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Abstract

In this study, a novel virtual fields method (VFM) based on the finite element
(FE) scheme, namely FE-VFM, is proposed as an inverse method for
identifying the parameters of constitutive models. In the FE-VFM,
experimentally measured full-field displacements are mapped onto FE
meshes using global and local shape functions, and the internal virtual work

is integrated using the Gauss quadrature rule.

To validate the new method, a well-designed sensitivity study is conducted
using the ideal deformation obtained from FE simulations for anisotropic
linear elastic and isotropic plastic materials. In the case of anisotropic
elasticity, the residuals of the internal and external virtual work are not
significantly affected by the order and size of FE meshes, and the order of the
numerical integration has a marginal effect on the quality of the results.
Conversely, substantial impacts are obtained for the plastic case, in which the
size and order of the FE meshes and the order of the numerical integration are
all critical to the accuracy of identification owing to large, localized

deformation.

As an applications of the FE-VFM, homogeneous and nonhomogeneous
strain hardening of the metal sheets were identified. The first application is
identifying homogeneous strain hardening of the advanced hardening.
Additional to the FE-VFM, the concept of a pseudo-real deformation field is



newly proposed as a virtual field, which improves the accuracy of the FE-
VFM for optimizing the constitutive parameters of the plastic material.
Finally, the inverse identification of the plastic hardening law for press-
hardened steel is conducted using the FE-VFM with real experimental data.
The results show that the FE-VFM can successfully reproduce the full-field
displacements even with relatively low-quality full-field data if an optimum
FE mesh is adopted. In addition, the results of the U-notch tensile tests were
performed for the validation of the FE-VFM results, and the simulated load—
displacement curve of U-notch tests with strain hardening identified by FE-

VFM is in good agreement with the experimental results

As an advanced application, the FE-VFM was applied for identifying
nonhomogeneous strain hardening of the friction stir welded aluminum alloy
sheets. In this study, weld affected zone (WAZ) boundary was identified first,
then, local flow stresses were identified in the WAZ. In addition, the area of
interest was divided into subdomains, and FE-VFM was applied to each
subdomain independently, to avoid a uniqueness problem. Also, material
constants in each subdomain are interpolated with a quadratic function. To
uniquely identify the interpolated material parameters, three independent
normal distribution type virtual fields were used. These numerical approaches
were validated through feasibility tests based on FE simulation data, then, the
validated method was applied to identify the local flow stresses of the friction

stir welded AA6061-T6 sheets. The friction stir welding was conducted with
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two tool rotation speed conditions, 1200 and 1600 RPM. FE-VFM could
successfully identify the boundary of the WAZ and distributions of the strain
hardening parameters in the WAZ. Also, tensile tests were conducted for the
validation of the identified non-homogeneous strain hardening parameters,
and the predictions using FE-VFM results were in good agreement with

experiments.

Keywords: Virtual fields method; Finite element; Smooth full-field
measurement; Constitutive model; Plastic strain hardening; non-

homogeneous local properties

Student number: 2018-39025
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1. Introduction

1.1. Conventional method for identifying constitutive parameters

In modern solid mechanics, numerical simulations are widely used for solving
various engineering problems. In many cases, the accuracy of the simulations
is highly dependent on the capability of constitutive laws and the exact
identification of their model parameters. Conventionally, mechanical tests
that introduce uniform deformations in well-designed standard specimens are
commonly used to investigate the mechanical behavior of materials (for
instance, by using standard tensile tests). These tests can determine the values
of stress components under proportional loading conditions, and deformation
is often measured by contact-type sensors, such as a strain gauge or an

extensometer.

Fig. 1-1 shows an example of the standard tensile tests with a mechanical
extensometer. In conventional tensile tests, Applied (resultant) load is
measured by the load cell of the test machine. Also, strains in loading (or
longitudinal) direction are measured by a mechanical extensometer, as shown
in Fig. 1-1(a). If strains in the transverse direction are required, two different
types of mechanical extensometers are attached in the gauge of the specimen.
There are several standards for the tensile test including ASTM international,
ISO, or KS. Also, specimen geometries can vary for the different types of
materials. Fig. 1-1(b) and (c) shows the ASTM standard specimens for fiber-

1



reinforced composites [1], and metal sheets [2], respectively.

Emuwe | 1

| Applied load
measured by load cell

Extensometer
- transverse Extensometer
- longitudinal
(a)
S0mm | 150mm | 50mm
I25mm
mn— Glass-fiber composite tab 90° _ p—
I |
I i I
Epoxy resin
(b)
57 mm:
T T
20 mm 12.5 mm
| '
/‘\ R 12.5 mm
200 mm:
(©)

Fig. 1-1. Example of standard tensile tests. (a) is an illustration of tensile
tests setup, (b) and (c) are standard specimen geometries for fiber-reinforced
composite sheets [2] and metal sheets [1], respectively.
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After obtaining direct stress—strain relation using conventional mechanical
tests, constitutive parameters are calculated based on these experimental data.
In that process, mathematical fitting [3,4], analytical calculation [5], or

numerical optimization [6,7] methods are used depends on constitutive law.

Although conventional strain measurement methods are efficient and
effective, they cannot measure the full deformation field in the region of
interest. Accordingly, the parameters of constitutive models are also identified
from the relationship between stress and strain under the assumption of
homogeneous deformation and proportional loading. Conventional
approaches may not be efficient for identifying the parameters of modern
complex constitutive models for describing anisotropic and/or non-
proportional mechanical properties. For instance, multiple tensile tests for the
different material orientations are required to obtain the anisotropy of
materials [8—11]. In addition, complex geometry and specially designed types
of equipment are needed for tension-shear tests [12,13] or to introduce a

multi-axial stress state such as biaxial tension [14,15].

1.2. Full-field measurement and the virtual fields method

As alternatives to conventional strain measurements, non-contact full-field
measurements [16] enable the acquisition of displacement fields on the

specimen surface. Various technique can measure full-field displacements



such as the speckle photography [17,18], grid method [19,20], Moiré
interferometry [21,22], electronic speckle pattern interferometry (EPSI)
[23,24], and digital image correlation (DIC) [25-27]. These techniques utilize
the optical pattern and measure the displacements on the surface of the
specimen. Speckle photography uses the pattern of the distribution of the
scattered wave due to the rough surface of the specimen illuminated with
coherent light. In the grid method, regular grid lines are marked on the surface
of the specimen, and it measured the displacements and strains by analyzing
Moiré fringes formed by regular grid marks. Moiré interferometry is based
on the same phenomenon used in the grid method, but it utilizes the
interference and fringes of the two coherent laser beams rather than the fringe
due to the physical grid mark. EPSI uses the scattered light from the surface

added to the reference laser beam.

Among these techniques, DIC is one of the most widely used techniques,
and various commercial software—hardware packages are available in the
global market. The DIC uses the physical speckle pattern usually made by
spray paint, and it measures the displacements by correlating the undeformed
and deformed spackle patterns in the digital photos. Fig. 1-2 shows the
procedure for a mechanical test with the DIC. Fig. 1-2(a) illustrates the
experimental setup with the DIC. In the tests, grayscale photos are taken for
the spackle patterns on the specimen in the area of interest (AOI), during the

mechanical tests. For the 2D-DIC, only a single camera is used, whereas

4



stereo-DIC uses at least two cameras with a different camera orientation, as
shown in Fig. 1-2(a). The 2D-DIC cannot consider the out-of-plane motion
of the specimen, hence it requires that the orientation of the camera should be
perpendicular to the flat specimen plane. The stereo-DIC uses two or more
photos with a different camera orientation to account for the out-of-plane
motion (or position) of the surface. Also, recognition of the camera position—
which includes the angle between cameras, the distance between cameras,

etc.—is required, and it is called “calibration”.

Fig. 1-2(b) illustrates the schematics of the DIC post-processing. In this
process, AOI is divided into smaller image regions with a size of nxn pixels,
which are called the subset. Then, tracking of the spackle pattern is conducted
through the different time frames, and the displacements are obtained based
on the shape functions. In this process, several different matching criteria are
used including the normalized sum of squared difference (NSSD), zero
normalized sum of squared difference (ZNSSD), etc. Note that these post-
processing options—the size of the subset, types of matching criterion, or the
order of the shape functions—affect the quality of the DIC results, especially
the resolution and the noise [27-29]. After the post-processing, displacement
fields are calculated in the AOI, as shown in Fig. 1-2(c). Other kinematic

values such as strains are calculated based on these displacements.



Calculate displacements
using shape function
within each subset

Speckle pattern
on the specimen
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Fig. 1-2. Procedure for a mechanical test with the DIC. (a) Experimental
setup, (b) schematics of DIC post-processing, and (¢) example of
displacements measured by DIC
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New strategies for identifying the material parameters of constitutive laws
with full-field measurements have been developed [30]. These new
technologies include the virtual field method (VFM) [31,32], the finite
element (FE) updating method (FEUM) [33-36], the constitutive equation
gap method (CEGM) [37,38], the equilibrium gap method (EGM) [39,40].
Recently, researchers also investigated inversely optimizing the constitutive
parameters using machine learning [41]. These non-conventional inverse
identification approaches have overcome the limitations of conventional
mechanical testing. Among these non-conventional approaches, the VFM
utilizes the entire full-field measurement as an input to the governing
equations, the principle of virtual work (PVM). The VFM has been
successfully used to identify the constitutive model parameters of various
solid and soft materials, such as linear elastic [42—44], hyper-elastic [45,46],
viscoelastic [47], and elastic—plastic materials [48-50], under static or
dynamic loading conditions [51,52]. Recently, Yunquan et al. used VFM to
determine the material parameters of the thermo-mechanical model of the

composites [53].

One of the benefits of the VFM (or other inverse methods) compared to
conventional mechanical tests is that anisotropic material properties can be
identified simultaneously with a single test. For this purpose, The VFM can
use the non-homogeneous deformation and/or non-proportional loading data

obtained by full-field measurement. Rather, the application of complex strain
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(or stress) states is recommended during the mechanical tests to enrich the
required (anisotropic) experimental data. Inducing non-homogeneous and
complex strain states in the specimen requires specially designed non-
uniform specimens. For identifying anisotropic linear elastic constants,
researchers investigated using various specimen geometries including the un-
notched losipescu shear tests [54], thick ring compression tests [55], plate
bending tests [56,57], and tensile tests with an elliptic cut hole [44]. For the
identification of anisotropic plastic constitutive parameters, various tests
including notched tensile tests [58], tensile tests with rotated M shape

specimens [59], and biaxial tests [60] were used.

Virtual fields—which are arbitrary test functions that satisfy the prescribed
boundary conditions—play an important role in the quality of the VFM.
Depending on the selection of virtual fields, the effect of experimental noise
can be filtered, and meaningful data from the full-field measurement can be
amplified. Therefore, special virtual fields [61-63] have been suggested for
the linear elastic problem. Toussaint et al. proposed the piecewise virtual
fields [64]. In this formulation, virtual fields are defined as polynomial shape
functions within a subdomain similar to the FEM. Also, sensitivity-based

virtual fields [65—-67] have recently been developed for plastic materials.

Meanwhile, most of the studies of the VFM application were based on the
2D membrane deformation or the plane stress condition assumption. It is

because that most of the full-field measurement techniques can only measure
8



in-plane displacements. In a theoretical aspect, the VFM can be applied to
general 3D problems. Rossi and Pierron demonstrated the theoretical
capability of VFM in 3D stress states using 3D displacements generated by
FEM [68]. In a real application, an advanced full-field measurement
technique is required to measure the 3D displacement fields such as digital
volume correlation (DVC) based on x-ray tomography or MRI [69-71].
However, such techniques are not readily accessible, and the in-plane
displacements on the outer surface of the specimen can only be measured
even with stereo-DIC. As a result, the VFM can be used for the thin enough
materials, so strains (or stresses) in the thickness direction can be ignored,
and it can be assumed that strains are uniform through the thickness, in a

practical sense.

1.3. Smoothing of the full-field measurement

The accuracy of the material properties identified using the VFM highly
depends on the quality of the full-field measurement [31,72]. One of the
challenges of full-field measurements is the inevitable noise and artifacts
caused by its non-contact approach. In many cases, the constitutive laws in
solid mechanics are described by the stress—strain relation [11,73—75]. In the
full-field measurement approach, strains are calculated from the gradient of

displacements (or velocity gradient), and the signal-to-noise ratio can be



significantly decreased during this process. Subsequently, the noise in the
full-field measurement is another important factor in determining the quality

of the VFM [72].

To reduce the noise in the full-field measurement, various smoothing
algorithms have been developed. Among them, local smoothing has been
widely used in strain calculation and is available in commercial software
[27,76,77]. Local smoothing has been effective in reducing the noise of full-
field measurement, but it requires prior knowledge and experience in the
determination of algorithmic parameters such as smoothing level and filter
size. Instead of local smoothing, global spatial smoothing based on the FE
approach has also been used for noise reduction. In this approach,
displacements are mapped onto FE meshes with the proper interpolations, and
strains are calculated from the derivatives of the interpolation functions. Chen
et al. and Tiren et al. used a linear quadrilateral element for the calculation of
strain from displacements measured by DIC [33,78], while Yoneyama
implemented a quadratic quadrilateral element [79]. Zhao et al. used Hermite
FE interpolation for the full-field strain measurement over an arbitrary region

of interest in DIC [80].

In previous studies on the VFM, a linear triangular FE has been generally
used for global smoothing, mainly because of its simple implementation
[49,81,82]. Another purpose of global smoothing is to fill the empty edges of

the area of interest (AOI) when DIC is used. DIC is a powerful tool for
10



measuring the large deformation of elastic-plastic or hyper-elastic materials.
Moreover, DIC is readily available in commercial software and hardware
packages. However, the disadvantage of DIC is that there may be missing
data at the edge of the AOI, in particular for the subset-based DIC. Subset
based DIC technique requires a perfect (nxn) pixel rectangular subset.
However, at the edge of the AOI, a perfect subset cannot be made, and
deformation cannot be given during the post-processing [83]. Therefore,
empty data at the edge should be restored when applying VFM, and data at
the edge of the AOI are reconstructed using the FE. However, the strains are
constant in a linear triangular element, which requires relatively fine meshes
if the deformation is highly localized. However, fine linear triangular FE
mesh may lead to a lower level of smoothing. For this reason, Kim et al.
employed both global and local polynomial smoothing when they employed
linear triangular elements. They also presented a comprehensive sensitivity
study on the effect of FE mesh size and the order of polynomials for obtaining

reliable VFM results [81].

1.4. Integration of the internal virtual work in the VFM

The VFM formulations presented in previous studies are limited in terms of
the numerical integration of the internal virtual work (IVW). In most VFM

studies, a primitive discretized sum was used for the integration of the IVW
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[31,32,46,61-63,65—67,84]. Although it is simple to implement, it might be
computationally inefficient, especially when deformation is highly localized
and a large number of data points are required for an accurate integration.
Also, the accuracy of the IVW integration might be reduced when fewer
integration points are used with highly non-linear virtual fields. Another
defect of the local discretized sum approach is that it is not computationally
inefficient in terms of the stress update process in the identification of the
plastic constitutive parameters. In that application, the stress update
procedure is the most time-consuming step since multiple iterations are
required for the accurate stress update with advanced plasticity constitutive
laws [6,85—88]. Due to this, a large number of data points in the IVW

integration with the discretized sum might require a large computational cost.

Usually, numerical integration such as Gauss quadrature is implemented on
the conventional FEM. Though the finite element shape functions are applied
in the global smoothing of the full-field measurement, advanced numerical
integration schemes implemented on the FEM are not used in the VFM. In
other words, only the shape functions are borrowed from the FE formulations
as a global target function for the smoothing of the measured deformation
fields. It can be numerically efficient and effective that implementing
advanced numerical integration on the VFM with a higher-order global
smoothing. However, in the previous literature, displacement fields are

described with global coordinates functions because only the global position
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of the measured data points are known values, whereas the deformation fields
should be described in the regular natural coordinates space for implementing

most of the advanced numerical integration.

