

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Learning and Analysis of Neural Sentence
Representations Using Syntax

구문론을 활용한 신경망 기반 문장 표현의

학습 및 분석

BY

TAEUK KIM

AUGUST 2021

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Abstract

Syntax is a theory in linguistics that deals with the principles underlying the

composition of sentences. As this theoretical framework provides formal instruc-

tions regarding the procedure of constructing a sentence with its constituents, it

has been considered as a valuable reference in sentence representation learning,

whose objective is to discover an approach of transforming a sentence into the

vector that illustrates its meaning in a computationally tractable manner.

This dissertation provides two particular perspectives on harmonizing syn-

tax with neural sentence representation models, especially focusing on con-

stituency grammar. We first propose two methods for enriching the quality of

sentence embeddings by exploiting the syntactic knowledge either represented

as explicit parse trees or implicitly stored in neural models. Second, we regard

syntactic formalism as a lens through which we reveal the inner workings of pre-

trained language models which are state-of-the-art in sentence representation

learning. With a series of demonstrations in practical scenarios, we show that

syntax is useful even in the neural era where the models trained with huge cor-

pora in an end-to-end manner are prevalent, functioning as either (i) a source

of inductive biases that facilitate fast and effective learning of such models or

(ii) an analytic tool that increases the interpretability of the black-box models.

Keywords: natural language processing, machine learning, deep learning, neu-

ral network, sentence representation, phrase-structure grammar, constituency

parse extraction, unsupervised parsing, sentence classification, semantic textual

similarity, recursive neural network, Transformer, pre-trained language models

Student Number: 2016-21197

i

Contents

Abstract i

Chapter 1 Introduction 1

1.1 Dissertation Outline . 5

1.2 Related Publications . 6

Chapter 2 Background 8

2.1 Introduction to Syntax . 8

2.2 Neural Networks for Sentence Representations 10

2.2.1 Recursive Neural Network 11

2.2.2 Transformer . 12

2.2.3 Pre-trained Language Models 14

2.3 Related Literature . 16

2.3.1 Sentence Representation Learning 16

2.3.2 Probing Methods for Neural NLP Models 17

2.3.3 Grammar Induction and Unsupervised Parsing 18

Chapter 3 Sentence Representation Learning with Explicit Syn-

tactic Structure 19

ii

3.1 Introduction . 19

3.2 Related Work . 21

3.3 Method . 23

3.3.1 Tree-LSTM . 24

3.3.2 Structure-aware Tag Representation 25

3.3.3 Leaf-LSTM . 28

3.3.4 SATA Tree-LSTM . 29

3.4 Experiments . 31

3.4.1 General Configurations 31

3.4.2 Sentence Classification Tasks 32

3.4.3 Natural Language Inference 35

3.5 Analysis . 36

3.5.1 Ablation Study . 36

3.5.2 Representation Visualization 38

3.6 Limitations and Future Work . 39

3.7 Summary . 40

Chapter 4 Sentence Representation Learning with Implicit Syn-

tactic Knowledge 41

4.1 Introduction . 41

4.2 Related Work . 44

4.3 Method . 46

4.3.1 Contrastive Learning with Self-Guidance 47

4.3.2 Learning Objective Optimization 50

4.4 Experiments . 52

4.4.1 General Configurations 52

4.4.2 Semantic Textual Similarity Tasks 53

iii

4.4.3 Multilingual STS Tasks 58

4.4.4 SentEval Benchmark . 59

4.5 Analysis . 60

4.5.1 Ablation Study . 60

4.5.2 Robustness to Domain Shifts 61

4.5.3 Computational Efficiency 62

4.5.4 Representation Visualization 63

4.6 Limitations and Future Work . 63

4.7 Summary . 65

Chapter 5 Syntactic Analysis of Sentence Representation Models 66

5.1 Introduction . 66

5.2 Related Work . 68

5.3 Motivation . 70

5.4 Method . 72

5.4.1 CPE-PLM . 72

5.4.2 Top-down CPE-PLM . 73

5.4.3 Pre-trained Language Models 74

5.4.4 Distance Measure Functions 76

5.4.5 Injecting Bias into Syntactic Distances 77

5.5 Experiments . 78

5.5.1 General Configurations 78

5.5.2 Experimental Results on PTB 80

5.5.3 Experimental Results on MNLI 83

5.6 Analysis . 85

5.6.1 Performance Comparison by Layer 85

5.6.2 Estimating the Upper Limit of Distance Measure Functions 86

iv

5.6.3 Constituency Tree Examples 88

5.7 Summary . 93

Chapter 6 Multilingual Syntactic Analysis with Enhanced Tech-

niques 94

6.1 Introduction . 94

6.2 Related work . 96

6.3 Method . 97

6.3.1 Chart-based CPE-PLM 97

6.3.2 Top-K Ensemble for CPE-PLM 100

6.4 Experiments . 100

6.4.1 General Configurations 100

6.4.2 Experiments on Monolingual Settings 102

6.4.3 Experiments on Multilingual Settings 103

6.5 Analysis . 106

6.5.1 Factor Correlation Analysis 108

6.5.2 Visualization of Attention Heads 108

6.5.3 Recall Scores on Noun and Verb Phrases 109

6.6 Limitations and Future Work . 110

6.7 Summary . 111

Chapter 7 Conclusion 112

Bibliography 116

초록 138

v

List of Figures

Figure 2.1 Comparison between the dependency (Left) and con-

stituency parse tree (Right) for the sentence “I prefer

the morning flight through Denver” (Jurafsky, 2000). . . 9

Figure 2.2 Comparison between RNN (Top) and RvNN (Bottom).

RNN can be considered as a specific case of RvNN where

the given tree structure is a chain. 11

Figure 2.3 The Transformer architecture (Vaswani et al., 2017). . . 13

Figure 3.1 A (binarized) constituency pase tree example from Stan-

ford Sentiment Treebank (Socher et al., 2013b). 20

Figure 3.2 Illustration of SATA Tree-LSTM. It has two separate

tree-LSTM modules, the right of which (tag tree-LSTM)

computes structure-aware tag representations to control

the composition function of the remaining tree-LSTM

(word tree-LSTM). Fully-connected: an affine trans-

formation followed by a non-linear function. 29

vi

Figure 3.3 Ablation study on SATA Tree-LSTM’s core modules.

The results show that each part in SATA-Tree LSTM

plays a crucial role in achieving the optimal performance.

FC: a fully connected-layer with a tanh function. w/o

tags: tag information is not considered at all. w/ tags:

static tag embeddings are employed instead of structure-

aware ones. 37

Figure 3.4 Scatter plot where each point corresponds to the embed-

ding of each phrase appeared in the parse in Figure 3.1.

We additionally draw red lines to visualize the tree struc-

ture. We observe that the embeddings are hierarchically

structured in the space, mimicking their positions in the

original parse tree. 39

Figure 4.1 BERT(-base)’s layer-wise performance with different pool-

ing methods on the STS-B test set. We observe that

the performance can be dramatically varied according to

the selected layer and pooling strategy. Our self-guided

training (SG / SG-OPT) assures much improved results

compared to those of the baselines. 43

Figure 4.2 Self-guided contrastive learning framework. We clone BERT

into two copies at the beginning of training. BERTT (ex-

cept Layer 0) is then fine-tuned to optimize the sentence

vector ci while BERTF is fixed. 47

Figure 4.3 Four factors of the original NT-Xent loss. Green and

yellow arrows represent the force of attraction and re-

pulsion, respectively. 50

vii

Figure 4.4 Domain robustness study. The yellow bars indicate the

performance gaps each method has according to the fact

that it is trained with whether in-domain (STS-B) or

out-of-domain (NLI) data. Our method (SG-OPT) clearly

shows its relative robustness compared to Flow. 61

Figure 4.5 Sentence representation visualization. (Left) Embeddings

from the original BERT. (Right) Embeddings from the

BERT instance fine-tuned with SG-OPT. Red numbers

correspond to positive sentence pairs and blue to nega-

tive pairs. 63

Figure 5.1 Self-attention heatmaps from two different PLMs. (Left)

A heatmap for the average of attention distributions

from the 7th layer of XLNet-base. (Right) A heatmap

for the average of attention distributions from the 9th

layer of BERT-base. We can spot the chunks of words

on the two heatmaps that are correlated with the con-

stituents of the input sentences, e.g., (Left) ‘the price of

plastics’, ‘took off in 1987’, ‘Quantum Chemical Corp.’,

(Right) ‘when price increases can be sustained’, and ‘he

remarks’. 70

Figure 5.2 The best layer-wise S-F1 scores of PLMs on the PTB

test set. (Left) The performance of the X-‘base’ models.

(Right) The performance of the X-‘large’ models. 86

viii

Figure 5.3 Gold (top) and predicted trees (one without the bias in

the middle, the other with the bias at the bottom) for

the sentence ‘But HOFI ‘s first offer would have given

Ideal ’s other shareholders about 10 % of the combined

company’. 89

Figure 5.4 Gold (top) and predicted trees (one without the bias in

the middle, the other with the bias at the bottom)

for the sentence ‘It was Friday the 13th and the stock

market plummeted nearly 200 points’. 90

Figure 5.5 Gold (top) and predicted trees (one without the bias in

the middle, the other with the bias at the bottom)

for the sentence ‘Until recently national governments in

Europe controlled most of the air time and allowed little

or no advertising’. 91

Figure 5.6 Gold (top) and predicted trees (one without the bias in

the middle, the other with the bias at the bottom) for

the sentence ‘Analysts and competitors however doubt

the numbers were that high’. 92

Figure 6.1 Performance of CPE-PLMmethods on PTB. Chart-based

(CP and CC) approaches show superior figures in most

cases compared to TD. The top-K ensemble also pro-

vides orthogonal improvements. 101

Figure 6.2 Visualization of the sets of the top 20 attention heads

(in XLM-R) for 9 languages. Each cell is filled with the

color assigned for a language if the corresponding head

is responsible for parsing the language. 109

ix

Figure 6.3 Recall scores on gold-standard NPs and VPs. The light

bars indicate the random baseline’s performance while

the dark ones show that of the CC method. 110

x

List of Tables

Table 3.1 The universal POS tagset (Petrov et al., 2012) for word-

level tags. 27

Table 3.2 Pre-defined categories for phrase-level tags. 27

Table 3.3 Hyperparameters for respective datasets. dT: Dimension

of tag embeddings. dh: Dimension of a word tree-LSTM

cell. ds: Dimension of linear classifiers. L: Learning rate.

B: Batch size. E: Maximum epochs. W: Weight decay

rate. D: Dropout (drop) probability. Word Emb. Fine-

tuning: Whether word embeddings are fine-tuned during

training or not (Y: fine-tuned, N: fixed). 31

Table 3.4 Statistics for sentence classification datasets. dc: Number

of classes. l : Average sentence length. # Train, # Dev,

Test: Number of sentences in the training, validation,

and test set respectively. CV: 10-fold cross validation. . . 32

xi

Table 3.5 Comparison of various sentence representation models on

five classification tasks. SATA Tree-LSTM shows compet-

itive or comparable performance compared to previous

RvNNs as well as other sophisticated neural models. The

best figure for each dataset is underlined. ?: Latent tree-

structured models. 34

Table 3.6 Performance of diverse sentence embedding models on

SNLI. SATA Tree-LSTM attains competitive performance

with a moderate number of parameters. The best perfor-

mance is underlined. ?: Latent tree models. 36

Table 4.1 Hyperparameters for experiments. 52

Table 4.2 Experimental results on STS tasks. Results for trained

models are averaged over 8 runs (±: the standard devia-

tion). The best figure in each (model-wise) part is in bold

and the best in each column is underlined. Our method

with self-guidance (SG, SG-OPT) generally outperforms

competitive baselines. We borrow scores from previous

work if we could not reproduce them. †: from Reimers

and Gurevych (2019). ‡: from Li et al. (2020). 56

Table 4.3 Performance on the SemEval-2014 Task 10 Spanish task. . 57

Table 4.4 Results on SemEval-2017 Task 1: Track 1 (Arabic), Track

3 (Spanish), and Track 5 (English). 58

Table 4.5 Experimental results on SentEval. 59

Table 4.6 Ablation study. 61

Table 4.7 Computational efficiency tested on STS-B. 62

xii

Table 4.8 Ensemble of the techniques for contrastive learning: back-

translation (BT) and self-guidance (SG-OPT). 64

Table 5.1 Comparison between typical unsupervised parsing and

constituency parse extraction from pre-trained language

models (CPE-PLM). 72

Table 5.2 The definition of distance measure functions for comput-

ing syntactic distances between two adjacent words in a

sentence. Note that r = gv(wi), s = gv(wi+1), P = gd(wi),

and Q = gd(wi+1), respectively. d: hidden embedding size,

n: the number of words (w) in a sentence (S). 76

Table 5.3 Results on the PTB test set. Bold numbers correspond to

the top 3 results for each column. L: layer number, A: at-

tention head number (AVG: the average of all attentions).

†: Results reported by Kim et al. (2019c). ‡: Approaches

in which COO parser is utilized. 80

Table 5.4 Results on the MNLI test set. Bold numbers correspond

to the top 3 results for each column. L: layer number,

A: attention head number (AVG: the average of all at-

tentions). †: Results reported by Htut et al. (2018) and

Drozdov et al. (2019). ‡: Approaches in which COO parser

is utilized. ∗: These results are not strictly comparable to

ours, due to the difference in data preprocessing. 84

Table 5.5 Results of training a pseudo-optimum fideal with PTB and

XLNet-base model. 87

xiii

Table 6.1 CPE-PLM’s performance on French, German, Korean,

and Swedish. The best score for each language is in bold.

†: results from Zhao and Titov (2021). 102

Table 6.2 Performance of CPE-PLM on 9 languages. Mono-ling.:

CPE-PLM’s performance in monolingual settings.Multi-

ling.: the results when combined with multilingual PLMs.

Cross-ling.: the performance when relying on cross-lingual

transfer, in addition to the relative losses or gains (+,−)

compared to the original results. The best score per PLM

is in bold while the best for each language is underlined.

†: results from Zhao and Titov (2021). 104

Table 6.3 Factor correlation analysis. The first section describes the

statistics of the data utilized for training XLM-R. The

second section displays the characteristics of the valida-

tion and test sets. †: from Conneau et al. (2020). 107

xiv

Chapter 1

Introduction

Language is structured by nature. A word, which is the smallest unit of a lan-

guage that can stand alone (Bloomfield, 1926), consists of a set of characters

or a group of morphemes. Likewise, words are organized into phrases, and con-

stituents in a sentence are embedded inside of other constituents (Manning and

Schutze, 1999; Carnie, 2012). It is thus essential for computational models of

natural language to have a fundamental understanding of such hierarchy, either

implicitly or explicitly.

Among the concepts existing in the hierarchical structure of language, a

sentence is one of the most integral components, playing a key role as a basic

unit of conveying a complete thought or meaning (Gardiner, 1922). As the larger

parts of spoken or written language, such as a paragraph, a conversation, and

a piece of writing, can be simply interpreted as a sequence of sentences in a

sense, it is a crucial and elemental step in natural language processing (NLP)

to figure out the semantics of sentences.

Sentences first need to be transformed into a computationally tractable

1

form, i.e., sentence representation, to be properly processed by machines. Sen-

tence representation (or sentence embedding) is a real-valued vector that is

designed to encode various aspects of the target sentence.

In the initial stages of NLP and information retrieval, a sentence (or po-

tentially a bunch thereof) was usually represented as a sparse vector computed

by the bag-of-words method (Schütze et al., 2008), where each of the vector’s

dimensions indicates the existence of the corresponding word or the number of

occurrences of the word in the input. Despite its efficiency, the bag-of-words

representation has a clear limitation in its performance due to its ignorance in

word order and grammatical regularities.

As the neural era that is originated from the rediscovery of the approaches

based on neural networks has begun in NLP, researchers start to pay their

attention to developing a methodology that proposes how to learn dense rep-

resentations of different language units rather than sparse ones. One of the

representative cases is that of words, where several seminal studies (Mikolov

et al., 2013a,b; Pennington et al., 2014) grounded on distributional hypothe-

sis (Harris, 1954) have demonstrated their effectiveness in learning meaningful

dense word embeddings. Witnessing the success of the word-level methods, the

following research question naturally arises: Can we also effectively derive dense

representations for sentences from such word vectors?

Sentence representation learning, the task of finding an optimal space in

which each sentence is properly mapped to a point (i.e., a dense vector) that

best illustrates the original meaning of the sentence, has been at the core of

modern NLP, as (i) a substantial portion of research in NLP still lies at solv-

ing sentence-related problems, e.g., sentiment analysis (Socher et al., 2013b),

natural language inference (Bowman et al., 2015; Williams et al., 2018b), and

semantic textual similarity (Cer et al., 2017), and (ii) sentence representations

2

are also essential in dealing with higher-level tasks such as question answering

(Rajpurkar et al., 2016) and machine translation (Bojar et al., 2016, 2018).

A variety of neural architectures have been proposed for effective sentence

representation learning. For instance, a group of researchers have proposed to

adopt window-based models such as convolutional neural network (Kim, 2014)

to capture the local context of sentences. Meanwhile, recurrent neural models

(Elman, 1990; Hochreiter and Schmidhuber, 1997; Cho et al., 2014)), which

consume a token in a sentence one by one, have also shown their competitive

performance in encoding an input sentence into a fixed-dimensional vector.

Although the above approaches have been extensively utilized for a while

with decent performance, they often struggle with the shortcomings coming

from their architecture design. First, they have a difficulty in recognizing a

long-distance correlation between the words distant from each other, which is

frequent in natural language. Second, they are not equipped with any inductive

bias towards the hierarchical nature of language, which may result in their

unsatisfactory performance or data inefficiency in training.

In this dissertation, we concentrate on exploring the potential of syntactic

knowledge as an invaluable resource to relieve the limitations of the aforemen-

tioned neural models for sentence representations. Syntax in linguistics is the

study of the principles and processes by which sentences are constructed in lan-

guages (Chomsky, 1957, 1965). As syntax provides a formal instruction as to the

procedure of combining constituents into a full sentence, it has received much at-

tention from researchers who attempt to transform this theoretical framework

into a practical approach for sentence representation learning (Socher et al.,

2013b; Tai et al., 2015), giving birth to recursive neural network whose compu-

tation graph dynamically mimics the syntactic structure of an input sentence.

