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Abstract 

In this study, a novel virtual fields method (VFM) based on the finite element 

(FE) scheme, namely FE-VFM, is proposed as an inverse method for 

identifying the parameters of constitutive models. In the FE-VFM, 

experimentally measured full-field displacements are mapped onto FE 

meshes using global and local shape functions, and the internal virtual work 

is integrated using the Gauss quadrature rule.  

To validate the new method, a well-designed sensitivity study is conducted 

using the ideal deformation obtained from FE simulations for anisotropic 

linear elastic and isotropic plastic materials. In the case of anisotropic 

elasticity, the residuals of the internal and external virtual work are not 

significantly affected by the order and size of FE meshes, and the order of the 

numerical integration has a marginal effect on the quality of the results. 

Conversely, substantial impacts are obtained for the plastic case, in which the 

size and order of the FE meshes and the order of the numerical integration are 

all critical to the accuracy of identification owing to large, localized 

deformation. 

As an applications of the FE-VFM, homogeneous and nonhomogeneous 

strain hardening of the metal sheets were identified. The first application is 

identifying homogeneous strain hardening of the advanced hardening. 

Additional to the FE-VFM, the concept of a pseudo-real deformation field is 
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newly proposed as a virtual field, which improves the accuracy of the FE-

VFM for optimizing the constitutive parameters of the plastic material. 

Finally, the inverse identification of the plastic hardening law for press-

hardened steel is conducted using the FE-VFM with real experimental data. 

The results show that the FE-VFM can successfully reproduce the full-field 

displacements even with relatively low-quality full-field data if an optimum 

FE mesh is adopted. In addition, the results of the U-notch tensile tests were 

performed for the validation of the FE-VFM results, and the simulated load–

displacement curve of U-notch tests with strain hardening identified by FE-

VFM is in good agreement with the experimental results 

As an advanced application, the FE-VFM was applied for identifying 

nonhomogeneous strain hardening of the friction stir welded aluminum alloy 

sheets. In this study, weld affected zone (WAZ) boundary was identified first, 

then, local flow stresses were identified in the WAZ. In addition, the area of 

interest was divided into subdomains, and FE-VFM was applied to each 

subdomain independently, to avoid a uniqueness problem. Also, material 

constants in each subdomain are interpolated with a quadratic function. To 

uniquely identify the interpolated material parameters, three independent 

normal distribution type virtual fields were used. These numerical approaches 

were validated through feasibility tests based on FE simulation data, then, the 

validated method was applied to identify the local flow stresses of the friction 

stir welded AA6061-T6 sheets. The friction stir welding was conducted with 
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two tool rotation speed conditions, 1200 and 1600 RPM. FE-VFM could 

successfully identify the boundary of the WAZ and distributions of the strain 

hardening parameters in the WAZ. Also, tensile tests were conducted for the 

validation of the identified non-homogeneous strain hardening parameters, 

and the predictions using FE-VFM results were in good agreement with 

experiments. 

 

Keywords: Virtual fields method; Finite element; Smooth full-field 

measurement; Constitutive model; Plastic strain hardening; non-

homogeneous local properties 

Student number: 2018-39025 
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1. Introduction 

1.1. Conventional method for identifying constitutive parameters 

In modern solid mechanics, numerical simulations are widely used for solving 

various engineering problems. In many cases, the accuracy of the simulations 

is highly dependent on the capability of constitutive laws and the exact 

identification of their model parameters. Conventionally, mechanical tests 

that introduce uniform deformations in well-designed standard specimens are 

commonly used to investigate the mechanical behavior of materials (for 

instance, by using standard tensile tests). These tests can determine the values 

of stress components under proportional loading conditions, and deformation 

is often measured by contact-type sensors, such as a strain gauge or an 

extensometer.  

Fig. 1-1 shows an example of the standard tensile tests with a mechanical 

extensometer. In conventional tensile tests, Applied (resultant) load is 

measured by the load cell of the test machine. Also, strains in loading (or 

longitudinal) direction are measured by a mechanical extensometer, as shown 

in Fig. 1-1(a). If strains in the transverse direction are required, two different 

types of mechanical extensometers are attached in the gauge of the specimen. 

There are several standards for the tensile test including ASTM international, 

ISO, or KS. Also, specimen geometries can vary for the different types of 

materials. Fig. 1-1(b) and (c) shows the ASTM standard specimens for fiber-
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reinforced composites [1], and metal sheets [2], respectively. 

 

 

(a) 

 
(b) 

 
(c) 

Fig. 1-1. Example of standard tensile tests. (a) is an illustration of tensile 

tests setup, (b) and (c) are standard specimen geometries for fiber-reinforced 

composite sheets [2] and metal sheets [1], respectively.  
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After obtaining direct stress–strain relation using conventional mechanical 

tests, constitutive parameters are calculated based on these experimental data. 

In that process, mathematical fitting [3,4], analytical calculation [5], or 

numerical optimization [6,7] methods are used depends on constitutive law. 

Although conventional strain measurement methods are efficient and 

effective, they cannot measure the full deformation field in the region of 

interest. Accordingly, the parameters of constitutive models are also identified 

from the relationship between stress and strain under the assumption of 

homogeneous deformation and proportional loading. Conventional 

approaches may not be efficient for identifying the parameters of modern 

complex constitutive models for describing anisotropic and/or non-

proportional mechanical properties. For instance, multiple tensile tests for the 

different material orientations are required to obtain the anisotropy of 

materials [8–11]. In addition, complex geometry and specially designed types 

of equipment are needed for tension-shear tests [12,13] or to introduce a 

multi-axial stress state such as biaxial tension [14,15].  

 

1.2. Full-field measurement and the virtual fields method 

As alternatives to conventional strain measurements, non-contact full-field 

measurements [16] enable the acquisition of displacement fields on the 

specimen surface. Various technique can measure full-field displacements 
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such as the speckle photography [17,18], grid method [19,20], Moiré 

interferometry [21,22], electronic speckle pattern interferometry (EPSI) 

[23,24], and digital image correlation (DIC) [25–27]. These techniques utilize 

the optical pattern and measure the displacements on the surface of the 

specimen. Speckle photography uses the pattern of the distribution of the 

scattered wave due to the rough surface of the specimen illuminated with 

coherent light. In the grid method, regular grid lines are marked on the surface 

of the specimen, and it measured the displacements and strains by analyzing 

Moiré fringes formed by regular grid marks. Moiré interferometry is based 

on the same phenomenon used in the grid method, but it utilizes the 

interference and fringes of the two coherent laser beams rather than the fringe 

due to the physical grid mark. EPSI uses the scattered light from the surface 

added to the reference laser beam.  

Among these techniques, DIC is one of the most widely used techniques, 

and various commercial software–hardware packages are available in the 

global market. The DIC uses the physical speckle pattern usually made by 

spray paint, and it measures the displacements by correlating the undeformed 

and deformed spackle patterns in the digital photos. Fig. 1-2 shows the 

procedure for a mechanical test with the DIC. Fig. 1-2(a) illustrates the 

experimental setup with the DIC. In the tests, grayscale photos are taken for 

the spackle patterns on the specimen in the area of interest (AOI), during the 

mechanical tests. For the 2D-DIC, only a single camera is used, whereas 
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stereo-DIC uses at least two cameras with a different camera orientation, as 

shown in Fig. 1-2(a). The 2D-DIC cannot consider the out-of-plane motion 

of the specimen, hence it requires that the orientation of the camera should be 

perpendicular to the flat specimen plane. The stereo-DIC uses two or more 

photos with a different camera orientation to account for the out-of-plane 

motion (or position) of the surface. Also, recognition of the camera position—

which includes the angle between cameras, the distance between cameras, 

etc.—is required, and it is called “calibration”.  

Fig. 1-2(b) illustrates the schematics of the DIC post-processing. In this 

process, AOI is divided into smaller image regions with a size of n×n pixels, 

which are called the subset. Then, tracking of the spackle pattern is conducted 

through the different time frames, and the displacements are obtained based 

on the shape functions. In this process, several different matching criteria are 

used including the normalized sum of squared difference (NSSD), zero 

normalized sum of squared difference (ZNSSD), etc. Note that these post-

processing options—the size of the subset, types of matching criterion, or the 

order of the shape functions—affect the quality of the DIC results, especially 

the resolution and the noise [27–29]. After the post-processing, displacement 

fields are calculated in the AOI, as shown in Fig. 1-2(c). Other kinematic 

values such as strains are calculated based on these displacements.  
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.  

(a) 

 
(b) 

 
(c) 

Fig. 1-2. Procedure for a mechanical test with the DIC. (a) Experimental 

setup, (b) schematics of DIC post-processing, and (c) example of 

displacements measured by DIC  
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New strategies for identifying the material parameters of constitutive laws 

with full-field measurements have been developed [30]. These new 

technologies include the virtual field method (VFM) [31,32], the finite 

element (FE) updating method (FEUM) [33–36], the constitutive equation 

gap method (CEGM) [37,38], the equilibrium gap method (EGM) [39,40]. 

Recently, researchers also investigated inversely optimizing the constitutive 

parameters using machine learning [41]. These non-conventional inverse 

identification approaches have overcome the limitations of conventional 

mechanical testing. Among these non-conventional approaches, the VFM 

utilizes the entire full-field measurement as an input to the governing 

equations, the principle of virtual work (PVM). The VFM has been 

successfully used to identify the constitutive model parameters of various 

solid and soft materials, such as linear elastic [42–44], hyper-elastic [45,46], 

viscoelastic [47], and elastic–plastic materials [48–50], under static or 

dynamic loading conditions [51,52]. Recently, Yunquan et al. used VFM to 

determine the material parameters of the thermo-mechanical model of the 

composites [53]. 

One of the benefits of the VFM (or other inverse methods) compared to 

conventional mechanical tests is that anisotropic material properties can be 

identified simultaneously with a single test. For this purpose, The VFM can 

use the non-homogeneous deformation and/or non-proportional loading data 

obtained by full-field measurement. Rather, the application of complex strain 
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(or stress) states is recommended during the mechanical tests to enrich the 

required (anisotropic) experimental data. Inducing non-homogeneous and 

complex strain states in the specimen requires specially designed non-

uniform specimens. For identifying anisotropic linear elastic constants, 

researchers investigated using various specimen geometries including the un-

notched Iosipescu shear tests [54], thick ring compression tests [55], plate 

bending tests [56,57], and tensile tests with an elliptic cut hole [44]. For the 

identification of anisotropic plastic constitutive parameters, various tests 

including notched tensile tests [58], tensile tests with rotated M shape 

specimens [59], and biaxial tests [60] were used.  

Virtual fields—which are arbitrary test functions that satisfy the prescribed 

boundary conditions—play an important role in the quality of the VFM. 

Depending on the selection of virtual fields, the effect of experimental noise 

can be filtered, and meaningful data from the full-field measurement can be 

amplified. Therefore, special virtual fields [61–63] have been suggested for 

the linear elastic problem. Toussaint et al. proposed the piecewise virtual 

fields [64]. In this formulation, virtual fields are defined as polynomial shape 

functions within a subdomain similar to the FEM. Also, sensitivity-based 

virtual fields [65–67] have recently been developed for plastic materials.  

Meanwhile, most of the studies of the VFM application were based on the 

2D membrane deformation or the plane stress condition assumption. It is 

because that most of the full-field measurement techniques can only measure 
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in-plane displacements. In a theoretical aspect, the VFM can be applied to 

general 3D problems. Rossi and Pierron demonstrated the theoretical 

capability of VFM in 3D stress states using 3D displacements generated by 

FEM [68]. In a real application, an advanced full-field measurement 

technique is required to measure the 3D displacement fields such as digital 

volume correlation (DVC) based on x-ray tomography or MRI [69–71]. 

However, such techniques are not readily accessible, and the in-plane 

displacements on the outer surface of the specimen can only be measured 

even with stereo-DIC. As a result, the VFM can be used for the thin enough 

materials, so strains (or stresses) in the thickness direction can be ignored, 

and it can be assumed that strains are uniform through the thickness, in a 

practical sense. 

 

1.3. Smoothing of the full-field measurement  

The accuracy of the material properties identified using the VFM highly 

depends on the quality of the full-field measurement [31,72]. One of the 

challenges of full-field measurements is the inevitable noise and artifacts 

caused by its non-contact approach. In many cases, the constitutive laws in 

solid mechanics are described by the stress–strain relation [11,73–75]. In the 

full-field measurement approach, strains are calculated from the gradient of 

displacements (or velocity gradient), and the signal-to-noise ratio can be 
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significantly decreased during this process. Subsequently, the noise in the 

full-field measurement is another important factor in determining the quality 

of the VFM [72].  

To reduce the noise in the full-field measurement, various smoothing 

algorithms have been developed. Among them, local smoothing has been 

widely used in strain calculation and is available in commercial software 

[27,76,77]. Local smoothing has been effective in reducing the noise of full-

field measurement, but it requires prior knowledge and experience in the 

determination of algorithmic parameters such as smoothing level and filter 

size. Instead of local smoothing, global spatial smoothing based on the FE 

approach has also been used for noise reduction. In this approach, 

displacements are mapped onto FE meshes with the proper interpolations, and 

strains are calculated from the derivatives of the interpolation functions. Chen 

et al. and Tiren et al. used a linear quadrilateral element for the calculation of 

strain from displacements measured by DIC [33,78], while Yoneyama 

implemented a quadratic quadrilateral element [79]. Zhao et al. used Hermite 

FE interpolation for the full-field strain measurement over an arbitrary region 

of interest in DIC [80]. 

In previous studies on the VFM, a linear triangular FE has been generally 

used for global smoothing, mainly because of its simple implementation 

[49,81,82]. Another purpose of global smoothing is to fill the empty edges of 

the area of interest (AOI) when DIC is used. DIC is a powerful tool for 
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measuring the large deformation of elastic-plastic or hyper-elastic materials. 

Moreover, DIC is readily available in commercial software and hardware 

packages. However, the disadvantage of DIC is that there may be missing 

data at the edge of the AOI, in particular for the subset-based DIC. Subset 

based DIC technique requires a perfect (nxn) pixel rectangular subset. 

However, at the edge of the AOI, a perfect subset cannot be made, and 

deformation cannot be given during the post-processing [83]. Therefore, 

empty data at the edge should be restored when applying VFM, and data at 

the edge of the AOI are reconstructed using the FE. However, the strains are 

constant in a linear triangular element, which requires relatively fine meshes 

if the deformation is highly localized. However, fine linear triangular FE 

mesh may lead to a lower level of smoothing. For this reason, Kim et al. 

employed both global and local polynomial smoothing when they employed 

linear triangular elements. They also presented a comprehensive sensitivity 

study on the effect of FE mesh size and the order of polynomials for obtaining 

reliable VFM results [81]. 

 

1.4. Integration of the internal virtual work in the VFM 

The VFM formulations presented in previous studies are limited in terms of 

the numerical integration of the internal virtual work (IVW). In most VFM 

studies, a primitive discretized sum was used for the integration of the IVW 
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[31,32,46,61–63,65–67,84]. Although it is simple to implement, it might be 

computationally inefficient, especially when deformation is highly localized 

and a large number of data points are required for an accurate integration. 

Also, the accuracy of the IVW integration might be reduced when fewer 

integration points are used with highly non-linear virtual fields. Another 

defect of the local discretized sum approach is that it is not computationally 

inefficient in terms of the stress update process in the identification of the 

plastic constitutive parameters. In that application, the stress update 

procedure is the most time-consuming step since multiple iterations are 

required for the accurate stress update with advanced plasticity constitutive 

laws [6,85–88]. Due to this, a large number of data points in the IVW 

integration with the discretized sum might require a large computational cost.  

Usually, numerical integration such as Gauss quadrature is implemented on 

the conventional FEM. Though the finite element shape functions are applied 

in the global smoothing of the full-field measurement, advanced numerical 

integration schemes implemented on the FEM are not used in the VFM. In 

other words, only the shape functions are borrowed from the FE formulations 

as a global target function for the smoothing of the measured deformation 

fields. It can be numerically efficient and effective that implementing 

advanced numerical integration on the VFM with a higher-order global 

smoothing. However, in the previous literature, displacement fields are 

described with global coordinates functions because only the global position 
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of the measured data points are known values, whereas the deformation fields 

should be described in the regular natural coordinates space for implementing 

most of the advanced numerical integration. 

 

1.5. Research objective 

In this study, a novel virtual fields method (VFM), namely an FE-based VFM 

(hereafter, FE-VFM), is proposed. The purpose and strength of the FE-VFM 

are described as follows: First, for the smoothing of the full-field 

measurement, displacement fields are mapped or reconstructed into FE 

meshes using the local and global higher-order shape functions. In this 

process, global coordinates are converted into regular local (or natural 

coordinates), and nodal displacements of the FE meshes are obtained using 

linear least square operation. Therefore, the displacement fields can be 

described only with nodal values and interpolation (or shape) functions. The 

reconstruction procedure is formulated for general types of FEs. Second, the 

Gauss–Legendre quadrature is employed in the numerical integration of IVW 

to increase the numerical efficiency and accuracy. More details of the FE-

VFM formulations are given in Chapter 2.  

In Chapter 3, a sensitivity study on the FE mesh size, type of element, and 

integration order is provided to validate the efficiency and accuracy of the 

proposed FE-VFM. The sensitivity tests were based on the ideal deformation 
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fields that are obtained by FE simulations and conducted for both orthotropic 

linear elastic and elastic-plastic material cases. For the quantitative analysis, 

errors between internal and external virtual works were evaluated based on 

target constitutive parameters. 