1.5. Research objective

In this study, a novel virtual fields method (VFM), namely an FE-based VFM
(hereafter, FE-VFM), is proposed. The purpose and strength of the FE-VFM
are described as follows: First, for the smoothing of the full-field
measurement, displacement fields are mapped or reconstructed into FE
meshes using the local and global higher-order shape functions. In this
process, global coordinates are converted into regular local (or natural
coordinates), and nodal displacements of the FE meshes are obtained using
linear least square operation. Therefore, the displacement fields can be
described only with nodal values and interpolation (or shape) functions. The
reconstruction procedure is formulated for general types of FEs. Second, the
Gauss—Legendre quadrature is employed in the numerical integration of [IVW
to increase the numerical efficiency and accuracy. More details of the FE-

VFM formulations are given in Chapter 2.

In Chapter 3, a sensitivity study on the FE mesh size, type of element, and
integration order is provided to validate the efficiency and accuracy of the

proposed FE-VFM. The sensitivity tests were based on the ideal deformation
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fields that are obtained by FE simulations and conducted for both orthotropic
linear elastic and elastic-plastic material cases. For the quantitative analysis,
errors between internal and external virtual works were evaluated based on

target constitutive parameters.

As an application, homogeneous and non-homogeneous strain hardening
laws of the metal sheets are identified using the proposed FE-VFM, in
Chapters 4 and 5. In Chapter 4, new types of virtual fields that are defined
using real nodal displacements, namely the pseudo-real deformation field
(PDF), are proposed to enhance the quality of the VFM for plastic
constitutive parameters. Also, FE-VFM with the PDF is applied to
characterize the homogeneous strain hardening of the advanced high-strength
steel sheets. In Chapter 5, non-homogeneous strain hardening of the friction
stir welded (FSWed) aluminum alloy sheets are identified using FE-VFM. In
this chapter, feasibility tests based on the data generated by FE simulation are

conducted priorly, and validated methods are applied for the real application.
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2. Finite element-based virtual fields method

In Chapter 2, the formulations and calculation procedure of the FE-VFM are
introduced. In Section 2.1, a general overview of the virtual fields method is
provided. Then, the concept and procedure of the FE-VFM calculation are
introduced in Section 2.2. In Sections 2.3 to 2.5, detailed formulations of the
FE-VFM are introduced. Reconstruction of the displacements into the FE
meshes is introduced in Section 2.3, and calculations of the kinematic
variables such as deformation gradient and strains are shown in Section 2.4.
Finally, integration of the internal virtual works (IVW) using Gauss

quadrature during the parameter optimization is introduced in Section 2.5.

2.1. The virtual fields method: an overview

The virtual fields method (VFM) is a hybrid experimental-numerical
approach for the inverse identification of constitutive parameters [31,32]. It
is based on the PVW. Eq. (2.1) represents the PVW under the plane stress

condition in a deformed configuration (or Lagrangian formulation).

oou, . s
tf. o, 6—des_jasf f2su,ds @.1)

where 0 is a Cauchy stress tensor, OU; is the virtual displacement, X; is the

deformed coordinate, f,’ is the surface traction vector acting on the force
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boundaries, t is the thickness of an object, and S and 0S; denote an AOI

and the force acting boundaries, respectively. Note that an index notation
according to the Einstein convention will be used unless otherwise indicated.
The term on the left-hand side of Eq. (2.1) is called the IVW exerted by
internal stresses, while that on the right-hand side is the external virtual work
(EVW) exerted by external forces. The integrand of IVW in Eq. (2.1) can be
written as Eq. (2.2) by utilizing the symmetry of the Cauchy stress tensor, and
the gradient of virtual displacement can be denoted as a strain-like variable,

namely the virtual strain.

_ _ 00U,
osu dou 1(5511. it} ]:a.é‘g.. 2.2)

O'i. I:G.i I:O'i.—
box, oo P2 ox; o ox

The PVW can also be expressed in an undeformed configuration or an

Eulerian scheme as follows [67,84]:

22
tf, R X ds = j 5 oxds (2.3)

where Pij is the first Piola—Kirchhoff (P-K) stress tensor, X j is the

undeformed coordinate, JX; is the virtual position vector, fy\ is the traction
vector in the initial configuration, and S; and 0S; are the initial (reference)

AOQOI and force acting boundaries, respectively. Note that Egs. (2.1) and (2.3)

are equivalent. However, the gradient of the virtual position cannot be
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denoted as the virtual strain because the first P-K stress tensor is not
symmetric. Instead, the gradient of virtual positions can be denoted as a

virtual deformation gradient because of its similarity to a real deformation

gradient.
sF, = 9% (2.4)
'oX j

The relationship between the first P-K stress and the Cauchy stress is given

as follows:

B =Jdx (Fki )_l Oy 2.5)

ij
where F; is a deformation gradient tensor and J,  is its determinant.

For linear elastic materials, Eq. (2.1) can be rewritten as follows:

t], Quuendeds = frou,ds (2.6)

where Qijk| and &, are the fourth-order elastic stiffness tensor and strain

tensor, respectively. In VFM, the strain fields are measured a priori by the
full-field measurement, whereas the material parameters of the constitutive
law, or in this case, the components of the stiffness tensor, are to be solved.
Note that the general displacement-based FEM solves the displacement fields
with the given material parameters as inputs. Therefore, the VFM is based on
the same governing equations as the FEM, but the solution process is reversed.

Under this principle, Eq. (2.6) can be solved if the number of virtual fields
17



provided is the same as the number of independent (unknown) stiffness

components [31,32,42].

The virtual fields are user-defined arbitrary fields that are admissible if they
satisfy zero virtual displacements at the previously described displacement
boundaries. One additional constraint of virtual fields for VFM is that the
virtual fields should be constant at the prescribed external force boundaries
[31,32]. This constraint is because only the resultant force can be measured
in common experiments, and not the traction vector. If the virtual fields are
constant at the force-acting boundaries, the EVW in Eq. (2.6) can be
expressed as a product of the resultant forces and virtual displacements at the

boundaries formulated in Eq. (2.7),

Lsf fe5U,ds =D (FedU) yoouniny 2.7)

where F, is an external load vector measured during the experiment.

For materials with nonlinear constitutive laws, the PVW cannot be modeled
as a linear system. Instead, a cost function is defined as the difference between

the IVW and the EVW [31,46,47,49,81].
2
Q(k)= (tJ'S o; (k. &) 9e;ds _J‘"s f,féukds) (2.8)

where the stress tensor 0y is a function of the strains & and material
constant denoted by k . For some non-linear materials, such as elastic—plastic
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materials, a proper stress update algorithm is required to obtain the stresses.
The cost function in Eq. (8) is defined in a single time step. After calculating
the values of the cost function over all the time steps, the unknown material
parameter k can be obtained by minimizing the cost function with a

numerical optimization such as a nonlinear least-squares method.

In many cases, the relation between Cauchy stress and kinematic values
such as logarithmic strain is defined in the constitutive law. Hence, Eq. (2.1)
is simple and intuitive for implementing the VFM. Also, for the small strain
problem like a linear elasticity case, virtual displacmeents can be assigned as
constant values easily. However, in the case of large deformations, the
constant virtual displacements are not easily assigned at the force boundaries
owing to the deformation of the boundaries of the AOL In this case, Eq. (2.3)
may be more efficient than Eq. (2.1) because the virtual positions can be

defined as a function of the undeformed coordinates.

Meanwhile, in the conventional VFM, the IVW is calculated using a

primitive discretized sum [31,32,44,46,61-63,65—67,84] as follows:
OW,., :tZ(Uij55ij )n A (2.9)
n=1

where 7 is the index of data points, ne is the total number of data points, and

A, is the area of each data point.
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2.2. Concept of the FE-VFM

In the FE-VFM, the displacement fields are mapped onto FE meshes using
interpolation functions, and the Gauss quadrature is implemented for the
calculation of IVW. Fig. 2-1 shows the schematic procedure of the FE-VFM
at a single FE level. First, the global initial coordinates of the full-field data
points are transformed to natural coordinates using shape functions. These
shape functions are referred to as global coordinates; thus, they are termed
“global shape functions.” Then, the displacement fields are mapped onto the
FEs of the natural coordinates with shape functions that apply to the natural
coordinates or “natural shape functions.” As a result, the (experimental)
displacement fields were reconstructed as FE meshes, and the IVW was
calculated using the Gauss quadrature rule. Although Fig. 2-1 illustrates only
a 4-node linear quadrilateral element, the general formulations for other types
of FEs are given in the following sections. Then, IVW was calculated using

the Gauss quadrature rule with a given integration point.

Note that the use of the global shape functions is for mapping the natural
coordinates of the full-field data points from the known global coordinates,
for the numerical integration of the IVW using Gauss quadrature. In the
conventional FEM, the isoparametric element is used. In that approach, both
displacements and global coordinates are defined as a function of natural
coordinates. However, in the full-field measurement, only the global (or real)

coordinates are known for the measured data points. If the global coordinates
20



are mapped from the natural coordinates like the conventional FEM, it can be
numerically inefficient since the natural coordinates of all the measured data
points should be calculated by solving non-linear equations. For this reason,
mapping of the coordinates is conducted in a reversed way compared to

conventional FEM, instead of the isoparametric elements.

Initial global space

(X,.¥2) (%3Y3)
~ (X,Y) .
I X Displacements augmented FE mesh
» Y
(1-1) (1)
i i UV, ) '
v ) Coordinates mapping (ua,va) ()
n=M(X,Y)-r;
+ Full-field measurement |- (rys)and (u,v)
r
Deformed global space ) .
Displacements mapping
. u, =N, (r.s)u; (-1,-1f (1,-1)
* (uyvy) - . (up,v;)
f_i_,_,. . Integration point
() *
* Unknown
* s "~ deformed mesh
aX x
¥

L y

Fig. 2-1. Schematics of FE-VFM procedure in a single finite element
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Fig. 2-2 shows a flow chart of the FE-VFM algorithm, which was
implemented using MATLAB® in this study. The full-field displacements and
FE meshes with the same geometries of the region of interest are prepared as
the input data. The FE-VFM consists of three major steps. In the first step, the
deformation field is reconstructed as FE meshes. In this step, the global shape
functions are calculated for each element. Even for the same FE type, the
global shape functions (in fact, the coefficients of the global shape functions)
are different for each element because the global shape function depends on
the initial global coordinates. In addition, the data points from the full-field
measurement are identified by which elements they belong to. This process is
conducted via the MATLAB® built-in closest simplex search function,
tsearchn. Then, the (unknown) nodal displacements can be calculated using
the local and global shape functions. As a result, displacement field-
augmented FE meshes are constructed, and further calculations are made on
the FE meshes without the original full-field data. More detailed formulations

are given in Section 2.3.

Before parameter optimization, kinematic variables such as the
deformation gradient and strain tensor at the integration points are calculated
in a pre-processing step. In this step, a user selects the order of the Gauss
quadrature rule, and the corresponding natural coordinates of the integration
points are given. Note that the global coordinates of the integration points are

also necessary to obtain the kinematic variables at each integration point
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owing to the global shape function. The global coordinates of the integration
points can be readily obtained by solving the non-linear global shape
functions. In this study, a multi-variant Newton—Raphson method is used to
solve the equations. Then, the kinematic variables are calculated based on the
shape functions and nodal displacements. Finally, the IVW is calculated using
the Gauss quadrature, and the parameter optimization process is performed as
the last step. More details about these processes are provided in Sections 2.4

and 2.5.
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Material properties (Output)

Fig. 2-2. Flow chart of FE-VFM process
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2.3. Reconstruction of displacements on the finite element meshes

For a single element, the natural (or local) coordinates of a point can be

interpolated as follows:

r (X, X, ) =M (X, X, )1y (2.10)

where T represents the natural coordinates of a point in the element, Iy

represents the natural nodal coordinates, and Ml(Xl,XZ) are global shape

functions referenced to the global coordinates. The notions of subscripts and
superscripts in the equations are listed in Table 2-1, which are used hereafter

unless otherwise noted.

Table 2-1. The notion of subscripts and superscripts used in the manuscript

Subscripts

Latin lowercase letter Vector and tensor indices, 1 and 2
Latin uppercase letter Nodal index

Greek letters o and B Full-field measurement point

index
Greek letters A and p Index for basis of shape function
Superscripts

n Nodal values

J Full-field measurement point
values

e Local element values

g Global FE mesh values
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The global shape function M, (Xl,Xz) can be expressed by the product of

the basis functions and their coefficients.
T
M, (X,,X,)=(8,) -a, 2.11)

where g, is the vector for the basis function, and a,, is the coefficient of the

global shape function. For example, the global shape function of a 4-node

linear quadrilateral element can be written in matrix form as follows:

M=(1 X X XX,) (2.12)

N
[y

Q Q Q Q
N
N

Q Q Q Q
N
w

Q Q Q Q
w N
e S

The coefficients of the global shape functions can be determined using the
zero-one property of the shape function[89]. That is, the value of each shape

function becomes unity at the corresponding node, and zero at other nodes.

n

From this, @, can be obtained as an inverse of the basis function matrix, G,H ,

constructed with nodal undeformed coordinates, as the product of a,, and G,

is the identity matrix.
-1
a, =[G}, ] (2.13)

Then, the local coordinates of the full-field measurement points r:. are

1

calculated using the global shape functions as follows:
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T = Gay o,y 1 (2.14)

1

where G,fj is the matrix of the global basis function calculated with the global

coordinates of the full-field measurement points, and I;; represents the local

nodal coordinates of the element.

Similar to the interpolation of local coordinates, the displacements are

interpolated by local shape functions as follows:

u(r,n)=N(r,n,)-uj (2.15)

where (rl,rz) are the local coordinates, and Uu; represents the nodal

displacements of the FE. The local shape functions Nl(rl,rz) are denoted

with the following matrix form:

T
N,(r)=(h,) ‘b, (2.16)
where hu is the vector of the local basis functions similar to g, in Eq. (2.11),
and bﬂ, is the coefficient of the local shape function.

In general, global and local shape functions are not necessarily the same.

However, in this study, identical types of interpolation functions were used.
In addition, the coefficients of the global shape function a, vary for each
element, but those of the local shape functions bul are constant. More details

on the FEs and their shape functions are provided in Appendix A.
27



The relationship between displacements of the nodes and the data points

(inside an element) can be established as follows:
Uy =He, b,y -uy =N -uj (2.17)

where ng is the matrix of the local basis functions that are constructed with

the local coordinates of the data points, as in Eq. (2.14). N, is the matrix of

the local shape function values for an element. For all the FE meshes, the N

of each element should be assembled as its global matrix.

Ng

sayp() = N (2.18)

where N [‘?P is the matrix of the shape function values for global FE meshes.
Here, the local index of the data point « is associated with the global index
of the corresponding data point f, and the local nodal index / corresponds to

the global nodal index P through the connectivity arrays. With the known

connectivity', the matrix for the global shape functions can be assembled.

Finally, the nodal displacements of an FE mesh are obtained using linear

least-squares optimization:

! The global-local connectivity should be stored as a pre-processing procedure, as

illustrated in Fig. 2-2.
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Up, =((N§Q )T "N )_1 '(N;?Q )T 'u;i = APB 'u;i (2.19)

where APﬁ is the least-squares operator. For multiple time steps, the same

APﬁ can be applied to every time step because the displacement mapping is

conducted using the (fixed) initial global coordinates and (element) natural
coordinates. In Appendix B, the reconstruction of the displacement fields for

the linear quadrilateral element is given as an example.

