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Abstract

Ahn, Eunbyeol
Department of Agricultural Biotechnology
The Graduate School

Seoul National University

Colistin is considered as a last resort antibiotic against multidrug—
resistant Gram—negative bacteria. However, recently, the mobilized
colistin resistance (mcr) —1 gene was first discovered in Escherichia
coll in China. Since then, dissemination of the mcr—1 by plasmids in
pathogenic Escherichia coli including enterohemorrhagic F£. coll
(EHEC) is a concern to global public health. In Korea, the mcr—1—
harboring plasmids were isolated from food, human, and livestock.
The whole—genome sequencing analysis revealed that mcr—I1—
harboing plasmids encode a number of virulence—related genes
including pili and type IV secretion systems. In this study, I
investigated the effects of mcr—/—harboring plasmid on the virulence
of EHEC. The mcr—I1—harboring plasmid was easily transferred to

EHEC ATCC 43894 by conjugation and remained stable in ATCC



43894 even after 10 consecutive subcultures. Based on the pan—
genome analysis of Incl2 type mcr—I—harboring plasmids mainly
discovered in Asia, I selected three genes which are related to
virulence (pilS and virB2) including mcr—1 and constructed their
mutant strains for characterization of various virulence—associated
traits. As a results, p7/S and virB2 did not affect the virulence of ATCC
43894. Although the acquisition of the mcr—1 did not affect the
growth of ATCC 43894, it decreased the swimming motility. Also, the
mcr—1 decreased cell surface hydrophobicity of ATCC 43894
resulting in the reduction of biofilm formation. The expression of the
mcr—1 increased bacterial adherence to human epithelial HEp—2 cells,
while it decreased invasiveness of ATCC 43894. Interestingly, band
patterns of core—lipid A and O-—antigen region analyzed by
deoxycholate—polyacrylamide gel electrophoresis (DOC—PAGE)
were altered by the mcr—1, suggesting that the mcr—17 modified the
polysaccharide as well as lipid A. Collectively, the results in this study
demonstrate that the acquisition of mcr—1 not only conferred colistin

resistance but also can affect virulence in ATCC 43894.
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1. Introduction

Colistin (Polymyxin E) is considered the last resort for the treatment
of multidrug—resistant Gram—negative bacteria. The colistin
resistance mechanisms have mainly reported chromosomally
mediated that mutations in two—component regulatory systems
PmrAB and PhoPQ (Poirel, Jayol et al. 2017). But, the mobilized
colistin resistance gene, mcr—1, was first described in Escherichia
coli in China, 2015 (Liu, Wang et al. 2016). Since then, the discovery
of E. coli harboring mcr—1 has been reported numerous countries
including America, Asia, and Europe ((Liu, Wang et al. 2016), (Monte,
Fernandes et al. 2017), (El Garch, Sauget et al. 2017)) and isolated
from various sources such as food, livestock, and human (Irrgang,
Roschanski et al. 2016), (Liu, Wang et al. 2016), (Veldman, van
Essen—Zandbergen et al. 2016). In Korea, mcr—I—harboring
plasmids in E. coli strains have been also reported (Lim, Kang et al.
2016), (Yoon, Hong et al. 2018), (Kim, Hwang et al. 2019). The

dissemination of the mcr—1 by plasmids causes serious clinical



problems in many countries.

Lipopolysaccharide (LPS) is a main components of the outer
membrane in most Gram—negative bacteria. LPS provides the
structural integrity of outer membrane and interacts with a
surface between the bacterium and its environment (Nakao,
Ramstedt et al. 2012). LPS structures consist of three
components: the lipid A, which is the hydrophobic portion of the
molecule anchored in the outer membrane; the O-—antigen
extending from the cell to the external environment; and the
core oligosaccharide, which links the O—antigen to the lipid
A. LPS triggers the release of many inflammatory cytokines,
and it has been implicated as the etiological agent of a variety
of pathologies (Nakao, Ramstedt et al. 2012).