 As an application, homogeneous and non-homogeneous strain hardening 

laws of the metal sheets are identified using the proposed FE-VFM, in 

Chapters 4 and 5. In Chapter 4, new types of virtual fields that are defined 

using real nodal displacements, namely the pseudo-real deformation field 

(PDF), are proposed to enhance the quality of the VFM  for plastic 

constitutive parameters. Also, FE-VFM with the PDF is applied to 

characterize the homogeneous strain hardening of the advanced high-strength 

steel sheets. In Chapter 5, non-homogeneous strain hardening of the friction 

stir welded (FSWed) aluminum alloy sheets are identified using FE-VFM. In 

this chapter, feasibility tests based on the data generated by FE simulation are 

conducted priorly, and validated methods are applied for the real application.  
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2. Finite element-based virtual fields method 

In Chapter 2, the formulations and calculation procedure of the FE-VFM are 

introduced. In Section 2.1, a general overview of the virtual fields method is 

provided. Then, the concept and procedure of the FE-VFM calculation are 

introduced in Section 2.2. In Sections 2.3 to 2.5, detailed formulations of the 

FE-VFM are introduced. Reconstruction of the displacements into the FE 

meshes is introduced in Section 2.3, and calculations of the kinematic 

variables such as deformation gradient and strains are shown in Section 2.4. 

Finally, integration of the internal virtual works (IVW) using Gauss 

quadrature during the parameter optimization is introduced in Section 2.5. 

 

2.1. The virtual fields method: an overview 

The virtual fields method (VFM) is a hybrid experimental–numerical 

approach for the inverse identification of constitutive parameters [31,32]. It 

is based on the PVW. Eq. (2.1) represents the PVW under the plane stress 

condition in a deformed configuration (or Lagrangian formulation). 






 


 
f

si
ij k k

S S
j

u
t ds f u ds

x
                                    (2.1) 

where ij  is a Cauchy stress tensor, iu  is the virtual displacement, jx  is the 

deformed coordinate, 
s

kf   is the surface traction vector acting on the force 
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boundaries, t  is the thickness of an object, and S  and  fS  denote an AOI 

and the force acting boundaries, respectively. Note that an index notation 

according to the Einstein convention will be used unless otherwise indicated. 

The term on the left-hand side of Eq. (2.1) is called the IVW exerted by 

internal stresses, while that on the right-hand side is the external virtual work 

(EVW) exerted by external forces. The integrand of IVW in Eq. (2.1) can be 

written as Eq. (2.2) by utilizing the symmetry of the Cauchy stress tensor, and 

the gradient of virtual displacement can be denoted as a strain-like variable, 

namely the virtual strain.  

1

2

   
         

ji i i
ij ji ij ij ij

j j j i

uu u u

x x x x

  
                       (2.2) 

The PVW can also be expressed in an undeformed configuration or an 

Eulerian scheme as follows [67,84]:  

0 0
0






 
f

si
ij k k

S S
j

x
t P ds f x ds

X


                                   (2.3) 

where ijP   is the first Piola–Kirchhoff (P–K) stress tensor, jX   is the 

undeformed coordinate, ix  is the virtual position vector, 0

s

kf  is the traction 

vector in the initial configuration, and 0S  and 0 fS  are the initial (reference) 

AOI and force acting boundaries, respectively. Note that Eqs. (2.1) and (2.3) 

are equivalent. However, the gradient of the virtual position cannot be 
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denoted as the virtual strain because the first P-K stress tensor is not 

symmetric. Instead, the gradient of virtual positions can be denoted as a 

virtual deformation gradient because of its similarity to a real deformation 

gradient.  





i
ij

j

x
F

X


                                                  (2.4) 

The relationship between the first P–K stress and the Cauchy stress is given 

as follows:  

 
1

ij x X ki kjP J F                                            (2.5) 

where kiF  is a deformation gradient tensor and x XJ  is its determinant.  

For linear elastic materials, Eq. (2.1) can be rewritten as follows:  


 

f

s

ijkl kl ij m m
S S

t Q ds f u ds                                     (2.6) 

where ijklQ   and kl   are the fourth-order elastic stiffness tensor and strain 

tensor, respectively. In VFM, the strain fields are measured a priori by the 

full-field measurement, whereas the material parameters of the constitutive 

law, or in this case, the components of the stiffness tensor, are to be solved. 

Note that the general displacement-based FEM solves the displacement fields 

with the given material parameters as inputs. Therefore, the VFM is based on 

the same governing equations as the FEM, but the solution process is reversed. 

Under this principle, Eq. (2.6) can be solved if the number of virtual fields 
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provided is the same as the number of independent (unknown) stiffness 

components [31,32,42]. 

The virtual fields are user-defined arbitrary fields that are admissible if they 

satisfy zero virtual displacements at the previously described displacement 

boundaries. One additional constraint of virtual fields for VFM is that the 

virtual fields should be constant at the prescribed external force boundaries 

[31,32]. This constraint is because only the resultant force can be measured 

in common experiments, and not the traction vector. If the virtual fields are 

constant at the force-acting boundaries, the EVW in Eq. (2.6) can be 

expressed as a product of the resultant forces and virtual displacements at the 

boundaries formulated in Eq. (2.7), 

 
at boundary


f

s

k k k k
S

f u ds F u                                  (2.7) 

where kF  is an external load vector measured during the experiment. 

For materials with nonlinear constitutive laws, the PVW cannot be modeled 

as a linear system. Instead, a cost function is defined as the difference between 

the IVW and the EVW [31,46,47,49,81]. 

   
2

,


    
  

f

s

ij ij ij k k
S S

k t k ds f u ds                           (2.8) 

where the stress tensor ij   is a function of the strains ij   and material 

constant denoted by k . For some non-linear materials, such as elastic–plastic 
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materials, a proper stress update algorithm is required to obtain the stresses. 

The cost function in Eq. (8) is defined in a single time step. After calculating 

the values of the cost function over all the time steps, the unknown material 

parameter k   can be obtained by minimizing the cost function with a 

numerical optimization such as a nonlinear least-squares method.  

In many cases, the relation between Cauchy stress and kinematic values 

such as logarithmic strain is defined in the constitutive law. Hence, Eq. (2.1) 

is simple and intuitive for implementing the VFM. Also, for the small strain 

problem like a linear elasticity case, virtual displacmeents can be assigned as 

constant values easily. However, in the case of large deformations, the 

constant virtual displacements are not easily assigned at the force boundaries 

owing to the deformation of the boundaries of the AOI. In this case, Eq. (2.3) 

may be more efficient than Eq. (2.1) because the virtual positions can be 

defined as a function of the undeformed coordinates. 

Meanwhile, in the conventional VFM, the IVW is calculated using a 

primitive discretized sum [31,32,44,46,61–63,65–67,84] as follows:  

 int

1

 
ne

ij ij nn
n

W t A                                          (2.9) 

where n is the index of data points, ne is the total number of data points, and 

nA  is the area of each data point. 
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2.2. Concept of the FE-VFM 

In the FE-VFM, the displacement fields are mapped onto FE meshes using 

interpolation functions, and the Gauss quadrature is implemented for the 

calculation of IVW. Fig. 2-1 shows the schematic procedure of the FE-VFM 

at a single FE level. First, the global initial coordinates of the full-field data 

points are transformed to natural coordinates using shape functions. These 

shape functions are referred to as global coordinates; thus, they are termed 

“global shape functions.” Then, the displacement fields are mapped onto the 

FEs of the natural coordinates with shape functions that apply to the natural 

coordinates or “natural shape functions.” As a result, the (experimental) 

displacement fields were reconstructed as FE meshes, and the IVW was 

calculated using the Gauss quadrature rule. Although Fig. 2-1 illustrates only 

a 4-node linear quadrilateral element, the general formulations for other types 

of FEs are given in the following sections. Then, IVW was calculated using 

the Gauss quadrature rule with a given integration point. 

Note that the use of the global shape functions is for mapping the natural 

coordinates of the full-field data points from the known global coordinates, 

for the numerical integration of the IVW using Gauss quadrature. In the 

conventional FEM, the isoparametric element is used. In that approach, both 

displacements and global coordinates are defined as a function of natural 

coordinates. However, in the full-field measurement, only the global (or real) 

coordinates are known for the measured data points. If the global coordinates 
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are mapped from the natural coordinates like the conventional FEM, it can be 

numerically inefficient since the natural coordinates of all the measured data 

points should be calculated by solving non-linear equations. For this reason, 

mapping of the coordinates is conducted in a reversed way compared to 

conventional FEM, instead of the isoparametric elements. 

 

Fig. 2-1. Schematics of FE-VFM procedure in a single finite element   
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Fig. 2-2 shows a flow chart of the FE-VFM algorithm, which was 

implemented using MATLAB® in this study. The full-field displacements and 

FE meshes with the same geometries of the region of interest are prepared as 

the input data. The FE-VFM consists of three major steps. In the first step, the 

deformation field is reconstructed as FE meshes. In this step, the global shape 

functions are calculated for each element. Even for the same FE type, the 

global shape functions (in fact, the coefficients of the global shape functions) 

are different for each element because the global shape function depends on 

the initial global coordinates. In addition, the data points from the full-field 

measurement are identified by which elements they belong to. This process is 

conducted via the MATLAB® built-in closest simplex search function, 

tsearchn. Then, the (unknown) nodal displacements can be calculated using 

the local and global shape functions. As a result, displacement field-

augmented FE meshes are constructed, and further calculations are made on 

the FE meshes without the original full-field data. More detailed formulations 

are given in Section 2.3. 

Before parameter optimization, kinematic variables such as the 

deformation gradient and strain tensor at the integration points are calculated 

in a pre-processing step. In this step, a user selects the order of the Gauss 

quadrature rule, and the corresponding natural coordinates of the integration 

points are given. Note that the global coordinates of the integration points are 

also necessary to obtain the kinematic variables at each integration point 
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owing to the global shape function. The global coordinates of the integration 

points can be readily obtained by solving the non-linear global shape 

functions. In this study, a multi-variant Newton–Raphson method is used to 

solve the equations. Then, the kinematic variables are calculated based on the 

shape functions and nodal displacements. Finally, the IVW is calculated using 

the Gauss quadrature, and the parameter optimization process is performed as 

the last step. More details about these processes are provided in Sections 2.4 

and 2.5. 
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Fig. 2-2. Flow chart of FE-VFM process  
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2.3. Reconstruction of displacements on the finite element meshes 

For a single element, the natural (or local) coordinates of a point can be 

interpolated as follows:  

   I, M , n
i Iir X X X X r 1 2 1 2                                                 (2.10) 

where ir   represents the natural coordinates of a point in the element, 
n
Iir  

represents the natural nodal coordinates, and  IM ,X X1 2   are global shape 

functions referenced to the global coordinates. The notions of subscripts and 

superscripts in the equations are listed in Table 2-1, which are used hereafter 

unless otherwise noted.  

Table 2-1. The notion of subscripts and superscripts used in the manuscript 

Subscripts 

Latin lowercase letter Vector and tensor indices, 1 and 2 

Latin uppercase letter Nodal index 

Greek letters α and β 
Full-field measurement point 

index 

Greek letters λ and μ Index for basis of shape function 

Superscripts 

n Nodal values 

d 
Full-field measurement point 

values 

e Local element values 

g Global FE mesh values 
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The global shape function  IM ,X X1 2  can be expressed by the product of 

the basis functions and their coefficients. 

   IM , g
T

μ μIX X a 1 2                                        (2.11) 

where gμ  is the vector for the basis function, and μIa  is the coefficient of the 

global shape function. For example, the global shape function of a 4-node 

linear quadrilateral element can be written in matrix form as follows:  

 

11 12 13 14

21 22 23 24

1 1 1 2

31 32 33 34

41 42 43 44

1I

a a a a

a a a a
M X X X X

a a a a

a a a a

 
 
 
 
 
 

                   (2.12) 

The coefficients of the global shape functions can be determined using the 

zero-one property of the shape function[89]. That is, the value of each shape 

function becomes unity at the corresponding node, and zero at other nodes. 

From this, μIa  can be obtained as an inverse of the basis function matrix, 
n
IμG , 

constructed with nodal undeformed coordinates, as the product of μIa  and 
n
IμG  

is the identity matrix.  

n
μI Iμa G



   
1

                                                (2.13) 

Then, the local coordinates of the full-field measurement points 
d
αir   are 

calculated using the global shape functions as follows:  
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d d n
αi αμ μI Iir G a r                                                (2.14) 

where 
d
kjG  is the matrix of the global basis function calculated with the global 

coordinates of the full-field measurement points, and 
n
Iir  represents the local 

nodal coordinates of the element.  

Similar to the interpolation of local coordinates, the displacements are 

interpolated by local shape functions as follows:  

   I, N , n
i Iiu r r r r u 1 2 1 2                                        (2.15) 

where  ,r r1 2   are the local coordinates, and 
n
Iiu   represents the nodal 

displacements of the FE. The local shape functions  IN ,r r1 2   are denoted 

with the following matrix form:  

   IN , h
T

μ μIr r b 1 2                                          (2.16) 

where hμ  is the vector of the local basis functions similar to gμ  in Eq. (2.11), 

and μIb  is the coefficient of the local shape function. 

In general, global and local shape functions are not necessarily the same. 

However, in this study, identical types of interpolation functions were used. 

In addition, the coefficients of the global shape function μIa   vary for each 

element, but those of the local shape functions μIb  are constant. More details 

on the FEs and their shape functions are provided in Appendix A. 
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The relationship between displacements of the nodes and the data points 

(inside an element) can be established as follows:  

d d n e n
αi αμ μI Ii αI Iiu H b u N u                                         (2.17) 

where 
d
αμH  is the matrix of the local basis functions that are constructed with 

the local coordinates of the data points, as in Eq. (2.14). 
e
αIN  is the matrix of 

the local shape function values for an element. For all the FE meshes, the 
e
αIN  

of each element should be assembled as its global matrix. 

   
g e

αIβ α P I
N N                                               (2.18) 

where 
g
βPN  is the matrix of the shape function values for global FE meshes. 

Here, the local index of the data point α  is associated with the global index 

of the corresponding data point β , and the local nodal index I corresponds to 

the global nodal index P through the connectivity arrays. With the known 

connectivity1, the matrix for the global shape functions can be assembled. 

Finally, the nodal displacements of an FE mesh are obtained using linear 

least-squares optimization: 

                                                 
1  The global-local connectivity should be stored as a pre-processing procedure, as 

illustrated in Fig. 2-2. 
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    
T T

n g g g d d
Pi αQ αP βQ βi Pβ βiu N N N u A u



     
1

                        (2.19) 

where PβA   is the least-squares operator. For multiple time steps, the same 

PβA  can be applied to every time step because the displacement mapping is 

conducted using the (fixed) initial global coordinates and (element) natural 

coordinates. In Appendix B, the reconstruction of the displacement fields for 

the linear quadrilateral element is given as an example. 

 

2.4. Calculation of kinematic variables at the integration points 

The deformation gradient, ijF , is defined as follows: 

 i i
ij i i ij

j j j

x u
F X u

X X X

 
    
  

                              (2.20) 

where iX  and ix  are the undeformed and deformed coordinates, respectively, 

iu  is a displacement vector, and ij  is the Kronecker delta. Considering that 

the displacements are interpolated with the local shape functions, Eq. (2.20) 

can be rewritten as follows:  

TT

I k
ij Ii ij

k j

N r
F u

r X

           

                                    (2.21) 

Moreover, the gradient of the local coordinates is given as: 
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 .                            (2.22) 

From Eqs. (2.21) and (2.22), Eq. (2.20) becomes 

TT TT

JI
ij Ii Jk ij

k j

MN
F u r

r X

                       

  .                         (2.23) 

The derivatives of the local and global shape functions are calculated from 

Eqs. (2.11) and (2.16):  
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J

J
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X X

   
          
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                                         (2.24) 
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                                         (2.25) 

From Eqs. (2.23)–(2.25), the deformation gradient can be written as follows: 

TT TT

ij I Ii J Jk ij

k j

h g
F b u a r

r X

                       

 
                          (2.26) 

The undeformed coordinates of the integration points are obtained using 

the global shape functions with Newton–Raphson(N–R) method. The target 

nonlinear equation  ,iL X Y  for obtaining the undeformed coordinates of the 

integration points is given as follows: 
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   1 2 1 2, , 0i I Ii iL X X M X X r r                                  (2.27) 

where ir  is the natural coordinate of an integration point. The linearization of 

Eq. (2.27) results in the following equation: 
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                 (2.28) 

where superscript n is the iteration number. The initial guess for the Eq. (28) 

is assumed to be the center of an element, 

0

1

1 e

i Ii
I

X X
e 

   .                                              (2.29) 

With the solution from Eq. (28), the derivatives of the global shape functions 

and deformation gradients at the integration points can be obtained.  

Meanwhile, Constitutive laws are often given as relations between Cauchy 

stress tensor and logarithmic (or Hencky) strain tensor for elastic-plastic 

materials. Below, the logarithmic strains and related tensor values are 

introduced based on continuum mechanics. Note that rotation of materials is 

already taken cared since all calculation process is performed in Eulerian 

scheme. Here, superscripts g, d, p, and m denote undeformed global, 

deformed global, principal, and material coordinates, respectively. Values 

without superscript denote tensor values in global coordinates. 

Right Cauchy-Green tensor  
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  2T

ij ki kj ijC F F U                                             (2.30) 

Stretch tensor  

 
Tg p

ij ki kl ljU V C V                                            (2.31) 

Polar decomposition and material rotation tensor  

 
1

ij ik jkR F U


                                               (2.32) 

Logarithmic strain in the initial configuration 

   ln
Tg p

ij ki kl ljE V U V                                          (2.33) 

Here, ijV  is a rotation tensor from global to principal coordinates, which are 

composed of eigenvectors of a given tensor. Also, a component of tensor in 

principal coordinates has eigenvalues as its diagonal components, and all off-

diagonal components are zero. The rotation tensor ijV   and corresponding 

tensors in principal coordinates can be obtained from the calculation of 

eigenvalue and eigenvector. 

Suppose the angle difference between undeformed global and material 

coordinates is   . Rotation tensor ij   from undeformed global to material 

coordinates in 2D is as follows. 

cos sin

sin cos
ij

 
  
 

 


 
                                        (2.34) 
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Then, logarithmic strain tensor in material and deformed global coordinates 

are as follows. 

