that the proposed method can generates human-like samples better

than other methods.

4.3.7 Analyses of Code Space

In the previous section, the textual outputs of various text GANs are compared with

diversified measurements. To demonstrate the effectiveness of the collaborative adver-

sarial training in both the continuous and discrete spaces, we further analyze the behav-
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Figure 4.3: Comparison of latent code distribution via t-distributed stochastic neigh-

bor embedding (t-SNE). G indicates the output distribution of the code-generator. R

indicates the latent code distribution of the real text generated by the encoder [4].

ior of code-generators. As the goal of code-generator is to imitate the real distribution

of text in the latent code space, we compare the outputs of the encoder and code-

generator to examine the performance of code-generator. We independently gather

the encoder’s outputs from the real text inputs (i.e., the test dataset) and the code-

generator’s outputs from the random noise inputs.

Analysis on t-SNE Space

We first visualize the code distribution with t-SNE [101] for in-depth analysis. Fig-

ure 4.3 shows the t-SNE plots of four different latent code distribution; each of them

represents the code-generator outputs of ConcreteGAN (Ours/G), the encoder outputs

of ConcreteGAN (Ours/R), the code-generator outputs of ARAE* (ARAE*/G), and
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Table 4.7: The Fréchet distance between the latent code distribution of real and syn-

thetic text. The lower the value is, the closer the two distributions.

FD SNLI EMNLP

ARAE* 24.7 18.9

Ours 15.5 16.2

the encoder outputs of ARAE* (ARAE*/R). We see the encoders of both models map

the real text to more compact latent spaces than the code-generators. Furthermore,

the latent code space generated by our code-generator is more compact than that of

ARAE* in the same embedding space. Considering that the two models (i.e., Concrete-

GAN and ARAE*) employ the same encoder architecture, this result demonstrates that

ConcreteGAN produces a compact and dense latent code distribution, which is more

similar to the latent code space of real text.

Fréchet Distance between Latent Code Distribution

We further compare the Fréchet distance between the latent code distribution of real

and synthetic text. Latent codes are obtained from the encoder and code-generator,

respectively. As the codes are represented as embedding vectors, no external model for

computing the sentence-embedding is required. As shown in Table 4.7, ConcreteGAN

shows reduced Fréchet distance compared to ARAE* in both datasets: 24.7 to 15.15 in

SNLI and 18.9 to 16.2 in EMNLP. These results demonstrate our model’s superiority

in generating latent codes compared to the previous baseline with a significant margin.

While the proposed model shows better performance in imitating the encoder than

ARAE*, we see that the gap of Fréchet distance is smaller in the SNLI dataset than

in the EMNLP dataset. The average length of a sentence in EMNLP is approximately

three times larger than that of SNLI, and it is more difficult for the model to encode

lengthy text to a fixed-size code representation. This observation calls for future re-

search investigating the use of a different architecture (i.e., a CNN or Transformer) for
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the encoder part.

4.4 Conclusion

In this chapter, we propose ConcreteGAN, a novel GAN architecture for text genera-

tion. Unlike previous approaches, ConcreteGAN promotes the collaborative training of

the continuous-space and discrete-space methods. The interplay between two adversar-

ial trainings has a complementary effect on text generation. From a continuous-space

method, our model effectively reduces the search space of RL-policy decoder. Mean-

while, discrete-space training enables the model to capture the structure of text and

thereby alleviate the exposure bias, which is caused by continuous-space methods.

The experimental results on three standard benchmark datasets show that Concrete-

GANs outperforms state-of-the-art text GANs in terms of quality, diversity, and global

consistency.
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Chapter 5

SEQUENCE-LEVEL TRAINING OF CONDITIONAL

TEXT GENERATION

5.1 Introduction

The imitation of human intelligence is one of the grand goals of building AI systems.

Until now, the most significant difference between the computer and the human has

been creativeness. The origin of human creativeness can be answered easily: we learn

through our whole life. On the other hand, neural network-enhanced AI systems also

learn but are only restricted to a piece of knowledge that the systems targets at. In

general, deep neural networks require tons of labeled data to do the target task near-

perfectly. However, in real life, we can not provide complete data for training the

model because of the variety of target tasks and the enormous cost of human labeling.

As a remedy, several substitutes have been proposed, such as unsupervised training,

semi-supervised training, and self-supervised training.

Specifically, in NLP, the most straightforward way to overcome the data issue is to

use unlabeled data since they are everywhere with an unlimited amount. Some research

then has been proposed to leverage linguistic information from unlabeled data. There

are mainly two strategies that provide compelling evidence to benefit from utilizing
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the unlabeled data for several NLP tasks: unsupervised feature-based approaches and

unsupervised fine-tuning approaches. One typical example of unsupervised feature-

based approaches is Embeddings from Language Models (ELMo) [102]. ELMo is a

way of contextualized word embeddings learned from bidirectional language model-

ing, and it provides context-sensitive features. We can readily concatenate the ELMo

embeddings to the existing model’s embedding to enhance the performance.

Unsupervised fine-tuning approaches, such as BERT [5], require a minimal amount

of task-specific parameters and share almost all of the network structure with the

downstream tasks. Thus, simply replacing the language modeling head with task-

specific classifiers and fine-tuning the entire network on the task-specific dataset en-

ables quick and great adaption to the downstream task. Since those unsupervised ap-

proaches mostly depend on training a language model before adoption to the down-

stream tasks, we simply call them pre-trained language models.

The application of pre-trained language models enables AI systems to imitate hu-

mans’ way of learning and building experience. Even when a considerable amount of

labeled data is available, it is proved that learning good representations from unlabeled

data actually promotes an effective performance boost. The rise of the pre-trained lan-

guage model has significantly changed the paradigm of NLP research, expanding to

other research areas as well.