Colistin is amphipathic antibiotic with hydrophobic fatty acyl
moilety and hydrophilic L—diaminobutyric acid amino groups.
The binding of colistin to the bacterial surface depends on the

electrostatic interaction between the negatively charged



phosphate group of lipid A of LPS and the positively charged
colistin (Gao, Hu et al. 2016). However, mcr—I encodes a
phosphoethanolamine (PEtN) transferase that adds PEtN to lipid A of
LPS. The LPS modification mediated by mcr—1 results in neutralize
the negative chare of LPS and subsequently reduces binding affinity
to colistin (Gao, Hu et al. 2016).

Enterohemorrhagic Escherichia coli (EHEC) is a food—borne
pathogen of worldwide importance that causes diarrhea, hemorrhagic
colitis, and hemolytic uremic syndrome (HUS) (Besser, Griffin et al.
1999). This pathogen has caused a number of significant outbreaks of
foodborne disease worldwide. EHEC forms attaching and effacing (AE)
lesions on human epithelial cells and produces Shiga—like toxins.
EHEC is also able to form biofilms and these biofilms are resistant to
conventional antimicrobial agents (Kim, Lee et al. 2016). Recently,
mcr—1 was detected in several EHEC strains (Lopes, Costa et al.
2020), (Palupi, Wibawan et al. 2019). The presence of the mcr—1 in
EHEC is of concern because it is pathogenic to humans, posing a public
health problem.

Previous study reported that mcr—I7—harboring plasmids are easily

10



transferred by conjugation in pathogenic £E. coli strains including
EHEC (Kim, Hwang et al. 2019). Also, the whole—genome sequencing
analysis revealed that mcr—1—harboring plasmids encode a number
of virulence—related genes, such as those encoding pili and type VI
secretion systems. Nevertheless, researches on mcr—1 are limited to
antibiotic resistance studies, and research on virulence of mcr—1 is
still insufficient. Thus, in this study, I investigated that the horizontal
transfer of mcr—I—harboring plasmids can affect virulence of ATCC

43894.
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2. Materials and Methods

2.1 Bacterial strains and growth conditions

E. coli ATCC 43894 (Enterohemorrhagic E. colii EHEC) was
cultured on Luria—Bertani (LB) media (Difco, USA) at 37C. The
mcr—1—harboring plasmid used in this study was found in FORCg2
isolated from retail raw chicken in South Korea (Kim, Hwang et al.
2019). Antibiotics and chemicals were supplemented to the media at
the final concentrations of 2 pg/ml (colistin), 50 pg/ml (ampicillin) and

0.25 mM isopropyl— 8 —D—thiogalactopyranoside (IPTG).

2.2 Construction of the knockout mutants

The primers used in this study are shown in Table 1. The mcr—1—
harboring plasmid used in this study was isolated retail raw chicken
in Korea (Kim, Hwang et al. 2019). The mcr—I1—harboring plasmid in
FORC82 was introduced into the ATCC 43894 by conjugation. The

three mutants (mcr—1, pilS, and virB2) were constructed using a

12



one—step inactivation method (Datsenko and Wanner 2000).

2.3 Plasmid stability test

The plasmid stability test was performed as described previously
(Nang, Morris et al. 2018). Briefly, transconjugant were grown
overnight in LB broth with colistin. 10 ul of overnight seed cultures
were inoculated in 10 mL fresh LB broth without antibiotic (1:1000
ratio). Subculturing was performed after 24 h incubation and repeated
for 10 consecutive days. For each culture, culture solution was
serially diluted, spread on LB agar plates, and incubated at 37T
overnight. Identification of mcr—I1—loss cells within each culture was
determined by transferring 96 colonies from LB agar plate to 4 ng/mL
colistin—containing LB broth in each well of a 96—well plate. The
proportion of plasmid—containing cells were calculated by counting
the number of wells that had visible growth of bacteria. FORC82 was

used as the control strain.

13



2.4 Pan—genome analysis

Twenty of Incl?2 type mcr—I—harboring plasmids were identified

with GView Pangenome analysis tool.