Logarithmic strain in material coordinates 

 
Tm g

ij ki kl ljE E                                              (2.35) 

Logarithmic strain in the deformed coordinates 

 
Td g

ij ik kl jlE R E R                                             (2.36) 

 

2.5. Integration of the internal virtual work 

In the FE-VFM, the Gauss quadrature is used for integrating the virtual work. 

The integration of the IVW is performed on the natural coordinates of each 

element. In the updated Lagrangian approach, the IVW of an element can be 

written as follows:  

int
e

ij ij x X X rW t J J drds 


                                     (2.37) 

where the superscript “e” denotes an element value,   represents the domain 

of an element, x XJ   and X rJ   are Jacobian determinants, which are defined as 

follows: 

 det deti
x X ij

j

x
J F

X


 
    

                                   (2.38) 
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 

1
det

det

i
X r

j T I
iI

j

X
J

r M
r

X



 
        

      

                           (2.39) 

The IVW in the Eulerian configuration is written as follows: 

int
e

ij ij X rW t P F J drds


                                       (2.40) 

In this study, the Eulerian approach is used. For a linear elastic material, Eq. 

(2.40) can be expressed as 

 int

Te
ikpq pq jk ij X r x XW t Q E F F J J drds



 


    .                      (2.41) 

For plastic materials, Eq. (2.40) can be rewritten under the plane stress 

assumption and for plastic incompressibility conditions, as follows: 

   int 0 exp
Te

t ik jk ij X r x XW t F F J J drds


 


                         (2.42) 

where 0t  is the initial sheet thickness, and  t  is the thickness strain, which 

is obtained as follows:  

   11 22 11 22
e p p p

t t t

E
            


                        (2.43) 

Here, the superscripts “e” and “p” denote elastic and plastic components, 

respectively, and E   and    are Young’s modulus and Poisson’s ratio, 

respectively.  

The IVW of the triangular elements integrated using the Gauss quadrature 
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is given as follows. 

   int
1

, ,
n

e
i i i

i

W r s dsdr w r s




                               (2.44) 

where  ,r s  denotes the integrands in either Eq. (2.41) or (2.42), iw  is the 

weight of the Gauss quadrature,  ,i ir s   are the natural coordinates of the 

integration point i , and n  is the number of integration points. Note that  ,r s  

is equal to  1 2,r r . 

For a quadrilateral element, the IWV with Gauss quadrature can be written 

as follows:  

   int
1 1

, ,
n n

e
i j i j

i j

W r s dsdr w w r s


 

                          (2.45) 

The weights and natural coordinates of the integration points are listed in 

Tables 2-2 and 2-3.   
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Table 2-2. Gauss quadrature of a triangular element [90,91] 

I 1 N 2 Natural coordinates Weights 

1 1 
(a1, a1, a1) 

a1 = 0.3333333333333 
0.5000000000000 

2 3 

(b1,b2,b2), (b2,b1,b2), (b2,b2,b1) 

b1 = 0.6666666666667, 

b2 = 0.1666666666667 

0.1666666666667 

3 4 

(a1, a1, a1) 

a1 = 0.3333333333333 
-0.2812500000000 

(b1,b2,b2),    (b2,b1,b2),    (b2,b2,b1) 

b1 = 0.6000000000000, 

b2 = 0.2000000000000 

0.2604166666667 

5 7 

(a1, a1, a1) 

a1 = 0.3333333333333 
0.1125000000000 

(a2,a1,a1), (a1,a2,a1), (a1,a1,a2) 

a1=0.4701420641051,  

a2=0.0597158717898 

0.06619707639427 

(b2,b1,b1), (b1,b2,b1), (b1,b1,b2) 

b1=0.1012865073235,  

b2=0.7974269853531 

0.0629695902724 

7 13 

(b2,b1,b1), (b1,b2,b1), (b1,b1,b2) 

b1=0.1012865073235,  

b2=0.7974269853531 

0.0629695902724 

(b1,b2,b3), (b2,b1,b3), (b1,b3,b2), 

 (b3,b1,b2), (b2,b3,b1), (b3,b2,b1) 

b1=0.3128654960049,  

b2=0.0486903154253,    

b3=0.6384441885698  

0.0385568804451 

(c2,c1,c1), (c1,c2,c1), (c1,c1,c2) 

c1=0.2603459660790,  

c2=0.4793080678419 

0.0878076287166 

(a1, a1, a1) 

a1 = 0.3333333333333 
-0.0747850222339 

1 integration order, 2 number of integration points  
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Table 2-3. Gauss quadrature of a quadrilateral element [90,91] 

I 1 N 2 Natural coordinates Weights 

1 1 0.0000000000000 2.0000000000000 

3 2x2 ±0.5773502691896 1.0000000000000 

5 3x3 
0.0000000000000 0.8888888888889 

±0.7745966692415 0.5555555555556 

7 4x4 
±0.3399810435849 0.6521451548625 

±0.8611363115941 0.3478548451375 

1 integration order, 2 number of integration points 
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3. Numerical sensitivity tests based on simulation data 

In this chapter, numerical sensitivity tests of the FE-VFM proposed in the 

previous chapter are shown. In the sensitivity tests, deformation data 

generated by the finite element simulation was used as an input of the FE-

VFM, to avoid the effect of the experimental errors, and for the investigation 

of the pure numerical effect of the FE-VFM conditions including FE order 

and size, and Gauss quadrature order. The tests were conducted for both 

orthotropic linear elastic and elastic-plastic cases, and the effect of the FE-

VFM conditions are numerically analyzed by obtaining the residuals of the 

virtual works. The sensitivity test conditions are given in Section 3.1, and the 

sensitivity test results for the linear elastic and elastic-plastic cases are shown 

in Section 3.2 and 3.3, respectively. Exhaustive sensitivity tests demonstrated 

that the FE-VFM with higher and coarse finite elements accompanied with a 

higher order Gauss quadrature could provide promising results for the 

identification of the plastic hardening law parameters. 
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3.1. Sensitivity tests and FE simulation conditions 

The validations of the FE-VFM are performed through the sensitivity study. 

In the sensitivity study, both the orthotropic linear elasticity and isotropic 

plasticity are considered, and the ideal full-field displacement fields are 

(virtually) produced using FE simulations, which provide data without 

experimental noise. In addition, this analysis enables a quantitative evaluation 

of the VFM results based on known target material constants. A sensitivity 

study is conducted on the effect of FE type, FE mesh size, and order of the 

Gauss quadrature. For the quantitative analysis, the difference between the 

IVW and EVW calculated from the input material parameters was examined. 

Ideally, IVW and EVW should be identical within a numerical tolerance.  

Abaqus/Standard was used for the virtual experiments. For the orthotropic 

linear elastic material, a tensile test with a center hole specimen was 

performed. The geometry of the virtual specimen and the corresponding 

boundary conditions are illustrated in Fig. 3-1. The thickness of the specimen 

was defined as 2 mm. The model was discretized with 143,585 elements, and 

the element type was a 4-node plane stress quadrilateral element with reduced 

integration (CPS4R).  
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Fig. 3-1. Specimen geometry and boundary conditions for virtual FE 

simulations for (a) anisotropic linear elastic material and (b) elastic-plastic 

material. 

 

The constitutive law for orthotropic linear elasticity is written as follows: 

1 11 12 1

2 12 22 2

6 66 6

0

0

0 0

    
    

    
    
    

Q Q

Q Q

Q

 

 

 

                               (3.1) 

where i (i=1,2,6) and i (i=1,2,6) are the components of the stress and 

strain tensor in Voigt notation, respectively, and Qij (i,j=1,2,6) is the 

orthotropic elastic stiffness. The constants used in the FE simulations are 

listed in Table 3-1. 
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Table 3-1. Orthotropic linear elastic constants used in the sensitivity study  

Q11 Q22 Q12 Q66 

41.0 GPa 10.3 GPa 3.1 GPa 4.0 GPa 

 

 

For the elastic-plastic material, a notch tension test was conducted, as 

illustrated in Fig. 3-2. The virtual thickness of the specimen was defined as 2 

mm. The number of elements was 31,309, and the same element type as in 

the elastic problem was used.  

 

Fig. 3-2. Specimen geometry and boundary conditions for virtual FE 

simulations for elastic-plastic material. 

For the elastic-plastic constitutive law, the material was assumed to be 

isotropic. The von Mises yield function and isotropic hardening using the 
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Swift hardening law in Eq. (3.2) were employed.  

 
n

σ K ε e  0                                                (3.2) 

where σ   and ε   are the equivalent stress and equivalent plastic strain, 

respectively, and K, e0 , and n are material constants. The material constants 

of the Swift law are listed in Table 3-2. 

Table 3-2. Elastic-plastic material constants used in sensitivity tests 

Elastic constants Plastic strain-hardening law 

E(GPa) ν K (MPa) e0 n 

70 0.33 350 0.045 0.15 

 

 

In the FE simulation, the total displacement was incrementally applied over 

100 time steps, and the simulation results over all the time steps were used 

for the sensitivity analysis. In this study, a tangent stiffness-based stress 

integration algorithm [92,93] was used. 

The conditions for the sensitivity tests were: (1) element sizes of 1 mm to 

5 mm; (2) element types of linear (T32 ), quadratic (T6), and cubic (T10) 

triangular elements, and linear (Q4), quadratic (Q8), and cubic (Q12) 

quadrilateral elements; and (3) orders of the Gauss quadrature from 1 to 7. 

                                                 
2 T and Q denote triangular and quadratic elements, respectively. Here, the 

numbers in the elements represent the number of nodes in each element. 
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Note that linear quadrilateral elements with the nodal coordinates shown in 

Fig. 3-3 had to be avoided because of the singularity in the calculation of 

global shape functions [89].  

 

Fig. 3-3. Linear quadrilateral element should be avoided in the FE mesh 

In this study, linear triangular and quadrilateral element meshes are 

generated by an Abaqus CAE pre-processor. higher-order element meshes are 

generated by modifying linear element meshes using in-house programming.  

As schematically shown in Fig. 3-4, The meshing procedure from the linear 

to the higher-order elements is summarized as follows. First, new (trial) nodes 

are added between the existing nodes as initial guesses. For quadratic 

elements, the additional nodes are positioned at the center of the two 

connected nodes, while those for the cubic elements are added at 1/3 and 2/3 

the distance between the two existing nodes. Additionally, a center node is 

added for cubic triangular elements.  
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Fig. 3-4. Generation of higher order element meshes by modifying the linear 

elements 

After that, the position of the nodes at the curved edges is corrected to the 

proper position. Curved edge nodes can be identified using the circle equation. 

   n nX X Y Y r TOL    
2 2

0 0                                  (3.3) 

where  ,n nX Y  is the nodal position of the initial linear elements at the curved 

edge,  ,X Y0 0  is the center of the curved edge arc, r  and TOL  is numerical 

tolerance. After the curved edge is identified, the correct added nodal position 

 ,cor corX Y  can be calculated using arc center and radius, an initial guess of 

added node position  ,guess guessX Y .  

cos

cos
cor

cor

X r θ X

Y r θ Y

  


  

0

0

                                          (3.4) 

where angle θ  is 
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atan guess

guess

Y Y
θ

X X

 
    

0

0

 .                                       (3.5) 

Among possible 4 solutions in Eq. (3.4), most closet point to the initial guess 

is selected as a correct added nodal position for the higher-order elements on 

the curved edge. 

Meanwhile, linear element meshes generated by Abaqus/CAE are shown 

in Figs. 3-5 and 3-6, for the linear elastic case and elastic-plastic case, 

respectively. Also, examples of higher order element meshes are shown in 

Figs. 3-7 and 3-8, for the linear elastic case and elastic-plastic case, 

respectively. 
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Fig. 3-5. Finite element meshes used for the sensitivity test of the 

orthotropic linear elastic problem. Meshes in the figure are linear element 

meshes generated by Abaqus/CAE with element sizes of 1mm to 5mm. 
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Fig. 3-6. Finite element meshes used for the sensitivity test of the plastic 

problem. Meshes in the figure are linear element meshes generated by 

Abaqus/CAE with element sizes of 1mm to 5mm. 



48 

 

Fig. 3-7. Example of higher-order element meshes generated by in-house 

Matlab code for the orthotropic linear elastic problem  

 

 Fig. 3-8. Example of higher order element meshes generated by in-house 

Matlab code for the plastic problem.  
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3.1. Results: orthotropic linear elastic properties 

In Fig. 3-9, the displacement (Ui) and logarithmic strain (Eij) fields are 

presented for the orthotropic linear elastic material. Fig. 3-9(a) shows the 

results of the FE simulation, and Fig 3-9(b) shows the reconstructed results 

obtained using the proposed mapping algorithm. The element type shown in 

the figure and its average size are Q12 and 5 mm, respectively. As validated 

in the figures, the reconstructed fields are in good agreement with the FE-

simulated fields, even with coarse meshes, when higher order elements are 

used. 

Two different sets of polynomial virtual fields were used for the sensitivity 

tests of linear elasticity, which are shown below.  

 /δx X

δx

 




1 1

2

20

0
                                             (3.6) 

 

   

/

/ /

δx X

δx X X

 


 

3

1 1

2

2 1 2

20

20 1 20
                                 (3.7) 

The above virtual fields are functions of the undeformed global coordinates 

normalized by a half-length of the virtual specimen. The virtual fields in Eq. 

(3.6) and (3.7) represent the linear and nonlinear polynomials, respectively.   
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Fig. 3-9. Comparison of displacement and strain fields for the linear elastic 

material. (a) FE simulated deformation fields before mapping and (b) 

reconstructed fields with Q12 finite elements with an average size of 5 mm  
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For the given virtual fields, the accuracy of the FE-VFM results is 

estimated based on the difference between the IVW and EVW. The residual 

(R) was defined as follows: 

 int ext

ext

R %e
δW

δW δW

δW


 100                                  (3.8) 

Fig. 3-10 shows the sensitivity test results for linear polynomial virtual 

fields calculated by Eq. (3.6). As the element size increases, larger residuals 

are calculated for both linear elements in Fig. 3-10(a). For quadratic and cubic 

elements, a considerably low level of residuals is indicated for all investigated 

element sizes. Fig. 3-10(b) shows the effect of the order of integration on the 

accuracy. It is evident that the residuals for linear elements are not influenced 

significantly by the order of the Gauss quadrature. For the quadratic elements, 

the first-order integration resulted in the best accuracy. For the cubic elements, 

the residuals are lowered if the order of integration is higher than three. The 

results in Fig. 3-10 show that none of the residuals in any of the investigated 

cases are very large, even for rather coarse linear elements (only 3% at a 

maximum).  

In Fig. 3-11, the sensitivity test results for more complex polynomial virtual 

fields calculated by Eq. (3.7) are presented. It is evident that smaller residuals 

are calculated with nonlinear polynomial virtual fields than with linear virtual 

fields by Eq. (3.6). In terms of the order of Gauss quadrature, all elements 

show very small residuals if the order is higher than three.  
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In summary, the effect of element type and size on the accuracy of FE-

VFM was not noticeable, because small enough residuals were calculated 

even for linear elements and virtual fields. This low impact of FE parameters 

on the residual (or accuracy) may be because the spatial non-linearity of 

deformation is not significant for the case of linear elastic materials. In this 

case, the selection of virtual fields seems to be more critical than other factors, 

as shown by the differences in the residuals between the two virtual fields. 

Only a higher order of Gauss quadrature could improve the quality of IVW 

integration in cases when a nonlinear virtual field was used, as shown in Fig. 

3-11(b). 
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(a) 

 
(b) 

Fig. 3-10. Residuals of virtual work difference with linear virtual works for 

orthotropic linear elastic material with respect to (a) finite element size and 

(b) order of Gauss quadrature.   
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(a) 

 
(b) 

Fig. 3-11. Residuals of virtual work difference with non-linear virtual works 

for orthotropic linear elastic material with respect to (a) finite element size 

and (b) order of Gauss quadrature.  
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3.2. Results: plastic strain hardening law 

In Fig. 3-12, the displacement and strain fields of the notched tension are 

presented for the elastic-plastic material. As in Fig. 3-10, Fig 3-12(a) and (b) 

show the FE-simulated and reconstructed deformation fields, respectively. 

The size and element type of the FE mesh are the same as in the elastic case. 

Again, the fields reconstructed by the proposed mapping algorithm show 

good agreement with the FE-calculated results, which validates the reliability 

of the FE-based mapping for large deformations. 

In the sensitivity study, the following virtual fields are applied for the 

elastic-plastic material. 

   

 

/ /

/

δx X X

δx X

  

 

2

1 2 1

3

2 2

20 1 15

20

                                 (3.9) 

As in the elastic case, the two virtual fields are considered undeformed 

coordinates normalized by half of the specimen width and height, respectively. 

Similar to the elastic case, the residuals between the IVW and EVW are 

calculated with known target material constants. The residual for the error 

analysis is averaged over the time step and is defined as follows:  

 int ext

ext

R %
stepn

p
δW

τstep

δW δW

n δW


 

1

1
100                            (3.10) 

where τ  is the time step number, and stepn  (equal to 100 in this study) is the 
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total number of time steps.  

 

Fig. 3-12. Comparison of displacement and strain fields for isotropic elastic-

plastic material. (a) FE simulated deformation fields before mapping and (b) 

Reconstructed fields with Q12 finite elements with an average size of 5 mm  
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In Fig. 3-13, the residuals of virtual work are presented with respect to the 

element size and order of the Gauss quadrature. As shown in Fig. 3-13(a), the 

residual is highly dependent on element size when a linear element is used. 

However, the residual is almost independent of the mesh size for higher-order 

elements. This is quite different from the elastic material, which showed 

negligible sensitivity to the element size. This indicates that finer meshes are 

necessary for the linear element under large plastic deformation. In other 

words, moderate or large element sizes can be employed for accurate mapping 

when higher-order elements are used. 