2.4. Calculation of kinematic variables at the integration points

The deformation gradient, F,, is defined as follows:

ij

E.:%:i(Xi+ui)=%+é} (2.20)
’oX, oX, ox, '

J

where X; and X, are the undeformed and deformed coordinates, respectively,

u; is a displacement vector, and 5,-]- is the Kronecker delta. Considering that

the displacements are interpolated with the local shape functions, Eq. (2.20)

can be rewritten as follows:
T

T
E‘j= (%%] u; +5ij (2.21)
on, 0X,

Moreover, the gradient of the local coordinates is given as:
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T

T
- C (erli): [aMI] i |- (2.22)
X, 0X,; ¢

From Egs. (2.21) and (2.22), Eq. (2.20) becomes

" Y ((em Y )
ON
F = —'j u, | || ==L re | +9,. (2.23)
iy [( ark I J [GXJ ] Jk j

The derivatives of the local and global shape functions are calculated from

Egs. (2.11) and (2.16):

T T
oM 0
il U /7 ; (2.24)
oX; ¢ a
T T
ON oh
—L| =|=*| b, (2.25)
o, on, ) "
From Egs. (2.23)—(2.25), the deformation gradient can be written as follows:
on Y ) ' '
og
F, =[(a—r:] bﬂ,u”] [a—X‘]] a,r, | +9; (2.26)

The undeformed coordinates of the integration points are obtained using

the global shape functions with Newton—Raphson(N-R) method. The target
nonlinear equation L, (X ,Y) for obtaining the undeformed coordinates of the

integration points is given as follows:
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Li(Xl'Xz):Ml(Xsz)'rli_ri:O (2.27)

where 7; is the natural coordinate of an integration point. The linearization of

Eq. (2.27) results in the following equation:

-1 T -1
n+ n oL n n 6g n
X=X _(GTI(J L =X —Mﬁ} aﬂ]rﬁ] L (2.28)
i k

where superscript n is the iteration number. The initial guess for the Eq. (28)
1s assumed to be the center of an element,

1 e
X,.0 == E X, . (2.29)
€

With the solution from Eq. (28), the derivatives of the global shape functions

and deformation gradients at the integration points can be obtained.

Meanwhile, Constitutive laws are often given as relations between Cauchy
stress tensor and logarithmic (or Hencky) strain tensor for elastic-plastic
materials. Below, the logarithmic strains and related tensor values are
introduced based on continuum mechanics. Note that rotation of materials is
already taken cared since all calculation process is performed in Eulerian
scheme. Here, superscripts g, d, p, and m denote undeformed global,
deformed global, principal, and material coordinates, respectively. Values

without superscript denote tensor values in global coordinates.

Right Cauchy-Green tensor
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1

T
C,=(F,) F,=U; (2.30)
Stretch tensor

ug =(v,) Jcry, (2.31)

g

Polar decomposition and material rotation tensor
-1
R, =F,(U,) 2.32)
Logarithmic strain in the initial configuration
T
Ef =(V,) In(U})V, (2.33)

Here, V.

; 1s a rotation tensor from global to principal coordinates, which are

composed of eigenvectors of a given tensor. Also, a component of tensor in
principal coordinates has eigenvalues as its diagonal components, and all oft-
diagonal components are zero. The rotation tensor V; and corresponding
tensors in principal coordinates can be obtained from the calculation of
eigenvalue and eigenvector.

Suppose the angle difference between undeformed global and material

coordinates is €. Rotation tensor @; from undeformed global to material

coordinates in 2D is as follows.

cos@ —sind 534
@, = .
Y 1sin@ cos@ (2.34)
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Then, logarithmic strain tensor in material and deformed global coordinates

are as follows.

Logarithmic strain in material coordinates

m T
E; =(@,) E @ (2.35)
Logarithmic strain in the deformed coordinates

T
Ej =R,E4(R;) (2.36)

2.5. Integration of the internal virtual work

In the FE-VFM, the Gauss quadrature is used for integrating the virtual work.
The integration of the IVW is performed on the natural coordinates of each
element. In the updated Lagrangian approach, the IVW of an element can be

written as follows:

oWy

int

=t[ 0,08,], Jydrds (2.37)

where the superscript “€” denotes an element value, (2 represents the domain
ofanelement, J,_, and J,_, are Jacobian determinants, which are defined as

follows:

Jex =de{%j=det(%) (2.38)

J
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Jyer =det[%J= ! (2.39)
d

or, et {(rﬂ ) ZI;I; J}

J
The IVW in the Eulerian configuration is written as follows:

oWy

int

=t[ P,6F,], drds (2.40)

In this study, the Eulerian approach is used. For a linear elastic material, Eq.

(2.40) can be expressed as

-T
SWE, =t IQQ,kpquq (Fy.) OFJy.J, ydrds . (2.41)

For plastic materials, Eq. (2.40) can be rewritten under the plane stress

assumption and for plastic incompressibility conditions, as follows:
e -T
SW, =t jQ exp(z,)o, (Fy) OF,Jy,J, xdrds (2.42)

where ¢t is the initial sheet thickness, and &, is the thickness strain, which

is obtained as follows:

E
g =& +&" :—;(0'11 +O'22)—(g{’1 +g§2) (2.43)

€ %

Here, the superscripts “e” and “p” denote elastic and plastic components,
respectively, and E and V are Young’s modulus and Poisson’s ratio,
respectively.

The IVW of the triangular elements integrated using the Gauss quadrature
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is given as follows.

W —I a)(r,s)dsdrzznlwia)(r;,si) (2.44)
i=1

int

where a)(r,s) denotes the integrands in either Eq. (2.41) or (2.42), w, is the
weight of the Gauss quadrature, (ri,sl.) are the natural coordinates of the
integration point 7, and n is the number of integration points. Note that (r,s)
is equal to (rl,rz).

For a quadrilateral element, the IWV with Gauss quadrature can be written

as follows:

OWE, = I (r,s)dsdr = ZZWW a)( ) (2.45)

i=1 j=1

The weights and natural coordinates of the integration points are listed in

Tables 2-2 and 2-3.
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Table 2-2. Gauss quadrature of a triangular element [90,91]

Il

N2

Natural coordinates

Weights

(al, al, al)
al =0.3333333333333

0.5000000000000

(b1,b2,b2), (b2,b1,b2), (b2,b2,b1)
bl = 0.6666666666667,
b2 = 0.1666666666667

0.1666666666667

4

(al, al, al)
al =0.3333333333333

-0.2812500000000

(b1,62,b2), (b2,b1,b2), (b2,b2,b1)
b1 = 0.6000000000000,
b2 = 0.2000000000000

0.2604166666667

(al,al,al)
al =0.3333333333333

0.1125000000000

(a2,al,al), (al,a2,al), (al,al,a2)
al=0.4701420641051,
a2=0.0597158717898

0.06619707639427

(b2,b1,b1), (b1,b2,b1), (b1,b1,b2)
b1=0.1012865073235,
b2=0.7974269853531

0.0629695902724

13

(b2,61,b1), (b1,62,61), (b1,b1,62)
b1=0.1012865073235,
b2=0.7974269853531

0.0629695902724

(b1,62,63), (b2,b1,b3), (b1,b3,b2),
(b3,b1,b2), (b2,b3,b1), (b3,b2,b1)
b1=0.3128654960049,
52=0.0486903154253,
b3=0.6384441885698

0.0385568804451

(c2,cl,cl), (cl,c2,cl), (cl,cl,c2)
¢1=0.2603459660790,
¢2=0.4793080678419

0.0878076287166

(al,al,al)
al =0.3333333333333

-0.0747850222339

Uintegration order, > number of integration points
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Table 2-3. Gauss quadrature of a quadrilateral element [90,91]

I! N? Natural coordinates Weights
1 1 0.0000000000000 2.0000000000000
3 2x2 10.5773502691896 1.0000000000000
0.0000000000000 0.8888888888889
5 3x3
10.7745966692415 0.5555555555556
10.3399810435849 0.6521451548625
7 4x4
£0.8611363115941 0.3478548451375

lintegration order, > number of integration points
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3. Numerical sensitivity tests based on simulation data

In this chapter, numerical sensitivity tests of the FE-VFM proposed in the
previous chapter are shown. In the sensitivity tests, deformation data
generated by the finite element simulation was used as an input of the FE-
VFM, to avoid the effect of the experimental errors, and for the investigation
of the pure numerical effect of the FE-VFM conditions including FE order
and size, and Gauss quadrature order. The tests were conducted for both
orthotropic linear elastic and elastic-plastic cases, and the effect of the FE-
VFM conditions are numerically analyzed by obtaining the residuals of the
virtual works. The sensitivity test conditions are given in Section 3.1, and the
sensitivity test results for the linear elastic and elastic-plastic cases are shown
in Section 3.2 and 3.3, respectively. Exhaustive sensitivity tests demonstrated
that the FE-VFM with higher and coarse finite elements accompanied with a
higher order Gauss quadrature could provide promising results for the

identification of the plastic hardening law parameters.
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3.1. Sensitivity tests and FE simulation conditions

The validations of the FE-VFM are performed through the sensitivity study.
In the sensitivity study, both the orthotropic linear elasticity and isotropic
plasticity are considered, and the ideal full-field displacement fields are
(virtually) produced using FE simulations, which provide data without
experimental noise. In addition, this analysis enables a quantitative evaluation
of the VFM results based on known target material constants. A sensitivity
study is conducted on the effect of FE type, FE mesh size, and order of the
Gauss quadrature. For the quantitative analysis, the difference between the
IVW and EVW calculated from the input material parameters was examined.

Ideally, IVW and EVW should be identical within a numerical tolerance.

Abaqus/Standard was used for the virtual experiments. For the orthotropic
linear elastic material, a tensile test with a center hole specimen was
performed. The geometry of the virtual specimen and the corresponding
boundary conditions are illustrated in Fig. 3-1. The thickness of the specimen
was defined as 2 mm. The model was discretized with 143,585 elements, and
the element type was a 4-node plane stress quadrilateral element with reduced

integration (CPS4R).
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«——40 mm——>

U, =-0.2mm 15 mm U, =0.2mm

Fig. 3-1. Specimen geometry and boundary conditions for virtual FE
simulations for (a) anisotropic linear elastic material and (b) elastic-plastic
material.

The constitutive law for orthotropic linear elasticity is written as follows:

0y Q Q. 0})g
0, 1=|Q Q 0 |lg (3.1)
O 0 0 Qu/lé&
where o (1=1,2,6) and & (i=1,2,6) are the components of the stress and
strain tensor in Voigt notation, respectively, and Oy (i,j=1,2,6) is the
orthotropic elastic stiffness. The constants used in the FE simulations are

listed in Table 3-1.
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Table 3-1. Orthotropic linear elastic constants used in the sensitivity study

Qu Q2 Q2 Qe
41.0 GPa 10.3 GPa 3.1 GPa 4.0 GPa

For the elastic-plastic material, a notch tension test was conducted, as
illustrated in Fig. 3-2. The virtual thickness of the specimen was defined as 2
mm. The number of elements was 31,309, and the same element type as in

the elastic problem was used.

fUz =0.7mm

F 30 mm >

40 mm | R20mm
0 X

' U, =-0.7mm

5=

Fig. 3-2. Specimen geometry and boundary conditions for virtual FE

simulations for elastic-plastic material.

For the elastic-plastic constitutive law, the material was assumed to be

isotropic. The von Mises yield function and isotropic hardening using the
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Swift hardening law in Eq. (3.2) were employed.
o=K(g+e,) (3.2)

where 0 and € are the equivalent stress and equivalent plastic strain,
respectively, and K, e, , and n are material constants. The material constants

of the Swift law are listed in Table 3-2.

Table 3-2. Elastic-plastic material constants used in sensitivity tests

Elastic constants Plastic strain-hardening law
E(GPa) \ K (MPa) €0 n
70 0.33 350 0.045 0.15

In the FE simulation, the total displacement was incrementally applied over
100 time steps, and the simulation results over all the time steps were used
for the sensitivity analysis. In this study, a tangent stiffness-based stress

integration algorithm [92,93] was used.

The conditions for the sensitivity tests were: (1) element sizes of 1 mm to
5 mm; (2) element types of linear (T32), quadratic (T6), and cubic (T10)
triangular elements, and linear (Q4), quadratic (QS8), and cubic (Q12)

quadrilateral elements; and (3) orders of the Gauss quadrature from 1 to 7.

2T and Q denote triangular and quadratic elements, respectively. Here, the

numbers in the elements represent the number of nodes in each element.
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Note that linear quadrilateral elements with the nodal coordinates shown in
Fig. 3-3 had to be avoided because of the singularity in the calculation of

global shape functions [89].

(Xl!Yl)

Fig. 3-3. Linear quadrilateral element should be avoided in the FE mesh

In this study, linear triangular and quadrilateral element meshes are
generated by an Abaqus CAE pre-processor. higher-order element meshes are

generated by modifying linear element meshes using in-house programming.

As schematically shown in Fig. 3-4, The meshing procedure from the linear
to the higher-order elements is summarized as follows. First, new (trial) nodes
are added between the existing nodes as initial guesses. For quadratic
elements, the additional nodes are positioned at the center of the two
connected nodes, while those for the cubic elements are added at 1/3 and 2/3
the distance between the two existing nodes. Additionally, a center node is

added for cubic triangular elements.
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Linear element mesh Cubic element mesh
Edge arc of specimen %i

Node of linear element

Added node of high order element
Initial guess of edge node

Center of edge arc

Fig. 3-4. Generation of higher order element meshes by modifying the linear

elements

After that, the position of the nodes at the curved edges is corrected to the

proper position. Curved edge nodes can be identified using the circle equation.
(X, X,) +(Y,~Y,)—r*<TOL (3.3)

where (X Y ) is the nodal position of the initial linear elements at the curved

edge, (XO,YO) is the center of the curved edge arc, r and TOL is numerical
tolerance. After the curved edge is identified, the correct added nodal position

(X Y ) can be calculated using arc center and radius, an initial guess of

cor’ * cor

added node position (X

guess’ Yguess ) °

{XW =trcosf+X, (3.4)

Y . =trcosf+Y,

cor

where angle 6 is
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YO _Yuess
0 =atan # . (35)
-

guess

Among possible 4 solutions in Eq. (3.4), most closet point to the initial guess
is selected as a correct added nodal position for the higher-order elements on

the curved edge.

Meanwhile, linear element meshes generated by Abaqus/CAE are shown
in Figs. 3-5 and 3-6, for the linear elastic case and elastic-plastic case,
respectively. Also, examples of higher order element meshes are shown in
Figs. 3-7 and 3-8, for the linear elastic case and elastic-plastic case,

respectively.
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Fig. 3-5. Finite element meshes used for the sensitivity test of the
orthotropic linear elastic problem. Meshes in the figure are linear element

meshes generated by Abaqus/CAE with element sizes of Imm to Smm.
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Fig. 3-6. Finite element meshes used for the sensitivity test of the plastic
problem. Meshes in the figure are linear element meshes generated by

Abaqus/CAE with element sizes of lmm to Smm.
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Fig. 3-7. Example of higher-order element meshes generated by in-house

Matlab code for the orthotropic linear elastic problem

Linear

Triangular

Quadratic

Quadrilatera

s
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B
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Fig. 3-8. Example of higher order element meshes generated by in-house

Matlab code for the plastic problem.
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3.1. Results: orthotropic linear elastic properties

In Fig. 3-9, the displacement (U;) and logarithmic strain (Ej) fields are
presented for the orthotropic linear elastic material. Fig. 3-9(a) shows the
results of the FE simulation, and Fig 3-9(b) shows the reconstructed results
obtained using the proposed mapping algorithm. The element type shown in
the figure and its average size are Q12 and 5 mm, respectively. As validated
in the figures, the reconstructed fields are in good agreement with the FE-
simulated fields, even with coarse meshes, when higher order elements are

used.

Two different sets of polynomial virtual fields were used for the sensitivity
tests of linear elasticity, which are shown below.
ox, =(X,/20
! ( o/ ) (3.6)
6x,=0

ox, =(X, /20)’

6, =((X, /20)" ~1)(x, /20) G7

The above virtual fields are functions of the undeformed global coordinates

normalized by a half-length of the virtual specimen. The virtual fields in Eq.

(3.6) and (3.7) represent the linear and nonlinear polynomials, respectively.
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Fig. 3-9. Comparison of displacement and strain fields for the linear elastic

material. (a) FE simulated deformation fields before mapping and (b)

reconstructed fields with Q12 finite elements with an average size of 5 mm
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For the given virtual fields, the accuracy of the FE-VFM results is
estimated based on the difference between the IVW and EVW. The residual

(R) was defined as follows:

ow.

int

ow.

ext

ow.

ext

RS, =‘ x100(%) (3.8)

Fig. 3-10 shows the sensitivity test results for linear polynomial virtual
fields calculated by Eq. (3.6). As the element size increases, larger residuals
are calculated for both linear elements in Fig. 3-10(a). For quadratic and cubic
elements, a considerably low level of residuals is indicated for all investigated
element sizes. Fig. 3-10(b) shows the effect of the order of integration on the
accuracy. It is evident that the residuals for linear elements are not influenced
significantly by the order of the Gauss quadrature. For the quadratic elements,
the first-order integration resulted in the best accuracy. For the cubic elements,
the residuals are lowered if the order of integration is higher than three. The
results in Fig. 3-10 show that none of the residuals in any of the investigated
cases are very large, even for rather coarse linear elements (only 3% at a

maximum).