2.5 Biofilm formation assay

A static biofilm formation assay was performed as described
previously (Kim, Lee et al. 2016). Briefly, overnight cultures were
inoculated in LB broth (total volume 200 ul) at an initial turbidity of
0.05 at 600 nm and cultured in 96—well polystyrene plates for 72 h
without shaking at 37C. To quantify biofilm formation, cell cultures
were washed three times with PBS to remove all non—adherent cells.
Biofilms were stained with 0.1% crystal violet for 20 min, rinsed three
times with PBS, extracted with 33% acetic acid, and absorbances

were measured at 570 nm.

2.6 Swimming motility assay

Swimming motility assay was performed at 37 C on 0.3% agar plates

14



containing 1% tryptone and 0.25% NaCl. The motility halos were

measured after a 30 h incubation.

2.7 Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed by the broth
microdilution method recommended by the Clinical and Laboratory
Standards Institute (CLSI). Minimum inhibitory concentration (MIC)
of colistin was determined according to CLSI guidelines. £. co/i ATCC

25922 was used as the quality control.

2.8 Growth curves

Growth curves were determined by measuring the optical density

at 600 nm. Growth rates was measured at 37C for 24 h.

2.9 Cell surface hydrophobicity test

The cell surface hydrophobicity was measured as described

15



previously (Arkoun, Daigle et al. 2017). In brief, a 10 mL LB broth
was inoculated with 100 pLL from an overnight culture. The suspension
was then incubated at 37T and allowed to grow up to an optical
density of 0.5. Thereafter, 4 mL of this suspension was transferred
into a 15 mL polypropylene tube. A first measurement of optical
density ODesoo was then carried out and recorded as Abswo. 500 pl. of
hexane were added to the suspension and the mixture was vortexed
for 1 min and then allowed to rest for 15 min at room temperature to
make phase separation. A second ODgoo measurement of aqueous
phase was recorded as Abs;. Finally, the cell hydrophobicity was

calculated according to Equation.

.. Absto - AbSt1
% Hydrophobiciy = Abst x 100
0

2.10 Bacterial adhesion and invasion assay

Adhesion and invasion assays were performed as described
previously (Andreozzi, Gunther IV et al. 2018). Briefly, HEp—2,

human laryngeal epithelial cells, were cultured in Eagle’s minimal

16



essential medium (EMEM) supplemented with 10% fetal bovine serum
(FBS) at 37°C under 5% COs. A monolayer of 4 X 10> HEp—2 cells was
prepared in a 24—well tissue culture plate. 150 ul overnight cultures
were inoculated in 3 ml LB broth and incubated at 37C at 220 rpm
until the ODgoo was 1. The bacterial suspension was diluted in EMEM
with 10% FBS, and then added onto the cell monolayer at a multiplicity
of infection (MOI) of 10. For invasion assays, bacteria were allowed
to adhere to HEp—2 cells for 3 h and treated with 100 pg/ml
gentamicin for 2 h to kill extracellular bacteria. The wells were
washed three times with pre—warmed PBS and lysed in 1% Triton X—
100 for 15 min, and then serially diluted in PBS. A dilution of the
suspension was plated on LB agar plates to enumerate the CFU. All

adhesion/invasion assays were done in triplicate wells.

2.11 LPS extraction and analysis

The LPS extraction was performed as described previously (Kim
and Ryu 2012). Briefly, LPS was extracted from overnight bacterial

cultures using hot phenol—water micro—extraction methods. The

17



bacteria suspension (2x10Y CFU/mL) was harvested, washed once
with 1 ml DPBS (Dulbecco’ s PBS containing 0.15 mM CaCl: and 0.5
mM MgClz), and centrifuged. Pellets were resuspended in 100 pl
DPBS and sonicated. In order to eliminate contaminating protein and
nucleic acids, proteinase K (100 pg/mL) was added and incubated at