In Fig.3-13(b), it is evident that the residuals of the virtual work are also 

significantly dependent on both element type and integration order. For the 

linear triangular element (T3), no noticeable change in the residual was 

observed with different integration orders. Moreover, even higher-order 

integration resulted in a larger residual than first-order integration with the 

linear quadrilateral element (Q4). However, integration with a higher-order 

improved accuracy for quadratic and cubic elements. The figure also shows 

that third-order or higher integrations are appropriate for the quadratic 

element, and fifth-order integration shows the best accuracy for the cubic 

element.   
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(a) 

 
(b) 

Fig. 3-13. Residuals of FE-VFM virtual work for elastic-plastic material 

with respect to (a) element size and (b) order of integration  
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Fig. 3-14 shows the results of parameter identification for the plastic strain 

hardening law using the FE-VFM. The non-linear optimization of the cost 

function was conducted using the MATLAB® built-in non-linear least-

squares optimization function lsqnonlin.  

For the quantitative analysis, the average error of the equivalent stress is 

defined as follows:  

 VFM target

target

R %
aεP

σ

a

σ σ
dε

ε σ


 0

1
100                             (3.11) 

where VFMσ  is the equivalent stress obtained from the FE-VFM, 
targetσ  is the 

corresponding input equivalent stress (or exact target value), and aε  (=0.3 in 

this study) is the limit of the equivalent plastic strain range for the average 

error calculation.  

Fig. 3-14(a) shows that the error in the equivalent stress increases as the 

element size increases when linear elements are used. However, the error 

becomes significantly lower regardless of the element size in the case of 

higher-order elements. This indicates that the deformation fields can be 

reconstructed well for the higher order elements even with quite large element 

sizes. In contrast, linear elements do not describe highly deformed fields 

properly owing to the linearity of the shape functions. Fig. 3-14(b) shows that 

the quality of the FE-VFM is not improved for a linear triangular element, 

even with higher-order integration. Additionally, it is not clear if the increased 
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order of integration reduces the error in equivalent stress for the quadratic 

triangular element. However, for quadrilateral elements, higher-order 

integration showed better accuracy in identifying the hardening parameter.  

The sensitivity tests described above clarified that the proposed FE-VFM 

could be an effective inverse identification method for elastic-plastic 

materials. This was attributed to the robust reconstruction of the full-field 

displacements. In particular, the present sensitivity study verified that the 

deformation field reconstructions were accurate for even coarse meshes if 

elements of higher order were used. In addition, the newly implemented 

Gauss quadrature for integrating the IVW could improve the VFM quality in 

combination with element types that are selected properly.  
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(a) 

 
(b) 

Fig. 3-14. Mean equivalent stress error of FE-VFM for elastic-plastic 

material with respect to (a) element size and (b) order of integration  
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3.3. Summary 

Extensive sensitivity tests for the validation of the proposed FE-VFM were 

performed with ideal deformation fields generated by finite element 

simulations for both orthotropic linear elastic and isotropic elastic-plastic 

cases. FE-VFM conditions tested in this study were (1) FE mesh size from 1 

mm to 5mm, (2) FE order from linear to cubic elements, and (3) Gauss 

quadrature order from 1 to 3.  

The sensitivity study showed that the element size and order of the shape 

function had a minor effect on the quality of the VFM for the elastic material. 

The virtual fields selection, rather than the FE meshes, critically affects the 

quality of the results. Moreover, a higher-order Gauss quadrature improves 

the accuracy of IVW calculation when complex virtual fields are used. 

In the case of elastic-plastic material, the element size and the order of an 

element, and the order of the Gauss quadrature had a considerable effect on 

the accuracy of the identified material parameters, which resulted from the 

spatial non-linearity of the large plastic deformation. It was also shown by 

validation that even coarse FE meshes could give satisfactory accuracy in the 

FE-VFM when higher order elements and Gauss quadrature were adopted. 

  



63 

4. Application I: homogeneous strain hardening of 

AHSS sheets 

4.1. Introduction 

The limitation of the sensitivity study presented in Chapter 3 is that the inputs 

are generated by FE simulations; thus, the full-field quality is almost ideal. 

On the other hand, experimental data often involve numerous experimental 

artifacts or uncertainties. Therefore, identification of the plastic strain 

hardening parameters for the metal sheets is presented as a real application in 

this chapter.  

Before applying FE-VFM to the experimental data, new types of virtual 

fields namely pseudo-real deformation field (PDF) is proposed. As mentioned 

in the introduction, the virtual fields act as an amplifier or a filter, 

consequently, it affected the VFM results. However, conventional polynomial 

virtual fields are stationary in a time frame, hence it cannot properly utilize 

the information at the highly deformed region for the elastic-plastic case. In 

this work, virtual fields constructed with nodal displacements of the FE-VFM 

are tested as a potential candidate of the virtual fields based on ideal 

deformation data that are already used in Chapter 3. Then, further 

modification was made to apply PDF to the experimental data that include 

unavoidable experimental flaws, especially in the elastic early deformation 

stage. Detailed information on the new virtual fields, is shown in Section 4.2. 
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Conventionally, plastic strain hardening of the metal sheets is measured 

using uniaxial tensile tests. However, experimental data of the uniaxial tensile 

tests can only be used up to UTS, since stress and strain in the gauge section 

are no more uniform and uniaxial after the UTS due to the necking [94–96]. 

Usually, strain hardening in the post-necking is extrapolated using tensile test 

data before the necking based on strain hardening law equations such as Swift 

and Voce equation [3,4,97], which is essentially just a fitting equation. The 

difficulty to apply such a method in advanced high strength steels is that the 

uniform elongation (that corresponds to the UTS) is often very short [98–100], 

yet accurate strain hardening in the post-necking is required for the accurate 

simulations.  

Various characterization methods for strain hardening in the post-necking 

are proposed in the literature. One simple method is inversely optimizing 

parameters of the strain hardening law through iterations of finite element 

simulations that can match the measured global behavior such as 

displacement-load curves. Chung et al. inversely calibrated the hardening 

behavior of the spot-welded steel sheets [101]. Mohr and Marcadet also 

optimized a post-necking strain hardening using iterative finite element 

simulations [102]. In their work, Swift and Voce fit based on tensile tests were 

assumed as a lower and upper limit of the true stress-strain behavior, and the 

linear combination ratio of those two laws was inversely characterized.  

Meanwhile, DIC data was utilized for the characterization of the post-
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necking hardening. Paul et al. used DIC strain values to correct the local 

stress-strain behavior in the necked region [103,104]. Marth et al. also used 

DIC data to inversely calibrate the post-necking stress-strain behavior. Hao et 

al. performed the finite element model update in conjunction with DIC data 

[105]. The VFM is also used for the optimization of the metal’s strain 

hardening law. Grédiac and Pierron applied VFM to the identification of the 

elastic-plastic constitutive parameters based on double notched shearing tests 

[106], Kim et al. characterized a post-necking behavior of the metal sheets 

using VFM with tensile tests [81]. 

The target materials in this study were 1470 MPa grade press-hardened 

steel (1470 MPa PHS) sheets. Notched tensile tests were employed to apply 

the FE-VFM, and new virtual fields introduced in Section 4.2 were used 

simultaneously. Detailed conditions of the experiments and FE-VFM are 

presented in Section 4.3. In addition, the results of the FE-VFM and the 

validity of the results are shown in Section 4.4. 
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4.2. New virtual fields: Pseudo-real deformation fields 

4.2.1. Concept of the PDF 

In this section, a new type of virtual field, namely the PDF, is introduced. In 

the context of VFM, virtual fields are not only test functions for establishing 

equilibrium equations in weak form but are also filters or amplifiers for 

obtaining better accuracy for the identified parameters. For elastic materials, 

virtual fields play a more dominant role as filters of experimental noise 

because of the small strains in elastic specimens. In contrast, for plastic 

materials, the signals from large plastic deformation overwhelm the effect of 

noise. In other words, the virtual fields should be selected properly to amplify 

meaningful information from the measured full-field data. In common 

metallic materials, deformation is accompanied by strain (or work) hardening. 

Before metal yields, the strain distribution of the metal is nearly uniform in 

the specimen gauge, but it becomes significantly inhomogeneous at a large 

strain owing to the plastic hardening. Therefore, conventional virtual fields 

that are represented as constant polynomials over time steps may lead to 

inaccurate identification of plastic properties. 

In this study, a new strategy for generating virtual fields directly from a real 

(experimental) deformation field is proposed. The advantage of real 

deformation as a candidate for virtual fields is that it readily satisfies the 

boundary conditions and symmetry under given test conditions, and strains 
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are large at the region where the large plastic deformation occurs. An 

additional constraint of the new virtual fields is that they should be constant 

at the force boundary, as in the conventional method in Eq. (2.7). Under the 

FE-VFM, this constraint can easily be satisfied by simply substituting real 

nodal displacement values along the force boundary with certain constant 

values. Then, the virtual fields can be given as interpolated fields of the 

modified real nodal displacements. Owing to the characteristics informed by 

real deformation and the post-numerical modification process, the new virtual 

fields are defined as pseudo-real deformation fields. 

The following equations, Eqs. (4.1)–(4.2), are sets of virtual fields for 

testing the newly proposed PDF. 
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where L1 and L2 are the width and height of the specimen, respectively, and 

ˆn
iu  is the modified nodal displacement.  

Eqs. (4.1) and (4.2) are polynomial virtual fields (P-VF1 and P-VF2) for 

comparison with the new virtual fields. In Eq. (4.3), the virtual nodal 

displacements are defined as real displacements without further modification 

(N-VF1). The virtual fields in Eq. (4.4) are the modified real displacements 

normalized by the difference between their maximum and minimum (N-VF2), 

which have a value that varies from -0.5 to 0.5. The modified nodal 

displacements are normalized and amplified in Eqs. (4.5) and (4.6): In Eq. 

(4.5), amplification factors are applied with lengths L1 and L2 (N-VF3), and 

N-VF3 is multiplied by an additional factor of 10 to obtain N-VF4 (Eq. (4.6)). 

Then, the virtual position in an element can be calculated by applying the 

FE shape functions to the nodal virtual displacements. The interpolated 

virtual fields in each element are written as follows:  

n

i i i I Ii ix u X N u X                                                                            (4.7) 

Finally, the virtual deformation gradient can be calculated as follows: 
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Note that Eq. (4.8) is the same as the real deformation gradient in Eq. (2.26), 

except that the fields are interpolated with virtual nodal displacements. 

Therefore, all variables in Eq. (4.8) are known for the parameter optimization 

procedure. 
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Fig. 4-1. Modification of real displacements for pseudo-real displacement 

virtual fields. Constant nodal displacement values are substituted to force 

boundaries  
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4.2.2. Validation of the PDF 

To test the concept of the PDF, the FE simulation data used for the sensitivity 

study of the elastic-plastic notched tension in Chapter 3 are employed. The 

type and size of the elements are Q12 and 4 mm, respectively. Fig. 4-1 shows 

the real displacement fields and their modification for setting up the PDF. 

Here, the nodal displacements at the force boundaries are replaced with an 

averaged displacement of each boundary. 

The parameters for the plastic hardening law in Eq. (3.2) and Table 3-2 are 

identified using the virtual fields listed in Eqs. (4.1)–(4.6). For comparison, 

the errors of the equivalent stress (Eq. (3.11)), and the errors of the material 

parameters are calculated. The results are shown in Fig. 4-2, and the values 

are listed in Table 4-1. 

Table 4-1. Identified Swift hardening parameters and errors in stress for 

different virtual fields test results 

 
Swift law parameters Error in stress, 

RP
σ (%) K(MPa) e0 n 

Target 350.0 0.0450 0.150  

P-VF1 346.3 0.0410 0.142 0.19 

P-VF2 346.5 0.0425 0.143 0.19 

N-VF1 355.9 0.0488 0.158 0.70 

N-VF2 356.7 0.0488 0.159 0.78 

N-VF3 352.3 0.0453 0.152 0.31 

N-VF4 350.4 0.0443 0.150 0.05 
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(a) 

 
(b) 

Fig. 4-2. Evaluation of virtual fields with (a) error in equivalent stress, and 

(b) error in Swift hardening parameters.  
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The errors of the equivalent stress with the two polynomial virtual fields P-

VF1 and P-VF2 were approximately 0.2%, which is quite low. However, 

specific material parameters are relatively inaccurate with polynomial virtual 

fields. The discrepancy in the strain-hardening exponent n is critical because 

this value determines the prediction of the formability or onset of localization. 

The figures also show that the errors with the two new virtual fields N-VF1 

and N-VF2 were not significantly better than those of P-VF1 and P-VF2. 

Contrary to the P-VF1/2 and N-VF1/2, the results with N-VF3 and N-VF4 

showed significantly better accuracy for the identified hardening parameters 

when compared with conventional polynomial virtual fields. The best 

accuracy was obtained with N-VF4 virtual fields for the errors of both the 

equivalent stress and material parameters. The result indicates that the 

proposed concept of the PDF can accurately identify plastic parameters if 

amplification is properly applied. 

The above results are explained in Fig. 4-3. The figure shows comparisons 

of the distribution of IVW density with respect to the major strain (Fig. 4-

3(a)). Here, τ denotes a time step, and τ = 10, 50, 100 corresponds to an initial 

yielding, an intermediate step, and a final time step, respectively. For 

comparison, the cases of N-VF4 (Fig. 4-3(b)) and P-VF2 (Fig. 4-3(c)) are 

used. It can be noted that the distribution of the IVW density of the P-VF2 

case does not change considerably as the deformation proceeds. In contrast, 

the density of IVW calculated with N-VF4 shows similar distributions of the 
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major strain of each deformation stage. In particular, the new virtual fields N-

VF4 account for the localized deformation at the center of the specimen. 

 
(a) 

(b) 

(c) 

Fig. 4-3. Evaluation of density of IVW with respect to the strain along 

loading direction (E22) at three different loading steps (τ=10, 50, 100). (a) 

Distributions of strain (E22), (b) distribution of IVW density with N-VF4, 

and (c) with P-VF2.  
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4.2.3. Combined PDF-polynomial virtual fields for experiments 

The proposed PDF virtual fields (N-VF4 in Eq. (4.6)) were proved to be an 

effective strategy for improving the accuracy of material parameter 

identification for plastic materials. However, the validations were only done 

for the ideal case generated by the FE simulations (for the testing of virtual 

fields).  

However, unavoidable and unexpected flaws were contained in the 

experimental full-field data. The defects of the full-field data originated from 

the noise of non-contact measurements and experimental imperfections such 

as non-ideal grip conditions, small out-of-plane motions of the specimen, and 

imperfect alignment of the specimen. Fig. 4-4 shows an example of the effect 

of these flaws at an early stage of the test. The major strain distributions in 

Fig. 4-4(a) show a highly concentrated compressive strain at the top-left side 

of the specimen, which might have been caused by the experimental flaws. In 

Fig. 4-4(b), the IVW density distribution calculated using the PDF in Eq. (4.6) 

also shows an area of higher intensity at the same location. Such an effect is 

also found in the IVW curve in Fig. 4-4(c). In the figure, highly oscillating 

sharp peaks (red marks in Fig. 4-4(c)) are shown. This is caused by the PDF 

because the defects in the full-field data are amplified together with a true test 

signal. Note that the effect of these experimental defects appeared in the early 

elastic deformation stage and gradually disappeared with an increment in the 

true signal accompanied by an increment in strain magnitude.  
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                   (a)                                                          (b)  

 
(c) 

Fig. 4-4. Effect of experimental artifacts contained in the full-field 

measurement. (a) Major strain distribution (E22), (b) IVW density 

distribution calculated with PDF in Eq. (4.4), and (c) IVW and EVW curves 

calculated with the PDF  
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To overcome the effect of the experimental defects at an early stage of 

testing, additional modifications of the newly proposed virtual fields were 

made. In Eq. (4.9), a linear combination of the new PDF and polynomial 

virtual fields is used to take advantage of both types. 

        i i i i i iδx δu X ra u r a x X1                            (4.9) 

where r   is a linear combination ratio between 0 and 1, a   is an amplifying 

factor, ix  represents the user-defined polynomial virtual fields, iX  represents 

the undeformed coordinates, and iu   represents the PDF proposed in this 

study. The PDF iu  is defined as follows:  

   



ˆ

ˆ ˆmax min
i

i in n
i i

L
u u

u u
                                      (4.10) 

where ˆiu  denotes the interpolated fields from ˆniu , and L1 and L2 are the width 

and height of the AOI, respectively. Note that the PDF in Eq. (4.10) are 

normalized and amplified with geometrical units (the same as in Eq. (4.5)).  

The linear combination ratio r  is defined as an Avrami-type function as 

follows. 

  
        

exp

avn

p av

τ
r

τ c
1                                      (4.11) 

where τ  is a time step number, pτ  is the time step number at which plastic 
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deformation is initiated, and avc and 
avn  are function constants. Then, Eq. (58) 

shows that r  is initially 0, which exponentially increases to 1 as the time step 

increases. In the function, the values of p avτ c   and 
avn   determine the 

position and slope of the transition, respectively. Then, the new virtual fields 

in Eq. (4.9) gradually change from the polynomial virtual fields to the PDF, 

which gives a better result as plastic deformation proceeds. In this study, the 

real undeformed position is directly used as a polynomial virtual field. 

i ix X  .                                                    (4.12) 

The parameters avc   and 
avn   are optimized along with other material 

parameters in the following sections, 4.3 and 4.4. The amplifying factor a  

was set to 10 in this study. Additionally, the EVW is calculated using Eq. (4.13) 

using a constant magnitude of the virtual field δx1  at the boundaries.  

 s
ext i is

δW f δx ds a L F


     21                                 (4.13) 

 

4.3. Experiment and FE-VFM conditions 

In this section, the FE-VFM is validated with real experimental data. In the 

tests, 1470 MPa grade press-hardened steel (PHS) sheets were used. The 

thickness of the sheets was 1.25 mm. Owing to the low strain before the onset 

of diffuse necking (or before ultimate tensile strength (UTS)) in PHS steel, 
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the common method for obtaining true stress–strain data based on the 

extrapolation of flow stress often leads to less accuracy at large strains. The 

VFM has the potential to overcome this limitation because it can obtain 

reliable flow stress even after localization (or beyond uniform elongation).  