In Fig. 3-11, the sensitivity test results for more complex polynomial virtual
fields calculated by Eq. (3.7) are presented. It is evident that smaller residuals
are calculated with nonlinear polynomial virtual fields than with linear virtual
fields by Eq. (3.6). In terms of the order of Gauss quadrature, all elements

show very small residuals if the order is higher than three.
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In summary, the effect of element type and size on the accuracy of FE-
VFM was not noticeable, because small enough residuals were calculated
even for linear elements and virtual fields. This low impact of FE parameters
on the residual (or accuracy) may be because the spatial non-linearity of
deformation is not significant for the case of linear elastic materials. In this
case, the selection of virtual fields seems to be more critical than other factors,
as shown by the differences in the residuals between the two virtual fields.
Only a higher order of Gauss quadrature could improve the quality of IVW
integration in cases when a nonlinear virtual field was used, as shown in Fig.

3-11(b).
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Fig. 3-10. Residuals of virtual work difference with linear virtual works for

orthotropic linear elastic material with respect to (a) finite element size and

(b) order of Gauss quadrature.
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3.2. Results: plastic strain hardening law

In Fig. 3-12, the displacement and strain fields of the notched tension are
presented for the elastic-plastic material. As in Fig. 3-10, Fig 3-12(a) and (b)
show the FE-simulated and reconstructed deformation fields, respectively.
The size and element type of the FE mesh are the same as in the elastic case.
Again, the fields reconstructed by the proposed mapping algorithm show
good agreement with the FE-calculated results, which validates the reliability

of the FE-based mapping for large deformations.

In the sensitivity study, the following virtual fields are applied for the

elastic-plastic material.

6, =((X, /20)" ~1)(X, /15)

&x, =(X, /20)°

(3.9)

As in the elastic case, the two virtual fields are considered undeformed

coordinates normalized by half of the specimen width and height, respectively.

Similar to the elastic case, the residuals between the IVW and EVW are
calculated with known target material constants. The residual for the error

analysis is averaged over the time step and is defined as follows:

-oW,

1 &|0W,
Rb, = et % 100(% (3.10)
i nstep ; GM/BX'E ( )

where T is the time step number, and n__ (equal to 100 in this study) is the

step
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total number of time steps.

(b) (a)
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Fig. 3-12. Comparison of displacement and strain fields for isotropic elastic-
plastic material. (a) FE simulated deformation fields before mapping and (b)
Reconstructed fields with Q12 finite elements with an average size of 5 mm
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In Fig. 3-13, the residuals of virtual work are presented with respect to the
element size and order of the Gauss quadrature. As shown in Fig. 3-13(a), the
residual is highly dependent on element size when a linear element is used.
However, the residual is almost independent of the mesh size for higher-order
elements. This is quite different from the elastic material, which showed
negligible sensitivity to the element size. This indicates that finer meshes are
necessary for the linear element under large plastic deformation. In other
words, moderate or large element sizes can be employed for accurate mapping

when higher-order elements are used.

In Fig.3-13(b), it is evident that the residuals of the virtual work are also
significantly dependent on both element type and integration order. For the
linear triangular element (T3), no noticeable change in the residual was
observed with different integration orders. Moreover, even higher-order
integration resulted in a larger residual than first-order integration with the
linear quadrilateral element (Q4). However, integration with a higher-order
improved accuracy for quadratic and cubic elements. The figure also shows
that third-order or higher integrations are appropriate for the quadratic
element, and fifth-order integration shows the best accuracy for the cubic

element.
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Fig. 3-14 shows the results of parameter identification for the plastic strain
hardening law using the FE-VFM. The non-linear optimization of the cost
function was conducted using the MATLAB® built-in non-linear least-

squares optimization function Isqnonlin.

For the quantitative analysis, the average error of the equivalent stress is

defined as follows:

1 ¢%|0vim — Oraree
R == [ |- dg x100(%) (3.11)
8(1

Otarget

where Oy is the equivalent stress obtained from the FE-VFM, & is the

target
corresponding input equivalent stress (or exact target value), and €, (=0.3 in

this study) is the limit of the equivalent plastic strain range for the average

error calculation.

Fig. 3-14(a) shows that the error in the equivalent stress increases as the
element size increases when linear elements are used. However, the error
becomes significantly lower regardless of the element size in the case of
higher-order elements. This indicates that the deformation fields can be
reconstructed well for the higher order elements even with quite large element
sizes. In contrast, linear elements do not describe highly deformed fields
properly owing to the linearity of the shape functions. Fig. 3-14(b) shows that
the quality of the FE-VFM is not improved for a linear triangular element,

even with higher-order integration. Additionally, it is not clear if the increased
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order of integration reduces the error in equivalent stress for the quadratic
triangular element. However, for quadrilateral elements, higher-order

integration showed better accuracy in identifying the hardening parameter.

The sensitivity tests described above clarified that the proposed FE-VFM
could be an effective inverse identification method for elastic-plastic
materials. This was attributed to the robust reconstruction of the full-field
displacements. In particular, the present sensitivity study verified that the
deformation field reconstructions were accurate for even coarse meshes if
elements of higher order were used. In addition, the newly implemented
Gauss quadrature for integrating the IVW could improve the VFM quality in

combination with element types that are selected properly.
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Fig. 3-14. Mean equivalent stress error of FE-VFM for elastic-plastic

material with respect to (a) element size and (b) order of integration
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3.3. Summary

Extensive sensitivity tests for the validation of the proposed FE-VFM were
performed with ideal deformation fields generated by finite element
simulations for both orthotropic linear elastic and isotropic elastic-plastic
cases. FE-VFM conditions tested in this study were (1) FE mesh size from 1
mm to Smm, (2) FE order from linear to cubic elements, and (3) Gauss

quadrature order from 1 to 3.

The sensitivity study showed that the element size and order of the shape
function had a minor effect on the quality of the VFM for the elastic material.
The virtual fields selection, rather than the FE meshes, critically affects the
quality of the results. Moreover, a higher-order Gauss quadrature improves

the accuracy of IVW calculation when complex virtual fields are used.

In the case of elastic-plastic material, the element size and the order of an
element, and the order of the Gauss quadrature had a considerable effect on
the accuracy of the identified material parameters, which resulted from the
spatial non-linearity of the large plastic deformation. It was also shown by
validation that even coarse FE meshes could give satisfactory accuracy in the

FE-VFM when higher order elements and Gauss quadrature were adopted.
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4. Application I: homogeneous strain hardening of
AHSS sheets

4.1. Introduction

The limitation of the sensitivity study presented in Chapter 3 is that the inputs
are generated by FE simulations; thus, the full-field quality is almost ideal.
On the other hand, experimental data often involve numerous experimental
artifacts or uncertainties. Therefore, identification of the plastic strain
hardening parameters for the metal sheets is presented as a real application in

this chapter.

Before applying FE-VFM to the experimental data, new types of virtual
fields namely pseudo-real deformation field (PDF) is proposed. As mentioned
in the introduction, the virtual fields act as an amplifier or a filter,
consequently, it affected the VFM results. However, conventional polynomial
virtual fields are stationary in a time frame, hence it cannot properly utilize
the information at the highly deformed region for the elastic-plastic case. In
this work, virtual fields constructed with nodal displacements of the FE-VFM
are tested as a potential candidate of the virtual fields based on ideal
deformation data that are already used in Chapter 3. Then, further
modification was made to apply PDF to the experimental data that include
unavoidable experimental flaws, especially in the elastic early deformation

stage. Detailed information on the new virtual fields, is shown in Section 4.2.
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Conventionally, plastic strain hardening of the metal sheets is measured
using uniaxial tensile tests. However, experimental data of the uniaxial tensile
tests can only be used up to UTS, since stress and strain in the gauge section
are no more uniform and uniaxial after the UTS due to the necking [94-96].
Usually, strain hardening in the post-necking is extrapolated using tensile test
data before the necking based on strain hardening law equations such as Swift
and Voce equation [3,4,97], which is essentially just a fitting equation. The
difficulty to apply such a method in advanced high strength steels is that the
uniform elongation (that corresponds to the UTS) is often very short [98—100],
yet accurate strain hardening in the post-necking is required for the accurate

simulations.

Various characterization methods for strain hardening in the post-necking
are proposed in the literature. One simple method is inversely optimizing
parameters of the strain hardening law through iterations of finite element
simulations that can match the measured global behavior such as
displacement-load curves. Chung et al. inversely calibrated the hardening
behavior of the spot-welded steel sheets [101]. Mohr and Marcadet also
optimized a post-necking strain hardening using iterative finite element
simulations [102]. In their work, Swift and Voce fit based on tensile tests were
assumed as a lower and upper limit of the true stress-strain behavior, and the

linear combination ratio of those two laws was inversely characterized.

Meanwhile, DIC data was utilized for the characterization of the post-
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necking hardening. Paul et al. used DIC strain values to correct the local
stress-strain behavior in the necked region [103,104]. Marth et al. also used
DIC data to inversely calibrate the post-necking stress-strain behavior. Hao et
al. performed the finite element model update in conjunction with DIC data
[105]. The VFM is also used for the optimization of the metal’s strain
hardening law. Grédiac and Pierron applied VFM to the identification of the
elastic-plastic constitutive parameters based on double notched shearing tests
[106], Kim et al. characterized a post-necking behavior of the metal sheets

using VFM with tensile tests [81].

The target materials in this study were 1470 MPa grade press-hardened
steel (1470 MPa PHS) sheets. Notched tensile tests were employed to apply
the FE-VFM, and new virtual fields introduced in Section 4.2 were used
simultaneously. Detailed conditions of the experiments and FE-VFM are
presented in Section 4.3. In addition, the results of the FE-VFM and the

validity of the results are shown in Section 4.4.
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4.2. New virtual fields: Pseudo-real deformation fields

4.2.1. Concept of the PDF

In this section, a new type of virtual field, namely the PDF, is introduced. In
the context of VFM, virtual fields are not only test functions for establishing
equilibrium equations in weak form but are also filters or amplifiers for
obtaining better accuracy for the identified parameters. For elastic materials,
virtual fields play a more dominant role as filters of experimental noise
because of the small strains in elastic specimens. In contrast, for plastic
materials, the signals from large plastic deformation overwhelm the effect of
noise. In other words, the virtual fields should be selected properly to amplify
meaningful information from the measured full-field data. In common
metallic materials, deformation is accompanied by strain (or work) hardening.
Before metal yields, the strain distribution of the metal is nearly uniform in
the specimen gauge, but it becomes significantly inhomogeneous at a large
strain owing to the plastic hardening. Therefore, conventional virtual fields
that are represented as constant polynomials over time steps may lead to

inaccurate identification of plastic properties.

In this study, a new strategy for generating virtual fields directly from a real
(experimental) deformation field is proposed. The advantage of real
deformation as a candidate for virtual fields is that it readily satisfies the

boundary conditions and symmetry under given test conditions, and strains
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are large at the region where the large plastic deformation occurs. An
additional constraint of the new virtual fields is that they should be constant
at the force boundary, as in the conventional method in Eq. (2.7). Under the
FE-VFM, this constraint can easily be satisfied by simply substituting real
nodal displacement values along the force boundary with certain constant
values. Then, the virtual fields can be given as interpolated fields of the
modified real nodal displacements. Owing to the characteristics informed by
real deformation and the post-numerical modification process, the new virtual

fields are defined as pseudo-real deformation fields.

The following equations, Eqs. (4.1)—(4.2), are sets of virtual fields for

testing the newly proposed PDF.

P-VF1 2X, (4.1)

P-VF2 ) 4.2)
5%, - ( 2X, ]
L2
N-VF1 6u’ =3 (4.3)
, i
N-VF2 &u' = ! (4.4)

max(ﬁ;’)—min(ﬁf)
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N-VF3 6u’ = Ly (4.5)
] i _max(ﬁi")—min(ﬁ;’) .

10L4"

max(ﬁi” ) — min(ﬁi”)

N-VE4 6u = (4.6)

where L; and L, are the width and height of the specimen, respectively, and

u is the modified nodal displacement.

Egs. (4.1) and (4.2) are polynomial virtual fields (P-VF1 and P-VF2) for
comparison with the new virtual fields. In Eq. (4.3), the virtual nodal
displacements are defined as real displacements without further modification
(N-VF1). The virtual fields in Eq. (4.4) are the modified real displacements
normalized by the difference between their maximum and minimum (N-VF2),
which have a value that varies from -0.5 to 0.5. The modified nodal
displacements are normalized and amplified in Egs. (4.5) and (4.6): In Eq.
(4.5), amplification factors are applied with lengths L1 and Lo (N-VF3), and

N-VF3 is multiplied by an additional factor of 10 to obtain N-VF4 (Eq. (4.6)).

Then, the virtual position in an element can be calculated by applying the
FE shape functions to the nodal virtual displacements. The interpolated

virtual fields in each element are written as follows:
OX, =ou, + X, =N,du;; + X, 4.7)

Finally, the virtual deformation gradient can be calculated as follows:

68



T T T
osx [(89,) . .1 [(éf .
SF; = :u@_r:j bﬂ,éu,,J [y] a,ry | +;. (4.8)
] J

Note that Eq. (4.8) is the same as the real deformation gradient in Eq. (2.26),
except that the fields are interpolated with virtual nodal displacements.

Therefore, all variables in Eq. (4.8) are known for the parameter optimization

procedure.
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Real displacement fields u;

U1 Uz
1.909¢-03 - 7.004¢-03
1.591e-03  5.837e-03
1.2738-03 - 4.669¢-03
9.545e-04 r 3.502e-03
6.363¢-04 - 2.335¢-03
3.182e-04 - 1.167e-03
1.2186-08 - -1.165e-07

-3.1818-04 - -1.167e-03
-6.3636-04 - -2.3356-03
-9.5446-04 -3.502¢-03
-1.2736-03 -4.670e-03
-1.5918-03 -5.837e-03
v\ -1.9096-03 -7.004e-03
Substitute boundary nodal displacements as constant values
Modified real displacement fields 1i;

VU1 VU2
1.906¢-03 7.000e-03
1.588e-03 5.833¢-03
1.270e-03 4.667e-03
9.529e-04 3.500e-03
6.352¢-04 2.333e-03
3.176e-04 1.167¢-03
-5.202e-09 -1.643e-08

-3.176e-04 -1.167e-03

-6.353e-04 -2.3336-03

-9.529¢-04 -3.500e-03

-1.270e-03 -4.667e-03

-1.588e-03 -5.833e-03

-1.906e-03 -7.000e-03

Fig. 4-1. Modification of real displacements for pseudo-real displacement
virtual fields. Constant nodal displacement values are substituted to force

boundaries
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4.2.2. Validation of the PDF

To test the concept of the PDF, the FE simulation data used for the sensitivity
study of the elastic-plastic notched tension in Chapter 3 are employed. The
type and size of the elements are Q12 and 4 mm, respectively. Fig. 4-1 shows
the real displacement fields and their modification for setting up the PDF.
Here, the nodal displacements at the force boundaries are replaced with an

averaged displacement of each boundary.

The parameters for the plastic hardening law in Eq. (3.2) and Table 3-2 are
identified using the virtual fields listed in Eqgs. (4.1)—(4.6). For comparison,
the errors of the equivalent stress (Eq. (3.11)), and the errors of the material
parameters are calculated. The results are shown in Fig. 4-2, and the values

are listed in Table 4-1.