We examine how much effective such syntax-inspired neural models are in con-

3

structing sentence representations, and we also propose their improved variants

that can better exploit the syntactic information provided by parse trees.

On the other hand, the emergence of self-attention models including Trans-

former (Vaswani et al., 2017) has recently reshaped the landscape of the sen-

tence representation learning literature, demonstrating that their relative flexi-

bility (compared to other old-fashioned neural architectures) in making connec-

tions between words is a key to generating high-quality sentence vectors. Some

studies have also discussed the potential that Transformers may autonomously

acquire an ability to detect some linguistic relationships between words, espe-

cially when they are pre-trained in an unsupervised manner (Goldberg, 2019;

Hewitt and Manning, 2019). However, it is still under debate how much syntac-

tic information such attention-based neural architectures can capture and how

the captured knowledge can be more effectively utilized in diverse ways.

To shed some light on this active research topic, we introduce a method

that estimates the extent to which neural models for sentence representations

are aware of syntactic concepts, regarding syntax as a means of probing the

inner workings of these models. Furthermore, we develop an approach that

takes advantage of the lessons learnt from our investigation—e.g., syntactic

knowledge is relatively distinct in the middle layers of pre-trained models—to

further improve the quality of the sentence representations generated by pre-

trained Transformers.

To summarize, in this thesis, we discuss two disparate usages of syntax for

pursuing a better modeling of sentences using neural networks, mainly focusing

on phrase-structure (a.k.a. constituency) grammar. First, we investigate the

methods of directly improving existing strategies for sentence representation

learning when syntactic knowledge is provided explicitly as a form of parse trees

or implicitly from different parts of pre-trained models. Second, we introduce

4

an analytic tool for estimating the degree to which neural models for sentence

representations recognize syntactic components residing in sentences, offering

an insight on how much the working mechanism of these models accords with

what is considered as the norm in the theory of syntax.

1.1 Dissertation Outline

This dissertation is largely divided into four parts, whose contents are specified

as follows:

• Background (Chapter 2): As a preliminary, we give a brief overview

of the background knowledge that forms the foundation of this disser-

tation. Specifically, we explain some basic concepts in syntax and how

they are utilized in this thesis. We also describe several neural network

architectures for sentence representations. Finally, we provide a simple

introduction to the topics in the NLP literature that have a close rela-

tionship with our work.

• Part I (Chapters 3 & 4) — Sentence representation learning

utilizing syntax: In the first part of the main contents, we propose two

practical methods of learning high-quality sentence representations by

leveraging additional syntactic information. To be specific, in Chapter 3,

we first suppose we have access to an explicit form of syntactic knowl-

edge represented as constituency parse trees. We then suggest a variant

of recursive neural networks, dubbed as SATA Tree-LSTM, that takes

better advantage of syntactic classes and tags thereof (e.g., NP and VP)

in addition to the phrase-structure of sentences. On the other hand, in

Chapter 4, we aim to leverage the syntactic knowledge implicitly stored

in pre-trained neural models in the process of constructing sentence em-

5

beddings. We develop a self-guided contrastive learning method for

BERT (Devlin et al., 2019) sentence representations, where we exploit not

only the last layer of BERT as the convention but also its lower and mid-

dle layers which are known as better at capturing syntactic information

(Jawahar et al., 2019).

• Part II (Chapters 5 & 6) — Syntactic analysis of neural models

for sentence representations: In the second part, we consider syntax

as an analytic means of dissecting the inner workings of recent gigantic

neural models for sentence representations. Specifically, we establish a

novel approach called Constituency Parse Extraction from Pre-trained

Language Models (CPE-PLM) and propose its two instantiations (i.e.,

top-down and chart-based CPE-PLM) in Chapter 5 and Chapter 6,

respectively. The CPE-PLM framework enables us to predict the parse

trees of input sentences by not training a separate parser but relying only

on the internal patterns formed by the parameters of pre-trained language

models (PLMs). The induced trees are utilized as a valuable resource for

estimating the lower bound of such PLMs on understanding syntactic

concepts. We also report the several intriguing findings discovered in the

generated trees.

• Conclusion (Chapter 7): We finally conclude our discussion and pro-

pose prospective avenues for future work.

1.2 Related Publications

Portions of this dissertation appeared in the following publications or preprint:

• Chapter 3: Taeuk Kim, Jihun Choi, Daniel Edmiston, Sanghwan Bae,

6

and Sang-goo Lee. 2019b. Dynamic compositionality in recursive neu-

ral networks with structure-aware tag representations. In Proceedings of

AAAI .

• Chapter 4: Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021b. Self-

guided contrastive learning for BERT sentence representations. In Pro-

ceedings of ACL-IJCNLP .

• Chapter 5: Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-goo

Lee. 2020. Are pre-trained language models aware of phrases? simple but

strong baselines for grammar induction. In Proceedings of ICLR.

• Chapter 6: Taeuk Kim, Bowen Li, and Sang-goo Lee. 2021a. Multilin-

gual chart-based constituency parse extraction from pre-trained language

models. arXiv preprint arXiv:2004.13805 .

7

Chapter 2

Background

In this chapter, we provide an overview of several concepts that constitute

the core of this dissertation. We first touch on several basic notions in syntax

which are frequently mentioned throughout the thesis, and then describe a

few neural network architectures widely utilized for sentence representation

learning. Finally, we introduce some literature in natural language processing

with which our work has a close connection.

2.1 Introduction to Syntax

Syntax, which is originated from the Greek word sỳntaxis—meaning “setting

out together or arrangement” (Jurafsky, 2000), is a subfield in linguistics that

deals with how sentences are structured to make a meaning from a sequence

of words (Carnie, 2012). The currently dominant form of syntactic theories,

called generative grammar, has been mainly established by Noam Chomsky

(Chomsky, 1957, 1965, 1975). The assumption lying at the heart of the theory

8

Figure 2.1 Comparison between the dependency (Left) and constituency parse

tree (Right) for the sentence “I prefer the morning flight through Denver” (Ju-

rafsky, 2000).

is that a language is defined by the set of possible sentences generated by a

specific grammar.

In general, a grammar consists of a set of formal rules (operators) and

their operands (symbols). Even though there exist different categories of syn-

tactic formalism including dependency grammar (see Figure 2.1), we focus on

constituency grammar in this thesis, which is also known as context-free or

phrase-structure grammar. Formally, following Kim et al. (2019c), we define a

constituency grammar as a five-tuple G = (S,N, P,Σ, R) where S is the unique

start symbol, N is a set of non-terminals (e.g., NP and VP), P is a set of pre-

terminals, Σ is a set of terminal symbols (words), and R is a set of rules of the

following form:

S → A, A ∈ N

A→ B C, A ∈ N, B,C ∈ N ∪ P

T → w, T ∈ P, w ∈ Σ.

9

That is, the generation of every sentence in the language governed by this

grammar starts from the starting symbol S, and one of the three rules mentioned

above is recursively applied until the sentence is completed with a sequence of

terminal symbols S = {w1, . . . , wn|∀i, wi ∈ Σ}. This entire generation (or rule

expansion) procedure is called a derivation of the string of words, and it is

generally represented by a parse tree as in Figure 2.1 (Jurafsky, 2000).

Unfortunately, we cannot immediately recognize the inherent structure of a

given sentence at a first glance, mainly because its surface form is sequential

in the real world. A common solution to remedy this problem is introducing a

parser, which is a function that outputs the parse tree of a sentence obeying its

target grammar. Parsers are typically trained with supervision from treebanks

in which a collection of sentences and corresponding gold-standard parse trees

annotated by domain experts (i.e., linguists) are stored. Note that each treebank

may be established on disparate grammatical rule sets, and that following the

majority in the literature, in this dissertation we rely on the grammatical system

used in constructing the Penn Treebank dataset (PTB; Marcus et al. (1993)).

2.2 Neural Networks for Sentence Representations

To model a sentence in a vector space and convert it into a computationally

tractable form, different types of neural architectures such as recurrent neural

network (RNN; Elman (1990)) have been proposed. Among a variety of possible

choices, we rely primarily on two specific encoders in our discussion—recursive

neural network (RvNN1; Socher et al. (2011)) and Transformer (Vaswani et al.,

2017). They are similar in that both are the functions that accept (sub-)word

1To avoid confusion, we name recursive neural network (a.k.a. tree-structured neural net-
work) as RvNN to differentiate it from recurrent neural network (RNN), following the con-
vention in the literature (Choi et al., 2018).

10

Figure 2.2 Comparison between RNN (Top) and RvNN (Bottom). RNN can be
considered as a specific case of RvNN where the given tree structure is a chain.

embeddings as ingredients and compute the resulting sentence vectors, but dif-

ferent from each other in terms of the strategies they take to merge word and

phrase level information. In the following subsections, we provide an introduc-

tion to the two architectures in more detail.

2.2.1 Recursive Neural Network

Recursive neural network (Pollack, 1990; Goller and Kuchler, 1996; Socher et al.,

2011, 2012, 2013a; Tai et al., 2015) is a neural model whose computation graph

is structured as a tree rather than just a sequence. It can be also interpreted

as a generalization of recurrent networks; i.e., RNN is a special case of RvNN

equipped with a chain-like tree structure as in Figure 2.22.

While RvNN in principle can accept any acyclic graph structure as input, in

NLP, it is mostly combined with linguistically-inspired structures such as con-

stituency and dependency parse trees which are annotated by domain experts

2The images are from https://imgur.com/MmQRH38 and http://imgur.com/bfVzTm5.

11

https://imgur.com/MmQRH38
http://imgur.com/bfVzTm5

or predicted by off-the-shelf parsers. The clear advantage we obtain by applying

such parse trees to RvNN is that it naturally enables us to inject the inductive

bias with regard to the composition order of words in a sentence—what is be-

lieved to be correct in linguistics—into our neural models. Moreover, RvNN is

more robust to the vanishing and exploding gradient problem compared to the

typical RNN model as its longest backpropagation path increases in the order

of logO(n) (n: the length of an input sequence), which is asymptotically much

smaller than that of RNN, i.e., O(n) (Goodfellow et al., 2016).

Despite the intuitive linguistic motivation on which it was invented, RvNN

sometimes suffers from difficulties in achieving its optimal performance. We

conjecture this is partially because most RvNN instances do not properly exploit

syntactic tags which are attached on each node of a constituency tree but stick

only to structural information. To relieve this problem, we propose a revision of

RvNN in Chapter 3 that shows better performance by making use of the proper

combination of the information from both structure and phrasal categories.

2.2.2 Transformer

Transformer (Vaswani et al., 2017) has become the de-facto standard neural

model for NLP and other areas where sequential data is abundant. Basically, it

follows the sequence-to-sequence framework (Sutskever et al., 2014; Bahdanau

et al., 2015), consisting of an encoder and decoder (Figure 2.3). However, it

is distinct from conventional models in that both of its encoder and decoder

rely solely on a stack of Transformer blocks that are made of attention-based

modules and other supplementary components, dispensing with recurrence and

convolutions. As a result, Transformer succeeds in becoming more suitable for

parallel computation on modern hardware such as GPU while achieving com-

petitive or even superior performance.

12

Figure 2.3 The Transformer architecture (Vaswani et al., 2017).

Out of various elements composing the Transformer block (the grey rectan-

gles in Figure 2.3), the multi-head attention mechanism (orange) undoubtedly

lies at the core of characterizing Transformer. To be specific, the multi-head

attention mechanism is an extension of the scaled dot-product attention which

is defined as follows:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V,

where Q, K, and V are query, key, and value matrices respectively, and dk is

the dimension of the row vector of Q. In other words, given Q, K, and V , which

are the linear transformations of the output of the previous Transformer block,

the scaled dot-product attention computes a weighted sum of the value vectors

13

whose weights are derived from the dot products between respective query and

key vectors. In the multi-head attention mechanism, the above computation

is allowed to be conducted several times, but with different heads which are

composed of separate parameters (i.e., WQ
i ,W

K
i , and W

V
i):

MultiHead(Q,K, V) = Concat(head1, . . . ,headh)WO

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i).

To summarize, the multi-head attention mechanism provides a place where in-

put representations are reformulated and recombined in succession, following

the multiple perspectives supported by different attention heads, and the final

representations made by the mechanism are the outcome of a series of revi-

sion performed through several Transformer blocks such that each token in a

sentence is best represented in the context of the input sequence.

It is worth noting that the softmax part (i.e., softmax(QK
T

√
dk

)) in the scaled

dot-product attention offers a lens for interpretability, through which we can

inspect the inner workings of Transformer. For instance, we can estimate the

extent to which a token is regarded as important from the view of Transformer

by investigating the degree to which this token receives attention from other

tokens. In Chapter 5 and 6, we take advantage of this fact as a clue to reveal

the degree to which pre-trained Transformer models grasp syntactic concepts.

2.2.3 Pre-trained Language Models

A language model (Brown et al., 1992; Kneser and Ney, 1993; Bengio et al.,

2003), which is a model originally designed to compute a probability distribution

over sequences of words in a language, is integral to natural language processing.

Its impact on the field has been growing much faster and greater than ever

before since it was known that the language model can be also understood

14

as a self-learner that masters how to capture useful features from text by itself

(Howard and Ruder, 2018; Peters et al., 2018). In particular, its role as a general

feature extractor for downstream tasks begins to be more prominent with the

introduction of Transformer (Devlin et al. (2019); Radford et al. (2019); Yang

et al. (2019); Liu et al. (2019b); inter alia).

A current, typical form of pre-trained language models, mostly triggered by

the success of BERT (Devlin et al., 2019), is characterized by three factors. First,

it adopts a Transformer encoder, decoder or both as its backbone architecture.

For instance, BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019b)

employ Transformer encoders while GPT3 (Brown et al., 2020) is based on a

Transformer decoder. Second, the model is pre-trained on gigantic corpora such

as web-crawled data (e.g., a Wikipedia dump) and the book corpus (Zhu et al.,

2015). Third, its learning objective belongs to the family of language modeling—

that is the reason why it is called a language model in the first place—including

autoregressive language modeling or masked language modeling. In this thesis,

we narrow the definition of the term pre-trained language models (PLMs) to

refer to the models that adhere to the three aforementioned properties.

Although pre-trained language models are excellent feature providers for

many NLP tasks, their usage for a specific purpose requires an adaptation to

the task of interest, typically achieved by fine-tuning them with supervision

from labeled data in addition to introducing extra parameters consisting of

a task-specific layer. Moreover, as their outputs are basically contextualized

token-level representations, it is still unclear how best to derive sentence rep-

resentations from such models. In Chapter 4, we propose a novel method for

constructing sentence representations by better exploiting PLMs, inspired by

the fact that the different layers of the models are respectively specialized in

catching disparate linguistic information.

15

2.3 Related Literature

We wrap up this chapter with the introduction of some seminal work in the

fields of our concern, including sentence representation learning, probing ap-

proaches for neural NLP models, and grammar induction and unsupervised

parsing. Further studies that have a closer relationship with our work will be

additionally mentioned in the associated chapters.

2.3.1 Sentence Representation Learning

As a substantial portion of NLP tasks belong to sentence-level ones, e.g., senti-

ment analysis (Socher et al., 2013b), natural language inference (NLI; Bowman

et al. (2015); Williams et al. (2018b)), and semantic textual similarity (Cer

et al., 2017), sentence representation learning has been one of the fundamental

research subjects in natural language processing. Basically, every neural model

that is devised to solve such tasks should contain its own internal module that

takes charge of representing input sentences in a vector space. This module typ-

ically concentrates on how to compose token (e.g., characters, subwords, and

words) representations into task-specific sentence-level features.

On the other hand, much effort also has been devoted to develop methods

for producing more generally applicable sentence representations, rather than

training individual modules for respective tasks (Kiros et al., 2015; Hill et al.,

2016; Conneau et al., 2017; Cer et al., 2018; Logeswaran and Lee, 2018; Reimers

and Gurevych, 2019). For instance, Skip-Thought (Kiros et al., 2015) learns

to compress the information of a sentence into a dense vector by training a

sequence-to-sequence framework whose goal is to generate the previous and next

sentences of the input sentence. InferSent (Conneau et al., 2017) demonstrates

that a Bi-LSTM (Hochreiter and Schmidhuber, 1997) sentence encoder trained

to resolve the NLI task can be generalized to others. SBERT (Reimers and

16

Gurevych, 2019) is also grounded on the strategy same as that of InferSent,

however, it is a fine-tuned version of BERT (Devlin et al., 2019) instead of

being trained from scratch.

In later chapters, we propose two additional improvements on top of the

aforementioned work. We focus on a variant of task-specific recursive neural

networks in Chapter 3. In Chapter 4, we attempt to uncover the potential of

BERT as both task-specific and general sentence representation providers.

2.3.2 Probing Methods for Neural NLP Models

Since neural network based models, which are black boxes by nature, begin to

dominate the field of natural language processing, there have arisen a series of

approaches to probe their inner workings (Ettinger et al., 2016; Linzen et al.,

2016; Adi et al., 2017; Conneau et al., 2018; Kim et al., 2019a). This trend has

been accelerated with the rise of pre-trained Transformer language models (e.g.,

BERT, see Section 2.2.3 for details), which match or outperform human perfor-

mance in several natural language understanding tasks (Wang et al., 2019a,b),

blooming the subfield called BERTology (Rogers et al., 2020).

The most common type of probing techniques is a linear probe (Alain and

Bengio, 2016; Hewitt and Manning, 2019), where a simple linear layer is ap-

pended on top of the target model which remains fixed, and the linear layer is

trained with supervision such that it becomes a detector that perceives whether

the target model is sensitive to the properties of our concern. Despite their sim-

plicity and effectiveness, linear probes are often criticized because of their two

explicit shortcomings: (i) they rely on supervision from labeled data which is

hard to collect, and (ii) they cannot definitely distinguish whether their perfor-

mance is entirely due to their target model or their own ability obtained from

the supervision. In Chapter 5 and Chapter 6, we introduce a novel syntactic

17

probe to relieve this problem, which does not require any type of training and

thus overcomes the limitations of the linear probes.