In this study, an Instron 8801™ servo-hydraulic machine was used for the 

experiments. For comparison with the VFM, conventional tensile tests were 

conducted with standard ASTM E8 specimens under quasi-static conditions 

(strain rate of 0.001/s). Tensile tests were performed in the rolling direction 

(RD) of the sheets. For simplicity, isotropic linear elasticity and plasticity 

were assumed, and Young’s modulus and Poisson's ratio were 200 GPa and 

0.3, respectively. 

The flow stress curves were described using the combined Swift–Voce (S–

V) hardening law shown in Eq. (4.14). 

    0 0 1 exp     
n

K e R b                               (4.14) 

where K, e0, n, σ0, R, and b are material constants. Note that the S–V 

hardening model was introduced to fit the stress–strain data more accurately 

than the classical Swift or Voce hardening laws. 

Notch tensile tests were also adopted in applying the FE-VFM, and the 

dimensions of the specimen are illustrated in Fig. 4-5(a). The test speed was 

1 mm/min. For the full-field measurement, the commercial stereo DIC 
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package VIC-3D was used. In the test, the frame rate was 6.67 fps, the total 

number of time steps was 408, and two different subset sizes of 31 and 63 

pixels were used in post-processing.  

In the post-processing for DIC, the optimal subset size varies with the 

quality of the test conditions. Usually, as the quality of the speckle pattern 

increases, the required subset size decreases. Additionally, the increased 

subset size reduces noise and spatial resolution [28]. Moreover, the portion of 

the non-measurable region at the edge of the AOI increases as the subset size 

increases. In Fig. 4-5(c), the areas measured by DIC are compared for two 

different subset sizes. In this study, DIC analyses with the two subset sizes 

were conducted to investigate the capability of the proposed FE-VFM with 

relatively low-quality full-field measurements. The detailed conditions of the 

DIC analysis are listed in Table 4-2.  
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                                 (a)                                                     (b) 

 

 
(c) 

Fig. 4-5. Notch tensile test conditions for applying the FE-VFM. (a) 

Specimen geometry, (b) FE meshes for reconstructing displacement fields, 

and (c) DIC measurement areas with two different subset sizes.  
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Table 4-2. Conditions of DIC analysis 

Software VIC-3D 7 

Resolution of CCD camera (pixels) 2448 x 2048 

Frame rate (fps) 6.67 

AOI area (pixels) 2192 x 914 

AOI area (mm x mm) 46x20 

Average speckle size (pixels) 6 

Interpolation Optimized 8-tap 

Criterion Normalized square difference 

Subset size 1 (pixels) 31 

Subset size 2 (pixels) 63 

Step size (pixels) 3 

 

The U-notch tensile test shown in Fig. 4-6 was also conducted for the 

validation of the measured flow stress curves. The test speed was 1 mm/min, 

and displacement was measured with a gauge length of 12.5 mm using the 

DIC. The experimental load–displacement curve of the U-notch test was 

compared with the FE simulation results predicted with the measured plastic 

hardening parameters. 

In the FE-VFM, the cubic quadrilateral FE (Q12) meshes illustrated in Fig. 

4-5(b) were used for the reconstruction of the displacement fields. The 

measurement of the DIC in the blue region in Fig. 4-5(a) was reconstructed. 

Additionally, a seventh-order integration was used in the Gauss quadrature. 

For the non-linear optimization of the cost function, the MATLAB® built-in 
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non-linear least-squares optimization function lsqnonlin was used. A linear 

combination of PDF and polynomial virtual fields in Eq. (4.9) was used due 

to the unexpected experimental flaws, as discussed in Section 4.2.3. 

 
 

Fig. 4-6. U-notched specimen for validation of obtained material properties 
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4.4. Results and validations 

In Fig. 4-7 and 4-8, the displacement fields measured by the DIC and their 

reconstructed fields on the FE mesh are presented at a time step of 300. Figs. 

4-7(a) and (b) correspond to a subset size of 31 pixels, and Figs 4-8(a) and (b) 

correspond to a size of 63 pixels. The figures confirm that the proposed FE-

based full-field reconstruction was performed well for the real experimental 

data. In particular, the wide edge regions with missing measurements in the 

AOI in Fig. 4-8(b) were successfully reconstructed with higher order FE 

meshes. The reconstructed displacement fields were consistent for the two 

different subset sizes.  

Using the reconstructed displacement fields, the FE-VFM was performed 

by applying the new PDF-based virtual fields in Eqs. (4.9)–(4.13). Fig. 4-9 

shows that the IVW and EVW are virtually identical, which proves that the 

non-linear cost function was well-optimized. Fig. 4-10(a) presents the strains 

in the loading direction(E22), and Fig. 4-10(b) shows the densities of the IVW 

at two different time steps. The figures clearly show that the change in the 

IVW density during deformation is comparable to that of the strain. This 

indicates that the PDF effectively amplifies the effect of plastic deformation 

in the localized area.  
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(a) 

(b) 

Fig. 4-7. Comparison of displacement fields. (a) DIC measurements with 

subset size 31 pixels, and (b) FE mesh-based reconstructed displacement 

fields.  
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(a) 

 
(b) 

Fig. 4-8. Comparison of displacement fields. (a) DIC measurements with 

subset size 63 pixels, and (b) FE mesh-based reconstructed displacement 

fields.  
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Fig. 4-9. IVW and EVW curves. The results are calculated from FE-based 

VFM with modified PDF virtual fields in Eq. (4.9). 
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(b) 

 
(c) 

 

Fig. 4-10. (a) Strains in loading direction (E22) and (b) distributions of IVW 

density at two different time steps τ=300 and 400. The results are calculated 

from FE-based VFM with modified PDF virtual fields in Eq. (4.9).  
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In Fig. 4-11(a), the equivalent stress–strain curves identified with the FE-

VFM and standard tensile test are presented. It can be noted that the flow 

stress curves identified by the FE-VFM match very well with those obtained 

from the standard tensile test after moderate strain. However, the two curves 

show a significant difference in the yield stresses and a slight difference in 

the hardening slope after the point of UTS. Fig. 4-11(b) compares the load–

displacement curves in the U-notch tests for the validation of the FE-VFM. 

For this, FE simulations were conducted with hardening parameters both for 

the S-V model parameters from the FE-VFM and for fitting to the standard 

tension. The detailed hardening parameters are listed in Table 4-3. The figure 

shows that the predicted load–displacement curve using FE-VFM results in 

is a better agreement with the experimental values than that of the standard 

tension results. In particular, the load–displacement curve predicted by the 

FE-VFM improved the accuracy for the early plastic region and the region 

after the maximum load. 
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(a) 

 
(b) 

Fig. 4-11. (a) Flow stress curves identified by simple tension and FE-VFM. 

(b) Load-displacement curves of the U-notch tension test predicted by finite 

element simulations with hardening identified from either standard tension 

or FE-VFM.  
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Table 4-3. Plastic strain-hardening law parameters of combined S-V law 

and modified PDF parameters 

 

Combined Swift-Voce law parameters 

K 

(MPa) 
e0 n 

σ0 

(MPa) 

R 

(MPa) 
b 

Standard 

tension 
1161 0.000473 0.1141 615.4 216.4 174.8 

FE-VFM 
(subset31) 

781.7 0.000214 0.1615 406.4 752.3 447.4 

FE-VFM 
(subset63) 

785.2 0.000204 0.1628 397.0 755.9 452.4 

 

Virtual fields parameters 

τp Cav nav 

FE-VFM 
(subset31) 

60 -20 6 

FE-VFM 
(subset63) 

60 -20 6 

 

The lower accuracy in the predicted load–displacement curve of the U-

notch test with the standard tension was mainly due to the commonly 

recommended 0.2% offset method for determining yield stress. The 

engineering stress–strain curve of the investigated steel sheet in Fig. 4-12 

exhibits a smooth and continuous transition from elastic to plastic. Thus, the 

0.2% offset method may overestimate the yield stress by ignoring the non-

linear transition near the yield point. On the contrary, the VFM approach 

inversely identifies the yield stress based on the optimization of IVW, and 

thus the yield point corresponds to the elastic limit.  
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Fig. 4-12. Engineering stress-strain curve of 1470 MPa grade press-

hardened steel. 

Another advantage of the VFM approach is that it utilizes deformation 

beyond the uniform elongation (or post-UTS). Moreover, the FE-VFM with 

PDF enabled the amplification of information in the localized region. 

Therefore, the enhanced capability for acquiring large deformation data 

during the optimization process improves the identification quality of stress-

strain behavior for high strength steel. 

Fig. 4-11(a) shows that the flow stress curves identified using the FE-VFM 

are almost identical for the two different subset size conditions. A large subset 

size is beneficial in terms of the quality of DIC because it provides better 

correlation even with lower quality speckle patterns. Additionally, it reduces 

noise in the data. However, a large subset size yields lower spatial resolution 



93 

and increases the area of the edge region where the full-field data are not 

available. The results clarify that the proposed FE-VFM utilizes DIC data 

analyzed with large subsets by successfully reconstructing displacements at 

the edge of the AOI.  

 

4.5. Summary 

New virtual fields based on real nodal displacements were proposed to 

improve the accuracy of VFM at large plastic deformation, and FE-VFM was 

applied for the identification of the strain hardening law of the advanced high 

strength steels. The new type of virtual field was named pseudo-real 

deformation fields in this study to highlight the use of varying real 

deformation fields. The PDF proposed in this study efficiently amplified the 

deformation fields at a highly localized region, which significantly improved 

the accuracy of the identified plastic hardening parameters in comparison 

with the conventional (constant) polynomial-based virtual fields. 

Also, FE-VFM proposed in Chapter 2 with the PDF is applied for the 

identification of plastic hardening in 1470 MPa PHS sheets. In the FE-VFM, 

notched tensile test data was used, and obtained strain hardening is validated 

using U-notch tensile tests. The U-notch tension load–displacement curve 

predicted using the FE-VFM hardening parameters showed better agreement 

with the experimental results than did the conventional fitting-based 
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hardening parameters. The improved accuracy relative to the conventional 

method is explained as follows. First, the commonly adopted 0.2% offset 

method for determining yield stress ignores the transition from elastic to 

plastic yielding. In this case, the conventionally determined yield stress may 

be overestimated, while the FE-VFM reflects the transition behavior near the 

yield. Second, the simple tension-based fitting to a prescribed hardening law 

is only valid before uniform elongation because the deformation becomes 

non-uniform beyond this point. The investigated PHS had a low uniform 

elongation (only 5%), which led to a discrepancy in the predicted deformation 

at large strain for the U-notched tension. However, in the case of the FE-VFM, 

the deformation fields in the large, localized deformation range could be 

utilized for identification, which resulted in better identification accuracy for 

plastic hardening. Note that the proposed pseudo-real deformation fields 

improved the quality of the VFM by capturing stress-strain data in a large 

deformation range. 
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5. Application II:non-homogeneous strain hardening 

of friction stir welded aluminum alloy sheets 

5.1. Introduction 

It is theoretically and experimentally validated that the FE-VFM can be 

effective and accurate for identifying homogeneous plastic strain hardening 

of the metal sheets in Chapters 3 and 4. In this chapter, Identification of the 

non-homogeneous strain hardening (or local flow stresses) of the friction stir 

welded aluminum alloy sheets is presented as an advanced application of the 

FE-VFM. 

Friction stir welding is a solid-state welding process invented by The 

Welding Institute (TWI) in the early ’90s [107,108]. The FSW can be used 

for joining materials that are hard to weld with a conventional welding 

technique such as similar and dissimilar aluminum alloys [109–111], 

magnesium alloys [112–114], and titanium alloys [115,116]. Fig. 5-1 

illustrates the schematics of the friction stir welding (FSW) process. FSW tool 

is composed of pin and shoulder, and it rotates at high speed between two 

workpieces. The pin of the FSW tool is penetrated through depth in between 

of workpieces, and the shoulder only contacted at the top surface of the 

workpieces. Due to the rotation of the FSW tool, frictional heat is generated, 

and metal workpieces are softened due to the heat. Also, softened materials 

are mechanically stirred, and workpieces are joined in solid-state thermo-
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mechanically. As the tool moves with a rotation in a welding direction, solid-

state joining progress.  

 

 

Fig. 5-1. Schematics of friction stir welding process 

 

As with all the other welding processes, the microstructure of the 

workpiece changes from an as-received state due to the thermo-mechanical 

histories during the FSW [108,116–119]. In the friction stir welded (FSWed) 

materials, the weld affected zone (WAZ) can be divided into three distinctive 

zones. [118,120] Mechanically stirred area near the weld line is called the stir 

zone (SZ). The region near the tool is only affected by the frictional heat, 

hence it is called the heat-affected zone (HAZ). A transient region between 

SZ and HAZ is called the thermo-mechanically affected zone (TMAZ). The 

materials far enough away from the weld center remain as base materials, and 

it is called the base zone (BZ).  
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Meanwhile, a side that welding direction is the same as the tool’s rotating 

direction is called the advancing side (AS), and a side that the two directions 

are opposite is called the retreating side (RS). Usually, the temperature in the 

AS is a little higher than the RS since more frictional heat is generated due to 

the higher relative speed compared to the RS, and HAZ in the AS can be larger 

than the RS [117,118]. For aluminum alloys, strength in the WAZ can be 

decreased compared to base materials strength, since it is away from the 

original optimum precipitation hardening conditions [108,117,118].  

Accurate evaluation of such a change in mechanical properties of the weld 

affected zone is important for accurately predicting the post-FSW forming in 

the simulation. Measuring the distribution of local (micro) hardness is the 

most widely used technique to assess the influence of the FSW [121–123]. 

However, it only gives information of the relative changes of the strength 

compared to the base materials, since it is not material property in the strict 

sense. The most direct and reliable method to measure the local distribution 

of the “full stress-strain behavior” in WAZ is performing multiple micro or 

mesoscale tensile tests, with specimens fabricated in different locations in 

WAZ [124]. However, it requires a specially designed miniature tensile test 

machine, and fabrication of the small-scale specimen is also difficult.  

Aside from the direct tensile tests, several inverse methods have been used 

to evaluate non-homogeneous mechanical properties in the WAZ in the 

literature. Instrumented indentation technique (IIT) is a method that retrieves 
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the information of the mechanical behavior inversely in the cyclic indentation 

test. Rao et al. used ITT for the characterization of the local stress-strain 

properties of the AA5083 sheets [124]. Cho et al. investigate the effect of the 

FSW on the ballistic limit velocity using ITT for 7xxx aluminum alloys [125]. 

The main weakness of the IIT is that it is an empirical approach that requires 

a priori knowledge about the relation between measured indentation force-

depth curves and material properties, and thus the accuracy may vary from 

material to material. Though it can measure the local flow stresses of the 

friction stir welded (FSWed) materials,  

The uniform stress method (USM) was also frequently used in the literature 

[126,127]. In the USM, stresses at every section perpendicular to the applied 

load are assumed as constant, and the local strains are measured by DIC in 

the uniaxial tensile tests. With iso-stress assumption and DIC measurements, 

local stress-strain curves can be constructed. The non-uniform stress method 

(nUSM) was also suggested as an advancement of the USM [128,129]. In 

nUSM, local cross-sectional areas are calculated using DIC measurement, the 

magnitude of the local stresses in loading direction is calibrated based on 

these areas. The USM and nUSM are relatively easy compared to the other 

complex inverse methods, however, it neglects the heterogeneous distribution 

of the stresses and/or complex stress components other than loading direction. 

The VFM is also applied to measure the local flow stresses of the FSWed 

metals [130–132]. Louëdec et al. identified local static/dynamic mechanical 
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behavior of the FSWed AA5456 [131,132]. Shahmirzaloo et al. applied VFM 

for FSWed Al2024 [133]. Sutton et al. compare identification results of VFM 

and USM [127]. In these previous studies, AOI is divided into local 

subdomains, and VFM is applied independently by applying virtual fields that 

have non-zero values only in each subdomain, and constitutive parameters 

are assumed as constant in each subdomain. With this subdomain approach, 

local material properties can be obtained without uniqueness issues that can 

arise due to a large number of constitutive parameters in the global domain. 

In this study, FE-VFM is applied with a subdomain approach for 

identifying nonhomogenous strain hardening of FSWed AA6061-T6 sheets. 

In addition, quadratic interpolation was used within each subdomain, so the 

piecewise continuous distribution of the constitutive parameters was obtained 

within the WAZ. Detailed information on the numerical methodology in FE-

VFM is presented in Section 5.2. Before applying FE-VFM experimentally, 

feasibility tests were performed with finite element simulation data. As an 

input of the simulation, virtual nonhomogeneous strain hardening is generated 

using hardness distributions of the FSWed aluminum alloys in the reference. 

Then, a numerical sensitivity study was conducted regards the effect of the 

types of the virtual fields and Gauss quadrature order in the feasibility tests. 

Details of the feasibility tests are shown in Section 5.3. Finally, the method 

that was validated through feasibility tests was applied to real experiments. 

Information of the materials and experiments are given in Section 5.4, and the 



100 

results of the FE-VFM are shown in Section 5.5. 

 

5.2. Methodology 

In this section, it is introduced that how the nonhomogeneous strain hardening 

of the FSWed sheets can be extracted using FE-VFM. As discussed in the 

introduction, FE-VFM is applied independently to the individual subdomains 

to uniquely determine the local constitutive parameters. In addition, 

constitutive parameters are interpolated with a quadratic shape function 

within each subdomain, as a result, the distribution of the constitutive 

parameters is obtained as piecewise polynomials in the WAZ.  

It should be pointed out that the majority of the workpiece has remained as 

as-received base materials, only the materials in the limited range vary from 

the original material properties affected by the welding. Also, base material 

properties can be easily measured using conventional tensile tests. 

Considering the above, it is numerically inefficient and may be inaccurate to 

identify all the local constitutive parameters in the entire AOI. Rather than 

that, it is more efficient to find the boundaries of the WAZ and obtain the local 

parameters only in the WAZ.  

With this idea, a two-step identification procedure is used in this study. Fig. 

