

의학박사 학위논문

도시지역 녹지 노출과 어린이 인지발달과의 연관성 연구

Exposure to greenness in urban area and cognitive development in children

2021년 8월

서울대학교 대학원

의학과 예방의학 전공

이 경 신

A thesis of Degree of Doctor of Philosophy

Exposure to greenness in urban area and cognitive development in children 도시지역 녹지 노출과 어린이 인지발달과의 연관성 연구

August 2021

The Department of Preventive Medicine

Seoul National University

College of Medicine

Kyung-Shin Lee

도시지역 녹지 노출과 어린이 인지 발달과의 연관성 연구

지도 교수 홍 윤 철

이 논문을 의학박사 학위논문으로 제출함 2021년 4월

> 서울대학교 대학원 의학과 예방의학 전공 이 경 신

이경신의 의학박사 학위논문을 인준함 2021년 7월

위육	원 장	강 영 호
부위	원장	홍 윤 철
위	원	민 경 복
위	원	박 상 민
위	원	한 창 우

A thesis of Degree of Doctor of Philosophy

Exposure to greenness in urban area and cognitive development in children

by Kyung-Shin Lee, MPH, M.Sc

A thesis submitted to the Department of Medicine in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Medicine (Preventive Medicine) at Seoul National University College of Medicine

July 2021

Approved by Thesis Committee

Professor_	young-	Ho to	hang C	hairme	n
Professor_ Professor_	Yund	us	<u>F</u> v	ice Cha	irmen
Professor_	Hypenz	Bok	Mun		
Professor_ Professor_	Sarg	Min	Parle	•9	
Professor_	anyon	Han			

Abstract

Exposure to greenness in urban area and cognitive development in children

Kyung-Shin Lee Department of Preventive Medicine The Graduate School of Medicine Seoul National University

Background: It has been reported that residential greenness is definitely linked to the health benefits of children, including improved cognitive ability. A prospective cohort design was conducted on the relationship between the intelligent quotient (IQ) of 6-year-olds in Seoul, South Korea, and surrounding greenness during the pregnancy and postnatal exposure. We also analyzed whether these effects vary depending on the types of natural greenness or built greenness.

Epigenetic change is hypothesized as a regulatory pathway through which greenness exposures influence child development and health. We aimed to investigate the associations between residential surrounding greenness and DNA methylation (DNAm) changes associated with cognitive abilities at age 2. We also assessed the associations between differential methylation and children's IQ at age 6 in a prospective cohort study.

Method: To estimate the associations between residential greenness and children's IQ, we were conducted on 189 mother-child dyads from the Environment and Development of Children Cohort study, who lived in Seoul during the prenatal period and when the child was 6 years old. The surrounding greenness was defined using the data of the Landsat image of the Korean Arirang satellite with buffers within a radius of 100 to 2,000 meters from the participants' residence. We analyzed the two types of greenness including natural and built greenness, separately. Using the Wechsler Intelligence Scale for Children by the Korea Educational Development Institute, the children's IQ was measured.

To investigate the associations between residential surrounding greenness and DNAm changes, which associated with cognitive abilities, we identified cytosineguanine dinucleotide sites (CpGs) associated with cognitive abilities from epigenomeand genome-wide association studies through a systematic literature review for candidate gene analysis. We estimated the residential surrounding greenness at age 2 using a geographic information system. DNA methylation was analyzed from whole blood using the HumanMethylationEPIC array in 59 children at age 2. We analyzed the association between greenness exposure and DNA methylation at age 2 at the selected CpGs using multivariable linear regression adjusting for mother's age, maternal education level, exposure to environmental tobacco smoke at age 2, child sex, children's body mass index and cell composition. We further investigated the relationship between DNA methylation and children's IQ, including the total IQ and two subsets of IQ.

Result: We found that prenatal exposure to built greenness in 500 m and 1000m buffers was associated with total IQ of children in a full model [Difference in IQ (95% CI): 3.46 (0.68, 6.24) and 3.42 (0.53, 6.31) per interquartile increase in percentages of greenness in buffers]. However, postnatal exposure to built greenness in all buffers was significantly related to the child's total IQ. We also found a stronger association between children's total IQ and built greenness than natural greenness. For epigenetics study, we identified 8,743 CpGs associated with cognitive ability based on the literature review. Among these CpGs, we found that 25 CpGs were significantly associated with greenness exposure at age 2, including cg26269038(Bonferroni-corrected $P \le 0.002$) located in the body of *SLC6A3*, which encodes a dopamine transporter. DNA methylation at cg26269038 at age 2 was significantly associated with children's performance IQ at age 6.

Conclusion: When six-year-old children live near greenness area, their IQ score tends to increase. The results suggested the health benefits of greening, providing urban planning and public health support to build healthy cities for children and pregnant women.

Exposure to surrounding greenness was associated with cognitive ability-related DNA methylation changes, which was also associated with children's IQ. Further studies are warranted to clarify the epigenetic pathways linking greenness exposure and neurocognitive function.

Keyword: Children, Greenness, Built greenness, Natural greenness, DNA methylation, Intelligence Quotient

Student Number: 2019-39610

Table of Contents

AbstractI
Table of ContentsIV
List of Tables
List of Figures
List of AbbreviationsXII
Chapter 1. Introduction
1.1. Study Background1
1.2. Review of the Literature
1.3. Purpose of Research
Chapter 2. Association between greenness and children's IQ
2.1. Study population
2.2. Greenness exposure assessment
2.3. Cognitive development in children
2.4. Covariates
2.5. Statistical analysis
2.6. Results
2.7. Discussion
2.8. Conclusion
Chapter 3. Association between greenness and epigenetics among children
3.1. Study population

3.2. Greenness exposure assessment	
3.3. DNA methylation changes in children at ages 2	
3.4. Measurement of intelligence quotient in children	97
3.5. Covariates	
3.6. Statistical analysis	
3.7. Results	101
3.8. Discussion	112
3.9. Conclusion	116
Chapter 4. Discussion	117
4.1 Main findings	117
4.2. Strength and limitations	118
4.3. Future research directions	120
References	122
Korean abstract(국문초록)	136
Conflict of Interest	137
Appendix	139
Acknowledgements	149

List of Tables

Table 1. Previous study for the associations studies between exposure to greenness
and mental health in children in the last five years9
Table 2. The definition of variables (n=189) 20
Table 3. The definition the type of greenness
Table 4. Characteristics in study population (N=189)
Table 5. The percentages (%) of pre- and postnatal exposure to residential greenness
in each buffer area(N=189)
Table 6. The association between (a) prenatal and (b) postnatal greenness and
covariates
Table 7. The association between the covariates and children's IQ 63
Table 8. Difference (95% confidence interval) in total intelligence quotient per IQR
increase in the exposure to residential greenness percentages in buffer area during
pregnancy or 6-year-old
Table 9. Difference (95% confidence interval) in verbal intelligence quotient per IQR
increase in the exposure to residential greenness percentages in buffer area during
pregnancy or 6-year-old
Table 10. Difference (95% confidence interval) in performance intelligence quotient
per IQR increase in the exposure to residential greenness percentages in buffer area
during pregnancy or 6-year-old 74
Table 11. Difference (95% confidence interval) in total intelligence quotient per IQR
increase in the exposure to residential greenness percentages in buffer area during
pregnancy or 6-year-old 77

Table 12. Difference (95% confidence interval) in total intelligence quotient per IQR
increase in the average percentage of exposure to residential greenness percentages in
buffer area from during pregnancy to 6 years old 78
Table 13. Association between proxy to greenness and children's IQ
Table 14. Difference (95% confidence interval) in total intelligence quotient per 1 %
increase in the exposure to residential greenness percentage in buffer area during
pregnancy or 6-year-old by stratifying the personal SES
Table 15. Characteristics of participants at age 2 in sub-study compare to total EDC
population 102
Table 16. The significant relationship between greenness exposure and selected
DNAm at aged 2 105
Table 17. Association between selected CpG sites and children's Performance IQ
(n=59)

List of Figures

Figure 1. Health impact of greenness in previous studies
Figure 2. Association between greenness exposure and mental health
Figure 3. Previous studies in environmental epigenetics and disease in humans
Figure 4. Scheme of the association between greenness and children's IQ 17
Figure 5. Scheme of the association between greenness, DNAm, and Children'IQ
Figure 6. The follow-up scheme of EDC cohort from recruitment to the follow-up in 6
year-olds (2008-2017)
Figure 7. The homepage of Environmental Geographic Information Service, Ministry
of the Environment
Figure 8. The Geocoder-Xr program for transforming an address to
coordinate(http://www.gisdeveloper.co.kr/?p=4784) 23
Figure 9. Flowchart of spatial analysis
Figure 10. Compose the percentage of greenness in each participant address
Figure 11. The process of each buffer around the participants' address creating in
ArcGIS program
Figure 12. The process of the intersection between buffers and greenness area from
landcover map in ArcGIS program
Figure 13. Calculated the greenness densities
Figure 14. Dissolved for aggregates for each individual's data 27
Figure 15. Distribution greenness in Seoul across to the type of greenness
Figure 16. Association between prenatal greenness(%) and maternal IQ(score) 43

Figure 17. Association between prenatal greenness (%) and maternal age(year) 44
Figure 18. Association between prenatal greenness (%) and NO ₂ concentration(ppb)
during pregnancy
Figure 19. Association between prenatal greenness(%) and neighborhood SES(DI
index; score) during pregnancy
Figure 20. Association between prenatal greenness(%) and percentages of road
density(%)
Figure 21. Association between prenatal greenness and (a)children's sex, (b)maternal
education level
Figure 22. Association between prenatal greenness and exposure to ETS during
pregnancy 49
Figure 23. Association between postnatal greenness (%) and maternal IQ (score) . 50 $$
Figure 24. Association between postnatal greenness (%) and maternal age(year) 51
Figure 25. Association between postnatal greenness(%) and NO_2 concentration(ppb) at
age 6 52
Figure 26. Association between postnatal greenness (%) and neighborhood SES(DI
index: score) at age 6
Figure 27. Association between postnatal greenness (%) and the percentage of road
density (%) at age 6 54
Figure 28. Association between postnatal greenness exposure and children's sex 55
Figure 29. Association between postnatal greenness and maternal education level 56
Figure 30. Association between postnatal greenness exposure and exposure to ETS at
age 6 57
Figure 31. Association between postnatal greenness exposure and household income

at age 6	58
Figure 32. Association between postnatal greenness exposure and subjective noise	
level at age 6	59
Figure 33. Association between postnatal greenness exposure and distance to main	
road at age 6	60
Figure 34. Association between postnatal greenness exposure (%) and physical	
activity time in outdoor at age 6	61
Figure 35. Association between covariates and children's IQ at age 6(1)	64
Figure 36. Association between covariates and children's IQ at age 6(2)	65
Figure 37. Association between covariates and children's IQ at age 6(3)	66
Figure 38. Association between covariates and children's IQ at age 6(4)	67
Figure 39. Association between categorical covariates and children's IQ at age 6 .	. 68
Figure 40. Summary of the association between greenness exposure during pregnan	ıcy,
covariate, and children's IQ at age 6	69
Figure 41. Summary of the association between greenness exposure at age 6,	
covariates, and children's IQ at age 6	70
Figure 42. The plot of the LSMEANS of total intelligence quotient by prenatal	
exposure to greenness as a categorical variable	76
Figure 43. The plot of the LSMEANS of total intelligence quotient by postnatal	
exposure to greenness as a categorical variable	76
Figure 44. The distribution aof proxy to greenness	80
Figure 45. Association between proxy to greenness and children's IQ	. 80
Figure 46. The flow of participants through the study	91
Figure 47. Workflow for model building for selecting cognitive abilities based on a X	

systematic literature review	94
Figure 48. Reactome pathway enrichment analysis of the greenness-associated gene	es,
which were showed top 20 pathways	108
Figure 49. The LSMEANS of DNA m at cg26269038 levels in four quartiles of	
exposure to greenness among children	111

List of Abbreviations

IQ, Intelligence quotient; NDVI, Normalized difference vegetation index; DNA, DeoxyriboNucleic Acid; EWAS, Epigenome-wide association study; GWAS, Genome-wide association study; GIS, Geographic Information System; NO₂, Nitrogen dioxide; PM_{2.5}, Particulate matter 2.5 μm; SES, Socioeconomic status DNAm, DNA methylation; EDC, Environment and Development of Children; ETS, Environmental tobacco smoke; ANOVA, Analysis of variance; SE, Standard Error; SD, Standard Deviation; IQR, Interquartile range; 95% CI, 95% Confidence Interval; LSMEANS, Least-Squares Means; ND, Not detected; NA, Not analyzed; WISC, Wechsler Intelligence Scale for Children; WAIS-R, Wechsler Adult Intelligence Scale-Revised; CVD, cardiovascular disease; BMI, Body mass index; BMIQ, Beta Mixture Quantile; DAVID, Database for Annotation, Visualization, and Integrated Discovery; SNP, Single nucleotide polymorphisms; UCSC, University of California, Santa Cruz; DRD2, Dopamine Receptor D2.

Chapter 1. Introduction

1.1. Study Background

More than half of the world's population (4.1 billion people) live in urban areas (WHO, 2018). Health risks, including mental illness, are associated with exposure to urban environments characterized by environmental hazards, lack of social support, or inadequate health services (Hystad et al. 2014). Children's mental health is especially important, accounting for a third of the world's population, many mental health conditions begin before adulthood, and appropriate interventions and treatments for children's mental health are cost-effective (Weiss et al. 2020).

Urban greenness is one of the important elements of the urban environment in term of public health (Figure 1). Exposure to greenness in urban areas is estimated to have physiological and psychosocial health benefits in children (Amoly et al. 2014; Casey et al. 2016; Dadvand et al. 2012; Fuertes et al. 2014; Markevych et al. 2014). Urban greenness can contribute to reducing the harmful effects of urbanization (Kabisch et al. 2017), including reducing exposure to environmental toxicants (Cilluffo et al. 2018) and noise (Dzhambov et al. 2019), increasing the level of physical activity (Grigsby-Toussaint et al. 2011; Ward et al. 2016), and enhancing social cohesion (Wan et al. 2021) in children.

Previous studies have shown that greenness exposure has consistently positive effects on mental health. James et al. mentioned the mechanisms for greenness and mental health, which was expected to reduce depression and anxiety through stress reduction, increase in physical activity and social interaction, and mitigation of noise (James et al. 2015)(Figure 2). Recently, there is evidence suggesting indirect roles such as increased physical activity (Liu et al. 2019; Ward et al. 2016), traffic-related air pollution (Liao et al. 2019), traffic noise reduction (Klompmaker et al. 2019), social contact (Liu et al. 2019; Sugiyama et al. 2008), and stress relief (Liu et al. 2019) in manay previous studies. However, the biological mechanisms underlying the association between greenness exposure and desirable health effects remain unclear.

Figure 1. Health impact of greenness in previous studies (ISEE conference, 2020)

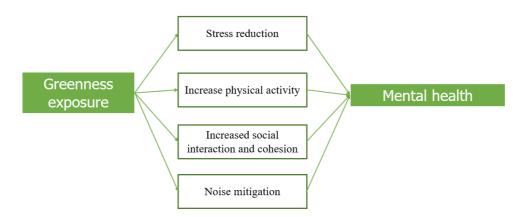


Figure 2. Association between greenness exposure and mental health (James et al.,

2015)

1.1.1. Association between greenness and children's cognition

Human intelligence consists of cognitive abilities such as thinking, reading, learning, problem solving, and academic achievement tests (Reuben et al. 2019), and therefore environmental considerations in children's residential areas are largely related to long-term intelligence quotient (IQ) (Reuben et al. 2019). They suggested that raised in residential greener in children showed better cognitive ability at ages 5, 12, and 18, but the positive associations were best accounted for neighborhood socioeconomic factors (Reuben et al. 2019). Recently, Bijnens et al showed that the association between residential greenness and both intelligence and behavior in children with comparing to urban, suburban, and rural area in Belgium. They found that residential greenness was more beneficial for the children's intellectual and the behavioral development of children, who live in urban areas than rural areas (Bijnens et al. 2020). However, most previous studies including Bijnens study used crosssectional design and few evaluated the association between exposure to greenness during critical periods, such as during pregnancy or early stages of infant and child neurodevelopment. Another study was reported to be associated between greenness exposure at birth and psychomotor development index at age 2 (Liao et al. 2019), and a map of normalized difference vegetation index (NDVI) with limited information on plant type identification and green quality. Previous studies are still lacking because few studies have linked individual perception outcomes to green residential areas in children of Asia.

1.1.2. Association between greenness exposure and children's epigenetics

Many epidemiological studies have shown that an adverse intrauterine environment including smoking (Joubert et al. 2012; Lee et al. 2015; Markunas et al. 2014), chemical exposures (Broberg et al. 2014; Cardenas et al. 2015; Herbstman et al. 2012; Khosla et al. 2001), ambient air pollution (Gruzieva et al. 2017; Kingsley et al. 2016), and stress (Cao-Lei et al. 2016; Vidal et al. 2014) may result in epigenetic perturbations of the developing fetus and can be associated with an increased risk of adverse health outcomes in later life (Figure 3). Additionally, exposure to heavy metal in early childhood (ages 1-4 years) was significantly associated with epigenetic change such as H19hypermethylation, which may contribute to growth and metabolic diseases (Goodrich et al. 2016). Hence, DNA methylation may be a possible mechanism by which early-life environmental factors contribute to increased risk of diseases in later life (Bianco-Miotto et al. 2017; Peng et al. 2018). In addition, epigenetic modifications, such as DNA methylation, are susceptible to genetic and environmental factors and may provide insights into individual differences in health outcomes (Marioni et al. 2018). Epigenetic change is hypothesized to be a regulatory pathway through which exposure to greenness in early childhood may influence child development and health.

However, few studies have assessed the association between greenness exposure and changes in DNA methylation. Xu et al. (2021) showed an association between greenness exposure, gene, and their interactions on blood-derived DNA methylation in 479 adult females (Xu et al. 2021). They found greenness-associated DNA methylation changes of cytosine-guanine dinucleotide (CpG) sites at genes related to various human diseases such as mental disorders, neoplasms, nutritional and metabolic diseases (Xu et al. 2021). The *CNP* gene at cg04720477 was strongly associated with greenness exposure and

encodes a protein that has been related to low expression in brain tissue of schizophrenic (Peirce et al. 2006) and depressive patients (Rajkowska et al. 2015). These results suggest that high greenness may be related to elevated *CNP* expression due to reduced methylation of this gene in female adults (Xu et al. 2021). However, this study had a cross-sectional design, and so it was unable to determine whether DNA methylation plays a role in the association between improved mental health and exposure to greenness. In addition, they did not estimate the epigenetic impact of greenness on clinical outcomes.

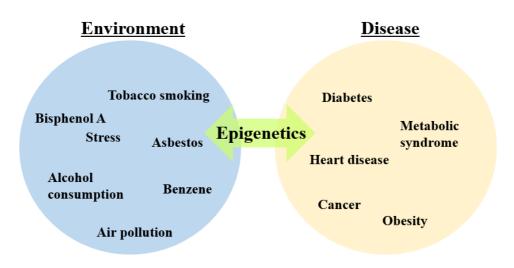


Figure 3. Previous studies in environmental epigenetics and disease in humans (Feil

and Fraga 2012; Tzika et al. 2018).

1.2. Review of the Literature

To review previous studies for the association studies between exposure to greenness and cognitive development in children, PubMed were searched on June 30, 2020 for studies with titles or abstracts containing "greenness" or "green space" or "mental health" or "children". Search results were further limited to those studying humans only. Next, titles and abstracts were screened to select only those that conducted original article. The main findings of each study are presented in a Table 1.

No	Title	Count ry (study design)	Stud y pop ulati on	Study design	Variable for greenness exposure	Timing of greenne ss exposur e	Buffer size in greenne ss exposur e	Age at outcome measure ment(yea rs)	Outcome variable	Major confounders or mediating factors	Signific ance
1	The relationship between the natural environment and individual-level academic performance in Portland, Oregon (Donovan et al. 2020)	Spain	179 18	Cross- Sectio nal study (C-S)	Exposure to the natural environme nt	Grades 3 to 8 and Grade 11	250 m to 2,000 m	Grades 3 to 8 and Grade 11	Individual-level standardized math and reading test scores	Socioeconomic status	Yes (200m buffer)
2	The effect of residential greenness and city park visiting habits on preschool children's mental and general health in Lithuania: a cross- sectional study (Andrusaityte et al. 2020).	Lithua nia	148 9	C-S	NDVI, and time spent in a park	4-6- year-old children	100m,3 00m, 500m	4-6-year- old children	Strengths and Difficulties Questionnaire (SDQ) for parents	Children's sex, birth order, breastfeeding, antibiotic usage during the first postnatal year, wheeze during 12 months, clinically diagnosed asthma, allergy, underweight, tobacco smoke, the parents' socio- economic status, birth weight, air pollutants (NO ₂ , PM _{2.5})	Yes (100m)
3	Community greenness and neurobehavioral health in children and adolescents (Lee et al. 2019)	Korea	181 7	C-S	Soil adjusted ve getation index (MSAVI)	7 to 17 years	50 m up to 3000 m	7 to 17 years.	Child Behavior Checklist (CBCL)	Age, sex, physical activity, monthly family income, exposure to second- hand smoke, exposure to NO ₂ , and blood lead level.	Yes

Table 1. Previous study for the association studies between exposure to greenness and mental health in children in the last five years.

4	Residential neighborhood greenery and children's cognitive development. (Reuben et al. 2019)	UK	165 8	Cohor t	Normalized Difference Vegetation Index (NDVI)	ages 5 to 18	1-mile home radius	ages 5, 12, and 18	Fluid and crystalized intellectual performance	SES, neighborhood, genetic, family	Mixed
5	How is environmental greenness related to students' academic performance in English and mathematics? (Leung et al. 2019)	USA	274 93	C-S	Massachus etts Geographic Informatio n System (Mass GIS), NDVI, and green land use area	over 9 years	250– 2000 m	over 9 years	Academic performance (i.e. English and Mathematics achievement level) were primarily based on Composite Performance Index (CPI)	Sex, student-teacher ratio, financial status, language ability, and race and ethnicity.	Yes
6	The psychological and social benefits of a nature experience for children: a preliminary investigation. (Dopko et al. 2019)	Canad a	80	Experi mental study	nature school VS. museum	element ary school	-	elementa ry school	shortened mood measure	-	mixed
7	The association between lifelong greenspace exposure and 3-dimensional brain magnetic resonance imaging in Barcelona schoolchildren (Dadyand et al. 2018).	Spain	253	Cohor t	NDVI	7–10 y old	100m, 500m	7–10 y old	3-dimensional magnetic resonance imaging (3D MRI) (voxel-wise brain volume)	-	Yes
8	Availability, use of, and satisfaction with green space, and children's mental wellbeing at age 4 years in a multicultural, deprived, urban area: results from the Born in Bradford cohort study (McEachan et al. 2018).	UK	259 4	Cohor t	NDVI	4-year	100m,3 00m, 500m	4-year	Strengths and Difficulties Questionnaire.	Moderation by ethnicity and SES	Yes
9	Residential landscape as a	Belgiu	172	C-S	Residential	aged	100-m	aged	Stress	Age, sex, and parental	Yes

	predictor of psychosocial stress in the life course from childhood to adolescence (Van Aart et al. 2018).	m		and longit udinal associ ations	landscape	6.7–12.2	to 5-km	6.7–12.2	(standardized behavioral and emotional questionnaires and hair cortisol)	socioeconomic status	
10	The impact of greening schoolyards on the appreciation, and physical, cognitive and social- emotional well-being of schoolchildren: a prospective intervention study (Van Dijk-Wesselius et al. 2018).	Nether lands	700	Prospe ctive interv ention study	greening schoolyard s,	age 7– 11	-	age 7–11	Physical, cognitive, and social-emotional well-being	Physical activity	Yes
11	Connection to the natural environment and well-being in middle childhood (Whitten et al. 2018).	Austra lia	268 93	Cohor t	Connection to Nature Index	11 years	-	11 years	Self-satisfaction, Prosocial Behavior: Empathy, Attention. Social supports	-	mixed
12	The Relationship between Surrounding Greenness in Childhood and Adolescence and Depressive Symptoms in Adolescence and Early Adulthood (Bezold et al. 2018a).	USA	137 54	Cohor t	NDVI	18 years	1000m	9–14	Depressive symptom	Household SES, paternal education, race/ethnicity, age and sex, PM _{2.5}	Yes
13	Urban Residential Greenspace and Mental Health in Youth: Different Approaches to Testing Multiple Pathways Yield Different Conclusions (Dzhambov et al. 2018).	Bulgar ia	399	C-S	NDVI (NDVI), Self- reported measures of availability, access,	15–25 years	500m	15–25 years	Mental health (General Health Questionnaire)	Restorative quality of the neighborhood, neighborhood social cohesion, commuting and leisure time physical activity, road traffic noise annoyance, and	mixed

					quality, and usage of greenspace					perceived air pollution	
14	Measuring connectedness to nature in preschool children in an urban setting and its relation to psychological functioning (Sobko et al. 2018).	Hong Kong	493	C-S	Connected ness to Nature (CN)	8–10 years	-	8–10 years	'Strength and Difficulties Questionnaire' (SDQ)	-	Yes
15	Lifelong residential exposure to green space and attention: a population-based prospective study (Dadvand et al. 2017).	Spain	888	Cohor t	NDVI and vegetation continuous fields	birth, 4– 5 y, and 7 y	100m,3 00m, 500m	4 to 5 y,7y	Conners' Kiddie Continuous Performance Test (K-CPT) at 4– 5y(n= 888) and Attentional Network Task (ANT) at 7 y (n= 987)	age, sex, preterm birth, maternal cognitive performance, maternal smoking during pregnancy , and exposure to environmental tobacco smoke, maternal educational attainment at enrollment (individual-level socioeconomic status (SES)), and for the Urban Vulnerability Index, neighborhood SES	Yes
16	The relationship between neighborhood green space and child mental wellbeing depends upon whom you ask: Multilevel evidence from 3083 children aged 12–13 years (Feng and Astell-Burt 2017a).	Austra lia	308 3	C-S	Neighborh ood green space quantity and quality	12–13 Years	-	12–13 Years	Strengths and Difficulties Questionnaire	Indicators of area disadvantage and geographic remoteness, maternal education, child age and gender	Yes
17	Impact of urban nature on executive functioning in early	USA	67	Experi mental	park-like area vs	4-5 years	-	4-5 years and 7-	Assessments of working memory,	-	Yes

	and middle childhood (Schutte et al. 2017).			study	urban streets	and 7- 8years		8years	inhibitory control, and attention		
18	Effectiveness of a playground intervention for antisocial, prosocial, and physical activity behaviors (Mayfield et al. 2017).	USA	119 6	Longit udinal , Cluste r-rand omize d design	Peaceful Playground s [™] (P2)	4-5 element ary grade	-	4-5 elementa ry grade	Antisocial behaviors (ASB),physical activity (PA) and prosocial behaviors (PSB)	-	mixed
19	The role of public and private natural space in children's social, emotional and behavioral development in Scotland: a longitudinal study (Richardson et al. 2017).	UK	290 9	Cohor t	total natural space and parks	4 years	500m	4 years	Strengths and Difficulties Questionnaire (SDQ)	Sex, age, hours of screen time per day, educational attainment, equalized annual income, care's mental component summary score, Neighborhood-level disadvantage	Yes
20	The Association Between Natural Environments and Depressive Symptoms in Adolescents Living in the United States (Bezold et al. 2018b).	USA	938 5	C-S	greenness (NDVI vegetation) and blue space (water	12–18 years	250-m and 1,250-m radius	12–18 years	Depressive symptoms (using self-reported responses to the McKnight Risk Factor Survey.)	Race/ethnicity, grade level, age, and gender. Household income, father's education, and maternal history of depression., income, home value, percent white, and percent college educated, PM _{2.5}	Yes
21	Residential Green Space Quantity and Quality and	Austra lia	4,96 8	Cohor t	Green space quantity	4–5 years	-	4–5 years	Strengths and Difficulties Questionnaire		Yes
	Child Well-Being: A Longitudinal Study (Feng and Astell-Burt 2017b).				and quality				Questionnane		

	Urban Green Space and Childhood Autism in California Elementary School Districts. (Wu and Jackson 2017)			t	types of green space	years		years	prevalence	socioeconomic status. urban land, stratified models by road density	
23	How is high school greenness related to students' restoration and health? (Akpinar 2016)	Turke y	223	C-S	School greenness	12–20 years	-	12–20 years	Stress, mental health, physical health, and quality of life	Sex, age, accommodation, and income	Yes
24	Horticultural activity program for improving emotional intelligence, prosocial behavior, and scientific investigation abilities and attitudes in kindergarteners (Park et al. 2016).	Korea	336	Experi mental study	Indoor and outdoor activities such as planting seeds, transplantin g plants so on.	5-7 years	-	5-7 years	emotional intelligence, prosocial behavior, and scientific investigation abilities and attitudes in 24hr program	-	Yes
25	Association of Sociodemographic and Environmental Factors with the Mental Health Status among Preschool Children- Results from a Cross- Sectional Study in Bavaria, Germany (Zach et al. 2016).	Germa ny	620 6	C-S	accessibilit y of green space (availabilit y of public parks or green spaces).	3–6 years	-	3–6 years	The prevalence of a borderline or abnormal SDQ- TDF and hyperactivity- inattention score	sociodemographic and environmental factors	Yes
26	Urban Natural Environments, Obesity, and Health-Related Quality of Life among Hispanic Children Living in Inner-City Neighborhoods (Kim et al. 2016).	USA	92	C-S	Quality of urban natural environme nts, landscape spatial patterns.	9 to 11 years old	400m, 800m	9 to 11 years old	health-related quality of life (HRQOL)	age, gender, maternal employment status, PA, BMI	Yes

27	Environmental Determinants of Aggression in Adolescents:	USA	128 7	C-S	NDVI	9 to 10 years	250, 350,	9 to 10 years	aggressive behaviors by the	age, sex, self-reported race/ethnicity,	Yes
	Role of Urban Neighborhood						500, and		parent-reported	socioeconomic status	
	Greenspace						1000 m		Child Behavior	(SES), and perceived	
	(Younan et al. 2016).								Checklist.	neighborhood quality.	
28	Adding Natural Areas to	Germa	304	cross-	Green and	g 5- to	300m	g 5- to 6-	language and	-	Yes
	Social Indicators of Intra-	ny	27	sectio	blue areas	6-year-		year-old	viso-motoric		
	Urban Health Inequalities			nal		old			development		
	among Children: A Case			survey							
	Study from Berlin, Germany			data							
	(Kabisch et al. 2016).										
29	The Impact of Children's	New	108	cross-	GPS	11-14	-	11-14	Life Satisfaction	-	Yes
	Exposure to Greenspace on	Zealan		sectio	receiver	years		years	Scale(LSS), Ten		
	Physical Activity, Cognitive	d		nal					Domain Index of		
	Development, Emotional			survey					Wellbeing(TDIW)		
	Wellbeing, and Ability to			data					, measure of		
	Appraise Risk								happiness		
	(Ward et al. 2016).										

1.3. Purpose of Research

Therefore, this research had several objectives in two parts.

In first part, to estimate the association between prenatal or postnatal exposure to greenness and children's IQ was observed (Figure 4). There are two purposes in the first part. 1) We investigated the relationship between prenatal and postnatal exposure to residential surrounding greenness and IQ score of 6-year-old in the prospective cohort. 2) We analyzed whether the effects differ depending on the types of natural greenness and built greenness.