Table 4-1. Identified Swift hardening parameters and errors in stress for
different virtual fields test results

Swift law parameters Error in stress,
K(MPa) e n Ry (%)

Target 350.0 0.0450 0.150

P-VF1 346.3 0.0410 0.142 0.19
P-VF2 346.5 0.0425 0.143 0.19
N-VF1 355.9 0.0488 0.158 0.70
N-VF2 356.7 0.0488 0.159 0.78
N-VF3 352.3 0.0453 0.152 0.31
N-VF4 350.4 0.0443 0.150 0.05
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Fig. 4-2. Evaluation of virtual fields with (a) error in equivalent stress, and

(b) error in Swift hardening parameters.
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The errors of the equivalent stress with the two polynomial virtual fields P-
VF1 and P-VF2 were approximately 0.2%, which is quite low. However,
specific material parameters are relatively inaccurate with polynomial virtual
fields. The discrepancy in the strain-hardening exponent n is critical because
this value determines the prediction of the formability or onset of localization.
The figures also show that the errors with the two new virtual fields N-VF1
and N-VF2 were not significantly better than those of P-VF1 and P-VF2.
Contrary to the P-VF1/2 and N-VF1/2, the results with N-VF3 and N-VF4
showed significantly better accuracy for the identified hardening parameters
when compared with conventional polynomial virtual fields. The best
accuracy was obtained with N-VF4 virtual fields for the errors of both the
equivalent stress and material parameters. The result indicates that the
proposed concept of the PDF can accurately identify plastic parameters if

amplification is properly applied.

The above results are explained in Fig. 4-3. The figure shows comparisons
of the distribution of IVW density with respect to the major strain (Fig. 4-
3(a)). Here, T denotes a time step, and t = 10, 50, 100 corresponds to an initial
yielding, an intermediate step, and a final time step, respectively. For
comparison, the cases of N-VF4 (Fig. 4-3(b)) and P-VF2 (Fig. 4-3(c)) are
used. It can be noted that the distribution of the IVW density of the P-VF2
case does not change considerably as the deformation proceeds. In contrast,

the density of IVW calculated with N-VF4 shows similar distributions of the
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major strain of each deformation stage. In particular, the new virtual fields N-

VF4 account for the localized deformation at the center of the specimen.

=10 =50 =100
LE22(mat. crd) LE22(mat, crd) LE22(mat. crd)
7.115e-03 7.881e-02 1.946e-01
6.563e-03 I 7.231e-02 1.785e-01
6.012e-03 6.581e-02 1.623e-01
5.460e-03 5.931e-02 1.462e-01
4.908e-03 5.280e-02 1.300e-01
4.356e-03 4.630e-02 1.139%-01
3.804e-03 3.980e-02 9.774e-02
I 3.252e-03 I 3.329e-02 I 8.159e-02
2.701e-03 2.679¢-02 6.544e-02
2.149e-03 2.029¢-02 4.929e-02
1.597e-03 1.379¢-02 3.314e-02
1.045e-03 7.284e-03 1.699-02
4.933e-04 7.814e-04 8.357e-04
VWint. VWint. T=100 VWint.
1.575e+04 4.152e+04 5.817e+04
1.445e+04 3.809e+04 I 5.334e+04
13156404 3.4650+04 4.852e+04
1.1856+04 3.1226+04 4370e+04
1.055e+04 2.779+04 3.887e+04
9.252e+03 2.436e+04 3.405e+04
7.952e+03 I 2.093e+04 h 2.923e+04
I 6.652e+03 1.749¢+04 2.440e+04
5.353e+03 1.406e+04 1.958e+04
4.053¢+03 1.063e+04 1.475e+04
2753e+03 7.1980+03 9.930e+03
1.454e+03 3.766e+03 5.107e+03
1.540e+02 3.337e+02 2.827e+02
VW int. VW int. VW int.
1.860e+02 2.056e+02 2.175e+02
1.714e+02 1.895e+02 2.003e+02
1.569¢+02 1.733e+02 1.831e+02
1.424e+02 1.672e+02 1.658e+02
1.279e+02 1.411e+02 | 1.486e+02
1.134e+02 1.250e+02 1.314e+02
9.886e+01 1.089e+02 1.142e+02
I 8.434e+01 I 9.275e+01 I 9.699e+01
6.983e+01 7.663e+01 7.977e+01
5.531e+01 6.051e+01 6.256e+01
4.079%+01 4.43%e+01 4.535e+01
2.628e+01 2.827e+01 2.813e+01
1.176e+01 1.215e+01 1.092e+01

Fig. 4-3. Evaluation of density of IVW with respect to the strain along
loading direction (E»2») at three different loading steps ( = =10, 50, 100). (a)
Distributions of strain (E22), (b) distribution of IVW density with N-VF4,
and (c) with P-VF2.
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4.2.3. Combined PDF-polynomial virtual fields for experiments

The proposed PDF virtual fields (N-VF4 in Eq. (4.6)) were proved to be an
effective strategy for improving the accuracy of material parameter
identification for plastic materials. However, the validations were only done

for the ideal case generated by the FE simulations (for the testing of virtual

fields).

However, unavoidable and unexpected flaws were contained in the
experimental full-field data. The defects of the full-field data originated from
the noise of non-contact measurements and experimental imperfections such
as non-ideal grip conditions, small out-of-plane motions of the specimen, and
imperfect alignment of the specimen. Fig. 4-4 shows an example of the effect
of these flaws at an early stage of the test. The major strain distributions in
Fig. 4-4(a) show a highly concentrated compressive strain at the top-left side
of the specimen, which might have been caused by the experimental flaws. In
Fig. 4-4(b), the IVW density distribution calculated using the PDF in Eq. (4.6)
also shows an area of higher intensity at the same location. Such an effect is
also found in the IVW curve in Fig. 4-4(c). In the figure, highly oscillating
sharp peaks (red marks in Fig. 4-4(c)) are shown. This is caused by the PDF
because the defects in the full-field data are amplified together with a true test
signal. Note that the effect of these experimental defects appeared in the early
elastic deformation stage and gradually disappeared with an increment in the

true signal accompanied by an increment in strain magnitude.
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Fig. 4-4. Effect of experimental artifacts contained in the full-field
measurement. (a) Major strain distribution (E22), (b) IVW density
distribution calculated with PDF in Eq. (4.4), and (¢) IVW and EVW curves

calculated with the PDF
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To overcome the effect of the experimental defects at an early stage of
testing, additional modifications of the newly proposed virtual fields were
made. In Eq. (4.9), a linear combination of the new PDF and polynomial

virtual fields is used to take advantage of both types.

6x, =6u,+ X, =ra-i,+(1-r)a-% +X, (4.9)
where r is a linear combination ratio between 0 and 1, @ is an amplifying
factor, X, represents the user-defined polynomial virtual fields, X, represents

the undeformed coordinates, and @, represents the PDF proposed in this

study. The PDF 1, is defined as follows:

i, = L 0 (4.10)

An ) An i
max(u,. )—mln(ui )

where I, denotes the interpolated fields from U, and L; and L, are the width
and height of the AOI, respectively. Note that the PDF in Eq. (4.10) are

normalized and amplified with geometrical units (the same as in Eq. (4.5)).

The linear combination ratio r is defined as an Avrami-type function as

follows.

r=1-—exp —[ t ] (4.11)

‘I.'p +C,,

where T is a time step number, T, is the time step number at which plastic

77



deformation is initiated, and ¢, and n,, are function constants. Then, Eq. (58)
shows that r is initially 0, which exponentially increases to 1 as the time step
increases. In the function, the values of T,+C, and n, determine the

position and slope of the transition, respectively. Then, the new virtual fields
in Eq. (4.9) gradually change from the polynomial virtual fields to the PDF,
which gives a better result as plastic deformation proceeds. In this study, the

real undeformed position is directly used as a polynomial virtual field.

X=X . (4.12)

1

The parameters ¢,, and n,, are optimized along with other material

parameters in the following sections, 4.3 and 4.4. The amplifying factor @
was set to 10 in this study. Additionally, the EVW is calculated using Eq. (4.13)

using a constant magnitude of the virtual field 6x, at the boundaries.

W, = _f-Sxds=(a+1)L,-F (4.13)

ext

4.3. Experiment and FE-VFM conditions

In this section, the FE-VFM is validated with real experimental data. In the
tests, 1470 MPa grade press-hardened steel (PHS) sheets were used. The
thickness of the sheets was 1.25 mm. Owing to the low strain before the onset

of diffuse necking (or before ultimate tensile strength (UTS)) in PHS steel,
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the common method for obtaining true stress—strain data based on the
extrapolation of flow stress often leads to less accuracy at large strains. The
VFM has the potential to overcome this limitation because it can obtain

reliable flow stress even after localization (or beyond uniform elongation).

In this study, an Instron 8801™ servo-hydraulic machine was used for the
experiments. For comparison with the VFM, conventional tensile tests were
conducted with standard ASTM E8 specimens under quasi-static conditions
(strain rate of 0.001/s). Tensile tests were performed in the rolling direction
(RD) of the sheets. For simplicity, isotropic linear elasticity and plasticity
were assumed, and Young’s modulus and Poisson's ratio were 200 GPa and

0.3, respectively.

The flow stress curves were described using the combined Swift—Voce (S—

V) hardening law shown in Eq. (4.14).

G=K(z+e,)" +0,+R(1-exp(-bz)) (4.14)

where K, eo, n, 0o, R, and b are material constants. Note that the S—V

hardening model was introduced to fit the stress—strain data more accurately

than the classical Swift or Voce hardening laws.

Notch tensile tests were also adopted in applying the FE-VFM, and the
dimensions of the specimen are illustrated in Fig. 4-5(a). The test speed was

1 mm/min. For the full-field measurement, the commercial stereo DIC
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package VIC-3D was used. In the test, the frame rate was 6.67 fps, the total
number of time steps was 408, and two different subset sizes of 31 and 63

pixels were used in post-processing.

In the post-processing for DIC, the optimal subset size varies with the
quality of the test conditions. Usually, as the quality of the speckle pattern
increases, the required subset size decreases. Additionally, the increased
subset size reduces noise and spatial resolution [28]. Moreover, the portion of
the non-measurable region at the edge of the AOI increases as the subset size
increases. In Fig. 4-5(c), the areas measured by DIC are compared for two
different subset sizes. In this study, DIC analyses with the two subset sizes
were conducted to investigate the capability of the proposed FE-VFM with
relatively low-quality full-field measurements. The detailed conditions of the

DIC analysis are listed in Table 4-2.
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Fig. 4-5. Notch tensile test conditions for applying the FE-VFM. (a)
Specimen geometry, (b) FE meshes for reconstructing displacement fields,

and (c) DIC measurement areas with two different subset sizes.
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Table 4-2. Conditions of DIC analysis

Software VIC-3D 7
Resolution of CCD camera (pixels) 2448 x 2048
Frame rate (fps) 6.67
AOI area (pixels) 2192 x914
AQI area (mm x mm) 46x20
Average speckle size (pixels) 6
Interpolation Optimized 8-tap
Criterion Normalized square difference
Subset size 1 (pixels) 31
Subset size 2 (pixels) 63
Step size (pixels) 3

The U-notch tensile test shown in Fig. 4-6 was also conducted for the
validation of the measured flow stress curves. The test speed was 1 mm/min,
and displacement was measured with a gauge length of 12.5 mm using the
DIC. The experimental load—displacement curve of the U-notch test was
compared with the FE simulation results predicted with the measured plastic

hardening parameters.

In the FE-VFM, the cubic quadrilateral FE (Q12) meshes illustrated in Fig.
4-5(b) were used for the reconstruction of the displacement fields. The
measurement of the DIC in the blue region in Fig. 4-5(a) was reconstructed.
Additionally, a seventh-order integration was used in the Gauss quadrature.

For the non-linear optimization of the cost function, the MATLAB® built-in
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non-linear least-squares optimization function Isgnonlin was used. A linear

combination of PDF and polynomial virtual fields in Eq. (4.9) was used due

to the unexpected experimental flaws, as discussed in Section 4.2.3.

50 mm

94

Gauge
25 mm

U

«—20 mm—

10 mm

34 mm

p?

Fig. 4-6. U-notched specimen for validation of obtained material properties
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4.4. Results and validations

In Fig. 4-7 and 4-8, the displacement fields measured by the DIC and their
reconstructed fields on the FE mesh are presented at a time step of 300. Figs.
4-7(a) and (b) correspond to a subset size of 31 pixels, and Figs 4-8(a) and (b)
correspond to a size of 63 pixels. The figures confirm that the proposed FE-
based full-field reconstruction was performed well for the real experimental
data. In particular, the wide edge regions with missing measurements in the
AOI in Fig. 4-8(b) were successfully reconstructed with higher order FE
meshes. The reconstructed displacement fields were consistent for the two

different subset sizes.

Using the reconstructed displacement fields, the FE-VFM was performed
by applying the new PDF-based virtual fields in Egs. (4.9)—(4.13). Fig. 4-9
shows that the IVW and EVW are virtually identical, which proves that the
non-linear cost function was well-optimized. Fig. 4-10(a) presents the strains
in the loading direction(E»2), and Fig. 4-10(b) shows the densities of the [IVW
at two different time steps. The figures clearly show that the change in the
IVW density during deformation is comparable to that of the strain. This
indicates that the PDF effectively amplifies the effect of plastic deformation

in the localized area.
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(b)

Fig. 4-7. Comparison of displacement fields. (a) DIC measurements with

subset size 31 pixels, and (b) FE mesh-based reconstructed displacement

fields.
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Fig. 4-8. Comparison of displacement fields. (a) DIC measurements with
subset size 63 pixels, and (b) FE mesh-based reconstructed displacement

fields.
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Fig. 4-9. IVW and EVW curves. The results are calculated from FE-based
VFM with modified PDF virtual fields in Eq. (4.9).
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(©)

Fig. 4-10. (a) Strains in loading direction (E22) and (b) distributions of IVW
density at two different time steps t=300 and 400. The results are calculated

from FE-based VFM with modified PDF virtual fields in Eq. (4.9).
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In Fig. 4-11(a), the equivalent stress—strain curves identified with the FE-
VFM and standard tensile test are presented. It can be noted that the flow
stress curves identified by the FE-VFM match very well with those obtained
from the standard tensile test after moderate strain. However, the two curves
show a significant difference in the yield stresses and a slight difference in
the hardening slope after the point of UTS. Fig. 4-11(b) compares the load—
displacement curves in the U-notch tests for the validation of the FE-VFM.
For this, FE simulations were conducted with hardening parameters both for
the S-V model parameters from the FE-VFM and for fitting to the standard
tension. The detailed hardening parameters are listed in Table 4-3. The figure
shows that the predicted load—displacement curve using FE-VFM results in
is a better agreement with the experimental values than that of the standard
tension results. In particular, the load—displacement curve predicted by the
FE-VFM improved the accuracy for the early plastic region and the region

after the maximum load.
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Fig. 4-11. (a) Flow stress curves identified by simple tension and FE-VFM.
(b) Load-displacement curves of the U-notch tension test predicted by finite
element simulations with hardening identified from either standard tension

or FE-VFM.
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Table 4-3. Plastic strain-hardening law parameters of combined S-V law
and modified PDF parameters

Combined Swift-Voce law parameters

K oy R

e n b
(MPa) (MPa) (MPa)
Standard 0000473 01141 6154 2164 1748
tension
FE-VEM 2017 0000214 01615 4064 7523 4474
(subset31)
FE-VEM 650 0000204 01628  397.0 7559  452.4
(subset63)
Virtual fields parameters
Tp Cav Nav
FE-VEM 0 0 )
(subset31)
FE-VFM " 20 ;
(subset63)

The lower accuracy in the predicted load—displacement curve of the U-
notch test with the standard tension was mainly due to the commonly
recommended 0.2% offset method for determining yield stress. The
engineering stress—strain curve of the investigated steel sheet in Fig. 4-12
exhibits a smooth and continuous transition from elastic to plastic. Thus, the
0.2% offset method may overestimate the yield stress by ignoring the non-
linear transition near the yield point. On the contrary, the VFM approach
inversely identifies the yield stress based on the optimization of IVW, and

thus the yield point corresponds to the elastic limit.
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Fig. 4-12. Engineering stress-strain curve of 1470 MPa grade press-

hardened steel.

Another advantage of the VFM approach is that it utilizes deformation
beyond the uniform elongation (or post-UTS). Moreover, the FE-VFM with
PDF enabled the amplification of information in the localized region.
Therefore, the enhanced capability for acquiring large deformation data
during the optimization process improves the identification quality of stress-

strain behavior for high strength steel.