5-2 shows the identification procedure. As a first step, WAZ boundaries are 

identified based on internal-external virtual work (VW) residuals calculated 
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with priorly known base material constants. Base material constants are 

measured by standard tensile tests before applying FE-VFM. The average 

VW residual in Eq. (5.1.) is calculated for each subdomain. 

 
 int base ext

step ext at τ

%
stepn

δW
τ

δW k δW
R

n δW


 

1

1
100                             (5.1) 

where  int baseδW k   is internal virtual work calculated with base material 

parameters basek , extδW  is external virtual work, and stepn  is a total number of 

the time step. In theory, VW residual should be zero if the materials in the 

subdomain are unaffected by the welding. In other words, subdomains that 

present high VW residuals are affected by the welding, hence boundaries of 

the WAZ can be easily obtained. After the first step, constitutive parameters 

are obtained in the identified WAZ. In this step, FE-VFM is applied for each 

subdomain separately.  

For applying FE-VFM, a tensile specimen illustrated in Fig. 5-3(a) was 

used. The weld line is located at the center of the specimen, and the loading 

direction was perpendicular to the weld line. The origin of the global 

coordinates used in the FE-VFM is located at the center of the specimen. 

Within 70 mm length uniform region of the tensile specimen, 60 mm length 

area (marked with blue color in Fig. 5-3(a)) are used in the FE-VFM. The FE 

meshes for the reconstruction of the displacements are shown in Fig 5-3(b). 

The element size was 5 mm and 3 mm in width and height, respectively, and 
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cubic quadrilateral elements (Q12) were used. Each row of elements is treated 

as a subdomain, as marked with blue color in Fig 5-3(b). 

 

 

Fig. 5-2. Flow chart of two-step identification approach.   
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         (a)                                                 (b) 

Fig. 5-3. (a) Tensile test specimen for applying FE-VFM, and (b) FE meshes 

for FE-VFM  
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Fig. 5-4 shows quadratic interpolation of the constitutive parameters in 

each subdomain. Constitutive parameters normalized (hereafter, normalized 

parameters) with known base material parameters are interpolated. The 

normalized parameter is 

base

k
k

k
                   (5.2) 

where k denotes constitutive parameters in the subdomain, and kbase is base 

material parameters. Then, normalized parameters are interpolated with 

nodal normalized parameters Ik  as follows: 

  IIk M Y k  .                                                       (5.3) 

Interpolation functions  IM Y  are given as  
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                             (5.4) 

where the Y is coordinate in the specimen height direction, and the origin of 

it is located at the center of the subdomain, as illustrated in Fig. 5-4. Note that 

though MI(Y) is dependent on the global coordinate, the same interpolation 

functions in Eq. (5.4) are valid for all subdomains since the height of each 

subdomain is the same value, 3 mm. Virtual fields are also defined with 

subdomain local coordinates (X1, Y) to assign that as non-zero values inside 

of the subdomain, whereas it is defined as zero at the outside of the target 
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subdomain. 

 

Fig. 5-4. Quadratic interpolation of the normalized constitutive parameters 

within a subdomain 

In the WAZ parameters optimization step, nodal normalized parameters 

(hereafter, the nodal parameters) are obtained in each subdomain. The 

optimization starts from the highest subdomain in the WAZ, and one is used 

as an initial guess of the normalized parameters. (Which means that base 

material properties are used as an initial guess in the first subdomain 

optimization) Then, optimization proceeds for lower subdomains, and the 

lowest nodal parameters of the previously optimized subdomain are used as 

initial guesses. Average values are treated as a final FE-VFM result for the 

overlapped nodes between two elements  

In this study, isotropic elastic-plastic constitutive laws, including isotropic 

linear elastic model, von Mises yield function, and isotropic hardening, are 

used. Usually, elastic constants are not much varied depends on the 

microstructure of the metals. However, plastic strain hardening or the local 

flow stresses can show large differences depends on the microstructure. 
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Considering these facts and for simplicity, elastic constants in the WAZ are 

assumed as the same as the base materials. And, only parameters of the strain 

hardening law are optimized in the WAZ, thus it was assumed as a known 

value. In this study, Voce and Swift hardening laws are used in the feasibility 

tests and experiments, respectively.  

In the WAZ boundaries identification, virtual fields in Eq. (5.5) are used. 

.
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It is simple to implement, however, it can cause the uniqueness problem in 

parameters optimization. Note that each subdomain has nine independent 

nodal parameters since Voce and Siwft law has three constants, and there are 

three material interpolation nodes in each subdomain. To avoid such a 

problem in the optimization step, normal distribution function and cumulative 

distribution function are used as virtual fields, as illustrated in Fig. 5-5. The 

virtual position vectors are defined as cumulative distribution function φ , as 

follows: 
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where Nσ  is standard deviation, and iμ  is average in original statistical use. 

Then, the virtual deformation gradient is given as follows: 

 , ,Φ exp i
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where Φ   is (statistical) normal distribution function. Three independent 

virtual fields are defined with three , ,iμ 1 0 1 . Each virtual field amplified 

the data in a different range in the subdomain. With this approach, nine nodal 

parameters can be uniquely identified simultaneously. Detailed results and 

discussions about the effect of the virtual fields are shown in the feasibility 

tests, Section 5.3.4. 

Meanwhile, sufficient order of Gauss quadrature is required for the 

accurate integration of the IVW. In particular, cubic elements combined with 

the use of the normal distribution type virtual fields may require even higher 

order integration, due to the significant non-linearity of the given problem. 

For this reason, sensitivity tests were performed in the feasibility tests, and 

integration order 11 was used as an optimum order. Detailed results about the 

integration order sensitivity are shown in Section 5.3.4.  
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Fig. 5-5. Three independent normal distribution type virtual fields that 

amplifying deformation data in a different zone in each subdomain  
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5.3. Feasibility tests with simulation data 

5.3.1. Finite element simulation conditions 

Methods explained in Section 5.2 are validated using finite element 

simulation data. Virtual welded material properties were generated. Base 

material properties of the AA6111-T4 aluminum sheets and hardness 

distribution normalized with base material hardness were taken from the 

reference [123]. In the reference, Voce hardening law in Eq. (5.8) was used. 

  expσ σ R bε   0 1           (5.8) 

where σ0 , R, and b are constitutive paramters. Values of Voce law parameters 

and elastic constants from the reference are listed in Table 5-1. Also, 

normalized hardness distribution in the WAZ in Fig. 5-6(a)  was taken from 

the same reference. Base material hardness in the reference is 85 HV. Using 

hardness distribution, nonhomogeneous normalized constitutive parameters 

are generated with Fourier series functions in Eq. (5.9). 

     sin cosi i
i

k Y a a iwY b iwY

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8

0
1

  (5.9) 

In other words, each normalized parameter in Voce law is described with the 

Fourier series in the WAZ. Virtual constitutive parameter distributions are 

presented in Fig. 5-6(b), and detailed values of the Fourier series constants 

are listed in Table 5-2.  
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Table 5-1. Material parameters of AA6111-T4 sheets [123] 

Elastic constants Voce law parameters 

E(GPa) ν σ0  (MPa) R (MPa) b 

70 0.33 170 210 9.0 

 

Table 5-2. Constants of the Fourier series that describe the virtual 

nonhomogeneous constitutive parameters 

 Voce normalized parameters 

 σ0  R  b  

w  0.2105  0.2138  0.2067 

a0  0.876  1.051  0.9073 

a1 -0.1315  0.05347 -0.1005 

a2  0.02718 -0.0125  0.01605 

a3 -0.006453  0.004532 -0.001319 

a5  0.00611 -0.003496  0.001968 

a6  0.01862 -0.0007257  0.01487 

a7  0.005252 -0.001549  0.006469 

a8 -0.001504  0.006905 -0.01095 

b1  0.0129 -0.005316  0.01006 

b2  0.01346 -0.005556  0.01095 

b3  0.01377 -0.005644  0.01097 

b4  0.01467 -0.006008  0.0119 

b5  0.004259 -0.001181  0.0045 

b6 -0.006093  0.002466 -0.004153 

b7 -0.003746  0.001542 -0.003593 

b8 -0.003403  0.001243 -0.002551 
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(a) 

 

 
(b) 

Fig. 5-6. (a) normalized hardness distribution from reference [123], and (b) 

Fourier series distributions of the normalized constitutive parameters 

generated based on reference hardness distribution  
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In the feasibility tests, the same specimen geometry illustrated in Fig. 5-

3(a) was used. FE simulation was performed with Abaqus/standard, and 

subroutine UHARD and USDFLD were used to implement the 

nonhomogeneous material properties in Fig. 5-6. <FE model 정보 추가할 

것> FE mesh in Fig 5-3(b) was used for FE-VFM. Results of simulation and 

reconstructed deformation fields with FE-VFM algorithm are compared in 

Fig. 5-7. It shows that the heterogeneous displacement and strain fields are 

well-reconstructed owing to the higher-order cubic elements. 

In the following sections, results of the feasibility tests are presented 

including the WAZ boundary identification, the effect of virtual fields, and 

the effect of the Gauss quadrature order. 
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(b) 

 
(a) 

Fig. 5-7. Comparison of displacement and strain fields for the linear elastic 

material. (a) FE simulated deformation fields before mapping and (b) 

Reconstructed fields using FE-VFM  
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5.3.2. Identification of the WAZ boundaries 

Fig. 5-8 presents VW residuals for each subdomain. VW residuals in Fig. 

5-8 are calculated using base material properties of the feasibility tests, which 

are listed in Table 5-1. In the VW calculation, polynomial virtual fields in Eq. 

(5.5) were used. The integration order of the Gauss quadrature was 11. The 

results show that large VW residuals were calculated in the WAZ (-15 to 15 

mm range), and VW residuals showed almost zero outside of the WAZ. These 

results validate that it is effective to find the boundary of the WAZ based on 

the VW residuals calculated with base material properties. The same approach 

is also used in the experimental case in Section 5.5. 

 

Fig. 5-8. VW residuals for each subdomain  
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5.3.3. Effect of the virtual fields 

Followed by the WAZ boundary identification, optimization of the local flow 

stresses was conducted using the same polynomial virtual fields (in Eq. (5.5)) 

used in STEP1. However, the constitutive parameters were badly identified 

as shown in Fig. 5-9(a). In the 5-9(a) the solid lines are target parameter 

distributions explained in 5.3.1, and square dots are representing quadratic 

interpolation nodal values. Also, doted lines represent interpolated 

normalized parameters. Though the identification results are generally 

located close to the target lines, however, individual values are not matched 

with target values.  

Despite the bad identification results, VW residuals after the STEP2 

procedure showed less than 0.4%, as shown in Fig. 5-9(b). Small VW 

residuals indicate that the non-linear optimization itself was well-conducted 

without particular problems. Rather than incomplete non-linear optimization, 

the problem was made due to the parameter interpolation approach in 

conjunction with polynomial virtual fields. In the nonlinear VFM, The 

minimization is performed with the cost function of the virtual works as a 

scalar quantity. In that process, non-linear parameters distributions within a 

subdomain cannot be well-described with a single set of polynomial virtual 

fields, and improper zero-mode of virtual works can be made with faulted 

combinations of nodal parameters. This uniqueness problem can be avoided 

by using three independent virtual fields defined with cumulative distribution 
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and normal distribution functions (Eqs. (5.6) and (5.7)) in STEP2. 

 
(a) 

 
(b) 

Fig. 5-9. FE-VFM results with polynomial virtual fields. (a) Badly 

identified constitutive parameters, and (b) small VW residuals after the 

parameter optimization  

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

M
ea

n
 r

es
id

u
al

 (
R

δ
W

, %
) 

Position from weld line, X2 (mm)

-15 -12 -9 -6 -3 0 3 6 9 12 15



117 

5.3.4. Effect of the Gauss quadrature order 

As discussed in Chapter 3, the results of the FE-VFM depend on the 

integration order (IO) of the Gauss quadrature. In particular, the target 

problem defined in the methodology (section 5.2.) is highly non-linear in 

three aspects. First, displacements and subsequent strains are modeled with 

cubic quadrilateral elements (Fig. 5-3(b)). Second, quadratic interpolation 

was used to describe the continuous distribution in the subdomain. Third, the 

virtual fields are defined with highly non-linear normal distribution functions. 

All these factors make the problem highly non-linear, so it is necessary to use 

the sufficient IO of Gauss quadrature. Therefore, sensitivity tests were 

performed regards the IO 

Fig. 5-10(a) to (c) shows the FE-VFM results with integration orders 5, 7, 

and 9, respectively. In Fig. 5-10(a), the results with IO 5 are near the target 

values, but highly oscillating. As IO increased, the oscillation of the results 

decreased, and it was rarely observable in Fig. 5-10(c). This is because the 

spurious zero-mode was calculated with the insufficient IO, similar to the 

hourglass modes in FEM when reduced integration is used.  
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(a) 

 
(b) 

 
(c) 

Fig. 5-10. Oscillating FE-VFM results due to the integration order. (a), (b) 

and (c) correspond to results of integration order 5, 7, and 9, respectively  
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Fig. 5-11 shows the mean errors of parameters and flow stress depends on 

the IO. Mean errors of the parameters in the WAZ are calculated as Eq. (5.10). 
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where argt etk  denotes input Fourier series distributions of each Voce law 

parameter, and VFMk  denotes results of the FE-VFM. Also, the mean error of 

the flow stresses is calculated as 
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where argt etσ  is input flow stress, and VFMσ is flow stress calculated with FE-

VFM results, and cε  is strain limit for the calculation of the flow stress error. 

Here, the limit strain cε  was 0.3. 

The figure shows that all the errors are decreased when the IO increased. 

In particular, it is shown that 11 is the optimum IO, hence that value is used 

in the experimental study in Section 5.5. 
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Fig. 5-11. Errors of the constitutive parameters and mean flow stresses 

errors depends on integration order 

5.4. Materials and experiments 

In the experimental study, the target material was AA6061-T6 sheets. The 

thickness of the sheets was 3.0 mm. Before applying FE-VFM to the friction 

stir welded (FSWed) materials, base material properties are measured using 

the tensile tests. Fig. 5-12(a) shows the engineering stress-strain curve of the 

target base materials. ASTM E8 standard specimen was used in the tensile 

tests, and the tests were performed in quasi-static condition, strain rate of 

0.001/s. Strain hardening was described with Swift law in Eq. (5.12).  

 
n

σ K ε e  0           (5.8) 
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where K, e0, and n are material parameters. Fig. 5-12(b) shows the fitted strain 

hardening curves using tensile tests data. Values of the material parameters 

are listed in Table 5-3. 

 
(a) 

 
(b) 

Fig. 5-12. Material properties of AA6061-T6 base material sheets. (a) 

Engineering stress-strain curve, and (b) flow stresses curves fitted with 

Swift hardening law  
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Table 5-3. Material parameters of AA6061-T6 sheets 

Elastic constants Swift law parameters 

E (GPa) ν K (MPa) e0 (MPa) n 

70 0.33 508.1 0.03602 0.1577 

 

In the friction stir welding, two rectangular workpieces with the 

dimensions of 150 x 300 mm were welded, and 300 x 300 mm welded flat 

sheets were made. FSW tool geometry is schematically shown in Fig. 5-13. 

FSW conditions were as follows. Welding speed was 500 mm/min, and the 

FSW tool was tilted towards the welding direction with an angle of 3˚. For 

comparative study, two tool rotating speeds of 1200 and 1600 RPM were used.  

                 

Fig. 5-13. FSW tool geometry 

For applying FE-VFM, the specimen in Fig. 5-3(a) was used as the same 

as the feasibility tests. Meanwhile, a furrow was made in the center of the 

welded workpiece due to mechanical deformation during the FSW. To remove 
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this furrow, the top surface of the FSWed specimen is trimmed to a smooth 

and flat surface as shown in Fig.5-14. The total number of time steps for 1200 

RPM and 1600 RPM cases were 258 and 230, respectively. The thickness was 

reduced owing to the trimming, from the thickness of the original sheet of 3 

mm to 2.4 mm. This trimming was done via W-EDM.  

An experimental study was conducted with the validated FE-VFM 

approaches through the feasibility in Section 5.3. Details of the FE-VFM 

approach for identifying nonhomogeneous strain hardening are explained in 

Section 5.2. 

  

(a) (b) 

Fig. 5-14. Trimming of the surface for the friction stir welded sheets in the 

specimen preparation. (a) Furrow at the center of the welded materials and 

(b) surface trimmed tensile specimen for FE-VFM  
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5.5. Results and validations 

Figs. 5-15 and 5-16 show the strains and displacements field for the 1200 

RPM and 1600 RMP cases, respectively. Both figures were illustrated at the 

time step of 200. Also, both figures show similar displacements and strains 

distributions. In particular, larger strains near the center of the specimen are 

shown in the figures, which are due to the materials softening during the 

welding.  

 

 

Fig. 5-15. Strains and displacements of the 1200 RPM case at time step 200. 

 

Fig. 5-16. Strains and displacements of the 1600 RPM case at time step 200.  
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Fig. 5-17 present the VW residuals calculated in STEP1. Fig 5-17(a) and 

(b) corresponds to the case of 1200 RPM and 1600 RPM, respectively. For 

1200 RPM, relatively large VW residuals were calculated from -12 to 9 mm, 

and that range was assumed as the WAZ. On the other hand, 1600 RPM 

showed larger WAZ compared to 1200 RPM, from -12 to 12 mm. These 

results can be explained as follows. Frictional heat generated during the FSW 

depends on the relative speed of the tool between workpieces. The lower 

rotation speed generates lower heat. In particular, heat generated in the RS is 

less than that of AS, since the direction of tool rotation is opposite to the 

welding direction. Two rotation speeds—1200 and 1600 RPM—were not a 

huge difference in terms of heat generation in the AS, and a similar area of 

the HAZ was made in the AS. However, the effect of rotation speed was much 

larger on the RS, due to the lower relative speed compared to the AS, and the 

HAZ in the RS was narrower in the 1200 RPM.  