In second part, we hypothesized that residential greenness in early childhood may be associated with epigenetic alterations and that these alterations may influence later childhood cognitive outcomes (Figure 5). Using a sub-study of 59 children with DNA methylation data, we sought to evaluate the association between residential greenness exposure and DNA methylation changes, which reported from genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) of cognitive ability in children in literature reviews. Then, we investigated the association between the DNA methylation changes, which were significantly associated with greenness exposure, and children's IQ in the prospective EDC cohort.

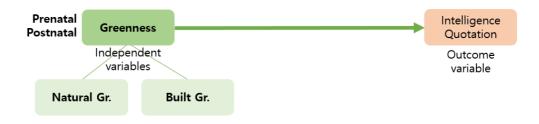


Figure 4. Scheme of the association between greenness and children's IQ

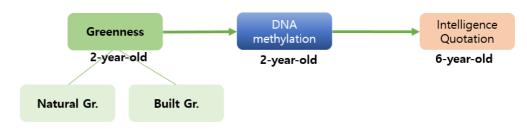


Figure 5. Scheme of the association between greenness, DNAm, and Children' IQ.

Chapter 2. Association between greenness and children's IQ

2.1. Study population.

The EDC (Environment and Development of Children) study utilizes an ongoing prospective study design to evaluate the effect of environmental exposure on development of cognition and physiology in children. A detailed description of participant recruitment has been mentioned previously (Kim et al. 2018). Briefly, a total of 726 women in mid-pregnancy from eight participating hospitals from 2008 to 2010 in Seoul and Incheon cities and Gyeonggi province were recruited. Children who had not congenital defects at birth and had an informed consent signed by the parents were included, but who had congenital defects at birth or invalid contact information were excluded. From 2012 to 2013, a total of 425 children aged 2 years, who were born to these mothers were tracked. Then, we additionally enrolled 81 children at age 4 due to the loss during follow-up. A total of 645 children were recruited and followed up at age 4 years from 2013 to 2015. Among them, 574 children were followed up at 6 years of age from 2015 to 2017(Figure 6). Because our study focused on the effect of urban greenness and children's cognition, the participants were 189 mother-children pairs, who lived in Seoul when the child was 6 years old and during the prenatal period in the EDC cohort. The study protocol was approved by the institutional review board (IRB) of the Seoul National University Hospital (IRB No. 1201-010-392). Written informed consent was obtained from the parents of the participants before enrollment.

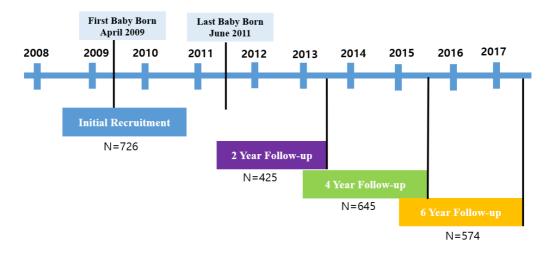


Figure 6. The follow-up scheme of EDC cohort from recruitment to the follow-up in 6-year-olds (2008-2017)

Variables	Source or Categorical	Value	Year for data collection	Period for follow-up
Study Population	EDC cohort	-	2008-2010	Prenatal
			2015-2017	бу
Greenness	Land cover map (https://egis.me.go.kr/main.do)	Continuous (%)	2010	Prenatal
				бу
IQ	Korean Educational Developmental Institute's Wechsler Intelligence Scale for Children	Continuous (score)	2015-2017	бу
Sex	Questionnaire	Boy, girl	2011-2013	2y
Maternal age at enrollment	Questionnaire	Continuous (yr)	Baseline	Prenatal
Maternal educational level	Questionnaire	College graduates , graduate students	Baseline	Baseline
Exposure to environmental cigarette smoke	Questionnaire	Yes, no	2008-2010 /2015-2017	Prenatal and 6y
Maternal IQ	Korea's Wechsler Adult Intelligence Scale	Continuous (score)	2015-2017	бу
NO ₂	National monitoring data	Continuous	2008-2010	Prenatal and
concentration	(http://www.airkorea.or.kr/eng)	(ppb)	/2015-2017	бу
Deprivation index	Shin et al. 2009	Continuous (score)	2004-2006	Prenatal and 6y
Road density during	Land cover map (https://egis.me.go.kr/main.do)	Continuous (%)	2010	Prenatal and 6y
Subjective noise level at age 6	Questionnaire	very loud, loud, moderate, quiet, very quiet	2015-2017	бу
Household income at age 6	Questionnaire	Under \$3,300 per month, more than \$3,300	2015-2017	бу
Distance to main road at age 6	Questionnaire	More than 500 m/ 50-499 m/ less than 50 m	2015-2017	бу
Physical activity time in outside at age 6	Questionnaire	Continuous (hr)	2015-2017	бу

Table 2. The definition of variables (n=189)

2.2. Greenness exposure assessment

Table 2 showed the definition of variables. Prenatal and postnatal residential addresses were collected at the recruitment and the follow-up, when the children were aged 6. The residential surrounding greenness exposure was collected by the Environmental Geographic Information Service, using the Landsat image data from the IKONOS satellite images (Dial et al. 2003) and Korean Arirang satellite images, which were administered by the Ministry of the Environment in South Korea (https://egis.me.go.kr/main.do; Figure 7). We also used the Geocoder-Xr program transform the participants' addresses Coordinates to to (http://www.gisdeveloper.co.kr/?p=4784) (Figure 8). We selected the highest spatial resolution(1m) in the land cover map. In Figure 9 and 10 showed the spatial analysis from the satellite images to calculating the percentages of greenness. The study used Esri ArcGIS 10.5 Desktop (ArcMap) for all spatial data processing and geographic analysis. For spatial analysis, we firstly collected the participant's address for each follow-up period individually. After we transformed the participant's addresses at the followed up including during pregnancy and age 6 to coordinates such as longitude and latitude, we pointed on a map using the XY coordinates in ArcGIS program. Then, we created 100-2000 buffers around input as their addresses using the buffer tool in ArcGIS program (Figure 11). The "Input Features" parameter was assigned the participant's address, and the "Distance" parameter was assigned 100m to 2000m. The optional parameters were defaulted. Then, we computed a geometric intersection both the buffers and the greenness area in land cover map (Figure 12). After then, we opened the intersection table, we added a new field to commute the density of greenness density. Right-click the

added field, choose the field calculator. calculated the density of greenness for each participant (Figure 13). To dissolve for aggregating each participants' greenness density, input features parameter was assigned the intersections' datafile after calculating the greenness density in dissolve tool. We selected both participants' id field and the greenness density fields in the dissolve fields (Figure 14).

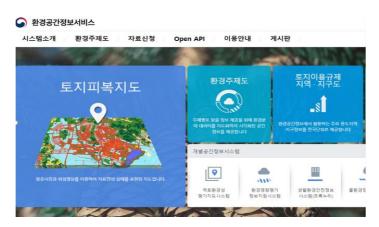


Figure 7. The homepage of Environmental Geographic Information Service,

Ministry of the Environment(<u>https://egis.me.go.kr/main.do</u>)

주소 좌표 변환둘, G	Geocoder-Xr v4.2 -	- (주)지오서비스							_	
53 입력 파일	주소→좌표	~ 주소필드		✓ EPSG: 4326	~ D A	작전	행률			
과 SHP 파일										UTF-4
주소 목록									결과를 CSV 파일 형	병태로도 저장
로명 DB 구축 일자 :	2020년 12월 🙏	i비스 운영 시간을	8AM - 22PM으로 제	I한하며 건당 변환 소요	시간을 5초 지연할	합니다. 단, 치	i음 100건은 속도	지연 없이 서비	🔰 지도 보기	문 문 7
적도 DB 구축 일자 :	2021년 1월			스큅니다. (V	4.1부터 지원)					

Figure 8. The Geocoder-Xr program for transforming an address to

coordinate(http://www.gisdeveloper.co.kr/?p=4784).

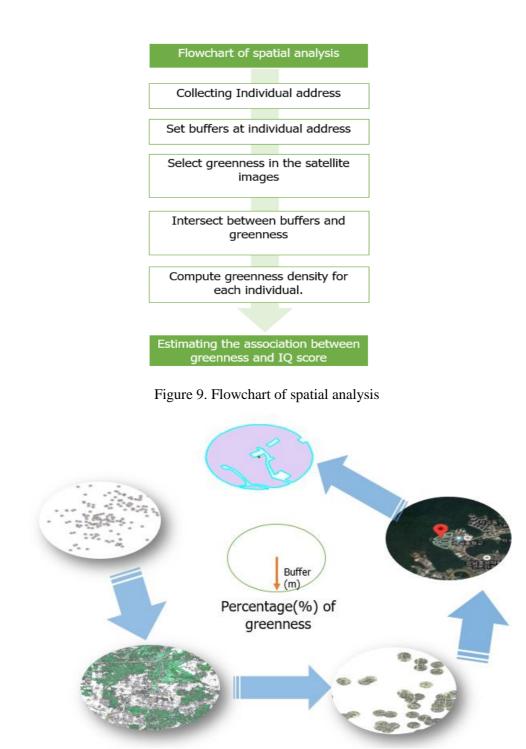


Figure 10. Compose the percentage of greenness in each participant address

To estimate greenness exposure in our study, greenness densities were calculated within buffer radii of 100 m, 500 m, 1000 m, 1500 m, and 2000 m from each mother and child's residential address. Then, we determined the percentage of greenness (density) in each buffer radius. We separately analyzed two types of greenness, namely natural greenness including forest or natural grassland, and built greenness including artificial grassland, urban parks or street trees. More detail definition for the type of greenness was represented in Table 3. Because more than 10% of the participants were not exposed to natural greenness both 100 and 500 m radiuses from their residential address, we did not analyze the effect of natural greenness both 100 and 500 m radiuses. In addition, we conducted to define the built greenness including golf course and cemetery parks, which were provided to greenness from the Landsat image data in a sensitivity analysis. Even though golf courses and cemetery parks were not given to children to play, we thought that these parks are having partial ecological benefits such as reducing urban complexity as well as increasing comfort. Some previous studies also defined greenness exposure including cemetery park or golf course (Lai et al. 2020; Li et al. 2015; Richardson et al. 2012; Wang et al. 2013)

Geo	processing Customize Wind	nd 🔨 Buffer — 🗆 🗙	
\checkmark	Buffer	Input Features	
1	Clip	Participant's address	
~	Intersect	Output Feature Class	
5	Union	Created buffer file name	
5	Merge	Distance [value or field]	
5	Dissolve	Buffer size Meters	
	Search For Tools	OField	
	ArcToolbox	Side Type (optional)	
*	Environments	FULL V End Type (optional)	e ² e e e e
_		ROUND	
K	Results	Method (optional)	0 0
₽••	ModelBuilder	Dissolve Type (upitolial)	
>	Python	NONE	
	Geoprocessing Options	OK Cancel Environments Show Help >>	

Figure 11. The process of each buffer around the participants' address creating in

Geo	processing Customize Wind	√ Intersect – □ ×	
5	Buffer	Input Features	
~	Clip		
1	Intersect	Features Banks	
\checkmark	Union	Created buffers around participant's address Greenness area from landcover map	20
~	Merge	1 T	
~	Dissolve	1	
5	Search For Tools	**]	90 🖗
D	ArcToolbox	< >>	The second se
	Environments	Output Feature Class Filename for intersect results	
K	Results	JoinAttributes (optional)	
₽•	ModelBuilder	XY Tolerance (optional)	
>	Python	Decimal degrees 🗸	
	Geoprocessing Options	OK Cancel Environments Show Help >>	

ArcGIS program.

Figure 12. The process of the intersection between buffers and greenness area

from landcover map in ArcGIS program.

abk	• 🔁 • କ 🔁 🗆 🖑 ×							Add Field		×	Calculate Geo	metry		-×
	Fing and Replace							Name:	Greenness density variable		Property:	Area		
2	Select By Attributes		Rowid_	OBJECTID	IN_FID	NEAR_FID	NEAR		Greenness density variable	2 man	Coordinate	Custom		
	Clear Selection	3564		0	0	153	211	Type:	Long Integer	~				
1		3039 7419		0	1	110	85 140		cong meger	- 1		rdinate system of the data source	1	
-		5956		0	3	171	244	Field Prop	erties		GCS: N	iorth American 1983		
ſ	Select All	7938			4	118	244 25 138	Precisio		- 1		dinate system of the data frame:		
	Add Eield	1340			5	151	134	Precision	· · · · ·	- 11				
	Turn All Helds On	3554			7	165	-40				PCS: U	JSA Contiguous Albers Equal Area	Conic USGS version	
/	Show Field Aliases	37911	5 9		8	117	61							
1	Arrange Tables	▶ 8050 ▶ 8017			9	117	90				Units:	Square meters[1g m]		
		9151			10		19			- 11	2101	square meaning ad		
	Restore Defagit Column Widths	2010	8 13		12		306							
	Restore Default Field Order	0871			13		34				Calculate	selected records only		
	Joins and Relates	 3612 3969 	8 15		14		13		OK Canor		About calcula	ting geometry	OK	Cancel
	Related Tables	. 3794	9 17	0	16	117	131		Un Canor					
h	Create Graph	9692			17		84 258		· · · · · · · · · · · · · · · · · · ·					
	Add Table to Layout	\$21.8			18		258	h	Sort Ascending					
		2052	8 21	0	20	167	158		Sort Descending					
С	Reload Cache	8907			21									
2	Print	1987			22		198 314		Advanced Sorting					
	Reports	 183 	9 25	0	24	140	35		Summarize					
	Export	3055			25		38							
		1307			26 27		231	Σ	Statistics					
÷	Appearance	8407	4 29	0	28	171	491		Public data data d					
l	29 35 126,602752	36,36189			29		15		Field Calculator					
ł	30 36 126,947373 31 37 126,957255	37,41136			30 31	117	21:		Calculate Geometry					
t	32 38 126,965136	37,40679			32		154			-				
1	33 39 126,963629	37, 36508			33		204		Turn Field Off					
ł	34 41 127,146177 35 42 126,965018 36 44 126,955449	36,78213 37,39102 37,3969	6 36	0	34		36		Freeze/Unfreeze Column					
ľ	351 991 125 954441	37.29638	n: 37		36	117	38	×	Delete Field					
								~	Properties					

Figure 13. Calculated the greenness densities

Geo	processing Customize Wind	≪ Dissolve	— C]	×
~	Buffer	Input Features			^
~	Clip	The intersection' datafile after calculating the greenness density	-	1	
~	Intersect	Output Feature Class			
~	Union	New filename Dissolve_Field(s) (optional)		Ċ	
~	Merge	✓ FID]
5	Dissolve				
5	Search For Tools				
	ArcToolbox	☐ ORIG_FID greenness			
X	Environments				
K	Results				
₽••	ModelBuilder	Select All Unselect All	Add Fie	ld	
>	Python	Statistics Field(s) (optional)			Ť
	Geoprocessing Options	OK Cancel Environment	s Show	Help >	·>

Figure 14. Dissolved for aggregates for each individual's data

Type of Greenness	Definition
Natural greennes	S
Broadleaf	A broadleaved forest refers to a place where a broadleaf forest accounts for more
forest	than 75% of the total forest area.
Coniferous	A coniferous forest refers to a place where coniferous forests account for more than
forest	75% of the total forest area.
Mixed forest	A Mixed forest refers to an area where the forest area of a broadleaf forest is mixed with the forest area of a coniferous forest, and the forest area of a coniferous forest is less than 75% or the forest area of a coniferous forest is less than 75%.
Natural grassland	Natural grassland refers to the grassland of the naturally occurring mountain top, the silver grass of the ridge, and the leading part of the river and forest, and if there are trees less than 10% of the total grassland area, they are classified as natural grassland.
Built greenness	
Artificial grassland or street trees	It includes stable cases by creating a grassland for planting feed crops, inside the interchange, cut-off section of the road, and a slope in the construction area. It includes grassland and street trees other than the facilities of farms, farms, ranches, and grazing fields. It includes grasslands created as buffer green areas such as urban parks around roads and apartments.

Table 3. The definition the type of greenness

2.3. Cognitive development in children

The IQ score in 6-year-old children was measured using the Korean Educational Developmental Institute's Wechsler Intelligence Scale for Children (Park et al. 1996). This form of KEDI-WISC has been verified in Korean children and is used to produce global estimates of intellectual function, which were modified version of the Wechsler Intelligence Scale for children between the ages of 5 and 15 years (Park et al. 2015). A licensed clinical neuropsychologist coordinated the IQ tests and supervised the examiners using a standardized procedure (Cho et al. 2010). All the children were given instructions in a loud voice, and most of the children could understand the task. The examiner demonstrated each task to ensure that the children understood the instructions (Park et al. 2015). The test consists of the scales including vocabulary, arithmetic, picture arrangement, and block design tests. The two subsets were performed: verbal IQ, which consisted of sum of scores on tests including vocabulary and arithmetic intelligence, and performance IQ, which consisted of the sum of scores on tests including picture arrangement and block design (Kim et al. 2017). Higher scores indicated greater intelligence.

2.4. Covariates

Based on previous studies, we selected covariates including the average concentration of child's sex (boy or girl), maternal IQ (continuous), exposure to environmental cigarette smoke (ETS) during pregnancy (Yes or No), the percentages of road density in each radius (100 m to 2000 m, continuous), and nitrogen dioxide (NO_2) as traffic-related air pollution, when we estimated the association between prenatal greenness and children's IQ. NO2 is a local pollutant that can be used to infer urban area and local emissions, including from road traffic (Park et al. 2020). We added some covariates subjective environmental noise levels (very loud, loud, moderate, quiet, very quiet), the distance to the main road from the house (more than 500 m, more than 50 m, less than 50 m), when we estimated the association between postnatal exposure at age 6 and children's IQ. Since one of the important covariates in our study was the socioeconomic state (SES), which we consider to be associated with variables in both exposure and outcome, we included the SES variables as both individuals and neighborhood SES in the analysis. Individual SESs used two variables such as the household income at the age of six (under \$3,300, more than \$3,300 per month), and the mother's education level (over college graduates or graduate students). The residential deprivation index was used as an indicator of neighborhood SES during the mother's pregnancy and during the child's 6 years of age (continuous variable). The residential deprivation index was calculated in the sum of five domains, including unemployment, poverty, housing, labor, and social networks. The range of the indicators is 0-500 and is calculated as the sum of all domain scores (each score ranges from 0-100) after standardization using geometric transformations by

region. The higher index score is indicated the expansion of poverty (Shin et al. 2009). The intelligence index of mothers was evaluated using Korea's Wechsler Adult Intelligence Scale (Lim et al. 2000).

2.5. Statistical analysis

We estimated the covariates in the study population using frequencies (for categorical variables) or means (for continuous variables) (Table 4). Distributions of greenness in Seoul area by types of greenness, namely, natural versus built environment were evaluated (Table 5). Then, we examined prenatal and postnatal exposure to greenness as the percentages of residential greenness in each buffer area surrounding the participants' addresses. We used Student's t-test, ANOVA (for category variables), or regression (for continuous variables) to analyze the relationship between greenness and covariates (Table 6). The crude model examined the association between prenatal or postnatal exposure to the total, natural, and built greenness using PROC GENMOD in SAS program. Then, we examined the association between prenatal or postnatal exposure to greenness and children's IO at age 6 using PROC MIXED in SAS program, adjusting for administrative district as a random effect. We assessed the relationship between prenatal exposure to greenness and children's IQ, adjusting for the confounding factors of mother's age, children's sex, mother's education level, mother's IQ, exposure to ETS, average NO₂ concentration during the previous 3 years in the area of residence during pregnancy, residential deprivation index as an index of neighborhood SES, and the percentage of road density in each radius during pregnancy. The association between postnatal exposure to greenness and children's IQ in the full model was adjusted for mother's age, children's sex, mother's education level, mother's IQ, exposure to ETS at age 6, average NO₂ concentration during the previous 3 years in the area of residence at age 6, household income as

an index of individual SES, residential deprivation index as an index of neighborhood SES, a subjective noise level, the distance to main road from the house at aged 6, the percentage of road density in each radius at aged 6, and a physical activity time (hours) at age 6.

We tested the relationship between greenness exposure and children's IQ stratified by maternal education level to identify the role of individual SES in the relationship. We plotted the Least-Squares Means (LSMEANS) of total IQ by the prenatal or postnatal exposure to greenness as three categorical group such as the percentages of greenness below 25% group, between 25% to 75% group, more than 75% group in R package *plotrix* (Duursma et al. 2009). We also tested the significance for the difference of total IQ by the percentages of greenness between 25% to 75% group, more than 75% group, more than 75% group versus below 25% group using Dunnett multiple comparison test. In sensitivity analysis, we calculated the averages of greenness exposure using the participant's addresses at the follow-up periods of pregnancy, 2, 4, and 6 years old. Additionally, we calculated the proxy to greenness including total, natural, and built greenness using *NEAR* tool in ArcGIS program. All statistical analyses were performed using SAS (version 9.4; SAS Institute Inc., Cary, NC, USA) and R software (version 3.6.0; https://cran.r-project.org/).

2.6. Results

2.6.1. General characteristics of the participants

Table 4 presents the characteristics of our participants. The mean age of the mothers at mid-pregnancy was 32.05 years (standard deviation [SD]: 3.49). Of the mothers, 84.13% were more than a university undergraduate education. A total of 86.96% of the participants had exposed to ETS during pregnancy. The mean mothers' IQ was 118.23 (SD: 12.13). The composite deprivation index during pregnancy was 150.61 (SD: 63.61). Ambient NO₂ exposure during pregnancy in the area of residence for a 3-year period was 37.09 ppb (SD: 2.85). The percentages of road density in each radius around the residential addresses during pregnancy ranged from 29.42% to 41.05%. The percentage of boys (51.85%) was slightly higher than girls. The percentage of exposed to ETS occurred among 23.81% of the children at age 6. The percentage of monthly household income > \$3300 at age 6 was 77.78%. Regarding subjective noise levels reported by our participants, 19.05% of participants answered the residential area to be "loud" and 1.06% of participants reported "very loud." 20.11% of participants lived near a main road, which was defined as a road with more than two lanes, within 50 m of the house, and 56.08% of those who lived within 500 m or more from a main road. Among the children, 55.56% played outdoors for less than 1 hour per a day, whereas 12.7% played outdoors for 3 hours or more. The percentages of road density in each radius from 100 to 2000 m of the house at age 6 ranged from 28.86% to 37.42%.

Variables	Categorical	Mean±SD or N(%)
Prenatal covariates		
Maternal age during pregnancy		32.05±3.49
Maternal education level	≤University graduate	159(84.13)
	≥Graduate school	30(15.87)
Dropotol exposure to ETS	Yes	160(86.96)
Prenatal exposure to ETS	No	24(13.04)
Maternal IQ (score)		118.23±12.13
Deprivation index as neighborhood SES		150.61±63.61
during pregnancy(score)		150.01±05.01
The average of ambient NO ₂ concentration		
during pregnancy in residential area among 3		37.09 ± 2.85
years(ppb)		
	100m	41.05±13.48
The percentages of road density in each	500m	35.26±7.96
radius during pregnancy (%)	1000m	31.93±7.55
radius during pregnancy (%)	1500m	30.31±6.76
	2000m	29.42±5.99
Postnatal covariates	Categorical	Mean ± SD or N(%)
Children's sex	Girls	91(48.15)
	Boys	98(51.85)
Exposure to ETS at aged 6	Yes	45(23.81)
	No	144(76.19)
The average of ambient NO ₂ concentration in residential area at age 3 to 6 (ppb)		32.88±2.71
Monthly household income as individual	≤\$ 3300	42(22.22)
SES (dollars)	> \$ 3300	147(77.78)
Composite deprivation index as neighborhood SES at age 6		140.44±64.42
Subjective noise level at age 6	Very Loud	2(1.06)
· · · ·	Loud	36(19.05)
-	Moderate	84(44.44)
-	Quiet	56(29.63)
-	Very quiet	11(5.82)
	≥ 500m	106(56.08)
Proxy to main road from the house at age	50m-499m	45(23.81)
6(m)	≤ 50m	38(20.11)
	\geq 3hr	24(12.7)
Physical activity time in outdoor at age 6(hr)	1-2hr	60(31.75)
	≤ 1 hr	105(55.56)
The percentages of road density in each	100m	37.42±16.09
radius at age 6(%)	500m	33.58±10.59
	1000m	30.53±8.72
-	1500m	29.54±7.74
-	2000m	29.34±7.74 28.86±6.98
Abbreviations: NO ₂ : nitrogen dioxide. IO:		

Table 4. Characteristics in study population	n (N=189)
--	-----------

Abbreviations: NO₂: nitrogen dioxide, IQ: intelligence quotient, ETS: environmental tobacco smoke, SES: Socioeconomic status, SD: Standard Deviation

2.6.2. Exposure to greenness exposure in Seoul

Figure 15 shows the distribution of greenness by type, including natural or built in Seoul area. Natural greenness was predominately distributed along the border of the administrative district, especially on the northern and southern boundary in Seoul area. Built greenness was distributed evenly, and predominately comprised constructed grassland or street trees. Table 5 shows the percentages of participants with prenatal and postnatal exposure to residential greenness in each buffer area. The mean percentages of total greenness within 100 m to 2000 m buffer radii ranged from 15.11% to 23.59%.

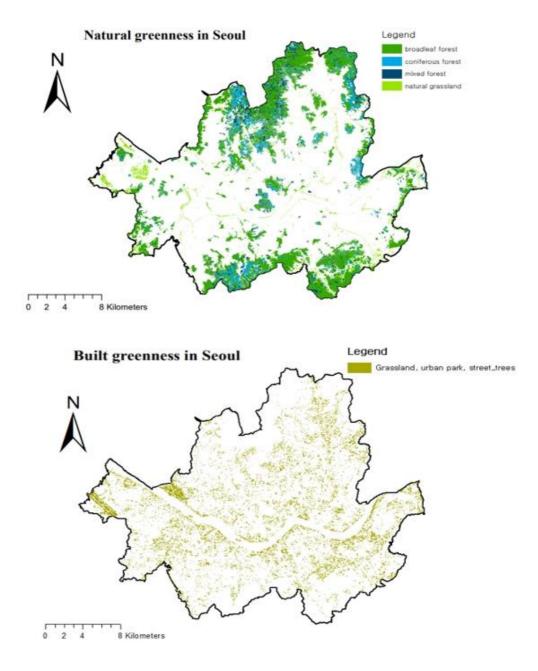


Figure 15. Distribution greenness in Seoul across to the type of greenness.

		Exposure to greenness during pregnancy													
Buffer		Total gre	eenness			Natural greenness					Built greenness				
	Mean	SD	Min	Max	ND(%)	Mean	SD	Min	Max	ND(%)	Mean	SD	Min	Max	ND(%)
100m	15.11	14.94	0.00	91.31	7.9	NA	NA	NA	NA	76.7	12.71	12.48	0.00	49.93	9.0
500m	18.81	14.79	1.02	83.75	-	NA	NA	NA	NA	14.3	9.92	6.96	0.05	32.48	
1000m	21.45	13.32	2.03	78.04	-	12.65	13.07	0.01	75.55	-	8.92	4.99	2.02	35.68	
1500m	22.72	11.98	5.47	70.66	-	14.59	12.39	0.64	66.98	-	8.45	4.12	2.06	32.37	
2000m	23.59	11.45	7.87	66.44	-	16.24	12.20	0.74	62.99	-	7.86	3.13	2.51	23.03	
						I	Exposure t	o greenn	ess at age	6					
Buffer	_	Tot	al greenr	ness		Natural greenness					Bu	ilt greenn	iess		
Buller	Mean	SD	Min	Max	ND(%)	Mean	SD	Min	Max	ND(%)	Mean	SD	Min	Max	ND(%)
100m	18.37	17.45	0.00	80.48	6.3	NA	NA	NA	NA	65.1	13.87	12.93	0.00	51.64	7.4
500m	23.26	16.32	1.24	83.30	-	NA	NA	NA	NA	5.3	10.91	6.88	0.19	35.58	-
1000m	25.19	15.65	2.19	79.22	-	15.86	16.12	0.01	76.75	-	9.40	5.02	2.18	39.36	-
1500m	26.05	14.46	7.45	72.33	-	17.40	15.49	0.64	68.84	-	8.78	3.99	1.75	32.66	-
2000m	26.81	13.66	9.42	70.72	-	18.73	14.86	1.49	68.65	-	8.33	3.07	2.18	22.59	-

Table 5. The percentages (%) of pre- and postnatal exposure to residential greenness in each buffer area(N=189).

Abbreviations: ND (Not detected), NA (Not analyzed)

2.6.3. Associations between exposure to greenness exposure and covariates

Table 6 showed that the association between prenatal and postnatal exposure to greenness and covariates. Figure 16-34 were constructed using generalized additive models (GAMs) and boxplot to investigate the relationship between exposure to greenness and covariates. In Table 6 showed that the percentages of total greenness exposure during pregnancy were significantly associated with maternal age (Figure 17), the average of NO_2 concentration during pregnancy (Figure 18), residential deprivation index (Figure 19), the percentage of road density (Figure 20), Maternal education level (Figure 21), and children's sex (Figure 21). In the GAM models, an inverted U shape relationship between greenness exposure in 500m-2km buffer radii during pregnancy and maternal IQ (Figure 16) was observed. We found that the negative associations between greenness exposure during pregnancy, and both NO₂ concentration during pregnancy (Figure 18) and the percentage of road density (Figure 20) were observed. The groups of boys (Figure 21), higher maternal education level (Figure 21), and non-exposed ETS during pregnancy (Figure 21) had higher exposed the percentage of greenness during pregnancy than the groups of girls, exposed ETS, and lower maternal educational level. We also found significant associations between residential deprivation index (Figure 26), the percentage of road density (Figure 27), children's sex (Figure 28), maternal education level (Figure 29), and postnatal greenness exposure (Table 6). In the GAM models, there was a non-linear relationship between maternal IQ (Figure 23), maternal age (Figure 24), the average of NO_2 concentration at age 6 (Figure 25), and the percentage of postnatal greenness exposure.