2.3.3 Grammar Induction and Unsupervised Parsing

One of the most controversial hypotheses advocated by Noam Chomsky and his

school in linguistics is that many parts of language are originated from an innate

ability of human beings, and that therefore, they cannot be acquired (Chomsky,

1957, 1965, 1975; Carnie, 2012). Contrary to this claim, many researchers in

NLP and linguists have been interested in the area called grammar induction,

where one’s goal is to train a model that is aware of syntactic concepts or

context-free grammars without parse tree annotations (Lari and Young, 1990;

Klein and Manning, 2002a). Note that if it is possible to train such model, it

can be also utilized as an unsupervised parser that derives the parse tree of a

sentence following its acquired grammar rules.

In recent years, the attention on grammar induction and unsupervised pars-

ing has been reignited by some pioneering work that proposes applying neural

approaches to the problem. PRPN (Shen et al., 2018b) and ON-LSTM (Shen

et al., 2019) have demonstrated that specific variations of neural language mod-

els, from which one can extract a parse tree-like structure, can be implemented

through dedicated network design. Kim et al. (2019c) have verified that a neu-

ral parameterization of probabilistic context-free grammar models is viable.

Loosely speaking, our method, dubbed as Constituency Parse Extraction from

Pre-trained Language Models (CPE-PLM; in Chapter 5 and 6), is a sort of

unsupervised parsing methods as it predicts parse trees without supervision

from treebanks. We further discuss its relationship with other approaches for

grammar induction and unsupervised parsing in the corresponding chapters.

18

Chapter 3

Sentence Representation Learning
with Explicit Syntactic Structure

3.1 Introduction

One of the most fundamental topics in natural language processing is how best

to derive high-level representations from constituent parts, and the develop-

ment of a method for constructing a sentence representation from distributed

word embeddings is an example domain of this larger issue. Although sequen-

tial neural models such as recurrent neural network (RNN; Elman (1990)) and

its variants—Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber

(1997)) and Gated Recurrent Unit (GRU; Cho et al. (2014))—have become

one of the de-facto standards for condensing sentence-level information into a

fixed vector, there have been also other lines of approaches for sentence embed-

dings where convolutional neural network (CNN; Kim (2014)) or self-attention

models (Vaswani et al., 2017; Shen et al., 2018a) are utilized.

From a linguistic point of view, the underlying tree structure—as expressed

19

ROOT

PP

IN

Despite

NP

NP

DT

the

@NP

NN

film

POS

's

NNS

shortcomings

@S

,

,

@S

NP

DT

the

NNS

stories

@S

VP

@VP

VBP

are

ADVP

quietly

VP

moving

.

.

Figure 3.1 A (binarized) constituency pase tree example from Stanford Senti-

ment Treebank (Socher et al., 2013b).

by its constituency and dependency trees—of a sentence is an integral part of its

meaning. Inspired by this fact, several recursive neural network (RvNN) models

have been proposed in order to reflect such linguistic intuition in designing

neural architectures, achieving impressive results on downstream tasks such as

sentiment analysis (Socher et al., 2012, 2013b), machine translation (Yang et al.,

2017), natural language inference (Bowman et al., 2016), and discourse relation

classification (Wang et al., 2017). However, the issue is that the utilization of

syntactic knowledge is only possible when we are already equipped with a decent

parser or gold-standard trees, both of which are fairly complicated to prepare.

To tackle this, a few studies have (Yogatama et al., 2017; Choi et al., 2018)

suggested latent RvNNs that learn to construct task-specific tree structures by

themselves, without explicit supervision from syntax. The rise of those latent

tree models naturally leads to the following research question: Is it still optimal

to adhere to parse trees when formulating RvNNs? Or can we entirely replace

them by learning task-specific structures from scratch?

20

In this chapter, we advocate the effectiveness of the linguistic knowledge pro-

vided by parse trees in building sentence representations, with the demonstra-

tion that our novel RvNN variant (SATA Tree-LSTM) based on constituency

trees and the tag1 information thereof can attain competitive performance on

several sentence-level tasks, e.g., sentiment analysis and natural language in-

ference. The main novelty of our approach comes from the idea that we in-

troduce a small, separate tag tree-LSTM in order to control the composition

function of the original word tree-LSTM. Throughout extensive experiments,

we show that the proper fusion of the signals obtained from both the struc-

ture and syntactic tags of parse trees facilitates a boost in the performance of

linguistically-informed RvNNs.

3.2 Related Work

The models belonging to recursive neural network (RvNN) in NLP share the

common principle that they compute higher-level representations based on an

input tree structure (one obtained from some types of parse trees in most cases)

in addition to a sequence of words. However, an RvNN instance is distinguished

from one another depending on the composition function it leverages—e.g.,

feed-forward neural networks (Socher et al., 2011), matrix-vector multiplication

(Socher et al., 2012), tensor computation (Socher et al., 2013b), and LSTM (Tai

et al., 2015).

A drawback of such initial RvNNs is their inflexibility, i.e., their inability

to handle dynamic compositionality for different syntactic configurations. For

instance, they cannot properly differentiate adjective-noun composition from

that of verb-noun or preposition-noun as they only attend to the structure of

1We do not distinguish part-of-speech (POS) tags (e.g., DT-determiner, JJ-adjective) from
phrase-level tags (e.g., NP-noun phrase, VP-verb phrase), and refer to both simply as ‘tags’.

21

parse trees, ignoring rich information from syntactic tags. This is obviously

suboptimal, as models failing to make such a distinction ignore real-world syn-

tactic considerations such as ‘-arity’ of function words (i.e., types) and the

adjunct/argument distinction.

To mitigate the aforementioned problem, a line of studies (Hashimoto et al.,

2013; Dong et al., 2014; Qian et al., 2015; Wang et al., 2017; Liu et al., 2017b;

Huang et al., 2017; Teng and Zhang, 2017) have proposed to directly leverage

tag information which is produced as a by-product of parsing. In detail, Qian

et al. (2015) suggested TG-RNN, which employs different composition func-

tions according to POS tags, and TE-RNN/TE-RNTN, which leverage dense

tag embeddings as supplementary inputs for existing tree-structured models.

Despite the novelty of utilizing tag information, the explosion of the number

of parameters (TG-RNN) or the limited performance of the original models

(TE-RNN/TE-RNTN) have prevented these models from being widely adopted.

Similarly, Wang et al. (2017) and Huang et al. (2017) proposed an improved

version of tree-LSTM that also utilizes static tag vectors to control gate func-

tions in the model. However, its realization is still too naïve to fully exploit both

the structure and tags of a parse tree together. We introduce structure-aware

tag representations in the next section to overcome this limitation.

Another direction of implementing dynamic compositionality in RvNNs is to

take advantage of a meta-network (or hyper-network). Inspired by recent work

on dynamic parameter prediction, DC-TreeLSTM (Liu et al., 2017b) dynami-

cally creates parameters for compositional functions in a tree-LSTM. Specifi-

cally, DC-TreeLSTM has two separate tree-LSTM networks whose architectures

are similar, but the smaller of the two is utilized to calculate the weights of the

bigger one. A potential issue for this model is that the model’s training is easy

to be degenerated such that the role of the two tree-LSTMs becomes duplicated.

22

On the contrary, we design two disentangled tree-LSTMs in our model so that

one focuses only on extracting useful features from syntactic inputs (tags) while

the other composes semantic units (words) with the aid of the extracted fea-

tures. Furthermore, our model reduces computation complexity by sticking to

the original formulation of tree-LSTM instead of repetitively deriving weights

for each example.

Finally, some recent work (Yogatama et al., 2017; Choi et al., 2018) has

proposed latent tree-structured models that learn how to formulate tree struc-

tures only from a sequence of tokens, without supervision from parse trees. The

latent RvNNs’ merit is that they can make a task-specific word composition or-

der rather than a sequential or syntactic one. However, the problem is that they

are only able to predict a structure, ignoring additional context coming from

the phrasal categories defined for constituents in the structure. In experiments,

we compare our model not only with linguistically-informed RvNNs but also

with the latent tree models, demonstrating that modeling RvNN with explicit

linguistic knowledge can be still an attractive option.

3.3 Method

We introduce a novel RvNN architecture, called SATA Tree-LSTM (Structure-

Aware Tag Augmented Tree-LSTM). This model is similar to typical tree-

LSTMs, but provides dynamic compositionality by augmenting a separate tag

tree-LSTM which produces a structure-aware tag representation for each node

in a parse tree. In other words, our model has two independent tree-structured

modules based on the same constituency tree, one of which (word tree-LSTM) is

responsible for constructing sentence representations given a sequence of words

as usual while the other of which (tag tree-LSTM) provides supplementary

syntactic information to the former.

23

In Section 3.3.1, we first review the original tree-LSTM. Then, we introduce

tag tree-LSTM and structure-aware tag representations in Section 3.3.2. In

Section 3.3.3, we discuss an additional technique to boost the performance of

tree-structured models, and finally, we specify the entire details of our approach

in Section 3.3.4.

3.3.1 Tree-LSTM

LSTM (Hochreiter and Schmidhuber, 1997) is originally invented as an exten-

sion of a sequential RNN, with the objective of mitigating the RNN’s vanishing

and exploding gradient problems. On top of that, several studies including Tai

et al. (2015) propose to apply the module to tree-structured inputs in addition

to sequential ones, giving birth to Tree-LSTM.

Formally, the composition function of a tree-LSTM cell is defined as follows:

i

fl

fr

o

g

=

σ

σ

σ

σ

tanh

(
W

hl
hr

+ b

)

c = fl � cl + fr � cr + i� g

h = o� tanh (c),

where h, c ∈ Rd indicate the hidden and cell state of the LSTM cell, and

hl,hr, cl, cr ∈ Rd are the hidden states and cell states of the left and right

child. g ∈ Rd is the new input for the current cell, and i, fl, fr,o ∈ Rd represent

the input gate, two forget gates (left, right), and output gate respectively. W ∈

R5d×2d and b ∈ R5d are trainable parameters. σ corresponds to the sigmoid

function, tanh to the hyperbolic tangent, and � to element-wise multiplication.

24

Note that the above formulation presumes that there only exist two children for

each node in a tree (i.e., the tree is inherently binary or binarized), following the

convention in the literature. While RvNN can be modeled on any tree structure,

we here consider constituency parse trees as input.

Despite the obvious upside that recursive models have in being so flexible,

they are notorious for their incompatibility with parallel computation due to the

diversity of structure found across sentences. To alleviate this problem, Bow-

man et al. (2016) proposed SPINN, which introduces the shift-reduce algorithm

into tree-LSTM. As SPINN reduces the process of constructing a tree into two

simple operations—shift and reduce, it can support more effective parallel com-

putations while enjoying the advantages of tree structures. For efficiency, our

model also starts from our own re-implementation of SPINN, whose functions

are exactly the same as those of the original tree-LSTM.

3.3.2 Structure-aware Tag Representation

In most of the previous work using linguistic tag information (Qian et al., 2015;

Wang et al., 2017; Huang et al., 2017), tags were usually represented as sim-

ple low-dimensional dense vectors, similar to word embeddings. This approach

seems reasonable in the case of POS tags which are attached to corresponding

words, but phrase-level constituent tags (e.g., NP, VP, ADJP) vary greatly in

size and shape, making them less amenable to uniform treatment. For instance,

even the same phrase tags within different syntactic contexts can vary greatly

in size and internal structure, as the case of NP tags in Figure 3.1 shows. Here,

the NP consisting of DT[the]-NN[stories] has a different internal structure than

the NP consisting of NP[the film ’s]-NNS[shortcomings].

One possible avenue of deriving structure-aware tag representations is to

introduce a special tag tree-LSTM that accepts static tag embeddings at each

25

node of a tree and outputs the corresponding structure-aware tag representa-

tions. Note that the module concentrates on extracting useful syntactic features

by only considering the tags and structures of parse trees, excluding lexical

(word-level) information.

Formally, we denote a typical, static tag embedding as e ∈ RdT . Then,

the function of each cell in a tag tree-LSTM is defined in two ways. First, the

computation at leaf nodes is specified as follows:ĉ
ĥ

 = tanh (UTe + aT),

while the computation at non-leaf nodes is determined by the following:

î

f̂l

f̂r

ô

ĝ

=

σ

σ

σ

σ

tanh

(
WT

ĥl

ĥr

e

+ bT

)

ĉ = f̂l � ĉl + f̂r � ĉr + î� ĝ

ĥ = ô� tanh (ĉ),

where ĥ, ĉ ∈ RdT represent the hidden and cell state of each node in the tag tree-

LSTM. We regard the hidden state (ĥ) as the structure-aware tag representation

for the node. UT ∈ R2dT×dT ,aT ∈ R2dT ,WT ∈ R5dT×3dT , and bT ∈ R5dT are

trainable parameters. The other notations follow those defined in Section 3.3.1.

In case of leaf nodes, the states (ĥ and ĉ) are computed by a simple non-

linear transformation. Meanwhile, the composition function in a non-leaf node

absorbs a static tag embedding (e) as an additional input as well as the hidden

states of two children nodes. The benefit of contextualizing tag representations

26

Original Tags Groups

NN, NP, NNP, NNS, NNPS, NX, WHNP N
PRP, PRP$, WP, WP$, PRP, PRP$ PN

VP, VB, VBD, VBG, VBN, VBP, VBZ, MD V
ADJP, JJ, JJR, JJS ADJ

ADVP, WHADVP, RB, RBR, RBS, WRB ADV
DT, EX, PDT, WDT DET

IN ADP
CC CONJ
CD NUM

!,#, $, ?, comma(,), colon(:), period(.), PUNCquotation marks(“, ”), -LRB-, -RRB-, LST, PRN
PRT, PP, TO, POS, RP PRT
Other word-level tags X

Table 3.1 The universal POS tagset (Petrov et al., 2012) for word-level tags.

Original Tags Groups

NP, @NP, NX, @NX, WHNP, @WHNP NP
VP, @VP VP

ADJP, @ADJP, WHADJP, @WHADJP ADJP
ADVP, @ADVP, WHADVP, @WHADVP ADVP

S, @S, SBAR, @SBAR, SQ, @SQ, SINV, @SINV S
ROOT ROOT

CONJP, @CONJP CONJP
QP, @QP NUMP
LST, @LST PUNCP

PRT, @PRT, PP, @PP, WHPP, @WHPP PRTP
Other phrase-level tags XP

Table 3.2 Pre-defined categories for phrase-level tags.

according to the internal structure is that the derived embedding is a function

of the corresponding makeup of the node, rather than a monolithic, categorical

tag.

With regard to the granularity of syntactic tags, we conjecture that the

taxonomy of the tags currently in use in many NLP systems is too complex

to be effectively utilized in deep neural models, considering the specificity of

many tag sets and the limited amount of data with which to train. Thus, we

27

cluster POS (word-level) tags into 12 groups following the universal POS tagset

(Petrov et al., 2012), and phrase-level tags into 11 groups according to the

criteria analogous to those of words, resulting in 23 tag categories in total. We

refer readers to Table 3.1 and 3.2 for details.

3.3.3 Leaf-LSTM

Another inherent shortcoming of classical RvNNs is that the intermediate rep-

resentation computed at each node of a tree is unaware of its external context

until all the information is gathered together at the root node. In other words,

each composition process in RvNN is prone to be stuck in local optima rather

than globally considered. To mitigate this problem, we propose using a leaf-

LSTM, following some previous work (Eriguchi et al., 2016; Yang et al., 2017;

Choi et al., 2018), which is a typical LSTM that accepts a sequence of words in

order. Instead of directly leveraging static word embeddings, we can make use

of each hidden state and cell state of the leaf-LSTM as input for leaf nodes in

a tree-LSTM, anticipating the proper contextualization of the input sequence.

Formally, we denote a sequence of words in an input sentence as w1:n (n:

the length of the sentence) and corresponding word embeddings as x1:n. Then,

a leaf-LSTM’s operation at time t can be formulated as,
ĩ

f̃

õ

g̃

 =

σ

σ

σ

tanh

(
WL

h̃t−1
xt

+ bL

)

c̃t = f̃ � c̃t−1 + ĩ� g̃

h̃t = õ� tanh (c̃t)

where xt ∈ Rdw indicates the input word vector at time t, and h̃t, c̃t ∈ Rdh

28

I thisloved film .

Word tree-LSTM

NP DTVBD NN .

NP

VP

@S

ROOT

Tag tree-LSTM

Leaf-LSTM

Word Embedding

Fully-connected

Tag Embedding

Figure 3.2 Illustration of SATA Tree-LSTM. It has two separate tree-LSTM
modules, the right of which (tag tree-LSTM) computes structure-aware tag
representations to control the composition function of the remaining tree-LSTM
(word tree-LSTM). Fully-connected: an affine transformation followed by a
non-linear function.

represent the hidden and cell state of the leaf-LSTM at time t (similarly, h̃t−1

is the hidden state at time t-1). WL and bL are learnable parameters.

In experiments, we demonstrate that introducing a leaf-LSTM fares better

at processing the input words of a tree-LSTM, compared to using a feed-forward

neural network. We also explore the possibility of its bidirectional setting in

ablation study.

3.3.4 SATA Tree-LSTM

Finally, we formulate SATA Tree-LSTM (Structure-Aware Tag Augmented

Tree-LSTM; Figure 3.2) which combines tag tree-LSTM (Section 3.3.2), leaf-

29

LSTM (Section 3.3.3), and word tree-LSTM (Section 3.3.1) together.

In formal, we derive the final sentence representation for an input sentence

in two steps. First, we compute structure-aware tag representations (ĥ) for each

node of the input tree using the tag tree-LSTM (the right side of Figure 3.2)

as follows: ĉ
ĥ

 =

Tag Tree-LSTM(e) if a leaf node

Tag Tree-LSTM(ĥl, ĥr, e) otherwise

where Tag-Tree-LSTM indicates the module we described in Section 3.3.2.

Second, we merge semantic units recursively on the word tree-LSTM in a

bottom-up fashion. For leaf nodes, we leverage the Leaf-LSTM (the bottom-left

of Figure 3.2; explained in Section 3.3.3) to compute c̃t and h̃t in sequential

order with the static word embedding xt.c̃t
h̃t

 = Leaf-LSTM(h̃t−1,xt).