Fig. 4-11(a) shows that the flow stress curves identified using the FE-VFM
are almost identical for the two different subset size conditions. A large subset
size is beneficial in terms of the quality of DIC because it provides better
correlation even with lower quality speckle patterns. Additionally, it reduces

noise in the data. However, a large subset size yields lower spatial resolution
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and increases the area of the edge region where the full-field data are not
available. The results clarify that the proposed FE-VFM utilizes DIC data
analyzed with large subsets by successfully reconstructing displacements at

the edge of the AOL.

4.5. Summary

New virtual fields based on real nodal displacements were proposed to
improve the accuracy of VFM at large plastic deformation, and FE-VFM was
applied for the identification of the strain hardening law of the advanced high
strength steels. The new type of virtual field was named pseudo-real
deformation fields in this study to highlight the use of varying real
deformation fields. The PDF proposed in this study efficiently amplified the
deformation fields at a highly localized region, which significantly improved
the accuracy of the identified plastic hardening parameters in comparison

with the conventional (constant) polynomial-based virtual fields.

Also, FE-VFM proposed in Chapter 2 with the PDF is applied for the
identification of plastic hardening in 1470 MPa PHS sheets. In the FE-VFM,
notched tensile test data was used, and obtained strain hardening is validated
using U-notch tensile tests. The U-notch tension load—displacement curve
predicted using the FE-VFM hardening parameters showed better agreement

with the experimental results than did the conventional fitting-based
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hardening parameters. The improved accuracy relative to the conventional
method is explained as follows. First, the commonly adopted 0.2% offset
method for determining yield stress ignores the transition from elastic to
plastic yielding. In this case, the conventionally determined yield stress may
be overestimated, while the FE-VFM reflects the transition behavior near the
yield. Second, the simple tension-based fitting to a prescribed hardening law
is only valid before uniform elongation because the deformation becomes
non-uniform beyond this point. The investigated PHS had a low uniform
elongation (only 5%), which led to a discrepancy in the predicted deformation
at large strain for the U-notched tension. However, in the case of the FE-VFM,
the deformation fields in the large, localized deformation range could be
utilized for identification, which resulted in better identification accuracy for
plastic hardening. Note that the proposed pseudo-real deformation fields
improved the quality of the VFM by capturing stress-strain data in a large

deformation range.
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5. Application IT:non-homogeneous strain hardening
of friction stir welded aluminum alloy sheets

5.1. Introduction

It is theoretically and experimentally validated that the FE-VFM can be
effective and accurate for identifying homogeneous plastic strain hardening
of the metal sheets in Chapters 3 and 4. In this chapter, Identification of the
non-homogeneous strain hardening (or local flow stresses) of the friction stir
welded aluminum alloy sheets is presented as an advanced application of the

FE-VFM.

Friction stir welding is a solid-state welding process invented by The
Welding Institute (TWI) in the early *90s [107,108]. The FSW can be used
for joining materials that are hard to weld with a conventional welding
technique such as similar and dissimilar aluminum alloys [109-111],
magnesium alloys [112-114], and titanium alloys [115,116]. Fig. 5-1
illustrates the schematics of the friction stir welding (FSW) process. FSW tool
is composed of pin and shoulder, and it rotates at high speed between two
workpieces. The pin of the FSW tool is penetrated through depth in between
of workpieces, and the shoulder only contacted at the top surface of the
workpieces. Due to the rotation of the FSW tool, frictional heat is generated,
and metal workpieces are softened due to the heat. Also, softened materials

are mechanically stirred, and workpieces are joined in solid-state thermo-
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mechanically. As the tool moves with a rotation in a welding direction, solid-

state joining progress.

Rotating (\:]Neld ing
FSW tool Irection
Retreating Advancing
side side

Shoulder
Pin

TMAZ SZ HAZ

Fig. 5-1. Schematics of friction stir welding process

As with all the other welding processes, the microstructure of the
workpiece changes from an as-received state due to the thermo-mechanical
histories during the FSW [108,116—119]. In the friction stir welded (FSWed)
materials, the weld affected zone (WAZ) can be divided into three distinctive
zones. [118,120] Mechanically stirred area near the weld line is called the stir
zone (SZ). The region near the tool is only affected by the frictional heat,
hence it is called the heat-affected zone (HAZ). A transient region between
SZ and HAZ is called the thermo-mechanically affected zone (TMAZ). The
materials far enough away from the weld center remain as base materials, and

it is called the base zone (BZ).

96 L _
A St &k



Meanwhile, a side that welding direction is the same as the tool’s rotating
direction is called the advancing side (AS), and a side that the two directions
are opposite is called the retreating side (RS). Usually, the temperature in the
AS is a little higher than the RS since more frictional heat is generated due to
the higher relative speed compared to the RS, and HAZ in the AS can be larger
than the RS [117,118]. For aluminum alloys, strength in the WAZ can be
decreased compared to base materials strength, since it is away from the

original optimum precipitation hardening conditions [108,117,118].

Accurate evaluation of such a change in mechanical properties of the weld
affected zone is important for accurately predicting the post-FSW forming in
the simulation. Measuring the distribution of local (micro) hardness is the
most widely used technique to assess the influence of the FSW [121-123].
However, it only gives information of the relative changes of the strength
compared to the base materials, since it is not material property in the strict
sense. The most direct and reliable method to measure the local distribution
of the “full stress-strain behavior” in WAZ is performing multiple micro or
mesoscale tensile tests, with specimens fabricated in different locations in
WAZ [124]. However, it requires a specially designed miniature tensile test

machine, and fabrication of the small-scale specimen is also difficult.

Aside from the direct tensile tests, several inverse methods have been used
to evaluate non-homogeneous mechanical properties in the WAZ in the

literature. Instrumented indentation technique (IIT) is a method that retrieves
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the information of the mechanical behavior inversely in the cyclic indentation
test. Rao et al. used ITT for the characterization of the local stress-strain
properties of the AAS083 sheets [124]. Cho et al. investigate the effect of the
FSW on the ballistic limit velocity using ITT for 7xxx aluminum alloys [125].
The main weakness of the IIT is that it is an empirical approach that requires
a priori knowledge about the relation between measured indentation force-
depth curves and material properties, and thus the accuracy may vary from
material to material. Though it can measure the local flow stresses of the

friction stir welded (FSWed) materials,

The uniform stress method (USM) was also frequently used in the literature
[126,127]. In the USM, stresses at every section perpendicular to the applied
load are assumed as constant, and the local strains are measured by DIC in
the uniaxial tensile tests. With iso-stress assumption and DIC measurements,
local stress-strain curves can be constructed. The non-uniform stress method
(nUSM) was also suggested as an advancement of the USM [128,129]. In
nUSM, local cross-sectional areas are calculated using DIC measurement, the
magnitude of the local stresses in loading direction is calibrated based on
these areas. The USM and nUSM are relatively easy compared to the other
complex inverse methods, however, it neglects the heterogeneous distribution

of the stresses and/or complex stress components other than loading direction.

The VFM is also applied to measure the local flow stresses of the FSWed

metals [130-132]. Louédec et al. identified local static/dynamic mechanical
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behavior of the FSWed AA5456 [131,132]. Shahmirzaloo et al. applied VFM
for FSWed A12024 [133]. Sutton et al. compare identification results of VFM
and USM [127]. In these previous studies, AOI is divided into local
subdomains, and VFM is applied independently by applying virtual fields that
have non-zero values only in each subdomain, and constitutive parameters
are assumed as constant in each subdomain. With this subdomain approach,
local material properties can be obtained without uniqueness issues that can

arise due to a large number of constitutive parameters in the global domain.

In this study, FE-VFM is applied with a subdomain approach for
identifying nonhomogenous strain hardening of FSWed AA6061-T6 sheets.
In addition, quadratic interpolation was used within each subdomain, so the
piecewise continuous distribution of the constitutive parameters was obtained
within the WAZ. Detailed information on the numerical methodology in FE-
VFM is presented in Section 5.2. Before applying FE-VFM experimentally,
feasibility tests were performed with finite element simulation data. As an
input of the simulation, virtual nonhomogeneous strain hardening is generated
using hardness distributions of the FSWed aluminum alloys in the reference.
Then, a numerical sensitivity study was conducted regards the effect of the
types of the virtual fields and Gauss quadrature order in the feasibility tests.
Details of the feasibility tests are shown in Section 5.3. Finally, the method
that was validated through feasibility tests was applied to real experiments.

Information of the materials and experiments are given in Section 5.4, and the
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results of the FE-VFM are shown in Section 5.5.

5.2. Methodology

In this section, it is introduced that how the nonhomogeneous strain hardening
of the FSWed sheets can be extracted using FE-VFM. As discussed in the
introduction, FE-VFM is applied independently to the individual subdomains
to uniquely determine the local constitutive parameters. In addition,
constitutive parameters are interpolated with a quadratic shape function
within each subdomain, as a result, the distribution of the constitutive

parameters is obtained as piecewise polynomials in the WAZ.

It should be pointed out that the majority of the workpiece has remained as
as-received base materials, only the materials in the limited range vary from
the original material properties affected by the welding. Also, base material
properties can be easily measured using conventional tensile tests.
Considering the above, it is numerically inefficient and may be inaccurate to
identify all the local constitutive parameters in the entire AOI. Rather than
that, it is more efficient to find the boundaries of the WAZ and obtain the local

parameters only in the WAZ.

With this idea, a two-step identification procedure is used in this study. Fig.
5-2 shows the identification procedure. As a first step, WAZ boundaries are

identified based on internal-external virtual work (VW) residuals calculated
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with priorly known base material constants. Base material constants are
measured by standard tensile tests before applying FE-VFM. The average
VW residual in Eq. (5.1.) is calculated for each subdomain.

6VVint (kbase ) - 6VVext
ow.

ext

1 Ny
Ry, = :E:

nstep =1

x 100 (%) (5.1)

att

where W,

int

(Kyae ) is internal virtual work calculated with base material

oW,

ext

parameters k

base * is external virtual work, and n___ is a total number of

step

the time step. In theory, VW residual should be zero if the materials in the
subdomain are unaffected by the welding. In other words, subdomains that
present high VW residuals are affected by the welding, hence boundaries of
the WAZ can be easily obtained. After the first step, constitutive parameters
are obtained in the identified WAZ. In this step, FE-VFM is applied for each

subdomain separately.

For applying FE-VFM, a tensile specimen illustrated in Fig. 5-3(a) was
used. The weld line is located at the center of the specimen, and the loading
direction was perpendicular to the weld line. The origin of the global
coordinates used in the FE-VFM is located at the center of the specimen.
Within 70 mm length uniform region of the tensile specimen, 60 mm length
area (marked with blue color in Fig. 5-3(a)) are used in the FE-VFM. The FE
meshes for the reconstruction of the displacements are shown in Fig 5-3(b).

The element size was 5 mm and 3 mm in width and height, respectively, and
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cubic quadrilateral elements (Q12) were used. Each row of elements is treated

as a subdomain, as marked with blue color in Fig 5-3(b).

Experiments Tensile tests of Simple tension tests
P friction stir welded sheets of base materials
l !
FE meshes reconstruction of Base material constitutive
Inputs .
displacements parameters k;,,,,
[ |
Calculate virtual work residuals R 5
for each subdomain with &,
STEP1: Weld affected zone 1
identification
Find subdomains where R R .;r.ip0ai
Boundary of the weld affected zone
Normalized constitutive | | Solve FE-VFM for each subdomain
parameters interpolation within the weld affected zone
STEP2: Constitutive Piecewise polynomials of constitutive
parameters identification parameters for each subdomain
. Non-homogeneous strain hardening
Final output within the weld affected zone

Fig. 5-2. Flow chart of two-step identification approach.
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Fig. 5-4 shows quadratic interpolation of the constitutive parameters in
each subdomain. Constitutive parameters normalized (hereafter, normalized
parameters) with known base material parameters are interpolated. The

normalized parameter is

-k
k=" (5.2)

base

where k denotes constitutive parameters in the subdomain, and kpase is base

material parameters. Then, normalized parameters are interpolated with

nodal normalized parameters ki as follows:
k=M,(Y)k: . (5.3)
Interpolation functions M, (Y) are given as

0 1 0
M,(Y)=[1 v Y’|1/3 0 1/3 (5.4)
2/9 —4/9 2/9
where the Y is coordinate in the specimen height direction, and the origin of
it is located at the center of the subdomain, as illustrated in Fig. 5-4. Note that
though Mi(Y) is dependent on the global coordinate, the same interpolation
functions in Eq. (5.4) are valid for all subdomains since the height of each
subdomain is the same value, 3 mm. Virtual fields are also defined with
subdomain local coordinates (X1, Y) to assign that as non-zero values inside

of the subdomain, whereas it is defined as zero at the outside of the target
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subdomain.
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Fig. 5-4. Quadratic interpolation of the normalized constitutive parameters

within a subdomain

In the WAZ parameters optimization step, nodal normalized parameters
(hereafter, the nodal parameters) are obtained in each subdomain. The
optimization starts from the highest subdomain in the WAZ, and one is used
as an initial guess of the normalized parameters. (Which means that base
material properties are used as an initial guess in the first subdomain
optimization) Then, optimization proceeds for lower subdomains, and the
lowest nodal parameters of the previously optimized subdomain are used as
initial guesses. Average values are treated as a final FE-VFM result for the

overlapped nodes between two elements

In this study, isotropic elastic-plastic constitutive laws, including isotropic
linear elastic model, von Mises yield function, and isotropic hardening, are
used. Usually, elastic constants are not much varied depends on the
microstructure of the metals. However, plastic strain hardening or the local

flow stresses can show large differences depends on the microstructure.
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Considering these facts and for simplicity, elastic constants in the WAZ are
assumed as the same as the base materials. And, only parameters of the strain
hardening law are optimized in the WAZ, thus it was assumed as a known
value. In this study, Voce and Swift hardening laws are used in the feasibility

tests and experiments, respectively.

In the WAZ boundaries identification, virtual fields in Eq. (5.5) are used.

(5.5)

It is simple to implement, however, it can cause the uniqueness problem in
parameters optimization. Note that each subdomain has nine independent
nodal parameters since Voce and Siwft law has three constants, and there are
three material interpolation nodes in each subdomain. To avoid such a
problem in the optimization step, normal distribution function and cumulative
distribution function are used as virtual fields, as illustrated in Fig. 5-5. The

virtual position vectors are defined as cumulative distribution function ¢, as

follows:

ox, =0

1

5x, =<Pf—1.z.3(Y)zg{nerf[i_jiij} (5.6)
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where 0, is standard deviation, and ; is average in original statistical use.

Then, the virtual deformation gradient is given as follows:

6F11 =5F12 =6F21 =0

1 1(Y-p Y (5.7
- Y)= exps —— !
'_1'2'3( ) O'N\/ZT[ p{ 2( o j}

where @ is (statistical) normal distribution function. Three independent

OF,

2~

P

virtual fields are defined with three p. =—1, 0, 1. Each virtual field amplified

the data in a different range in the subdomain. With this approach, nine nodal
parameters can be uniquely identified simultaneously. Detailed results and
discussions about the effect of the virtual fields are shown in the feasibility

tests, Section 5.3.4.