In this chapter, we first investigate the application of a pre-trained language model

on question generation. We take an unsupervised fine-tuning approach and exploit one

of the most powerful pre-trained language models, T5 [7]. Following the fine-tuning

method of original T5, we add a task-specific prefix “generate question” to the orig-

inal input sequence before feeding it to the model. Simply token-level fine-tuned on

the SQuAD 1.1 dataset, the model outperforms many state-of-the-art baselines. How-

ever, even based on the pre-trained language model, the autoregressive text generation

model trained with MLE still suffers from exposure bias and token-level rigorous ob-

jective function. As a remedy, we further fine-tune the model with the sequence-level
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objective function. As Chapter 4 suggests, text GAN approaches can evaluate the gen-

erated sentence as a whole and provide the text generation model feedback on the

naturalness of the generated sentence. However, simple discrimination between the

real and generated data may not provide enough information to train a target-specific

model. To this end, we propose to use question-specific rewards to better optimize

the model for the question generation problem. We define the reward as “answerable

score” of the generated question, which is calculated by a BERT-based abstractive ma-

chine reading model called SpanBERT [60]. We provide two different definitions of

the answerable score, each of which focuses on confidence and accuracy. Then, the

question generation model is further optimized with a reinforcement learning (RL)-

based algorithm called Proximal Policy Optimization (PPO).

The proposed methods are evaluated on SQuAD 1.1, a dataset originally designed

for the extractive machine reading task. Since T5 fine-tuned in token-level already out-

performs previous RNN-based state-of-the-art models, we mainly focus on the effect

of sequence-level training. While quantitative analysis could not provide an overall

assessment, we further provide qualitative analysis on the generated samples. Com-

pared to the token-level training method, sequence-level training can update the model

towards improving the pre-defined reward which assesses the generated question as a

whole. This behavior demonstrates that sequence-level training of question generation

can effectively improve generation quality.

5.2 Background

5.2.1 Pre-trained Language Model

A pre-trained language model is designed to be a black box that understands the hu-

man language so that it can be asked to do some specific task in the human language.

Typically, a large amount of unlabeled data that can cover a broad range of character-

istics of the language, such as Wikipedia dump data, is used to train the pre-trained
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Figure 5.1: Usage of pre-trained language models. First, we use a large corpus (like

Wikipedia) to train language modeling. Then, the model is fine-tuned on task-specific

datasets.

language model. The adoption of the pre-trained language model includes two steps:

pre-training and fine-tuning, as shown in Figure 5.1. During the pre-training step, the

language model is first trained to learn the usage of various words and how the lan-

guage is written in general. Then, in the fine-tuning phase, the model is fed a compar-

atively smaller and task-specific dataset, which is used to transfer the model parameter

to the downstream tasks. In a nutshell, this procedure makes the model capable of

performing downstream tasks.

Pre-trained language models have made colossal breakthroughs in almost all of the

NLP tasks. The reason can be explained in one sentence: “They already understand the

human language.” A model which is trained only on a task-specific dataset needs to un-

derstand both the language and the task only given limited resources (smaller dataset).

On the other hand, the language model is capable of understanding the language since
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it has already ‘read’ large language dumps during pre-training. Thus the language

model can be easily fine-tuned to carry out the required task and achieves better perfor-

mance than existing state-of-the-art models. In the following paragraph, we introduce

some basic pre-trained language models [43, 45, 42, 103, 103, 104, 44, 105, 106, 107].

BERT

BERT [5], which is the abbreviation for Bidirectional Encoder Representations from

Transformers, is a first-generation pre-trained language model presented by researchers

at Google AI Language. BERT has fired up the research on the various pre-trained lan-

guage models because it has brought innovation to the machine learning community

by achieving state-of-the-art results in a wide variety of NLP tasks, including Ques-

tion Answering (SQuAD v1.1) [74], Natural Language Inference (MNLI) [108], and

others. The main contribution of BERT is the application of the Transformer encoder

in language modeling. The Transformer is an attention-based seq2seq model which

is initially presented for neural machine translation. It is the first trial of the Trans-

former that the Attention Mechanism is used as the central architecture rather than an

extra module. The adoption of the attention-based network to language modeling indi-

cates an important characteristic: it enables bidirectional training, where the language

model looks at a text sequence from both directions. This mechanism is quite different

from conventional language modeling, which looks at a text sequence either from left

to right or in a combined left-to-right and right-to-left manner. Experimental results

show that a bidirectional language model has a a more profound sense of linguistic

context and flow than unidirectional language models.

BERT is a denoising-based language model, which is also called a masked lan-

guage model (MLM). The input to the BERT is masked word sequences, that a certain

amount of words (15% in the paper) in each sequence are replaced with [MASK]

tokens. Based on the contextual information provided by surrounding non-masked

words, BERT is trained to predict the original words in the position of [MASK] to-
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ken. The objective function of BERT takes into consideration only the prediction of

the masked values and ignores the predictions of the non-masked words. As a conse-

quence, more training steps may be required to make the model converge while the

improvements that BERT has deeper comprehension of the language outweigh the in-

creased training cost.

BERT has another training objective: next sentence prediction (NSP). The model

takes as input pairs of sentences and learns to classify if the second sentence in the

pair is the subsequent sentence in the original document. For doing NSP, every first

token of the BERT input is defined as a [CLS] token, and the corresponding output

denotes the classification result. 50% of the inputs are consecutive pairs of sentences

extracted from the original document, while the others are pairs of sentences that the

second sentence is randomly selected. This procedure explicitly enables the modeling

of understanding the relationship between sentences.

As shown in Figure 5.2, using BERT for downstream tasks is straightforward:

substituting only the language model head to others or adding a small layer, BERT can

be applied to a wide variety of NLP tasks.

• In the machine reading task (e.g., SQuAD v1.1), given a paragraph (context) and

a question regarding it, a model is asked to determine the answer span inside

the paragraph. Based on BERT, a machine reading model is trained by learning

two different vectors representing positions of the beginning and the end of the

answer in the paragraph.

• In sentence classification problems such as sentiment analysis, a model receives

a text sequence and is required to classify it among several candidate labels.

Simply adding a classification layer on top of the BERT output for the [CLS]

token is the most basic form.