(a)											
	Buffer size	100m		500m		1000m	1	1500m	ı	2000m	
Covariates	Categorical	Mean(%)(SD) or beta (SE)	<i>P</i> -value	Mean(%)(SD) or beta (SE)	P - value						
Children's	Girls	13.75(13.78)	0.229	16.59(13.21)	0.041	20.59(12.69)	0.250	22.82(12.22)	0.650	24.23(12.01)	0.010
sex	Boys	16.37(15.90)	0.229	21.01(16.07)	0.041	22.85(14.38)	0.256	23.62(12.65)	0.659	24.05(11.83)	0.918
Maternal pregnancy	age during	0.63(0.30)	0.040	1.03(0.30)	0.000	0.75(0.27)	0.007	0.54(0.25)	0.033	0.55(0.24)	0.026
Maternal	≤ university graduate	14.00(15.08)	0.019	18.46(15.23)	0.368	21.81(14.02)	0.911	23.28(12.58)	0.894	24.51(11.84)	0.323
education level	\geq graduate school	20.95(12.89)	0.019	21.13(12.89)	0.500	21.51(11.33)	0.911	22.95(11.70)	0.894	22.17(12.14)	
Maternal IQ		0.19(0.09)	0.049	0.04(0.09)	0.659	-0.03(0.08)	0.682	-0.02(0.07)	0.779	-0.01(0.07)	0.863
Exposure	No	20.45(20.02)		20.45(18.61)		22.45(16.88)		23.27(15.06)		22.85(14.29)	
to ETS during pregnancy	Yes	14.33(14.00)	0.161	18.79(14.47)	0.615	21.83(13.28)	0.838	23.38(12.19)	0.968	24.42(11.66)	0.551
Average concentratio previous residential pregnancy	of NO ₂ n during 3 years in area during	-0.91(0.38)	0.018	-0.65(0.38)	0.089	-0.46(0.35)	0.187	-0.46(0.32)	0.145	-0.46(0.3)	0.135
during pregn		-0.03(0.01)	0.022	-0.02(0.01)	0.083	-0.00(0.01)	0.693	0.00(0.01)	0.495	0.02(0.01)	0.036
Road density during pregn	y in each radius ancy	-0.04(0.08)	0.655	-0.74(0.12)	<.0001	-1.08(0.10)	<.0001	-1.28(0.09)	<.0001	-1.49(0.09)	<.0001

Table 6. The association between (a) prenatal and (b)postnatal total greenness and covariates (a)

(b)

Covariates	Buffer size	100m		500n	1	1000	n	15001	n	2000m	1
	Categorical	Mean(%)(S D) or beta (SE)	<i>P</i> -value	Mean(%)(S D) or beta (SE)	P - value						
Children's	Girls	16.38(18.68)	- 0.068	20.60(15.81)	- 0.010	22.99(14.09)	- 0.017	24.63(13.41)	- 0.066	25.81(13.00)	0.118
sex	Boys	21.38(18.69)	- 0.008	27.04(17.89)	0.010	28.56(17.71)	0.017	28.69(16.45)	- 0.000	29.07(15.32)	0.116
Maternal pregnancy	age during	0.18(0.39)	0.646	0.45(0.35)	0.203	0.26(0.34)	0.436	0.17(0.31)	0.591	0.13(0.29)	0.643
Maternal education	≤ university graduate	18.76(19.57)	0.650	24.44(17.82)	0.251	26.76(16.81)	- 0.037 -	27.45(15.45)	0 125	28.22(14.24)	0.110
level	\geq graduate school	20.11(14.28)	- 0.659	21.24(13.26)	- 0.351	21.20(12.21)	- 0.037	22.93(13.10)	- 0.135	23.66(14.31)	0.110
Maternal IQ		0.08(0.12)	0.507	-0.05(0.11)	0.651	-0.12(0.10)	0.226	-0.11(0.09)	0.255	-0.10(0.09)	0.287
Exposure to	No	19.95(19.00)	_	24.45(17.34)		26.20(16.84)	_	26.84(15.60)		27.55(14.68)	
ETS at age 6	Yes	15.83(18.01)	0.200	22.31(16.77)	0.468	24.84(14.41) 0.0	0.625	26.39(13.82)	0.862	27.34(13.19)	0.933
Average concentration previous 2 residential ar	3 years in	0.68(0.51)	0.178	0.84(0.46)	0.069	0.59(0.44)	0.182	0.21(0.41)	0.616	-0.04(0.39)	0.927
Household income as	Low	15.13(16.61)	- 0.124	22.18(15.22)	- 0.454	25.05(14.51)	- 0.711	25.46(14.47)	- 0.520	26.73(13.76)	0.004
personal SES	High	20.07(19.29)	0.134	24.44(17.72)	0.454	26.11(16.77)	- 0.711	27.10(15.38)	- 0.538	27.72(14.50)	0.694
Residential index as neig at age 6	deprivation ghborhood SES	-0.00(0.02)	0.945	0.00(0.01)	0.889	0.01(0.01)	0.322	0.03(0.01)	0.028	0.05(0.01)	0.000
Subjective	Very Loud	18.80(14.47)	0.949	39.00(12.72)	0.022	44.43(18.64)	0.000	39.44(17.00)	0.011	35.91(15.15)	0.032

Road density in each radius at age 6		-0.32(0.08)	<.000 1	-1.06(0.08)	<.0001	-1.42(0.08)	<.0001	-1.60(0.08)	<.0001	-1.74(0.07)	<.0001
age 6											
outdoor at		16.20(14.64)		20.85(12.35)		21.76(11.97)		22.55(11.04)		23.50(10.33)	
time in	\geq 3hr		0.688		0.644		0.416	-	0.280		0.221
activity	1-2hr	20.14(21.28)		24.44(19.19)		26.38(16.94)		26.28(15.40)		26.71(14.30)	-
Physical	$\leq 1 hr$	18.94(18.23)		24.35(16.99)		26.53(16.72)		27.94(15.76)		28.87(14.98)	
at age 6	$\leq 50m$	18.97(17.63)		26.30(16.36)		27.53(16.46)		27.90(16.18)		28.51(15.77)	
main road	50m-499m	16.83(20.78)	0.662	23.22(17.41)	0.639	25.76(14.96)	0.775	27.02(14.04)	0.830	27.79(13.22)	0.849
Distance to	$\geq 500m$	19.88(18.43)		23.39(17.46)		25.33(16.83)		26.19(15.35)		27.01(14.32)	_
	Very quiet	21.54(2.116)		29.85(15.59)		42.35(31.21)		45.30(33.13)		47.21(33.45)	
-	Quiet	19.51(18.08)		23.92(18.20)		24.55(15.98)		23.88(14.89)		24.09(14.01)	
-	Moderate	17.76(20.52)		21.07(17.37)		23.76(14.91)		25.42(13.85)		26.57(13.29)	
noise level	Loud	20.38(17.94)		25.08(15.78)		25.68(15.46)		27.37(15.14)		28.73(14.41)	

Abbreviations: NO₂: nitrogen dioxide, IQ: intelligence quotient, ETS: environmental tobacco smoke, SES: Socioeconomic status, SE: Standard Error, SD: Standard Deviation

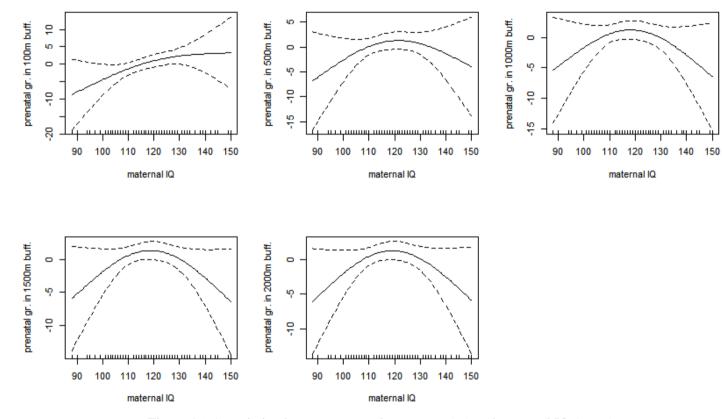


Figure 16. Association between prenatal greenness (%) and maternal IQ (score)

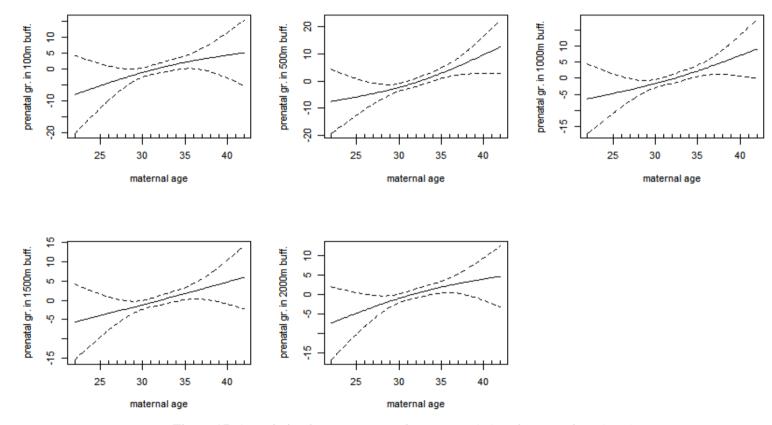


Figure 17. Association between prenatal greenness (%) and maternal age(year)

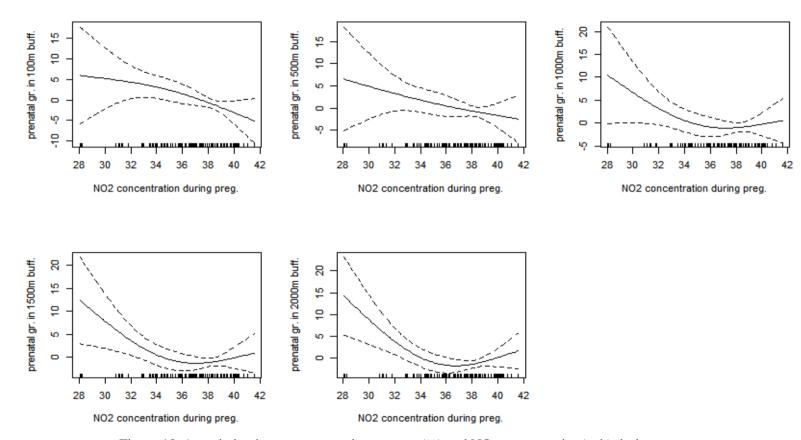


Figure 18. Association between prenatal greenness (%) and NO₂ concentration(ppb) during pregnancy

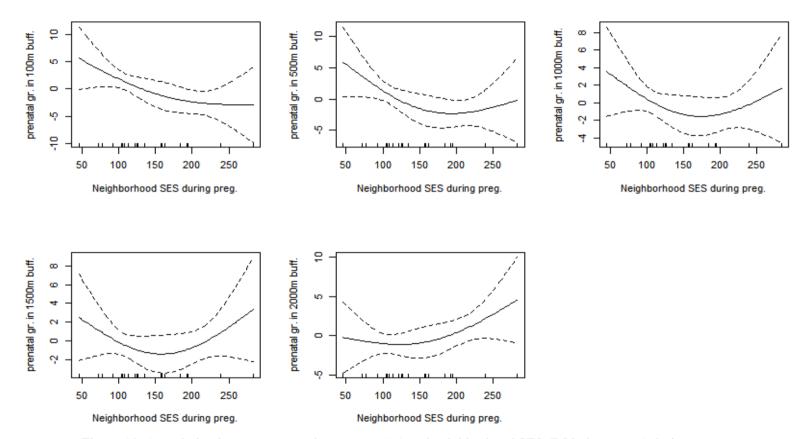


Figure 19. Association between prenatal greenness (%) and neighborhood SES (DI index; score) during pregnancy

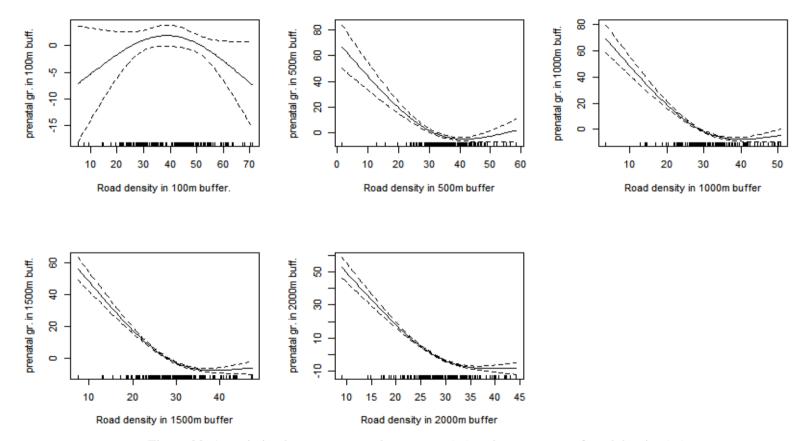


Figure 20. Association between prenatal greenness (%) and percentages of road density (%)

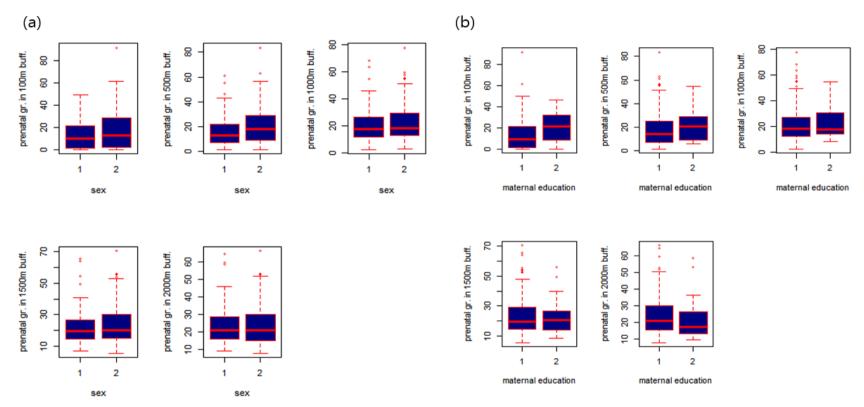


Figure 21. Association between prenatal greenness and (a)children's sex, (b)maternal education level (Note: Y axis is representing the percentage of greenness during pregnancy in each buffer, X axis is representing 'sex' variable;1: girls, 2: boys, 'maternal education level' variable; 1: low, 2: high)

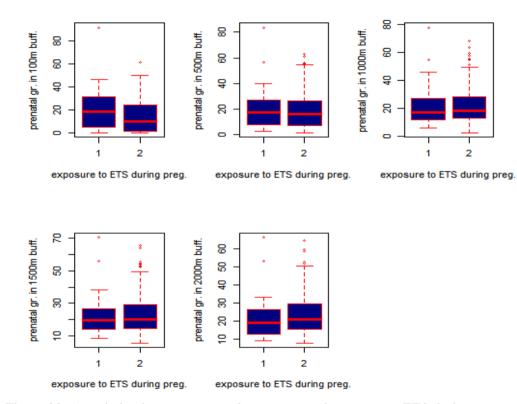


Figure 22. Association between prenatal greenness and exposure to ETS during pregnancy. (Note: Y axis is representing the percentage of greenness during pregnancy in each buffer, X axis is representing 1: No, 2: Yes)

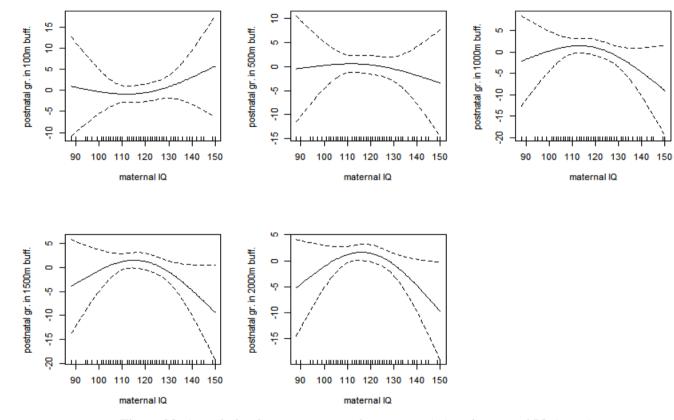


Figure 23. Association between postnatal greenness (%) and maternal IQ (score)

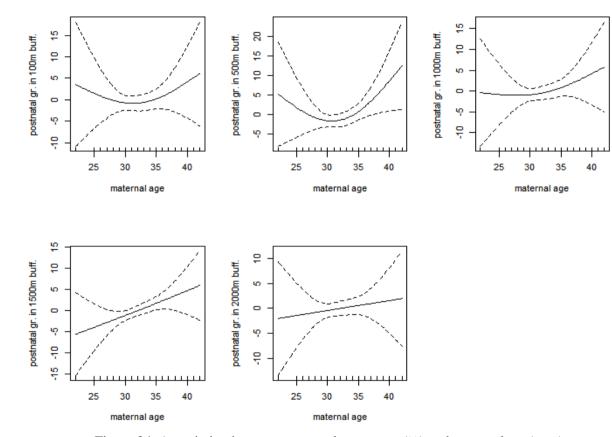


Figure 24. Association between postnatal greenness (%) and maternal age(year)

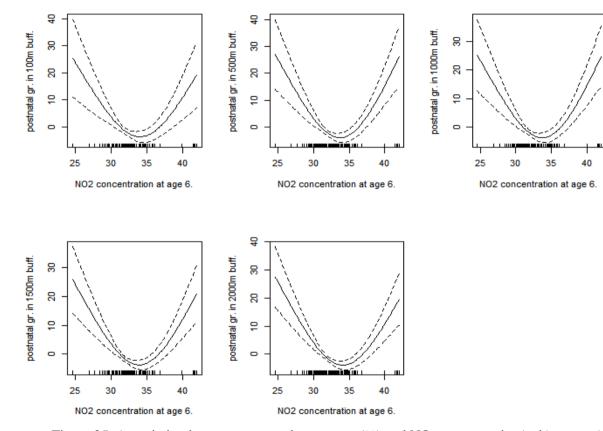


Figure 25. Association between postnatal greenness (%) and NO₂ concentration(ppb) at age 6

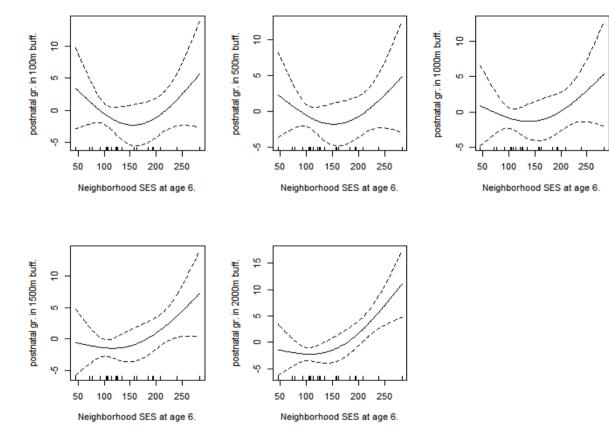


Figure 26. Association between postnatal greenness (%) and neighborhood SES (DI index: score) at age 6

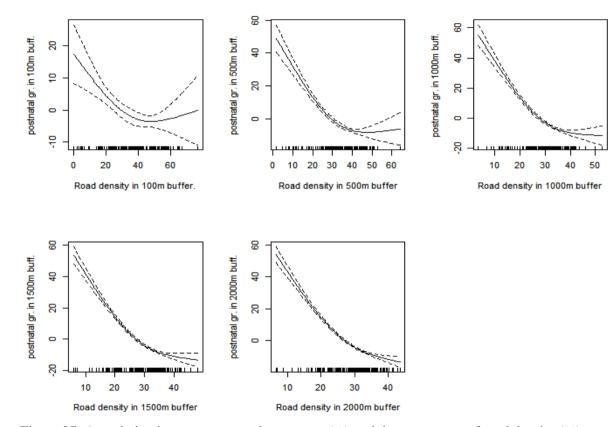


Figure 27. Association between postnatal greenness (%) and the percentage of road density (%) at age 6.

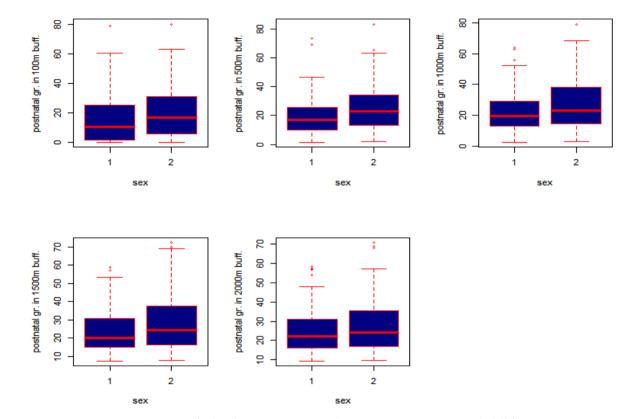


Figure 28. Association between postnatal greenness exposure and children's sex Note: Y axis is representing the percentage of greenness at age 6 in each buffer, X axis is representing 1: girls, 2: boys)

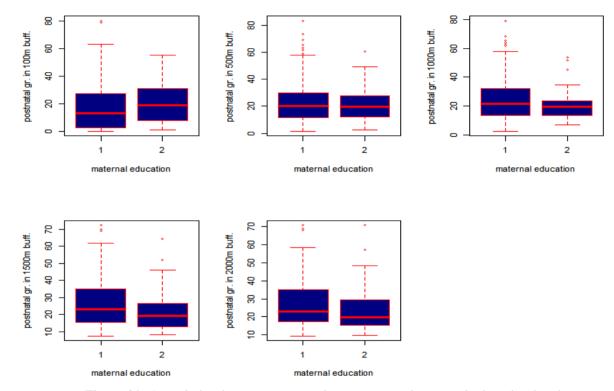


Figure 29. Association between postnatal greenness and maternal education level (Note: Y axis is representing the percentage of greenness exposure at age 6 in each buffer, X axis is representing 1: low, 2: high)

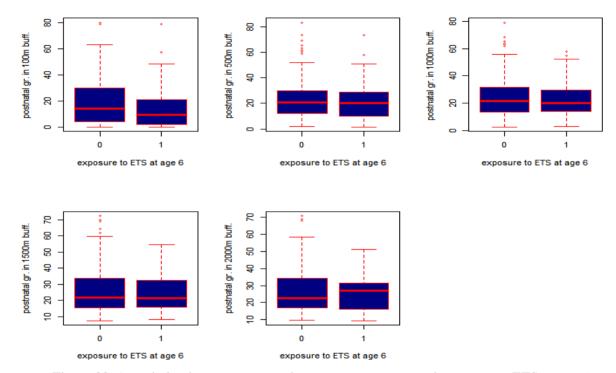


Figure 30. Association between postnatal greenness exposure and exposure to ETS at age 6. (Note: Y axis is representing the percentage of greenness exposure at age 6 in each buffer, X axis is representing 0: No, 1: Yes)

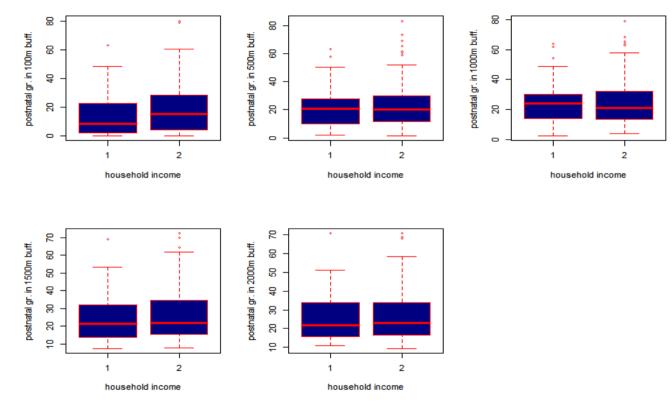


Figure 31. Association between postnatal greenness exposure and household income at age 6. (Note: Y axis is representing the percentage of greenness exposure at age 6 in each buffer, X axis is representing 1: low, 2: high)

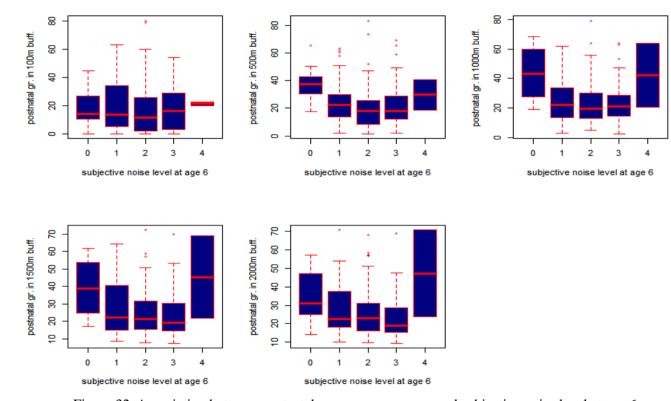


Figure 32. Association between postnatal greenness exposure and subjective noise level at age 6. (Note: Y axis is representing the percentage of greenness exposure at age 6 in each buffer, X axis is representing 0: Very loud, 1: loud, 2: moderate, 3: quiet, 4: very quiet)

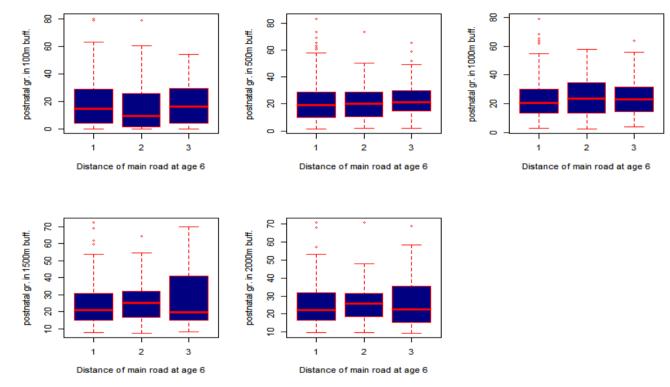


Figure 33. Association between postnatal greenness exposure and distance to main road at age 6. (Note: Y axis is representing the percentage of greenness exposure at age 6 in each buffer, X axis is representing 1: <50m, 2: 50-499m, 3: 500m)

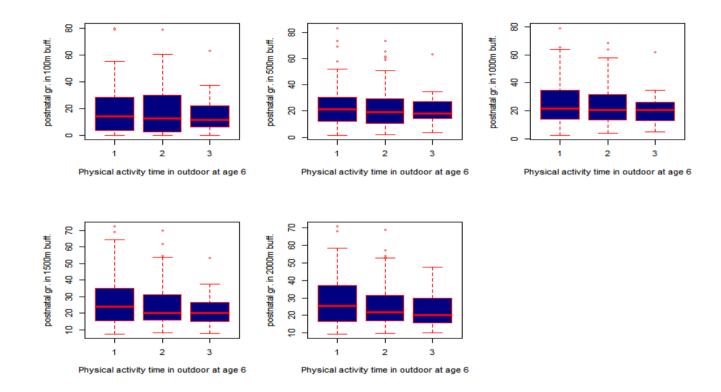


Figure 34. Association between postnatal greenness exposure (%) and physical activity time in outdoor at age 6. (Note: Y axis is representing the percentage of greenness exposure at age 6 in each buffer, X axis is representing 1: <1hr, 2: 1-2hr, 3: 3hr)

2.6.4. Associations between covariates and children's IQ

Table 7 showed the association between covariates and children's IQ. The mean of children's IQ whose was high group of maternal education level, was higher than lower group (116.0 vs. 109.0; *P*-value=0.004). Maternal IQ was significantly positive association with children's IQ (*P*-value=0.001). The mean of children's IQ whose exposed to ETS at age 6, was higher than non-exposed group (111.10 vs. 106.9; *P*-value=0.049). Residential deprivation index as neighborhood SES at age 6 was negatively associated with children's IQ (*P*-value=0.017). Figure 35-39 were constructed using generalized additive models (GAMs) and a boxplot to investigate the relationship between covariates and children's IQ.

To summarize the association between exposure to greenness, covariates, and children's IQ, we visualized the directions and significance among them (Figure 40, 41). Prenatal greenness was positively associated with the maternal age, and maternal educational level. These covariates were also positively associated with children's IQ. The percentages of road density were negatively associated with exposure to greenness, and children's IQ. Postnatal greenness exposure was associated with the percentage of road density, maternal educational level, children's sex, deprivation index as neighborhood SES, and subjective noise level. Several variables of these covariates such as the percentages of road density, and maternal educational level were also associated with children's IQ at age 6. Further mediation studies for potential mechanisms should be investigated.

Table 7. The association between	Buffer size	Children's	s IO	
Covariates	Categorical	Mean (SD) or beta (SE)	<i>P</i> -value	
Children's sex	Girls	109.00(10.18)	0.210	
Children's Sex	Boys	111.20(13.39)	0.210	
Maternal age during pregnancy		0.23(0.26)	0.375	
Maternal education level	≤ university graduate	109.00(11.59)	0.004	
	≥ graduate school	116.00(12.39)	0.004	
Maternal IQ		0.24(0.07)	0.001	
Exposure to ETS during	No	114.00(12.20)	0 102	
pregnancy	Yes	109.70(11.91)	0.102	
Average of NO ₂ concentration d years in residential area during pres		0.49(0.36)	0.175	
Residential deprivation index as n during pregnancy	neighborhood SES	-0.02(0.01)	0.205	
	100m	0.13(0.07)	0.048	
	500m	0.05(0.11)	0.689	
Road density in each radius	1000m	-0.04(0.12)	0.735	
during pregnancy	1500m	-0.02(0.13)	0.895	
	2000m	0.00(0.15)	0.984	
Exposure to ETS at age 6	No	111.10(11.73)	0.049	
	Yes	106.90(12.37)	0.042	
Average of NO_2 concentration d years in residential area at age 6	luring previous 3	-0.02(0.01)	0.205	
	100m	0.04(0.06)	0.474	
Road density in each radius at	500m	0.03(0.09)	0.737	
age 6	1000m	-0.09(0.10)	0.360	
~ <u>5</u> ~ ~	1500m	-0.07(0.12)	0.524	
	2000m	-0.07(0.13)	0.595	
Household income as personal	Low (<\$3300)	107.60(12.21)	0.131	
SES	High (≥\$3300)	110.90(11.86)		
Residential deprivation index a SES at age 6	as neighborhood	-0.03(0.01)	0.017	
	Very Loud	112.70(10.59)	0.257	
	Loud	111.19(11.06)		
Subjective noise level	Moderate	109.01(12.91)		
-	Quiet	109.82(11.01)		
	Very Quiet	126.50(3.54)		
	≥ 500m	109.69(11.98)	0.705	
Distance to main road at age 6	50m-499m	111.56(10.79)		
	≤ 50m	109.92(13.28)		
Physical activity time in outdoor	≤ 1 hr	110.00(12.41)	0.963	
	1-2hr	110.52(10.73)		
at age 6	\geq 3hr	109.90(13.54)		

Table 7. The association between the covariates and children's IQ

Abbreviations: NO₂: nitrogen dioxide, IQ: intelligence quotient, ETS: environmental tobacco smoke, SES: Socioeconomic status, SE: Standard Error, SD: Standard Deviation

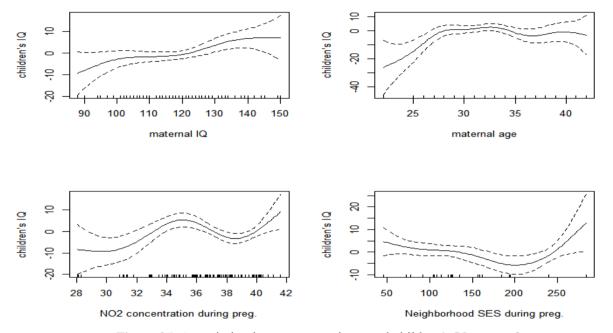


Figure 35. Association between covariates and children's IQ at age 6 (Note: Y axis is representing the score of IQ, X axis is representing maternal IQ (score); maternal age(year); NO₂ concentration during pregnancy(ppb), neighborhood SES during pregnancy (DI index: score))

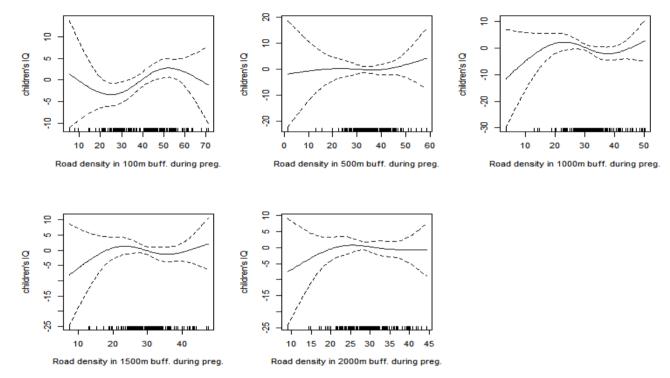
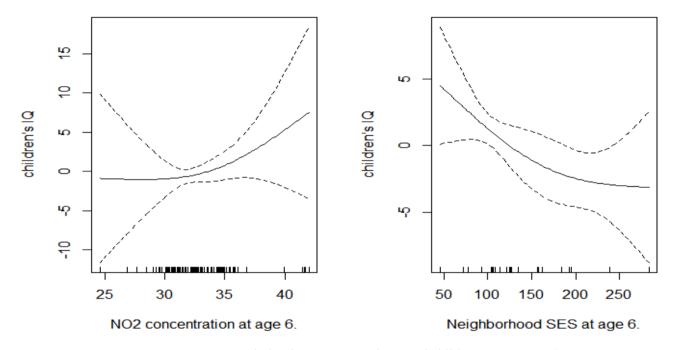
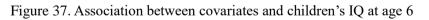