Meanwhile, sufficient order of Gauss quadrature is required for the
accurate integration of the IVW. In particular, cubic elements combined with
the use of the normal distribution type virtual fields may require even higher
order integration, due to the significant non-linearity of the given problem.
For this reason, sensitivity tests were performed in the feasibility tests, and
integration order 11 was used as an optimum order. Detailed results about the

integration order sensitivity are shown in Section 5.3.4.
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5.3. Feasibility tests with simulation data
5.3.1. Finite element simulation conditions

Methods explained in Section 5.2 are validated using finite element
simulation data. Virtual welded material properties were generated. Base
material properties of the AA6111-T4 aluminum sheets and hardness
distribution normalized with base material hardness were taken from the

reference [123]. In the reference, Voce hardening law in Eq. (5.8) was used.
6=00+R(1—exp(—b§)) (5.8)

where 0,, R, and b are constitutive paramters. Values of Voce law parameters

and elastic constants from the reference are listed in Table 5-1. Also,
normalized hardness distribution in the WAZ in Fig. 5-6(a) was taken from
the same reference. Base material hardness in the reference is 85 HV. Using
hardness distribution, nonhomogeneous normalized constitutive parameters

are generated with Fourier series functions in Eq. (5.9).

k(Y)=a, +Zgl[a,. sin(iwY )+ b, cos(iwY ) | (5.9)

i=1

In other words, each normalized parameter in Voce law is described with the
Fourier series in the WAZ. Virtual constitutive parameter distributions are
presented in Fig. 5-6(b), and detailed values of the Fourier series constants

are listed in Table 5-2.
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Table 5-1. Material parameters of AA6111-T4 sheets [123]

Elastic constants

Voce law parameters

E(GPa) v 0, (MPa) R (MPa) b
70 0.33 170 9.0
Table 5-2. Constants of the Fourier series that describe the virtual
nonhomogeneous constitutive parameters
Voce normalized parameters
o, R b

w 0.2105 0.2138 0.2067
ao 0.876 1.051 0.9073
ai -0.1315 0.05347 -0.1005
a 0.02718 -0.0125 0.01605
a3 -0.006453 0.004532 -0.001319
as 0.00611 -0.003496 0.001968
a6 0.01862 -0.0007257 0.01487
a7 0.005252 -0.001549 0.006469
as -0.001504 0.006905 -0.01095
b1 0.0129 -0.005316 0.01006
b2 0.01346 -0.005556 0.01095
b3 0.01377 -0.005644 0.01097
b4 0.01467 -0.006008 0.0119
bs 0.004259 -0.001181 0.0045
b -0.006093 0.002466 -0.004153
b7 -0.003746 0.001542 -0.003593
bs -0.003403 0.001243 -0.002551
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In the feasibility tests, the same specimen geometry illustrated in Fig. 5-
3(a) was used. FE simulation was performed with Abaqus/standard, and

subroutine  UHARD and USDFLD were used to implement the

nonhomogeneous material properties in Fig. 5-6. <FE model & & F7}3F
73> FE mesh in Fig 5-3(b) was used for FE-VFM. Results of simulation and

reconstructed deformation fields with FE-VFM algorithm are compared in
Fig. 5-7. It shows that the heterogeneous displacement and strain fields are

well-reconstructed owing to the higher-order cubic elements.

In the following sections, results of the feasibility tests are presented
including the WAZ boundary identification, the effect of virtual fields, and

the effect of the Gauss quadrature order.
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Fig. 5-7. Comparison of displacement and strain fields for the linear elastic

material. (a) FE simulated deformation fields before mapping and (b)

Reconstructed fields using FE-VFM
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5.3.2. Identification of the WAZ boundaries

Fig. 5-8 presents VW residuals for each subdomain. VW residuals in Fig.
5-8 are calculated using base material properties of the feasibility tests, which
are listed in Table 5-1. In the VW calculation, polynomial virtual fields in Eq.
(5.5) were used. The integration order of the Gauss quadrature was 11. The
results show that large VW residuals were calculated in the WAZ (-15 to 15
mm range), and VW residuals showed almost zero outside of the WAZ. These
results validate that it is effective to find the boundary of the WAZ based on
the VW residuals calculated with base material properties. The same approach

is also used in the experimental case in Section 5.5.
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Fig. 5-8. VW residuals for each subdomain
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5.3.3. Effect of the virtual fields

Followed by the WAZ boundary identification, optimization of the local flow
stresses was conducted using the same polynomial virtual fields (in Eq. (5.5))
used in STEP1. However, the constitutive parameters were badly identified
as shown in Fig. 5-9(a). In the 5-9(a) the solid lines are target parameter
distributions explained in 5.3.1, and square dots are representing quadratic
interpolation nodal values. Also, doted lines represent interpolated
normalized parameters. Though the identification results are generally
located close to the target lines, however, individual values are not matched

with target values.

Despite the bad identification results, VW residuals after the STEP2
procedure showed less than 0.4%, as shown in Fig. 5-9(b). Small VW
residuals indicate that the non-linear optimization itself was well-conducted
without particular problems. Rather than incomplete non-linear optimization,
the problem was made due to the parameter interpolation approach in
conjunction with polynomial virtual fields. In the nonlinear VFM, The
minimization is performed with the cost function of the virtual works as a
scalar quantity. In that process, non-linear parameters distributions within a
subdomain cannot be well-described with a single set of polynomial virtual
fields, and improper zero-mode of virtual works can be made with faulted
combinations of nodal parameters. This uniqueness problem can be avoided

by using three independent virtual fields defined with cumulative distribution
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and normal distribution functions (Egs. (5.6) and (5.7)) in STEP2.
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Fig. 5-9. FE-VFM results with polynomial virtual fields. (a) Badly
identified constitutive parameters, and (b) small VW residuals after the

parameter optimization
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5.3.4. Effect of the Gauss quadrature order

As discussed in Chapter 3, the results of the FE-VFM depend on the
integration order (IO) of the Gauss quadrature. In particular, the target
problem defined in the methodology (section 5.2.) is highly non-linear in
three aspects. First, displacements and subsequent strains are modeled with
cubic quadrilateral elements (Fig. 5-3(b)). Second, quadratic interpolation
was used to describe the continuous distribution in the subdomain. Third, the
virtual fields are defined with highly non-linear normal distribution functions.
All these factors make the problem highly non-linear, so it is necessary to use
the sufficient IO of Gauss quadrature. Therefore, sensitivity tests were

performed regards the 10

Fig. 5-10(a) to (c) shows the FE-VFM results with integration orders 5, 7,
and 9, respectively. In Fig. 5-10(a), the results with IO 5 are near the target
values, but highly oscillating. As IO increased, the oscillation of the results
decreased, and it was rarely observable in Fig. 5-10(c). This is because the
spurious zero-mode was calculated with the insufficient 10, similar to the

hourglass modes in FEM when reduced integration is used.

117



—R
— b

Target — G

Position from weld line, X,

12

Ja1aweled pazijewioN

(mm)

(2)

5
(]« <]
D
2g
==
i
! L L
w o = N o @ g
— — = = =} =1
Jaypweled pazjjewldo

0.4

15

10

-10

-15

mm)

(

Position from weld line, X,

(b)

5
(]« <] 4
D
o = ]
==

i

'

. . . ,
S
— — = = =} =1 =]

Jayaweled pazijewlo

15

10

-10

-15

(mm]

Position from weld line, X,

(©)

Fig. 5-10. Oscillating FE-VFM results due to the integration order. (a), (b)

, 7, and 9, respectively

and (c) correspond to results of integration order 5

118



Fig. 5-11 shows the mean errors of parameters and flow stress depends on

the 10. Mean errors of the parameters in the WAZ are calculated as Eq. (5.10).

ktarget - kVFM
k,

target

— 1 pr=1s

=

o dY x100 (%) (5.10)

where ktarget denotes input Fourier series distributions of each Voce law

parameter, and k,,,, denotes results of the FE-VFM. Also, the mean error of

the flow stresses is calculated as

D Y=15 target VFM 0
R = 308 - C x100 (%), (5.11)

targ et

where 0, is input flow stress, and 0y, is flow stress calculated with FE-

target

VFM results, and &, is strain limit for the calculation of the flow stress error.

Here, the limit strain €, was 0.3.

The figure shows that all the errors are decreased when the 10 increased.
In particular, it is shown that 11 is the optimum IO, hence that value is used

in the experimental study in Section 5.5.
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5.4. Materials and experiments

In the experimental study, the target material was AA6061-T6 sheets. The
thickness of the sheets was 3.0 mm. Before applying FE-VFM to the friction
stir welded (FSWed) materials, base material properties are measured using
the tensile tests. Fig. 5-12(a) shows the engineering stress-strain curve of the
target base materials. ASTM ES8 standard specimen was used in the tensile
tests, and the tests were performed in quasi-static condition, strain rate of

0.001/s. Strain hardening was described with Swift law in Eq. (5.12).
d=K(g+e,)’ (5.8)
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where K, ey, and n are material parameters. Fig. 5-12(b) shows the fitted strain

hardening curves using tensile tests data. Values of the material parameters

are listed in Table 5-3.
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Fig. 5-12. Material properties of AA6061-T6 base material sheets. (a)

Engineering stress-strain curve, and (b) flow stresses curves fitted with

Swift hardening law
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Table 5-3. Material parameters of AA6061-T6 sheets

Elastic constants Swift law parameters
E (GPa) v K (MPa) eo (MPa) n
70 0.33 508.1 0.03602 0.1577

In the friction stir welding, two rectangular workpieces with the
dimensions of 150 x 300 mm were welded, and 300 x 300 mm welded flat
sheets were made. FSW tool geometry is schematically shown in Fig. 5-13.
FSW conditions were as follows. Welding speed was 500 mm/min, and the
FSW tool was tilted towards the welding direction with an angle of 3°. For

comparative study, two tool rotating speeds of 1200 and 1600 RPM were used.

—12. 72 mm——

. 6 mm

]

— e — —3 \

2.8 mm 2.7 mm

Fig. 5-13. FSW tool geometry

For applying FE-VFM, the specimen in Fig. 5-3(a) was used as the same
as the feasibility tests. Meanwhile, a furrow was made in the center of the

welded workpiece due to mechanical deformation during the FSW. To remove
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this furrow, the top surface of the FSWed specimen is trimmed to a smooth
and flat surface as shown in Fig.5-14. The total number of time steps for 1200
RPM and 1600 RPM cases were 258 and 230, respectively. The thickness was
reduced owing to the trimming, from the thickness of the original sheet of 3

mm to 2.4 mm. This trimming was done via W-EDM.

An experimental study was conducted with the validated FE-VFM
approaches through the feasibility in Section 5.3. Details of the FE-VFM
approach for identifying nonhomogeneous strain hardening are explained in

Section 5.2.

(a) (b)

Fig. 5-14. Trimming of the surface for the friction stir welded sheets in the
specimen preparation. (a) Furrow at the center of the welded materials and

(b) surface trimmed tensile specimen for FE-VFM
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5.5. Results and validations

Figs. 5-15 and 5-16 show the strains and displacements field for the 1200
RPM and 1600 RMP cases, respectively. Both figures were illustrated at the
time step of 200. Also, both figures show similar displacements and strains
distributions. In particular, larger strains near the center of the specimen are

shown in the figures, which are due to the materials softening during the

welding.

3.169e-01 1.350e+00 4.529¢-04 822 8.320e-02 €1 2 9.797e-03
2.738e-01 1.248e+00 -2.657e-03 7.647e-02 8.118e-03
2.308e-01 1.146e+00 -5.767e-03 6.975e-02 6.439%-03
1.877e-01 1.043e+00 -8.876e-03 6.302e-02 4.761e-03
1.446e-01 9.408e-01 -1.199e-02 5.629e-02 3.082e-03
1.015e-01 8.384e-01 -1.510e-02 4.956e-02 1.404e-03
5.848e-02 7.360e-01 -1.821e-02 4.283e-02 -2.750e-04
1.541e-02 6.336e-01 -2.132e-02 3.610e-02 -1.954e-03
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-7.073e-02 4.288e-01 -2.753e-02 2.264e-02 -5.311e-03
-1.138e-01 3.264e-01 -3.064e-02 1.591e-02 -6.990e-03
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Fig. 5-15. Strains and displacements of the 1200 RPM case at time step 200.
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Fig. 5-16. Strains and displacements of the 1600 RPM case at time step 200.
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Fig. 5-17 present the VW residuals calculated in STEP1. Fig 5-17(a) and
(b) corresponds to the case of 1200 RPM and 1600 RPM, respectively. For
1200 RPM, relatively large VW residuals were calculated from -12 to 9 mm,
and that range was assumed as the WAZ. On the other hand, 1600 RPM
showed larger WAZ compared to 1200 RPM, from -12 to 12 mm. These
results can be explained as follows. Frictional heat generated during the FSW
depends on the relative speed of the tool between workpieces. The lower
rotation speed generates lower heat. In particular, heat generated in the RS is
less than that of AS, since the direction of tool rotation is opposite to the
welding direction. Two rotation speeds—1200 and 1600 RPM—were not a
huge difference in terms of heat generation in the AS, and a similar area of
the HAZ was made in the AS. However, the effect of rotation speed was much
larger on the RS, due to the lower relative speed compared to the AS, and the

HAZ in the RS was narrower in the 1200 RPM.

Fig. 5-18 shows the normalized parameter distributions in the WAZ
identified by FE-VFM, and Fig. 5-19 shows VW residuals after the
parameters optimization. Detailed normalized parameters at the interpolation
nodes are listed in Tables 5-4 and 5-5 for 1200 and 1600 RPM cases,
respectively. Though the VW residuals were larger than that of feasibility tests,
the figure indicates that non-linear optimization was well-performed. Similar
to Fig. 5-17, Fig. 5-18(a) and (b) are 1200 and 1600 RPM cases, respectively.

Both 1200 and 1600 RPM shows a similar pattern except for the width of the
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WAZ on the RS. The values of the parameter K for the Swift law were close
to 1, and it indicates that the values of the K were overall similar to that of
base materials. (Since the values plotted in Fig. 5-18 are normalized
parameters by the base material parameters) On the other hand, distributions
of the parameter n» vary much from the base materials. In the range of -6 to 6
mm, values of n are twice the base materials, and it decreases when the
materials are far from the weld line. Also, it is shown that the value of ey is

significantly smaller near the £6 mm.

The parameters of the Swift law have a physical meaning. The parameter
K indicates the general strength of the materials. The parameter 7 is related to
the uniform elongation (U-EL) in tensile tests. Lastly, the parameter ey is
related to the yield stress. Hence, the distributions of parameters are closely
related to the change of the material properties due to the welding. Therefore,
distributions of the Swift law parameters can provide information on the
changes in the material properties, especially in terms of yield strength and

ductility.
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Fig. 5-17. VW residuals for each subdomain.
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Table 5-4. Identified nodal normalized parameters for 1200 RPM.

. Normalized parameters
Position (mm)
k eo n
-12.0 0.8383 0.7327 1.2800
-10.5 0.8800 0.9687 1.3695
-9.0 0.9197 0.9401 1.9733
-7.5 0.8107 0.2248 1.5999
-6.0 1.1038 0.7994 22117
4.5 1.1424 1.0868 2.2093
-3.0 1.1187 0.8897 23176
-1.5 1.0908 0.7854 24215
0 1.0777 0.8902 2.3224
1.5 1.0809 0.8946 2.2932
3.0 1.0829 0.9702 2.2324
4.5 1.0145 0.5340 2.0937
6.0 0.8074 0.2541 1.4521
7.5 0.9933 0.6342 1.6761
9.0 0.7820 1.0451 1.0700
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Table 5-5. Identified nodal normalized parameters for 1600 RPM.

Position (mm)

Normalized parameters

k eo n
-12.0 1.0912 0.6617 1.2383
-10.5 0.9334 0.7536 1.3290
-9.0 0.8677 1.0592 1.5853
-7.5 0.7690 0.1684 1.2695
-6.0 0.9726 0.5284 1.7661
-4.5 1.0136 0.6378 2.0444
-3.0 1.1163 0.5168 1.9059
-1.5 1.0883 0.4590 1.9536
0 1.0364 0.5270 1.9323
1.5 1.0661 0.4500 1.9807
3.0 1.0748 0.5483 1.8687
4.5 1.0501 0.6117 1.8254
6.0 1.0292 0.5109 1.9034
7.5 0.8816 0.1889 1.5359
9.0 0.9019 0.6263 1.5204
10.5 0.9848 0.7625 1.5356
12.0 0.9200 0.9854 1.0342
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These can be more clearly interpreted using Figs. 5-20 and 5-21. Fig. 5-20
shows the theoretical U-EL calculated with consideré condition. For the Swift
law, theoretical U-El is given as (n-ep). Fig. 21 shows that the U-EL is
increased in the -6 to 6 mm range, and that range corresponds to the width of
the FSW tool in Fig. 5-13. Then, the U-El decreases if the materials are far
from the weld line. In other words, ductility in the SZ increased due to the
welding, and it continuously decreased in the HAZ to the similar values of
the base materials. Note that the U-EL presented in Fig. 5-20 is only the
theoretical values based on the Siwft law, hence it can give a general tendency
only, and other factors can affect the real U-EL such as anisotropy. (Which is

not considered in this study)

Fig. 5-21 illustrates the distributions of normalized yield stresses. For the
comparison, Vickers hardness distributions were measured, and normalized
hardnesses were illustrated in Fig. 5-21 together. (Hardness of the base
materials was 112 HV) Though normalized yields and normalized hardnesses
show a similar tendency, the absolute magnitude of the two values shows a
considerable difference. It can be analyzed as two-fold. First, it validates that
the nonhomogeneous material properties were accurately measured with the
FE-VFM. Second, hardness cannot be a material property in a strict sense,

and it only represents the tendency of the difference in material properties.

