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Abstract

Fusion models for news quality prediction:

Combining textual features with sentence embeddings

PARK Suzi
Department of Linguistics
The Graduate School

Seoul National University

This paper aims to develop a language model to predict the quality of Korean
news articles. The task of predicting the quality of news articles is that the
latest techniques for natural language processing have yet to be applied, even
though the need has emerged due to the recent flood of fake news. To over-
come these limitations, we develop an SBERT (Sentence BERT) model that
represents the meaning of a sentence to examine whether the performance of
quality classification can be enhanced by utilizing the linguistic features of the
article. As a result, both machine learning models using textual features such
as readability and cohesion in articles and transfer learning models using con-
textual features automatically extracted from SBERT performed better than

previous studies, specifically when augmenting and refining training data in



SBERT learning. Thus, we conclude that linguistic features play an essential
role in the quality of the article and that SBERT, a state-of-the-art technique
for natural language processing, can contribute to the extraction and utiliza-

tion of linguistic features.

Keywords: Computational linguistics, Sentence embeddings, News quality

prediction, Fusion models, SBERT

Student Number: 2015-30035
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1 Introduction

In the past decade, various researchers have found it necessary to develop a
system to predict article quality automatically. Many of these studies have
shown remarkable results using traditional machine learning algorithms such
as support vector machines and manual feature engineering.

Distinguishing high- from low-quality news is crucial for preventing misin-
formation and curating information. Although substantial research has tack-
led this challenging question, there is still a gap for the most recent advances
in natural language processing (NLP).

This study aims to develop a model to predict news articles’ quality level
evaluated by readers automatically, exploiting linguistic features from a news
article text and using a Transformer language model. With this aim, we set

our research objectives as follows:

e To identify which manually engineered textual features affect audience-

rated news quality.

e To develop sentence representation models to utilize effects of automat-

ically extracted contextual features.

e To combine two types of linguistic features and to improve performance

in predicting news quality.

Then this thesis explores the following research questions:

1. What textual features affect news quality?



2. Are sentence representation models more effective for long articles than

word representation models?

3. Does combining two models improve performance in predicting news

quality?

The first contribution of this thesis is the development of a news quality
prediction system applicable to new articles by only use linguistic features
without implementing a further news survey. It is important that no further
survey is required because the amount of articles published at every moment is
enormous, and it is impossible to collect information on all of them manually.
On the other hand, linguistic features can be calculated directly from text
only, so they are inexpensive and easy to apply.

The second contribution is the development of sentence representation
models for the Korean language. We demonstrate that these models effectively
process long documents with multiple sentences through the article quality
prediction task.

Despite the improvement that we achieved with the proposed scheme, our
models’ performance did not surpass the best results of existing work with ex-
tralinguistic features such as journalistic values and demographic information.
However, we remark that the efficiency of language features can compensate
for this limitation. We also believe that we can improve the performance of
our model by reflecting linguistic characteristics of articles more broadly in
the future.

In Chapter m, we have introduced the context of the study, identified the

2



research questions, argued the value of such research. In addition, we have
discussed the limitations of the study.

Chapter E will review the existing literature to identify approaches to news
quality prediction within the context of natural language processing.

Chapter B will describe the datam that we use and present the method that
we adopted. We will justify focusing on writing styles other than journalis-
tic values and demographical information. Subsequently, we will discuss the
research design for exploiting linguistic features from the news article text.

Chapter @ will explore what linguistic cues make a news article seem su-
perior to others. First, we feed manually engineered textual features into an
ordinal logistic regression model. Second, we investigate which factors sig-
nificantly affect news quality. Finally, we find three interesting facts about
high-quality articles.

Chapter B will focus on automatically extracted contextual features. For
this purpose, we develop KR-SBERT, a Korean Sentence Transformer model
representing the meaning of a sentence. Then we evaluate our new models in
the task of news quality prediction and compare them with BERT.

Chapter E will present our novel approach. We maximize the effects of two

kinds of linguistic features that we have built in the previous two chapters

'In this thesis, we use the dataset from the following paper with the courtesy of its first
author:

e Choi, S., Shin, H., & Kang, S. S. (2021). Predicting Audience-Rated News Quality:
Using Survey, Text Mining, and Neural Network Methods. Digital Journalism, 9(1):
84-105.

The linguistic attributes used in the paper are overlapping with our textual features in
Chapter E When working as a research assistant for the above project from 2018 to 2019,
the author of this thesis performed morphological analysis, defined a list of morphemes for
linguistic features, and wrote algorithms and codes to extract the features from articles.

A -2t 8w



by fusing the textual feature model and the contextual feature model in two

methods. Experimental results show that our approach is successful.
Chapter H concludes the preceding chapters, summarizes the problems that

we solved, and addresses this study’s limitations and directions for future

research.



2 Literature Review

This chapter outlines what has been discussed in previous research on pre-
dicting news articles’ quality throughout four sections; First, it deals with
the historical background of news quality prediction. Second, it identifies
data, features, and models that researchers use in natural language processing
(NLP) for this task. Third, it introduces the recent studies on instruments
and techniques that we will use in this thesis. Then, we will determine what

insights we can gain and what contributions we can make in this literature.

2.1 Background

This section explores two research lines related to our work: (i) text classifica-
tion and (ii) news quality assessment. Since news article quality prediction is
a subtask of text classification, we begin with its definition and history. Then,

we review how to assess news quality before predicting it.

2.1.1 Text Classification
2.1.1.1 Initial Studies

Text Classification, or Text Categorization, is the task of automatically assign-
ing documents to a predefined set of categories (Foltz, 1990; Foltz et all, 1998;
Joachimsg, [1998; Sebastiani, 2002). Its history dates back to the 1960s. Maron
(1961) first defined the task of “classifying linguistic entities” for Information
Retrieval and Borko and Bernick (1963) generalized his work experimentally

to prove that automatic document classification is a possible task. Studies



that were developed in the 1970s continued this tradition and tended to use
the occurrence and frequency of keywords in documents as predictors (,

|1973|; @, |1975|; |White et alL |1975|, |1977|; tHamill and Zamoral, |198d).

As bchﬁtze et alJ (|1995|) and IMarton et alJ (bOOﬂ) pointed out, with the

introduction of machine learning since the 1990s, approaches to text catego-

rization (tLeWis and Ringuettel, |1994|) have used classification trees (

|Appelbaum|, |1994l; ILeWisL |1992£)I), Bayesian classifiers (tLeWisL |1992a|,; tPené
, ), rules induction (|Apte et alj, |1994|), nearest-neighbor techniques

(|Masand et alL |1992|; |Yangj, |1994|), neural networks (|Tong and Appelbaum|,
), and logistic regression (hhang et alJ, lZOOZ{).

2.1.1.2 News Classification

Until the 1980s, the main subjects of text classification studies were short texts,

including abstracts from computer science (IMarod, h96]]; lBorko and Bernickl,

), physics (IKaIL h975|; lBiebricher et al.|, |198§), and chemistry (
, ), and telegraphic messages |Young and Hayed (h985|); boodman|
(1990).

In the late 1980s, lHayes et a1.| (|198£4) attempted to classify longer texts,

such as news stories. Then, lHayes and Weinstein| (|199d) extended their pilot

study to develop Construe, a rule-based news categorization system. As shown
in Figure @, its main processing steps are concept recognition and catego-
rization rules. The rule developers defined concepts as patterns of words and

phrases in context and controlled decisions using if-then rules and boolean

combinations. Meanwhile, lRau and Jacob4 (h99]]) built a news categoriza-

6
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Figure 2.1: Construe’s flow of control (Hayes and Weinstein, 1990)

tion system named NLDB and improve retrieval accuracy using Segmented
Databases, Text Category Browsing, Query by Relationship, and Special Name
Handling.

While most of the research at this time relied on numerous rules and an
extensive database, Masand et al| (1992) classified news stories using a k-
nearest neighbor method, not requir ing manual topic definition. Since the

1990s, public news classification data such as 20 Newsgroup Dataset (Rennie,

7



,) became accessible. Research using machine learning techniques, in-

cluding Naive Bayes (NB) (tDanesh et all, b007|) classifiers and Support Vector

Machine (SVM) (lSun et al], lZOOd; tKumar and Gopa]|, l201d), evolved.

Recent news classification studies cover various subtasks, including news

recommendations (bhiang and Chen|, l2004|; tBogers and van den Boscﬂ, l2007|;

|Cantador et alL bOOSI; |Wang et alL bOlOaI,; |An et al], bowj; |VVu et all, }2019|,

l202d; lHu et alL bOQd), fake news detection (tRubin et al.|, bOld; lRashkin et al.|,

l2017|; lBourgonje et alJ, |2017|; IThorne et al.|, |2017|; lKarimi et al], l2018|), and

news quality prediction.

2.1.2 Text Quality Assessment

To predict classify news quality, we should first determine how to assess it.
NLP researchers presented readability and coherence as criteria and proposed

methods for computing them using lexical, syntactic, and discourse properties

to assess text quality (tLouié, bOli l201€4). |Mesgar and Strubel (l2018|) developed

a neural local coherence model to capture the coherence between adjacent
sentences and showed that it is beneficial for news readability assessment.