Figure 36. Association between covariates and children's IQ at age 6

(Note: Y axis is representing the score of IQ, X axis is representing the percentage of road density (%) in each buffer during pregnancy)

(Note: Y axis is representing the score of IQ, X axis is representing NO₂ concentration at age 6(ppb), neighborhood SES at age 6(DI index: score))

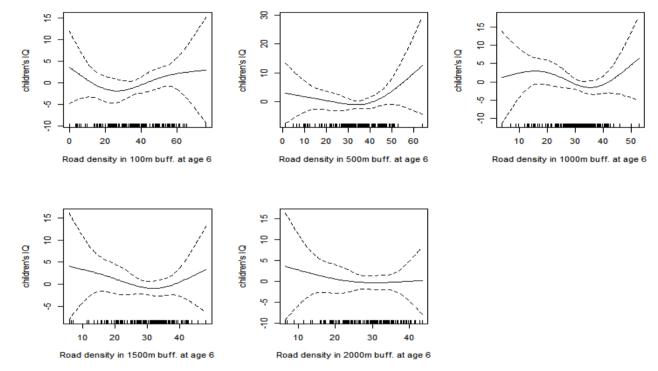


Figure 38. Association between covariates and children's IQ at age 6

(Note: Y axis is representing the score of IQ, X axis is representing the percentage of road density (%) in each buffer at age 6)

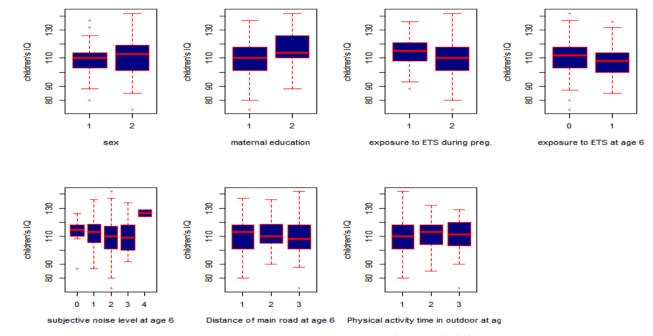


Figure 39. Association between categorical covariates and children's IQ at age 6

(Note: Y axis is representing the score of IQ, X axis is representing sex; 1: girls, 2: boys; maternal education; 1:low, 2: high; exposure to ETS during pregnancy; 1: No, 2: Yes; exposure to ETS at age 61; 0: No, 1: Yes; subjective noise level at age 6; 0: vary loud, 1:loud, 2: moderate, 3:quiet, 4: very quiet; distance to main road at age 6; 1: <50-499m, 3: 500m; physical activity time in outdoor at age 6; 1: >1hr, 2: 2-3hr,

3: 3hr)

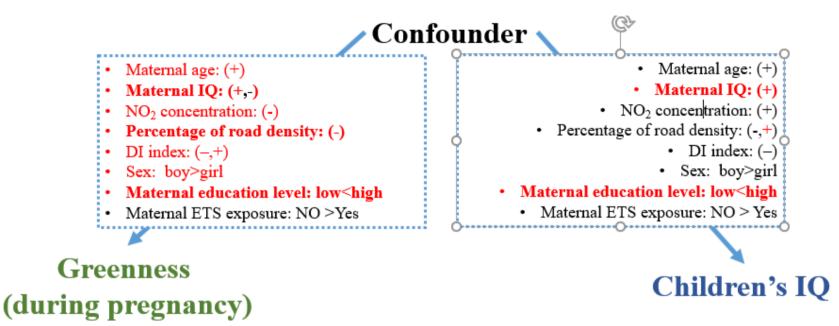


Figure 40. Summary of the association between greenness exposure during pregnancy, covariate, and children's IQ at age 6

Confounder

- Maternal age: (+)
- Maternal IQ: (+,-)
- NO₂ concentration: (-,+)
- Percentage of road density: (-)
- DI index: (-,+)
- Sex: boy>girl
- Maternal education level: Low > <High
- ETS exposure at age 6: NO >Yes
- Household income: Low<High
- Subjective noise level very quiet: (+)
- Distance to main road: (+,-)
- Physical activity time: (-)

Greenness (At age 6)

Figure 41. Summary of the association between greenness exposure at age 6, covariates, and children's IQ at age 6

Maternal age: (+)
Maternal IQ: (+)
NO₂ concentration: (+)
Percentage of road density: (-,+)

DI index: (-)
Sex: boy>girl

Maternal education level: Low <High

ETS exposure at age 6: NO >Yes
Household income: Low<High

Subjective noise level: very quiet (+)
Distance to main road: (50-499m)
Physical activity time: (1-2hr)

Children's IQ

2.6.5. Association between greenness and IQ

Prenatal exposure to built greenness within 500 m and 1000m buffers was positively associated with children's total IQ in an adjusted model [difference in IQ (95% CI): 3.46 (0.68, 6.24) and 3.42 (0.53, 6.31) per IQR increase in greenness percentage] (Table 8). Interestingly, we found a stronger association between total IQ and postnatal exposure to greenness while the child was aged 6 than prenatal exposure to greenness. In addition, we found that built greenness affected children's IQ more effectively than did natural greenness. Table 9 shows the association between verbal IQ and greenness. Both prenatal and postnatal exposure to built greenness within 1000 m and 1500 m buffers were associated with verbal IQ in an adjusted model. Table 10 showed the association between performance IQ and greenness. Prenatal exposure to total greenness within both 100 m and 500 m buffers, and built greenness within 500 m buffer was positively associated with performance IQ. Both total and built greenness in postnatal exposure within 500 m buffer were positively associated with performance IQ. There was no significance in the associations between natural greenness and two subsets including verbal IQ, and performance IQ.

Table 8. Difference (95% confidence interval) in total intelligence quotient per IQR increase in the exposure to residential greenness percentages in buffer area during pregnancy or 6-year-old. (a)

(,						
Dunin a magnan ar		Crude			Adjusted ¹	
During pregnancy	Total	Natural	Built	Total	Natural	Built
Buffer	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)
100m	3.13(0.58, 5.68)*	NA	3.17(0.52, 5.83)*	2.39(-0.63, 5.41)	NA	1.59(-1.33, 4.51)
500m	2.54(0.37, 4.72)*	NA	4.45(2.05, 6.84)*	2.31(-0.47, 5.1)	NA	3.46(0.68, 6.24)*
1000m	0.83(-1.15, 2.8)	-0.22(-2.14, 1.70)	3.81(1.36, 6.25)*	-0.12(-2.89, 2.64)	-1.39(-4.42, 1.64)	3.42(0.53, 6.31)*
1500m	0.16(-1.91, 2.22)	-0.75(-2.84, 1.34)	3.12(0.93, 5.32)*	-0.65(-3.76, 2.46)	-2.04(-5.52, 1.45)	2.84(0.15, 5.52)
2000m	-0.71(-2.96, 1.54)	-1.21(-3.33, 0.91)	2.53(0.34, 4.71)*	-1.79(-5.54, 1.96)	-2.62(-6.38, 1.14)	2.24(-0.56, 5.04)
(b)						
At age 6		Crude			Adjusted ²	
At age 6	Total	Natural	Built	Total	Natural	Built
Buffer	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)
100m	2.18(-0.29, 4.65)	NA	3.73(0.89, 6.58)*	1.70(-0.81, 4.22)	NA	3.15(0.28, 6.03)*
500m	1.53(-0.43, 3.48)	NA	4.01(1.49, 6.54)*	2.92(0.21, 5.64)	NA	3.43(0.78, 6.07)*
1000m	1.38(-0.63, 3.40)	0.51(-1.57, 2.59)	3.35(1.11, 5.60)*	2.49(-1.10, 6.08)	0.10(-3.82, 4.02)	3.59(1.18, 6.01)*
1500m	0.89(-1.29, 3.06)	0.06(-2.03, 2.15)	3.39(1.19, 5.59)*	1.17(-3.24, 5.58)	-2.45(-6.89, 2.00)	4.28(1.78, 6.77)*
2000m	0.33(-1.93, 2.58)	-0.32(-2.59, 1.95)	3.44(0.93, 5.96)*	-0.67(-5.78, 4.44)	-4.67(-9.76, 0.41)	5.32(2.35, 8.29)*

1. Adjusted for maternal age, children's sex, maternal education level, maternal IQ, exposure to ETS, average of NO₂ concentration for 3 years in residential area during pregnancy, residential deprivation index as neighborhood SES, the percentages of road density in each radius during pregnancy and the administrative district as random effect.

2. Adjusted for maternal age, children's sex, maternal education level, maternal IQ, exposure to ETS at age 6, average of NO₂ concentration for 3 years in residential area at age 6, household income as personal SES, residential deprivation index as neighborhood SES, subjective noise level, distance to main road from the house at age 6, percentage of road density in each radius at age 6, physical activity time at age 6 and the administrative district as random effect.

*P-value < 0.05, Abbreviations: IQR; Interquartile range, NA; Not analyzed

Table 9. Difference (95% confidence interval) in verbal intelligence quotient per IQR increase in the exposure to residential greenness percentages in buffer area during pregnancy or 6-year-old.

(u)						
During pregnancy		Crude			Adjusted ¹	
	Total	Natural	Built	Total	Natural	Built
Buffer	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)
100m	0.59(-0.31, 1.50)	NA	0.75(-0.24, 1.74)	0.49(-0.51, 1.49)	NA	0.56(-0.56, 1.67)
500m	0.05(-0.76, 0.86)	NA	1.26(0.36, 2.15)*	0.01(-1.00, 1.03)	NA	0.88(-0.18, 1.94)
1000m	-0.20(-0.92, 0.53)	-0.59(-1.29, 0.12)	1.44(0.54, 2.34)*	-0.34(-1.61, 0.92)	-0.90(-2.02, 0.23)	1.19(0.09, 2.29)*
1500m	-0.26(-1.02, 0.50)	-0.63(-1.40, 0.13)	1.28(0.47, 2.08)*	-0.31(-1.85, 1.22)	-0.89(-2.19, 0.41)	1.13(0.12, 2.14)*
2000m	-0.47(-1.30, 0.35)	-0.68(-1.46, 0.09)	1.12(0.32, 1.92)*	-0.71(-2.44, 1.01)	-0.96(-2.37, 0.45)	0.90(-0.15, 1.95)
(b)						
At age 6		Crude			Adjusted ²	
	Total	Natural	Built	Total	Natural	Built
Buffer	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)
100m	0.45(-0.35, 1.24)	NA	1.23(0.18, 2.28)*	0.29(-0.50, 1.08)	NA	1.10(-0.04, 2.23)
500m	0.03(-0.72, 0.78)	NA	1.13(0.20, 2.07)*	0.57(-0.50, 1.64)	NA	0.77(-0.28, 1.81)
1000m	0.04(-0.57, 0.66)	-0.29(-1.06, 0.47)	1.34(0.52, 2.17)*	0.76(-0.65, 2.16)	-0.17(-1.70, 1.35)	1.27(0.31, 2.22)*
1500m	-0.02(-0.63, 0.59)	-0.35(-1.12, 0.41)	1.51(0.71, 2.31)*	0.84(-0.89, 2.56)	-0.58(-2.32, 1.15)	1.63(0.65, 2.61)*
2000m	-0.10(-0.78, 0.58)	-0.37(-1.20, 0.47)	1.39(0.47, 2.32)*	0.18(-1.82, 2.17)	-1.14(-3.14, 0.86)	1.75(0.56, 2.93)*

1. Adjusted for maternal age, children's sex, maternal education, maternal IQ, exposure to ETS, average of NO_2 concentration for 3 years in residential area during pregnancy, residential deprivation index as neighborhood SES, percentage of road density in each radius during pregnancy and the administrative district as random effect.

2. Adjusted for maternal age, children's sex, maternal education, maternal IQ, exposure to ETS at age 6, average of NO_2 concentration for 3 years in residential area at age 6, household income as personal SES, residential deprivation index as neighborhood SES, subjective noise level, distance to main road from the house at age 6, percentage of road density in each radius at age 6, physical activity time at age 6 and the administrative district as random effect.

*P-value < 0.05, Abbreviations: IQR: Interquartile range, NA: Not analyzed

Table 10. Difference (95% confidence interval) in performance intelligence quotient per IQR increase in the exposure to residential greenness percentages in buffer area during pregnancy or 6-year-old.

(a)						
During pregnancy		Crude			Adjusted ¹	
	Total	Natural	Built	Total	Natural	Built
Buffer	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)
100m	1.31(0.40, 2.22)*	NA	1.28(0.28, 2.28)*	0.94(-0.04, 1.93)*	NA	0.69(-0.43, 1.80)
500m	1.52(0.72, 2.32)*	NA	1.50(0.59, 2.41)*	1.36(0.37, 2.35)*	NA	1.27(0.22, 2.33)*
1000m	0.66(-0.08, 1.41)	0.41(-0.32, 1.13)	0.92(-0.01, 1.86)	0.18(-1.09, 1.45)	-0.07(-1.22, 1.07)	0.84(-0.28, 1.95)
1500m	0.35(-0.42, 1.13)	0.15(-0.64, 0.94)	0.69(-0.15, 1.53)	-0.21(-1.75, 1.33)	-0.41(-1.74, 0.92)	0.55(-0.48, 1.59)
2000m	0.05(-0.80, 0.90)	-0.06(-0.86, 0.74)	0.46(-0.37, 1.30)	-0.59(-2.32, 1.14)	-0.63(-2.07, 0.80)	0.39(-0.68, 1.46)
(b)						
At age 6		Crude			Adjusted ²	
	Total	Natural	Built	Total	Natural	Built
Buffer	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)
100m	0.73(-0.08, 1.55)	NA	1.09(0.01, 2.17)*	0.56(-0.22, 1.33)	NA	0.88(-0.24, 1.99)
500m	0.92(0.16, 1.68)*	NA	1.32(0.36, 2.27)*	1.18(0.15, 2.21)*	NA	1.16(0.14, 2.17)*
1000m	0.63(0.01, 1.25)*	0.57(-0.21, 1.35)	0.74(-0.12, 1.60)	0.59(-0.75, 1.93)	0.04(-1.43, 1.51)	0.82(-0.11, 1.75)
1500m	0.44(-0.18, 1.06)	0.39(-0.39, 1.18)	0.60(-0.25, 1.44)	-0.38(-2.02, 1.27)	-1.07(-2.74, 0.60)	0.84(-0.13, 1.81)
2000m	0.28(-0.42, 0.97)	0.18(-0.68, 1.04)	0.75(-0.21, 1.71)	-0.88(-2.76, 1.01)	-1.83(-3.75, 0.09)	1.34(0.18, 2.50)*

1. Adjusted for maternal age, children's sex, maternal education, maternal IQ, exposure to ETS, average of NO_2 concentration for 3 years in residential area during pregnancy, residential deprivation index as neighborhood SES, percentage of road density in each radius during pregnancy and the administrative district as random effect.

2. Adjusted for maternal age, children's sex, maternal education, maternal IQ, exposure to ETS at age 6, average of NO_2 concentration for 3 years in residential area at age 6, household income as personal SES, residential deprivation index as neighborhood SES, subjective noise level, distance to main road from the house at age 6, percentage of road density in each radius at age 6, physical activity time at age 6 and the administrative district as random effect.

*P-value < 0.05, Abbreviations: IQR: Interquartile range, NA: Not analyzed

A comparison of total IQ between the three groups of the percentages of greenness was observed in Figure 42 and 43. There was no significant association between the prenatal exposure to greenness and total children's IQ among the three groups (Figure 42). On the other hand, both the group between 25% and 75% in 500m buffer, and more than 75% in 500m to 2000m buffer of postnatal exposure to built greenness were significantly higher total IQ compared to the reference group (below 25% group) (Figure 43).

In a sensitivity analysis, we conducted the built greenness adding golf course, and cemetery parks in Table 11. Prenatal exposure to built greenness in 500m buffer was associated with children's total IQ. postnatal exposure to total greenness in 500m buffer was also associated with children's total IQ [difference in IQ (95% CI): 4.06 (1.41, 6.70) per IQR increase in greenness percentage].

We also estimated an average percentage of exposure to greenness from pregnancy to 6 years old, then we investigated the association between the average percentage of exposure to greenness and children's IQ (Table 12). We found that the positive associations between the percentage of both total greenness within 100-500m buffers and built greenness within 500 - 2km buffers, and children's IQ in adjusted model.

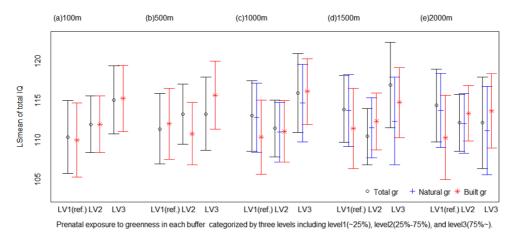


Figure 42. The plot of the LSMEANS of total intelligence quotient by prenatal exposure to greenness as a categorical variable. (Note: Greenness percentage in each buffer radius; LV1: below 25% (reference), LV2: between 25 and 75%, LV3: more than 75%).

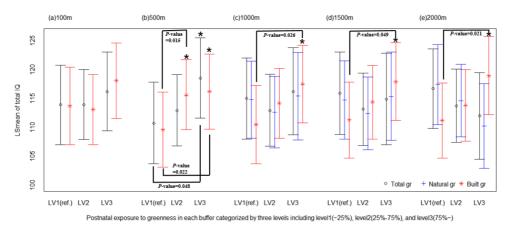


Figure 43. The plot of the LSMEANS of total intelligence quotient by postnatal exposure to greenness as a categorical variable. (Note: Greenness percentage in each buffer radius; LV1: below 25%(reference), LV2: between 25 and 75%, LV3: more than 75%. **P*-value <0.05)

Table 11. Difference (95% confidence interval) in **total intelligence quotient** per IQR increase in the exposure to residential greenness percentages in buffer area during pregnancy or 6-year-old.

(a)						
		Crude			Adjusted ¹	
During pregnancy	Total	Natural	Built	Total	Natural	Built
Buffer	Difference (95%CI)	Difference (95%CI)				
100m	3.14(0.58, 5.70)*	NA	3.18(0.52, 5.85)*	2.53(-0.41, 5.48)	NA	1.87(-0.99, 4.72)
500m	2.52(0.36, 4.68)*	NA	4.43(2.03, 6.83)*	2.48(-0.23, 5.20)	NA	3.44(0.64, 6.23)*
1000m	0.71(-1.26, 2.68)	-0.22(-2.14, 1.70)	3.31(0.91, 5.72)*	0.02(-2.71, 2.76)	-1.39(-4.42, 1.64)	2.66(-0.11, 5.42)
1500m	-0.12(-2.23, 1.98)	-0.75(-2.84, 1.34)	2.2(0.03, 4.38)*	-0.99(-4.13, 2.16)	-2.04(-5.52, 1.45)	1.32(-1.17, 3.80)
2000m	-0.96(-3.30, 1.38)	-1.21(-3.33, 0.91)	1.6(-0.53, 3.74)	-2.12(-5.92, 1.69)	-2.62(-6.38, 1.14)	0.74(-1.76, 3.23)
(b)						
At age 6		Crude			Adjusted ²	
	Total	Natural	Built	Total	Natural	Built
Buffer	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)
100m	2.42(0.11, 4.74)*	NA	3.54(1.08, 6.00)*	2.35(-0.11, 4.80)	NA	3.27(0.75, 5.80)*
500m	1.69(-0.18, 3.55)	NA	3.17(1.15, 5.20)*	4.06(1.41, 6.70)*	NA	2.80(0.68, 4.91) *
1000m	1.28(-0.70, 3.25)	0.51(-1.57, 2.59)	2.37(0.41, 4.34)*	2.57(-0.88, 6.03)	0.10(-3.82, 4.02)	2.53(0.48, 4.57) *
1500m	0.64(-1.67, 2.95)	0.06(-2.03, 2.15)	2.01(-0.14, 4.16)	0.41(-4.16, 4.97)	-2.45(-6.89, 2.00)	2.66(0.42, 4.89) *
2000m	-0.02(-2.35, 2.31)	-0.32(-2.59, 1.95)	1.61(-0.89, 4.12)	-2.00(-6.95, 2.94)	-4.67(-9.76, 0.41)	3.01(0.35, 5.66) *

1. Adjusted for maternal age, children's sex, maternal education level, maternal IQ, exposure to ETS, average of NO_2 concentration for 3 years in residential area during pregnancy, residential deprivation index as neighborhood SES, the percentages of road density in each radius during pregnancy and the administrative district as random effect.

2. Adjusted for maternal age, children's sex, maternal education level, maternal IQ, exposure to ETS at age 6, average of NO₂ concentration for 3 years in residential area at age 6, household income as personal SES, residential deprivation index as neighborhood SES, subjective noise level, distance to main road from the house at age 6, percentage of road density in each radius at age 6, physical activity time at age 6 and the administrative district as random effect. *Bold represented *P*-value < 0.05, Abbreviations: IQR: Interquartile range, NA; Not analyzed

Table 12. Difference (95% confidence interval) in **total intelligence quotient** per IQR increase in the average percentage of exposure to residential greenness percentages in buffer area from during pregnancy to 6 years old.

()		Crude		Adjusted ¹			
The average of greenness	Total	Natural	Built	Total	Natural	Built	
Buffer	Difference (95%CI)	Difference (95%CI)	Difference (95%CI)	Difference (95%CI)	Difference (95%CI)	Difference (95%CI)	
100m	3.59(0.96, 6.23)*	NA	4.01(1.22, 6.80)*	3.44(0.46, 6.41)*	NA	2.74(-0.17, 5.65)	
500m	2.17(0.12, 4.22)*	NA	4.35(1.90, 6.80)*	3.29(0.77, 5.82)*	NA	3.25(0.54, 5.96)*	
1000m	1.17(-0.95, 3.29)	0.05(-1.70, 1.81)	4.05(1.56, 6.55)*	2.29(-0.53, 5.11)	0.82(-1.65, 3.28)	3.40(0.62, 6.18)*	
1500m	0.38(-1.74, 2.50)	-0.47(-2.60, 1.65)	3.71(1.24, 6.18)*	1.86(-1.16, 4.88)	0.66(-2.53, 3.85)	3.25(0.41, 6.09)*	
2000m	-0.29(-2.48, 1.90)	-0.90(-3.07, 1.27)	3.58(0.94, 6.22)*	1.02(-2.17, 4.20)	0.02(-3.27, 3.31)	3.47(0.26, 6.67)*	

Adjusted for maternal age, children's sex, maternal education level, maternal IQ, exposure to ETS, average of NO₂ concentration for 3 years in residential area during pregnancy, residential deprivation index as neighborhood SES, the percentages of road density in each radius during pregnancy and the administrative district as random effect.

*Bold represented *P*-value < 0.05, Abbreviations: IQR; Interquartile range, NA; Not analyzed

2.6.6. Association between proxy to greenness and children's IQ

In a sensitivity analysis, we conducted the association between proxy to greenness and children's IQ. The distribution of greenness presented in Figure 44. We found that a positive association between proxy greenness exposure and children's IQ was observed (Figure 45). There were a negative association between the proxy to greenness and children's IQ in adjusted model (Table 13). So, we suggested that both the greenness density and proxy to greenness have beneficial association for children's cognition.

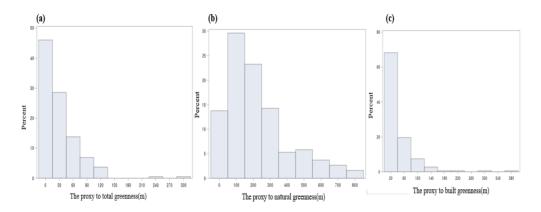


Figure 44. The distribution of the proxy to greenness. (Note: (a) x axis represents the proxy to total greenness(m), (b) x axis represents the proxy to built greenness(m), (c) x axis represents the proxy to built greenness(m)

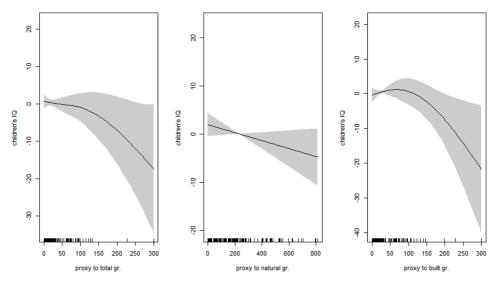


Figure 45. Association between proxy to greenness and children's IQ (Note: the models adjusted for maternal age, children's sex, maternal education level, maternal IQ, exposure to ETS, average of NO₂ concentration for 3 years in residential area during pregnancy, residential deprivation index as neighborhood SES, the percentages of road density in each radius during pregnancy)

	Crude mode	-1	Adjusted model		
Proxy to greenness	Difference (95%CI)	<i>P</i> -value	Difference (95%CI)	<i>P</i> -value	
Total greenness	-1.93(-3.62, -0.24)	0.027	-1.41(-3.19, 0.36)	0.122	
Natural greenness	-0.86(-2.78, 1.06)	0.381	-1.46(-3.52, 0.60)	0.168	
Built greenness	-1.54(-3.19, 0.11)	0.069	-1.44(-3.47, 0.59)	0.167	

Table 13. Association between proxy to greenness and children's IQ

Adjusted for maternal age, children's sex, maternal education level, maternal IQ, exposure to ETS, average of NO₂ concentration for 3 years in residential area during pregnancy, residential deprivation index as neighborhood SES, the percentages of road density in each radius during pregnancy and the administrative district as random effect.

*Bold represented *P*-value < 0.05, Abbreviations: IQR: Interquartile range

2.7. Discussion

To the best of our knowledge, this is the first study to explore the relationship between exposure to greenness and children's IQ in South Korea. Our results indicated that more greenness exposure during pregnancy, as well as at age 6 was associated with higher IQ among the children. We also examined the association by type of greenness and found that children's IQ was significantly associated with built greenness, but not with natural greenness. In addition, postnatal exposure to greenness at age 6 was more strongly associated with children's IQ than prenatal exposure to greenness.

Our findings concur with those of previous studies, which have consistently revealed beneficial associations between greenness and mental health in children (Table 1). Relatively few previous studies reported relationships between exposure to greenness and intelligence test among children. Reuben et al. analyzed an association between residential greenness exposure and intellectual performance at ages 5, 12, and 18 years in a longitudinal study in England (Reuben et al. 2019). Greater exposure to residential greenness in 1-mile buffers was associated with IQ scores at ages 5, 12, and 18. However, they found no significant association between greenness exposure and IQ in children after adjusting for family or neighborhood socioeconomic status. The researchers also found that families in better economic circumstances tended to receive more exposure to greenness in urban areas of England (Reuben et al. 2019). Thus, it is important to control for socioeconomic status in the analyses of the effect of greenness on health outcomes, and there should be additional consideration of unequal exposure to greenness

according to socioeconomic status. We adjusted for socioeconomic status using maternal education level and household income as individual SES, and deprivation index as neighborhood SES. We also conducted the stratification by individual SES in Table 14. There is positively significant association between children's IQ and postnatal exposure to built greenness in both low and high SES group, and prenatal exposure to built greenness in high SES group. A number of studies has investigated the contributions of socioeconomic status in the association between greenness and health outcome (Dadvand et al. 2014; Asta et al. 2019; Pinault et al.2021). There is a growing evidence has reported that both individual SES or neighborhood SES can modify the health benefit of greenness. We tried to control SES in the model, and we found that subjects with the lower maternal education level, or the higher residential deprivation index was lower exposed greenness during pregnancy and their early childhood period. Especially, these associations were more highlighted in the relationship between built greenness and covariates (Table S4). Due to the linkage between SES indicator and greenness may be associated with health outcome, we recommend further studies on this association in considering both greenness and SES with careful explanation and investigating the possible mechanism underlying this association.

Possible mechanisms underlying the beneficial impact of exposure to greenness on mental health have been mentioned in previous studies (Dadvand et al. 2015; James et al. 2015). Exposure to greenness may have a directly restorative effect on children's cognition (James et al. 2015). Better mental health has been linked to a greater chance of social interaction (Berkman et al. 2014), increasing social cohesion (Liu et al. 2019), and access to physical activities (Browning and Lee 2017; Liu et al. 2019; Sugiyama et al. 2008; Toftager et al. 2011; Ward et al. 2016). In addition, improved health outcomes may be related to reduced exposure to environmental toxic agents, such as air pollution (Dadvand et al. 2012a; Dadvand et al. 2015; Dzhambov et al. 2019; Klompmaker et al. 2019) or noise (Dzhambov et al. 2019; Klompmaker et al. 2019). In this study, we found that the lower percentage of road density, the higher maternal age, the higher maternal IQ, the lower NO₂ concentration level, and the higher group of maternal education level were associated with higher percentage of greenness exposure during pregnancy. Some of these covariates such as maternal education level, and maternal IQ were also consistantly related to children's IQ (Figure 40). We suggested that maternal educational level and intelligence was strongly related to these associations. On the other hand, the percentage of road density, maternal educational level, and subjective noise level were significantly associated with greenness exposure at age 6. The higher maternal IQ, the lower residential deprivation index at age 6, the higher group of maternal education level, and unexposed ETS exposure group were associated with increased children's IQ. However, the directions of some covariates were inconsistent, so further research should be more required for exploring potential mechanisms in these associations.

Previous studies have limitations in how they assessed time and quality of contact between children and greenness, and types of greenness, as well as parental mental health (Vanaken and Danckaerts et al. 2018). NDVI was the most frequently used measurement of greenness, which has limitations due to its inability to distinguish different type of greenness or to evaluate the quality of greenness (Putra et al. 2020). To overcome these limitations, we compared the associations between

children's IQ and the type of greenness. However, our study also has the limitation that it did not consider how the children used residential greenness. There is the mean of 16 m² for urban park space per 1 citizen in Seoul area (which was higher than Paris(10.7m²) or Tokyo(4.5m²), was lower than London(33.4m²) (The Seoul Institute). In addition, there are 1296 children's parks for their leisure in Seoul, even though depending on the participants have different numbers of urban parks in the surrounding house. Investigation of health effects considering the equity of greenness use for children may be necessary in the future.

Our results showed that postnatal exposure to greenness was more beneficial to children's IQ than was prenatal exposure to greenness. Previous studies have been inconsistent regarding the effects of prenatal and postnatal environmental exposure. A systematic review by Gonzales-Alzga et al. (González-Alzaga et al. 2014) estimated the effects of pre- and postnatal exposure to organophosphates (OPs) on neurodevelopment. Most extant studies considered the neurodevelopmental effects of prenatal exposure to OPs compared to postnatal exposure. Differences between the effects associated with pre- and postnatal exposure may be linked to the existence of a critical period of developmental neuroplasticity (González-Alzaga et al. 2014). However, both Huang et al. (Huang et al. 2015) and Kim et al. (Kim et al. 2017) showed an inverse association between postnatal exposure to phthalate and children's IQ scores. There was no significant association between prenatal phthalate exposure and children's IQ scores. We could not locate any previous study by which to compare pre- and post-natal beneficial effects of greenness (Akpinar et al. 2016). Therefore, studies to determine susceptible periods in fetal or postnatal exposure to greenness are required. Based on the well-known association

between lead exposure and IQ reduction (Desrochers-Couture et al. 2018; Lanphear et al. 2005; Needleman and Gatsonis 1990; Tatsuta et al. 2020), further investigation is also needed among children between lead exposure, greenness and IQ.