In addition to the traditional NLP tasks, BERT has expanded its range of ap-

plication to other domains such as biomedical research [109], computer vision re-

67



BERT (Ours)

Trm Trm Trm

Trm Trm Trm

...

...

Trm Trm Trm

Trm Trm Trm

...

...

OpenAI GPT

Lstm

ELMo

Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

 T
1

T
2  T

N
...

...

...

...

...

 E
1

E
2  E

N
...

 T
1

T
2 T

N
...

 E
1

E
2  E

N...

 T
1

T
2  T

N
...

 E
1

E
2  E

N
...

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

to converge. In Section C.1 we demonstrate that
MLM does converge marginally slower than a left-
to-right model (which predicts every token), but
the empirical improvements of the MLM model
far outweigh the increased training cost.

Next Sentence Prediction The next sentence
prediction task can be illustrated in the following
examples.

Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

A.2 Pre-training Procedure

To generate each training input sequence, we sam-
ple two spans of text from the corpus, which we
refer to as “sentences” even though they are typ-
ically much longer than single sentences (but can
be shorter also). The first sentence receives the A
embedding and the second receives the B embed-
ding. 50% of the time B is the actual next sentence
that follows A and 50% of the time it is a random
sentence, which is done for the “next sentence pre-
diction” task. They are sampled such that the com-
bined length is ≤ 512 tokens. The LM masking is
applied after WordPiece tokenization with a uni-
form masking rate of 15%, and no special consid-
eration given to partial word pieces.

We train with batch size of 256 sequences (256
sequences * 512 tokens = 128,000 tokens/batch)
for 1,000,000 steps, which is approximately 40

epochs over the 3.3 billion word corpus. We
use Adam with learning rate of 1e-4, β1 = 0.9,
β2 = 0.999, L2 weight decay of 0.01, learning
rate warmup over the first 10,000 steps, and linear
decay of the learning rate. We use a dropout prob-
ability of 0.1 on all layers. We use a gelu acti-
vation (Hendrycks and Gimpel, 2016) rather than
the standard relu, following OpenAI GPT. The
training loss is the sum of the mean masked LM
likelihood and the mean next sentence prediction
likelihood.

Training of BERTBASE was performed on 4
Cloud TPUs in Pod configuration (16 TPU chips
total).13 Training of BERTLARGE was performed
on 16 Cloud TPUs (64 TPU chips total). Each pre-
training took 4 days to complete.

Longer sequences are disproportionately expen-
sive because attention is quadratic to the sequence
length. To speed up pretraing in our experiments,
we pre-train the model with sequence length of
128 for 90% of the steps. Then, we train the rest
10% of the steps of sequence of 512 to learn the
positional embeddings.

A.3 Fine-tuning Procedure

For fine-tuning, most model hyperparameters are
the same as in pre-training, with the exception of
the batch size, learning rate, and number of train-
ing epochs. The dropout probability was always
kept at 0.1. The optimal hyperparameter values
are task-specific, but we found the following range
of possible values to work well across all tasks:

• Batch size: 16, 32

13https://cloudplatform.googleblog.com/2018/06/Cloud-
TPU-now-offers-preemptible-pricing-and-global-
availability.html

BERT

Figure 5.3: Structural difference between BERT and GPT-2 [5].

search [110].

GPT-2

[41] demonstrates that GPT-2, a pre-trained language model, can be used to solve

downstream tasks without any direct supervision or modification on architecture. GPT-

2, a Transformer-based language model with 1.5B-parameter, is trained on a large

and diverse dataset called WebText, composed of text scraped from 45 million web

links. The model achieves state-of-the-art performance on several language modeling

datasets along with various downstream tasks. Figure 5.3 shows the main difference

between the BERT and the GPT-2: BERT adopts only the encoder part of the Trans-

former, while the architecture of GPT-2 is very similar to the decoder-only Trans-

former.

XLNet

XLNet [6] is a generalized autoregressive pre-training method that enjoys the strengths

of both autoregressive language modeling (e.g., Transformer-XL [111], and GPT-2)

and auto-encoding language modeling (e.g., BERT) while avoiding their weakness.
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Figure 4: Illustration of the permutation language modeling objective for predicting x3 given the
same input sequence x but with different factorization orders.

A.7 Visualizing Memory and Permutation

In this section, we provide a detailed visualization of the proposed permutation language modeling
objective, including the mechanism of reusing memory (aka the recurrence mechanism), how we use
attention masks to permute the factorization order, and the difference of the two attention streams.

As shown in Figure 5 and 6, given the current position zt, the attention mask is decided by the
permutation (or factorization order) z such that only tokens the occur before zt in the permutation can
be attended; i.e., positions zi with i < t. Moreover, comparing Figure 5 and 6, we can see how the
query stream and the content stream work differently with a specific permutation through attention
masks. The main difference is that the query stream cannot do self-attention and does not have access
to the token at the position, while the content stream performs normal self-attention.

4The problem of language modeling is essentially density estimation for text data.
5https://openreview.net/forum?id=HJePno0cYm

16

Figure 5.4: Illustration of the permutation language modeling of XLNet [6].

XLNet encodes the text sequence from both sides, just like BERT, which means it

depends on a bidirectional context to predict the surrounded tokens. To this end, XL-

Net maximizes the expected log-likelihood of a sequence with respect to all possible

permutations of the factorization order [6] as shown in Figure 5.4. Furthermore, as an

autoregressive language model, XLNet is free from BERT’s limitations resulting from

token masking, such as the discrepancy between pre-training and fine-tuning and the

assumption that unmasked tokens are independent of each other, and it does not rely

on data corruption. The segment recurrence mechanism and relative encoding scheme

of Transformer-XL are further integrated into XLNet to improve architectural designs

for pre-training.
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Exploring the Limits of Transfer Learning

"translate English to German: That is good."

"cola sentence: The 
course is jumping well."