There have also been studies to identify factors that degrade news quality,

such as propaganda and extremity. For example, lDa San Martino et alJ (bOld)

performed a fine-grained analysis of news texts to detect propaganda.

On the other hand, recent journalism studies have consistently attempted

to measure news quality from users’ perspectives (ballel{, lZOOESI; |Urban and|

bchweigexi, |2014|; |Costera Meijer and Bijleveld|, bOld; |Maddalena et alL l2018|;

|Molyneux and Coddington|7 |202d; lBachmann et al.|, lZOZ]J). As a result, they

8



are showing that audiences are capable of evaluating news quality.

2.2 News Quality Prediction Task

As a subtask of document classification, news quality prediction assigns a given
news article to a quality label, which human annotators predefined. In this
section, we cover data types and methodology that studies on this task have

used. A synopsis of literature relating to article quality prediction is reported

in Table Ell

2.2.1 News Data
2.2.1.1 Online vs. Offline

Over the past decade, NLP researchers have focused on determining the quality
of articles and predicting them automatically. Their subjects include both
newspapers and online news. For example, Louis and Nenkova (2013) first
studied article quality prediction in the science journalism domain, Ferschke
(2014), Dang and Ignat (2016) and Guda et al| (2020) assessed the quality of
Wikipedia articles, and |Arapakis et al (2016) and Samarinas and Zafeiriou

(2019) quantified the quality of online news.

2.2.1.2 Expert-rated vs. User-rated

The criteria for defining the quality level of articles were largely expert-centered
and user-centered. As an example of the former, Louis and Nenkova (2013)

set two categories, VERY GOOD and TYPICAL, and classified an article as VERY

9 3



Year Author(s) Data do- Quality Evaluation criteria Features Classifier
main
von_ _ro:mm and stwo<m_ Science jour- -VERY Whether the author ap- 41 dimensions SVM
nal GOOD pears in “The Best Amer- -readability
‘TYPICAL ican Science Writing” an-  -well-written nature
thology -interesting fiction
-content
_Non _Omsm and Hmsmm Wikipedia -SA Assigned by the assess- Extracted from DNN
-GA ment department of the Doc2Vec
-B Years WikiProject
-C
-START
-STUB
von _>5wmﬁm et m: Online news Editorial Assessed by ten expert 14 dimensions GLM
quality judges who had a back- -readability
ground in computational -informativeness
linguistics, journalism, or -style
were media monitoring ex-  -topic
perts -sentiment
_wo:_ _<o:8<m et m__ Twitter news -SuspiCiOUS Relied on public resources -Bias cues LSTM,
posts -VERIFIED that annotate suspicious -Subjectivity cues CNN
Twitter accounts -Psycholinguistic cues
-Moral foundation cues
_NOH& W@B@ibmm and NmmmEOL Online news -Low (click- Collected from a pseudo- Extracted from Fast- BiLSTM
bait) news website and Reuters  Text pre-trained em-
-HIGH (non beddings

click-bait)

Table 2.1: Synopsis of article qualiy prediction literature

u} 1

1

"\.

[ 4 =
=]
T

: _H b
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GOOD if its author appears in “The Best American Science Writing” anthol-
ogy, which science experts edit. In addition, Arapakis et al} (2016) used input
from news editors, journalists, and computational linguists. In the studies
above, it was professionals that judged the quality of articles.

In this thesis, we follow Choi et al| (2021) in using quality levels evalu-
ated by audiences for newspaper articles in their survey. In the following two
subsections, we explore the background for setting factors and determining

models.

2.2.2 Prediction Methods

2.2.2.1 Manually Engineered Features v. Automatically Extracted

Features

In order to automatically predict the quality of newspaper articles, it is essen-
tial to capture and reflect the characteristics of the text that forms newspaper
articles. The linguistic charactaristics of text can be classified into several cat-
egories. Louis and Nenkova (2013) used 41 features on readability, well-written
nature, interesting fiction, and content. Ferschke (2014) defined linguistic qual-
ity in terms of Language correctness, writing traints and rubrics, readability, and
text organization. Arapakis et al] (2016) identified 14 content aspects on read-
ability, informativeness, style, topic, and sentiment. Generally, these stylistic
features are defined by hand-crafted rules, and traditional linguistic tools such
as n-grams are used to obtain values for these features.

In contrast, features can be obtained by automatic extraction, particularly

in deep neural networks. Dang and Ignat (2016) proposed an approach that

11 4



uses Doc2Vec (ILe and Mikolovl, |2014|) for learning features from textual docu-

ments. |Guda et all (|202d) aggregated contextual features automatically using

BERT (h)evlin et alJ, lZOld).

To the best of our knowledge, no research has yet been done in the article
quality classification task considering both manual and automatic features.
Therefore, we will consider both of these features in our study and finally
combine them in a fusion model. In addition, we will also leverage SBERT to

obtain contextual features.

2.2.2.2 Machine Learning vs. Deep Learning

Research on news quality prediction has been first conducted with traditional

machine learning algorithms, such as support vector machines (SVMs) (

land NenkovaL }2013|) or regression models (lArapakis et all, |2016|). More re-

cently, on the contrary, studies started to adopt deep neural networks (Dang

land Ignatl, hOld), Bidirectional Long Short-Term Memory (BiLSTM) net-

works, (|Volk0va et al], l2017|), and Convolutional Neural Networks (CNN)

(Bamarinas and Zafeirioul, l2019|).

There have been attempts to combine machine learning and deep learning

methods in several subfields of NLP. For example, as shown in Figure @,

|A1hindi et alJ (l202d) combined SVM, recurrent neural networks (RNNs), and

BERT to classify news and editorials. Similarly, Figure @ shows how @
() incorporated BiLSTM and BERT to diagnose grammatical errors.
However, this thesis is the first to fuse two models for predicting news quality

as far as we know.

12
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Figure 2.2: RNN + BERT architecture (lAlhindi et al], l202d)
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2.3 Instruments and Techniques

This section presents the state-of-the-art NLP tools that we will use in this
thesis. The first is a model for representing the meaning of news articles, and
the second is a technique for integrating results from multiple models of the

same data.

2.3.1 Sentence and Document Embeddings

The synopsis in Table @ illustrated the features used to predict news quality,
including manually engineered and automatically extracted. The latter is
extracted from embedding models, such as FastText and Doc2Vec, to capture
semantic properties of words and sentences in a news article. These models
represent a word, sentence, or paragraph as an element of a vector space so
that vectors from semantically similar words get similar in the vector space.
This section describes Word2Vec and its paragraph version, Doc2Vec, as the
most widely used embedding technique and introduces BERT and SBERT as

recent contextual embedding techniques.

2.3.1.1 Static Embeddings

Word2vec (Mikolov et all, 2013a,b) is a language model consisting of the
continuous-bag-of-words (CBOW) and skip-gram (SG) architectures. Asshown
in Figure @, the CBOW model predicts a single target word from its sur-
rounding words, and the SG model uses a target word as input to obtain its
context words as output. Each model trains shallow neural networks to learn

the weights of words, which comprise a vector representing the target word.

14 4



INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2) w(t-2)
w(t-1) w(t-1)
\SUM /

R w(t) w(t) —
w(t+1) 7’ \( w(t+1)
wi(t+2) w(t+2)

CBOW Skip-gram

Figure 2.4: Two architectures of Word2Vec. The CBOW architecture predicts
the current word based on thecontext, and the Skip-gram predicts surrounding
words given the current word. (|Mikolov et alL b013b|)

This vector captures the semantic properties of the word. Word2vec is a static

embedding method because it assigns an invariant vector to a word type.

Doc2Vec Like Word2Vec, the Doc2Vec (lLe and Mikolovl, }2014]) algorithm

trains a dense vector to predict words in a given context. However, unlike
Word2vec, its vectors represent a sentence, paragraph, or document consisting
of a variable number of words. In its Paragraph Vectors’ Distributed Mem-
ory (PV-DM) model (see Figure @), the paragraph vector is concatenated
into word vectors and learned to predict the next word. In another model,
Distributed Bag of Words (PV-DBOW), the paragraph vector is trained to

predict the words in a small window.

15
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Figure 2.5: Doc2Vec frameworks for learning paragraph vector (Le and
Mikolov;, 2014)

2.3.1.2 Contextual Embeddings

Contextual embeddings have the advantage of capturing a word’s meaning that
changes across multiple contexts. For example, they can learn two different

meanings of baked in the following sentences.

(1) John baked the potato.

(2) John baked the cake.

The Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al., 2019) model consists of multiple layers of bidirectional trans-
formers mapping input embeddings to contextual embeddings (see Figure @)
A sentence is segmented into subword tokens in BERT’s architecture, and each
token has token, segment, and position embeddings as in Figure @ Their
sums, as input embeddings, are fed into the multi-layer bidirectional trans-
former and transformed into contextual embeddings. BERT is pre-trained on
two unsupervised tasks: masked language modeling and next sentence predic-

tion.
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Figure 2.6: BERT pre-training architecture: Bidirectional Transformer (De-
vlin et al), 2019)
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Figure 2.7: BERT input representation (Devlin et al., 2019)

SBERT Sentence-BERT, or SBERT, is a modification of the BERT net-
work. Its network is called siamese because two sentences are encoded using
the same transformer model. The SBERT architecture encodes each sentence
into a sequence of contextualized token vectors using the BERT network and
pools the token vectors into a single sentence vector. Then, it fine-tunes its
siamese network, illustrated in Figures @»@, by updating the weights “such
that the produced sentence embeddings are semantically meaningful and can

be compared with cosine-similarity.”
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Figure 2.8: SBERT arcitecture at classification using siamese networks

2.3.2 Fusion Models

Finally, to combine SBERT models with other existing models, we examine the

methods of applying multiple models to a single task. From feature extraction

to class decision, we can fuse models at various levels (lAygunes et alL bO2]J).
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Feature-level Fusion First of all, the feature-level fusion is the shallowest
unless multimodality is assumed. Two or more feature vectors are concate-
nated and then fed into a classifier or a regressor at this level. The subsequent

process is the same as a single model (see Figure )

Many studies use this fusion method (lAlhindi et alL |202d; |Cao et alL l202d;

19



Predicted class

Pseudo
(Log)Probability
A

4

A

Logit
A
[ Classifier }
Features Featureso
A
Concatenate
Features Featureso
[Feature exatractorq } [Feature exatractorg}

Figure 2.10: Feature-level model fusion

. 2 A2 ety



IRezvani et alL l202d; |Wang et alj, lZOZ]J). For example, a document can have

both hand-crafted features and contextualized features.

Logit-level Fusion From this level, we can deal with multiple models. At
this level, we keep two classifiers separately but fuse their logit values by
calculating their sum (see Figure ) Then we use the fused logit to get the

losses.

Probability-level Fusion The probability-level fusion (Alkoot and Kittler,

) is similar to the logit-level, but two models are combined after a softmax
layer (see Figure ) This method is appropriate for models not using

softmax cross-entropy losses.

Loss-level Fusion This method is also called External Fusing (, )
It is appropriate for binary classification. For multiclass classification, it is

difficult to reflect the models‘ effects on the probability of each class.

Decision-level Fusion In this method, a majority vote determines the clas-

sification results (|Vildjiounaite et all, bOOd; |Ali and RagbL |2019|; IRezvani et al|,

) (see Figure ) It needs more than two models.

Due to the limitations described above, we will try two fusion methods in

this thesis: feature-level and logit-level.
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Figure 2.17: Booster model combin-
ing textual and contextual features
(IRezvani et al.|, lZOQd)
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2.4 Summary

In this chapter, we explore the flow of research conducted from the perspective
of NLP on news quality classification tasks. This thesis will contribute to this
flow by combining manual stylistic and automatic contextual features and
incorporating traditional machine learning models into deep neural networks.

In this chapter, we deliberately did not mention the important work of

|Choi et alJ (bOZ]J) as we will describe it in the next chapter.
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3 Methods

In the previous chapter, we examined what and how researchers have studied
news quality prediction in natural language processing (NLP). In this chapter,
we will specify the data and the models that we will use.

As mentioned in Chapter E], the aim of this thesis is to develop a model to
predict news articles’ quality levels evaluated by readers automatically. For
this purpose, we use the news corpus and the quality levels collected by Choi

et al. (2021)), which is the base of this thesis.

3.1 Data from Choi, Shin, and Kang (2021)

3.1.1 News Corpus

The news corpus that Choi et al| (2021) collected comprises a total of 1,500
Korean newspaper articles on 11 social issues. Table El] shows the issues that
the news articles address. The articles were published by 21 news brands and

collected from Naver Newsﬁl from August 2017 to August 2018.

3.1.2 Quality Levels

Choi et al| (2021) conducted an online survey, and a total of 7,810 respondents,
controlled for gender and political ideology, rated the quality of articles they
read on the 10-point scale, in which 10 means the highest quality. As a result,
each of the articles got evaluated by more than 50 respondents. Next, the

quality scores were transformed into z-scores and then averaged. Finally, the

"https://news.naver. com
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Issue Articles

Minimum wage policy 191
Comprehensive real estate holding tax 158
South—North Korean summit conference 183
Yemeni refugee problem on Jeju island 138
The president’s constitutional amendment proposal 222
Fine-dust policy measures 71
Secret agreement on sexual slavery with the Japanese government 163
Resumption of the Shin-kori nuclear power plant construction 120
College Scholastic Ability Test reform 90
Repeal of the abortion law 58
Conscientious objection to military service 106
Total 1,500

Table 3.1: Number of news articles about each of the 11 issues

1,500 articles were grouped into five categories, from 1, very low, to 5, very
high, by their averaged z-scores. Each of the five categories has 300 articles.

This category, or quality level, is the target to predict.

3.1.3 Journalism Values

Another result of Choi et al)’s survey is the collection of seven journalism val-
ues of articles. In their survey, the respondents rated whether they strongly
agree (7), agree (6), somewhat agree (5), neither agree nor disagree (4), some-
what disagree (3), disagree (2), or strongly disagree (1) with the statements

provided:
e Factuality: The news article is based on facts.
e Readability: The news article is easy to read.

e Diversity: The news article addresses diverse perspectives.
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Objectivity: The news article is objective.

e Sensationalism: The news article appeals to emotion.
e Depth: The news article is in-depth.
o Believability: The article is believable.

According to their experiment, six of these values (except sensationalism) are
the strongest predictors of news quality. Their ablation study, presented in
Table @, showed that there would be a critical decrease (—74.5%) of accuracy

if excluding journalism values (or content attributes). Despite this result, we

take a different approach to that in |Choi et al] (I‘ZOQ]J) In this thesis, we do

not use journalism values and focus on linguistic features and their utilization.

Exact prediction +1 Prediction® Total
% A% % N% % A%
Full model 54.0% 37.0% 91.0%
No content attribute 7.9% —46.1% 8.6% —28.4% 16.5% —74.5%
No linguistic/formal attribute 13.0% —41.0% 9.8% —27.2% 22.8% —68.2%
No audience attribute 12.2% —41.8% 10.9% —26.1% 23.1% —67.9%

*+1 prediction indicates the one-point difference between the predicted and observed news quality scores.

Table 3.2: Accuracy change of test data by the elimination of individual
news/audience attributes (|Choi et alj, }202]])

3.2 Linguistic Features

3.2.1 Justification of Using Linguistic Features Only

Although they determined the prediction model’s performance, journalism

values are difficult to obtain. As |Choi et alJ (b02ﬂ) already pointed out, they
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require “the greater investment of respondents’ cognitive resources.” More-
over, a model’s applicability is also a problem. It is almost impossible to get
the journalism values of many news articles published in 1real-time.E On the
contrary, linguistic features can always be extracted from text.

In this thesis, we attempt to narrow the performance gap between “Full
model” and “No content attribute model” in Table @ by exploiting linguis-
tic features of news article text and a broad range of techniques in natural

language processing (NLP) and optimizing the model proposed by .

3.2.2 Two Types of Linguistic Features

With an expression of “linguistic features,” we refer to two types of features:

textual and co1r1textuaul.E’Ia

3.2.2.1 Textual Features

Textual features capture the textual content of a news article, such as stylis-

tic and sentiment features. Like “linguistic/formal attributes” in

2In addition to journalism values, quality scores also have limitations that can be ob-
tained accurately without surveys. However, the quality level is predictable in our model,
so we can extend the model using the highly reliable predictions as ‘silver dataset.’
3In NLP, the term textual is used in two ways: contrasting with contertual (
let all, lZO20) and contrasting with visual (boyal et all, I202]J). The latter contains all the
information obtained from the text. However, since our data is text unimodal, we use the
former in a narrower sense.

4There are also two usages for the term linguistic features. IPatil et al] (I202d) and
() contrast “raw, contextualized, information-rich” features from BERT with
“conventional, handcrafted linguistic features.” In this sense, contextual features are not
linguistic. On the contrary, a series of studies on probing BERT (k]onneau et all, R201§;
Clark et all, 120191; bawahar et al], Izmd; |Hewitt and Manniné, 0194; boenen et al, 2019;
Alt et all, 202d) uses “linguistic features” to encode semantic and syntactic information in
BERT. In this thesis, we adopt the latter usage in a broader sense.
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(2021)), they are obtained from hand-crafted rules. Chapter @ will detail their

subtypes.

3.2.2.2 Contextual Features

Contextual features capture the meaning of a word or a sentence. They are
automatically extracted from a contextual embedding model such as BERT

(Devlin et al), 2019). Chapter E will detail them.

3.3 Summary

In this chapter, we describe the data and the features we will use in the future.
Then, in the following two chapters, we will build models to reflect linguistic

features.
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4 Ordinal Logistic Regression Models with Textual

Features

This chapter investigates the roles of various textual features as factors affect-

ing audiences’ news quality evaluation.

4.1 Textual Features

To capture the writing style of articles and get independent variables, we pre-
process news articles and morphologically analyze them using KoNLPyE] (Park
and Cho, 2014), a Python package for Korean natural language processing. We
choose MeC’abB as our tagger because it allows users to add customized mor-
phemes to the tagging dictionary. POS tagging errors primarily committed
by proper nouns such as names are corrected by adding them to the user dic-
tionary. Furthermore, we extract textual features from the text concerning

multiple sources, including Coh-Metrix, KOSAC Lexicon, and K-LIWC.