Then, c̃t and h̃t are inserted into the word tree-LSTM such that the non-leaf

node whose left/right child is wt accepts c̃t and h̃t as input:č{l,r}
ȟ{l,r}

 =

c̃t
h̃t

 .
In the case of other non-leaf nodes (the upper-left of Figure 3.2), we recursively

calculate phrase representations for respective nodes as follows:

ǧ = tanh

Uw

ȟl
ȟr

+ aw

ǐ

f̌l

f̌r

ǒ

 =

σ

σ

σ

σ

(
Ww

ȟl

ȟr

ĥ

+ bw

)

30

Dataset dT dh ds Optimizer L B E W D Word Emb. Fine-tuning

SST-2 50 100 500 Adadelta 1 64 20 1e-5 0.5 Y
SST-5 100 300 1200 Adadelta 1 64 10 5e-6 0.5 Y
MR 25 100 500 Adadelta 1 64 30 1e-5 0.5 Y
SUBJ 25 150 1000 Adadelta 1 64 40 2e-5 0.5 Y
TREC 50 300 800 Adadelta 1 64 40 5e-5 0.5 Y
SNLI 100 300 1200 Adam 1e-3 64 10 1e-5 0.1 N

Table 3.3 Hyperparameters for respective datasets. dT: Dimension of tag em-
beddings. dh: Dimension of a word tree-LSTM cell. ds: Dimension of linear
classifiers. L: Learning rate. B: Batch size. E: Maximum epochs.W: Weight de-
cay rate. D: Dropout (drop) probability. Word Emb. Fine-tuning: Whether
word embeddings are fine-tuned during training or not (Y: fine-tuned, N: fixed).

č = f̌l � čl + f̌r � čr + ǐ� ǧ

ȟ = ǒ� tanh (č)

where ȟ, č ∈ Rdh represent the hidden and cell state of each node in the word

tree-LSTM. Uw ∈ Rdh×2dh , Ww ∈ R4dh×(2dh+dT), aw ∈ Rdh , bw ∈ R4dh are

learned parameters. Note that the structure-aware tag representation (ĥ) is

restrictively utilized to control the gate functions of the word tree-LSTM in the

form of additional inputs, and are not involved in the semantic composition (ǧ)

directly. Lastly, the hidden state of the root node (ȟroot) in the word tree-LSTM

becomes the final sentence representation of the input sentence.

3.4 Experiments

3.4.1 General Configurations

For static word embeddings, we initialize them with 300 dimensional 840B

GloVe (Pennington et al., 2014) and fine-tune them depending on the task.

On the other hand, tag representations are randomly initialized using the uni-

form distribution [-0.005, 0.005] and tuned during training. Our model is trained

using the Adam (Kingma and Ba, 2014) or Adadelta (Zeiler, 2012) optimizer.

31

Dataset dc l # Train # Dev # Test

SST-2 2 19 93,517 872 1,821
SST-5 5 18 300,192 1,101 2,210
MR 2 20 10,662 - CV
SUBJ 2 23 10,000 - CV
TREC 6 10 5,452 - 500
SNLI 3 11 550,152 10,000 10,000

Table 3.4 Statistics for sentence classification datasets. dc: Number of classes.
l : Average sentence length. # Train, # Dev, # Test: Number of sentences in
the training, validation, and test set respectively. CV: 10-fold cross validation.

For regularization, the weight decay technique is added (except for SNLI) to

the cross-entropy loss function following Loshchilov and Hutter (2017). Dropout

(Srivastava et al., 2014) is also applied for word embeddings and task-specific

classifiers, and batch normalization (Ioffe and Szegedy, 2015) is adopted for clas-

sifiers. All trainable parameters except the embeddings are initialized following

He et al. (2015) and biases are set to 0. The total L2 norm of the gradients of

the parameters is clipped not to be over 5 during training. Our best instances

are selected by their validation accuracy in cases where the validation set is

provided. Otherwise, we perform a grid search on a reasonable range of hyper-

parameters. We run 10-fold cross-validation when the test set does not exist.

The selected hyperparameters are listed in Table 3.3.

3.4.2 Sentence Classification Tasks

One of the most basic approaches to evaluating a sentence encoder is to measure

its performance on downstream tasks such as classification. We thus conduct

experiments on five classification datasets (see Table 3.4 for the statistics of the

datasets):

• MR (Pang and Lee, 2005): A group of movie reviews with binary (positive

/ negative) classes.

32

• SST-2 (Socher et al., 2013b): Stanford Sentiment Treebank; Similar to

MR, but each review is provided in the form of a binary parse tree whose

nodes are annotated with numeric sentiment values. For SST-2, we only

consider binary (positive / negative) classes.

• SST-5: Identical to SST-2, but the reviews are grouped into fine-grained

(very negative, negative, neutral, positive, and very positive) classes. Note

that we use the subtrees of parse trees in addition to the whole parse trees

when training models for SST-2 and SST-5, following the standard in the

literature.

• SUBJ (Pang and Lee, 2004): Sentences grouped as being either subjective

or objective (binary classes).

• TREC (Li and Roth, 2002): A dataset that groups questions into six

different question types (classes).

As a preprocessing step, we parse sentences in the datasets by leveraging the

Stanford PCFG parser (Klein and Manning, 2003).

To determine a sentence’s class given its sentence representation (ȟroot), we

utilize one fully-connected layer with a ReLU activation, followed by a softmax

classifier. The prediction for the probability of each class y given the sentence

w1:n is defined as:

s = ReLU(Wsȟroot + bs)

p(y|w1:n) = softmax(Wcs + bc)

where s ∈ Rds is the task-specific sentence representation for the softmax clas-

sifier, and Ws ∈ Rds×dh , Wc ∈ Rdc×ds , bs ∈ Rds , bc ∈ Rdc are trainable

parameters. We employ the cross entropy as the objective function.

33

Models / Tasks SST-2 SST-5 MR SUBJ TREC

RvNNs
RNTN (Socher et al., 2013b) 85.4 45.7 - - -
AdaMC-RNTN (Dong et al., 2014) 88.5 46.7 - - -
TE-RNTN (Qian et al., 2015) 87.7 49.8 - - -
TBCNN (Mou et al., 2015) 87.9 51.4 - - 96.0
Tree-LSTM (Tai et al., 2015) 88.0 51.0 - - -
AdaHT-LSTM-CM (Liu et al., 2017a) 87.8 50.2 81.9 94.1 -
DC-TreeLSTM (Liu et al., 2017b) 87.8 - 81.7 93.7 93.8
TE-LSTM (Huang et al., 2017) 89.6 52.6 82.2 - -
BiConTree (Teng and Zhang, 2017) 90.3 53.5 - - 94.8
Gumbel Tree-LSTM? (Choi et al., 2018) 90.7 53.7 - - -
TreeNet (Cheng et al., 2018) - - 83.6 95.9 96.1
SATA Tree-LSTM (Ours) 91.3 54.4 83.8 95.4 96.2

Other neural models
CNN (Kim, 2014) 88.1 48.0 81.5 93.4 93.6
AdaSent (Zhao et al., 2015) - - 83.1 95.5 92.4
LSTM-CNN (Zhou et al., 2016) 89.5 52.4 82.3 94.0 96.1
byte-mLSTM (Radford et al., 2017) 91.8 52.9 86.9 94.6 -
BCN + Char + CoVe (McCann et al., 2017) 90.3 53.7 - - 95.8
BCN + Char + ELMo (Peters et al., 2018) - 54.7 - - -

Table 3.5 Comparison of various sentence representation models on five classifi-
cation tasks. SATA Tree-LSTM shows competitive or comparable performance
compared to previous RvNNs as well as other sophisticated neural models. The
best figure for each dataset is underlined. ?: Latent tree-structured models.

Experimental results on the five datasets are shown in Table 3.5, where we

report the test accuracy (percentage) of our model and other different models

on each dataset. Compared against a series of parse tree-based RvNNs as well

as other neural models, SATA Tree-LSTM shows superior or comparable per-

formance on all the tasks we considered. Specifically, within the tree-structured

model class, our model achieves new state-of-the-art results on 4 out of 5 sen-

tence classification tasks—SST-2, SST-5, MR, and TREC. The model shows

its strength, in particular, when datasets provide phrase-level supervision (i.e.,

SST-2 and SST-5). Moreover, we demonstrate that SATA Tree-LSTM’s perfor-

mance in SST2, SST-5 and TREC is competitive to that of large pre-trained

models such as CoVe (McCann et al., 2017) and ELMo (Peters et al., 2018), con-

34

firming its effectiveness. Note also that SATA Tree-LSTM outperforms Gumbel

Tree-LSTM which is a latent RvNN, indicating that modeling RvNN with ex-

plicit linguistic knowledge can be a reasonable choice.

3.4.3 Natural Language Inference

This time, we aim to evaluate the efficacy of SATA Tree-LSTM on sentence-pair

datasets. To be specific, we conduct experiments on the Stanford Natural Lan-

guage Inference (SNLI; Bowman et al. (2015)) dataset, each example of which

consists of a premise and hypothesis. The objective is to predict the correct

relationship between the two sentences among three options—contradiction,

neutral, or entailment.

We utilize the Siamese architecture to encode both the premise (p1:m) and

hypothesis (h1:n). Specifically, the premise p1:m is encoded as ȟproot ∈ Rdh while

the hypothesis h1:n is encoded as ȟhroot ∈ Rdh with the same encoder. We then

introduce some heuristics (Mou et al., 2016) that facilitates the interaction

between ȟproot and ȟhroot, followed by one fully-connected layer with a ReLU

activation and a softmax classifier. Namely,

z =
[
ȟproot; ȟ

h
root; |ȟ

p
root − ȟhroot|; ȟ

p
root � ȟhroot

]
s = ReLU(Wsz + bs)

p(y|p1:m, h1:n) = softmax(Wcs + bc),

where z ∈ R4dh , s ∈ Rds are intermediate features for the classifier and Ws ∈

Rds×4dh , Wc ∈ Rdc×ds , bs ∈ Rds , bc ∈ Rdc are trainable parameters.

Our experimental results on the SNLI dataset are shown in Table 3.5. We

here report the test accuracy and number of trainable parameters for each

model. SATA-LSTM again demonstrates its decent performance, compared

against syntactic and latent RvNNs as well as non-tree models. Note that the

35

Models Accuracy(%) # Params

RvNNs
100D Latent Syntax Tree-LSTM? (Yogatama et al., 2017) 80.5 500K
300D Tree-based CNN (Mou et al., 2016) 82.1 3.5M
300D SPINN-PI (Bowman et al., 2016) 83.2 3.7M
300D Gumbel Tree-LSTM? (Choi et al., 2018) 85.6 2.9M
300D SATA Tree-LSTM (Ours) 85.9 3.3M

Other neural models
300D NSE (Munkhdalai and Yu, 2017) 84.6 3.0M
300D Reinforced Self-Attention Network (Shen et al., 2018a) 86.3 3.1M
600D Residual stacked encoders (Nie and Bansal, 2017) 86.0 29M
600D BiLSTM with generalized pooling (Chen et al., 2018) 86.6 65M

Table 3.6 Performance of diverse sentence embedding models on SNLI. SATA
Tree-LSTM attains competitive performance with a moderate number of pa-
rameters. The best performance is underlined. ?: Latent tree models.

number of parameters in our model is also comparable to those of other sophisti-

cated models, showing its efficiency. Even though our model has proven its met-

tle, the effect of tag information seems relatively weak in the case of SNLI, which

contains a relatively large amount of training data compared to the datasets

used in Section 3.4.2. One plausible explanation about this phenomenon is that

neural models may autonomously learn some syntactic concepts from a gigantic

text corpus when the size of the corpus is sufficiently large, reducing the ne-

cessity of external linguistic knowledge. We leave thorough exploration on this

issue as future work.

3.5 Analysis

3.5.1 Ablation Study

We design an ablation study on SATA Tree-LSTM’s core modules to estimate

their contributions to the final performance. We replace a target module with

possible alternatives while other parts remain fixed. The specific targets consid-

ered are the (i) leaf-LSTM and (ii) tag tree-LSTM (structure-aware tag embed-

36

88.9

90.0

90.9

90.0

91.3 91.3

85

86

87

88

89

90

91

92

A
cc

u
ra

cy
 (
%

)

Figure 3.3 Ablation study on SATA Tree-LSTM’s core modules. The results
show that each part in SATA-Tree LSTM plays a crucial role in achieving the
optimal performance. FC: a fully connected-layer with a tanh function. w/o
tags: tag information is not considered at all. w/ tags: static tag embeddings
are employed instead of structure-aware ones.

dings). In the first case, the leaf-LSTM is replaced with a fully-connected layer

(with a tanh activation) or a Bi-LSTM. In the second case, we switch structure-

aware tag embeddings to static tag embeddings or do not employ both of them

at all.

In Figure 3.3, we present the performance of the modifications on SST2.

Overall, we confirm that the original SATA Tree-LSTM outperforms all the

other options. In detail, we first justify our decision in formulating the leaf-

LSTM module in the left graph of Figure 3.3. It is worth noting that the

unidirectional leaf-LSTM turns out to be more effective than its bidirectional

counterpart when they have the exactly same number of parameters—i.e., the

hidden dimension size of the bidirectional LSTM is the half of that of the

unidirectional. We conjecture this is because the gain we earn by introducing

the backward portion of the bidirectional LSTM is subsumed by the benefit

of explicitly considering sentences’ syntactic structures. This interpretation is

37

reasonable in that a backward LSTM can be regarded as a special case of Tree-

LSTM that receives the right-branching tree as input. In conclusion, we adopt

a typical LSTM as the leaf module because of its simplicity and competitive

performance.

Next, the right part in Figure 3.3 demonstrates that structure-aware em-

beddings have a genuine influence on improving performance. Interestingly, em-

ploying static tag embeddings makes no difference in terms of the test accu-

racy, although we observe a small increase in the validation accuracy (which

is not reported in the figure). This outcome strongly supports our claim that

the knowledge of syntactic tags should be processed within the tree structure

which they come from.

3.5.2 Representation Visualization

So far, we have mostly concentrated on verifying SATA Tree-LSTM’s superior-

ity in a quantitative manner. In this section, we turn our attention to qualitative

analysis and attempt to interpret its inner workings by visualizing some phrase

representations computed by the model. To be concrete, we select a sentence,

insert its parse tree into SATA Tree-LSTM for computing the representation

for each node in the tree, and finally draw a scatter plot where each point corre-

sponds to the representation. As the target, we reuse the sentence encountered

in Figure 3.1—[Despite the films ‘s shortcomings , the stories are quietly moving

.]—and utilize Principal Component Analysis (PCA) to project the representa-

tions into a two-dimensional vector space. In addition, we draw supplementary

(red) lines to indicate the relationship between each two nodes in the parse tree.

From Figure 3.4, we observe that the visualized representations are hierar-

chically structured in the space, mimicking their positions in the original parse

tree. We also see the tendency that the low-level representations, located in

38

Figure 3.4 Scatter plot where each point corresponds to the embedding of each
phrase appeared in the parse in Figure 3.1. We additionally draw red lines to
visualize the tree structure. We observe that the embeddings are hierarchically
structured in the space, mimicking their positions in the original parse tree.

the bottom-left of the figure, are recursively combined such that the resulting

high-level embeddings are moved towards the relatively upper and right area.

The last finding is that the final sentence representation is closer to that of

the phrase [, the stories are quietly moving .] than that of the phrase [De-

spite the film’s shortcomings], successfully catching the sentence’s main theme.

To conclude, we confirm via this qualitative analysis that SATA Tree-LSTM’s

intermediate representations in fact reflect the structure of sentences in their

semantic space, as desired in our model’s formulation.

3.6 Limitations and Future Work

First, we assumed in Section 3.3.2 that our redefined, clustered classes of syn-

tactic tags would be useful. Even though the outcome of the proposed model

39

relied on the taxonomy turns out to be satisfying, it has not been validated yet

whether the model in fact benefited from the clustering. Therefore, it is desired

to verify its independent effectiveness in future work.

Second, the overall evaluation conducted in Section 3.4 is biased towards a

sort of classification tasks, although a sentence encoder in principle can be uti-

lized for diverse NLP tasks such as machine translation and question answering.

A possible following study would be thus testing the impact of our approach in

more broader categories of downstream tasks.

3.7 Summary

In this chapter, we have proposed a novel RvNN architecture, SATA Tree-

LSTM, as a guidance on how to fully exploit the rich information presented

by phrase-structure trees in constructing effective sentence representations. We

have demonstrated with extensive experiments that by introducing an inde-

pendent tag tree-LSTM that governs syntactic information coming from both

the structure and tags of parse trees, we can better control the semantic com-

position of constituents in RvNNs. This result implies that despite the recent

prosperity of data-driven approaches in NLP, linguistic knowledge can still take

charge of an important role as an assistant who offers a useful inductive bias

to neural models. As our method is, in theory, also applicable for other types

of syntactic structures besides constituency trees, a viable next step as future

work would be to explore its applicability on dependency parse trees.

40

Chapter 4

Sentence Representation Learning
with Implicit Syntactic Knowledge

4.1 Introduction

In the last chapter, we have introduced the methodology of better exploiting

syntax information for constructing sentence representations when such knowl-

edge is provided as an explicit form of constituency parse trees. By contrast,

we assume in this chapter that we only have access to pre-trained language

models (PLMs), which implicitly store a variety of linguistic knowledge, includ-

ing syntactic one, in their parameters. Inspired from the recent discovery by

several studies (Jawahar et al., 2019) that the lower and middle layers of PLMs

are relatively more sensitive to syntax while the upper layers are good at cap-

turing semantics, we propose a method for computing comprehensive sentence

representations by dynamically considering all the intermediate layers of PLMs.

Recently, pre-trained Transformer (Vaswani et al., 2017) language models

such as BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019b) have been

41

integral to achieving recent improvements in natural language understanding.