Fig. 5-18 shows the normalized parameter distributions in the WAZ 

identified by FE-VFM, and Fig. 5-19 shows VW residuals after the 

parameters optimization. Detailed normalized parameters at the interpolation 

nodes are listed in Tables 5-4 and 5-5 for 1200 and 1600 RPM cases, 

respectively. Though the VW residuals were larger than that of feasibility tests, 

the figure indicates that non-linear optimization was well-performed. Similar 

to Fig. 5-17, Fig. 5-18(a) and (b) are 1200 and 1600 RPM cases, respectively. 

Both 1200 and 1600 RPM shows a similar pattern except for the width of the 



126 

WAZ on the RS. The values of the parameter K for the Swift law were close 

to 1, and it indicates that the values of the K were overall similar to that of 

base materials. (Since the values plotted in Fig. 5-18 are normalized 

parameters by the base material parameters) On the other hand, distributions 

of the parameter n vary much from the base materials. In the range of -6 to 6 

mm, values of n are twice the base materials, and it decreases when the 

materials are far from the weld line. Also, it is shown that the value of e0 is 

significantly smaller near the ±6 mm. 

The parameters of the Swift law have a physical meaning. The parameter 

K indicates the general strength of the materials. The parameter n is related to 

the uniform elongation (U-EL) in tensile tests. Lastly, the parameter e0 is 

related to the yield stress. Hence, the distributions of parameters are closely 

related to the change of the material properties due to the welding. Therefore, 

distributions of the Swift law parameters can provide information on the 

changes in the material properties, especially in terms of yield strength and 

ductility.  
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(a) 

 

 
(b) 

Fig. 5-17. VW residuals for each subdomain.  

(a) 1200 RPM, and (b) 1600RPM  
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(a) 

 
(b) 

Fig. 5-18. Normalized parameter distributions of Swift hardening law 

measured by FE-VFM. (a) 1200 RPM, and (b) 1600 RPM. 
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(a) 

 

 
(b) 

Fig. 5-19. VW residuals after constitutive parameter optimization. 

(a) 1200 RPM, and (b) 1600 RPM  
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Table 5-4. Identified nodal normalized parameters for 1200 RPM. 

Position (mm) 
Normalized parameters 

k e0 n 

-12.0 0.8383 0.7327 1.2800 

-10.5 0.8800 0.9687 1.3695 

-9.0 0.9197 0.9401 1.9733 

-7.5 0.8107 0.2248 1.5999 

-6.0 1.1038 0.7994 2.2117 

-4.5 1.1424 1.0868 2.2093 

-3.0 1.1187 0.8897 2.3176 

-1.5 1.0908 0.7854 2.4215 

0 1.0777 0.8902 2.3224 

1.5 1.0809 0.8946 2.2932 

3.0 1.0829 0.9702 2.2324 

4.5 1.0145 0.5340 2.0937 

6.0 0.8074 0.2541 1.4521 

7.5 0.9933 0.6342 1.6761 

9.0 0.7820 1.0451 1.0700 
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Table 5-5. Identified nodal normalized parameters for 1600 RPM. 

Position (mm) 
Normalized parameters 

k e0 n 

-12.0 1.0912 0.6617 1.2383 

-10.5 0.9334 0.7536 1.3290 

-9.0 0.8677 1.0592 1.5853 

-7.5 0.7690 0.1684 1.2695 

-6.0 0.9726 0.5284 1.7661 

-4.5 1.0136 0.6378 2.0444 

-3.0 1.1163 0.5168 1.9059 

-1.5 1.0883 0.4590 1.9536 

0 1.0364 0.5270 1.9323 

1.5 1.0661 0.4500 1.9807 

3.0 1.0748 0.5483 1.8687 

4.5 1.0501 0.6117 1.8254 

6.0 1.0292 0.5109 1.9034 

7.5 0.8816 0.1889 1.5359 

9.0 0.9019 0.6263 1.5204 

10.5 0.9848 0.7625 1.5356 

12.0 0.9200 0.9854 1.0342 
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These can be more clearly interpreted using Figs. 5-20 and 5-21. Fig. 5-20 

shows the theoretical U-EL calculated with considerè condition. For the Swift 

law, theoretical U-El is given as (n-e0). Fig. 21 shows that the U-EL is 

increased in the -6 to 6 mm range, and that range corresponds to the width of 

the FSW tool in Fig. 5-13. Then, the U-El decreases if the materials are far 

from the weld line. In other words, ductility in the SZ increased due to the 

welding, and it continuously decreased in the HAZ to the similar values of 

the base materials. Note that the U-EL presented in Fig. 5-20 is only the 

theoretical values based on the Siwft law, hence it can give a general tendency 

only, and other factors can affect the real U-EL such as anisotropy. (Which is 

not considered in this study) 

Fig. 5-21 illustrates the distributions of normalized yield stresses. For the 

comparison, Vickers hardness distributions were measured, and normalized 

hardnesses were illustrated in Fig. 5-21 together. (Hardness of the base 

materials was 112 HV) Though normalized yields and normalized hardnesses 

show a similar tendency, the absolute magnitude of the two values shows a 

considerable difference. It can be analyzed as two-fold. First, it validates that 

the nonhomogeneous material properties were accurately measured with the 

FE-VFM. Second, hardness cannot be a material property in a strict sense, 

and it only represents the tendency of the difference in material properties. 

Meanwhile, the yield stresses in the -6 to 6 mm range decreased compared 

to base materials, and it increased to a similar level of the base materials 
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outside of the width of the FSW tool. This is just the opposite trend to the U-

EL. Also, the lowest yields were shown at the edge of the FSW tool (near the 

-7.5 and 7.5 mm positions) for both 1200 and 1600 RPM. Normalized 

hardness also shows minimum values at the same point, similarly. In other 

words, the materials at these positions yield before the other region, and the 

ductility is smaller compared to the SZ (-6 to 6 mm range). Thus, materials at 

these locations can be the weakest points in the forming process. 

Tensile tests with a specimen in Fig. 5-22(a) were performed for the 

validation of the FE-VFM results. Displacements were measured using a 

virtual extensometer in the DIC postprocessing, and the gauge length of the 

virtual extensometer was 40 mm. Then, FE simulations were conducted with 

the material properties measured by FE-VFM, in the same conditions of the 

validation tensile tests. Fig. 5-22(b) illustrate the 3D half symmetric model 

used in the simulation. In Fig.5-22(c) load-displacements are compared for 

both simulations and experiments. Both 1200 and 1600 RPM cases show that 

the predicted load-displacement curves are in good agreement with 

experiments. Hence, it indicates that the proposed FE-VFM approach can 

accurately measure the nonhomogeneous strain hardening in the WAZ.  
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(a) 

 
(b) 

Fig. 5-20. Theoretical uniform elongation distributions measured by FE-

VFM. (a) 1200 RPM, and (b) 1600 RPM.  
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(a) 

 

 
(b) 

Fig. 5-21. Comparison of normalized yield stresses measured by FE-VFM. 

(a) 1200 RPM, and (b) 1600RPM.  
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(a)                                             (b) 

 

 
(c) 

Fig. 5-22. Validation of obtained local flow stresses. (a) tests specimen 

geometry, (b) 3D half FE model, and (c) comparison of predicted load-

displacement curves with experiments 
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5.6. Summary 

The FE-VFM was applied for identifying nonhomogeneous strain hardening 

of the friction stir welded aluminum alloy sheets, as an advanced application. 

A two-step identification procedure is introduced. First, weld affected zone 

boundary was identified (STEP1), then, local flow stresses were identified in 

the WAZ (STEP2). In addition, the area of interest was divided into 

subdomains, and FE-VFM was applied to each subdomain independently. 

Also, material constants in each subdomain are interpolated with a quadratic 

function. To uniquely identify the interpolated material parameters, normal 

distribution type virtual fields were used. These numerical approaches were 

is validated through feasibility tests based on FE simulation data. Feasibility 

tests demonstrated that the boundary of the WAZ and the non-homogeneous 

strain hardening could be successfully identified using FE-VFM owing to the 

virtual fields defined with a normal distribution function and higher-order 

Gauss quadrature. 

The validated method was applied to identify the local flow stresses of the 

friction stir welded AA6061-T6 sheets for two different FSW conditions, 

which were tool rotation speeds of 1200 RPM and 1600 RPM cases. In STEP1, 

the WAZ of the 1200 and 1600 RPM cases were identified as -9 to 12 mm 

and -12 to 12 mm from the weld line, respectively. Followed by STEP1, the 

distribution of the parameters was identified as STEP2 using FE-VFM. The 

results of the FE-VFM showed that the strength in the WAZ was weakened 
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due to the welding, whereas the ductility of the aluminum alloys was 

increased in the WAZ. Finally, FE simulations were conducted with identified 

non-homogeneous strain hardening, to validate the identified results. The 

predictions using FE-VFM results were in good agreement with experiments, 

and this confirms that the FE-VFM can accurately identify the non-

homogeneous strain hardening distributions for the welded aluminum alloys. 
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6. Conclusions 

In this study, a novel virtual fields method (VFM) based on the finite 

element (FE) scheme, namely FE-VFM, is proposed as an inverse method for 

identifying the parameters of constitutive models. In the FE-VFM, 

experimentally measured full-field displacements are mapped onto FE 

meshes using global and local shape functions, and the internal virtual work 

is integrated using the Gauss quadrature rule.  

Extensive sensitivity tests for the validation of the proposed FE-VFM were 

performed with ideal deformation fields generated by finite element 

simulations for both orthotropic linear elastic and isotropic elastic-plastic 

cases. FE-VFM conditions tested in this study were (1) FE mesh size from 1 

mm to 5mm, (2) FE order from linear to cubic elements, and (3) Gauss 

quadrature order from 1 to 3. The sensitivity study showed that the element 

size and order of the shape function had a minor effect on the quality of the 

VFM for the elastic material. The virtual fields selection, rather than the FE 

meshes, critically affects the quality of the results. Moreover, a higher-order 

Gauss quadrature improves the accuracy of calculating the IVW when 

complex virtual fields are used. In the case of elastic-plastic material, the 

element size and the order of an element, and the order of the Gauss 

quadrature had a considerable effect on the accuracy of the identified material 

parameters, which resulted from the spatial non-linearity of the large plastic 
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deformation. It was also shown by validation that even coarse FE meshes 

could give satisfactory accuracy in the FE-VFM when higher order elements 

and Gauss quadrature were adopted. 

As an applications of the FE-VFM, homogeneous and nonhomogeneous 

strain hardening of the metal sheets were identified. New virtual fields based 

on real nodal displacements were proposed to improve the accuracy of VFM 

at large plastic deformation. This approach was named pseudo-real 

deformation fields in this study to highlight the use of varying real 

deformation fields. FE-VFM is applied for the identification of plastic 

hardening in 1470 MPa PHS sheets with the PDF. In the FE-VFM, notched 

tensile test data was used, and obtained strain hardening is validated using U-

notch tensile tests. The U-notch tension load–displacement curve predicted 

using the FE-VFM hardening parameters showed better agreement with the 

experimental results than did the conventional fitting-based hardening 

parameters. The improved accuracy relative to the conventional method is 

explained as follows. First, the commonly adopted 0.2% offset method for 

determining yield stress ignores the transition from elastic to plastic yielding. 

In this case, the conventionally determined yield stress may be overestimated, 

while the FE-VFM reflects the transition behavior near the yield. Second, the 

simple tension-based fitting to a prescribed hardening law is only valid before 

uniform elongation because the deformation becomes non-uniform beyond 

this point. The investigated PHS had a low uniform elongation (only 5%), 
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which led to a discrepancy in the predicted deformation at large strain for the 

U-notched tension. However, in the case of the FE-VFM, stress-strain data in 

a large plastic strain range can be utilized for identification, which resulted in 

better identification accuracy for plastic hardening. 

As an advanced application, the FE-VFM was applied for identifying 

nonhomogeneous strain hardening of the friction stir welded aluminum alloy 

sheets, as an advanced application of the FE-VFM. In this study, weld affected 

zone boundary was identified, then, local flow stresses were identified in the 

WAZ. In addition, the area of interest was divided into subdomains, and FE-

VFM was applied to each subdomain independently. Also, material constants 

in each subdomain are interpolated with a quadratic function. To uniquely 

identify the interpolated material parameters, normal distribution type virtual 

fields were used. These numerical approaches were is validated through 

feasibility tests based on FE simulation data. Feasibility tests show that 

constitutive parameters interpolated with piecewise polynomials within a 

subdomain cannot be uniquely identified using conventional polynomial 

virtual fields, however, three independent virtual fields defined with normal 

distribution functions—that enhance different local data within a 

subdomain—show a good capability to identify the interpolated constitutive 

parameters. Also, higher-order Gauss quadrature was required due to the large 

non-linearity originated from the constitutive parameter interpolation and 

normal distribution type virtual fields.  
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Then, the validated method was applied to identify the local flow stresses 

of the friction stir welded AA6061-T6 sheets with two different tool rotation 

speeds of 1200 and 1600 RPM. Identified WAZs were -9 to 12 mm and -12 

to 12 mm for 1200 and 1600 RPM cases, respectively. Also, identified non-

homogeneous strain hardening in the WAZ showed that the strength of the 

aluminum alloy sheets in the WAZ was decreased, whereas the ductility was 

increased. Finally, validation tensile tests were conducted with a loading 

direction parallel to the weld line, and FE simulations were conducted to 

validate the FE-VFM results. The predicted load-displacement curves of the 

FE simulations showed a good match with experiments, and it confirms that 

FE-VFM can accurately identify the non-homogeneous material properties 

due to the welding. 

Overall, numerical sensitivity tests and real applications with experiments 

validate that the proposed FE-VFM can be effective and accurate for 

characterizing the material properties. In particular, the FE-VFM can be used 

to identify the plastic properties of the metal sheets, especially the properties 

that are hardly obtainable with conventional mechanical tests. 
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Appendix A. Higher-order finite elements and shape 

functions 

 
(a) 

 
(b) 

Fig. A.1. Pascal triangle, finite elements, and shape functions in general 

polynomial function form. (a) Triangular elements and (b) quadrilateral 

elements [90,91] 
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Fig A.2. Local shape functions of triangular elements [90,91]  
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Fig. A.3. Local shape functions of quadrilateral elements (serendipity 

family) [90,91]  
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The shape functions in matrix form ( IM ), the derivatives of basis function 

vector ( i

j

df

dX
), the matrix of natural nodal coordinates ( Iir ), and coefficients 

of local shape function ( iIb ) of each element are given below. Note that the 

matrix form can be more efficient for the implementations, though the general 

polynomial form and matrix form of the shape function is identical. Also, the 

global and local shape functions are essentially the same types of function 

except for their coefficients. Therefore, only the global shape functions MI 

and their derivatives are shown. in bellow.  
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Triangular quadratic element (T6) 
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Quadrilateral linear element (Q4) 
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
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 
 



        (A.20) 

Quadrilateral cubic element (Q12) 

 
1,1 1,12

2 2 2 2 3 3 3 3

12,1 12,12

1I

a a

M X Y XY X Y X Y XY X Y X Y XY

a a

 
 

  
 
   

ㅤ                                                                                                   (A.21) 
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ㅤ                                                                        (A.22) 
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ㅤ                                                     (A.23) 
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ㅤ                                                                            (A.24)  
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Appendix B. Example of FE based displacements 

reconstruction: linear quadrilateral 

elements 

In this section, reconstruction full-field displacements with a linear 

quadrilateral element (Q4) is presented as an example. The global shape 

function of the Q4 element can be given as follows.  

   IM ,
T

μ μI I I I IX Y f a a a X a Y a XY    1 2 3 4                     (B.1) 

where fi is the basis function vector of global Q4 shape function, which is 

given as 

   1
T

if X Y XY  .                                     (B.2) 

and the coefficients of the global shape function can be obtained using 

JI Ji iIF a  as below. 





   
   
     
   
   

  

1

11 12 13 14 1 1 1 1

21 22 23 24 2 2 2 21

31 32 33 34 3 3 3 3

41 42 43 44 4 4 4 4

1

1

1

1

iI Ii

a a a a X Y X Y

a a a a X Y X Y
a F

a a a a X Y X Y

a a a a X Y X Y

            (B.3) 

where X1 to X4 and Y1 to Y4 are the initial nodal positions of Q4 mesh in 

global coordinates, and subscripts 1 to 4 denote the local nodal index of a 

single Q4 element. In other words, coefficients of the global shape functions 

are equal to the inverse of the basis function matrix constructed with 

undeformed nodal coordinates of an element.  
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Using global shape functions, the positions of the natural coordinates 

matrix of full-field data points are given as follows. 

11 12 13 141 1 1 1 1 1 1 1

21 22 23 242 2 2 2 2 2 2 2

31 32 3,3 34 3 3

41 42 43 44 4 4

1

1

1

d d d d d d n n

d d d d d d n n

n n

d d d d d d n n
m m m m m m

a a a ar s X Y X Y r s

a a a ar s X Y X Y r s

a a a a r s

a a a ar s X Y X Y r s

      
      
      
      
           

      

  .     (B.4) 

And, the local shape functions are 

  1 2 3 4g
T

I i iI I I I IN b b b r b s b rs       .                          (B.5) 

Here, gi is the basis function vector of the local Q4 shape functions, which 

are given as, 

   g 1
T

i r s rs  .                                       (B.6) 

And, the coefficients of local shape functions can be given as, 

0.25 0.25 0.25 0.25

-0.25 0.25 0.25 -0.25

-0.25 -0.25 0.25 0.25

0.25 -0.25 0.25 -0.25

iIb

 
 
 
 
 
 

 .                                 (B.7) 

Note that coefficients of local shape functions are fixed values for each 

element since the nodes in a FE element are fixed in the natural coordinates. 