4.1.1 Coh-Metrix

Coh-Metrix (Graesser et all, 2004, 2011) provides measures of language and
discourse for computational analyses of text characteristics. We obtain a total
of 19 Coh-Metrix factors at the word level and the sentence level, and list

them in Table [1!

Yhttps://konlpy.org/en/latest/
2https://bitbucket.org/eunjeon/mecab-ko-dic
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Level Feature Description or Examples

Word Syl_per_wd number of syllables per word

Function__content.ratio ratio of function words to content
words

Verbs relative frequency of verbs
Adjectives rel. freq. of adjectives
Adverbs rel. freq. of adverbs
Pronouns rel. freq. of pronouns
Pronouns_1P rel. freq. of first-person pronouns
Pronouns_ 3P rel. freq. of third-person pronouns
Connectives_ Additive o 74/MAJ, EESH/MAJ

Connectives_ Adversative I3 /MAJ, =20 /MAJ
Connectives_Causal_Logical 1lZ/MAJ, wh2kA /MAJ

Connectives_Disjunctive EE=/MAJ, &2 /MAJ
Connectives_ |dentity o] ZH}/MAJ, &/MAJ
Connectives__None
Connectives_Switch O=-d /MAJ, oBE/MAJ
Connectives_ Temporal O THA JEC, X]'U]'Z]'/EC
Negations QH/MAG, % /MAG

Sentence Morph_per_sent no. of morphemes per sentence
Passive.constuctions rel. freq. of & /XSV

Table 4.1: Coh-Metrix features

4.1.2 KOSAC Lexicon

KOSAC (Jang et al), 2013; Kim et al), 2013), or Korean Sentiment Analysis
Corpus, includes 7,713 sentence subjectivity tags and 17,615 opinionated ex-
pression tags manually annotated. Its lexiconE consists of morpheme n-grams
classified by their sentiment polarity (POSITIVE, NEUTRAL, NEGATIVE,

COMPLEX, None) and intensity (High, Medium, Low, None).

3http://word.snu.ac.kr/kosac
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Feature Description

relative frequency of morphemes that likely
appear when sentiment intensity is medium
.. when nested order is zero

.. when nested order is one

Intensity__Medium

nested_order_0
nested_order_1

polarity_ NEG .. when sentiment polarity is negative
polarity__None .. when sentiment polarity is none
polarity_POS .. when sentiment polarity is positive

.. when subjectivity polarity is positive
.. when subjectivity type is argument
.. when subjectivity type is judgment

subjectivity__polarity_ POS
subjectivity__type_Argument
subjectivity_type_Judgment

Table 4.2: KOSAC features

POS K-LIWC NE Predicate Others
NNP  posfeel EV obj_v morph_main
VCP hope LC exagg_v morph__title
EP anxiety 0G unconfirm_v INDR_QUOTE
SF posfeel PL doubt_v DR_QUOTE
anger PR sub_v_assert exclamation
sad PS sub_v_pls chinese
cognitive sub_v_exagg english
cause sub_v_expect foreignlang
think sub_v_concern  imagetable
expect sub_v_doubt cosine__sim__byissue
limit sub_v_argu no__reporter
specu sub_v__critic email
confirm sub_v_warn photographer
sub_v_eval byline
sub_v_explain byline__expertise
specul_v number
eval_v ordinal
anonymity

Table 4.3: K-LIWC and other textual features
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4.1.3 K-LIWC

K-LIWC (Lee and Yoon, 2005) is a Korean version of LIWC (Linguistic Inquiry
and Word Count) (Pennebaker et al), 2001) that categorizes words grammati-

cally and psychologically. Like KOSAC, it contains various sentiment features,

as shown in Table .

4.1.4 Others

We calculate the relative frequency of part-of-speech tags from Sejong Tag Set
(Kang and Kim|, 2004), named entities, and predicate types (Park, 2006). We
also measure text length from each news article and cosine similarity score

between articles.

4.2 Ordinal Logistic Regression

In this chapter, the dependent variable is each article’s quality level from 1
to 5. Since this variable is categorical and ordinal, we use ordinal logistic

regression (Brant, 1990) (or Cumulative Link Model), as Table @ indicates.

Variable Example Model

Binary Positive-Negative (Binomial) Logistic Regression
Nominal  Coffee-Tea-Water Multinomial Logistic Regression
Ordinal High-Mid-Low Ordinal Logistic Regression

Table 4.4: Types of generalized linear models with categorical responses

Before training the regression model, we need to establish two assumptions

to guarantee the validity of this model. First, we diagnose the multicollinear-
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ity among independent variables using variance inflation factors (VIF). We
report that all VIF values are smaller than 10, which assures that our model
is free from the problem of multicollinearity (O’Brien, 2007). Second, we con-
duct the Brant test (Brant, 1990), and it indicates our model does not violate
the proportional odds assumption with a high p-value (0.4) after excluding

nine variables: polarity_ NEG, subjectivity_polarity_ POS, EV, specul_v, Connec-

tives_ Disjunctive, Connectives_ None, Connectives_ Switch, Function_content.ratio,

and sad. Appendix @ includes the full results of the two tests.

4.3 Results

4.3.1 Feature Selection

We train the full ordinal regression model with 79 predictors using the ordinal
package (Christensen, 2019) in R version 4.0.5 (R Core Team, 2021) and select
47 significant textual variables using the stepwise AIC (Akaike Information
Criterion) method. We conduct the analysis of variance (ANOVA) between
the full model and the selected model. As shown in Table @, the p-value
(p = 0.9861) justifies using the selected model because it does not significantly

lose the explanatory power of the full model.

Model No. of parameters AIC logLik LR.stat df P(> x?)

Selected 47 4526.9 -2216.5
Full 79 45739 -2207.9 17.006 32 0.9861

Table 4.5: ANOVA results between the full model and the selected model
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4.3.2 Impacts on Quality Evaluation

In the selected model, a total of 15 out of 47 independent variables are statisti-
cally significant with a p-value < 0.01. As reported in Table @, six variables
have positive coeflicients, and nine variables have negative coefficients. Since
we converted all independent variables to the same scale by standardizing
them to have zero mean and unit variance (e.g. [1,2,3] to [—1,0,+1]), we can
interpret their coefficients as their impacts on audience-rated news quality

level. In the next section, we will discuss these factors in detail.

Feature (Positive) Coefficient Feature (Negative) Coefficient

cosine_sim__byissue +0.44739 specu —0.19973
imagetable +0.25556 sub_v_exagg —0.19086
number +0.24245 PR —0.18261
anger +0.16040 Pronouns_3P —0.17611
obj_v +0.15700 Connectives__Adversative —0.17392
VCP +0.14429 hope —0.16338
photographer —0.13969
cause —0.13499
Connectives_ ldentity —0.12334

Table 4.6: Statistically significant variables and their coefficients, ordered by
magnitude

4.4 Discussion

In the previous section, we have found which linguistic factors play a crucial
role in predicting audience-rated news quality levels. To investigate their
effects more clearly, we visualize their distribution at each quality level using

box-whisker plots in Figures El] and @ Each panel corresponds to one
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independent variable.

From this visualization, we can recognize that some variables have a more
consistent effect than others. For example, in Figure El!, all five boxes in the
obj_v and VCP panels are at the same height. That means their values are
similar across quality levels; therefore, their impact is less distinct. On the
other hand, the boxes in the other four panels go up as the quality level in-
creases, which implies that their values correlate positively with quality levels.
In this way, we can identify the most influential variables, four positive ones
(cosine_sim__byissue, numbers, imagetable, and anger) and two negative ones
(sub_v_exagg and hope). To analyze their effects, we classify these six factors

into three groups:
1. cosine_sim__byissue,
2. numbers and imagetable,

3. anger, hope, and sub_v_ exagg.

4.4.1 Effect of Cosine Similarity by Issue

As shown in Table @, the cosine_sim_byissue factor has the greatest coef-
ficient (+0.44379) among all independent variables. The cosine_sim_byissue
factor is defined by the average cosine similarity between a given news article
and the other articles of the same issue. To calculate cosine similarity values,

we use TF-IDF weighted vector embeddings.

Each of the news articles on the same issue, say d, is converted into a
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Standardized value
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Figure 4.1: Distribution of each positive factor in news quality level
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TF-IDF vector by Equation @

TF-IDF(t,d) = TF(t,d) x IDF(t) for each ¢t € Vocabulary (4.1)

TF(t,d) = logyq [1 + count(t, d)] (4.2)

[the number of articles]

IDF(t) = log;, (4.3)

[the number of articles containing

The term frequency TF(t, d) measures how important a term ¢ is in a document
d, and the inverse document frequency IDF(¢), how much information the term
t has in the corpus. Therefore, a high value of TF-IDF(¢, d) indicates the term
t has much information and is important in the document t.