However, it is not straightforward to directly utilize these models for sentence-

level tasks, as they are basically pre-trained to focus on predicting (sub)word

tokens given context. The most typical way of converting the models into sen-

tence encoders is to fine-tune them with supervision from a downstream task. In

the process, as initially proposed by Devlin et al. (2019), a pre-defined token’s

(a.k.a. [CLS]) embedding from the last layer of the encoder is deemed as the

representation of an input sequence. This simple but effective method is possible

because, during supervised fine-tuning, the [CLS] embedding functions as the

only communication gate between the pre-trained encoder and a task-specific

layer, encouraging the [CLS] vector to capture the holistic information.

On the other hand, in cases where labeled datasets are unavailable, it is

unclear what the best strategy is for deriving sentence embeddings from BERT.1

In practice, previous studies (Reimers and Gurevych, 2019; Li et al., 2020; Hu

et al., 2020) reported that naïvely (i.e., without any processing) leveraging the

[CLS] embedding as a sentence representation, as is the case of supervised fine-

tuning, results in disappointing outcomes. Currently, the most common rule of

thumb for building BERT sentence embeddings without supervision is to apply

mean pooling on the last layer(s) of BERT. Yet, this approach can be still sub-

optimal. In a preliminary experiment, we constructed sentence embeddings by

employing various combinations of different BERT layers and pooling methods,

and tested them on the Semantic Textual Similarity (STS) benchmark dataset

(Cer et al., 2017).2 We discovered that BERT(-base)’s performance, measured in

Spearman correlation (× 100), can range from as low as 16.71 ([CLS], the 10th

1In this chapter, the term BERT has two meanings: Narrowly, the BERT model itself, and
more broadly, pre-trained Transformer encoders that share the same spirit with BERT.

2In the experiment, we employ the settings identical with ones used in Chapter 4.4. Refer
to Chapter 4.4 for more details.

42

Figure 4.1 BERT(-base)’s layer-wise performance with different pooling meth-

ods on the STS-B test set. We observe that the performance can be dramati-

cally varied according to the selected layer and pooling strategy. Our self-guided

training (SG / SG-OPT) assures much improved results compared to those of

the baselines.

layer) to 63.19 (max pooling, the 2nd layer) depending on the selected layer and

pooling method (see Figure 4.1). This result suggests that the current practice

of building BERT sentence vectors is not solid enough, and that there is room

to bring out more of BERT’s expressiveness.

In this chapter, we propose a contrastive learning method that makes use of

a newly proposed self-guidance mechanism to tackle the aforementioned prob-

lem. The core idea is to recycle intermediate BERT hidden representations as

43

positive samples to which the final sentence embedding should be close. As our

method does not require data augmentation, which is essential in most recent

contrastive learning frameworks, it is much simpler and easier to use than exist-

ing methods (Fang and Xie, 2020; Xie et al., 2020). Moreover, we customize the

NT-Xent loss (Chen et al., 2020), a contrastive learning objective widely used

in computer vision, for better sentence representation learning with BERT. We

demonstrate that our approach outperforms competitive baselines designed for

building BERT sentence vectors (Li et al., 2020; Wang and Kuo, 2020) in vari-

ous environments. With comprehensive analyses, we also show that our method

is more computationally efficient than the baselines at inference in addition to

being more robust to domain shifts.

4.2 Related Work

Contrastive Representation Learning. Contrastive learning has been long

considered as effective in constructing meaningful representations. For instance,

Mikolov et al. (2013b) propose to learn word embeddings by framing words

nearby a target word as positive samples while others as negative. Logeswaran

and Lee (2018) generalize the approach of Mikolov et al. (2013b) for sentence

representation learning. More recently, several studies (Fang and Xie, 2020;

Giorgi et al., 2020; Wu et al., 2020) suggest to utilize contrastive learning for

training Transformer models, similar to our approach. However, they generally

require data augmentation techniques, e.g., back-translation (Sennrich et al.,

2016), or prior knowledge on training data such as order information, while our

method does not. Furthermore, we focus on revising BERT for computing better

sentence embeddings rather than training a language model from scratch.

On the other hand, contrastive learning has been also receiving much at-

tention from the computer vision community (Chen et al. (2020); Chen and He

44

(2020); He et al. (2020), inter alia). We improve the framework of Chen et al.

(2020) by optimizing its learning objective for pre-trained Transformer-based

sentence representation learning. For extensive surveys on contrastive learning,

refer to Le-Khac et al. (2020) and Jaiswal et al. (2020).

Fine-tuning BERT with Supervision. It is not always trivial to fine-tune

pre-trained Transformer models of gigantic size with success, especially when

the number of target domain data is limited (Mosbach et al., 2020). To mitigate

this training instability problem, several approaches (Aghajanyan et al., 2020;

Jiang et al., 2020; Zhu et al., 2020) have been recently proposed. In particular,

Gunel et al. (2021) propose to exploit contrastive learning as an auxiliary train-

ing objective during fine-tuning BERT with supervision from target tasks. In

contrast, we deal with the problem of adjusting BERT when such supervision

is not available.

Sentence Embeddings from BERT. Since BERT and its variants are orig-

inally designed to be fine-tuned on each downstream task to attain their optimal

performance, it remains ambiguous how best to extract general sentence rep-

resentations from them, which are broadly applicable across diverse sentence-

related tasks. Following Conneau et al. (2017), Reimers and Gurevych (2019)

(SBERT) propose to compute sentence embeddings by conducting mean pooling

on the last layer of BERT and then fine-tuning the pooled vectors on the natural

language inference (NLI) datasets (Bowman et al., 2015; Williams et al., 2018b).

Meanwhile, some other studies concentrate on more effectively leveraging the

knowledge embedded in BERT to construct sentence embeddings without su-

pervision. Specifically, Wang and Kuo (2020) propose a pooling method based

on linear algebraic algorithms to draw sentence vectors from BERT’s interme-

45

diate layers. Li et al. (2020) suggest to learn a mapping from the average of the

embeddings obtained from the last two layers of BERT to a spherical Gaussian

distribution using a flow model, and to leverage the redistributed embeddings

in place of the original BERT representations. We follow the setting of Li et al.

(2020) in that we only utilize plain text during training, however, unlike all

the others that rely on a certain pooling method even after training, we di-

rectly refine BERT so that the typical [CLS] vector can function as a sentence

embedding. Note also that there exists concurrent work (Carlsson et al., 2021;

Gao et al., 2021; Wang et al., 2021) whose motivation is analogous to ours,

attempting to improve BERT sentence embeddings in an unsupervised fashion.

4.3 Method

As BERT mostly requires some type of adaptation to be properly applied to a

task of interest, it might not be desirable to derive sentence embeddings directly

from BERT without fine-tuning. While Reimers and Gurevych (2019) attempt

to alleviate this problem with typical supervised fine-tuning, we restrict our-

selves to revising BERT in an unsupervised manner, meaning that our method

only demands a bunch of raw sentences for training.

Among possible unsupervised learning strategies, we concentrate on con-

trastive learning which can inherently motivate BERT to be aware of similari-

ties between different sentence embeddings. Considering that sentence vectors

are widely used in computing the similarity of two sentences, the inductive bias

introduced by contrastive learning can be helpful for BERT to work well on such

tasks. The problem is that sentence-level contrastive learning usually requires

data augmentation (Fang and Xie, 2020) or prior knowledge on training data,

e.g., order information (Logeswaran and Lee, 2018), to make plausible posi-

tive/negative samples. We attempt to circumvent these constraints by utilizing

46

𝑝

Copy

Sampler 𝜎

Projection Head 𝑓

(initialize)

.

.

.

Layer 1

Layer 0

𝐁𝐄𝐑𝐓𝑭

.

.

.

Layer ℓ

Layer 1

Layer 0

𝒉!

[CLS]

𝒄!

The cat sat on the mat

𝑠"

𝒉! ,#

𝒉! ,$

𝒉! ,%

𝒄"𝒉"

𝑓 𝒉! 𝑓 𝒄!

Pooling

𝑝

𝑝

𝐁𝐄𝐑𝐓𝑻

𝐁𝐄𝐑𝐓𝑻$𝑭

The bat and …
𝑠%

…

𝑓 𝒉" 𝑓 𝒄"

NT-Xent Loss 𝐿

Layer ℓ

Figure 4.2 Self-guided contrastive learning framework. We clone BERT into two
copies at the beginning of training. BERTT (except Layer 0) is then fine-tuned
to optimize the sentence vector ci while BERTF is fixed.

the hidden representations of BERT, which are readily accessible, as samples

in the embedding space.

4.3.1 Contrastive Learning with Self-Guidance

We aim at developing a contrastive learning method that is free from external

procedure such as data augmentation. A possible solution is to leverage (virtual)

adversarial training (Miyato et al., 2018) in the embedding space. However,

there is no assurance that the semantics of a sentence embedding would remain

unchanged when it is added with a random noise. As an alternative, we propose

to utilize the hidden representations from BERT’s intermediate layers, which

are conceptually guaranteed to represent corresponding sentences, as pivots that

47

BERT sentence vectors should be close to or be away from. We call our method

as self-guided contrastive learning since we exploit the internal training

signals made by BERT itself to fine-tune it.

We describe our training framework in Figure 4.2. First, we clone BERT

into two copies, BERTF (fixed) and BERTT (tuned) respectively. BERTF is

fixed during training to provide a training signal while BERTT is fine-tuned to

construct better sentence embeddings. The reason why we differentiate BERTF

from BERTT is that we want to prevent the training signal computed by BERTF

from being degenerated as the training procedure continues, which often hap-

pens when BERTF = BERTT . This design decision also reflects our philoso-

phy that our goal is to dynamically conflate the knowledge stored in BERT’s

different layers to produce sentence embeddings, rather than introducing new

information via extra training. Note that in our setting, the [CLS] vector from

the last layer of BERTT , i.e., ci, is regarded as the final sentence embedding

we aim to optimize/utilize during/after fine-tuning.

Second, given b sentences in a mini-batch, say s1, s2, · · · , sb, we feed each

sentence si into BERTF and compute token-level hidden representations Hi,k ∈

Rlen(si)×d:

[Hi,0;Hi,1; · · · ;Hi,k; · · · ;Hi,l] = BERTF (si),

where 0 ≤ k ≤ l (0: the non-contextualized layer), l is the number of hidden

layers in BERT, len(si) is the length of the tokenized sentence, and d is the

size of BERT’s hidden representations. Then, we apply a pooling function p

to Hi,k for deriving diverse sentence-level views hi,k ∈ Rd from all layers, i.e.,

hi,k = p(Hi,k). Finally, we choose the final view to be utilized by applying a

sampling function σ:

hi = σ({hi,k|0 ≤ k ≤ l}).

48

As we have no specific constraints in defining p and σ, we employ max pooling as

p and a uniform sampler as σ for simplicity, unless otherwise stated. This simple

choice for the sampler implies that each hi,k has the same importance, which

is persuasive considering it is known that different BERT layers are specialized

at capturing disparate linguistic concepts (Jawahar et al., 2019).3

Third, we compute our sentence embedding ci for si as follows:

ci = BERTT (si)[CLS],

where BERT(·)[CLS] corresponds to the [CLS] vector obtained from the last

layer of BERT. Next, we collect the set of the computed vectors into X =

{x|x ∈ {ci} ∪ {hi}}, and for all xm ∈ X, we compute the NT-Xent loss (Chen

et al., 2020):

Lbasem = − log (φ(xm, µ(xm))/Z),

where φ(u,v) = exp(g(f(u), f(v))/τ)

and Z =
∑2b

n=1,n6=m φ(xm,xn).

Note that τ is a temperature hyperparameter, f is a projection head consisting

of MLP layers,4 g(u,v) = u · v/‖u‖‖v‖ is the cosine similarity function, and

µ(·) is the matching function defined as follows,

µ(x) =

hi if x is equal to ci.

ci if x is equal to hi.

Lastly, we sum all Lbasem divided by 2b, and add a regularizer Lreg = ‖BERTF−

BERTT ‖22 to prevent BERTT from being too distant from BERTF .5 As a result,
3We can also potentially make use of another sampler functions to inject our bias or prior

knowledge on target tasks.
4We employ a two-layered MLP whose hidden size is 4096. Each linear layer in the MLP

is followed by a GELU function.
5To be specific, Lreg is the square of the L2 norm of the difference between BERTF and

BERTT . As shown in Figure 4.2, we also freeze the 0th layer of BERTT for stable learning.

49

𝒄!

𝒄"

𝒉!

𝒉"

(1)

(2)

(3)

(4)

Figure 4.3 Four factors of the original NT-Xent loss. Green and yellow arrows
represent the force of attraction and repulsion, respectively.

the final loss Lbase is:

Lbase =
1

2b

2b∑
m=1

Lbasem + λ · Lreg,

where the coefficient λ is a hyperparameter.

To summarize, our method refines BERT so that the sentence embedding ci

has a higher similarity with hi, which is another representation for the sentence

si, in the subspace projected by f while being relatively dissimilar with cj,j 6=i

and hj,j 6=i. After training is completed, we remove all the components except

BERTT and simply use ci as the final sentence representation.

4.3.2 Learning Objective Optimization

In Section 4.3.1, we relied on a simple variation of the general NT-Xent loss,

which is composed of four factors. Given sentence si and sj without loss of

generality, the factors are as follows (Figure 4.3):

(1) ci →← hi (or cj →← hj): The main component that mirrors our core

motivation that a BERT sentence vector (ci) should be consistent with

intermediate views (hi) from BERT.

50

(2) ci ←→ cj : A factor that forces sentence embeddings (ci, cj) to be distant

from each other.

(3) ci ←→ hj (or cj ←→ hi): An element that makes ci being inconsistent

with views for other sentences (hj).

(4) hi ←→ hj : A factor that causes a discrepancy between views of different

sentences (hi, hj).

Even though all the four factors play a certain role, some components may be

useless or even cause a negative influence on our goal. For instance, Chen and

He (2020) have recently reported that in image representation learning, only

(1) is vital while others are nonessential. Likewise, we customize the training

loss with three major modifications so that it can be more well-suited for our

purpose.

First, as our aim is to improve ci with the aid of hi, we re-define our loss

focusing more on ci rather than considering ci and hi as equivalent entities:

Lopt1i = − log (φ(ci,hi)/Ẑ),

where Ẑ =
∑b

j=1,j 6=i φ(ci, cj) +
∑b

j=1 φ(ci,hj).

In other words, hi only functions as points that ci is encouraged to be close

to or away from, and is not deemed as targets to be optimized. This revision

naturally results in removing (4). Furthermore, we discover that (2) is also

insignificant for improving performance, and thus derive Lopt2i :

Lopt2i = − log(φ(ci,hi)/
∑b

j=1 φ(ci,hj)).

Lastly, we diversify signals from (1) and (3) by allowing multiple views

{hi,k} to guide ci:

Lopt3i,k = − log
φ(ci,hi,k)

φ(ci,hi,k) +
∑b

m=1,m 6=i
∑l

n=0 φ(ci,hm,n)
.

51

Hyperparameters Values

Random seed 1, 2, 3, 4, 1234, 2345, 3456, 7890
Evaluation step 50
Epoch 1
Batch size (b) 16
Optimizer AdamW (β1, β2=(0.9, 0.9))
Learning rate 0.00005
Early stopping endurance 10
τ 0.01
λ 0.1

Table 4.1 Hyperparameters for experiments.

We expect with this refinement that the learning objective can provide more

precise and fruitful training signals by considering additional (and freely avail-

able) samples being provided with. The final form of our optimized loss is:

Lopt =
1

b(l + 1)

b∑
i=1

l∑
k=0

Lopt3i,k + λ · Lreg.

In Section 4.5.1, we show the decisions made in this section contribute to im-

provements in performance.

4.4 Experiments

4.4.1 General Configurations

In terms of pre-trained encoders, we leverage BERT (Devlin et al., 2019) for

English datasets and MBERT, which is a multilingual variant of BERT, for

multilingual datasets. We also employ RoBERTa (Liu et al., 2019b) and SBERT

(Reimers and Gurevych, 2019) in some cases to evaluate the generalizability of

tested methods. We use the suffixes ‘-base’ and ‘-large’ to distinguish small and

large models. Every trainable model’s performance is reported as the average

of 8 separate runs to reduce randomness. Hyperparameters are optimized on

the STS-B validation set using BERT-base and utilized across different models.

See Table 4.1 for details. Our implementation is based on the HuggingFace’s

52

Transformers (Wolf et al., 2019) and SBERT (Reimers and Gurevych, 2019)

libraries.

4.4.2 Semantic Textual Similarity Tasks

We first evaluate our method and baselines on Semantic Textual Similarity

(STS) tasks. Given two sentences, we derive their similarity score by computing

the cosine similarity of their embeddings.

Datasets and Metrics. Following the literature, we evaluate models on 7

datasets in total, that is, STS-B (Cer et al., 2017), SICK-R (Marelli et al., 2014),

and STS12-16 (Agirre et al., 2012, 2013, 2014, 2015, 2016). These datasets

contain pairs of two sentences, whose similarity scores are labeled from 0 to 5.

The relevance between gold annotations and the scores predicted by sentence

vectors is measured in Spearman correlation (× 100).

Baselines and Model Specification. We first prepare two non-BERT ap-

proaches as baselines, i.e., Glove (Pennington et al., 2014) mean embeddings

and Universal Sentence Encoder (USE; Cer et al. (2018)). In addition, various

methods for BERT sentence embeddings that do not require supervision are

also introduced as baselines:

• CLS token embedding: It regards the [CLS] vector from the last layer of

BERT as a sentence representation.

• Mean pooling: This method conducts mean pooling on the last layer of

BERT and use the output as a sentence embedding.

• WK pooling: This follows the method of Wang and Kuo (2020), which

exploits QR decomposition and extra techniques to derive meaningful

sentence vectors from BERT.

53

• Flow: This is BERT-flow proposed by Li et al. (2020), which is a flow-

based model that maps the vectors made by taking mean pooling on the

last two layers of BERT to the Gaussian space. We utilize this model in a

restrictive manner, as we find it difficult to exactly reproduce the model’s

result with its official code.