"summarize: state authorities 
dispatched emergency crews tuesday to 
survey the damage after an onslaught 
of severe weather in mississippi…"

"stsb sentence1: The rhino grazed 
on the grass. sentence2: A rhino 

is grazing in a field."
T5

"Das ist gut."

"not acceptable"

"six people hospitalized after 
a storm in attala county."

"3.8"

Figure 1: A diagram of our text-to-text framework. Every task we consider—including
translation, question answering, and classification—is cast as feeding our model
text as input and training it to generate some target text. This allows us to use the
same model, loss function, hyperparameters, etc. across our diverse set of tasks. It
also provides a standard testbed for the methods included in our empirical survey.
“T5” refers to our model, which we dub the “Text-to-Text Transfer Transformer”.

summarization, and sentiment classification, to name a few. With this unified approach,
we can compare the effectiveness of different transfer learning objectives, unlabeled data
sets, and other factors, while exploring the limits of transfer learning for NLP by scaling up
models and data sets beyond what has previously been considered.

We emphasize that our goal is not to propose new methods but instead to provide a
comprehensive perspective on where the field stands. As such, our work primarily comprises
a survey, exploration, and empirical comparison of existing techniques. We also explore the
limits of current approaches by scaling up the insights from our systematic study (training
models up to 11 billion parameters) to obtain state-of-the-art results in many of the tasks
we consider. In order to perform experiments at this scale, we introduce the “Colossal Clean
Crawled Corpus” (C4), a data set consisting of hundreds of gigabytes of clean English text
scraped from the web. Recognizing that the main utility of transfer learning is the possibility
of leveraging pre-trained models in data-scarce settings, we release our code, data sets, and
pre-trained models.1

The remainder of the paper is structured as follows: In the following section, we discuss
our base model and its implementation, our procedure for formulating every text processing
problem as a text-to-text task, and the suite of tasks we consider. In Section 3, we present a
large set of experiments that explore the field of transfer learning for NLP. At the end of the
section (Section 3.7), we combine insights from our systematic study to obtain state-of-the-art
results on a wide variety of benchmarks. Finally, we provide a summary of our results and
wrap up with a look towards the future in Section 4.

3

Figure 5.5: Illustration of text-to-text learning mechanism in T5 [7].

T5

Text-to-Text Transfer Transformer (T5) [7] is a unified approach to transfer learning in

NLP that treats each NLP problem as a “text-to-text” problem. As the name denotes,

the “Text-to-text” framework (Figure 5.5) lets the model understand what to do by the

text itself without additional features. Specifically, a task-specific prefix is added to

the original input sentence (e.g., “translate English to Korean:”) to notify the model of

the defined task. Such a framework does not require additional model, objective, train-

ing procedure, and decoding process for a wide variety of English-based NLP tasks,

including document summarization, sentiment classification, question answering, and

machine translation. Trained on the large corpus of web-crawled data called Colossal

Clean Crawled Corpus (C4), T5 gets state-of-the-art results on a number of NLP tasks.

5.2.2 Proximal Policy Optimization

Policy gradient methods are a type of model-free RL technique, which is one of the

driving forces to recent breakthroughs in deep neural networks for control problems,

from video games, to 3D locomotion, to Go. However, despite being one of the most

significant technical leaps, getting outstanding performance via policy gradient meth-

ods is challenging. For example, they are susceptible to step size: if too small, the
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training process may cost much time; if too large, one might suffer from unstable

learning, leading to policy crashing. In addition, due to the poor sample efficiency, it

takes millions (or billions) of time-steps for many policy gradient algorithms to learn

a simple task.

Several policy gradient variants, which constrain or optimize the size of a pol-

icy update, are proposed to overcome those limitations of the original policy gradient

methods, such as Trust Region Policy Optimization (TRPO) [112] and Actor-Critic

with Experience Replay (ACER) [113]. Though improved over the policy gradient al-

gorithms, these methods still suffer from their trade-offs: For those algorithms that

share parameters between a policy and a value function or auxiliary losses, TRPO is

not easy to be applied. ACER is complex and fragile to implement, requiring additional

code for a replay buffer and off-policy corrections.

Proximal Policy Optimization (PPO) [58] is a first-order approximation of TRPO,

which enjoys much more straightforward implementation, better sample complexity,

and better empirical performance. The main objective PPO algorithm tries to optimize

is defined by the following equation:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], (5.1)

where epsilon (ε = 0.2) is a hyperparameter, and rt(θ)Ât represents the “surrogate”

objective function from TRPO. By adding a restriction on the surrogate objective with

clipping mechanism, PPO prevents rt from moving outside the interval [1 − ε, 1 + ε.

The final objective is defined as a lower bound on the surrogate objective since the

minimum value between the clipped and unclipped objective is taken. In the end, we

can easily figure out that PPO’s motivation is to keep the change in probability ratio if

it improves the objective, restricting the harmful changes simultaneously.
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5.3 Methods

The proposed method includes two phases of training: adapting a pre-trained lan-

guage model to the question generation task with token-level training and further opti-

mize the model with task-specific reward under sequence-level training. Specifically, a

question-specific reward called “answerable score” is defined to encourage the model

to generate more human-like questions.

5.3.1 Step One: Token-level Fine-tuning

The first part of the proposed method is to fine-tune the 60M-parameter version of the

T5 model (T5-small) [7] which is already pre-trained on C4 dataset. The model archi-

tecture is just a sort of vanilla encoder-decoder transformer [2] with six layers, 512

hidden states, 2048 feed-forward hidden states, and eight heads. We use the check-

point from Hugging Face Model Hub [114] to initialize weight parameters. We first

perform supervised fine-tuning of T5 with SQuAD 1.1 [74], a dataset for machine

reading which also can be used for question generation (Section 3.5.1). During the

pre-training period of T5 model, a task-specific text “generate question: ” is added to

every input sequence explicitly for enabling a single T5 model to manage a diverse

set of tasks simultaneously. This enables the model to share the whole weight param-

eters regardless of the task and further signal the model to generate the task-specific

sequence in natural language form. In the same manner, we add a prefix “generate

question:” to every encoder input sequence before feeding it to the model.