Table 14. Difference (95% confidence interval) in total intelligence quotient per 1 % increase in the exposure to residential greenness percentage in buffer area during pregnancy or 6-year-old by stratifying the individual SES^1 . (a)

During pregnancy	Maternal education level=Low			Mat	ernal education level=I	High
	Total	Natural	Built	Total	Natural	Built
Buffer	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)	Difference(95%CI)	Difference (95%CI)	Difference(95%CI)
100m	0.06(-0.08, 0.20)	NA	0.04(-0.11, 0.20)	0.57(0.18, 0.95)*	NA	0.63(0.20, 1.05)*
500m	0.09(-0.07, 0.24)	NA	0.18(-0.14, 0.49)	0.41(-0.09, 0.91)	NA	1.10(0.45, 1.76)*
1000m	0.05(-0.15, 0.24)	-0.02(-0.25, 0.20)	0.36(-0.10, 0.83)	-0.23(-0.81, 0.36)	-0.64(-1.29, 0.01)	1.66(0.22, 3.09)*
1500m	0.07(-0.18, 0.32)	-0.02(-0.28, 0.24)	0.49(-0.09, 1.08)	-0.43(-0.96, 0.09)	-0.73(-1.28, -0.18)*	1.52(-0.42, 3.46)
2000m	-0.01(-0.29, 0.27)	-0.07(-0.36, 0.21)	0.48(-0.29, 1.25)	-0.49(-1.05, 0.08)	-0.65(-1.25, -0.05)*	1.68(-1.38, 4.73)
(b)						
At age 6	Mat	ternal education level=	Low	Mat	ernal education level=I	High
	Total	Natural	Built	Total	Natural	Built
Buffer	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)	Difference(95%CI)	Difference(95%CI)	Difference (95%CI)
100m	0.38(0.05, 0.72)*	NA	0.45(0.08, 0.81)*	-0.003(-0.12, 0.11)	NA	0.08(-0.07, 0.23)

0.38(0.05, 0.72)*	NA	0.45(0.08, 0.81)*	-0.003(-0.12, 0.11)	NA	0.08(-0.07, 0.23)
0.42(-0.08, 0.91)	NA	1.03(0.14, 1.93)*	0.11(-0.05, 0.27)	NA	0.26(-0.03, 0.54)
0.05(-0.57, 0.67)	-0.09(-0.83, 0.65)	0.55(-0.83, 1.93)	0.08(-0.13, 0.29)	-0.06(-0.28, 0.16)	0.59(0.16, 1.03)*
-0.06(-0.93, 0.82)	-0.10(-1.01, 0.81)	0.16(-1.47, 1.78)	-0.05(-0.30, 0.20)	-0.21(-0.46, 0.05)	0.93(0.34, 1.52)*
0.08(-0.82, 0.98)	-0.05(-0.98, 0.89)	0.59(-1.32, 2.5)	-0.10(-0.39, 0.19)	-0.24(-0.52, 0.04)	1.25(0.45, 2.04)*
-	0.42(-0.08, 0.91) 0.05(-0.57, 0.67) -0.06(-0.93, 0.82)	0.42(-0.08, 0.91) NA 0.05(-0.57, 0.67) -0.09(-0.83, 0.65) -0.06(-0.93, 0.82) -0.10(-1.01, 0.81)	0.42(-0.08, 0.91) NA 1.03(0.14, 1.93)* 0.05(-0.57, 0.67) -0.09(-0.83, 0.65) 0.55(-0.83, 1.93) -0.06(-0.93, 0.82) -0.10(-1.01, 0.81) 0.16(-1.47, 1.78)	0.42(-0.08, 0.91) NA 1.03(0.14, 1.93)* 0.11(-0.05, 0.27) 0.05(-0.57, 0.67) -0.09(-0.83, 0.65) 0.55(-0.83, 1.93) 0.08(-0.13, 0.29) -0.06(-0.93, 0.82) -0.10(-1.01, 0.81) 0.16(-1.47, 1.78) -0.05(-0.30, 0.20)	0.42(-0.08, 0.91) NA 1.03(0.14, 1.93)* 0.11(-0.05, 0.27) NA 0.05(-0.57, 0.67) -0.09(-0.83, 0.65) 0.55(-0.83, 1.93) 0.08(-0.13, 0.29) -0.06(-0.28, 0.16) -0.06(-0.93, 0.82) -0.10(-1.01, 0.81) 0.16(-1.47, 1.78) -0.05(-0.30, 0.20) -0.21(-0.46, 0.05)

1. Using linear regression analysis

2. Adjusted for maternal age, children's sex, maternal IQ, exposure to ETS during pregnancy, average of NO_2 concentration for 3 years in residential area during pregnancy, residential deprivation index as neighborhood SES, and road density in each radius.

3. Adjusted for maternal age, children's sex, maternal education, maternal IQ, exposure to ETS at age 6, average of NO_2 concentration for 3 years in residential area at age 6, residential deprivation index as neighborhood SES, subjective noise level, distance to main road, road density in each radius, and physical activity time.

**P*-value < 0.05, Abbreviations: NA: Not available

We focused on the types of greenness, namely natural versus built environment (e.g., artificial grassland, urban parks, and street trees). Most previous studies assumed that those who live closer to greater quantities of greenness may have better mental and general health compared to those closer to smaller quantities of greenness. However, few previous studies considered the differences between types of greenness. Akpinar et al. (Akpinar et al. 2016) explored whether mental health was related to the size or type of green space, such as forest, rangeland, agricultural land, wetland, and urban greenness. Forest exposure and forest size were significantly associated with fewer days of mental health complaints, but no significant relationships were found with other types of greenness. The rich complexity of forests can facilitate a variety of activities and forests per se can be a source of fascination (Van den Berg et al. 2014). In addition, forests provide various components of restorative environments (Kaplan and Kaplan 1989). However, our results demonstrated that built greenness was more positivity associated with children's IQ than were natural greenness. The reason for this might be convenience and easiness for children to access built greenness than natural greenness. Additionally, further study is needed to see that the different types of vegetation based on the composition of plant species may affect differently the emissions of biogenic volatile organic compounds(bVOCs) (Malik et al. 2018). The bVOCs had the positive neurological role in mouse models (Antonelli et al. 2020), suggesting that bVOCs emissions from the different types of vegetation influence mental health in children differently.

2.8. Conclusion

We found that 6-year-old children who lived in greener neighborhoods tended to exhibit higher IQ scores than did children with less exposure to greenness. The results provide further evidence for the health benefits of greenness and provide support for urban planning and public health to build healthy urban cities for children and pregnant women. Future studies are warranted to further evaluate the relationship between children's exposure to greenness and their health outcomes, considering factors such as children's utilization and accessibility of greenness. To do so, we need to include measurement such as physical activity survey or use of portable devices in the future.

Chapter 3. Association between greenness and epigenetics among children

3.1. Study population

Our research was based on a subset of the EDC study cohort, an ongoing prospective cohort study designed to evaluate the association between prenatal and postnatal environmental exposures and physical or cognitive development. Detailed information on the study design has been described elsewhere (Kim et al. 2018). Briefly, a total of 726 eligible pregnant women from eight local hospitals in Seoul and Gyeonggi province of South Korea were enrolled from August 2008 to July 2010. We collected urine and blood samples to estimate exposure to environmental factors during the second trimester of pregnancy. A total of 425 children aged 2 years and 574 children aged 6 years at enrolment were followed up. DNA methylation analysis was conducted in a subset of 59 participants using blood samples collected at the age of 2 years (Figure 46). Informed consent was obtained from the parents after sufficient explanation of the study. The study protocol was approved by the Institutional Review Board of Seoul National University College of Medicine (IRB No. 1201-010-392).

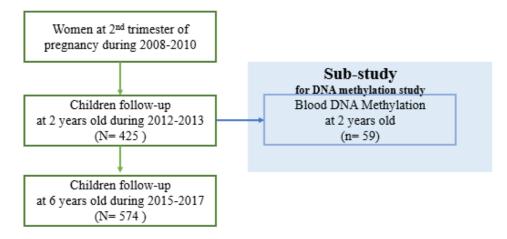


Figure 46. The flow of participants through the study

3.2. Greenness exposure assessment

To estimate exposure to greenness, the residential addresses were collected at the age of 2 years. The surrounding greenness was recorded using Landsat image data from the IKONOS satellite images (Dial et al. 2003) and Korean Arirang satellite images taken by the Environmental Geographic Information Service of the Ministry of the Environment (https://egis.me.go.kr/main.do). To estimate exposure to greenness, the densities of greenness were calculated within buffer radii of 100, 500, 1000, 1500, and 2000 m from each child's residential address. Then, we determined the percentage of greenness (density) from the area within each buffer. We separately analyzed two types of greenness, namely natural greenness, forest or natural grassland, and built greenness, including artificial grassland, urban parks, and street trees. We did not analyze the effect of natural greenness within buffer radii of both 100 and 500 m because natural greenness was barely observed within these ranges. We described in detail for the spatial analysis in Section 2.2.

3.3. DNA methylation changes in children at ages 2

3.3.1. Systematic review of literature and selection of candidate cytosine-guanine dinucleotide sites

As we were specifically interested in the question of whether DNA methylation mediates the effects of exposure to greenness on children's IQ, we targeted CpG sites that were more likely to be involved in cognitive ability instead of scanning the whole epigenome. For the selection of previous EWAS or GWAS on association with cognitive abilities, we searched PUBMED and EMBASE on April 1, 2021, using keywords ("epigenome-wide association study" or "genome-wide association study") and ("intelligence" or "cognitive ability" or "cognitive development") from titles or abstracts. The selection criteria were EWAS or GWAS regarding cognitive ability in healthy children or adults. From previous EWAS or GWAS that investigated the association between DNA methylation and cognitive ability in healthy children or adults, we identified CpG sites associated with cognitive ability-related parameters (Figure 47). In the GWAS, single nucleotide polymorphisms (SNPs) associated with cognitive ability were identified, and then the genes annotated to these SNPs were identified. The CpG sites associated with these genes were pooled using the Database for Annotation, Visualization, and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/home.jsp).

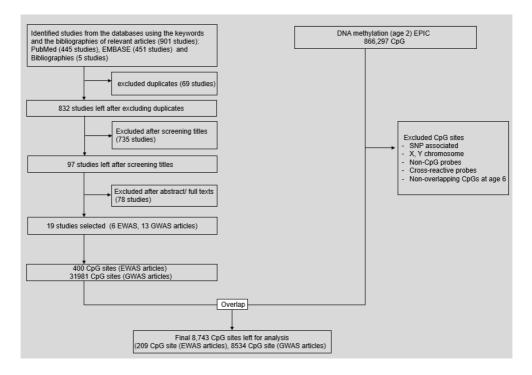


Figure 47. Workflow for model building for selecting cognitive abilities based on a systematic literature review.

3.3.2. Assessment of DNA methylation at age 2 in the EDC cohort.

We performed genome-wide DNA methylation analyses using the whole blood samples of 59 at age 2 as described in an earlier study (Choi et al. 2020). Briefly, DNA samples were tested for quality using a NanoDrop® ND-1000 UV-Vis spectrophotometer (Thermo Fisher Scientific, Wilmington, DE). Electrophoresis was performed using 1% agarose gel, and samples with genomic DNA (gDNA) were diluted to 50 ng/µL based on Quanti-iT Picogreen quantification (Thermo Fisher Scientific, Wilmington, DE, DE). The diluted gDNA samples (minimum 500 ng) were diluted, then bisulfite-converted using the Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA, USA), and the DNA was then amplified to be used on the DNA BeadChip. At age 2, we used the Illumina Infinium Human MethylationEPIC BeadChip, which yielded 850,000 CpG sites (Illumina, San Diego, CA, USA). Images were read by the Illumina BidArray Reader, and the image intensities were extracted using the Illumina GenomeStudio software. Microarrays were handled by Macrogen Co. (Seoul, South Korea). For functional annotation analysis, we used the DAVID, http://david.abcc.ncifcrf.gov/home.jsp) tool.

3.3.3. Quality control of methylation data

Filtered data were normalized using the Beta Mixture Quantile (BMIQ) method [35]. With the Human MethylationEPIC BeadChip (850K), a total of 866,297 CpG sites were extracted for the raw data, and 609 CpG sites (0.07%) which had detection p-value ≥ 0.05 across more than 25% of all samples were excluded from analysis. Thus, 865,688 CpG sites were left for analysis. We also filtered CpG sites according to the following exclusion criteria: (a) SNP-associated CpG sites defined as 0 or 1 base pair near SNP loci or minor allele frequency (MAF) > 5% (213,660 CpG sites); (b) CpG sites that corresponded to the X or Y chromosome (19,627 CpG sites); (c) CpG sites corresponding to non-CpG loci (3627 CpG sites).; (d) cross-reactive CpG sites (42,558 CpG sites). We were finally left with 256,866 CpG sites which overlapped with the available epigenome data of 6-year-old children for further analysis. We also excluded multimodal CpG sites if they appeared in statistically significant CpG sites, which were identified using the dip test statistic for multimodality, which was calculated using the R package *diptest* module (Maechler, 2013).

3.4. Measurement of intelligence quotient in children

The IQ of the 6-year-old children was measured using the Korean Educational Developmental Institute's Wechsler Intelligence Scale for Children (Park et al. 1996). Higher scores indicated higher IQ. Two subsets were measured: verbal IQ, based on the sum of the test results for vocabulary and arithmetic intelligence, and performance IQ, based on the sum of the tests for picture arrangement and block design (Kim et al. 2017).

3.5. Covariates

We collected demographic information on the children and their mothers by means of interviews using structured questionnaires. Covariates were selected based on a literature review (Lee et al. 2021; Xu et al. 2021). The covariates used to analyze the association between greenness and DNA methylation were mother's age at pregnancy (years), mother's educational level (middle school graduate, high school graduate, college graduate, or graduate school attendance), children's exposure to environmental tobacco smoke (ETS) at age 2 (yes or no), children's sex (boy or girl), children's age at follow-up (months, continuous variable), children's body mass index (BMI) (kg/m², continuous variable), and cell type fractions (continuous variables). The cell type fractions in blood samples were calculated using the R package *minfy* module (Aryee et al. 2014). To estimate the percentage of CD8+T cells, CD4+T cells, natural killer cells, B cells, monocytes, and neutrophils, adults' leukocyte reference dataset was used (Houseman et al. 2012). We also used the covariates for analyzing the association between DNA methylation and children's IQ at age 6, including children's age at follow-up, children's BMI, maternal age during pregnancy, maternal education level, exposure to ETS at age 2, maternal IQ, and children's sex. The short form of the Korean Wechsler Adult Intelligence Scale was used to assess maternal IQ at the time of their children's follow-up visit at the age of six (Lim et al. 2000).

3.6. Statistical analysis

We compared the demographic and clinical characteristics of the subset population to the population of the EDC study that was not included in our study using the Student's t-test (for continuous variables) or chi-square test (for categorical variables) (Table 15). We used batch effect-adjusted DNA methylation data obtained using the R package *ComBat* module to adjust different distributions according to chips and positions from the array data (Johnson et al., 2007). This process uses an empirical Bayes method to adjust batch effects in small sample sizes. We performed multivariable linear regression to determine the relationship between exposure to greenness at age 2 and cognitive ability-related DNA methylation at age 2, adjusting for monthly age at follow-up, BMI at age 2, maternal education level, cell type fractions (CD8+T cells, CD4+T cells, natural killer cells, B cells, monocytes, and neutrophils), exposure to ETS, maternal age at delivery, and child's sex. Using the CpG sites significantly associated with exposure to greenness at age 2, we tested the association of these sites with total, verbal, and performance IQ scores at age 6, adjusting for children's age at followup, children's BMI, maternal age during pregnancy, maternal education level, exposure to ETS at age 2, maternal IQ, children's sex, and cell type fractions. To account for multiple testing, a significant difference was defined as a site with a Bonferroni-corrected *P*-value ≤ 0.05 /the numbers of selected CpGs (Weisstein et al., 2004). Pathway enrichment analysis was performed using the *ReactomePA* R package (Yu et al., 2016). Enrichment analysis of functional terms revealed the *Reactome* pathway enriched in the genes identified as significant from their association between greenness exposure and cognitive ability-related CpG sites

(Bonferroni-corrected P \leq 0.05/ the numbers of selected CpGs). All statistical analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) and R software version 3.6.0 (R Foundation for Statistical Computing, Vienna, Austria).

3.7. Results

3.7.1. General characteristics of the participants

Table 15 presents the participant characteristics. The mean maternal age at delivery was 31.10 years (standard deviation [SD]: 3.79 years). The mean age and BMI of children were 23.32 months (SD: 0.77 months) and 16.57 kg/m² (SD: 1.20 kg/m^2), respectively. The mean age and BMI of children were 23.32 months (SD: 0.77) and 16.57 kg/m² (SD: 1.20 kg/m²), respectively. The mean maternal IQ was 117.8 (SD: 11.5). The percentages of mothers who received less than a high school education and more than a graduate school education were 15.25% and 13.56%, respectively. A total of 23.73% of the participants were in a group with positive exposure to ETS during pregnancy. There were similar numbers of girls and boys in the study (30 and 29, respectively). The percentage of greenness exposure at age 2 within 100–2000 m was ranged from 17.67% to 25.29%. The mean total, verbal, and performance IQ scores at age 6 were 107.40 (SD: 13.70), 21.08 (SD: 5.03), and 23.47 (SD: 5.10), respectively. In addition, we found that the characteristics of subset were not significantly different from those of the participants in the entire EDC cohort, except for exposure to greenness at age 2 in 1000 m buffer of residential address (Table 15).

Vari	ables	Study Population (n = 59)	EDC population excluded from the study (n = 366)	<i>P</i> -value	
		n (%) or Mean ± SD	n (%) or Mean ± SD		
Maternal age a	t pregnancy (yr)	31.10±3.79	31.68±3.60	0.256	
Children's	age(month)	23.32±0.77	23.31±0.76	0.922	
Children's	BMI at age 2	16.57±1.20	16.48±1.44	0.666	
Mate	rnal IQ	117.8±11.5	115.8±11.1	0.248	
	High school graduate	9(15.25)	70(19.13)		
Maternal education level	College graduate	42(71.19)	257(70.22)	0.669	
	Graduate school	8(13.56)	39(10.66)		
Prenatal exposure	Yes	14(23.73)	89(24.32)	0.022	
to ETS	No	45(76.27)	277(75.68)	0.922	
Children's sex	Girl	30(50.85)	172(46.99)	0.592	
	Boy	29(49.15)	194(53.01)	0.582	
	100m	17.67±12.8	19.82 ± 14.0	0.276	
Percentage of total	500m	18.71±11.1	21.36±13.9	0.108	
greenness in home address at age 2	1000m	19.95±11.2	23.61±13.6	0.028	
	1500m	23.63±12.8	24.77±12.9	0.529	
	2000m	25.29±13.4	26.32±12.7	0.569	
IQ at age 6	Total IQ	107.4±13.7	110.6±12.5	0.088	
	Verbal IQ	21.08±5.03	20.81±7.06	0.732	
	Performance IQ	23.47±5.10	22.91±7.26	0.487	

Table 15. Characteristics of participants at age 2 in sub-study compare to total EDC population.

Abbreviations: EDC, Environment and the Development of Children; SD, standard deviation; ETS, environmental tobacco smoke; 3-PBA, 3-phenoxybenzoic acid; ADHD, attentiondeficit/hyperactivity disorder; IA, inattention; HI, hyperactivity-impulsivity

3.7.2. Systematic literature review

We found a total of 896 studies (445 studies in PubMed and 451 studies in EMBASE) after applying the keywords search strategy described in Section 3.3.1. Five studies were included in the bibliographic search (Table S1). After excluding duplicated studies (n=69), 97 studies were included for screening by title, and 735 studies were excluded because they were studies of cognitive aging or cognitive disease or were not the primary study result. We further excluded irrelevant articles such as invalid study designs or cognitive outcomes, such as mathematics, school performance, or memory, finally leaving a total of 19 articles. (Figure 47).

A total of 400 CpG sites were selected from 6 EWAS (Caramaschi et al., 2020; Caramaschi et al., 2017; Krushkal et al., 2014; Linnér et al., 2017; Marioni et al., 2018; Paquette et al., 2016). Additionally, a total of 31,981 CpG sites selected, which were annotated to 835 genes reported from 13 GWAS after excluding duplicate genes (Benyamin et al., 2014; Coleman et al., 2019; Hill et al., 2014; Jansen et al., 2020; Kong et al., 2013; Kornilov et al., 2019; Luciano et al., 2006; Savage et al., 2018; Smajlagić et al., 2018; Sniekers et al., 2017; Zabaneh et al., 2018; Zhao et al., 2014; Zhu et al., 2018). These CpG sites were filtered according to the quality control method introduced earlier. As a result, 209 CpG sites from the EWAS and 8,534 CpG sites from the GWAS were finally selected (Table S2 and Table S3).

3.7.3. Association between greenness exposure and DNA methylation

A total of 209 CpG sites from the EWAS and 8,534 CpG sites from the GWAS were analyzed in our study. We found that 25 cognitive ability-related CpG sites were significantly associated with greenness exposure at age 2 (8 CpG sites from EWAS and 17 CpG sites from GWAS) in total greenness in buffers of 100–2000 m, natural greenness in buffers of 1000–2000 m, and built greenness in buffers of 1000 m and 1500 m, with a significance criterion for Bonferroni-corrected *P*-values < 2.3×10^{-4} for the EWAS, *P*<5.8 \times 10^{-6} for the GWAS) (Table 16).

DNAIII	-				D:00 8	
Origin Study	greenne ss type	Buffe r	CpG	Gene	Difference [§]	P-value
EWAS	EWAS Total		cg13092901	TYMP	0.021(0.012, 0.029)	$2.0 imes 10^{-5}$
Study		500m	cg04789403	-	0.031(0.015, 0.047)	$1.1 imes 10^{-4}$
		500m	cg07266431	CDK6	0.028(0.015, 0.040)	1.9×10^{-4}
		500m	cg13599020	SAMD3	0.026(0.014, 0.039)	1.9×10^{-4}
		500m	cg27492942	CISD3	0.029(0.013, 0.045)	1.7×10^{-4}
		1000m	cg00252813	GAPDH	0.013(0.006, 0.020)	6.1 × 10 ⁻⁵
	Natural	1000m	cg00252813	GAPDH	0.013(0.007, 0.019)	5.8×10^{-5}
		1000m	cg04789403	-	0.020(0.010, 0.030)	7.7 × 10 ⁻⁵
	Built	1000m	cg16594502	-	0.015(0.008, 0.022)	9.4×10^{-5}
		1500m	cg25189904	GNG12	0.028(0.013, 0.044)	2.3×10^{-4}
GWAS	Total	100m	cg26269038	SLC6A3	-0.011(-0.015, -0.007)	3.2×10^{-8}
Study			cg14464361	AGAP1	-0.023(-0.032, -0.016)	3.2×10^{-6} 2.2×10^{-6}
			cg21175642	CELSR3	0.013(0.007, 0.016)	3.4×10^{-6}
		1000m	cg23651585	AUTS2	-0.039(-0.056, -0.024)	9.9×10^{-7}
			cg27636559	EFTUD1	0.007(0.004, 0.009)	1.2×10^{-6}
			cg27609819	PLCL1	-0.027(-0.038, -0.015)	2.3×10^{-6}
			cg16296679	WBP2NL	0.015(0.009, 0.022)	2.9×10^{-6}
		1500m	cg17146029	AUTS2	0.010(0.007, 0.013)	1.0×10^{-7}
			cg00809988	ELAVL2	-0.006(-0.009, -0.003)	1.5 × 10 ⁻⁷
		2000m	cg17146029	AUTS2	0.009(0.006, 0.012)	3.9 × 10 ⁻⁸
			cg00809988	ELAVL2	-0.004(-0.008, -0.002)	3.2×10^{-7}
			cg03367519	PDE4D	-0.005(-0.008, -0.002)	$3.3 imes 10^{-6}$
			cg27609819	PLCL1	-0.029(-0.039, -0.020)	3.7×10^{-8}
			cg23651585	AUTS2	-0.043(-0.059, -0.027)	7.4×10^{-8}
			cg27636559	EFTUD1	0.007(0.005, 0.009)	2.2×10^{-7}
	Natural	1500m	cg23651585	AUTS2	-0.041(-0.055, -0.025)	2.6×10^{-7}
			cg23159678	NOVA1	0.009(0.004, 0.014)	$1.9 imes 10^{-6}$
_			cg05016953	SLC6A4	-0.004(-0.006, -0.001)	$2.2 imes 10^{-6}$
			cg27609819	PLCL1	-0.025(-0.036, -0.016)	$2.2 imes 10^{-6}$
			cg03367519	PDE4D	-0.005(-0.007, -0.002)	$2.9 imes 10^{-6}$
			cg00809988	ELAVL2	-0.005(-0.007, -0.002)	$5.3 imes10^{-6}$
		2000m	cg17146029	AUTS2	0.010(0.006, 0.012)	$1.8 imes10^{-6}$
			cg23651585	AUTS2	-0.046(-0.064, -0.026)	$1.9 imes 10^{-6}$
			cg11176256	BAIAP2	0.016(0.010, 0.023)	$3.5 imes 10^{-6}$
			cg05897638	PROS1	-0.007(-0.010, -0.003)	$5.1 imes 10^{-6}$
			cg00809988	ELAVL2	-0.005(-0.009, -0.002)	$5.5 imes 10^{-6}$
			cg12414502	BTN2A1	0.010(0.006, 0.012)	$5.6 imes10^{-6}$
	Built	1500m	cg19258882	ERBB3	0.024(0.015, 0.032)	$4.6 imes 10^{-6}$
			cg18311871	PTPRN2	0.081(0.047, 0.115)	$3.2 imes 10^{-6}$

Table 16. The significant relationship between greenness exposure and selected DNAm at aged 2^{\dagger} .

Note: CpG site location- based on Illumina annotation, derived from the University of California, Santa Cruz (UCSC), Adjusted for children's age, children's BMI, maternal education level, cell count (CD8+T cells, CD4+T cells, natural killer cells, B cells, monocytes and neutrophils), ETS, maternal age, children's sex, and batch effect. The list was significantly associated for multiple comparison-corrected *P*-value (*) by Bonferroni method (The EWAS study was $P < 2.3 \times 10^{-4}$, the GWAS study was $P < 5.8 \times 10^{-6}$). † Analyzed using a linear regression model. § Change in DNA methylation level by 1 interquartile range increases of greenness within each buffer.

3.7.4. Pathway enrichment analysis

We investigated potential biological functions by performing pathway enrichment analysis with the cutoff p-value set to 0.1. We found the top 20 pathways, including transmission across chemical synapses, opioid signaling, and neuronal systems pathway (Figure 48). Notably, a single pathways of neurotransmitter clearance associated with the *SLC6A3* and *SLC6A4* genes were significantly related to greenness exposure, of which *SLC6A3* also showed significant associations with children's IQ in this study (adjusted *P*-value: 0.009; Table S4). In addition, the pathway enrichment analysis identified transmission across chemical synapses, opioid signaling, and neuronal systems pathway as playing an important role in the association between greenness and DNA methylation and contains genes associated with the nervous system (Figure 49).

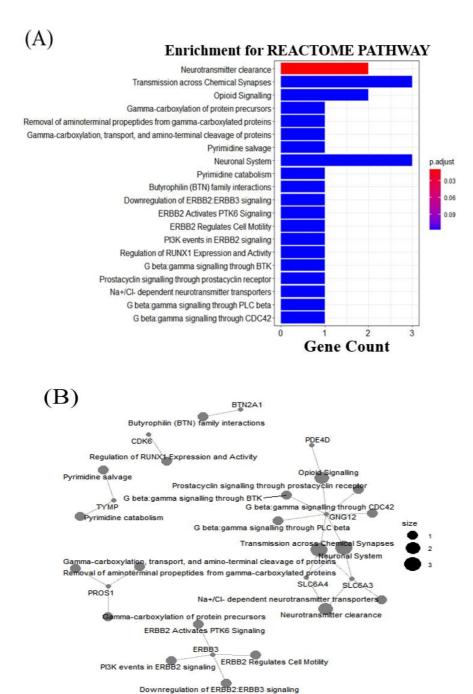


Figure 48. *Reactome* pathway enrichment analysis of the greenness-associated genes, which were showed top 20 pathways. (A) The enrichment scores in the *Reactome* pathway analysis of the greenness exposure-related genes. (B) The network of most enriched pathways of the greenness exposure-related genes. Larger nodes represent larger enrichment scores represent different enrichment modules.

3.7.5. Association between DNA methylation and children's intelligence quotient

We showed the association of the methylation levels of the 25 CpG sites at age 2 and performance IQ scores at age 6 in Table 17. Notably, the methylation level at cg26269038 was significantly associated with increased performance IQ score at age 6 (β : 164.5; Standard Error: 48.4) in adjusted models after Bonferroni adjustment (*P* <0.002). However, there was no significance in total IQ and verbal IQ with DNA methylation (not shown). The enrichment analysis from *Reactome* pathway analysis has shown that most of the differentially expressed in several pathways, such as neurotransmitter clearance, transmission across chemical synapses, and neuronal system (Figure 48).


We plotted the least-squares means of the methylation level at cg26269038 by exposure to greenness as the quartile group. The percentages of greenness in the 100 m buffer of residential address for each participant were divided into quartiles and were then performed to determine whether individuals in the three higher quartiles differed significantly from those in the lowest quartile. The highest quartile of DNA methylation level at cg26269038 was significantly different from the lowest quartile (Figure 49).

CpG sites	Chr	Gene	Gene group	Relation to CpG island	Difference (95% CI) [§]	<i>P</i> -value
cg14464361	2	AGAP1	Body	Island	0.79 (-0.88, 2.46)	0.353
cg23651585	7	AUTS2	Body	N_Shelf	-0.20 (-0.44, 0.03)	0.088
cg17146029	7	AUTS2	Body	-	-0.11 (-1.82, 1.59)	0.895
cg11176256	17	BAIAP2	Body	S_Shore	-0.86 (-2.42, 0.69)	0.278
cg12414502	6	BTN2A1	3'UTR	-	1.86 (-0.07, 3.79)	0.059
cg07266431	7	CDK6	Body	N_Shelf	-0.33 (-2.59, 1.94)	0.778
cg21175642	3	CELSR3	TSS1500	S_Shore	-1.10 (-2.57, 0.37)	0.141
cg27492942	17	CISD3	TSS1500	N_Shore	-0.77 (-2.38, 0.85)	0.352
cg27636559	15	EFTUD1	Body	-	-0.80 (-4.10, 2.50)	0.634
cg00809988	9	ELAVL2	TSS1500	N_Shore	0.16 (-1.80, 2.12)	0.873
cg19258882	12	ERBB3	TSS1500	Island	-1.53 (-2.76, -0.3)	0.015
cg00252813	12	GAPDH	TSS1500	N_Shore	1.40 (-1.15, 3.95)	0.281
cg25189904	1	GNG12	TSS1500	S_Shore	-1.75 (-3.73, 0.24)	0.084
cg23159678	14	NOVA1	Body	N_Shelf	-1.15 (-2.59, 0.30)	0.120
cg03367519	5	PDE4D	Body	Island	-0.43 (-2.21, 1.35)	0.638
cg27609819	2	PLCL1	Body	-	-0.47 (-0.93, 0.00)	0.049
cg05897638	3	PROS1	TSS200	S_Shore	-1.35 (-3.09, 0.39)	0.128
cg18311871	7	PTPRN2	Body	-	-0.12 (-1.49, 1.26)	0.868
cg13599020	6	SAMD3	Body	-	-0.81 (-3.70, 2.08)	0.585
cg26269038	5	SLC6A3	Body	-	2.94 (1.22, 4.66)*	0.001
cg05016953	17	SLC6A4	1stExon	Island	-0.91 (-2.44, 0.62)	0.244
cg13092901	22	TYMP	Body	Island	-0.62 (-2.78, 1.54)	0.576
cg16296679	22	WBP2NL	TSS1500	N_Shore	-0.13 (-1.70, 1.43)	0.867
cg04789403	15	-	-	-	3.27 (0.10, 6.44)	0.043
cg16594502	15	-	-	-	-0.19 (-4.02, 3.64)	0.922

Table 17. Association between selected CpG sites and children's Performance IQ (n=59) †

* Bold was significant association using Bonferroni correction P < 0.002

[†] Analyzed using a linear regression model. § Difference (95% CI) was calculated by 1 interquartile range change in DNA methylation level at each CpG site. Adjusted for children's age, sex, children's BMI, maternal education level, exposure to ETS, maternal age, maternal IQ, and cell type fractions.