• Contrastive (BT): Following Fang and Xie (2020), we revise BERT

with contrastive learning. This baseline is identical with our Contrastive

(SG) model, except that it utilizes back-translation to generate positive

samples. To be specific, English sentences in the training set are traslated

into German sentences using theWMT’19 English-German translator pro-

vided by Ng et al. (2019), and then the translated German sentences are

back-translated into English with the aid of the WMT’19 German-English

model also offered by Ng et al. (2019). We utilize beam search during de-

coding with the beam size 100, which is relatively large, since we want

the generated sentences to be more diverse while grammatically correct

at the same time. Note that the contrastive (BT) model is trained with

the NT-Xent loss (Chen et al., 2020), unlike CERT (Fang and Xie, 2020)

which leverages the MoCo training objective (He et al., 2020).

We make use of plain sentences from STS-B to fine-tune BERT using our ap-

proach, identical with Flow. To be specific, for training, Li et al. (2020) utilize

the concatenation of the STS-B training, validation, and test set (without gold

annotations), and we follow the same setting for a fair comparison. We name

the BERT instances trained with our self-guided method as Contrastive (SG)

and Contrastive (SG-OPT), which utilize Lbase and Lopt in Section 4.3 re-

spectively.

54

M
od

el
s

P
oo

li
n
g

S
T

S
-B

S
IC

K
-R

S
T

S
12

S
T

S
13

S
T

S
14

S
T

S
15

S
T

S
16

A
vg

.

N
on

-B
E
R
T

B
as

el
in

es
G

lo
V
e†

M
ea

n
58

.0
2

53
.7

6
55

.1
4

70
.6

6
59

.7
3

68
.2

5
63

.6
6

61
.3

2
U

SE
†

-
74

.9
2

7
6
.6
9

64
.4

9
67

.8
0

64
.6

1
76

.8
3

73
.1

8
71

.2
2

B
E
R
T

-b
as

e
+

N
o

tu
ni

ng
C

L
S

20
.3

0
42

.4
2

21
.5

4
32

.1
1

21
.2

8
37

.8
9

44
.2

4
31

.4
0

+
N

o
tu

ni
ng

M
ea

n
47

.2
9

58
.2

2
30

.8
7

59
.8

9
47

.7
3

60
.2

9
63

.7
3

52
.5

7
+

N
o

tu
ni

ng
W

K
16

.0
7

41
.5

4
16

.0
1

21
.8

0
15

.9
6

33
.5

9
34

.0
7

25
.5

8
+

F
lo

w
M

ea
n-

2
71

.3
5 ±

0
.2
7

64
.9

5 ±
0
.1
6

64
.3

2 ±
0
.1
7

69
.7

2 ±
0
.2
5

63
.6

7 ±
0
.0
6

77
.7

7 ±
0
.1
5

69
.5

9 ±
0
.2
8

68
.7

7 ±
0
.0
7

+
C

on
tr

as
ti

ve
(B

T
)

C
L
S

63
.2

7 ±
1
.4
8

66
.9

1 ±
1
.2
9

54
.2

6 ±
1
.8
4

64
.0

3 ±
2
.3
5

54
.2

8 ±
1
.8
7

68
.1

9 ±
0
.9
5

67
.5

0 ±
0
.9
6

62
.6

3 ±
1
.2
8

+
C

on
tr

as
ti

ve
(S

G
)

C
L
S

75
.0

8 ±
0
.7
3

68
.1

9 ±
0
.3
6

63
.6

0 ±
0
.9
8

76
.4

8 ±
0
.6
9

67
.5

7 ±
0
.5
7

79
.4

2 ±
0
.4
9

74
.8

5 ±
0
.5
4

72
.1

7 ±
0
.4
4

+
C

on
tr

as
ti

ve
(S

G
-O

P
T

)
C

L
S

77
.2

3 ±
0
.4
3

68
.1

6 ±
0
.5
0

66
.8

4 ±
0
.7
3

80
.1

3 ±
0
.5
1

71
.2

3 ±
0
.4
0

81
.5

6 ±
0
.2
8

77
.1

7 ±
0
.2
2

74
.6

2 ±
0
.2
5

B
E
R
T

-l
ar

ge
+

N
o

tu
ni

ng
C

L
S

26
.7

5
43

.4
4

27
.4

4
30

.7
6

22
.5

9
29

.9
8

42
.7

4
31

.9
6

+
N

o
tu

ni
ng

M
ea

n
47

.0
0

53
.8

5
27

.6
7

55
.7

9
44

.4
9

51
.6

7
61

.8
8

48
.9

1
+

N
o

tu
ni

ng
W

K
35

.7
5

38
.3

9
12

.6
5

26
.4

1
23

.7
4

29
.3

4
34

.4
2

28
.6

7
+

F
lo

w
M

ea
n-

2
72

.7
2 ±

0
.3
6

63
.7

7 ±
0
.1
8

62
.8

2 ±
0
.1
7

71
.2

4 ±
0
.2
2

65
.3

9 ±
0
.1
5

78
.9

8 ±
0
.2
1

73
.2

3 ±
0
.2
4

70
.0

7 ±
0
.8
1

+
C

on
tr

as
ti

ve
(B

T
)

C
L
S

63
.8

4 ±
1
.0
5

66
.5

3 ±
2
.6
2

52
.0

4 ±
1
.7
5

62
.5

9 ±
1
.8
4

54
.2

5 ±
1
.4
5

71
.0

7 ±
1
.1
1

66
.7

1 ±
1
.0
8

62
.4

3 ±
1
.0
7

+
C

on
tr

as
ti

ve
(S

G
)

C
L
S

75
.2

2 ±
0
.5
7

69
.6

3 ±
0
.9
5

64
.3

7 ±
0
.7
2

77
.5

9 ±
1
.0
1

68
.2

7 ±
0
.4
0

80
.0

8 ±
0
.2
8

74
.5

3 ±
0
.4
3

72
.8

1 ±
0
.3
1

+
C

on
tr

as
ti

ve
(S

G
-O

P
T

)
C

L
S

76
.1

6 ±
0
.4
2

70
.2

0 ±
0
.6
5

67
.0

2 ±
0
.7
2

79
.4

2 ±
0
.8
0

70
.3

8 ±
0
.6
5

81
.7

2 ±
0
.3
2

76
.3

5 ±
0
.2
2

74
.4

6 ±
0
.3
5

R
oB

E
R
T
a-

b
as

e
+

N
o

tu
ni

ng
C

L
S

45
.4

1
61

.8
9

16
.6

7
45

.5
7

30
.3

6
55

.0
8

56
.9

8
44

.5
7

+
N

o
tu

ni
ng

M
ea

n
54

.5
3

62
.0

3
32

.1
1

56
.3

3
45

.2
2

61
.3

4
61

.9
8

53
.3

6
+

N
o

tu
ni

ng
W

K
35

.7
5

54
.6

9
20

.3
1

36
.5

1
32

.4
1

48
.1

2
46

.3
2

39
.1

6
+

C
on

tr
as

ti
ve

(B
T

)
C

L
S

79
.9

3 ±
1
.0
8

71
.9

7 ±
1
.0
0

62
.3

4 ±
2
.4
1

78
.6

0 ±
1
.7
4

68
.6

5 ±
1
.4
8

79
.3

1 ±
0
.6
5

77
.4

9 ±
1
.2
9

74
.0

4 ±
1
.1
6

+
C

on
tr

as
ti

ve
(S

G
)

C
L
S

78
.3

8 ±
0
.4
3

69
.7

4 ±
1
.0
0

62
.8

5 ±
0
.8
8

78
.3

7 ±
1
.5
5

68
.2

8 ±
0
.8
9

80
.4

2 ±
0
.6
5

77
.6

9 ±
0
.7
6

73
.6

7 ±
0
.6
2

+
C

on
tr

as
ti

ve
(S

G
-O

P
T

)
C

L
S

77
.6

0 ±
0
.3
0

68
.4

2 ±
0
.7
1

62
.5

7 ±
1
.1
2

78
.9

6 ±
0
.6
7

69
.2

4 ±
0
.4
4

79
.9

9 ±
0
.4
4

77
.1

7 ±
0
.2
4

73
.4

2 ±
0
.3
1

55

R
oB

E
R
T
a-

la
rg

e
+

N
o

tu
ni

ng
C

L
S

12
.5

2
40

.6
3

19
.2

5
22

.9
7

14
.9

3
33

.4
1

38
.0

1
25

.9
6

+
N

o
tu

ni
ng

M
ea

n
47

.0
7

58
.3

8
33

.6
3

57
.2

2
45

.6
7

63
.0

0
61

.1
8

52
.3

1
+

N
o

tu
ni

ng
W

K
30

.2
9

28
.2

5
23

.1
7

30
.9

2
23

.3
6

40
.0

7
43

.3
2

31
.3

4
+

C
on

tr
as

ti
ve

(B
T

)
C

L
S

77
.0

5 ±
1
.2
2

67
.8

3 ±
1
.3
4

57
.6

0 ±
3
.5
7

72
.1

4 ±
1
.1
6

62
.2

5 ±
2
.1
0

71
.4

9 ±
3
.2
4

71
.7

5 ±
1
.7
3

68
.5

9 ±
1
.5
3

+
C

on
tr

as
ti

ve
(S

G
)

C
L
S

76
.1

5 ±
0
.5
4

66
.0

7 ±
0
.8
2

64
.7

7 ±
2
.5
2

71
.9

6 ±
1
.5
3

64
.5

4 ±
1
.0
4

78
.0

6 ±
0
.5
2

75
.1

4 ±
0
.9
4

70
.9

5 ±
1
.1
3

+
C

on
tr

as
ti

ve
(S

G
-O

P
T

)
C

L
S

78
.1

4 ±
0
.7
2

67
.9

7 ±
1
.0
9

64
.2

9 ±
1
.5
4

76
.3

6 ±
1
.4
7

68
.4

8 ±
1
.5
8

80
.1

0 ±
1
.0
5

76
.6

0 ±
0
.9
8

73
.1

3 ±
1
.2
0

S
B

E
R
T

-b
as

e
+

N
o

tu
ni

ng
C

L
S

73
.6

6
69

.7
1

70
.1

5
71

.1
7

68
.8

9
75

.5
3

70
.1

6
71

.3
2

+
N

o
tu

ni
ng

M
ea

n
76

.9
8

72
.9

1
70

.9
7

76
.5

3
73

.1
9

79
.0

9
74

.3
0

74
.8

5
+

N
o

tu
ni

ng
W

K
78

.3
8

74
.3

1
69

.7
5

76
.9

2
72

.3
2

81
.1

7
76

.2
5

75
.5

9
+

F
lo

w
‡

M
ea

n-
2

81
.0

3
74

.9
7

68
.9

5
78

.4
8

77
.6

2
81

.9
5

78
.9

4
77

.4
2

+
C

on
tr

as
ti

ve
(B

T
)

C
L
S

74
.6

7 ±
0
.3
0

70
.3

1 ±
0
.4
5

71
.1

9 ±
0
.3
7

72
.4

1 ±
0
.6
0

69
.9

0 ±
0
.4
3

77
.1

6 ±
0
.4
8

71
.6

3 ±
0
.5
5

72
.4

7 ±
0
.3
7

+
C

on
tr

as
ti

ve
(S

G
)

C
L
S

81
.0

5 ±
0
.3
4

75
.7

8 ±
0
.5
5

73
.7

6 ±
0
.7
6

80
.0

8 ±
0
.4
5

75
.5

8 ±
0
.5
7

83
.5

2 ±
0
.4
3

79
.1

0 ±
0
.5
1

78
.4

1 ±
0
.3
3

+
C

on
tr

as
ti

ve
(S

G
-O

P
T

)
C

L
S

81
.4

6 ±
0
.2
7

76
.6

4
±
0
.4
2

75
.1

6 ±
0
.5
6

81
.2

7 ±
0
.3
7

76
.3

1 ±
0
.3
8

84
.7

1 ±
0
.2
6

80
.3

3 ±
0
.1
9

79
.4

1 ±
0
.1
7

S
B

E
R
T

-l
ar

ge
+

N
o

tu
ni

ng
C

L
S

76
.0

1
70

.9
9

69
.0

5
71

.3
4

69
.5

0
76

.6
6

70
.0

8
71

.9
5

+
N

o
tu

ni
ng

M
ea

n
79

.1
9

73
.7

5
72

.2
7

78
.4

6
74

.9
0

80
.9

9
76

.2
5

76
.5

4
+

N
o

tu
ni

ng
W

K
61

.8
7

67
.0

6
49

.9
5

53
.0

2
46

.5
5

62
.4

7
60

.3
2

57
.3

2
+

F
lo

w
‡

M
ea

n-
2

81
.1

8
74

.5
2

70
.1

9
80

.2
7

78
.8

5
82

.9
7

80
.5

7
78

.3
6

+
C

on
tr

as
ti

ve
(B

T
)

C
L
S

76
.7

1 ±
1
.2
2

71
.5

6 ±
1
.3
4

69
.9

5 ±
3
.5
7

72
.6

6 ±
1
.1
6

70
.3

8 ±
2
.1
0

77
.8

0 ±
3
.2
4

71
.4

1 ±
1
.7
3

72
.9

2 ±
1
.5
3

+
C

on
tr

as
ti

ve
(S

G
)

C
L
S

82
.3

5 ±
0
.1
5

76
.4

4 ±
0
.4
1

74
.8

4 ±
0
.5
7

82
.8

9 ±
0
.4
1

77
.2

7 ±
0
.3
5

84
.4

4 ±
0
.2
3

79
.5

4 ±
0
.4
9

79
.6

8 ±
0
.3
7

+
C

on
tr

as
ti

ve
(S

G
-O

P
T

)
C

L
S

82
.0

5 ±
0
.3
9

76
.4

4 ±
0
.2
9

74
.5

8 ±
0
.5
9

83
.7

9 ±
0
.1
4

76
.9

8 ±
0
.1
9

84
.5

7 ±
0
.2
7

79
.8

7 ±
0
.4
2

79
.7

6 ±
0
.3
3

T
ab

le
4.
2
E
xp

er
im

en
ta
lr
es
ul
ts

on
ST

S
ta
sk
s.
R
es
ul
ts

fo
r
tr
ai
ne
d
m
od

el
s
ar
e
av
er
ag
ed

ov
er

8
ru
ns

(±
:t
he

st
an

da
rd

de
vi
at
io
n)
.
T
he

be
st

fig
ur
e
in

ea
ch

(m
od

el
-w

is
e)

pa
rt

is
in

b
ol
d

an
d
th
e
be

st
in

ea
ch

co
lu
m
n
is

un
de
rl
in
ed
.
O
ur

m
et
ho

d
w
it
h

se
lf-
gu

id
an

ce
(S
G
,
SG

-O
P
T
)
ge
ne
ra
lly

ou
tp
er
fo
rm

s
co
m
pe

ti
ti
ve

ba
se
lin

es
.
W
e
bo

rr
ow

sc
or
es

fr
om

pr
ev
io
us

w
or
k
if
w
e
co
ul
d
no

t
re
pr
od

uc
e
th
em

.†
:f
ro
m

R
ei
m
er
s
an

d
G
ur
ev
yc
h
(2
01
9)
.‡

:f
ro
m

Li
et

al
.(
20
20
).

56

Models Spanish

Baseline (Agirre et al., 2014)
UMCC-DLSI-run2 (Rank #1) 80.69

MBERT
+ CLS 12.60
+ Mean pooling 81.14
+ WK pooling 79.78
+ Contrastive (BT) 78.04
+ Contrastive (SG) 82.09
+ Contrastive (SG-OPT) 82.74

Table 4.3 Performance on the SemEval-2014 Task 10 Spanish task.

Results. We report the performance of different approaches on STS tasks in

Table 4.2. We confirm the fact that our methods (SG and SG-OPT) mostly

outperform other baselines in a variety of experimental settings. As reported

in earlier studies, the naïve [CLS] embedding and mean pooling are turned

out to be inferior to sophisticated methods. To our surprise, WK pooling’s

performance is even lower than that of mean pooling in most cases, and the

only exception is when WK pooling is applied to SBERT-base. Flow shows its

strength outperforming the simple strategies. Nevertheless, its performance is

shown to be worse than that of our methods (although some exceptions exist

in the case of SBERT-large). Note that contrastive learning becomes much

more competitive when it is combined with our self-guidance algorithm rather

than back-translation, except for the case of RoBERTa-base. It is also worth

mentioning that the optimized version of our method (SG-OPT) generally shows

better performance than the basic one (SG), proving the efficacy of learning

objective optimization (Section 4.3.2). To conclude, we demonstrate that our

self-guided contrastive learning is effective in improving the quality of BERT

sentence embeddings when tested on STS tasks.

57

Models Arabic Spanish English
(Track 1) (Track 3) (Track 5)

Baselines
Cosine baseline (Cer et al., 2017) 60.45 71.17 72.78
ENCU (Rank #1, Tian et al. (2017)) 74.40 85.59 85.18

MBERT
+ CLS 30.57 29.38 24.97
+ Mean pooling 51.09 54.56 54.86
+ WK pooling 50.38 55.87 54.87
+ Contrastive (BT) 54.24 68.16 73.89
+ Contrastive (SG) 57.09 78.93 78.24
+ Contrastive (SG-OPT) 58.52 80.19 78.03

Table 4.4 Results on SemEval-2017 Task 1: Track 1 (Arabic), Track 3 (Spanish),
and Track 5 (English).

4.4.3 Multilingual STS Tasks

We expand our experiments to multilingual settings by utilizing MBERT and

cross-lingual zero-shot transfer. Specifically, we refine MBERT using only En-

glish data and test it on datasets written in other languages. As in Section 4.4.2,

we use the English STS-B for training. We consider two datasets for evaluation:

(1) SemEval-2014 Task 10 (Spanish; Agirre et al. (2014)) and (2) SemEval-2017

Task 1 (Arabic, Spanish, and English; Cer et al. (2017)). Performance is mea-

sured in Pearson correlation (× 100) for a fair comparison with previous work.

From Table 4.3, we see that MBERT with mean pooling already outperforms

the best system (at the time of the competition was held) on SemEval-2014 and

that our method further boosts the model’s performance. In contrast, in the case

of SemEval-2017 (Table 4.4), MBERT with mean pooling even fails to beat the

strong Cosine baseline.6 However, MBERT becomes capable of outperforming

(in English/Spanish) or being comparable with (Arabic) the baseline by adopt-

ing our algorithm. We observe that while cross-lingual transfer using MBERT

6The Cosine baseline computes its score as the cosine similarity of binary sentence vectors
with each dimension representing whether an individual word appears in a sentence.