The displacements of the full-field measurement points in the element can be 

described using the local shape function as follows. 
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11 12 13 141 1 1 1 1 1 1 1

21 22 23 242 2 2 2 2 2 2 2

31 32 33 34 3 3

41 42 43 44 4 4

1

1

1

d d d d d d n n

d d d d d d n n

n n

d d d d d d n n
m m m m m m
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      
      
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      

         (B.8) 

where the matrix of local shape function 
e
IiN  is 

11 12 13 141 1 1 1

21 22 23 242 2 2 2

31 32 33 34

41 42 43 44

1

1

1

d d d d

d d d d
e
Ii

d d d d
m m m m

b b b br s r s

b b b br s r s
N

b b b b

b b b br s r s

  
  
  
  
   

  

 .                   (B.9) 

e
IiN  can be easily calculated since the local coordinates of data points and 

coefficients of local shape functions are all-known. After assembling of g
JjN  

from e
IiN  of each element, the least-square operator can be performed, and 

displacements are reconstructed into Q4 FE mesh. 
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Korean abstract 

본 연구에서는 구성방정식 변수 역해석 최적화를 위한 새로운 유한요소 

기반 가상필즈법 (Finite element-based virtual fields method, FE-VFM) 을 

제안하였다. FE-VFM에서는 전 영역 측정법(Full-field measurement)을 통해 

측정된 실험 변위를 전역 및 형상 함수 (global and local shape function) 를 

이용해 유한요소 메시로 재구축한다. 구성방정식 변수 최적화 과정에서는 

유한요소에 맵핑된 변위를 기반으로 가상일의 원리 (Principle of virtual work) 

수식을 풀이하는데, 이때 FE-VFM은 내부 가상일 (Internal virtual work)을 적분 

시 가우스 구적법을 활용한다. 

새롭게 제안한 FE-VFM을 검증하기 위하여, 잘 디자인된 민감도 분석 

연구가 진행되었다. 민감도 분석 연구에는 유한요소해석으로 생성된 

이상적인 변형 정보가 FE-VFM의 입력 정보로 활용되었으며, 민감도 분석은 

비등방 선형 탄성 재료와 등방 탄소성 재료 두 가지에 대해 수행하였다. 민감도 

분석 조건으로 변위장 재구축을 위한 유한요소의 크기 및 차수, 그리고 가우스 

구적법의 차수에 대한 민감도 분석을 수행행하였다. 정량적인 분석을 위해 

내부 가상일과 외부 가상일의 잔차를 계산하여 각 조건을 평가하였다. 이방성 

선형 탄성 소재 조건의 경우, 가상일 잔차가 유한요소의 크기 및 차수에 크게 

영향을 받지 아니하였으며, 가우스 구적법 차수 많이 제한적인 범위에서 

약간의 정확도를 향상시켰다. 반면, 소성 물성의 경우, 유한요소의 크기, 차수, 

그리고 가우스 구적법 차수 모두 결과에 크게 영향을 주었다. 이러한 차이는 
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선형 탄성의 경우 변형의 비선형성이 작은 반면, 탄소성 소재의 경우 

국부적이고 비선형성이 큰 변형이 발생에 기인한 것으로 보인다. 

한편, FE-VFM의 응용으로서 금속 판재의 균질, 그리고 비균질한 소성 경화 

거동 측정이 수행되었다. 첫번째 응용으로서 고강도강의 소성 경화 거동을 

측정하였다. 이 응용 연구에서는 FE-VFM의 소성 물성 측정 정밀도를 높이기 

위하여 실제 변위에 기반한 의사 실제 변형장(Pesudo-real deformation field, 

PDF)을 새로운 형태의 가상변위로 제안하였다. 이후 응용으로서 PDF와 FE-

VFM을 함께 활용하여 프레스 경화 강(press hardened steel)의 소성 경화 거동을 

측정하였다. FE-VFM 적용을 위해서는 노치 인장실험 (notched tensile tests)이 

수행되었다. 그 결과 요소 크기가 크고 고차 요소로 이루어진 유한요소메시를 

활용 시, 비교적 낮은 품질의 전영역 측정 결과를 활용하여도 성공적으로 변위 

장을 모사할 수 있음을 확인하였다. 나아가, 이러한 FE-VFM의 효과로 인해 

프레스 경화강의 소성 경화 거동이 성공적으로 측정될 수 있음을 확인하였다.  

측정된 결과를 검층하기 위해, U 노치 인장 실험(U notched tensile tests)을 

수행하였다. 실험 결과와 유한 요소해석 결과를 비교하였을 때, FE-VFM으로 

측정된 물성을 유한요소해석 결과가 일반적인 표준 일축 실험을 기반으로 한 

것 보다 하중-변위 곡선이 실험과 더 잘 일치함을 확인하였다. 이는 크게 두 

가지 이유에 기인한다. 첫째, 일축인장 실험 으로 항복강도를 결정할 때 사용 

사용하는 0.2% 오프셋 방법은 매우 큰 강도의 프레스 경화 강의 항복점 근처의 

탄성에서 소성으로의 비선형적인 변화 거동을 무시하게 되는 반면, FE-VFM의 

경우 임의이 항복강도 결정 기준을 사용하지 않고, 비용 함수(cost function) 
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값을 비선형적으로 최적화하는 과정에서 탄성한계점이 항복강도로 결정된다. 

그러므로 U 노치 인장 결과에서 초반 하중-변위 거동이 FE-VFM을 통해 

계산된 유한요소해석 결과가 더 잘 맞게된다. 둘째, 일반적인 일축 인장에서 

UTS 이후에는 넥킹(necking) 현상이 일어나므로, UTS 전 까지의 실험 

데이터를 활용하여 소성 경화식을 최적화 하고 그 이후는 외삽으로 예측하게 

된다. 그러나 연구된 프레스 경화 강은 균일 연신율이 5% 내외로 짧아, UTS 

이후 큰 변형율에서의 실험 정보가 부족하다. 반면 FE-VFM의 경우 

일축인장에서는 쓸 수 없었던 균일 연신율 이후의 응력-변위 정보도 사용하여 

소성 경화식을 최적화 할 수 있으며, 따라서 U 노치 실험의 하중-변위 곡선이 

최대값 이후에서 FE-VFM 결과를 기반으로 한 예측 결과가 일축인장보다 더 

잘 맞을 수 있었다. 

또한, 고등 응용으로서 마찰 교반 용접(Firction stir welding, FSW)된 

알루미늄 판재의 비균질 소성 경화거동을 FE-VFM을 활용하여 측정하였다. 이 

연구에서는 먼저 용접영향부(weld affected zone, WAZ) 경계를 확인한 뒤, 

확인된 용접영향부 내의 국부 물성 분포를 측정하는 2단계 측정 방법이 

활용되었다. 관심영역을 하위도메인으로 구분하는 접근법과 구성방정식 

변수를 각 하위도메인 안에서 이차 함수로 보간하는 기법이 함께 사용되었다. 

이러한 비선형성이 심한 문제를 적절히 풀기 위하여, 가상 필즈를 하위도메인 

내의 서로 다른 위치의 정보를 강화 할 수 있는 정규 분포 함수로 정의하였다. 

이러한 FE-VFM 기반 방법론을 유한요소해석 데이터 기반으로 

실현가능성을 평가 및 검증하였다. 실현 가능성 검증에서 일반적인 다항식 
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함수로 정의된 가상 필즈를 사용할 경우 구성방정식 상수 분포가 유니크니스 

문제(uniqueness problem)으로 인해 특정 값으로 제대로 결정되지 않음을 

확인하였다. 그리고 구성방정식 상수 보간 및 정규 분포 함수로 정의된 가상 

필즈의 높은 비선형성으로 인해 고차 가우스 구적 사용이 필수임을 

확인하였다. 검증된 방법론을 적용한 결과, 마찰교반용접 된 AA6061-T6 판재 

물성을 적절히 평가할 수 있었다. 그 결과 1200 및 1600 RPM 각각 용접 

영향부가 -9 mm 부터 12 mm, 그리고 9 mm 부터 12 mm로 확인되었다. 또한, 

용접 영향부 내의 알루미늄 합금은 강도는 전반적으로 약해진 반면, 연성은 

모재 대비 증가한 것을 확인할 수 있었다. 마지막으로 검증 실험을 진행하여, 

FE-VFM으로 도출된 물성을 활용한 유한요소해석 결과와 실험값을 

비교하였다. 그 결과 실험과 유한요소해석으로 예측된 결과가 잘 일치함을 

확인하였다. 이를 통하여 FE-VFM을 통해 마찰 교반 용접된 알루미늄 합금의 

비균질 경화 거동을 정확히 측정할 수 있음을 확인하였다. 

결론적으로, 두 가지 응용 연구는 FE-VFM으로 통상의 방법으로 얻기 

어렵거나 번거로운 재료의 기계적 물성을 효과적이고 정확하게 얻을 수 

있음을 보여주었다. 

 

핵심어: 가상필즈법, 유한요소, 전 영역 측정 평활화, 구성방정식, 소성 경화, 

비균질 국부 물성 평가 

학번: 2018-39025  
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약간의 그리움과 아련함이 섞인 추억들이 생각납니다. 그리고 무엇보다 저를 

도와주시고 응원해주셨던 많은 분들께 감사함을 느낍니다. 

누구보다 먼저 제게 학문의 길을 밟을 수 있는 기회를 주시고, 제 학위과정 

끝까지 지도와 지원을 아끼지 않으셨던 지도교수님이신 이명규 교수님께 

감사를 드립니다. 아무 것도 모르던 학부생으로 마지막 학기 때, 저를 연구실에 

받아주셨던 교수님의 말씀이 생각납니다. 학부 연구생으로 지원해 놓고는 

예비 지도교수 수업에서 맨 앞에 앉아 꾸벅꾸벅 졸고 있는 모습을 보고 

있노라면, 이 녀석을 받은 것이 잘한 일인가 하는 생각에 계속 어이없었다 

하셨지요. 돌이켜보면 이것을 시작으로 제가 학위 과정동안 이런저런 사고를 

참 많이 저질렀습니다. 연구실에 지각도 잦고 다양한 기상천외한 사고를 

저지르는 학생을 인내심으로 기다려주시고, 너그럽게 시간을 주셔서 참 

감사합니다. 또한 학문적으로도 많은 것을 배웠습니다. 주어진 공학적 문제를 

어떻게 탐구하고 해결해 가야 하는지 방향성을 일러주셨고, 무엇보다 

연구자는 주어진 문제의 결과를 내는 것이 아니라 그 결과를 다각적으로 
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분석할 줄 알아야한다며 언제나 강조하셨던 그 말씀으로 제가 성장할 수 

있었습니다. 

또한 학위 과정 중, 제 연구에 직간접적으로 많은 것을 알려주셨던 두 분의 

선배 연구자님께 감사드립니다. 우선 노우람 박사님께 감사드립니다. 지금은 

없어진 좁디좁은 고려대학교 공학별관 연구실에서, 여름에는 에어컨도 

시원치 않아 땀을 뻘뻘 흘리며 함께했었던 일이 생각납니다. 그 시절 기초가 

부족한 저희에게 유한요소해석은 무엇인지, 역학은 어떻게 이해해야 하는 지, 

열정을 다해 공별에 있는 학생들에게 설명해주시던 모습이 여전이 눈에 

선합니다. 무엇보다 이 졸업논문에는 담기지 못했지만 제 학위과정 중 절반의 

연구 제목이었던 연성파괴모델의 기초를 노우람 박사님께서 전수해 

주셨습니다. 너무나도 감사드립니다.  

두 번째로 이 학위논문의 주제인 가상필즈법에 전문가이신 김진환 교수님께 

감사드립니다. 김진환 교수님께서 역해석법의 기초, 참고할 문헌을 적절히 

소개해주시고, 때론 제가 하는 연구에 아낌없는 조언과 지지를 주셔서 이 학위 

논문을 무사히 쓸 수 있었습니다. 그리고 김진환 교수님께서 연구하셨던 예시 

문제 자료와 직접 작성하셨던 코드를 바탕으로 제가 가상필즈법을 배웠고, 또 

2019 SEM 학회 교수님과 나누었던 논의들에서 얻은 아이디어가 이 학위논문 

주제의 시발점이 될 수 있었습니다. 진심으로 감사드립니다. 

그리고 바쁘신 중에 제 학위 논문의 심사위원이 되어주셨던 한흥남 교수님, 

유웅열 교수님, 김대용 박사님께 감사드립니다. 
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6년 반 동안 함께 했던 연구실 동료들도 고마웠습니다. 연구실 동료 

중에서는 가장 먼저 정우진씨에게 감사를 표하고 싶네요. 우진이형! 

고려대에서 연구실 문을 열었을 때부터 마지막 졸업때 까지 함께해줘서 

고마워요. 학부 한 한번 후배인데도 까탈스럽고, 귀찮게 굴고, 또 한편으로는 

약간 무례하기까지 했던 나에게 잘 맞장구 쳐 줘서 고마워요. 학위 시작 때부터 

친구처럼 편하면서도 또 연구실에 유일한 형으로 많이 의지했습니다. 그리고 

먼저 석사로 졸업해서 지금은 연구실에 없지만 고려대 시절 창립 멤버였던 

재민이! 처음 학부연구생으로 시작했을 때, 교수님께서 낡은 책상만 덩그러니 

있는 공별 방에 같이 가셔서는 이제 여기가 연구실이다 했을 때 얼마나 

어리둥절하고 막막했는지 몰라. 너와 우진이형이 함께해줘서 아무것도 없던 

상태에서 연구실을 하나씩 같이 꾸며갈 수 있었어. 아쉽게도 연구실을 

서울대로 옮기며 새로 시작하게 되었지만 큰 힘이 되었어, 고마워. 너와 동준이 

그리고 내가 shames 책으로 고체역학을 서로 아무것도 모르면서 돌아가며 

준비해서 공부하고, 또 석동윤 박사님께 같이 아바쿠스 사용법 배우던 것이 

기억난다. 동준아! 그 때가 힘들었지만 그립네.  

후배 중에서는 가장 내가 많이 의지했던 홍진이. 내가 언제나 너에게 

말하지만, 네가 투덜투덜하면서도 가장 같이 일을 잘해줘서 후배들 중에서는 

편하게 너에게 많은 부분을 부탁했었어. 부족한 선배 참고 따라주느라 항상 

미안하고 고마웠다. 부족한 내가 방장 역할을 하는 동안 네가 큰 힘이 되었어. 

그리고 자주 티격태격 했던 기정이. 우리가 서로 많이 달라서 많이 충돌했는데 

이제는 어느덧 서로에게 많이 익숙해졌네. 나와 싸우면서도 그래도 다시 
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화해하기도 하고 서로 맞춰가며 지내줘서 고마워. 마지막으로 유미. 내가 가끔 

선 넘는 농담을 하는데도 또 금방 이해하고 즐겁게 여러 가지로 이야기를 나눈 

기억이 많네. 그리고 유미, 기정 그리고 Kaushik 박사와 넷이 함께 갔던 

즐거웠던 제주도 학회 출장이 크게 기억에 남는다. 여러가지로 고마워. 그리고 

나에게는 영원한 연구실 막내, 경문이. 처음 학부연구생으로 들어왔을 때부터 

내가 많이 괴롭혔지. 서울대로 와서는 다들 졸업이 가깝다고 너에게 연구실 

잡무가 집중되어 언제나 고맙고 미안했다. 연구적으로도 새로운 것을 금방 

스스로 잘 하는 너 같은 후배가 있어 든든했다.  

서울대 옮겨와서 생긴 후배들, 진흥, 찬미, 재승, 서준, 정윤, 건진, 성환. 

까다롭고 톡톡 튀는 말투에, 참견하기 좋아하는 선배에게 맞춰주며 지내느라 

고생 많았고, 많은 나이차이에도 친밀하게 대해주어 고마웠다. 그리고 나머지 

함께했었던 연구실 멤버들, 조금 멀리 있지만 같이한 방준호부터, 석동윤 

박사님, 이정연 박사님, 김원재 박사님, Dr. Kaushik and Dr. Shamik, 서정환, 

곽수현, 정영민 대위님, 이형림 형님, 김혜진씨, 김지영님, 모두 감사하고 

즐거운 시간이었습니다. 코로나 19가 아니었다면 엠티도 더 자주 가고 좋은 

추억을 많이 만들었을 텐데, 너무 아쉽습니다. 그리고 같은 연구실은 아니지만 

많은 일을 같이 했던 이충안 박사님, 김주희씨, 예정원씨, 재미있는 연구 같이 

해볼 수 있어서 감사했습니다. 

가족들에게도 감사합니다. 대학원을 진학하겠다 말을 꺼냈을 때, 내심 

걱정하시면서도 언제나 기도하고 응원해주셨던 부모님. 학위 과정 동안 

바쁘다는 핑계로 전화도 자주 안 드리고 무심했던 장남을 이해하고 
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격려해주셔서 감사합니다. 제가 박사학위를 드디어 받게 되었다 전해드렸을 

때, 두 분이 누구보다 자랑스러워하시고 기뻐해주셔서 뿌듯했습니다. 그리고 

학부 때부터 고려대 석사 학위 마칠 때 까지 팍팍한 서울살이를 같이 해줬던 

동생 온유. 까칠한 말투에 이기적으로 굴 때도 많은 형과 함께 오랫동안 단 둘이 

지내느라 고생 많았다. 네가 서울에서 함께 살아서 때론 힘들고 바쁘단 핑계로 

이기적으로 집안일도 미루기도 하고, 또 연구에 지칠 때 같이 영화도 보러 

다니고 음식도 해먹으며 활기를 충전할 수 있어 의지가 많이 되었다. 진심으로 

고맙다. 그리고 막내 은빈이도 사랑한다.  

마지막으로 매사 만물을 주관하시는 존귀하신 사랑의 하나님. 부족한 

저에게 총명과 의지, 그리고 무엇보다 학위 공부를 할 수 있는 기회를 주시고, 

매 순간 저를 축복으로 이끌어주셔서 감사드리나이다. 제게 주신 이 모든 

은혜에 감사드리며 모든 영광과 찬양을 주께 돌리옵니다. 하나의 끝마침과 

새로운 시작이 기다리는 제게, 앞으로도 주님께서 주신 이 능력으로 제 이름 

찬양에 걸맞도록 제 삶이 하나님께 영광 돌릴 수 있도록 인도와 사랑을 

주시옵소서. 
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