37C for 1 h. Then 200 ul of ddH20 and 300 pl of pre—heated (68C)

phenol solution were added prior to incubation at 68°C with vigorous

vortex mixing every 5 min. The samples were chilled on ice for 5 min,
and the aqueous phases were separated by centrifugation at 10,000 x
g, 4°C for 5 min. The LPS was extracted again from the phenol phase
with another 300 pl of ddH20. After the addition of sodium acetate to

the pooled aqueous phases at a final concentration of 0.5 M, 10 ml of

95% ethanol was added, and the mixture was incubated overnight at

—20°C. The crude LPS were sedimented by centrifugation at 10,000

X g, 4°C for 5 min, re—suspended in 100 pl ddH20O, and precipitated

with 95% ethanol. Finally, the precipitated LPS was re—dissolved in

50 ul ddH20 and stored at —20°C. The extracted LPS were analyzed

18



by DOC—PAGE on a 15% acrylamide gels. The gels were pre—run
with a running buffer (290 mM glycine, 37 mM Tris base and 6 mM
sodium deoxycholate) for 10 min at 15 mA using Bio Rad Mini—
PROTEAN® Tetra Cell. The extracted LPS was mixed with equal
volumes of sample buffer (containing 2 ml of stacking gel buffer
solution, 1 ml of glycerol and 2.5 mg of bromophenol blue, brought up
to 10 ml with ddH20), and the mixtures were loaded onto the gels
prior to running each gel for ~ 60 min at 15 mA. The gels were
fluorescently  stained using the Pro—Q® Emerald 300
Lipopolysaccharide Gel Stain Kit (Molecular Probes, Cat. No. P20495;
Eugene, OR, USA) according to the manufacturer’ s instructions. The
samples were visualized under the 300 nm UV by the Red™ Imaging

System.

2.12 Statistical analysis

The statistical analysis was conducted using the GraphPad Prism
(GraphPad Software, Inc., USA, Version 5.01). All results were

analyzed by student’ st test.
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3. Results

3.1 Plasmid stability

A plasmid stability test was conducted to investigate how stable the
mecr—1—harboring plasmid transferred by conjugation was maintained
in the recipient strain. FORC82 was used as the control strain. As a
result, mcr—I1—harboring plasmid in ATCC 43894 remained stable. No

plasmid loss was found in both strains for 10 consecutive subcultures

(Fig. 1).
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Fig. 1. Stability of the mcr—7—harboring plasmid in ATCC 43894.

Subculture was repeated for 10 consecutive days in the absence of
colistin. FORC82, which originally has mcr—I—harboring plasmid, was

used as the control strain.
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3.2 Pan—genome analysis

Based on the pan—genome analysis of Incl2 type mcr—1—harboring
plasmids mainly discovered in Asia including Korea, I selected three
genes (mcr—1, pilS, and virB2) and constructed their mutant strains

for characterization of various virulence—associated traits.
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Fig. 2. Pan—genome analysis of mcr—I1—harboring plasmids.
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3.3 Biofilm formation

As biofilm i1s important virulence factor for pathogenic £. coli, 1
compared to biofilm formation between wild type and the
transconjugant. Transconjugant was noticeably defective in biofilm
compared to that of wild type. In order to identify which genes on
mcr—1—harboring plasmids affect the ability of biofilm formation, I
measured the biofilm of the three mutant strains (Fig. 3A). Especially,
the biofilm formation of mcr—1 mutant strain restored to the wild type
levels. In contrast, both pi/S and virBZ2 mutant strains retained their
ability to form biofilm, similar to the transconjugant. To confirm that
the mcr—1 was responsible for the reduced capacity to form a biofilm,
the pUC19::mcr—1 was constructed and introduced into the mcr—1
mutant strain. The ability to form biofilm of mcr—/ complemented
strain was reduced to transconjugant levels (Fig. 3B). These results
suggested that the acquisition of mcr—1 had an effect on the reduction

of biofilm formation capacity of ATCC 43894.
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3.4 Swimming motility

I also measured swimming motility that one of the virulence factors
of pathogenic E. coli. The tranconjugant was defective for swimming
motility compared to that of wild type. Also, swimming motility
restored in mcr—1 mutant strain. The p//S and virBZ mutant strains
appeared to show similar swimming motility ability of transconjugant
(Fig. 5A). In order to confirm that the mcr—1 affect swimming motility,
the pUC19::mecr—1 was introduced into mcr—1 mutant strain.
Swimming motility of the mcr—1 complemented strain was decreased
compared to the mcr—I1 mutant strain (Fig. 5B). These results
indicate that mcr—1 affect the reduction of swimming motility ability

of ATCC 43894.
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3.5 Antimicrobial susceptibility testing