58

Models MR CR SUBJ MPQA SST2 TREC MRPC Avg.

BERT-base
+ Mean 81.46 86.71 95.37 87.90 85.83 90.30 73.36 85.85
+ WK 80.64 85.53 95.27 88.63 85.03 94.03 71.71 85.83
+ SG-OPT 82.47 87.42 95.40 88.92 86.20 91.60 74.21 86.60

BERT-large
+ Mean 84.38 89.01 95.60 86.69 89.20 90.90 72.79 86.94
+ WK 82.68 87.92 95.32 87.25 87.81 91.18 70.13 86.04
+ SG-OPT 86.03 90.18 95.82 87.08 90.73 94.65 73.31 88.26

SBERT-base
+ Mean 82.80 89.03 94.07 89.79 88.08 86.93 75.11 86.54
+ WK 82.96 89.33 95.13 90.56 88.10 91.98 76.66 87.82
+ SG-OPT 83.34 89.45 94.68 89.78 88.57 87.30 75.26 86.91

Table 4.5 Experimental results on SentEval.

looks promising for the languages analogous to English (e.g., Spanish), its effec-

tiveness may shrink on distant languages (e.g., Arabic). Compared against the

best system which is trained on task-specific data, MBERT shows reasonable

performance considering that it is never exposed to any labeled STS datasets.

In summary, we demonstrate that MBERT fine-tuned with our method has a

potential to be used as a simple but effective tool for multilingual (especially

European) STS tasks.

4.4.4 SentEval Benchmark

We also evaluate BERT sentence vectors using the SentEval (Conneau and

Kiela, 2018) toolkit. Given sentence embeddings, SentEval trains linear classi-

fiers on top of them and estimates the quality of the vectors via their perfor-

mance (accuracy) on downstream tasks. Among available tasks, we employ 7:

MR, CR, SUBJ, MPQA, SST2, TREC, MRPC.7

We specify some minor modifications applied on our contrastive method

(SG-OPT). First, we use the portion of the concatenation of SNLI (Bowman

7Refer to Conneau and Kiela (2018) for each task’s spec.

59

et al., 2015) and MNLI (Williams et al., 2018b) datasets as the training data

instead of STS-B. Second, we do not leverage the first several layers of PLMs

when making positive samples, similar to Wang and Kuo (2020), and utilize

mean pooling instead of max pooling.

In Table 4.5, we compare SG-OPT with two baselines. We find that our

method is helpful over usual mean pooling in improving the performance of

BERT-like models on SentEval. SG-OPT also outperforms WK pooling on

BERT-base/large while being comparable on SBERT-base. From the results, we

conjecture that self-guided contrastive learning and SBERT training suggest a

similar inductive bias in a sense, as the benefit we earn by revising SBERT with

our method is relatively lower than the gain we obtain when fine-tuning BERT.

Meanwhile, it seems that WK pooling provides an orthogonal contribution that

is effective in the focused case, i.e., SBERT-base.

4.5 Analysis

We here further investigate the working mechanism of our method with supple-

mentary experiments. All the experiments conducted in this section follow the

configurations stipulated in Section 4.4.1 and 4.4.2.

4.5.1 Ablation Study

We conduct an ablation study to justify the decisions made in optimizing our

algorithm. To this end, we evaluate each possible variant on the test sets of

STS tasks. From Table 4.6, we confirm that all our modifications to the NT-

Xent loss contribute to improvements in performance. Moreover, we show that

correct choices for hyperparameters are important for achieving the optimal

performance, and that the projection head (f) plays a significant role as in

Chen et al. (2020).

60

Models STS Tasks (Avg.)

BERT-base
+ SG-OPT (Lopt3) 74.62
+ Lopt2 73.14 (-1.48)
+ Lopt1 72.61 (-2.01)
+ SG (Lbase) 72.17 (-2.45)

BERT-base + SG-OPT (τ = 0.01, λ = 0.1) 74.62
+ τ = 0.1 70.39 (-4.23)
+ τ = 0.001 74.16 (-0.46)
+ λ = 0.0 73.76 (-0.86)
+ λ = 1.0 73.18 (-1.44)
− Projection head (f) 72.78 (-1.84)

Table 4.6 Ablation study.

Figure 4.4 Domain robustness study. The yellow bars indicate the performance
gaps each method has according to the fact that it is trained with whether in-
domain (STS-B) or out-of-domain (NLI) data. Our method (SG-OPT) clearly
shows its relative robustness compared to Flow.

4.5.2 Robustness to Domain Shifts

Although our method in principle can accept any sentences in training, its

performance might be varied with the training data it employs (especially de-

61

Models
Elapsed Time

Training (sec.) Inference (sec.)

BERT-base
+ Mean pooling - 13.94
+ WK pooling - 197.03 (≈ 3.3 min.)
+ Flow 155.37 (≈ 2.6 min.) 28.49
+ Contrastive (SG-OPT) 455.02 (≈ 7.5 min.) 10.51

Table 4.7 Computational efficiency tested on STS-B.

pending on whether the training and test data share the same domain). To

explore this issue, we apply SG-OPT on BERT-base by leveraging the mix of

NLI datasets (Bowman et al., 2015; Williams et al., 2018b) instead of STS-B,

and observe the difference. From Figure 4.4, we confirm the fact that no matter

which test set is utilized (STS-B or all the seven STS tasks), our method clearly

outperforms Flow in every case, showing its relative robustness to domain shifts.

SG-OPT only loses 1.83 (on the STS-B test set) and 1.63 (on average when ap-

plied to all the STS tasks) points respectively when trained with NLI rather

than STS-B, while Flow suffers from the considerable losses of 12.18 and 4.19

for each case. Note, however, that follow-up experiments in more diverse con-

ditions might be desired as future work, as the NLI dataset inherently shares

some similarities with STS tasks.

4.5.3 Computational Efficiency

In this part, we compare the computational efficiency of our method to that

of other baselines. For each algorithm, we measure the time elapsed during

training (if required) and inference when tested on STS-B. All methods are run

on the same machine (an Intel Xeon CPU E5-2620 v4 @ 2.10GHz and a Titan

Xp GPU) using batch size 16. The experimental results specified in Table 4.7

show that although our method demands a moderate amount of time (< 8 min.)

62

11

2
23

3
4

4

55

6
6

7

7

8

8

9

910

10

11

11

12

12

1313

14 14

1515

16

16

17

17 18

18

1919

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

2728

28
29

29

30

30

31

31

32

32

33

33

34

34

35

35

36

36
37

37

38

38

39

39

40

40

BERT-base ([CLS])

1
1

22

3
3

4 4

5
5

66

7 7

8
8

9
9

10
10

1111

12
12

1313

14
1415

15
1616 1717

18
18

1919

202021
21

22

22

23

23

24
24

25
25

26
26

27

27

28
28

29

29

30
30

31

31
32

32

33

33

34
34

35

35

36

36

37

37 38

38

39

39

40
40

BERT-base + Contrastive (SG-OPT)

Figure 4.5 Sentence representation visualization. (Left) Embeddings from the
original BERT. (Right) Embeddings from the BERT instance fine-tuned with
SG-OPT. Red numbers correspond to positive sentence pairs and blue to neg-
ative pairs.

for training, it is the most efficient at inference, since our method is free from

any post-processing such as pooling once training is completed.

4.5.4 Representation Visualization

We visualize a few variants of BERT sentence representations to grasp an in-

tuition on why our method is effective in improving performance. Specifically,

we sample 20 positive pairs (red, whose similarity scores are 5) and 20 negative

pairs (blue, whose scores are 0) from the STS-B validation set. Then we compute

their vectors and draw them on the 2D space with the aid of t-SNE. In Figure

4.5, we confirm that our SG-OPT encourages BERT sentence embeddings to be

more well-aligned with their positive pairs while still being relatively far from

their negative pairs.

4.6 Limitations and Future Work

In this section, we discuss a few weaknesses of our method in its current form

and look into some possible avenues for future work.

63

Models / Tasks STS-B SICK-R STS12 STS13

BERT-base
+ Contrastive (BT) 63.27±1.48 66.91±1.29 54.26±1.84 64.03±2.35

+ Contrastive (SG-OPT) 77.23±0.43 68.16±0.50 66.84±0.73 80.13±0.51

+ Contrastive (BT + SG-OPT) 77.99±0.23 68.75±0.79 68.49±0.38 80.00±0.78

Models / Tasks STS14 STS15 STS16 Avg.

BERT-base
+ Contrastive (BT) 54.28±1.87 68.19±0.95 67.50±0.96 62.63±1.28

+ Contrastive (SG-OPT) 71.23±0.40 81.56±0.28 77.17±0.22 74.62±0.25

+ Contrastive (BT + SG-OPT) 71.34±0.40 81.71±0.29 77.43±0.46 75.10±0.15

Table 4.8 Ensemble of the techniques for contrastive learning: back-translation
(BT) and self-guidance (SG-OPT).

First, while defining the proposed method in Section 4.3, we have made

decisions on some parts without much consideration about their optimality,

prioritizing simplicity instead. For instance, although we proposed utilizing all

the intermediate layers of BERT and max pooling in a normal setting (indeed,

it worked pretty well for most cases), a specific subset of the layers or another

pooling method might bring better performance in a particular environment, as

we observed in Section 4.4.4 that we could achieve higher numbers by employing

mean pooling and excluding lower layers in the case of SentEval. Therefore, in

future work, it is encouraged to develop a systematic way of making more opti-

mized design choices in specifying our method by considering the characteristics

of target tasks.

Second, we expect that the effectiveness of contrastive learning in revis-

ing BERT can be improved further by properly combining different techniques

developed for it. As an initial attempt towards this direction, we conduct an

extra experiment where we test the ensemble of back-translation and our self-

guidance algorithm by inserting the original sentence into BERTT and its back-

translation into BERTF when running our framework. In Table 4.8, we show

that the fusion of the two techniques generally results in better performance,

64

shedding some light on our future research direction.

On the other hand, we have developed our method based on the intuition

that fully exploiting different layers in BERT is helpful for building fruitful sen-

tence representations in the perspective that it facilitates considering various

aspects of language including syntax. However, we have not yet verified whether

there is a direct correlation between the method’s strong results and its sensi-

tivity to linguistic information. It is therefore desirable to make more effort in

probing the inner workings of pre-trained language models, which becomes the

main topic of the next two chapters.

4.7 Summary

We have proposed a contrastive learning method with self-guidance for im-

proving BERT sentence embeddings. Through extensive experiments, we have

demonstrated that our method can enjoy the benefit of contrastive learning

without relying on external procedures such as data augmentation or back-

translation, succeeding in generating higher-quality sentence representations

compared to competitive baselines. Furthermore, our method is efficient at in-

ference because it does not require any post-processing once its training is

completed, and is relatively robust to domain shifts.

65

Chapter 5

Syntactic Analysis of Sentence
Representation Models

5.1 Introduction

“What I cannot create, I do not understand.” — Richard Feynman

From this chapter, we open a new episode of our discussion where we re-

gard syntax as an analytic tool that can be utilized to explore the working

mechanism of neural models for sentence representations. In particular, we pay

our attention to pre-trained Transformer (Vaswani et al., 2017) language mod-

els (PLMs), which are self-attention based models that have hundreds of mil-

lions of parameters and are trained with large-scale plain text corpora in a

self-supervised fashion. Stimulated by the above saying of a famous American

physicist Richard Feynman, we attempt to estimate the extent to which PLMs

are aware of syntactic concepts by generating parse trees relying on the internal

knowledge of the models. In detail, we introduce some techniques existing in

the literature of grammar induction and unsupervised parsing, and apply them

66

to the intermediate hidden representations of PLMs to induce parse trees.

Grammar induction, which is closely related to unsupervised parsing and la-

tent tree learning, allows one to associate syntactic trees, i.e., constituency and

dependency trees, with sentences. As grammar induction essentially assumes

no supervision from gold-standard syntactic trees, existing approaches for this

task mainly rely on unsupervised objectives, such as language modeling (Shen

et al., 2018b, 2019; Kim et al., 2019c,d) and cloze-style word prediction (Droz-

dov et al., 2019) to train their task-oriented models. On the other hand, there

is a trend in the NLP community of leveraging pre-trained language models

(PLMs), e.g., ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019), as

a means of acquiring contextualized word and sentence representations. These

representations have proven to be surprisingly effective, playing key roles in

recent improvements in various models for NLP tasks.

In this chapter, inspired by the fact that the training objectives of both

the approaches for grammar induction and for training PLMs are identical,

namely, (masked) language modeling, we investigate whether PLMs can also be

utilized for grammar induction/unsupervised parsing, especially without train-

ing. Specifically, we focus on extracting constituency parse trees from PLMs

without fine-tuning or introducing another task-specific module, at least one of

which is usually required in other cases where representations from PLMs are

employed. This restriction provides us with some advantages: (i) it enables us

to derive strong baselines for grammar induction with reduced time and space

complexity, offering a chance to reexamine the current status of existing gram-

mar induction methods, and (ii) it facilitates an analysis on how much and what

kind of syntactic information each PLM contains in its intermediate represen-

tations and attention distributions in terms of phrase-structure grammar.

67

5.2 Related Work

Grammar induction is a task whose goal is to infer from sequential data gram-

mars which generalize and are able to account for unseen data (Lari and Young

(1990); Clark (2001); Klein and Manning (2002b, 2004), to name a few). Tra-

ditionally, this was done by learning explicit grammar rules (e.g., context free

rewrite rules), though more recent methods employ neural networks to learn

such rules implicitly, focusing more on the induced grammars’ ability to gen-

erate or parse sequences as unsupervised parsers. We therefore use the terms

grammar induction and unsupervised parsing interchangeably.

Shen et al. (2018b) proposed Parsing-Reading-Predict Network (PRPN)

where the concept of syntactic distance is first introduced. They devised a

neural model for language modeling where the model is encouraged to recog-

nize syntactic structure. The authors also probed the possibility of inducing

constituency trees without access to gold-standard trees by adopting an algo-

rithm that recursively splits a sequence of words into two parts, the split point

being determined according to correlated syntactic distances; the point hav-

ing the biggest distance becomes the first target of division. Shen et al. (2019)

presented a model called Ordered Neurons (ON), which is a revised version of

LSTM (Long Short-Term Memory; Hochreiter and Schmidhuber (1997)) which

reflects the hierarchical biases of natural language and can be used to compute

syntactic distances. Shen et al. (2018c) trained a supervised parser relying on

the concept of syntactic distance.

Other studies include Drozdov et al. (2019), who trained deep inside-outside

recursive autoencoders (DIORA) to derive syntactic trees in an exhaustive way

with the aid of the inside-outside algorithm, and Kim et al. (2019c) who pro-

posed Compound Probabilistic Context-Free Grammars (compound PCFG),

68

showing that neural PCFG models are capable of producing promising unsu-

pervised parsing results. Li et al. (2019) proved that an ensemble of unsuper-

vised parsing models can be beneficial, while Shi et al. (2019) utilized additional

training signals from pictures related with input text. Dyer et al. (2016) pro-

posed Recurrent Neural Network Grammars (RNNG) for both language mod-

eling and parsing, and Kim et al. (2019d) suggested an unsupervised variant

of the RNNG. There also exists another line of research on task-specific latent

tree learning (Yogatama et al., 2017; Choi et al., 2018; Havrylov et al., 2019;

Maillard et al., 2019). The goal here is not to construct linguistically plausible

trees, but to induce the trees fitted to improving target performance. Naturally,

the induced performance-based trees need not resemble linguistically plausible

trees, and some studies (Williams et al., 2018a; Nangia and Bowman, 2018)

examined the apparent fact that performance-based and linguistically plausible

trees bear little resemblance to one another.

Pre-trained language models (Peters et al. (2018); Devlin et al. (2019); Rad-

ford et al. (2019); Yang et al. (2019); Liu et al. (2019b), inter alia)—particularly

those employing the Transformer architecture (Vaswani et al., 2017)—have

proven to be helpful for diverse NLP downstream tasks. In spite of this, there

is no vivid picture for explaining what particular factors contribute to their

superior performance, even though some recent work has attempted to shed

light on this question. In detail, one group of studies (Raganato and Tiede-

mann (2018); Clark et al. (2019); Ethayarajh (2019); Hao et al. (2019); Voita

et al. (2019), inter alia) has focused on dissecting the intermediate represen-

tations and attention distributions of PLMs, while the another group of pub-

lications (Mareček and Rosa (2018); Goldberg (2019); Hewitt and Manning

(2019); Liu et al. (2019a); Rosa and Mareček (2019), to name a few) delve into

the question of the existence of syntactic knowledge in Transformer-based mod-

69

Figure 5.1 Self-attention heatmaps from two different PLMs. (Left) A heatmap

for the average of attention distributions from the 7th layer of XLNet-base.

(Right) A heatmap for the average of attention distributions from the 9th layer

of BERT-base. We can spot the chunks of words on the two heatmaps that are

correlated with the constituents of the input sentences, e.g., (Left) ‘the price

of plastics’, ‘took off in 1987’, ‘Quantum Chemical Corp.’, (Right) ‘when price

increases can be sustained’, and ‘he remarks’.

els. Particularly, Mareček and Rosa (2019) proposed an algorithm for extracting

constituency trees from Transformers trained for machine translation, which is

similar to our approach.

5.3 Motivation

As having been pointed out in the literature, the multi-head self-attention mech-

anism (Vaswani et al., 2017) is a key component in Transformer-based language

models, and it seems this mechanism empowers the models to capture certain

semantic and syntactic information existing in natural language. Among a di-

verse set of knowledge they may capture, we concentrate on phrase-structure

70

grammar by seeking to extract constituency trees directly from their attention

information and intermediate weights.