5.3.2 Step Two: Sequence-level Fine-tuning with Question-specific Re-

ward

Since the token-level training methods for text generation models have several limita-

tions (e.g., exposure bias and rigorous loss function), we investigate a training method

that can evaluate the generated sequence as a whole. In particular, in this chapter, we
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focus on a sequence-level training method for one of the conditional text generation

problems, question generation. Following [59], we use the PPO algorithm, one of the

high-performance and easy-to-use policy gradient methods, with a question-specific

reward called answerable score.

First of all, we assume that the text generation procedure is a sequential decision-

making process for applying RL. As mentioned in section 2.5, RL consists of some es-

sential components such as action, state, and reward. We treat the fine-tuned T5-based

question generation model as both the agent of RL and a stochastic parameterized pol-

icy π; in timestep t, the state st is defined as the generated tokens so far (y1, ..., yt−1);

the action at is the next token to be generated (yt) and the reward represents a score

measuring how well the question is generated by the agent. We let the state transi-

tion be deterministic after an action has been chosen. Since we want to evaluate the

generated question as a sequence but not a series of tokens, the reward can only be cal-

culated after the complete question is generated. The overall task is defined to optimize

the expectation of reward function r : X × Y → R:

Eπ(r) = Ex∼D,y∼π(·|x)[r(x, y)], (5.2)

where D denotes the data distribution. To keep π from moving too far from old policy

πold, a penalty with expectation βKL(π, πold) is added to the reward function:

R(x, y) = r(x, y)− β log π(y|x)
πold(y|x)

(5.3)

The reward for the generated question is named “answerable score”, which means

that the generated question should be a valid question that can be answered when

only referring to the corresponding context C (the data input to the T5 encoder). We

propose two versions of the answerable score based on the SpanBERT [60] regard-

ing two different properties: confidence and correctness. SpanBERT is an extractive

machine reading model that predicts the probability distribution of the start and end

position (Pstart, Pend)of the answer in the context. The confidence-based answerable

score Rconf is motivated by that if the question generation model is well-trained, then
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Figure 5.6: Illustration of sequence-level training of T5 model for question generation.

it should be aware of the pre-defined answer in the context and then generate a proper

question. In the same way, if the questionQ is well-generated, then the QA model also

should be confident about the predicted answer span (confidence). Since we already

know the desired answer, we can either define the correctness-based answerable score

Rcorr as how much the QA model is sure about the actual answer span (correctness):

Rconf = −log(1− max
i≤j≤l

√
Pstart(i|C,Q) · Pend(j|C,Q)) (5.4)

Rcorr = −log(1−
√
Pstart(ianswer|C,Q) · Pend(janswer|C,Q)), (5.5)

where l is the length of the given context, ianswer and janswer is the position index

of start token and end token of answer span inside the context. The overall process of

sequence-level fine-tuning with question-specific reward is shown in Figure 5.6.

5.4 Experiments

Following the experimental settings in Chapter 3, we evaluate our proposed method on

SQuAD 1.1 dataset (split-1) with three automatic evaluation metrics: BLEU-4, Meteor,

and RougeL. The proposed method (T5-small-qg-ppo) is compared to ASs2s [3], T5-

small with only pre-training, T5-small with token-level fine-tuning (T5-small-qg). In

addition, qualitative analysis is provided for comprehensive evaluation since the auto-

matic evaluation metrics can only reflect a partial characterization of the models.
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Table 5.1: Experimental results on BLEU-4, METEOR and ROUGE-L. T5-small: T5-

small model with only pre-training. T5-small-qg: T5-small model with token-level

fine-tuning. T5-small-qg-ppo: T5-small-qg + sequence-level training.

Model BLEU-4 METEOR ROUGE-L

ASs2s [3] 16.20 19.92 43.96

T5-small 2.45 10.66 12.92

T5-small-qg 19.12 25.39 45.21

T5-small-qg-ppo (confidence) 17.32 24.06 42.25

T5-small-qg-ppo (correctness) 17.45 24.32 42.31

5.4.1 Implementation Details

We implement our models in Pytorch 1.7.1 along with Hugging Face Transformers

4.5.1 and train the model with a single GTX 1080 Ti. The hyperparameters of our

proposed method are listed as follows.

The proposed method is based on T5-small model, a down-sized version of the

original T5 with about 60M parameters. T5-small use embedding size dmodel = 512,

output size of feed-forward layers dff = 2, 048, 8-headed attention, and only 6 lay-

ers each in the encoder and decoder. For token-level fine-tuning of the T5-small, we

use AdaFactor [115] optimizer with the batch size of 128 (using gradient accumu-

lation technique implemented in Transformers library). We adopt the same learning

rate scheduling technique used in [7]. The maximum sequence length for encoder and

decoder input is 512 and 32, respectively. For sequence-level fine-tuning, we use the

PPO2 version of PPO from [116] and 4 PPO epochs per mini-batch. The batch size is

set as 32, and dropout is not used for policy training. The learning rate is 1.41e-05.
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5.4.2 Quantitative Analysis

Following [3], we first use the evaluation package published by [79] to compare the

performance of question generation models with respect to three evaluation metrics.

Table 5.1 shows the evaluation results of each model. As expected, T5-small under-

performs other methods. Even the T5-small is pre-trained with hundreds of gigabytes

of language data, it can only get a general understanding of the language but not in

every detail. T5-small model with only token-level fine-tuning (T5-small-qg) achieves

the best performance on all of the metrics. However, both sequence-level fine-tuned

T5-small models (T5-small-qg-ppo) rather show score drop in all three metrics. Since

those three metrics are originally designed to measure the degree of some kind of “ex-

act match” (e.g., n-gram precision and longest common subsequence), they are com-

paratively suitable to measure supervised training methods rather than unsupervised

one. We can also explain that sequence-level training based on PPO changes the gen-

erated question as a whole in terms of its meaning rather than every exact token. We

further compare the generated question from the various methods in a qualitative way.