To evaluate the effects of mcr—1 on colistin resistance and confirm
the construction of the mecr—I1 mutant and mcr—1 complemented
strains, MIC test was conducted with colistin. The MIC of

transconjugant
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3.6 Growth curve

A growth curve was performed to investigate the mcr—1 affects
fitness burden on bacteria. The growth rates of transconjugant were
not different compared to that of wild type. No significant differences
in the growth rates were found between the strains (Fig. 5). These

results suggest that mcr—1 no effect on growth of ATCC 43894.
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Fig. 5. No impact of the presence of the mcr—1 on the growth of ATCC

43894.

Growth of wild type, transconjugant, mcr—I mutant, and mcr—1

complemented strains were determined by ODsgoo.
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3.7 Cell surface hydrophobicity test

To determine whether mcr—1 led to alteration in the cell surface
hydrophobicity, the hydrophobicity values were estimated based on
the ability to bind with hexane. As a result, a significantly decreased
hydrophobicity was observed in transconjugant when compared
against that of wild type. The mecr—1 mutant strain was restored the
cell surface hydrophobicity. As expected, the cell surface of mcr—1
complemented strain was decreased compared to the mcr—1 mutant
strain (Fig. 6). These results suggested that expression of mcr—1
decreased cell surface hydrophobicity, which can affect the reduction

of the biofilm formation of ATCC 43894.
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Fig. 6. Cell surface hydrophobicity.

Cell surface hydrophobicity was estimated by the bacterial adhesion

to a hydrocarbon (BATH) method. Statistical significance was

evaluated with Student ' st test using GraphPad Prism. ***, 2 < 0.001 .

These experiments were repeated at least three times.
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3.8 Bacterial adhesion/invasion assay

To determine that the mcr—1 affect bacterial attachment to human
epithelial cells, adhesion assay was performed to HEp—2 cells. The
transconjugant exhibited significantly increased adherence ability
compared to that of wild type strain, while the adherence of mcr—1
mutant strain was restored. Compared with mcr—I mutant strain,
mcr—1 complemented strain displayed increase in adhesion to the
HEp—2 cells (Fig. 5A). These results suggested that mcr—1 may play
a role in the colonization of ATCC 43894. I next investigated the
effect of mcr—11n an invasion assay. The transconjugant had reduced
invasion compared to that of wild type. As expected, ability of invasive
to HEp—2 cells restored in mcr—17 mutant strain. The invasive ability
of mcr—1 complemented strain decreased compared to mcr—17 mutant
strain (Fig. bB). Based on these results, acquisition of mcr—1 results

in decreased invasiveness of ATCC 43894.
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3.9 LPS extraction and analysis

To investigate mcr—1 affected LPS structure modification, LPS of
the wild type, transconjugant, mcr—1 mutant, and mcr—1I
complemented strains were extracted and analyzed deoxychaolate—
polyacrylamide gel electrophoresis (DOC—PAGE). Interestingly, the
analysis of the LPS by DOC—-PAGE revealed that transconjugant
showed altered banding patterns for the core—lipid A and O antigen
region compared to that of wild type. As expected, banding patterns
were restored in the mcr—1 mutant strains and appear to be the same
as the wild type. In mecr—1 complemented strains, the LPS profile was
restored to the transconjugant (Fig. 7). These results indicated that
expression of mcr—1 modified the polysaccharide of LPS as well as

lipid A.
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LPS of wild type, transconjugant, mcr—I1 mutant, and mcr—1
complemented strains were extracted using hot phenol—water micro—

extraction methods and analyzed by DOC—PAGE.
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4. Discussion

In this study, I demonstrated that mcr—1 not only conferred colistin
resistance but also affect virulence of ATCC 43894. First, I identified
that mcr—I—harboring plasmids transferred to ATCC 43894 by
conjugation remained stable in ATCC 43894 for 10 consecutive
subcultures without colistin. Previous study reported that mcr—I1—
harboring plasmids are easily transferred by conjugation among the
bacteria in pathogenic £. coli (Kim, Hwang et al. 2019). The high
stability of mecr—I—harboring plasmid in recipient strain and easy
transfer to other bacteria may contribute to the wide spread of mcr—

1.