Now, given two vectors,
- Rd d o= Rd
U= (v1,v2, -+ ,v4) € R" and & = (w1, wa, - ,wq) € R,

we can calculate the cosine similarity between them. Let 6 be the angle be-
tween ¥ and @w. Then, from the fact that ¥ - @ = Zle (viw;) = |U]|d| cos b,

the cosine similarity is defined as Equation Q

U-

Z?=1 (viw;)

d 2\d 2
D im1 Vi D i W

cossim(¥, W) = cos(#) =

w
] (4
Finally, we can get the cosine_sim_byissue factor. As we mentioned earlier
in this subsubsection, it is the average cosine similarity between a given news
article and the other articles of the same issue. Let there be n articles on the

same issue, and v7, s, - - - , U, denote the TF-IDF article vectors. Then, the

cosine_sim_byissue value of the j-th article is defined as Equation @

N 1 ¢ NP
cosine_sim_byissue = w1 lz:i.COSSIm(quj) (4.5)
i=1,i#]
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Why do audiences consider a news article as of higher quality when it
overlaps more with other articles, as Choi et al, (2021) already reported?
Ideally, an article has the highest cosine_sim_byissue value if its vector is
parallel to the sum (or the center of gravity) of all TF-IDF vectors on the
same issue, which means that it is the concatenation of all the other articles.

The news articles in (E) and (H) on Shin-Kori nuclear power plant are
good examples. The article in (E), whose cosine_sim__byissue values are 0.817,
delivers stories from five sources—the industry, the academy, the ruling party,
the opposite party, and the non-government organizations. On the contrary,
the article in (H), providing only the ruling party’s perspective, shows the
lower value, 0.497. Notably, news audiences evaluated the former as very high

and evaluated the latter as very poor.
(3) Article on Shin-kori plant with quality level 5 (very high)
[(Aeh o]t Ao ofof YU EE AFAAl E &HA|, L 21981, AIRITA] 5 o] 3

GAlRbe] HAHL IA Qe A 5657 A AMAH S AA @ YA 8

(4) Article on Shin-kori plant with quality level 1 (very low)
(e g A4 gL 2D 139 FY 2ol A «FoshA =i 22600021912
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4.4.2 Effect of Quantitative Evidence

The next largest coefficients in Table @ are from the imagetable (+0.25556)
and number (40.24245) variables. These values are the relative frequency of
images, tables, and numbers in a news article. Since their coefficients are
positive, the more images and numbers an article has, the higher quality it
gets.

We notice that numbers, images, and tables express quantitative evidence.
Audiences consider a news article as objective if it has sufficient quantita-
tive evidence. For example, the article in (B) demonstrates various precise

numerical values and is evaluated as high quality (score 4).

(5) Article on real estate holding tax with quality level 4 (high)
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4.4.3 Effect of Sentiment

In this subsection, we discuss the effect of sentiment expression on news quality.
The related variables are sub_v_exagg (—0.19086), hope (—0.16338), and anger
(+0.16040).

First, the sub_v_exagg variable and its negative coefficient mean that an
article is more probably low-quality if it has exaggerations. For example,
audiences evaluate the article in (8) containing many extreme nouns and verbs
such as ‘G5 gust, ‘It F= HAZTE throw himself, ‘FHEF" relief pitcher,
and ‘YT’ revolution as very low quality (score 1). We explain this observation

as exaggerative expressions reduce the credibility of a text.

(6) Article on constitutional amendment with quality level 1 (very low)
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Second, more interestingly, our data shows that anger relates to high qual-
ity (40.16040), and hope relates to low quality (—0.16338). We hypothesize
that this result suggests that audiences sympathize with anger from victims
and disapprove of uncritical hope. The article in (H) supports our assumption.
It has the seventh-highest anger value among the 1,500 aurticles.E It explicitly

requires a patient-centered approach to the military sexual slavery problem.

(7) Article on sexual slavery with quality level 5 (very high)
S RV L2 IR wsiA A o) S =Eshs Aol A gl
gy FolAl= gof ok Brdd Uil tis 712 <l H& SHA| ¢h= 5w alizk S A

ol £EYH o2 Eajyn,

A

rok

- QR Sloky Wl BA B HE A

4Although there are not many expressions of anger directly in this article, K-LIWC
analyzed its anger value as very high. We hope to learn more about the internal mechanism
of K-LIWC in the future.

49



SEA(TF - ola} Elom) = 079 A& AT BIAES YL «(2 22 HEA.
27hol7] )2 Shel, FAIAE vt ] A 5 B2 Zo] Hsfof & 77} Y
2ol A= (TaAFSolA) FAM 02 d2iF) ehoteh m Wtk BINE el
olmui oo 2 Wol A A% 7 o) Wl o

o sfolgt 2% 15342 0|4 Wala L el GAIS AEUT Eolmi E comrs

¥
=2
B=
B=)
fu
rL
i
£
rulo
e
o ofN
33
£
Rl
il
3o
ul
_o|l_1
R
rU
b
ofN
2
mlm
_}lﬂ
&&
o
i
=2

Ak Bloj T = r5ieh. e Elol T 9472 o 7| 23] Zol A « T o]
AEE ok sl A A wjsit S92 ol2tar st |t H 2l mjsixtsel 542
A o] = Aol Fasithr o] «T150] o 845 5k o]\ A2 Hih=A) Wobs
ol Zlo] Featrhr L TRch 20159 12928 WHSH Frojof et St PR FER

WEG 3] AR AT o) B FEIE 109490 (10899 & SN2 FYohE 2

The article in (E) is another example. We suppose that audiences perceive

its hopeful expressions as excessive and then rate it very low.

(8)

Article on South—North Korea with quality level 1 (very low)
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4.5 Summary

In this chapter, we have analyzed the data statistically using textual features

and ordinal regression, and discussed the factors influencing audience reception

of news articles. We found that news audiences are more receptive to an article

if it delivers more diverse perspectives, quantitative evidence, anger (mainly

from victims), and less exaggeration or uncritical hope.

The limit of our study is that we did not deal with sufficiently more detailed

facets of news quality, such as credibility, objectivity, and diversity. We also

(not uncritically) hope that we get more insight on factors that seemed less
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consistent, such as obj_v and VCP.
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5 Deep Transfer Learning Models with Contextual

Features

In the previous chapter, we examined the influence of stylistic features on
news quality. This chapter introduces another type of linguistic aspect of
article texts, contextual features, then discusses the development of SBERT
to quantify those features, and finally uses Deep Transfer Learning to predict
news quality levels using contextual qualities. In addition, we compare the
models in terms of their performance in news quality prediction.

Given a dataset, we normalize texts from news articles in the following way:
First, HTML tags, special characters such as circled characters, parenthesized
strings, and Chinese characters are removed. It is known that this process can
improve a model’s performance, especially for Korean.ﬁl Second, we tokenize
the texts into sentences using Korean Sentence ,S*pliltter.E From these sentences,

we extract contextual features.

5.1 Contextual Features from SentenceBERT

The expression “contextual features” contrasts with existing methods, such as
TF-IDF, Word2Vec, and GloVe, representing the meaning of words as vectors,
which are not contextual. Instead, they represent a single word as a single
invariant vector to a word. Thus, a word always has the same vector in

all possible contexts and cannot reflect polysemy. On the other hand, in

"https://github. com/monologg/KoELECTRA/blob/master/docs/preprocessing.md
2https://github.com/likejazz/korean-sentence-splitter
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contextual language models, the vectors of the same word vary depending on
the context. The context models include LSTM-based pre-trained language
models such as ELMo (Peters et al}, 2018) and Transformer-based models such

as BERT (Devlin et al., 2019).

5.1.1 Necessity of Sentence Embeddings

BERT (Devlin et al, 2019) is the state-of-the-art model for NLP tasks. As
we described in Subsubsection , its WordPiece tokenizer segments a
sentence into subword tokens. Theoretically, the number of tokens can be ar-
bitrary, but many pre-trained models limit the maximum length of a sentence
to 512 or less for computational 1"eansons.E This value is not much of a limit

for general sentence classification tasks, but it invokes a problem for our data.

We count the word tokens in each article, and the result is as shown in
the picture. As shown in Figure @, nearly half of the articles consist of more
than 512 tokens. Therefore, most existing pre-trained BERT models cannot
read a complete article which will hinder the correct prediction of the quality
of the article. This problem is severe for articles with higher quality is because
articles with higher quality tend to be longer. On the other hand, Sentence-
BERT, or SBERT, can solve these problems because it assigns a vector to a

sentence rather than a word.

3In the multilingual BERT model, max_seq_length is set to 128.
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Figure 5.1: Distribution of news article lengths in tokens for each quality level

5.1.2 KR-SBERT

SBERT (tReimers and Gulrevych|7 bOld) is a modification of the BERT net-

work. It derives semantically meaningful sentences using siamese and triplet
networks. It processes sentences typically with a maximum sequence length
of 128 tokens, produces a fixed size sentence embedding of 768 dimensions
by mean pooling, and updates the weights “such that the produced sentence
embeddings are semantically meaningful and can be compared with cosine-
similarity.”