5.4.3 Qualitative Analysis

We randomly sample examples from the test data and compare the generated questions

from each method except T5-small. In Table 5.2, we find that generated questions by

T5-small-qg-ppo methods are not very similar to the golden question, which results

in the lower (automatic) evaluation results. However, the questions generated by T5-

small-qg-ppo look easier to be answered by reward model SpanBERT since many of

the generated part is directly copied from the single sentence inside the context input

that has the most of the information related to the pre-defined answer.

The second sample in Table 5.3 shows a little bit different aspects of the ques-

tions generated by the proposed method. While all the generated questions are almost

the same question, the one generated by the T5-small-qg-ppo (confidence) provides

the most detailed information. Furthermore, the method tries to explore to capture an
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Table 5.2: Comparison between different question generation methods given the same

input context. The pre-defined answer is highlighted in bold text

Context Input

... zahm was active in the catholic summer school move-

ment, which introduced catholic laity to contempo-

rary intellectual issues. his book evolution and dogma

(1896) defended certain aspects of evolutionary theory

as true, and argued. more over, that even the great church

teachers thomas aquinas and ...

Models Generated Questions

Ground Truth what book did john zahm write in 1896?

ASs2s [3]
what theory did darwin argue about aspects of evolu-

tionary theory as true?

T5-small-qg
what was the name of john augustine zahm’s 1896

book?

T5-small-qg-ppo

(confidence)

what book defended certain aspects of evolutionary the-

ory as true?

T5-small-qg-ppo

(correctness)

what book defended certain aspects of evolutionary the-

ory as true?

additional feature (new york) from other surrounding sentences, though it is wrong

in this case. On the contrary, in this sample, T5-small-qg-ppo (correctness) generates

the same question as the T5-small-qg, which aligns with the pre-defined answer. This

can be explained as the correctness version of PPO training is more conservative than

the one with confidence. We find some naming errors in the question generated by

ASs2s, such as “victoria” should be beyoncé, and this is due to the fact that ASs2s gets

sequence-level input while others get the whole context input.
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Table 5.3: Comparison between different question generation methods given the same

input context. The pre-defined answer is highlighted in bold text

Context Input

... on january 7, 2012, beyoncé gave birth to her first

child, a daughter, blue ivy carter, at lenox hill hospital

in new york. five months later, she performed for four

nights at revel atlantic city’s ovation hall to celebrate

the resort’s opening, her first performances since giving

birth to blue ivy. ...

Models Generated Questions

Ground Truth
her first appearance performing since giving birth was

where?

ASs2s [3]
where did victoria perform for four nights at the resort’s

opening?

T5-small-qg where did beyoncé perform for four nights?

T5-small-qg-ppo

(confidence)

where did beyoncé perform for four nights to celebrate

the opening of the new york resort?

T5-small-qg-ppo

(correctness)
where did beyoncé perform for four nights?

5.5 Conclusion

In this chapter, we investigate the way of sequence-level training for conditional text

generation. Specifically, we apply PPO algorithm, a sort of policy gradient method,

to the question generation problem. The proposed methods are based on T5-small,

one of the state-of-the-art seq2seq pre-trained language models. We define two types

of reward functions for sequence-level training, each of which concentrates on the
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confidence and correctness of the question generation models. We evaluate the pro-

posed methods in both quantitative/qualitative ways. Experimental results show that

the sequence-level training can help generate better questions given the appropriately

defined reward.
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Chapter 6

CONCLUSION

In this dissertation, we investigate various neural text generation algorithms concern-

ing different training paradigms. We first introduce the general concept and the back-

ground knowledge related to neural network-based text generation algorithms. Then,

we tackle the token-level training method for question generation task, which has suf-

fered from a crucial issue that a significant proportion of the generated questions in-

clude words in the pre-defined question target (answer), resulting in the generation of

unintended/unnatural questions. The proposed method, Answer-Separated Seq2Seq,

encodes the passage and the target answer separately in an explicit manner. Further-

more, we propose another module called keyword-net which effectively extracts key

information from the target answer. Experimental results show that our proposed method

efficiently prevents the answer inclusion problem, resulting in the generation of better

questions.

We find that the token-level training of autoregressive text generation models has

several limitations, such as exposure bias and the rigorous training objective. We pro-

pose to adopt sequence-level training with a GAN-based approach to mitigate the is-

sue. The proposed ConcreteGAN promotes the collaborative training of continuous-

space methods and discrete-space methods. Experimental results on standard bench-

mark datasets show that the ConcreteGAN substantially outperforms state-of-the-art

80



text GANs with regard to quality, diversity, and global consistency.

Finally, we investigate the adoption of sequence-level training methods for the

question generation problem. Based on a pre-trained language model, one of the biggest

breakthroughs in NLP research, we apply an RL-based method instead of maximum-

likelihood estimation. Considering the characteristic of the question generation task,

we define two task-specific scores called “answerable score” as the reward for RL

training. With the feedback from sequence-level scoring, the question generation model

is demonstrated to have the ability to generate more informed questions.
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Chapter 7

APPENDIX*

7.1 Generated Samples

We present samples generated by our proposed ConcreteGAN trained on COCO, EMNLP,

and SNLI dataset in Table 7.1, Table 7.2 and Table 7.3 respectively.

Table 7.1: Randomly generated samples by ConcreteGAN trained on COCO dataset

1. red stoplights on a snow covered field .

2. a plate filled with pasta and a cake on a tray .

3. a cat stands on the hood of a car .

4. a black and white photo of a room with a ladder in it .

5. a jet plane sits on the runway while the sun rises or sets .

6. a car is decorated in the dirt by a beach .

7. i see into the sky beyond the light .
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Table 7.2: Randomly generated samples by ConcreteGAN trained on EMNLP dataset

1. however , the number of residents affected by the emergency care will be

released until april , the end of the worst record of the death .