Many experiments such as biofilm formation, swimming motility, and
adhesion assay to HEp—2 cells were conducted to identify difference
of virulence between wild type and transconjugant. Interestingly,
there were significant difference between them. Thus, to investigate
which genes of mcr—I7—harboring plasmid affect the virulence of

ATCC 43894 and compare identity of the genes between Incl2 type
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mecr—1—harboring plasmids particularly discovered in Asia
(Matamoros, Van Hattem et al. 2017), (Lim, Kang et al. 2016), (Kim,
Chong et al. 2017), (Kim, Hwang et al. 2019), I conducted pan—
genome analysis of 20 Incl2 type mcr—I1—harboring plasmids. Based
on the pan—genome analysis, I selected the three genes related to
virulence (pilS and virB2) including mcr—1. PilS is a regulator of type
VI pili and virB2 is a major pilus protein of the type VI secretion
system (Boyd, Koga et al. 1994), (Backert, Fronzes et al. 2008).
Then I constructed their mutant strains for characterization of

virulence—related traits.

The result of biofilm formation assay exhibited that mcr—1 had an
effect on the reduction of biofilm formation. Several factors have been
reported to affect biofilm formation such as cell surface
hydrophobicity, surface charge, and surface structures (Van Houdt
and Michiels 2005), (Vogeleer, Tremblay et al. 2015), (Goulter,
Gentle et al. 2010). Especially, cell surface hydrophobicity is
generally associated with bacterial adhesiveness and biofilm
formation (Mirani, Fatima et al. 2018), therefore the cell

hydrophobicity values were measured using the BATH method. The
4 4



expression of mecr—1 in ATCC 43894 decreased cell surface
hydrophobicity. These results were consistent with the reduction of

the biofilm formation of ATCC 43894.

In addition, mcr—1 decreased swimming motility ability of ATCC
43894. It did not appear to be a function of growth, since there were
no differences in growth rates of all strains. Generally, acquisition of
antibiotic resistance entails a loss of bacterial fitness. Several studies

reported that £. coll strains with mcr—I1—harboring plasmids did not

suffer a fitness cost (Tietgen, Semmler et al. 2018). which might be

consistent with rapid dissemination of mcr—I—positive E. coli strains
(Sun, Zhang et al. 2018), (Kusumoto, Ogura et al. 2016), (Elnahriry,

Khalifa et al. 2016).

The results of bacterial adhesion and invasion assay showed that
mcr—1 increased bacterial adherence to HEp—2 cells while it
decreased invasiveness of ATCC 43894. EHEC pathogenesis is not
restricted to toxin—mediated effects, and a combination of virulence
traits seems to be required, as demonstrated by the intimate bacterial

attachment to host epithelial cells leading to the characteristic
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attaching and effacing (A/E) lesions (Cordonnier, Etienne—Mesmin et
al. 2017). The increase of adhesion of ATCC 43894 to human

epithelial cells mediated by mcr—1 may pose a lot of clinical problems.

Lipid A modification resulting from mcr—1 by the addition of
phosphoethanolamine in Gram—negative ESKAPE (Enterococcus
faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter
baumannii, Pseudomonas  aeruginosa, and Enterobacter species)
pathogens were reported (Liu, Chandler et al. 2017). However, the
results in this study showed that mcr—7 modified the polysaccharide
of LPS as well as lipid A. O—antigen of Gram—negative bacteria play
a role in modulate the interaction with external factors, such as the
components of the immune system and bacteriophage (Kulikov,
Golomidova et al. 2019). Because bacteriophage use LPS or outer—
membrane protein as a receptor to infect host bacteria, these
modifications of LPS including polysaccharide may affect the
bacteriophage infection. Also, these modifications of LPS may affect
the outer—membrane. A recent study reported that impact of mcr—1
expression on the membrane permeability of E. coli, since mcr—1

modifies the structure of LPS (Li, Yin et al. 2020). Study of outer—
46



membrane alteration by mcr—1 expression in E. coli are not well

established, so further studies are required.
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