Since our dataset is written in Korean, we need a model that works well

for the Korean language. For this purpose, we first prepare two pre-trained

models, KR-BERT-MEDIUM (Lee et all, 2020) and KR-BERT-v40K ! and

fine-tune them from KorNLI and KorSTS data (IHam et al.|, |2O2d)E We name

these SBERT models KR-SBERT-MEDIUM-NLI-STS and KR-BERT-v40K-

NLI-STS.

‘https://github.com/snunlp/KR-BERT
Shttps://github.com/kakaobrain/KorNLUDatasets
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Then, to examine the effects of the quantity and the quality of data, we
augment our SBERT model on the KorSTS dataset using the In-domain ap-
proach suggested by Thakur et al, (2020) (see Figure @) Finally, we fine-tune
our KR-SBERT model on Klue-NLI data (Park et al}, 2021)), a refined version

of KorNLI.

5.2 Deep Transfer Learning

This section shows how we use the contextual features obtained from the KR-
SBERT models for news quality prediction. Given an article, we tokenize it
into sentences and feed the sentences to the KR-SBERT model to get contex-
tual features. As a result, we obtain a sequence of sentence vectors and use it
as an input. Instead of training a new classifier from scratch, we transfer the

KR-SBERT models to our task.

Figure @ illustrates our transfer learning from SBERT. We add a [CLS]
token to the first of sentence sequence, input the KR-SBERT embeddings to
bidirectional transformers, and get a quality prediction as an output. With

this approach, we contextualize sentence vectors.

To implement transfer learning, we borrow and modify a BertForSequence-
Classification class using the transformers library (Wolf et ali, 2020) by Hug-

gingFaceE and replace its weights with KR-SBERT’s.

Shttps://huggingface.co/transformers/

o6
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5.3 Results

5.3.1 Measures of Multiclass Classification

We measure the performance of our models in exact accuracy and one-off

accuracy. Assume that we have a set of the predefined classes

K:{1727 7k}7

a set of data,

D = {(Z1,51), (T2, 12), - » (T, yn)}

for each #; € R? and each y; € K for i = 1,2,---,n, and a classification
function mapping #; € R? to f(#;) € C. Let ¢; denote f(&;) and then (y; — §;)

is called a prediction residual.

Notation Meaning

T; i-th input data
Vi i-th true label (class)
Ui i-th prediction

y;i —9;  i-th residual

Table 5.1: Data and Prediction

Let 1 be an indicator function and s be a statement. This means that 1(s)

is 1 if s is true, and as Equation @

1 if sis true
1(s) = (5.1)
0 if s is false
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Model Exact Accuracy 1-off Accuracy

Random baseline .2489 6178
KR-BERT-MEDIUM .3467 7200
KR-BERT-v40K .3333 7067
KR—SBERT—MEDIUM—NLI—STSH .3156 .6356
KR-SBERT-v40K-NLI-STS .3967 7667
KR-SBERT-v40K-NLI-augSTS .4033 7500
KR-SBERT-v40K-KlueNLI-augSTS .4233 7567

Table 5.2: Prediction performances of Transformer models

Then the exact accuracy and the one-off accuracy are defined as the following.

1o )
Exact accuracy = - Zl 1(lyi — 9i| =0) (5.2)
1=
(Number of correct predictions)

(Total number of predictions)

1< A A
One-off accuracy = - z; 1(lyi — 9l =0 V |y —9:| = 1) (5.3)
1=
(Number of correct or adjacent predictions)

(Total number of predictions)

5.3.2 Performances of news quality prediction models

Table @ shows the performances of random baseline, KR-BERT models, and
KR-SBERT models. The most crucial work, comparison with Choi et al,

(2021)), will be done in Chapter 6.

"Since KR-SBERT-MEDIUM has the same weights as KR-BERT-MEDIUM, we did not
use the model in comparison.
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¢ Data and classification results

Let us assume that we have n = 5 data and k = 3 predefined classes, and
our classifier f predicts classes for the data as the table below illustrates.

Input True Predicted Absolute
data class class residual Correct? Adjacent?
1 Y1 =2 g =2 ly1 — 41| =0 Yes Yes
To Y2 =3 Uz =1 [y2 — | =2 No No
f3 y3:3 Q3:2 ‘yg—?fgl =1 No Yes
Ty ys =1 Ja=1 lys — ya] =0 Yes Yes
T Ys = Us =3 lys — 45| = 1 No Yes

e Calculating accuracies using prediction residuals

1
Exact Accuracy = £ (1+404+0+1+40)=

1
One-off Accuracy = 3 14+0+1+1+1)=

=04

=0.8

(S § TN, J )

e Calculating accuracies using a confusion matrix

Orange indicates that the true label is equal to the predicted labee and
yellow, the true label is adjacent to the predicted label.

Predicted

1 2 3

ol 1 1 0 0
5 2 0 M 1
3 1 1 0
Predicted

1 2 3

ol 1 1 0 0
5 2] 0 [ 1] 1
3 1 1 0

Exact Accuracy
B 14140
(14040 +(0+1+1)+(1+1+0)

2
5
=04

One-off Accuracy

(14140 +04+1)+(0+1)
(14040 +(0+1+1)+(1+1+0)

4
5
0.8

Figure 5.4: Toy example of calculating exact and one-off accuracies
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5.4 Discussion

From Table @, we can see that SBERT models have the better performance
than random baseline and BERT. Moreover, the difference among SBERT
models are also observed. The differences in performance shown above suggest

at least three things to us.

5.4.1 Effect of Data Size

First, we compare KR-SBERT-MEDIUM-NLI-STS with KR-SBERT-v40K-
NLI-STS. The latter shows higher accuracy scores than the former. The dif-
ference between the two models comes from the size of KR-BERT. We observe
that KR-BERT-v40K, which is larger than KR-BERT-MEDIUM, makes its
SBERT version more effective. This is because the larger the model size, the

larger the number of parameters, so the model can contain richer information.

5.4.2 Effect of Data Augmentation

The second thing we can look at in the experimental results is the effect of
data augmentation. As shown in Table @, the classification accuracy of
fine-tuned models in augSTS instead of STS rose from .3967 to .4043. This
observation also corresponds to the results of Thakur et al| (2020) where data
augmentation was first introduced. Larger data allow for fine-tuning of siamese
networks through more sentence-pair relationships. More information can be

obtained from more data, which affects increasing quality.
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5.4.3 Effect of Data Refinement

Thirdly, we can observe the effect of data refinement. As shown in Table @,
the classification accuracy of the fine-tuned model in KlueNLI instead of NLI
increased from .4033 to .4233. If the data is refined, fine-tuning is possible for
more correct sentences. We contribute to increasing the quality of the model
by providing more correct sentences when fint-tuning SBERT. In particular,
it is worth noting that we have obtained these results even though the number
of data in klueNLI is significantly smaller than that of KorNLI. We conclude

that quality, as well as quantity of data, is essential.

5.5 Summary

In this chapter, we have selected and trained SBERT models to obtain contex-
tual features to be used for news quality predictions. SBERT, which expresses
the meaning of sentences, can process words longer than BERT, making it
suitable for article data consisting of dozens of sentences. We have prepared
the SBERT model on various pre-trained BERT and fine-tuning data. The
results confirm that quality prediction performance increases when the larger

BERT model is applied to refined and augmented data in turn.
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6 Fusion Models Combining Textual Features with

Contextual Sentence Embeddings

In the previous chapter, we show that automatic prediction of news quality is
possible using contextual features. In this chapter, we will examine whether
contextual features perform better when combined with stylistic features, and

compare these results with those of Choi et al) (2021).

6.1 Model Fusion

In this section, we present two ways to fuse a model using contextual features

and a model using stylistic features.

6.1.1 Feature-level Fusion: Concatenation

First, the fine-tuned BERT model uses the [CLS] token’s embedding for se-
quence classification. We call this embedding a contextual feature vector. We
modify BERT Transfer Learning Model by concatenating a stylistic feature
vector into a contextual feature vector. Then the concatenated vector is input
into a feed-forward neural network for classification as in BERT’s fine-tuned

models.

6.1.2 Logit-level Fusion: Interpolation

We suggest another method other than vector concatenation to combine stylis-
tic and contextual features. We keep the two models, one logistic regression

and one BERT transfer learning, from the two types of features but fuse their
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logit. That is, we use a weighted sum (@) of logits from two models.
lOgitfusion =axX 1Ogitcontextual + (1 - Oé) X 1Ogitstylistic (O <a< 1) (61)

to find the proper value of «, we try different values from 0.1 to 1.0 for a.. As

a result, we find that value of 0.8 gives the best performances, as shown in

Figure @

6.2 Results

After training two classifiers, we measure our results in exact accuracy, one-off

accuracy, and macro average F].

6.2.1 Optimization of the Presentational Attribute Model

First, we optimize the Presentational Attribute Model of Choi et al. (2021)) to
compare its result to ours. For a fair comparison, we tune the hyperparameters
of Feed-forward Neural Networks so that their presentational attributes can

work effectively and list the results in Table @

6.2.2 Performances of News Quality Prediction Models

Table @ summarizes the results of our experiments and Choi et all’s. All
models outperform the random baseline.

6.3 Discussion

In this section, we analyzed the experimental results in two main dimensions.
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Figure 6.3: Performances of the logit-level fusion model for different values of
« from 0.1 to 0.9.
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1-off Acc.