2. if they have lost their families , they will be able to get back home and

hopefully we ’ ll come together with them .

3. there are some a little bit of interest in the coming months , it ’ s unclear , ”

he said .

4. 18 - year - old actress said : ’ i try to fight my life in the end of the war , but

i ’ ve never done that .

5. i was on the phone and i learned that i wanted to talk about you because

you don ’ t have any of it .

6. he cannot be registered with an independent parliamentary party , but it

does not have to be protected by even if they receive an act of support .

7. the books , they did not deserve to be able to do something , but i don ’ t

think the worst .

Table 7.3: Randomly generated samples by ConcreteGAN trained on SNLI dataset

1. a woman wearing traditional clothing is posing for a picture .

2. the man is playing an instrument for a crowd of people .

3. a man is giving a speech to another man at the street .

4. soccer players are starting a struggle in the middle of the olympics .

5. two dogs sleep in a cage .

6. the man in a suit is asleep at a table .

7. two people are painting pictures of a mountain .
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7.2 Comparison of ARAE and ARAE*

We compare our implementation of ARAE* and the original ARAE model with SNLI

dataset, since the author of the ARAE published the pretrained model. In terms of FD

score, ARAE achieves 0.011 which is the same as the score of ARAE*. We further

compare the BLEU and the B-BLEU score of them. Table 7.4 shows that our imple-

mentation of ARAE* outperforms the original ARAE with respect to sentence quality

and diversity.

Table 7.4: Comparison of the quality and diversity of sentences generated by ARAE

and ARAE* with BLEU and B-BLEU scores on the Stanford Natural Language Infer-

ence dataset. A larger value indicates the better quality or diversity

Metrics ARAE ARAE*

BLEU-2 0.847 0.848

BLEU-3 0.620 0.639

BLEU-4 0.404 0.422

BLEU-5 0.263 0.272

B-BLEU-2 0.817 0.821

B-BLEU-3 0.627 0.635

B-BLEU-4 0.429 0.435

B-BLEU-5 0.282 0.288
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7.3 Human Evaluation Criteria

The Human evaluation is based on grammatical correctness and meaningfulness and

any text formatting problems (e.g., capitalization, punctuation, spelling errors, extra

spaces between words and punctuations) are ignored. Workers are asked to score each

sample based on the criteria shown in Table 7.5.
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Table 7.5: Human evaluation criteria for 1-5 scoring

Score Criterion

5 - Excellent It’s Grammatically correct and makes sense.

For example: “if England wins the World Cup next year,

it will be the most significant result the sport has seen in

more than a decade.”

4 - Good
It has some small grammatical errors and mostly make

sense.

For example: “it is useful to have had a doctor who

forced her to release him a couple of days before she

was cleared.”

3 - Fair
It has major grammatical errors but the whole still con-

veys some meanings.

For example: “even then once again there’s a sign of

that stuff is going on the way to work on Christmas eve.”

2 - Poor
It has severe grammatical errors and the whole doesn’t

make sense, but some parts are still locally meaningful.

For example: “we go to work for the moment in life their

eyes and, i have been a different race on to go.”

1 - Unacceptable It is basically a random collection of words

For example: “i go com com com, i on on on play can

go go.”
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Fethi Bougares, Holger Schwenk, and Yoshua Bengio, “Learning phrase rep-

resentations using rnn encoder-decoder for statistical machine translation,” in

EMNLP, 2014.

[50] Sam Wiseman and Alexander M Rush, “Sequence-to-sequence learning as

beam-search optimization,” in Proceedings of the 2016 Conference on Em-

pirical Methods in Natural Language Processing, 2016, pp. 1296–1306.

[51] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer, “Scheduled

sampling for sequence prediction with recurrent neural networks,” in Advances

in Neural Information Processing Systems, 2015, pp. 1171–1179.

[52] Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, and Lior Wolf, “Language

generation with recurrent generative adversarial networks without pre-training,”

arXiv preprint arXiv:1706.01399, 2017.

[53] Richard S Sutton and Andrew G Barto, Reinforcement learning: An introduc-

tion, MIT press, 2018.

[54] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative adver-

sarial nets,” in Advances in Neural Information Processing Systems, 2014, pp.

2672–2680.

[55] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu, “Seqgan: Sequence gener-

ative adversarial nets with policy gradient,” in Thirty-first AAAI conference on

artificial intelligence, 2017.

94



[56] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun,

“Adversarial ranking for language generation,” in Advances in Neural Informa-

tion Processing Systems, 2017, pp. 3155–3165.

[57] Sandeep Subramanian, Sai Rajeswar Mudumba, Alessandro Sordoni, Adam

Trischler, Aaron C Courville, and Chris Pal, “Towards text generation with

adversarially learned neural outlines,” in Advances in Neural Information Pro-

cessing Systems, 2018, pp. 7551–7563.

[58] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg

Klimov, “Proximal policy optimization algorithms,” arXiv preprint

arXiv:1707.06347, 2017.

[59] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford,

Dario Amodei, Paul Christiano, and Geoffrey Irving, “Fine-tuning language

models from human preferences,” arXiv preprint arXiv:1909.08593, 2019.

[60] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and

Omer Levy, “Spanbert: Improving pre-training by representing and predicting

spans,” Transactions of the Association for Computational Linguistics, vol. 8,

pp. 64–77, 2020.

[61] Minh-Thang Luong, Hieu Pham, and Christopher D Manning, “Effective ap-

proaches to attention-based neural machine translation,” in Proceedings of the

2015 Conference on Empirical Methods in Natural Language Processing, 2015,

pp. 1412–1421.

[62] Philipp Koehn and Rebecca Knowles, “Six challenges for neural machine trans-

lation,” in Proceedings of the First Workshop on Neural Machine Translation,

2017, pp. 28–39.

[63] Michael Heilman and Noah A Smith, “Good question! statistical ranking for

question generation,” in Human Language Technologies: The 2010 Annual Con-

95



ference of the North American Chapter of the Association for Computational

Linguistics. Association for Computational Linguistics, 2010, pp. 609–617.