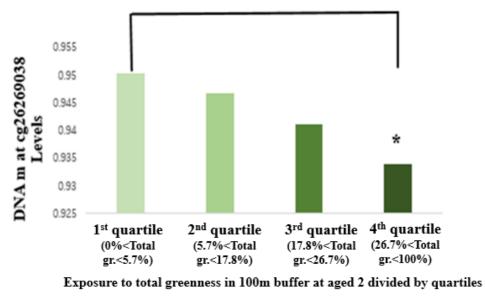


Figure 49. The LSMEANS of DNA m at cg26269038 levels in four quartiles of exposure to greenness among children

* Represents significant differences between a quartile and the lowest quartile, with P-values < 0.05 considered statistically significant. Adjusted for children's age, BMI, maternal education level, children's ETS exposure, maternal age, maternal IQ, children's sex, and cell counts.

3.8. Discussion

We found that the methylation levels at 25 cognitive ability-related CpG sites at age 2 were significantly associated with greenness exposure during early childhood and that the methylation level at cg26269038 at age 2 (*SLC6A3*) was significantly associated with the performance IQ score at age 6.

In our study, several genes significantly associated with greenness exposure, including PDE4D, PLCL1, GNG12, SLC6A4, and SLC6A3, were also linked to neurotransmitter clearance in the pathway enrichment analysis results. Signaling in the central nervous system is terminated by the clearance of neurotransmitters from the synapse via high-affinity transporter molecules in the presynaptic membrane (Figlewicz, 1999). Recently, a review article reported that disruption in the clearance of neurotransmitters and increased amyloid β and tau from astrocytes appeared to be involved in neurotoxicity in Alzheimer's disease patients (González-Reyes et al., 2017). A CpG site at cg05016953 (SLC6A4) as a serotonin transporter, which was significantly associated with greenness exposure in our study, was reported to be regulated by a 5HTTLPR functional polymorphism, which was significantly associated with IQ scores in a previous study (Volf et al., 2015). However, our results showed no significant association between DNA methylation changes at cg05016953 (SLC6A4) at age 2 and children's IQ at age 6. Because there is a wide distribution of the 5HTTLPR genotype by race and ethnicity (Gelernter et al., 1997; Kunugi et al., 1997; Nakamura et al., 2000), further studies should be conducted among Asian children.

The most significant DNA methylation change at cg26269038 is located in the body, intron between the 3^{rd} and 4^{th} exon, of the gene solute carrier family 6, the

member 3 (SLC6A3) on chromosome 5. The gene encodes a dopamine transporter (DAT), which is a member of the sodium- and chloride-dependent neurotransmitter transporter family, and provides rapid clearance of dopamine (Chen et al., 2004; Fuke et al., 2001), which mediates the reuptake of dopamine from the synaptic cleft (Vandenbergh et al., 2000). Cómbita et al. (2017) determined whether SLC6A3/DAT1 gene contributed to individual differences in children's selfregulation skills (Cómbita et al., 2017). They evaluated self-regulation skills and cognitive tasks such as conflict processing, inhibitory control, and intelligence assessments in 127 children at ages 4 and 6 in Spain. They found that the presence of the 10 alleles of the SLC6A3 gene was related to a declining function of the dopaminergic transmission system, which was associated with poorer performance in self-regulation. Dopaminergic neurotransmission related to the SLC6A3 and DRD2 genes is reportedly associated with cognitive capacities, such as IQ, in previous studies (Kaminski et al., 2018; Montague et al., 2004; Schlagenhauf et al., 2013). Further study should be investigated that epigenetic regulation of gene expression is modulated by environmental factors such as exposure to stress and level of physical activity (Kaminski et al., 2018; Knab et al., 2010; McGowan et al., 2009).

Epigenetic markers, such as DNA methylation, are dynamically reprogrammed during gametogenesis and early embryo preimplantation (Feil et al., 2012; Reik, 2007). Experimental evidence suggests that the epigenome of mammalian embryonic cells is more susceptible to environmental stimulation than other differentiated cells (Khosla et al., 2001; Young et al., 2001) because of the abundance of de novo DNA methyltransferases in these rapidly dividing pluripotent cells (Feil et al., 2012; Reik, 2007). In line with previous findings, we found that greenness exposure in early childhood is a modifiable factor related to DNA methylation change, which was found to be associated with cognitive ability in a previous study. The SLC6A3 gene, which accumulates cytotoxic dopamine or other toxins in dopamine neurons, is a risk factor for Parkinson's disease (Zhai et al., 2014). Because these neurodegenerative disorders are related to increased environmental stressors, toxins, and oxidative stress in adults (Herman et al., 2018), brain development in children may also be linked to oxidative stress, which is reduced by greenness exposure. Similarly, oxidative stress is widely related to brain development. Recently, greenness exposure was significantly associated with reduced oxidative stress in Italian children (De Petris et al., 2021). Our results show that children with higher greenness exposure had lower DNA methylation levels of the SLC6A3 gene. This region might be linked to greenness exposure and neurological development in children. However, further studies are needed to understand how these cognitive ability-related CpG sites are linked to greenness exposure.

Exposure to different types of greenness has been shown to have different effects on children's health. A previous study found a strong association between exposure to built greenness, but not natural greenness, and children's IQ at age 6 (Lee et al., 2021). However, DNA methylation changes were more significantly associated with natural greenness at age 2. There have been no previous studies of the association between type of greenness and DNA methylation change, and further studies are needed to investigate the effect of exposure to various types of greenness and intelligence in children. The DNA methylation changes and greenness exposure still need to be analyzed in the EDC entire cohort rather than sub-study (Lee et al., 2021).

3.9. Conclusion

Residential surrounding greenness exposure at age 2 was associated with DNA methylation changes, further associated with cognitive abilities. Further studies are warranted to clarify the epigenetic pathways linking greenness exposure and neurocognitive functions in children.

Chapter 4. Discussion

4.1. Main findings

Our results indicated that greater exposure to greenness during pregnancy, as well as the exposure while children were aged 6 was associated with higher IQ among the children. We examined the association by type of greenness and found that children's IQ was associated with built greenness, but not with natural greenness. In addition, postnatal exposure to greenness at age 6 was more strongly associated with children's IQ than prenatal exposure to greenness.

In addition, we investigated whether the DNA methylation change was mediated for the association between greenness exposure and children's IQ. We identified 209 CpGs and 8534 CpGs associated with cognitive ability from literature reviews. We found that the methylation levels at 25 cognitive ability-related CpG sites at age 2 were significantly associated with greenness exposure during early childhood and that the methylation level at cg26269038 at age 2 (*SLC6A3*) was significantly associated with the performance IQ score at age 6.

4.2. Strength and limitations

Our study has some strengths. First, a longitudinal analysis of prospective data was performed, namely of exposure to greenness during prenatal and postnatal periods. In addition, we analyzed greenness exposure and DNA methylation level at age 2, and then estimated the effect on children's IQ at age 6 in the EDC cohort population. Second, we estimated the percentages of greenness in various buffer sizes. In previous studies, larger buffer sizes (up to 2000 m) were associated with better physical health than were smaller buffers (Browning and Lee 2017). As there remains no definitive answer regarding the optimal distance to greenness from the child in terms of promoting the child's mental health, further studies should be conducted using buffers of various sizes, rather than considering only one buffer size. Third, we adjusted for various confounding factors, including noise, air pollution, time spent outdoors, and neighborhood or individual SES level, when we estimated the association between greenness exposure and children's IQ. In addition, we adjusted maternal IQ as a major determinant of children's IQ, which was directly or indirectly associated with the child's neurodevelopment (Lean et al. 2018; Ronfani et al. 2015). Finally, it is the first study to explore the interaction of DNA methylation change and greenness on children's IQ based on our knowledge. Our study might provide a clue to explain the causal role of greenness in neurodevelopment in children.

However, our study was also subject to some limitations. First, we used satellitederived land maps to measure surrounding greenness. This objective measurement of greenness allowed us to measure small-scale green spaces in a standardized way, but the map captured a single period in the year 2010. However, this might not be a major concern because the rate of change in forested areas of Seoul is typically modest (0.2% decrease between 2004 and 2009) (Kil et al. 2016). Second, because we focused on green spaces surrounding residential areas, the exposure to greenness of women at work during pregnancy was not reflected in the data and could have caused exposure misclassification. Third, we did not have available data on the accessibility of green spaces to our participants, which could be a factor underlying the association between exposure to greenness and IQ (Dadvand et al. 2012b). Fourth, we couldn't estimate the greenness exposure considering each participant's moving information, but we tried to estimate the averages of greenness exposure, which were calculated by the mean percentage of greenness exposure using addresses at ages pregnancy, 2, 4, and 6 follow-up period. Fifth, this study was based on observational data that limit statements on causality. In the future, a randomized clinical trial should be conducted to evaluate the effect of the greenness exposure and neurodevelopment in children. Finally, we only had DNA methylation data on 59 children, not the EDC entire cohort, even though we found no significant differences in the characteristics of the children in the study subcohort and the full EDC cohort; thus, our findings need to be further evaluated in a larger cohort.

4.3. Future research directions

Recently, positive associations between greenness and mental health have been reported that were mediated by microbiome (Pearson et al. 2020). Nielsen showed that the influence of a natural environment within 500m of a residential address in urban context on 355 infants' gut microbiota at age 4 months. When the infants live near natural environments, their gut microbiota tends to have a high diversity (Nielsen et al. 2020). Recently, Pelley et al showed that there was different variation depending on height above ground (Pelley 2021). The community composition of bacterial genera that occurred in both air and soil tended to decline with height from the ground. They suggested that further research is needed microbiome diversity in children, because they are different condition such as exposure to microbial communities compared to adults due to their height. Furthermore, this study suggests that greenness which can sit or lie on the ground, can promote more biodiverse exposure to microbes (Pelley 2021). Microbial biodiversity within children's gut may be a potential indirect pathway in the association between exposure to greenness and mental health (Prescott et al. 2016). In addition, Liddicoat et al. suggested a new hypothesis, linking biodiverse soil exposure, gut microbiome, and mental health (Liddicoat et al. 2020). Increased relative microbial abundance has been associated with reduced anxiety-like behavior among the most anxious mice in animal studies, and a rich composition of butyrate-producing bacteria may help explain the beneficial effects of biodiverse green space on human mental health (Liddicoat et al. 2020). However, fewer study still reported that the association between exposure to greenness and cognitive ability, which was modified by the diversity or composition of gut microbiome in children. So further research is needed to replicate and better interpret these interactions.

Since our study has shown that the association between exposed to greenness and DNA methylation changes, further study should be needed to explain the possible mechanism such as reducing air pollution or enhancing physical activity in the association between greenness exposure and developing cognitive function, which mediating DNA methylation changes. Possible mechanism that exposure to greenness was associated with enhancing physical activity and reducing air pollution as we mentioned, their beneficial effects may be impact on cognitive ability in children, mediating DNA methylation changes as gene-environmental interaction factors. So further research should be needed to have evidence for linking to epigenetic changes, exposure to greenness, and cognitive ability in children.

References

- Akpinar, A. How is high school greenness related to students' restoration and health? Urban Forestry & Urban Greening 2016;16:1-8
- Akpinar, A.; Barbosa-Leiker, C.; Brooks, K.R. Does green space matter? Exploring relationships between green space type and health indicators. Urban Forestry&Urban Greening 2016;20:407-418
- Amoly, E.; Dadvand, P.; Forns, J.; López-Vicente, M.; Basagaña, X.; Julvez, J.; Alvarez-Pedrerol, M.; Nieuwenhuijsen, M.J.; Sunyer, J. Green and blue spaces and behavioral development in Barcelona schoolchildren: the BREATHE project. Environmental health perspectives 2014;122:1351-1358
- Andrusaityte, S.; Grazuleviciene, R.; Dedele, A.; Balseviciene, B. The effect of residential greenness and city park visiting habits on preschool Children's mental and general health in Lithuania: A cross-sectional study.
 International Journal of Hygiene and Environmental Health 2020;223:142-150
- Antonelli, M.; Donelli, D.; Barbieri, G; Valussi, M.; Maggini, V.; Firenzuoli, F. Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. International Journal of Environmental Research and Public Health 2020;17:6506
- Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014;30:1363-1369
- Asta, F.; Michelozzi, P.; Cesaroni, G; De Sario, M.; Badaloni, C.; Davoli, M., & Schifano, P. The modifying role of socioeconomic position and greenness on the short-term effect of heat and air pollution on preterm births in Rome, 2001–2013. International journal of environmental research and public health 2019; 16: 2497.
- Benyamin, B.; Pourcain, B.; Davis, O.S.; Davies, G.; Hansell, N.K.; Brion, M.J.; Kirkpatrick, R.M.; Cents, R.A.M.; Franić, S.; Miller, M.B.; Haworth, C.M.A.; Meaburn, E.; Price, T.S.; Evans, D.M.; Timpson, N.; Kemp, J.; Ring, S.; McArdle, W.; Medland, S.E.; Yang, J.; Harris, S.E.; Liewald, D.C.; Scheet, P.; Xiao, X.; Hudziak, J.J.; De Geus, E.J.C.; Jaddoe, V.W.V.; Starr, J.M.; Verhulst, F.C.; Pennell, C.; Tiemeier, H.; Iacono, W.G.; Palmer, L.J.; Montgomery, G.W.; Martin, N.G.; Boomsma, D.I.; Posthuma, D.; McGue, M.; Wright, M.J.; Davey Smith, G.; Deary, I.J.; Plomin, R.; Visscher, P.M. Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular psychiatry 2014;19:253-258
- Berkman, L.F.; Kawachi, I.; Glymour, M.M. Social epidemiology. Oxford University Press; 2014
- Bezold, C.P.; Banay, R.F.; Coull, B.A.; Hart, J.E.; James, P.; Kubzansky, L.D.; Missmer, S.A.; Laden, F. The relationship between surrounding greenness in childhood and adolescence and depressive symptoms in adolescence and early adulthood. Annals of epidemiology 2018a;28:213-219
- Bezold, C.P.; Banay, R.F.; Coull, B.A.; Hart, J.E.; James, P.; Kubzansky, L.D.;

Missmer, S.A.; Laden, F. The association between natural environments and depressive symptoms in adolescents living in the United States. Journal of Adolescent Health 2018b;62:488-495

- Bianco-Miotto, T.; Craig, J.M.; Gasser, Y.P.; van Dijk, S.J.; Ozanne, S. Epigenetics and DOHaD: from basics to birth and beyond. Journal of developmental origins of health and disease 2017;8:513-519
- Bijnens, E.M.; Derom, C.; Thiery, E.; Weyers, S.; Nawrot, T.S. Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: A longitudinal birth cohort study of twins. PLoS medicine 2020;17:e1003213
- Broberg, K.; Ahmed, S.; Engström, K.; Hossain, M.; Mlakar, S.J.; Bottai, M.; Grandér, M.; Raqib, R.; Vahter, M. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. Journal of developmental origins of health and disease 2014;5:288-298
- Browning, M.; Lee, K. Within what distance does "greenness" best predict physical health? A systematic review of articles with GIS buffer analyses across the lifespan. International journal of environmental research and public health 2017;14:675
- Cao-Lei, L.; Veru, F.; Elgbeili, G.; Szyf, M.; Laplante, D.P.; King, S.J.C.e. DNA methylation mediates the effect of exposure to prenatal maternal stress on cytokine production in children at age 13¹/₂ years: Project Ice Storm. 2016;8:1-15
- Caramaschi, D.; Neumann, A.; Cardenas, A.; Tindula, G.; Alemany, S.; Zilich, L.; Pesce, G.; Lahti, J.; Havdahl, A.; Mulder, R. Meta-analysis of epigenomewide associations between DNA methylation at birth and childhood cognitive skills. bioRxiv 2020
- Caramaschi, D.; Sharp, G.C.; Nohr, E.A.; Berryman, K.; Lewis, S.J.; Davey Smith, G.; Relton, C.L. Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child's IQ at age 8, cognitive performance and educational attainment: a two-step Mendelian randomization study. Human molecular genetics 2017;26:3001-3013
- Cardenas, A.; Koestler, D.C.; Houseman, E.A.; Jackson, B.P.; Kile, M.L.; Karagas, M.R.; Marsit, C. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics 2015;10:508-515
- Casey, J.A.; James, P.; Rudolph, K.E.; Wu, C.-D.; Schwartz, B.S. Greenness and birth outcomes in a range of Pennsylvania communities. International journal of environmental research and public health 2016;13:311
- Chen, N.-H.; Reith, M.E.; Quick, M.W. Synaptic uptake and beyond: the sodiumand chloride-dependent neurotransmitter transporter family SLC6. Pflügers Archiv 2004;447:519-531
- Cho, S. -C.; Bhang, S. -Y.; Hong, Y. -C.; Shin, M. -S.; Kim, B. -N.; Kim, J. -W.; Yoo, H.-J; Cho, I. H.; Kim, H.-W. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environmental health perspectives 2010;118:1027-1032.
- Choi, Y.-J.; Lee, Y.A.; Hong, Y.-C.; Cho, J.; Lee, K.-S.; Shin, C.H.; Kim, B.-N.; Kim, J.I.; Park, S.J.; Bisgaard, H. Effect of prenatal bisphenol A exposure

on early childhood body mass index through epigenetic influence on the insulin-like growth factor 2 receptor (IGF2R) gene. Environment International 2020;143:105929

- Cilluffo, G.; Ferrante, G.; Fasola, S.; Montalbano, L.; Malizia, V.; Piscini, A.; Romaniello, V.; Silvestri, M.; Stramondo, S.; Stafoggia, M. Associations of greenness, greyness and air pollution exposure with children's health: a cross-sectional study in Southern Italy. Environmental Health 2018;17:1-12
- Coleman, J.R.I.; Bryois, J.; Gaspar, H.A.; Jansen, P.R.; Savage, J.E.; Skene, N.;
 Plomin, R.; Muñoz-Manchado, A.B.; Linnarsson, S.; Crawford, G.;
 Hjerling-Leffler, J.; Sullivan, P.F.; Posthuma, D.; Breen, G. Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. Molecular psychiatry 2019;24:182-197
- Cómbita, L.M.; Voelker, P.; Abundis-Gutiérrez, A.; Pozuelos, J.P.; Rueda, M.R. Influence of the SLC6A3-DAT1 gene on multifaceted measures of selfregulation in preschool children. Frontiers in psychology 2017;8:26
- Dadvand, P.; de Nazelle, A.; Triguero-Mas, M.; Schembari, A.; Cirach, M.; Amoly, E.; Figueras, F.; Basagaña, X.; Ostro, B.; Nieuwenhuijsen, M. Surrounding greenness and exposure to air pollution during pregnancy: an analysis of personal monitoring data. Environmental health perspectives 2012a;120:1286-1290
- Dadvand, P.; Nieuwenhuijsen, M.J.; Esnaola, M.; Forns, J.; Basagaña, X.; Alvarez-Pedrerol, M.; Rivas, I.; López-Vicente, M.; Pascual, M.D.C.; Su, J. Green spaces and cognitive development in primary schoolchildren. Proceedings of the National Academy of Sciences 2015;112:7937-7942
- Dadvand, P.; Pujol, J.; Macià, D.; Martínez-Vilavella, G.; Blanco-Hinojo, L.; Mortamais, M.; Alvarez-Pedrerol, M.; Fenoll, R.; Esnaola, M.; Dalmau-Bueno, A. The association between lifelong greenspace exposure and 3dimensional brain magnetic resonance imaging in Barcelona schoolchildren. Environmental health perspectives 2018;126:027012
- Dadvand, P.; Sunyer, J.; Basagana, X.; Ballester, F.; Lertxundi, A.; Fernandez-Somoano, A.; Estarlich, M.; Garcia-Esteban, R.; Mendez, M.A.; Nieuwenhuijsen, M.J. Surrounding greenness and pregnancy outcomes in four Spanish birth cohorts. Environmental health perspectives 2012b;120:1481-1487
- Dadvand, P.; Tischer, C.; Estarlich, M.; Llop, S.; Dalmau-Bueno, A.; López-Vicente, M.; Valentín, A.; de Keijzer, C.; Fernández-Somoano, A.; Lertxundi, N. Lifelong residential exposure to green space and attention: a population-based prospective study. Environmental health perspectives 2017;125:097016
- Dadvand, P.; Wright, J.; Martinez, D.; Basagaña, X.; McEachan, R. R.; Cirach, M.; Gidlow, C. J.; Hoogh, K.; Gražulevičienė, R.; Nieuwenhuijsen, M. J. Inequality, green spaces, and pregnant women: roles of ethnicity and individual and neighbourhood socioeconomic status. Environment international 2014;71:101-108
- De Petris, S.; Squillacioti, G.; Bono, R.; Borgogno-Mondino, E. Geomatics and epidemiology: Associating oxidative stress and greenness in urban areas. Environmental Research 2021;197:110999

- Desrochers-Couture, M.; Oulhote, Y.; Arbuckle, T.E.; Fraser, W.D.; Séguin, J.R.; Ouellet, E.; Forget-Dubois, N.; Ayotte, P.; Boivin, M.; Lanphear, B.P. Prenatal, concurrent, and sex-specific associations between blood lead concentrations and IQ in preschool Canadian children. Environment international 2018;121:1235-1242
- Dial, G.; Bowen, H.; Gerlach, F.; Grodecki, J.; Oleszczuk, R. IKONOS satellite, imagery, and products. Remote sensing of Environment 2003;88:23-36
- Donovan, G.H.; Michael, Y.L.; Gatziolis, D.; Hoyer, R.W. The relationship between the natural environment and individual-level academic performance in Portland, Oregon. Environment and Behavior 2020;52:164-186
- Dopko, R.L.; Capaldi, C.A.; Zelenski, J.M. The psychological and social benefits of a nature experience for children: A preliminary investigation. Journal of Environmental Psychology 2019;63:134-138
- Duursma, E.B.; Levy, O.; Lemon, M.J. Package 'plotrix'. 2009
- Dzhambov, A.; Hartig, T.; Markevych, I.; Tilov, B.; Dimitrova, D. Urban residential greenspace and mental health in youth: Different approaches to testing multiple pathways yield different conclusions. Environmental Research 2018;160:47-59
- Dzhambov, A.M.; Markevych, I.; Lercher, P. Associations of residential greenness, traffic noise, and air pollution with birth outcomes across Alpine areas. Science of the total environment 2019;678:399-408
- Feil, R.; Fraga, M.F. Epigenetics and the environment: emerging patterns and implications. Nature reviews genetics 2012;13:97-109
- Feng, X.; Astell-Burt, T. The Relationship between Neighbourhood Green Space and Child Mental Wellbeing Depends upon Whom You Ask: Multilevel Evidence from 3083 Children Aged 12-13 Years. International Journal of Environmental Research and Public Health 2017a;14:235
- Feng, X.; Astell-Burt, T. Residential green space quantity and quality and child well-being: a longitudinal study. American journal of preventive medicine 2017b;53:616-624
- Figlewicz, D.P. Endocrine regulation of neurotransmitter transporters. Epilepsy research 1999;37:203-210
- Fuertes, E.; Markevych, I.; von Berg, A.; Bauer, C.-P.; Berdel, D.; Koletzko, S.; Sugiri, D.; Heinrich, J. Greenness and allergies: evidence of differential associations in two areas in Germany. J Epidemiol Community Health 2014;68:787-790
- Fuke, S.; Suo, S.; Takahashi, N.; Koike, H.; Sasagawa, N.; Ishiura, S. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. The pharmacogenomics journal 2001;1:152-156
- Gelernter, J.; Kranzler, H.; Cubells, J.F. Serotonin transporter protein (SLC6A4) allele and haplotype frequencies and linkage disequilibria in African-and European-American and Japanese populations and in alcohol-dependent subjects. Human genetics 1997;101:243-246
- Goodrich, J.M.; Dolinoy, D.C.; Sánchez, B.N.; Zhang, Z.; Meeker, J.D.; Mercado-Garcia, A.; Solano-González, M.; Hu, H.; Téllez-Rojo, M.M.; Peterson, K. Adolescent epigenetic profiles and environmental exposures from early life through peri-adolescence. Environmental epigenetics 2016;2:dvw018
- González-Alzaga, B.; Lacasaña, M.; Aguilar-Garduño, C.; Rodríguez-Barranco,

M.; Ballester, F.; Rebagliato, M.; Hernández, A. A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicology letters 2014;230:104-121

- González-Reyes, R.E.; Nava-Mesa, M.O.; Vargas-Sánchez, K.; Ariza-Salamanca, D.; Mora-Muñoz, L. Involvement of astrocytes in Alzheimer's disease from a neuroinflammatory and oxidative stress perspective. Frontiers in Molecular Neuroscience 2017;10:427
- Grigsby-Toussaint, D.S.; Chi, S.-H.; Fiese, B.H. Where they live, how they play: Neighborhood greenness and outdoor physical activity among preschoolers. International journal of health geographics 2011;10:1-10
- Gruzieva, O.; Xu, C.-J.; Breton, C.V.; Annesi-Maesano, I.; Antó, J.M.; Auffray, C.; Ballereau, S.; Bellander, T.; Bousquet, J.; Bustamante, M. Epigenome-wide meta-analysis of methylation in children related to prenatal NO₂ air pollution exposure. Environmental health perspectives 2017;125:104-110
- Herbstman, J.B.; Tang, D.; Zhu, D.; Qu, L.; Sjödin, A.; Li, Z.; Camann, D.; Perera, F.P. Prenatal exposure to polycyclic aromatic hydrocarbons, benzo [a] pyrene–DNA adducts, and genomic DNA methylation in cord blood. Environmental health perspectives 2012;120:733-738
- Herman, F.; Westfall, S.; Brathwaite, J.; Pasinetti, G.M. Suppression of presymptomatic oxidative stress and inflammation in neurodegeneration by grape-derived polyphenols. Frontiers in pharmacology 2018;9:867
- Hill, W.D.; Davies, G.; Van De Lagemaat, L.N.; Christoforou, A.; Marioni, R.E.; Fernandes, C.P.D.; Liewald, D.C.; Croning, M.D.R.; Payton, A.; Craig, L.C.A.; Whalley, L.J.; Horan, M.; Ollier, W.; Hansell, N.K.; Wright, M.J.; Martin, N.G.; Montgomery, G.W.; Steen, V.M.; Le Hellard, S.; Espeseth, T.; Lundervold, A.J.; Reinvang, I.; Starr, J.M.; Pendleton, N.; Grant, S.G.N.; Bates, T.C.; Deary, I.J. Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins. Translational Psychiatry 2014;4
- Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC bioinformatics 2012;13:1-16
- Huang, H.-B.; Kaminski et al, H.-Y.; Su, P.-H.; Huang, P.-C.; Sun, C.-W.; Wang, C.-J.; Chen, H.-Y.; Hsiung, C.A.; Wang, S.-L. Fetal and childhood exposure to phthalate diesters and cognitive function in children up to 12 years of age: Taiwanese maternal and infant cohort study. PloS one 2015;10:e0131910
- Hystad, P.; Davies, H.W.; Frank, L.; Van Loon, J.; Gehring, U.; Tamburic, L.; Brauer, M. Residential greenness and birth outcomes: evaluating the influence of spatially correlated built-environment factors. Environmental health perspectives 2014;122:1095-1102
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A review of the health benefits of greenness. Current epidemiology reports 2015;2:131-142
- Jansen, P.R.; Nagel, M.; Watanabe, K.; Wei, Y.; Savage, J.E.; de Leeuw, C.A.; van den Heuvel, M.P.; van der Sluis, S.; Posthuma, D. Genome-wide metaanalysis of brain volume identifies genomic loci and genes shared with

intelligence. Nature communications 2020;11:5606

- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007;8:118-127
- Joubert, B.R.; Håberg, S.E.; Nilsen, R.M.; Wang, X.; Vollset, S.E.; Murphy, S.K.; Huang, Z.; Hoyo, C.; Midttun, Ø.; Cupul-Uicab, L.A. 450K epigenomewide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environmental health perspectives 2012;120:1425-1431
- Kabisch, N.; Haase, D.; Annerstedt van den Bosch, M. Adding natural areas to social indicators of intra-urban health inequalities among children: A case study from Berlin, Germany. International journal of environmental research and public health 2016;13:783
- Kaminski, J.A.; Schlagenhauf, F.; Rapp, M.; Awasthi, S.; Ruggeri, B.; Deserno, L.; Banaschewski, T.; Bokde, A.L.; Bromberg, U.; Büchel, C. et al. Epigenetic variance in dopamine D2 receptor: a marker of IQ malleability? Translational psychiatry 2018;8:1-11
- Kaplan, R.; Kaplan, S. The experience of nature: A psychological perspective. Cambridge university press 1989
- Khosla, S.; Dean, W.; Brown, D.; Reik, W.; Feil, R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biology of reproduction 2001;64:918-926
- Kil, S, K.; Lee, D.-k.; Park, G.S.; Lee, S.-J; OHGA, S. Differences in carbon sink by land use using topographic correction in Seoul, South Korea. Journal of the faculty of agriculture, Kyushu University 2016;61:7-15
- Kim, J.-H.; Lee, C.; Sohn, W. Urban natural environments, obesity, and healthrelated quality of life among Hispanic children living in inner-city neighborhoods. International journal of environmental research and public health 2016;13:121
- Kim, J.I.; Hong, Y.-C.; Shin, C.H.; Lee, Y.A.; Lim, Y.-H.; Kim, B.-N. The effects of maternal and children phthalate exposure on the neurocognitive function of 6-year-old children. Environmental research 2017;156:519-525
- Kim, K.-N.; Lim, Y.-H.; Shin, C.H.; Lee, Y.A.; Kim, B.-N.; Kim, J.I.; Hwang, I.G.; Hwang, M.S.; Suh, J.-H.; Hong, Y.-C. Cohort Profile: The Environment and Development of Children (EDC) study: a prospective children's cohort. International journal of epidemiology 2018;47:1049-1050f
- Kingsley, S.L.; Eliot, M.N.; Whitsel, E.A.; Huang, Y.-T.; Kelsey, K.T.; Marsit, C.J.; Wellenius, G.A. Maternal residential proximity to major roadways, birth weight, and placental DNA methylation. Environmental international 2016;92:43-49
- Klompmaker, J.O.; Hoek, G; Bloemsma, L.D.; Wijga, A.H.; van den Brink, C.; Brunekreef, B.; Lebret, E.; Gehring, U.; Janssen, N.A. Associations of combined exposures to surrounding green, air pollution and traffic noise on mental health. Environment international 2019;129:525-537
- Knab, A.M.; Lightfoot, J.T. Does the difference between physically active and couch potato lie in the dopamine system? International journal of biological sciences 2010;6:133
- Kong, L.; Cheng, L.; Fan, L.-y.; Zhao, M.; Qu, H. IQdb: an intelligence quotient

score-associated gene resource for human intelligence. Database 2013; 2013

- Kornilov, S.A.; Tan, M.; Aljughaiman, A.; Naumova, O.Y.; Grigorenko, E.L. Genome-Wide Homozygosity Mapping Reveals Genes Associated With Cognitive Ability in Children From Saudi Arabia. Frontiers in genetics 2019;10:888
- Krushkal, J.; Murphy, L.E.; Palmer, F.B.; Graff, J.C.; Sutter, T.R.; Mozhui, K.;
 Hovinga, C.A.; Thomas, F.; Park, V.; Tylavsky, F.A.; Adkins, R.M.
 Epigenetic analysis of neurocognitive development at 1 year of age in a community-based pregnancy cohort. Behavior genetics 2014;44:113-125
- Kunugi, H.; Hattori, M.; Kato, T.a.; Tatsumi, M.; Sakai, T.; Sasaki, T.; Hirose, T.; Nanko, S. Serotonin transporter gene polymorphisms: ethnic difference and possible association with bipolar affective disorder. Molecular psychiatry 1997;2:457-462
- Lai, K.Y.; Sarkar, C.; Sun, Z.; Scott, I. Are greenspace attributes associated with perceived restorativeness? A comparative study of urban cemeteries and parks in Edinburgh, Scotland. Urban Forestry & Urban Greening 2020:126720
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T. Low-level environmental lead exposure and children's intellectual function: an international pooled analysis. Environmental health perspectives 2005;113:894-899
- Lean, R.E.; Paul, R.A.; Smyser, C.D.; Rogers, C.E. Maternal intelligence quotient (IQ) predicts IQ and language in very preterm children at age 5 years. Journal of child psychology and psychiatry 2018;59:150-159
- Lee, K.-S.; Kim, B.-N.; Cho, J.; Jang, Y.-Y.; Choi, Y.-J.; Lee, W.-S.; Han, C.; Bae, H.J.; Lim, Y.-H.; Kim, J.I; Shin, C. H.; Lee, Y. A.; Hong, Y., -C. Associations between surrounding residential greenness and intelligence quotient in 6-year-old children. Science of The Total Environment 2021;759:143561
- Lee, K.W.; Richmond, R.; Hu, P.; French, L.; Shin, J.; Bourdon, C.; Reischl, E.; Waldenberger, M.; Zeilinger, S.; Gaunt, T. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environmental health perspectives 2015;123:193-199
- Lee, M.; Kim, S.; Ha, M. Community greenness and neurobehavioral health in children and adolescents. Science of The Total Environment 2019;672:381-388
- Leung, W.T.V.; Tam, T.Y.T.; Pan, W.-C.; Wu, C.-D.; Lung, S.-C.C.; Spengler, J.D. How is environmental greenness related to students' academic performance in English and mathematics? Landscape and Urban Planning 2019;181:118-124
- Li, W.; Saphores, J.-D.M.; Gillespie, T.W. A comparison of the economic benefits of urban green spaces estimated with NDVI and with high-resolution land cover data. Landscape and Urban Planning 2015;133:105-117
- Liao, J.; Zhang, B.; Xia, W.; Cao, Z.; Zhang, Y.; Liang, S.; Hu, K.; Xu, S.; Li, Y.