No. of Hidden layers Hidden size Dropout rate Exact Acc.

1 128 .50 .1666 4633
1 128 .25 .2033 .5933
1 128 .00 .1900 .4900
1 64 .25 .2067 .5967
1 32 .25 .1600 .5567
2 64, 64 .25 .1633 .3300
2 64, 32 .25 .2667 .6700
2 64, 16 .25 .1967 4633
3 64, 32, 16 .25 .1667 .5367

Table 6.1: Hyperparameter optimization of Presentational Attribute (Linguis-
tic features) Model in Choi et al| (2021)). We use AdaGrad as an optimizert

and batch size of 128.

Model Exact Acc. 1-off Acc.
This Thesis:

Logistic Regression with stylilistic features .3467 .7200
Transfer Learning with contextual features 4033 .7500
Feature-level fusion 4167 7867
Logit-level fusion (o = 0.8) .4200 7567

Choi et al| (2021):

Full Model .5400 .9100

No Content Attribute Model .0790 .1650
Presentational Attribute Model (Our optimization) .2667 .6700

Table 6.2: Prediction performances of fusion models

6.3.1 Effects of Fusion

First, stylistic features and contextual features work better together. Both

Feature Concatenation and Logit Sum take effect.

Feature Concatenation

gets the highest one-off accuracy of .7867 among our models, and Logit Sum

gets the highest Macro F} of .3918. This result suggests that we need both

two linguistic types for news quality prediction. Even in the age of BERT,
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handcrafted stylistic features still prove their usefulness.

6.3.2 Comparison with Choi et al. (2021)

Second, our method improves prediction just using linguistic features only
(one-off accuracy of .7867), comparing with Choi et all’s Presentational At-
tribute Model (one-off accuracy of .6700). However, our model does not work
as well as Full Model (one-off accuracy of .9100).

The results again show that journalistic values obtained through a survey
are powerful in predicting news quality. However, we prove that linguistic
factors can be utilized more effectively by increasing the accuracy of 67.00%
to 78.67%.

Our results also suggest that the task of article quality classification can
be applied to everyday life. Still, collecting journalistic values for new data all
the time is time-consuming and costly. On the other hand, linguistic features
are readily available to anyone with text. The accuracy of our model means
that it is worth attempting to classify the quality of daily articles that cannot

be surveyed.

6.4 Summary

In this chapter, we have presented a new method for the task of news qual-
ity prediction. We observe that contextual features extracted by a Sentence
Transformer model are useful for quality classification, and handcrafted stylis-
tic features also plays an essential role. We emphasize that contextual and

stylistic factors should be considered together to select more relevant news.
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7 Conclusion

This thesis posed the question: Can we predict the quality of news articles by
only using the linguistic properties of the articles? To answer this question,
first, we adopted the task of predicting news quality scores rated by audiences
and the news and survey data used by Choi et al| (2021) in Chapter E Then we
set the two types of linguistic features, namely stylistic features and contextual
features. Next, we identified which stylistic features effectively explain the
news quality scores in Chapter @ To obtain adequate contextual features, we
built a Transformer-based sentence representation model (KR-SBERT) and
strengthened our model using data refinement and augmentation in Chapter
a. Finally, we incorporated two types of linguistic features using feature-level
fusion and logit-level fusion in Chapter B When we evaluated our models,
both fusion methods showed better prediction performance than non-fusion

models and random baseline. Therefore the answer to the above question is

By developing a model that automatically predicts the quality of news-
paper articles, our work can contribute to machine processing and providing
high-quality articles, which is difficult for humans to process manually. In
addition, the regression model selects features that play a significant role in
classification performance, which can reveal linguistic factors that may affect
the quality of articles and provide a new perspective on existing social science-
oriented research. On the other hand, the KR-SBERT model developed in this
work can also be applied to process long texts from other fields that have been

difficult to process with BERT in natural language processing.
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The limitation of our study is that our experimental results are not as

promising as the performance of the full model in bhoi et alj (|202]J), which

includes not only stylistic features but also journalistic values as factors. With
this as future work, we hope to examine more diverse linguistic factors, such as
discourse features, and explore the potential for improvement in Transformer

models.
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A List of Words Used for Textual Feature

Extraction

A.1 Coh-Metrix Features

o Connectives_Causal_Logical: 11=/MAJ, :LEH*‘]/MAJ, :Laicﬂ/MAJ, a
2B & /MAJ, 18 /MAJ, Z12ijof/MAJ, m2hA /MAJ, B /EC, 2 /EC,
™ /EC, 2/EC, 2 /EC, 2H/EC, 2B & /EC, o} /EC, oA /EC

« Connectives_Disjunctive: A /MAJ, E=/MAJ, oFY™H /MAJ, & /MAJ,
A /EC, EA/EC

« Connectives_Additive: 18|31 /MAJ, B4/MAJ, T80 /MAJ, =3/ MAJ,

a2l /MAJ, 2™ /EC, IL/EC

o Connectives_Adversative: “12{L}/MAJ, T¥ 2|9/ MAJ, THiH/MAJ, ©/MAJ,
2ol /MAJ, 2312] /MAJ, 5H%/MAJ, E2hE /EC, 2 /EC, oh% /RC,
o] /EC, QU/EC, ATH/EC, HA/EC, SFA/EC

« Connectives_ldentity: 29 /MAJ, ©|£H}/MAJ, & /MAJ

o Connectives_Switch: 12 /MAJ, I3 H|/MAJ, <t /MAJ, o= /MAJ,

& /MAJ, £Hl/EC, H/EC, &H|/EC

« Connectives_Temporal: 2HA]/EC, AHPFR}/EC, M /EC, A /EC, AH/EC,
o™ /EC

o Negation: F/MAG, %/MAG, §l/VA, X/VX, &/VX, °}/VCN

93 !



« Passive Construction: & /XSV, ¥ /XSV+ETM, 2 /XSV+ETM, & /XSV+ETN,

= /XSV+EC, 1 /XSV+EP

A.2 Predicate Type Features
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B Codes Used in Chapter @

B.1 Python Code for Textual Feature Extraction

import re
from numpy import mean
import pandas as pd

content = ( , , , , )
verbs = ( ,
adjectives = (
adverbs = ( R
pronouns = ( s
negations = (
(s

0 £2 o

o
LS

ot

N~~~

)
passives = (

(& ),
=
=
=
|
=
&
£H

oS

N~~~

)
connectives = {
¢ (
12 | J20 | OJH | J2{2 2 | 33 | J2{0f | [M2fA]
CHH | 2IHH | | 22| oL oM | o0&

Oto1] M 7t-g = ,
),
N
LHX| | EE= | OfLH | =2 ,
7Lt EX] ,
),
: (
g0 | HPL HS0] | 3 R ,
Ut o[ R
il 7t-g ,
),
: (
J2iLb | X[ CHek o 22|of | 23| | 8RB ,
o2tz |2t Oz | o= | Lt X2 ,
O7HAM =
) s
(
PEIIIETRES ,
),
: (
Jefe | I3 24| | oM E ot ,
=l = |2 s
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def

def

def

0
g
>

q | ROFXE ,

olod
AA HA

),

OfmCH A | o2
),

isnegation(wd, tag):

return any(wd.startswith(w) and tag.startswith(t) for w, t in negations)

split_sentences (pos):
sentences = []
sent = []
for wd, tag in pos:
sent.append ((wd,
if ta
sentences.append(sent)
sent = []
return sentences

tag))

is_in(pos,
_pos = []
pos_str = [
for s in zip([
_pos.append (

search_target):

.format(wd, tag) for wd, tag in pos]
J+pos_str[:-1], pos_str, pos_str[1:]+[
.join(s))
match = s) else False
res =

lambda r, s: True if re.search(r,

assert(len(pos) == len(res))
return res

text_features = []

for

issue_id, issue in data.items():
for news_id, news in issue.items():

pos = news|[ ] + news[ ]
sub_pos = news|[ ]

body_pos = news[ ]

text = news['Z[AHEHST ] + + news [
news_features = {}

news_features [ ] = issue_id
news_features[ ] = news_id
news_features [ 1A\

= mean(list(map(len, re.sub( s
news_features|[ I\

= mean([tag.startswith(
news_features|[ I\

= mean([tag in verbs for wd, tags in pos for tag in tags.split(

N

news_features[

1):

[any ([match(r, s) for r in search_target]) for s in _pos]

, text).split())))