Meanwhile, the yield stresses in the -6 to 6 mm range decreased compared

to base materials, and it increased to a similar level of the base materials
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outside of the width of the FSW tool. This is just the opposite trend to the U-
EL. Also, the lowest yields were shown at the edge of the FSW tool (near the
-7.5 and 7.5 mm positions) for both 1200 and 1600 RPM. Normalized
hardness also shows minimum values at the same point, similarly. In other
words, the materials at these positions yield before the other region, and the
ductility is smaller compared to the SZ (-6 to 6 mm range). Thus, materials at

these locations can be the weakest points in the forming process.

Tensile tests with a specimen in Fig. 5-22(a) were performed for the
validation of the FE-VFM results. Displacements were measured using a
virtual extensometer in the DIC postprocessing, and the gauge length of the
virtual extensometer was 40 mm. Then, FE simulations were conducted with
the material properties measured by FE-VFM, in the same conditions of the
validation tensile tests. Fig. 5-22(b) illustrate the 3D half symmetric model
used in the simulation. In Fig.5-22(c) load-displacements are compared for
both simulations and experiments. Both 1200 and 1600 RPM cases show that
the predicted load-displacement curves are in good agreement with
experiments. Hence, it indicates that the proposed FE-VFM approach can

accurately measure the nonhomogeneous strain hardening in the WAZ.
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Fig. 5-20. Theoretical uniform elongation distributions measured by FE-
VFM. (a) 1200 RPM, and (b) 1600 RPM.
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5.6. Summary

The FE-VFM was applied for identifying nonhomogeneous strain hardening
of the friction stir welded aluminum alloy sheets, as an advanced application.
A two-step identification procedure is introduced. First, weld affected zone
boundary was identified (STEP1), then, local flow stresses were identified in
the WAZ (STEP2). In addition, the area of interest was divided into
subdomains, and FE-VFM was applied to each subdomain independently.
Also, material constants in each subdomain are interpolated with a quadratic
function. To uniquely identify the interpolated material parameters, normal
distribution type virtual fields were used. These numerical approaches were
is validated through feasibility tests based on FE simulation data. Feasibility
tests demonstrated that the boundary of the WAZ and the non-homogeneous
strain hardening could be successfully identified using FE-VFM owing to the
virtual fields defined with a normal distribution function and higher-order

Gauss quadrature.

The validated method was applied to identify the local flow stresses of the
friction stir welded AA6061-T6 sheets for two different FSW conditions,
which were tool rotation speeds of 1200 RPM and 1600 RPM cases. In STEP1,
the WAZ of the 1200 and 1600 RPM cases were identified as -9 to 12 mm
and -12 to 12 mm from the weld line, respectively. Followed by STEP1, the
distribution of the parameters was identified as STEP2 using FE-VFM. The

results of the FE-VFM showed that the strength in the WAZ was weakened
137



due to the welding, whereas the ductility of the aluminum alloys was
increased in the WAZ. Finally, FE simulations were conducted with identified
non-homogeneous strain hardening, to validate the identified results. The
predictions using FE-VFM results were in good agreement with experiments,
and this confirms that the FE-VFM can accurately identify the non-

homogeneous strain hardening distributions for the welded aluminum alloys.
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6. Conclusions

In this study, a novel virtual fields method (VFM) based on the finite
element (FE) scheme, namely FE-VFM, is proposed as an inverse method for
identifying the parameters of constitutive models. In the FE-VFM,
experimentally measured full-field displacements are mapped onto FE
meshes using global and local shape functions, and the internal virtual work

is integrated using the Gauss quadrature rule.

Extensive sensitivity tests for the validation of the proposed FE-VFM were
performed with ideal deformation fields generated by finite element
simulations for both orthotropic linear elastic and isotropic elastic-plastic
cases. FE-VFM conditions tested in this study were (1) FE mesh size from 1
mm to Smm, (2) FE order from linear to cubic elements, and (3) Gauss
quadrature order from 1 to 3. The sensitivity study showed that the element
size and order of the shape function had a minor effect on the quality of the
VEM for the elastic material. The virtual fields selection, rather than the FE
meshes, critically affects the quality of the results. Moreover, a higher-order
Gauss quadrature improves the accuracy of calculating the IVW when
complex virtual fields are used. In the case of elastic-plastic material, the
element size and the order of an element, and the order of the Gauss
quadrature had a considerable effect on the accuracy of the identified material

parameters, which resulted from the spatial non-linearity of the large plastic
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deformation. It was also shown by validation that even coarse FE meshes
could give satisfactory accuracy in the FE-VFM when higher order elements

and Gauss quadrature were adopted.

As an applications of the FE-VFM, homogeneous and nonhomogeneous
strain hardening of the metal sheets were identified. New virtual fields based
on real nodal displacements were proposed to improve the accuracy of VFM
at large plastic deformation. This approach was named pseudo-real
deformation fields in this study to highlight the use of varying real
deformation fields. FE-VFM is applied for the identification of plastic
hardening in 1470 MPa PHS sheets with the PDF. In the FE-VFM, notched
tensile test data was used, and obtained strain hardening is validated using U-
notch tensile tests. The U-notch tension load—displacement curve predicted
using the FE-VFM hardening parameters showed better agreement with the
experimental results than did the conventional fitting-based hardening
parameters. The improved accuracy relative to the conventional method is
explained as follows. First, the commonly adopted 0.2% offset method for
determining yield stress ignores the transition from elastic to plastic yielding.
In this case, the conventionally determined yield stress may be overestimated,
while the FE-VFM reflects the transition behavior near the yield. Second, the
simple tension-based fitting to a prescribed hardening law is only valid before
uniform elongation because the deformation becomes non-uniform beyond

this point. The investigated PHS had a low uniform elongation (only 5%),
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which led to a discrepancy in the predicted deformation at large strain for the
U-notched tension. However, in the case of the FE-VFM, stress-strain data in
a large plastic strain range can be utilized for identification, which resulted in

better identification accuracy for plastic hardening.

As an advanced application, the FE-VFM was applied for identifying
nonhomogeneous strain hardening of the friction stir welded aluminum alloy
sheets, as an advanced application of the FE-VFM. In this study, weld affected
zone boundary was identified, then, local flow stresses were identified in the
WAZ. In addition, the area of interest was divided into subdomains, and FE-
VFM was applied to each subdomain independently. Also, material constants
in each subdomain are interpolated with a quadratic function. To uniquely
identify the interpolated material parameters, normal distribution type virtual
fields were used. These numerical approaches were is validated through
feasibility tests based on FE simulation data. Feasibility tests show that
constitutive parameters interpolated with piecewise polynomials within a
subdomain cannot be uniquely identified using conventional polynomial
virtual fields, however, three independent virtual fields defined with normal
distribution functions—that enhance different local data within a
subdomain—show a good capability to identify the interpolated constitutive
parameters. Also, higher-order Gauss quadrature was required due to the large
non-linearity originated from the constitutive parameter interpolation and

normal distribution type virtual fields.
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Then, the validated method was applied to identify the local flow stresses
of the friction stir welded AA6061-T6 sheets with two different tool rotation
speeds of 1200 and 1600 RPM. Identified WAZs were -9 to 12 mm and -12
to 12 mm for 1200 and 1600 RPM cases, respectively. Also, identified non-
homogeneous strain hardening in the WAZ showed that the strength of the
aluminum alloy sheets in the WAZ was decreased, whereas the ductility was
increased. Finally, validation tensile tests were conducted with a loading
direction parallel to the weld line, and FE simulations were conducted to
validate the FE-VFM results. The predicted load-displacement curves of the
FE simulations showed a good match with experiments, and it confirms that
FE-VFM can accurately identify the non-homogeneous material properties

due to the welding.

Overall, numerical sensitivity tests and real applications with experiments
validate that the proposed FE-VFM can be effective and accurate for
characterizing the material properties. In particular, the FE-VFM can be used
to identify the plastic properties of the metal sheets, especially the properties

that are hardly obtainable with conventional mechanical tests.
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Appendix A. Higher-order finite elements and shape

functions

1
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Linear x — y

/\

Quadratic xz — xy —
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Pascal triangle
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Linear element
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3 2

1
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2 2
+CI4)97 +(15X + asy
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8 7
9
6
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T g 5 2

M,=a, +a,x+ay
+a,xy+ax’+a,y’

2 2 3 3
+a,x"y+axy*+a,x +a,y

(2)

Linear element
) 3

M, =a, +a,x+a,y+a,xy

1

Quadratic element

4 - 3
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e . M,=a +a,x+a,y+a,xy

2 2 2 2
T— +a X"+ A, Y +aX Y+ XY
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L U
e
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+a,x° +a, v’ +a, X y+a,xy’
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Fig. A.1. Pascal triangle, finite elements, and shape functions in general
polynomial function form. (a) Triangular elements and (b) quadrilateral
elements [90,91]
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Linear element

S

3 (0,0) 1(1,0)r
Quadratic element
S
2 Comer nodes Mid-side nodes
N, =(2L, -1)L, N, =4LL,
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3 6 1 T
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1
N, = (30 ~1)(3L -2)L,

1
N, = (31, -1)(31, 21,

2 N, :%(31;3 ~1)(3L, -2)L,
6 5 Mid-side nodes
7 ! 9 9
N, = LlL(3L-1)  Ny=-LL,(3L~1)
3 g8 9 1 1

N, :gLZLS (3L,-1) N,= gLZLS (3L,-1)

9 9
N, :EL3L1 (3L3 71) N, :E[?Ll (3L1 71)

Fig A.2. Local shape functions of triangular elements [90,91]
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Linear element
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*r;ans s; denotes natural coordinates of node number I

Fig. A.3. Local shape functions of quadrilateral elements (serendipity

family) [90,91]
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The shape functions in matrix form (M, ), the derivatives of basis function

df, . . .
vector (% ), the matrix of natural nodal coordinates (r,,), and coefficients

J

of local shape function (b, ) of each element are given below. Note that the

matrix form can be more efficient for the implementations, though the general

polynomial form and matrix form of the shape function is identical. Also, the

global and local shape functions are essentially the same types of function

except for their coefficients. Therefore, only the global shape functions M;

and their derivatives are shown. in bellow.

Triangular linear element (T3)

al,l al,Z a1,3
M=(1 X Y)a, a, a,
a

a a

3,1

df,} (0 1 0
ax.)] o 0 1

3,2 33

10 1
b,={0 1 -1
00 -1
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Triangular quadratic element (T6)

a0 Oy
M=1 XY Xy X v i " i (A.5)
Ug1 = Ogg
df,Y (0 10 Y 2X 2 N
dx,) 0 01 X 02 (A.6)
100 05 0 05
r;.I: (A7)
0100505 0
0 0 1.0 0 O
-1 0 30 0 4
0 -1 30 4 0
b, = (A.8)
0 0 4 4 -4 -4
2 0 2 0 0 -4
0 2 2 0 -4 0
Triangular cubic element (T10)
Ay ;0 Gy
M,:(1 XY Xy x* vy X xy* x° Y3) :
a10,1 alO,lO
(A.9)
dfi,\ (010 v 2x 0 2xv Y* 3% 0
—L | = (A.10)
dX, 001 X 0 2¥Y X* 2XxY 0 3y
100 2/31/3 0 0 1/3 2/3 1/3 Al
r,= .
110 1/3 2/3 2/31/3 0 0 1/3 (a.11)
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0 0 1 0 0 0
1 0 -55 0 0 0
0 1 -55 0 0 —45
0 0 18 -45 —45 45
, |45 0 9 0 0 0
10 -45 9 0 0 18
0 0 -135 135 0 0
0 0 -135 0 135 -135
45 0 45 0 0 0
0 45 45 0 0 -135
Quaderilateral linear element (Q4)
al,l al,4
M=(1 X Y XY) 1
a4-,1 a4-,4-
T
% _ 01 0Y
dx, 001X
-1 1 1 -1
li =
-1 -1 1 1
0.25 025 0.25 0.25
3 -0.25 0.25 0.25 -0.25
"1-025 -0.25 0.25 0.25
0.25 -0.25 0.25 -0.25

Quadrilateral quadratic element (Q8)

M=(1 X Y XY X Y Xv Xxv*)
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g, -+ Ugg
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df,Y (010 Y 2X 0 2xy Y2
—L | = ) (A.18)
dX, 001 X 0 2Y X* 2Xy
-1 1 1 -1 0 10 -1
r,= (A.19)
-1 -11 1 -101 0
-0.25 -0.25 -0.25 -0.25 05 05 05 0.5
0 0 0 0 0 05 0 -05
0 0 0 0 05 0 05 0
b, = 025 -025 025 —025 0 0 0 0 (A.20)
"1025 025 025 025 -05 0 -05 0
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025 025 025 -025 0 -05 0 05
Quadrilateral cubic element (Q12)
al,l a1,12
M=(1 XY XY X v Xv x¥* X v xv xv°) :
appq © o
(A21)
%T_010Y2X02XY Y? 3x* 0 3x% Y°
dX, 001 X 02y X* 2Xy 0 3> Xx* 3xv°
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Appendix B. Example of FE based displacements
reconstruction: linear quadrilateral
elements

In this section, reconstruction full-field displacements with a linear
quadrilateral element (Q4) is presented as an example. The global shape

function of the Q4 element can be given as follows.
T
M,(X.Y)=(f,) a,=a,+a,X+a,Y +a, XY (B.1)

where f; is the basis function vector of global Q4 shape function, which is

given as
(f) =[1 x v xvr]. (B.2)

and the coefficients of the global shape function can be obtained using

6, =F,a, as below.

-1

a; A Q3 Gy 1 X, Y XY,
a. =F1= Ayy Gy O3 Oy _ 1 %X Y, XY, (B.3)
v U3y O3 Ug3 gy 1 X Y XY .
Ay Ay Az Gy 1 %X Y, XY,

where X; to X4 and Y to Y4 are the initial nodal positions of Q4 mesh in
global coordinates, and subscripts 1 to 4 denote the local nodal index of a
single Q4 element. In other words, coefficients of the global shape functions
are equal to the inverse of the basis function matrix constructed with

undeformed nodal coordinates of an element.
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Using global shape functions, the positions of the natural coordinates

matrix of full-field data points are given as follows.

d d d d d yd n n
nos 1 X7 Y, XY |(an a, a; a,)(n s
d d d d d yd n n
s | |1 X, Y, X0 |6 6, a3 a, |1 s, (B.4)
. . . )
I : Uy U3 Uz5 U3y || 1 S5
d d d d d yd n n
rm Sm 1 X m Ym X m Ym a41 a4—2 a4—3 a44 r, 4 54
And, the local shape functions are
T
N,=(g,) -b,=b,, +b,r+b,s+b,rs . (B.5)

Here, g; is the basis function vector of the local Q4 shape functions, which

are given as,

(g )T =[1 r s rs]. (B.6)
And, the coefficients of local shape functions can be given as,

025 0.25 025 0.25
_|-025 025 025 -025| (B.7)
" 1-025 -0.25 0.25 0.25

0.25 -0.25 0.25 -0.25

Note that coefficients of local shape functions are fixed values for each

element since the nodes in a FE element are fixed in the natural coordinates.

The displacements of the full-field measurement points in the element can be

described using the local shape function as follows.
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N; can be easily calculated since the local coordinates of data points and

coefficients of local shape functions are all-known. After assembling of N7

from Nj of each element, the least-square operator can be performed, and

displacements are reconstructed into Q4 FE mesh.
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