Residential exposure to green space and early childhood neurodevelopment. Environment international 2019;128:70-76

- Liddicoat, C.; Sydnor, H.; Cando-Dumancela, C.; Dresken, R.; Liu, J.; Gellie, N.J.; Mills, J.G.; Young, J.M.; Weyrich, L.S.; Hutchinson, M.R. Naturallydiverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Science of The Total Environment 2020;701:134684
- Lim, Y.-R.; Lee, W.-K.; Lee, W.-h.; Park, J.-w. The study on the accuracy and validity of Korean Wechsler Intelligence Scale short forms: a comparison of the WARD7 subtest vs Doppelt subtest. Korean Journal of Clinical Psychology 2000;19:563-574
- Linnér, R.K; Marioni, R.E.; Rietveld, C.A.; Simpkin, A.J.; Davies, N.M.; Watanabe, K.; Armstrong, N.J.; Auro, K.; Baumbach, C.; Bonder, M.J.; Buchwald, J.; Fiorito, G.; Ismail, K.; Iurato, S.; Joensuu, A.; Karell, P.; Kasela, S.; Lahti, J.; McRae, A.F.; Mandaviya, P.R.; Seppälä, I.; Wang, Y.; Baglietto, L.; Binder, E.B.; Harris, S.E.; Hodge, A.M.; Horvath, S.; Hurme, M.; Johannesson, M.; Latvala, A.; Mather, K.A.; Medland, S.E.; Metspalu, A.; Milani, L.; Milne, R.L.; Pattie, A.; Pedersen, N.L.; Peters, A.; Polidoro, S.; Räikkönen, K.; Severi, G.; Starr, J.M.; Stolk, L.; Waldenberger, M.; Eriksson, J.G; Esko, T.; Franke, L.; Gieger, C.; Giles, G.G; Hägg, S.; Jousilahti, P.; Kaprio, J.; Kähönen, M.; Lehtimäki, T.; Martin, N.G; van Meurs, J.B.C.; Ollikainen, M.; Perola, M.; Posthuma, D.; Raitakari, O.T.; Sachdev, P.S.; Taskesen, E.; Uitterlinden, A.G; Vineis, P.; Wijmenga, C.; Wright, M.J.; Relton, C.; Davey Smith, G; Deary, I.J.; Koellinger, P.D.; Benjamin, D.J. An epigenome-wide association study meta-analysis of educational attainment. Molecular psychiatry 2017;22:1680-1690
- Liu, Y.; Wang, R.; Xiao, Y.; Huang, B.; Chen, H.; Li, Z. Exploring the linkage between greenness exposure and depression among Chinese people: Mediating roles of physical activity, stress and social cohesion and moderating role of urbanicity. Health place 2019;58:102168
- Luciano, M.; Wright, M.J.; Duffy, D.L.; Wainwright, M.A.; Zhu, G.; Evans, D.M.; Geffen, G.M.; Montgomery, G.W.; Martin, N.G. Genome-wide scan of IQ finds significant linkage to a quantitative trait locus on 2q. Behavior genetics 2006;36:45-55
- Maechler, M., J R Package Version 0.75–5. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Package 'diptest'. 2013.
- Malik, T.G.; Gajbhiye, T.; Pandey, S.K. Plant specific emission pattern of biogenic volatile organic compounds (BVOCs) from common plant species of Central India. Environmental monitoring and assessment 2018;190:1-11
- Marioni, R.E.; McRae, A.F.; Bressler, J.; Colicino, E.; Hannon, E.; Li, S.; Prada, D.; Smith, J.A.; Trevisi, L.; Tsai, P.C.; Vojinovic, D.; Simino, J.; Levy, D.; Liu, C.; Mendelson, M.; Satizabal, C.L.; Yang, Q.; Jhun, M.A.; Kardia, S.L.R.; Zhao, W.; Bandinelli, S.; Ferrucci, L.; Hernandez, D.G.; Singleton, A.B.; Harris, S.E.; Starr, J.M.; Kiel, D.P.; McLean, R.R.; Just, A.C.; Schwartz, J.; Spiro, A., 3rd; Vokonas, P.; Amin, N.; Ikram, M.A.; Uitterlinden, A.G.; van Meurs, J.B.J.; Spector, T.D.; Steves, C.; Baccarelli, A.A.; Bell, J.T.; van Duijn, C.M.; Fornage, M.; Hsu, Y.H.; Mill, J.; Mosley,

T.H.; Seshadri, S.; Deary, I.J. Meta-analysis of epigenome-wide association studies of cognitive abilities. Molecular psychiatry 2018;23:2133-2144

- Markevych, I.; Tiesler, C.M.; Fuertes, E.; Romanos, M.; Dadvand, P.; Nieuwenhuijsen, M.J.; Berdel, D.; Koletzko, S.; Heinrich, J. Access to urban green spaces and behavioural problems in children: Results from the GINIplus and LISAplus studies. Environment international 2014;71:29-35
- Markunas, C.A.; Xu, Z.; Harlid, S.; Wade, P.A.; Lie, R.T.; Taylor, J.A.; Wilcox, A.J. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environmental health perspectives 2014;122:1147-1153
- Mayfield, C.A.; Child, S.; Weaver, R.G.; Zarrett, N.; Beets, M.W.; Moore, J.B. Effectiveness of a playground intervention for antisocial, prosocial, and physical activity behaviors. Journal of school health 2017;87:338-345
- McEachan, R.R.; Yang, T.C.; Roberts, H.; Pickett, K.E.; Arseneau-Powell, D.; Gidlow, C.J.; Wright, J.; Nieuwenhuijsen, M. Availability, use of, and satisfaction with green space, and children's mental wellbeing at age 4 years in a multicultural, deprived, urban area: results from the born in Bradford cohort study. The Lancet Planetary Health 2018;2:e244-e254
- McGowan, P.O.; Sasaki, A.; D'alessio, A.C.; Dymov, S.; Labonté, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature neuroscience 2009;12:342-348
- Montague, P.R.; Hyman, S.E.; Cohen, J.D. Computational roles for dopamine in behavioural control. Nature 2004;431:760-767
- Nakamura, M.; Ueno, S.; Sano, A.; Tanabe, H. The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Molecular psychiatry 2000;5:32-38
- Needleman, H.L.; Gatsonis, C.A. Low-level lead exposure and the IQ of children: a meta-analysis of modern studies. Jama 1990;263:673-678
- Nielsen, C.C.; Gascon, M.; Osornio-Vargas, A.R.; Shier, C.; Guttman, D.S.; Becker, A.B.; Azad, M.B.; Sears, M.R.; Lefebvre, D.L.; Moraes, T.J. Natural environments in the urban context and gut microbiota in infants. Environment international 2020;142:105881
- Paquette, A.G.; Houseman, E.A.; Green, B.B.; Lesseur, C.; Armstrong, D.A.; Lester, B.; Marsit, C.J. Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. Epigenetics 2016;11:603-613
- Park, K.; Yoon, J.; Park, H.; Park, H.; Kwon, K. Development of KEDI-WISC, individual intelligence test for Korean children. Seoul: Korean Educational Development Institute 1996;
- Park, M., Song, J. J., Oh, S. J., Shin, M. S., Lee, J. H., & Oh, S. H. The relation between nonverbal IQ and postoperative CI outcomes in cochlear implant users: preliminary result. BioMed research international 2015:1-7.
- Park, S.-A.; Cho, M.-K.; Yoo, M.H.; Kim, S.-Y.; Im, E.-A.; Song, J.-E.; Lee, J.-C.; Jun, I.G. Horticultural activity program for improving emotional intelligence, prosocial behavior, and scientific investigation abilities and attitudes in kindergarteners. HortTechnology 2016;26:754-761
- Park, Y., Song, I., Yi, J., Yi, S. J., & Kim, S. Y. Web-Based Visualization of Scientific Research Findings: National-Scale Distribution of Air Pollution

in South Korea. International journal of environmental research and public health 2020; 17:1-14.

- Pearson, A.L.; Pechal, J.; Lin, Z.; Benbow, M.E.; Schmidt, C.; Mavoa, S. Associations detected between measures of neighborhood environmental conditions and human microbiome diversity. Science of The Total Environment 2020:141029
- Peirce, T.R.; Bray, N.J.; Williams, N.M.; Norton, N.; Moskvina, V.; Preece, A.; Haroutunian, V.; Buxbaum, J.D.; Owen, M.J.; O'Donovan, M.C. Convergent evidence for 2', 3'-cyclic nucleotide 3'-phosphodiesterase as a possible susceptibility gene for schizophrenia. Archives of general psychiatry 2006;63:18-24
- Pelley, J.L. From the Ground up: Assessing Bacterial Diversity in the Air Space of an Urban Park. Environmental health perspectives 2021;129:014001
- Peng, C.; den Dekker, M.; Cardenas, A.; Rifas-Shiman, S.L.; Gibson, H.; Agha, G.; Harris, M.H.; Coull, B.A.; Schwartz, J.; Litonjua, A.A. Residential proximity to major roadways at birth, DNA methylation at birth and midchildhood, and childhood cognitive test scores: project viva (Massachusetts, USA). Environmental health perspectives 2018;126:097006
- Pinault, L.; Christidis, T.; Toyib, O.; Crouse, D. L. Ethnocultural and socioeconomic disparities in exposure to residential greenness within urban Canada. Health reports 2021;32: 3-14.
- Prescott, S.L.; Logan, A.; Millstein, R.; Katszman, M. Biodiversity, the human microbiome and mental health: moving toward a new clinical ecology for the 21st Century. Int J Biodiversity 2016;2016:1-18
- Putra, I.G.N.E.; Astell-Burt, T.; Cliff, D.P.; Vella, S.A.; John, E.E.; Feng, X. The relationship between green space and prosocial behaviour among children and adolescents: A systematic review. Frontiers in Psychology 2020;11
- Rajkowska, G.; Mahajan, G.; Maciag, D.; Sathyanesan, M.; Iyo, A.H.; Moulana, M.; Kyle, P.B.; Woolverton, W.L.; Miguel-Hidalgo, J.J.; Stockmeier, C.A.; Newton, S. S. Oligodendrocyte morphometry and expression of myelin–Related mRNA in ventral prefrontal white matter in major depressive disorder. Journal of psychiatric research 2015;65:53-62
- Reik, W.Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007;447:425-432
- Reuben, A.; Arseneault, L.; Belsky, D.W.; Caspi, A.; Fisher, H.L.; Houts, R.M.; Moffitt, T.E.; Odgers, C. Residential neighborhood greenery and children's cognitive development. Social Science & Medicine 2019;230:271-279
- Richardson, E.A.; Mitchell, R.; Hartig, T.; De Vries, S.; Astell-Burt, T.; Frumkin, H. Green cities and health: a question of scale? J Epidemiol Community Health 2012;66:160-165
- Richardson, E.A.; Pearce, J.; Shortt, N.K.; Mitchell, R. The role of public and private natural space in children's social, emotional and behavioural development in Scotland: A longitudinal study. Environmental research 2017;158:729-736
- Ronfani, L.; Brumatti, L.V.; Mariuz, M.; Tognin, V.; Bin, M.; Ferluga, V.; Knowles, A.; Montico, M.; Barbone, F. The complex interaction between home environment, socioeconomic status, maternal IQ and early child

neurocognitive development: a multivariate analysis of data collected in a newborn cohort study. PloS one 2015;10:e0127052

- Savage, J.E.; Jansen, P.R.; Stringer, S.; Watanabe, K.; Bryois, J.; de Leeuw, C.A.; Nagel, M.: Awasthi, S.: Barr, P.B.: Coleman, J.R.I.: Grasby, K.L.: Hammerschlag, A.R.; Kaminski, J.A.; Karlsson, R.; Krapohl, E.; Lam, M.; Nygaard, M.; Reynolds, C.A.; Trampush, J.W.; Young, H.; Zabaneh, D.; Hägg, S.; Hansell, N.K.; Karlsson, I.K.; Linnarsson, S.; Montgomery, G.W.; Muñoz-Manchado, A.B.; Quinlan, E.B.; Schumann, G.; Skene, N.G.; Webb, B.T.; White, T.; Arking, D.E.; Avramopoulos, D.; Bilder, R.M.; Bitsios, P.; Burdick, K.E.; Cannon, T.D.; Chiba-Falek, O.; Christoforou, A.; Cirulli, E.T.; Congdon, E.; Corvin, A.; Davies, G.; Deary, I.J.; DeRosse, P.; Dickinson, D.; Djurovic, S.; Donohoe, G.; Conley, E.D.; Eriksson, J.G.; Espeseth, T.; Freimer, N.A.; Giakoumaki, S.; Giegling, I.; Gill, M.; Glahn, D.C.; Hariri, A.R.; Hatzimanolis, A.; Keller, M.C.; Knowles, E.; Koltai, D.; Konte, B.; Lahti, J.; Le Hellard, S.; Lencz, T.; Liewald, D.C.; London, E.; Lundervold, A.J.; Malhotra, A.K.; Melle, I.; Morris, D.; Need, A.C.; Ollier, W.; Palotie, A.; Payton, A.; Pendleton, N.; Poldrack, R.A.; Räikkönen, K.; Reinvang, I.; Roussos, P.; Rujescu, D.; Sabb, F.W.; Scult, M.A.; Smeland, O.B.; Smyrnis, N.; Starr, J.M.; Steen, V.M.; Stefanis, N.C.; Straub, R.E.; Sundet, K.; Tiemeier, H.; Voineskos, A.N.; Weinberger, D.R.; Widen, E.; Yu, J.; Abecasis, G.; Andreassen, O.A.; Breen, G.; Christiansen, L.; Debrabant, B.; Dick, D.M.; Heinz, A.; Hjerling-Leffler, J.; Ikram, M.A.; Kendler, K.S.; Martin, N.G.; Medland, S.E.; Pedersen, N.L.; Plomin, R.; Polderman, T.J.C.; Ripke, S.; van der Sluis, S.; Sullivan, P.F.; Vrieze, S.I.; Wright, M.J.; Posthuma, D. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature genetics 2018;50:912-919
- Schlagenhauf, F.; Rapp, M.A.; Huys, Q.J.; Beck, A.; Wüstenberg, T.; Deserno, L.; Buchholz, H.G.; Kalbitzer, J.; Buchert, R.; Bauer, M. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Human brain mapping 2013;34:1490-1499
- Schutte, A.R.; Torquati, J.C.; Beattie, H.L. Impact of urban nature on executive functioning in early and middle childhood. Environment and Behavior 2017;49:3-30
- Shin, H. S., Lee, S. H., & Chu, J. M. Development of Composite Deprivation Index for Korea: The Correlation with Standardized Mortality Ratio. Journal of Preventive Medicine and Public Health 2009;42:392-402
- Smajlagić, D.; Kvarme Jacobsen, K.; Myrum, C.; Haavik, J.; Johansson, S.; Zayats, T. Moderating effect of mode of delivery on the genetics of intelligence: Explorative genome-wide analyses in ALSPAC. Brain and behavior 2018;8:e01144
- Sniekers, S.; Stringer, S.; Watanabe, K.; Jansen, P.R.; Coleman, J.R.I.; Krapohl, E.; Taskesen, E.; Hammerschlag, A.R.; Okbay, A.; Zabaneh, D.; Amin, N.; Breen, G.; Cesarini, D.; Chabris, C.F.; Iacono, W.G.; Ikram, M.A.; Johannesson, M.; Koellinger, P.; Lee, J.J.; Magnusson, P.K.E.; McGue, M.; Miller, M.B.; Ollier, W.E.R.; Payton, A.; Pendleton, N.; Plomin, R.; Rietveld, C.A.; Tiemeier, H.; van Duijn, C.M.; Posthuma, D. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and

genes influencing human intelligence. Nature genetics 2017;49:1107-1112

- Sobko, T.; Jia, Z.; Brown, G. Measuring connectedness to nature in preschool children in an urban setting and its relation to psychological functioning. PLoS One 2018;13:e0207057
- Sugiyama, T.; Leslie, E.; Giles-Corti, B.; Owen, N. Associations of neighbourhood greenness with physical and mental health: do walking, social coherence and local social interaction explain the relationships? Journal of Epidemiology Community Health 2008;62:e9-e9
- Tatsuta, N.; Nakai, K.; Kasanuma, Y.; Iwai-Shimada, M.; Sakamoto, M.; Murata, K.; Satoh, H. Prenatal and postnatal lead exposures and intellectual development among 12-year-old Japanese children. Environmental research 2020;189:109844

The Seoul Institute. http://data.si.re.kr/2015br10-parks-and-green.

- Toftager, M.; Ekholm, O.; Schipperijn, J.; Stigsdotter, U.; Bentsen, P.; Grønbæk, M.; Randrup, T.B.; Kamper-Jørgensen, F. Distance to green space and physical activity: a Danish national representative survey. Journal of Physical Activity and Health 2011;8:741-749
- Tzika, E.; Dreker, T.; Imhof, A. Epigenetics and metabolism in health and disease. Frontiers in genetics 2018;9:361
- Van Aart, C.J.; Michels, N.; Sioen, I.; De Decker, A.; Bijnens, E.M.; Janssen, B.G.; De Henauw, S.; Nawrot, T.S. Residential landscape as a predictor of psychosocial stress in the life course from childhood to adolescence. Environment international 2018;120:456-463
- Van den Berg, A.E.; Jorgensen, A.; Wilson, E.R. Evaluating restoration in urban green spaces: Does setting type make a difference? Landscape and Urban Planning 2014;127:173-181
- Van Dijk-Wesselius, J.; Maas, J.; Hovinga, D.; Van Vugt, M.; Van den Berg, A. The impact of greening schoolyards on the appreciation, and physical, cognitive and social-emotional well-being of schoolchildren: A prospective intervention study. Landscape and urban planning 2018;180:15-26
- Vanaken, G.-J.; Danckaerts, M. Impact of green space exposure on children's and adolescents' mental health: A systematic review. International journal of environmental research public health 2018;15:2668
- Vandenbergh, D.; Thompson, M.; Cook, E.; Bendahhou, E.; Nguyen, T.; Krasowski, M.; Zarrabian, D.; Comings, D.; Sellers, E.; Tyndale, R. Human dopamine transporter gene: coding region conservation among normal, Tourette's disorder, alcohol dependence and attention-deficit hyperactivity disorder populations. Molecular psychiatry 2000;5:283-292
- Vidal, A.C.; Neelon, S.E.B.; Liu, Y.; Tuli, A.M.; Fuemmeler, B.F.; Hoyo, C.; Murtha, A.P.; Huang, Z.; Schildkraut, J.; Overcash, F. Maternal stress, preterm birth, and DNA methylation at imprint regulatory sequences in humans. Genetics & epigenetics 2014;6:GEG. S18067
- Volf, N.V.; Sinyakova, N.A.; Osipova, L.P.; Kulikov, A.V.; Belousova, L.V. Association between intelligence quotient and the 5HTTLPR polymorphism of human serotonin transporter coding gene. Annals of Neuroscience and Psychology 2015;2
- Wan, C.; Shen, G.Q.; Choi, S. Underlying relationships between public urban green spaces and social cohesion: A systematic literature review. City, Culture

and Society 2021:100383

- Wang, H.-F.; Qiu, J.-X.; Breuste, J.; Friedman, C.R.; Zhou, W.-Q.; Wang, X.-K. Variations of urban greenness across urban structural units in Beijing, China. Urban Forestry & Urban Greening 2013;12:554-561
- Ward, J.S.; Duncan, J.S.; Jarden, A.; Stewart, T. The impact of children's exposure to greenspace on physical activity, cognitive development, emotional wellbeing, and ability to appraise risk. Health Place 2016;40:44-50
- Weiss, B.; Dang, H.-M.; Lam, T.T.; Nguyen, M.C. Urbanization, and child mental health and life functioning in Vietnam: implications for global health disparities. Social Psychiatry Psychiatric Epidemiology 2020:1-11
- Weisstein EW. Bonferroni Correction. MathWorld--A Wolfram Web Resource 2004. [URL: http://mathworld.wolfram.com/BonferroniCorrection.html.].
- Whitten, T.; Stevens, R.; Ructtinger, L.; Tzoumakis, S.; Green, M.J.; Laurens, K.R.; Holbrook, A.; Carr, V.J. Connection to the natural environment and well-being in middle childhood. Ecopsychology 2018;10:270-279
- WHO. UN World Urbanization Prospects. 2018
- Wu, J.; Jackson, L. Inverse relationship between urban green space and childhood autism in California elementary school districts. Environment international 2017;107:140-146
- Xu, R.; Li, S.; Li, S.; Wong, E.M.; Southey, M.C.; Hopper, J.L.; Abramson, M.J.; Guo, Y. Residential surrounding greenness and DNA methylation: An epigenome-wide association study. Environment international 2021;154:106556
- Younan, D.; Tuvblad, C.; Li, L.; Wu, J.; Lurmann, F.; Franklin, M.; Berhane, K.; McConnell, R.; Wu, A.H.; Baker, L.A. Environmental determinants of aggression in adolescents: Role of urban neighborhood greenspace. Journal of the American academy of child & adolescent psychiatry 2016;55:591-601
- Young, L.E.; Fernandes, K.; McEvoy, T.G.; Butterwith, S.C.; Gutierrez, C.G.; Carolan, C.; Broadbent, P.J.; Robinson, J.J.; Wilmut, I.; Sinclair, K.D. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nature genetics 2001;27:153-154
- Yu, G.; He, Q.-Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Molecular BioSystems 2016;12:477-479
- Zabaneh, D.; Krapohl, E.; Gaspar, H.A.; Curtis, C.; Lee, S.H.; Patel, H.; Newhouse, S.; Wu, H.M.; Simpson, M.A.; Putallaz, M.; Lubinski, D.; Plomin, R.;
 Breen, G. A genome-wide association study for extremely high intelligence. Molecular psychiatry 2018;23:1226-1232
- Zach, A.; Meyer, N.; Hendrowarsito, L.; Kolb, S.; Bolte, G.; Nennstiel-Ratzel, U.; Stilianakis, N.I.; Herr, C.; Group, G.S. Association of sociodemographic and environmental factors with the mental health status among preschool children—Results from a cross-sectional study in Bavaria, Germany. International journal of hygiene and environmental health 2016;219:458-467
- Zhai, D.; Li, S.; Zhao, Y.; Lin, Z. SLC6A3 is a risk factor for Parkinson's disease: A meta-analysis of sixteen years' studies. Neuroscience letters 2014;564:99-104
- Zhao, M.; Kong, L.; Qu, H. A systems biology approach to identify intelligence

quotient score-related genomic regions and pathways relevant to potential therapeutic treatments. Scientific reports 2014;4:1-7

Zhu, Z.; Chen, B.; Yan, H.; Fang, W.; Zhou, Q.; Zhou, S.; Lei, H.; Huang, A.; Chen, T.; Gao, T.; Chen, L.; Chen, J.; Ni, D.; Gu, Y.; Liu, J.; Zhang, W.; Rao, Y. Multi-level genomic analyses suggest new genetic variants involved in human memory. European Journal of Human Genetics 2018;26:1668-1678

초록

도시지역 녹지 노출과 어린이 인지발 달과 연관성 연구

서울대학교 대학원 의학과 예방의학 전공 이경신

배경: 거주지 주변 녹지의 노출은 인지 능력 향상을 포함해서 아동에게 정신 건강상의 이익을 가져온다고 보고되었다. 본 연구에서는 임신 중 녹지 노출과 아이의 6세 시점에서의 녹지 노출이 아이의 6세 시점에서 의 아이큐 점수와 연관성이 있는지 코호트 연구디자인으로 서울지역 189명의 아동에게서 분석되었다. 이러한 녹지 노출은 자연 녹지와 인공 녹지로 구분하여 녹지의 유형에 따른 아이큐 점수와의 연관성 분석을 수 행하였다. 또한, 이러한 인지기능의 발달에 영향에 대한 생물학적 메커 니즘을 설명하기 위해 녹지 노출에 따른 후생 유전자(DNA 메틸화; DNAm)의 변화를 확인함으로써, 녹지 노출이 아동의 인지발달에 미치는 간접 경로에 대한 분석을 수행하였다.

방법: 집 주변 녹지 노출과 아동의 IQ의 연관성을 분석하기 위해 임신중 및 6세 때 서울에 거주한 전향적 코호트의 엄마-아이 189명을 대상으 로 실시하였다. 거주지 주변 녹지는 집주소 주변 반경 100~2000m 이 내에 있는 녹지를 평가하였고, 이는 환경공간정보서비스에서 제공되는 토지피복지도인 위성 이미지 데이터를 활용해 분석되었다. 녹지는 전체 녹지, 자연 녹지와 인공 녹지로 나누어 분석하였다.

또한, 녹지 노출과 DNAm 변화 사이의 연관성을 조사하기 위해, 문헌 연구를 통해 인지기능과 관련된 후보 유전자를 선택해서, 2세 아동 59명 을 대상으로 녹지 노출에 따라서 DNAm의 변화의 유의한 차이가 있는 CpG sites를 확인하였다. 유의한 CpG site를 가지고 6세 IQ(총 아이큐

점수, 언어성 아이큐점수, 동작성 아이큐점수)와의 연관성을 분석하였다. 결과: 서울지역 내 임신 중 및 6세 당시의 녹지 노출과 아이큐와의 연관 성 분석을 수행한 결과, 임신 시점에서 거주지 주변 반경 500m 및 1000m에 녹지 비율이 증가될수록 아이의 아이큐점수와 양의 상관성을 보이는 것을 확인 하였다. 그러나 6세 시점에서의 녹지 노출은 100-2000m에서 모두 유의하게 아이큐와 연관성이 있었다. 특히, 아이들의 IQ점수는 자연녹지보다는 인공 녹지와 더 강한 연관성을 보였다. 녹지 노 출에 따른 DNA메틸화의 변화가 있는지 확인하기 위해 문헌 리뷰에서 인 지 능력과 관련된 209 CpGs와 8534 CpGs를 확인했다. 이 CpG site를 가지고 2세 시점의 녹지 노출과의 연관성을 분석했을 때. 25 개의 CpGs 들은 거주지 주변 녹지 노출 정도와 유의한 연관성을 보였고, 이 CpG site 중 알려진 유전자는 총 22개였다. 또한, 2세 녹지 노출에 따라 차이 를 보이는 25개의 CpG들과 6세 때의 IQ와 통계적 유의성이 있는지 확 인하였는데, 이중에 *SLC6A3* at cg26269038에서 통계적으로 유의하게 6세의 동작성 아이큐 점수와 관련이 있는 것으로 확인 되었다 (Bonferroni correction P < 0.002).

결론: 본 연구결과는 거주지 주변의 녹지 노출정도가 증가할 수록 어린이 인지발달의 긍정적 효과를 가져온다는 연구결과이며, 2세 아동에서의 녹 지 노출이 DNA메틸화에 영향을 주어, 6세 아동의 인지기능발달에도 영 향을 미칠 수 있음을 시사한다. 이 연구결과를 통해 어린이 및 임신부를 위한 녹지조성 계획이 주는 건강상의 이점을 확인할 수 있었고, 이 자료 를 바탕으로 도시 계획 및 공공 건강 지원계획에 근거자료로 활용될 수 있다.

주요어: 어린이, 녹지, 인공녹지, 자연녹지, DNA메틸화, 아이큐 **학번:** 2019-39610

137

Conflict of Interest

The authors declare no conflict of interest.

Appendix

Supplementary table 1. Previous EWAS or GWAS studies for the association between DNA methylation and IQ.