) for wd, tags in pos for tag in tags.split(

D

= mean([tag in adjectives for wd, tags in pos for tag in tags.split(

N

news_features[
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= mean([tag in adverbs for wd, tags in pos for tag in tags.split('+')])
news_features['Pronouns ']\
= mean([tag in pronouns for wd, tags in pos for tag in tags.split('+')])
news_features['Pronouns_ 1P ']\
= mean([tag in ('NP') and wd in C'Lt', 'Lf', ‘M3, KO\
for wd, tags in pos for tag in tags.split('+')])
news_features['Pronouns_3P ']\
= mean([tag in ('NP') and wd in ('3, 'J&', 'J3l{ )\
for wd, tags in pos for tag in tags.split('+')])
news_features['Function-content ratio']\
= sum(l for wd, tags in pos for tag in tags.split('+') if tag not in content)
/ sum(1 for wd, tags in pos for tag in tags.split('+') if tag in content)
news_features['Negations ']\
= mean([isnegation(wd, tag) for wd, tags in pos for tag in tags.split('+')])
news_features['Morph _per_sent ']\
= mean(list(map(lambda x: sum(l for wd, tags in x for tag in tags.split('+')),\
[sub_pos] + split_sentences(body_pos))))
news_features['Passive constuctions']\
= mean([(wd, tag) in passives for wd, tags in pos for tag in tags.split('+')])
for group, items in connectives.items():
news_features['Connectives_'+group]\
= mean(is_in(pos, items))
text_features.append(news_features)
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C Results of VIF test and Brant test

C.1 VIF Test in R

> car::vif(fit)
morph_main
2.837040
intensity_Medium
3.027354
nested_order_1
3.434747
polarity_None
2.323209
subjectivity_polarity_POS
5.138101
subjectivity_type_Judgment
1.576642
LC
1.373148
PL
1.111751
PS
1.211257
VCP
1.560524
obj_v
1.663865
unconfirm V
1.213634
sub_v_assert
1.081239
sub_v_exagg
5.323231
sub_v_concern
1.194833
sub_v_argu
3.334815
sub_v_warn
1.327885
sub_v_explain

morph_title
1.157623
nested_order_0O
1.672702
polarity_NEG
1.929556
polarity_POS
1.251931
subjectivity_type_Argument
4.351342

EV

1.064146

0G

1.492182

PR

1.182568

NNP

2.203353

EP

2.941629
exagg_v
1.058919
doubt_v
1.064224
sub_v_pls
1.171609
sub_v_expect
1.148599
sub_v_doubt
1.045112
sub_v_critic
2.610492
sub_v_eval
1.153307
specul_v
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1.211018

eval_v

1.205930

DR_QUOTE

1.598113

Adverbs

1.482884
Connectives_Adversative
2.200157
Connectives_Disjunctive
1.130394
Connectives_None
1.098877
Connectives_Temporal
1.508298
Morph_per_sent
2.348938
Passive.constuctions
1.211412

Pronouns_1P

1.210126

Syl_per_wd

1.628319

exclamation

1.166576

english

1.241672

imagetable

1.562047

no_reporter

1.176389
photographer
1.283665
byline_expertise
1.236574

hope

1.242688

anger

1.301139

cognitive

1.357412

INDR_QUOTE

1.970833

Adjectives

1.703327
Connectives_Additive
1.841902

Connectives_Causal_Logical

1.313530
Connectives_Identity
1.082921
Connectives_Switch
1.172523
Function_content.ratio
3.532372

Negations

1.737998

Pronouns

1.773108
Pronouns_3P
1.511483

Verbs

3.863148

chinese

1.105881
foreignlang
1.321674
cosine_sim_byissue
2.138898

email

1.179887

byline

1.239598

posfeel

1.393100

anxiety

1.189981

sad

1.181155

cause
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5.293974 1.386179

think expect
2.372513 2.582965
limit specu
1.260765 2.668279
confirm number
2.427890 4.291127
ordinal anonymity
1.075554 1.251848

C.2 Brant Test in R

> brant::brant(fit2)

Test for X2 df probability
Omnibus 229.5 225 0.4
morph_main 2.86 3 0.41
morph_title 5.1 3 0.16
intensity_Medium 0.94 3 0.82
nested_order_O 0.93 3 0.82
nested_order_1 0.77 3 0.86
polarity_None 0.3 3 0.96
polarity_POS 2.45 3 0.48
subjectivity_type_Argument 1.2 3 0.75
subjectivity_type_Judgment 3.2 3 0.36
LC 1.06 3 0.79
0G 2.66 3 0.45
PL 2.75 3 0.43
PR 2.94 3 0.4
PS 2.11 3 0.55
NNP 1.32 3 0.72
VCP 0.71 3 0.87
EP 1.19 3 0.75
obj_v 2.16 3 0.54
exagg_v 3.26 3 0.35
unconfirm_V 6.23 3 0.1
doubt_v 0 3 1
sub_v_assert 2.18 3 0.54
sub_v_pls 0.53 3 0.91
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sub_v_exagg
sub_v_expect
sub_v_concern
sub_v_doubt
sub_v_argu
sub_v_critic
sub_v_warn
sub_v_eval
sub_v_explain

eval_v

INDR_QUOTE

DR_QUOTE

Adjectives

Adverbs
Connectives_Additive
Connectives_Adversative
Connectives_Causal_Logical
Connectives_Identity
Connectives_Temporal
Morph_per_sent
Negations
Passive.constuctions
Pronouns

Pronouns_1P
Pronouns_3P
Syl_per_wd

Verbs

exclamation

chinese

english

foreignlang
imagetable
cosine_sim_byissue
no_reporter

email

photographer

byline
byline_expertise
posfeel

hope

WEFRk, WWONRFOOTWERELRDMdMNPWFRLROFRLPPRPLPONMNMONEFEFRPEP, WORFL, WEFE, WORLNPRFE, OOLR OO -
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.17
.99

.69

.06
.16
.51
.67
.71
.93

.35
.65
.76

©

.59
.81
.59
.66
.13
.09
.64
.31
.23
.99
.34
.58
.19
.83
.58
.57
.46
.15
.92
.23
.22

W W WwWwwwwwowwowowowowowowowowowowowowowowowowowowowowowowwowowwowwwow

O O O O O O OO OO OO OO OO0 OO ODODODODODODODODOOOO0OOLDOLLOLOOEHOODO

.76
.11

.88
.73
.07
.76
.92

.64
.27
.61
.15

.62
.68
.41
.87
.46
.42
.09
.65
.25
.78
.13
.73
.36
.17
.23
.66
.36
.08
.66
.46
.93
.37
.27
.75
.36



anxiety
anger
cognitive
cause
think
expect
limit
specu
confirm
number
ordinal
anonymity

HO: Parallel Regression Assumption holds
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D Codes Used in Chapter H

D.1

Python Code for Feature-Level Fusion

from transformers.models.bert.modeling_bert import =*

class BertForSequenceClassificationConcat(BertForSequenceClassification):

def

__init__(self, config):
super ().__init__(config)
self .num_labels = config.num_labels

self.bert = BertModel (config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size + config.feat_size, config.num_labels)

self.init_weights ()

Q@add_start_docstrings_to_model_forward (BERT_INPUTS_DOCSTRING.format ("batch_size, sequence
@add_code_sample_docstrings(

tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="bert-base-uncased",
output_type=SequenceClassifierQOutput,
config_class=_CONFIG_FOR_DOC,

forward (
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
inputs_feats=None,
punn
labels (:o0bj: torch.LongTensor  of shape :obj: (batch_size,)”, “optional "):
Labels for computing the sequence classification/regression loss. Indices should be
config.num_labels - 1]°. If :obj: config.num_labels == 1° a regression loss is comp
If :obj: config.num_labels > 1~ a classification loss is computed (Cross-Entropy).

nnn

return_dict = return_dict if return_dict is not None else self.config.use_return_dict

outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
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return_dict=return_dict,
pooled_output = outputs[1]
pooled_output = torch.cat((pooled_output, inputs_feats), axis=1)

pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)

loss = None
if labels is not None:
if self.num_labels == 1:

# We are doing regression
loss_fct = MSELoss ()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output

return SequenceClassifierQutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,

D.2 Python Code for Logit-Level Fusion

from transformers.models.bert.modeling_bert import *
from torch.nn import NLLLoss # for logistic regression

class BertForSequenceClassificationSum(BertForSequenceClassification):
def __init__(self, config):
super (). __init__(config)

self .num_labels = config.num_labels

self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)

# self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.classifier0 = nn.Linear(config.hidden_size, config.num_labels) # BERT transfer
self.classifierl = nn.Linear(config.feat_size, config.num_labels) # Logistic regres

if config.alpha:

self.alpha = config.alpha
else:

self.alpha = .5

self.init_weights ()

def forward(
self,
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input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
inputs_feats=None,
o
labels (:obj: torch.LongTensor”~ of shape :obj: (batch_size,)”, “optional "):
Labels for computing the sequence classification/regression loss. Indices shoul
config.num_labels - 1] . If :obj: config.num_labels == 1  a regression loss is
If :obj: config.num_labels > 1~ a classification loss is computed (Cross-Entrop

nwnn

return_dict = return_dict if return_dict is not None else self.config.use_return_di

outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,

pooled_output = outputs[1]

pooled_output = self.dropout(pooled_output)

logitsO = self.classifierO(pooled_output) # Bert Transfer learning
logitsl = self.classifierl(inputs_feats) # logistic regression
alpha = self.alpha

logits = alpha * logitsO + (1-alpha) * logitsl # mean of logits

loss = None
if labels is not None:
if self.num_labels == 1:

# We are doing regression
loss_fct = MSELoss ()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output

return SequenceClassifierQOutput(
loss=1loss,
logits=logits,
hidden_states=outputs.hidden_states,
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attentions=outputs.attentions,
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