[64] Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou, “Question generation

for question answering,” in Proceedings of the 2017 Conference on Empiri-

cal Methods in Natural Language Processing, 2017, pp. 866–874.

[65] Duyu Tang, Nan Duan, Tao Qin, Zhao Yan, and Ming Zhou, “Question answer-

ing and question generation as dual tasks,” arXiv preprint arXiv:1706.02027,

2017.

[66] Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo Sun, Shujie Liu, Yuanhua

Lv, and Ming Zhou, “Learning to collaborate for question answering and ask-

ing,” in Proceedings of the 2018 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers), 2018, vol. 1, pp. 1564–1574.

[67] Nasrin Mostafazadeh, Ishan Misra, Jacob Devlin, Margaret Mitchell, Xiaodong

He, and Lucy Vanderwende, “Generating natural questions about an image,” in

Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), 2016, vol. 1, pp. 1802–1813.

[68] Xinya Du, Junru Shao, and Claire Cardie, “Learning to ask: Neural question

generation for reading comprehension,” in Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers), 2017, vol. 1, pp. 1342–1352.

[69] Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming

Zhou, “Neural question generation from text: A preliminary study,” in Na-

tional CCF Conference on Natural Language Processing and Chinese Comput-

ing. Springer, 2017, pp. 662–671.

96



[70] Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang, and Daniel Gildea,

“Leveraging context information for natural question generation,” in Proceed-

ings of the 2018 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies, Volume 2

(Short Papers), 2018, vol. 2, pp. 569–574.

[71] Reinald Kim Amplayo, Seonjae Lim, and Seung-won Hwang, “Entity com-

monsense representation for neural abstractive summarization,” in Proceedings

of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), 2018, vol. 1, pp. 697–707.

[72] Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua

Bengio, “Pointing the unknown words,” in Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers), 2016, vol. 1, pp. 140–149.

[73] Shuming Ma, Xu Sun, Wei Li, Sujian Li, Wenjie Li, and Xuancheng Ren,

“Query and output: Generating words by querying distributed word represen-

tations for paraphrase generation,” in Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Papers), 2018, vol. 1, pp. 196–

206.

[74] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang, “Squad:

100,000+ questions for machine comprehension of text,” in Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing, 2016,

pp. 2383–2392.

[75] Zhiguo Wang, Wael Hamza, and Radu Florian, “Bilateral multi-perspective

matching for natural language sentences,” in Proceedings of the 26th Interna-

97



tional Joint Conference on Artificial Intelligence. AAAI Press, 2017, pp. 4144–

4150.

[76] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven

Bethard, and David McClosky, “The stanford corenlp natural language pro-

cessing toolkit,” in Proceedings of 52nd annual meeting of the association for

computational linguistics: system demonstrations, 2014, pp. 55–60.

[77] Jeffrey Pennington, Richard Socher, and Christopher Manning, “Glove: Global

vectors for word representation,” in Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP), 2014, pp. 1532–

1543.

[78] Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic optimiza-

tion,” International Conference for Learning Representations, 2015.

[79] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta,

Piotr Dollár, and C Lawrence Zitnick, “Microsoft coco captions: Data collection

and evaluation server,” arXiv preprint arXiv:1504.00325, 2015.

[80] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mo-

hammad Norouzi, and Quoc V Le, “Qanet: Combining local convolution with

global self-attention for reading comprehension,” in Proceedings of the Inter-

national Conference on Learning Representations, 2018.

[81] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan, “Show and

tell: A neural image caption generator,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2015, pp. 3156–3164.

[82] Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D

Trippe, Juan B Gutierrez, and Krys Kochut, “Text summarization techniques: a

brief survey,” International Journal of Advanced Computer Science and Appli-

cations, vol. 8, no. 10, 2017.

98



[83] Cyprien de Masson d’Autume, Shakir Mohamed, Mihaela Rosca, and Jack Rae,

“Training language gans from scratch,” in Advances in Neural Information

Processing Systems, 2019, pp. 4300–4311.

[84] Sidi Lu, Lantao Yu, Siyuan Feng, Yaoming Zhu, and Weinan Zhang, “Cot:

Cooperative training for generative modeling of discrete data,” in International

Conference on Machine Learning, 2019, pp. 4164–4172.
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초록

자연어처리연구는딥뉴럴넷의도입으로인해대대적인발전을거쳤다.자연어

처리연구의일종인자연어생성은기계가내린결정을사람이이해할수있도록전

달하는 기능이 있다, 그렇기에 사람을 모방하는 인공지능 시스템을 구축하는 데에

있어필수불가결한요소이다.일반적으로뉴럴넷기반의텍스트생성태스크에서는

자동회귀방법론들이주로사용되는데,이는사람의언어생성과정과유사한양상

을띠기때문이다.본학위논문에서는두가지뉴럴넷기반의자동회귀텍스트생성

모델학습기법에대해제안한다.첫번째방법론에서는토큰레벨에서의질문생성

모델 학습 방법에 대해 소개한다. 논문에서 제안하는 답변 분리 시퀀스-투-시퀀스

모델은 기존에 존재하는 질문 생성 모델로 생성된 질문이 답변에 해당하는 내용을

포함하는 문제점을 효과적으로 해결한다. 주로 최대 우도 추정법을 통해 학습되는

자동회귀방법론에는노출편향등과같은문제점이존재한다.이러한문제점을해

결하기 위해 논문에서는 텍스트의 연속 공간 표현과 이산 공간 표현 모두에 대해

상호보완적으로 학습하는 시퀀스 레벨의 적대 신경망 기반의 텍스트 생성 기법을

제안한다. 마지막으로 앞선 방법론들을 종합하여 시퀀스 레벨의 질문 생성기법을

제안하며,이러한과정에서최신자연어처리방법중하나인사전학습언어모델과

근위정책최적화방법을이용한다.

주요어:딥뉴럴넷,텍스트생성,질문생성

학번: 2014-22546
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