No	Author	Title	Measurement Of cognitive ability	Age for methylati on data (years)	Number of study participa nts	Methylation analysis method
EWA			E II 1 X 0		1.60	
1	Krushkal et al. 2014	Epigenetic analysis of neurocognitive development at 1 year of age in a community-based pregnancy cohort	Full-scale IQ score	1	168	Humanmethyl tion27 BeadChip
2	Paquette et al. 2016	Regions of variable DNA methylation in human placenta associated with newborn neurobehavior	Neurobehaviora l assessments	Newborn	335	HumanMethyl tion450 BeadChips
3	Linnér et al. 2017	An epigenome-wide association study meta- analysis of educational attainment	Educational attainment	Range 26.6-79.1	10767	HumanMethyl tion450 BeadChips
4	Caramaschi et al. 2017	Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child's IQ at age 8, cognitive performance and educational attainment: a two-step Mendelian randomization study	Total IQ, Verbal IQ, Performance IQ	8.6	1557	HumanMethyl tion450 BeadChips
5	Marioni et al. 2018	Meta-analysis of epigenome-wide association studies of cognitive abilities	Memory, Digit Symbol test, Verbal Fluency, MMSE	56.2-79.1	Range 219-2307	HumanMethyl tion450 BeadChips
6	Caramaschi et al. 2020	Meta-analysis of epigenome-wide associations between DNA methylation at birth and childhood cognitive skills	Full-scale IQ score	4-9	2196- 3798	HumanMethyl tion450 BeadChips
GWA	AS					
1	Kong et al. 2013	IQdb: an intelligence quotient score-associated gene resource for human intelligence	IQ	Not mentione d	Not mentione d	HumanMethyl tion450 BeadChips
2	Zhao et al. 2014	A systems biology approach to identify intelligence quotient score- related genomic regions, and pathways relevant to potential therapeutic treatments	IQ	Not mentione d	Not mentione d	Not mentioned
3	Benyamin et al. 2014	Childhood intelligence is heritable, highly polygenic and associated with FNBP1L	IQ or Cognitive ability	Range 6– 18 years	17 989	Not mentioned
4	Coleman et al. 2019	Biological annotation of genetic loci associated with intelligence in a meta- analysis of 87,740	Performance on the SAT or ACT	6–18 years	87,740	Illumina HumanHap55 (ALSPAC) Illumina

		individuals				Human610_Q adv1 ch (LBC1936) Illumina Human660W Quad Array(Raine) Illumina 610 array(GenR)
5	Hill et al. 2014	Human cognitive ability is influenced by genetic variation in components of postsynaptic signaling complexes assembled by NMDA receptors and MAGUK proteins	Crystallized cognitive ability, memory and processing speed	Middle- aged and older	3511	UK BiLEV Axiom array, Illumina Infinium OmniExpress
6	Jansen et al. 2020	Genome-wide meta- analysis of brain volume identifies genomic loci and genes shared with intelligence	Brain volume & IQ overlapping	Not mentione d	47,316	Not mentioned
7	Kornilov et al. 2019	Genome-Wide Homozygosity Mapping Reveals Genes Associated With Cognitive Ability in Children From Saudi Arabia	General cognitive ability	7.34 to 18.71 years	7,186	UK BILEV AxiomTM array, UKBTN Axiom array
8	Luciano et al. 2006	Genome-wide Scan of IQ Finds Significant Linkage to a Quantitative Trait Locus on 2q	Multidimension al Aptitude Battery subtests and WAIS-R Digit Symbol subtest, and two word- recognition tests	15.7-22.2 years	361 families	Illumina, HumanCoreEx ome array
9	Smajlagić et al. 2018	Moderating effect of mode of delivery on the genetics of intelligence: Explorative genome-wide analyses in ALSPAC	WISC	8.5 years	2,421	Not mentioned
10	Zabaneh et al. 2018	A genome-wide association study for extremely high intelligence	IQ	12 years and adults	1238case s / 8172cont rols	Illumina Human Ha 550 quad
11	Zhu et al. 2018	Multi-level genomic analyses suggest new genetic variants involved in human memory	Long-term, and short-term memory	Mean age 18	1522- 1623	Illumina Human Omn 2.5 Qua Beadchip
12	Sniekers et al. 2017	Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence	IQ	Children(under 13) to adult(18- 78years)	78,308	HumanOmniZ ongHua-8 Beadchip v1.1
13	Savage et al. 2018	Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence	IQ	Range 5- 98	269,867	Not mentioned

Supplementary Table 2. List of selected 25 CpG sites, which were associated with
greenness in children (n=59)

N o	CpG site	UCSC RefGene Name	Description*	SNP distanc e	Minor allele	Study
1	cg14464361	AGAP1	ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 1	36	frequency 0.000200	Savage et al. 2018
2	cg23651585	AUTS2	Activator Of Transcription And Developmental Regulator AUTS2	27	0.000200	Savage et al. 2018
3	cg17146029	AUTS2	Activator Of Transcription And Developmental Regulator AUTS2	2	0.000399	Savage et al. 2018
4	cg11176256	BAIAP2	BAR/IMD Domain Containing Adaptor Protein 2	43	0.003594	Savage et al. 2018
5	cg12414502	BTN2A1	Butyrophilin Subfamily 2 Member A1	51	0.000200	Savage et al. 2018
6	cg07266431	CDK6	Cyclin Dependent Kinase 6	38	0.003794	Marioni et al. 2018
7	cg21175642	CELSR3	Cadherin EGF LAG Seven-Pass G-Type Receptor 3	47	0.000200	Savage et al. 2018
8	cg27492942	CISD3	CDGSH Iron Sulfur Domain 3	33	0	Marioni et al. 2018
9	cg27636559	EFTUD1	Elongation Factor Like GTPase 1	4	0.004593	Savage et al. 2018
10	cg00809988	ELAVL2	Embryonic Lethal, Abnormal Vision, Like RNA Binding Protein 2	3	0.000200	Savage et al. 2018
11	cg19258882	ERBB3	Erb-B2 Receptor Tyrosine Kinase 3	32	0.000200	Savage et al. 2018
12	cg00252813	GAPDH	Glyceraldehyde-3- Phosphate Dehydrogenase	4	0.003794	Marioni et al. 2018
13	cg25189904	GNG12	G Protein Subunit Gamma 12	3	0.0002	Marioni et al. 2018
14	cg23159678	NOVA1	NOVA Alternative Splicing Regulator 1	47	0.000399	Savage et al. 2018
15	cg03367519	PDE4D	Phosphodiesterase 4D	12	0.002097	Savage et al. 2018
16	cg27609819	PLCL1	Phospholipase C Like 1	47	0.000599	Savage et al. 2018
17	cg05897638	PROS1	Protein S	38	0.002995	Savage et al. 2018
18	cg18311871	PTPRN2	Protein Tyrosine Phosphatase Receptor Type N2	11	0.005591	Savage et al. 2018
19	cg13599020	SAMD3	Sterile Alpha Motif Domain Containing 3	7	0.001597	Marioni et al. 2018
20	cg26269038	SLC6A3	Solute Carrier Family 6 Member 3	10	0.027356	Kong et al. 2013
21	cg05016953	SLC6A4	Solute Carrier Family 6 Member 4	29	0.000399	Savage et al. 2018
22	cg13092901	TYMP	Thymidine Phosphorylase	43	0.006589	Marioni et al. 2018
23	cg16296679	WBP2N L	WBP2 N-Terminal Like	11	0.000599	Savage et al. 2018
				20	0.000200	Maniani et al. 2019
24	cg04789403	NA	-	39	0.000399	Marioni et al. 2018

ID	Description	GeneR atio	BgRatio	p.adjust	qvalue	geneID	Cou nt
R-HSA- 112311	Neurotransmitter clearance	2/14	10/10654	0.009	0.006	SLC6A3/SLC6 A4	2
R-HSA-	RUNX1 interacts with co-	1/14	38/10654	0.117	0.075	AUTS2	1
8939243	factors whose precise effect on						
	RUNX1 targets is not known						
R-HSA-	Transcriptional regulation by	2/14	239/10654	0.117	0.075	AUTS2/CDK6	2
8878171	RUNX1		2000100001	01117	0.072	110102/02/10	-
R-HSA-	RHO GTPases Activate WASPs	1/14	36/10654	0.117	0.075	BAIAP2	1
5663213	and WAVEs	1/11	20,10021	01117	0.070	2	•
R-HSA-	Butyrophilin (BTN) family	1/14	12/10654	0.117	0.075	BTN2A1	1
8851680	interactions	1/14	12/10034	0.117	0.075	DINZAI	1
R-HSA-	Regulation of RUNX1	1/14	17/10654	0.117	0.075	CDK6	1
8934593	Expression and Activity	1/14	17/10034	0.117	0.075	CDK0	1
		1/14	22/10/54	0.117	0.075	CDV	1
R-HSA-	Oncogene Induced Senescence	1/14	33/10654	0.117	0.075	CDK6	1
2559585		1/14	10/10/54	0.117	0.075	CDDD3	1
R-HSA-	Downregulation of	1/14	13/10654	0.117	0.075	ERBB3	1
1358803	ERBB2:ERBB3 signaling	1/14	10/10/21	0.117	0.075		
R-HSA-	ERBB2 Activates PTK6	1/14	13/10654	0.117	0.075	ERBB3	1
8847993	Signaling						
R-HSA-	ERBB2 Regulates Cell Motility	1/14	15/10654	0.117	0.075	ERBB3	1
6785631							
R-HSA-	PI3K events in ERBB2	1/14	16/10654	0.117	0.075	ERBB3	1
1963642	signaling						
R-HSA-	SHC1 events in ERBB2	1/14	22/10654	0.117	0.075	ERBB3	1
1250196	signaling						
R-HSA-	Downregulation of ERBB2	1/14	29/10654	0.117	0.075	ERBB3	1
8863795	signaling	1/11	27/10001	01117	0.070	Libbo	-
R-HSA-	Gluconeogenesis	1/14	34/10654	0.117	0.075	GAPDH	1
70263	Gluconcogenesis	1/14	54/10054	0.117	0.075	OAI DII	1
R-HSA-	G beta:gamma signalling	1/14	18/10654	0.117	0.075	GNG12	1
8964315	through BTK	1/14	10/10034	0.117	0.075	0//012	1
R-HSA-	Prostacyclin signalling through	1/14	19/10654	0.117	0.075	GNG12	1
		1/14	19/10034	0.117	0.075	0//012	1
392851	prostacyclin receptor	1/14	20/10/54	0.117	0.075	CNC12	1
R-HSA-	G beta:gamma signalling	1/14	20/10654	0.117	0.075	GNG12	1
418217 D 1101	through PLC beta	1/14	20/10/51	0.117	0.075	CN/C12	4
R-HSA-	G beta:gamma signalling	1/14	20/10654	0.117	0.075	GNG12	1
8964616	through CDC42						
R-HSA-	Presynaptic function of Kainate	1/14	21/10654	0.117	0.075	GNG12	1
500657	receptors						
R-HSA-	ADP signalling through P2Y	1/14	22/10654	0.117	0.075	GNG12	1
392170	purinoceptor 12						
R-HSA-	Thromboxane signalling	1/14	23/10654	0.117	0.075	GNG12	1
428930	through TP receptor						
R-HSA-	Activation of G protein gated	1/14	25/10654	0.117	0.075	GNG12	1
1296041	Potassium channels						-
R-HSA-	G protein gated Potassium	1/14	25/10654	0.117	0.075	GNG12	1
1296059	channels	1/14	25/10054	0.117	0.075	011012	1
R-HSA-	G beta:gamma signalling	1/14	25/10654	0.117	0.075	GNG12	1
392451	through PI3Kgamma	1/14	23/10034	0.117	0.075	0//012	1
		1/14	25/10/54	0.117	0.075	CNC12	1
R-HSA-	ADP signalling through P2Y	1/14	25/10654	0.117	0.075	GNG12	1
418592	purinoceptor 1	1 / 1	05/10/5	0.117	0.07-	CNC12	
R-HSA-	Inhibition of voltage gated	1/14	25/10654	0.117	0.075	GNG12	1
997272	Ca2+ channels via						
	Gbeta/gamma subunits						
R-HSA-	G-protein activation	1/14	28/10654	0.117	0.075	GNG12	1
202040							
R-HSA-	Adrenaline, noradrenaline	1/14	28/10654	0.117	0.075	GNG12	1
400042	inhibits insulin secretion						
R-HSA-	Inwardly rectifying K+	1/14	31/10654	0.117	0.075	GNG12	1
K-115/A-							

Supplementary Table 3. List of 20 top-ranked genes in *Reactome* pathway analysis

R-HSA- 392518	Signal amplification	1/14	32/10654	0.117	0.075	GNG12	1
R-HSA- 397795	G-protein beta:gamma signalling	1/14	32/10654	0.117	0.075	GNG12	1
R-HSA- 451326	Activation of kainate receptors upon glutamate binding	1/14	32/10654	0.117	0.075	GNG12	1
R-HSA- 456926	Thrombin signalling through proteinase activated receptors (PARs)	1/14	32/10654	0.117	0.075	GNG12	1
R-HSA- 163359	Glucagon signaling in metabolic regulation	1/14	33/10654	0.117	0.075	GNG12	1
R-HSA- 420092	Glucagon-type ligand receptors	1/14	33/10654	0.117	0.075	GNG12	1
R-HSA- 977444	GABA B receptor activation	1/14	39/10654	0.117	0.075	GNG12	1
R-HSA- 991365	Activation of GABAB receptors	1/14	39/10654	0.117	0.075	GNG12	1
R-HSA- 180024	DARPP-32 events	1/14	26/10654	0.117	0.075	PDE4D	1
R-HSA- 111885	Opioid Signalling	2/14	91/10654	0.117	0.075	PDE4D/GNG12	2
R-HSA- 159740	Gamma-carboxylation of protein precursors	1/14	10/10654	0.117	0.075	PROS1	1
R-HSA- 159782	Removal of aminoterminal propeptides from gamma- carboxylated proteins	1/14	10/10654	0.117	0.075	PROS1	1
R-HSA- 159854	Gamma-carboxylation, transport, and amino-terminal cleavage of proteins	1/14	11/10654	0.117	0.075	PROS1	1
R-HSA- 140875	Common Pathway of Fibrin Clot Formation	1/14	22/10654	0.117	0.075	PROS1	1
R-HSA- 140877	Formation of Fibrin Clot (Clotting Cascade)	1/14	39/10654	0.117	0.075	PROS1	1
R-HSA- 163841	Gamma carboxylation, hypusine formation and arylsulfatase activation	1/14	39/10654	0.117	0.075	PROS1	1
R-HSA- 76002	Platelet activation, signaling and aggregation	2/14	262/10654	0.117	0.075	PROS1/GNG12	2
R-HSA- 442660	Na+/Cl- dependent neurotransmitter transporters	1/14	19/10654	0.117	0.075	SLC6A3	1
R-HSA- 112315	Transmission across Chemical Synapses	3/14	272/10654	0.117	0.075	SLC6A3/SLC6A 4/GNG12	3
R-HSA- 112316	Neuronal System	3/14	413/10654	0.117	0.075	SLC6A3/SLC6A 4/GNG12	3
R-HSA- 73614	Pyrimidine salvage	1/14	11/10654	0.117	0.075	TYMP	1
R-HSA- 73621	Pyrimidine catabolism	1/14	12/10654	0.117	0.075	ТҮМР	1
R-HSA- 8956321	Nucleotide salvage	1/14	23/10654	0.117	0.075	TYMP	1
R-HSA- 8956319	Nucleobase catabolism	1/14	37/10654	0.117	0.075	ТҮМР	1
R-HSA- 69231	Cyclin D associated events in G1	1/14	44/10654	0.120	0.077	CDK6	1
R-HSA- 69236	G1 Phase	1/14	44/10654	0.120	0.077	CDK6	1
R-HSA- 381676	Glucagon-like Peptide-1 (GLP1) regulates insulin secretion	1/14	42/10654	0.120	0.077	GNG12	1
R-HSA- 6814122	Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding	1/14	42/10654	0.120	0.077	GNG12	1
R-HSA- 432040	Vasopressin regulates renal water homeostasis via	1/14	43/10654	0.120	0.077	GNG12	1

	Aquaparing						
R-HSA-	Aquaporins Regulation of Complement	1/14	47/10654	0.126	0.080	PROS1	1
977606	cascade						
R-HSA- 418597	G alpha (z) signalling events	1/14	48/10654	0.127	0.081	GNG12	1
R-HSA- 1227986	Signaling by ERBB2	1/14	50/10654	0.130	0.083	ERBB3	1
R-HSA-	Aquaporin-mediated transport	1/14	52/10654	0.132	0.084	GNG12	1
445717 R-HSA-	Signaling by PTK6	1/14	54/10654	0.133	0.085	ERBB3	1
8848021 R-HSA-	Signaling by Non-Receptor	1/14	54/10654	0.133	0.085	ERBB3	1
9006927	Tyrosine Kinases						
R-HSA- 977443	GABA receptor activation	1/14	56/10654	0.136	0.086	GNG12	1
R-HSA- 1236394	Signaling by ERBB4	1/14	58/10654	0.136	0.087	ERBB3	1
R-HSA- 166658	Complement cascade	1/14	58/10654	0.136	0.087	PROS1	1
R-HSA-	Regulation of actin dynamics	1/14	61/10654	0.141	0.090	BAIAP2	1
2029482 R-HSA-	for phagocytic cup formation Ca2+ pathway	1/14	62/10654	0.141	0.090	GNG12	1
4086398 R-HSA-	Glycolysis	1/14	71/10654	0.158	0.101	GAPDH	1
70171 R-HSA-	Constitutive Signaling by	1/14	75/10654	0.164	0.104	ERBB3	1
2219530	Aberrant PI3K in Cancer						
R-HSA- 9009391	Extra-nuclear estrogen signaling	1/14	77/10654	0.164	0.104	GNG12	1
R-HSA- 422356	Regulation of insulin secretion	1/14	78/10654	0.164	0.104	GNG12	1
R-HSA- 418594	G alpha (i) signalling events	2/14	406/10654	0.164	0.104	PDE4D/GNG12	2
R-HSA-	G alpha (12/13) signalling	1/14	80/10654	0.166	0.105	GNG12	1
416482 R-HSA-	events Fcgamma receptor (FCGR)	1/14	86/10654	0.173	0.110	BAIAP2	1
2029480 R-HSA-	dependent phagocytosis Transport of bile salts and	1/14	85/10654	0.173	0.110	SLC6A3	1
425366	organic acids, metal ions and amine compounds						
R-HSA- 418346	Platelet homeostasis	1/14	88/10654	0.174	0.111	GNG12	1
R-HSA-	VEGFA-VEGFR2 Pathway	1/14	99/10654	0.177	0.113	BAIAP2	1
4420097 R-HSA-	Signaling by Receptor Tyrosine	2/14	473/10654	0.177	0.113	BAIAP2/ERBB3	2
9006934 R-HSA-	Kinases PI3K/AKT Signaling in Cancer	1/14	101/10654	0.177	0.113	ERBB3	1
2219528 R-HSA-	PI5P, PP2A and IER3 Regulate	1/14	103/10654	0.177	0.113	ERBB3	1
6811558	PI3K/AKT Signaling						
R-HSA- 70326	Glucose metabolism	1/14	91/10654	0.177	0.113	GAPDH	1
R-HSA- 373080	Class B/2 (Secretin family receptors)	1/14	95/10654	0.177	0.113	GNG12	1
R-HSA- 390466	Chaperonin-mediated protein folding	1/14	95/10654	0.177	0.113	GNG12	1
R-HSA-	Potassium Channels	1/14	99/10654	0.177	0.113	GNG12	1
1296071 R-HSA-	Protein folding	1/14	101/10654	0.177	0.113	GNG12	1
391251 R-HSA-	SLC transporter disorders	1/14	99/10654	0.177	0.113	SLC6A3	1
5619102 R-HSA-	Metabolism of nucleotides	1/14	101/10654	0.177	0.113	ТҮМР	1
R-HSA- 15869	wietabolism of nucleotides	1/14	101/10654	0.177	0.113	111/11	1

R-HSA- 194138	Signaling by VEGF	1/14	107/10654	0.180	0.115	BAIAP2	
R-HSA- 2559582	Senescence-Associated Secretory Phenotype (SASP)	1/14	110/10654	0.180	0.115	CDK6	
R-HSA- 199418	Negative regulation of the PI3K/AKT network	1/14	110/10654	0.180	0.115	ERBB3	
R-HSA- 163685	Integration of energy metabolism	1/14	108/10654	0.180	0.115	GNG12	
R-HSA- 2559580	Oxidative Stress Induced Senescence	1/14	125/10654	0.201	0.128	CDK6	
R-HSA- 114608	Platelet degranulation	1/14	129/10654	0.205	0.130	PROS1	
R-HSA- 76005	Response to elevated platelet cytosolic Ca2+	1/14	134/10654	0.210	0.134	PROS1	
R-HSA- 202733	Cell surface interactions at the vascular wall	1/14	137/10654	0.212	0.135	PROS1	-
R-HSA- 3858494	Beta-catenin independent WNT signaling	1/14	146/10654	0.222	0.142	GNG12	
R-HSA- 453279	Mitotic G1-G1/S phases	1/14	149/10654	0.224	0.143	CDK6	
R-HSA- 5619115	Disorders of transmembrane transporters	1/14	176/10654	0.258	0.164	SLC6A3	
R-HSA- 72163	mRNA Splicing - Major Pathway	1/14	183/10654	0.265	0.168	ELAVL2	
R-HSA- 72172	mRNA Splicing	1/14	191/10654	0.272	0.173	ELAVL2	
R-HSA- 2559583	Cellular Senescence	1/14	195/10654	0.274	0.175	CDK6	
R-HSA- 112314	Neurotransmitter receptors and postsynaptic signal transmission	1/14	206/10654	0.285	0.182	GNG12	
R-HSA- 416476	G alpha (q) signaling events	1/14	217/10654	0.296	0.188	GNG12	
R-HSA- 8939211	ESR-mediated signaling	1/14	223/10654	0.300	0.191	GNG12	
R-HSA- 72203	Processing of Capped Intron- Containing Pre-mRNA	1/14	244/10654	0.321	0.204	ELAVL2	
R-HSA- 5673001	RAF/MAP kinase cascade	1/14	249/10654	0.323	0.206	ERBB3	
R-HSA- 425407	SLC-mediated transmembrane transport	1/14	251/10654	0.323	0.206	SLC6A3	
R-HSA- 5684996	MAPK1/MAPK3 signaling	1/14	255/10654	0.324	0.207	ERBB3	
R-HSA- 1257604	PIP3 activates AKT signaling	1/14	264/10654	0.331	0.211	ERBB3	
R-HSA- 9607240	FLT3 Signaling	1/14	267/10654	0.331	0.211	ERBB3	
R-HSA- 5683057	MAPK family signaling cascades	1/14	294/10654	0.354	0.225	ERBB3	
R-HSA- 71387	Metabolism of carbohydrates	1/14	295/10654	0.354	0.225	GAPDH	
R-HSA- 9006931	Signaling by Nuclear Receptors	1/14	299/10654	0.355	0.226	GNG12	
R-HSA- 9006925	Intracellular signaling by second messengers	1/14	305/10654	0.357	0.228	ERBB3	
R-HSA- 195258	RHO GTPase Effectors	1/14	327/10654	0.375	0.239	BAIAP2	
R-HSA- 195721	Signaling by WNT	1/14	331/10654	0.376	0.239	GNG12	
R-HSA- 5663202	Diseases of signal transduction	1/14	377/10654	0.413	0.263	ERBB3	
R-HSA- 194315	Signaling by Rho GTPases	1/14	455/10654	0.473	0.301	BAIAP2	-
R-HSA-	GPCR ligand binding	1/14	468/10654	0.479	0.305	GNG12	

500792							
R-HSA-	Cellular responses to stress	1/14	479/10654	0.480	0.305	CDK6	1
2262752	-						
R-HSA-	Neutrophil degranulation	1/14	480/10654	0.480	0.305	PTPRN2	1
6798695							
R-HSA-	Cellular responses to external	1/14	493/10654	0.485	0.309	CDK6	1
8953897	stimuli						

(a)											
· · ·	Buffer size	100m	100m		n	1000	m	1500m		2000m	
Covariates	Categorical	Mean (SD) or beta (SE)	<i>P</i> -value	Mean (SD) or beta (SE)	P -value						
Children's	Girls	12.27(12.67)	0.642	8.93(6.39)	0.000	8.11(4.46)	0.022	7.75(3.52)	0.024	7.27(2.82)	0.012
sex	Boys	13.12(12.36)	0.642	10.84(7.36)	0.060	9.67(5.35)	0.032	9.09(4.53)	- 0.024	8.41(3.31)	
Maternal age du	uring pregnancy	0.21(0.26)	0.423	0.28(0.14)	0.053	0.18(0.10)	0.080	0.11(0.09)	0.217	0.09(0.07)	0.184
Maternal education - level	≤ university graduate	11.45(12.12)	0.001	8.97(6.34)	. 0001	8.37(4.59)	0.005	8.03(3.76)	0.012	7.62(3.03)	0.014
	\geq graduate school	19.38(12.46)	0.001	14.96(8)	<.0001	11.85(6.03)	0.005	10.67(5.17)	0.012	9.14(3.37)	0.014
Maternal IQ		0.18(0.08)	0.029	0.12(0.04)	0.006	0.08(0.03)	0.006	0.06(0.02)	0.024	0.04(0.02)	0.030
Exposure to ETS during	No	15.82(13.39)	0.199	11.36(7.31)	0.265	9.75(4.43)	0.352	9.34(3.39)	0.248	8.47(2.62)	0.319
pregnancy	Yes	12.29(12.39)		9.65(6.93)		8.72(5.12)		8.29(4.26)	0.210	7.78(3.23)	
during previo	IO ₂ concentration us 3 years in during pregnancy	-0.74(0.32)	0.020	-0.32(0.18)	0.077	-0.18(0.13)	0.151	-0.15(0.11)	0.158	-0.08(0.08)	0.309
	orivation index as SES during	-0.03(0.01)	0.019	-0.03(0.01)	0.0001	-0.03(0.01)	<.0001	-0.03(0.00)	<.0001	-0.02(0.00)	<.0001
Road density during pregnan	in each radius cy	0.12(0.07)	0.074	0.21(0.06)	0.001	0.19(0.05)	<.0001	0.20(0.04)	<.0001	0.20(0.04)	<.0001

Supplementary Table 4. The association between (a) prenatal and (b)postnatal built greenness and covariates

(b)

Covariates	Buffer size	100m		500m		1000r	m	1500n	1	2000m	
	Categorical	Mean(%)(SD) or beta (SE)	<i>P</i> -value	Mean(%)(SD) or beta (SE)	<i>P</i> -value	Mean(%)(SD) or beta (SE)	<i>P</i> -value	Mean(%)(SD) or beta (SE)	P-value	Mean(%)(SD) or beta (SE)	P -value
Children's sex	Girls	12.74(12.86)	0.248	10.15(6.65)	0.141	8.93(4.46)	0.220	8.64(3.47)	0.648	8.28(2.90)	- 0.840
	Boys	14.91(12.97)	0.248	11.62(7.04)	0.141	9.83(5.48)	0.220	8.91(4.43)	0.048	8.37(3.24)	0.840
Maternal age during	pregnancy	0.28(0.27)	0.309	0.26(0.14)	0.073	0.13(0.10)	0.206	0.10(0.08)	0.238	0.05(0.06)	0.453
education level _	\leq university graduate	13.32(13.14)	0.182	10.35(6.36)	0.040	9.06(4.47)	0.129	8.51(3.6)	0.114	8.17(2.89)	- 0.187
	≥ graduate school	16.76(11.55)	0.182	13.89(8.67)	0.040	11.17(7.15)	0.12)	10.2(5.48)	0.114	9.16(3.84)	0.187
Maternal IQ		0.07(0.08)	0.434	0.07(0.04)	0.131	0.04(0.03)	0.199	0.03(0.02)	0.195	0.02(0.02)	0.251
Exposure to ETS	No	14.65(13.23)	0.138	11.25(7.23)	0.171	9.5(5.28)	0.606	8.89(4.12)	0.480	8.34(3.05)	0.894
at age 6	Yes	11.37(11.7)	0.138	9.84(5.54)	0.171	9.06(4.12)	0.000	8.41(3.56)	0.460	8.27(3.17)	0.094
Average of NO ₂ co age 6	ncentration at	0.03(0.35)	0.936	0.46(0.18)	0.012	0.36(0.13)	0.007	0.29(0.11)	0.006	0.2(0.08)	0.015
Household	Low	12.22(13.99)	0.351	9.57(5.73)	0.151	8.86(4.23)	0.437	8.13(3.63)	0.231	7.89(3.00)	- 0.299
income	High	14.34(12.62)	0.331	11.3(7.14)	0.131	9.55(5.23)	8.96(4.08)		0.231	8.45(3.09)	- 0.299
Residential deprivat	ion index	-0.01(0.01)	0.739	-0.03(0.01)	0.001	-0.02(0.01)	<.0001	-0.02(0.004)	<.0001	-0.02(0.003)	<.0001
Subjective noise	Very Loud	11.26(12.64)		10.64(5.43)		9.15(4.65)		9.02(3.86)		8.51(2.72)	
level	Loud	13.97(13.67)		11.16(7.50)		9.28(5.99)		8.75(4.73)		8.26(3.37)	_
	Moderate	13.29(12.85)	0.801	10.17(6.37)	0.608	8.92(4.28)	0.398	8.44(3.46)	0.651	8.09(2.94)	0.724
	Quiet	15.50(12.61)		12.38(7.56)		10.86(5.16)		9.62(4.00)		8.95(2.96)	-
	Very quiet	20.16(2.06)		10.07(3.45)		7.70(0.81)		7.35(3.96)		7.93(5.12)	
Distance to main	\geq 500m	14.70(13.42)		10.61(6.66)		9.31(5.25)		8.89(4.23)		8.46(3.06)	_
road at age 6	50m-499m	11.50(12.91)	0.371	10.26(6.92)	0.260	9.25(4.60)	0.853	8.67(3.36)	0.903	8.17(2.72)	0.789
	$\leq 50m$	14.32(11.47)		12.53(7.35)		9.81(4.95)		8.59(4.09)		8.13(3.51)	
Physical activity	$\leq 1hr$	13.85(12.88)		10.29(6.31)		8.66(4.25)		8.15(3.45)		7.78(2.96)	
time in outdoor at	1-2hr	13.99(13.09)	0.993	11.48(7.99)	0.339	10.18(6.23)	0.073	9.37(4.80)	0.043	8.90(3.32)	0.021
age 6	\geq 3hr	13.60(13.31)		12.24(6.19)		10.65(4.37)		10.03(3.59)		9.27(2.46)	
Road density withi at age 6	n each buffer	0.02(0.06)	0.775	0.09(0.05)	0.061	0.13(0.04)	0.002	0.17(0.04)	<.0001	0.18(0.03)	<.0001

Abbreviations: NO₂: nitrogen dioxide, IQ: intelligence quotient, ETS: environmental tobacco smoke, SES: Socioeconomic status, SE: Standard Error, SD: Standard Deviation

Acknowledgements

This thesis used the database of the Environment and Development of Children (EDC) prospective cohort study. A part of this thesis (Chapter 2) was published in Science of the Total Environment Vol. 759: 143561 on 10 March 2021. A part of this thesis (Chapter 3) was published in International Journal of Environmental Research and Public Health Vol. 18(14) on 12 July 2021. This thesis has been completed with the sincere guidance of my academic advisor, Prof. Yun-Chul Hong. I greatly appreciate the participation of the study volunteers and their parents. In addition, I sincerely thank to the professors Bung-Nyun Kim, Youn-Hee Lim, Johanna Inhyang Kim, Choong Ho Shin, Young Ah Lee, and Yun-Chul Hong, who are the EDC Research Committee members. I appreciate the professors Sue Kyung Park, Daehee Kang, Aesun Shin, Kyoung-Bok Min, and Joongyub Lee in the department of Preventive Medicine at Seoul National University. I would like to thank to Hyunji Lee, Jinah Park, Yumi Choi, Ji Young Lee and Nam-Kyung Song for their big contribution to the data collections. In addition, I thank to my lab members, Sung-Hee Hong, Jung-Soon Noh, Kyung-Hee Kim, Sae-Byul Kwon, Jieun Lee, Jinwoo Cho, Yoon-Jung Choi, Dong-Wook Lee, Yoon-Young Jang, Woo-Suk Lee, Changwoo Han, and Kyung-Nam Kim. Thank you to Dr. Hyunju Bae, and Dr. Myunghee Kim, for leading me to PhD degree. Thank you for my teachers, professor Youngtae Cho (Department of Public Health in Seoul National University), and professor Kun-Soo Kim (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology in Sogang University).

Finally, I owe my deepest gratitude to my parents, Jeong-Han Lee and Soon-Ok Park, who always supported and prayed for me. Thank you for my reliably sisters; Kyung-Hae Lee, and Kyung-Jin Lee, my brother; Chul-Woo Lee, two brother-inlaws; Bong-wook Yang, and Tae-Am Jeong, my lovely four nephews. Finally, I am so proud that Ye-Jun Lee and Ye-Chan Lee are my sons. Thank you, God.

We love because he first loved us - 1 John 4: 19-