In preliminary experiments, where we manually visualized and investigated

the intermediate representations and attention distributions of several PLMs

given input, we found some evidence which suggests that the PLMs exhibit

syntactic structure akin to constituency grammar in some degree. Specifically,

we noticed some patterns which are often displayed in self-attention heatmaps as

explicit horizontal lines, or groups of rectangles of various sizes. As an attention

distribution of a word over other words corresponds to a row in a heatmap

matrix, we can say that the appearance of these patterns indicates the existence

of groups of words where the attention distributions of the words in the same

group are relatively similar. Interestingly, we also discovered the fact that such

groups of words are fairly correlated with the constituents of the input sentence,

as shown in Figure 5.1.

Even though we have identified some patterns which match with the con-

stituents of sentences, it is not enough to conclude that PLMs are aware of

syntactic phrases as found in phrase-structure grammars. To demonstrate the

claim, we attempt to obtain constituency trees in a zero-shot learning fashion,

relying only on the knowledge from the PLMs. To this end, we suggest the

following, inspired from our finding: two words in a sentence are syntactically

close to each other (i.e., the two words belong to the same constituent) if their

attention distributions over words in the sentence are also close to each other.

Note that this implicitly presumes that each word is more likely to attend more

on the words in the same constituent to enrich its representation in PLMs. Fi-

nally, we utilize the assumption to compute syntactic distances between each

pair of adjacent words in a sentence, from which the corresponding constituency

tree can be built.

71

Methodology Unsupervised Parsing CPE-PLM

Training data
In-domain data General corpora

(e.g., raw text from PTB) (e.g., Wikipedia)

Architecture
Task-oriented

Transformer
(e.g., RNNG, PCFG)

Modeling
p(S, T) (T is marginalized p(S) (T is not

or implicitly modeled) considered in modeling)

Table 5.1 Comparison between typical unsupervised parsing and constituency

parse extraction from pre-trained language models (CPE-PLM).

5.4 Method

5.4.1 CPE-PLM

In this chapter, we focus on a variant of unsupervised constituency parsing,

which we callConstituency ParseExtraction fromPre-trained LanguageModels

(CPE-PLM). We specify the characteristics of CPE-PLM in Table 5.1, com-

paring them with those of general unsupervised parsing methods.

Typical unsupervised parsers consist of task-oriented architectures (e.g.,

RNNG (Kim et al., 2019d) and PCFG (Kim et al., 2019c)) which are designed

to model both a sentence S and the corresponding tree T (i.e., p(S, T)) and

are trained with in-domain plain text.1 On the other hand, CPE-PLM simply

employs off-the-shelf Transformer PLMs, which only model the probability of a

sentence p(S), as their core component and do not require additional training—

the PLMs are frozen and no trainable component is augmented on top of them,

meaning parameter-free. Instead, CPE-PLM methods take advantage of implicit
1As it is mostly infeasible to directly model the tree T without supervision from gold anno-

tations, unsupervised parsers usually make use of different approximation or marginalization
techniques such as variational inference and sampling.

72

syntactic knowledge residing in PLMs to reconstruct parses, by computing syn-

tactic distances (Shen et al., 2018b) between words in a sentence using features

from the PLMs. We describe their algorithmic details in the following subsec-

tions. CPE-PLM’s independence from training also makes it being distinct from

syntactic probes for PLMs (Hewitt and Manning, 2019; Chi et al., 2020) which

demand training probing modules to investigate the latent knowledge of PLMs.

5.4.2 Top-down CPE-PLM

We leverage the concept of syntactic distance proposed by Shen et al. (2018c,b)

to draw constituency trees from raw sentences in an intuitive way. Formally,

given a sequence of words in a sentence, w1, w2, . . . , wn, we compute d =

[d1, d2, . . . , dn−1] where di corresponds to the syntactic distance between wi

and wi+1. Each di is defined as follows:

di = f(g(wi), g(wi+1)),

where f(·, ·) and g(·) are a distance measure function and representation ex-

tractor function, respectively. The function g converts each word into the cor-

responding vector representation, while f computes the syntactic distance be-

tween the two words given their representations. Once d is derived, it can be

easily converted into the target constituency tree by Algorithm 1 following Shen

et al. (2018c).2 As Algorithm 1 recursively constructs a parse tree in a top-down

manner, we name our method as top-down CPE-PLM.

Although previous studies attempted to explicitly train the functions f and

2Our parsing algorithm is an unbiased method in contrast to one (named as COO parser
by Dyer et al. (2019)) employed in most previous studies (Shen et al., 2018b, 2019; Htut
et al., 2018; Li et al., 2019; Shi et al., 2019). This choice enables us to investigate the exact
extent to which PLMs contribute to their performance on unsupervised parsing, considering
the fact revealed recently by Dyer et al. (2019) that the COO parser has potential issues that
it prefers right-branching trees and does not cover all possible tree derivations. Furthermore,
we can directly adjust the right-branching bias using our method in Section 5.4.5 if needed.

73

Algorithm 1 Syntactic Distance to Binary Constituency Tree
1: S = [w1, w2, . . . , wn]: Words in a sentence of length n.
2: d = [d1, d2, . . . , dn−1]: A vector, each of whose element di is the syntactic distance

between wi and wi+1.
3: function D2T(S, d)
4: if d = [] then
5: node ← Leaf(S[0])
6: else
7: i← arg maxi(d)
8: childl ← D2T(S≤i,d<i)
9: childr ← D2T(S>i,d>i)

10: node← Node(childl, childr)
11: end if
12: return node
13: end function

g with supervision (with access to gold-standard trees, Shen et al. (2018c)) or

to obtain them as a by-product of training particular models that are carefully

designed to recognize syntactic information (Shen et al., 2018b, 2019), we stick

to simple distance metric functions for f and PLMs for g, forgoing any training

process. In other words, we focus on investigating the possibility of PLMs pos-

sessing constituency information in a form that can be readily extracted with

straightforward computations. If the trees induced by the syntactic distances

derived from the PLMs are similar enough to gold-standard syntax trees, we

can reasonably claim that the LMs resemble phrase-structure.

5.4.3 Pre-trained Language Models

We consider four types of recently proposed language models. These are: BERT

(Devlin et al., 2019), GPT-2 (Radford et al., 2019), RoBERTa (Liu et al.,

2019b), and XLNet (Yang et al., 2019). They all have in common that they

are based on the Transformer architecture and have been proven to be effective

in natural language understanding (Wang et al., 2019b) or generation. We han-

dle two variants for each LM, varying in the number of layers, attention heads,

74

and hidden dimensions, resulting in eight different cases in total. In particular,

each LM has two variants. (1) base: consists of l=12 layers, a=12 attention

heads, and d=768 hidden dimensions, while (2) large: has l=24 layers, a=16

attention heads, and d=1024 hidden dimensions.3 We deal with a wide range of

PLMs, unlike previous work which has mostly analyzed a specific model, par-

ticularly BERT. For details about each LM, we refer readers to the respective

original papers.

In terms of our formulation, each LM instance provides two categories of

representation extractor functions, Gv and Gd. Specifically, Gv refers to a set

of functions {gvj |j = 1, . . . , l}, each of which simply outputs the intermediate

hidden representation of a given word on the jth layer of the LM. Likewise, Gd

is a set of functions {gd(j,k)|j = 1, . . . , l, k = 1, . . . , a+ 1}, each of which outputs

the attention distribution of an input word by the kth attention head on the jth

layer of the LM. Even though our main motivation comes from the self-attention

mechanism, we also deal with the intermediate hidden representations present in

the PLMs by introducing Gv, considering that the hidden representations serve

as storage of collective information taken from the processing of the PLMs.

Note that k ranges up to a+ 1, not a, implying that we consider the average of

all attention distributions on the same layer in addition to the individual ones.

This averaging function can be regarded as an ensemble of other functions in the

layer which are specialized for different aspects of information, and we expect

that this technique will provide a better option in some cases as reported in the

previous work (Li et al., 2019).

One remaining issue is that all the PLMs we use regard each input sentence

as a sequence of subword tokens, while our formulation assumes words cannot

3In case of GPT-2, ‘GPT2’ corresponds to the ‘base’ variant while ‘GPT2-medium’ to the
‘large’ one.

75

Function (f) Equation

Functions for intermediate representations (F v)

Cos(r, s)
(
r>s/

(
(
∑d

i=1 ri
2)

1
2 · (

∑d
i=1 si

2)
1
2
)
+ 1
)
/2

L1(r, s)
∑d

i=1 |ri − si|

L2(r, s) (
∑d

i=1(ri − si)
2)

1
2

Functions for attention distributions (F d)

JSD(P‖Q) ((DKL(P‖M) +DKL(Q‖M))/2)
1
2

where M = (P +Q)/2

and DKL(A‖B) =
∑

w∈S A(w) log(A(w)/B(w))

HEL(P,Q) 1√
2
(
∑n

i=1(
√
pi −

√
qi)

2)
1
2

Table 5.2 The definition of distance measure functions for computing syntactic
distances between two adjacent words in a sentence. Note that r = gv(wi),
s = gv(wi+1), P = gd(wi), and Q = gd(wi+1), respectively. d: hidden embedding
size, n: the number of words (w) in a sentence (S).

be further divided into smaller tokens. To resolve this difference, we tested

certain heuristics that guide how subword tokens for a complete word should

be exploited to represent the word, and we have empirically found that the best

result comes when each word is represented by an average of the representations

of its subwords.4 Therefore, we adopt the above heuristic for cases where a word

is tokenized into more than two parts.

5.4.4 Distance Measure Functions

For the distance measure function f , we prepare three options (F v) for Gv and

two options (F d) for Gd. Formally, f ∈ F v ∪ F d, where F v = {COS,L1,L2},

F d = {JSD,HEL}. COS, L1, L2, JSD, and HEL correspond to Cosine, L1, and

L2, Jensen-Shannon, and Hellinger distance respectively. The functions in F v

are only compatible with the elements of Gv, and the same holds for F d and
4We also tried other heuristics following previous work (Kitaev and Klein, 2018), e.g., using

the first or last subword of a word as representative, but this led to no performance gains.

76

Gd. The exact definition of each function is listed in Table 5.2.

5.4.5 Injecting Bias into Syntactic Distances

One of the main advantages we obtain by leveraging syntactic distances to derive

parse trees is that we can easily inject inductive biases into our framework by

simply modifying the values of the syntactic distances. Hence, we investigate

whether the extracted trees from our method can be further refined with the

aid of additional biases. To this end, we introduce a well-known bias for English

constituency trees—the right-skewness bias—in a simple linear form.5 Namely,

our intention is to modify the induced trees such that they are moderately

right-skewed following the nature of gold-standard parse trees in English.

Formally, we compute d̂i by appending the following linear bias term to

every di:

d̂i = di + λ ·AVG(d)× (1− 1/(m− 1)× (i− 1)),

where AVG(·) outputs an average of all elements in a vector, λ is a hyperpa-

rameter, and i ranges from 1 to m = n − 1. We write d̂ = [d̂1, d̂2, . . . , d̂m] in

place of d to signify the biased syntactic distances.

The main purpose of introducing such a bias is examining what changes are

made to the resulting tree structures rather than boosting quantitative perfor-

mance per se, though it is of note that it serves this purpose as well. We believe

that this additional consideration is necessary based on two points. First, En-

glish is what is known as a head-initial language. That is, given a selector and

argument, the selector has a strong tendency to appear on the left, e.g., ‘eat

food’, or ‘to Canada’. Head-initial languages therefore have an in-built prefer-

ence for right-branching structures. By adjusting the bias injected into syntactic

5It is necessary to carefully design biases for other languages as they have their own prop-
erties.

77

distances derived from PLMs, we can figure out whether the LMs are capable

of inducing the right-branching bias, which is one of the main properties of En-

glish syntax; if injecting the bias does not influence the performance of the LMs

on unsupervised parsing, we can conjecture they are inherently capturing the

bias to some extent. Second, as mentioned before, we have witnessed some pre-

vious work (Shen et al., 2018b, 2019; Htut et al., 2018; Li et al., 2019; Shi et al.,

2019) where the right-skewness bias is implicitly exploited, although it could be

regarded as not ideal. What we intend to focus on is the question about which

benefits the bias provides for such parsing models, leading to overall perfor-

mance improvements. In other words, we look for what the exact contribution

of the bias is when it is injected into grammar induction models, by explicitly

controlling the bias using our framework.

5.5 Experiments

5.5.1 General Configurations

Datasets. We conduct unsupervised constituency parsing on two datasets.

The first dataset is WSJ Penn Treebank (PTB, Marcus et al. (1993)), in which

human-annotated gold-standard trees are available. We use the standard split

of the dataset—2-21 for training, 22 for validation, and 23 for test. The second

one is MNLI (Williams et al., 2018b), which is originally designed to test natural

language inference but often utilized as a means of evaluating parsers. It con-

tains constituency trees produced by an external parser (Klein and Manning,

2003). We leverage the union of two different versions of the MNLI development

set as test data following convention (Htut et al., 2018; Drozdov et al., 2019),

and we call it the MNLI test set. Moreover, we randomly sample 40K sentences

from the training set of the MNLI to utilize them as a validation set. To pre-

process the datasets, we follow the setting of Kim et al. (2019c) with the minor

78

exceptions that words are not lower-cased and number characters are preserved

instead of being substituted by a special character.

Implementation Details. For implementation, to compare PLMs in an uni-

fied manner, we resort to the HuggingFace’s Transformers (Wolf et al., 2019)

that supports all the models we consider. For each LM, we tune the best combi-

nation of f and g functions using the validation set. Then, we derive a set of d

for sentences in the test set using the chosen functions, followed by the resulting

constituency trees converted from each d by the tree construction algorithm in

Section 5.4.2. In addition to the sentence-level F1 (S-F1) score, we report label

recall scores for six main categories: SBAR, NP, VP, PP, ADJP, and ADVP.

We also present the results of utilizing d̂ instead of d, empirically setting the

bias hyperparameter λ as 1.5. We do not fine-tune PLMs on domain-specific

data, as we here focus on finding their universal characteristics.

We take four naïve baselines into account, random (averaged over 5 tri-

als), balanced, left-branching, and right-branching binary trees. In addition, we

present two more baselines which are identical to our models except that their

g functions are based on a randomly initialized XLNet-base rather than pre-

trained ones. To be concrete, We provide ‘Random XLNet-base (F v)’ which

applies the functions in F v on random hidden representations and ‘Random

XLNet-base (F d)’ that utilizes the functions in F d and random attention distri-

butions, respectively. Considering the randomness of initialization and possible

choices for f , the final score for each of the baselines is calculated as an average

over 5 trials of each possible f , i.e., an average over 5×3 runs in case of F v and

5×2 runs for F d. These baselines enable us to estimate the exact advantage we

obtain by pre-training LMs, effectively removing additional unexpected gains

that may exist. Furthermore, we compare our parse trees against ones from

79

Models f L A S-F1 SBAR NP VP PP ADJP ADVP

Baselines
Random Trees - - - 18.1 8% 23% 12% 18% 23% 28%
Balanced Trees - - - 18.5 7% 27% 8% 18% 27% 25%
Left Branching Trees - - - 8.7 5% 11% 0% 5% 2% 8%
Right Branching Trees - - - 39.4 68% 24% 71% 42% 27% 38%
Random XLNet-base (F v) - - - 19.6 9% 26% 12% 20% 23% 24%
Random XLNet-base (F d) - - - 20.1 11% 25% 14% 19% 22% 26%

PLMs (λ=0)
BERT-base JSD 9 AVG 32.4 28% 42% 28% 31% 35% 63%
BERT-large HEL 17 AVG 34.2 34% 43% 27% 39% 37% 57%
GPT2 JSD 9 1 37.1 32% 47% 27% 55% 27% 36%
GPT2-medium JSD 10 13 39.4 41% 51% 21% 67% 33% 44%
RoBERTa-base JSD 9 4 33.8 40% 38% 33% 43% 42% 57%
RoBERTa-large JSD 14 5 34.1 29% 46% 30% 37% 28% 40%
XLNet-base HEL 9 AVG 40.1 35% 56% 26% 38% 47% 68%
XLNet-large L2 11 - 38.1 36% 51% 26% 41% 45% 69%

PLMs (λ=1.5)
BERT-base HEL 9 AVG 42.3 45% 46% 49% 43% 41% 65%
BERT-large HEL 17 AVG 44.4 55% 48% 48% 52% 41% 62%
GPT2 JSD 9 1 41.3 43% 49% 38% 58% 27% 43%
GPT2-medium HEL 2 1 42.3 54% 50% 39% 56% 24% 41%
RoBERTa-base JSD 8 AVG 42.1 51% 44% 44% 55% 40% 66%
RoBERTa-large JSD 12 AVG 42.3 40% 50% 43% 44% 48% 56%
XLNet-base HEL 7 AVG 48.3 62% 53% 50% 58% 49% 74%
XLNet-large HEL 11 AVG 46.7 57% 50% 54% 50% 57% 73%

Other models
PRPN(tuned)† ‡ - - - 47.3 50% 59% 46% 57% 44% 32%
ON(tuned)† ‡ - - - 48.1 51% 64% 41% 54% 38% 31%
Neural PCFG† - - - 50.8 52% 71% 33% 58% 32% 45%
Compound PCFG† - - - 55.2 56% 74% 41% 68% 40% 52%

Table 5.3 Results on the PTB test set. Bold numbers correspond to the top
3 results for each column. L: layer number, A: attention head number (AVG:
the average of all attentions). †: Results reported by Kim et al. (2019c). ‡:
Approaches in which COO parser is utilized.

existing grammar induction models.

5.5.2 Experimental Results on PTB

In Table 5.3, we report the results of various models on the PTB test set. First of

all, our method combined with PLMs shows competitive or comparable results

in terms of S-F1 even without the right-skewness bias. This result implies that

the extracted trees from our method can be regarded as a baseline for English

80

grammar induction. Moreover, PLMs show substantial improvements over Ran-

dom Transformers (XLNet-base), demonstrating that training language models

on large corpora, in fact, enables the PLMs to be more aware of syntactic in-

formation.

When the right-skewness bias is applied to the syntactic distances derived

from PLMs, the S-F1 scores of the PLMs increase by up to ten percentage

points. This improvement indicates that PLMs do not properly capture the

largely right-branching nature of English syntax, at least when observed through

the lens of our framework. By explicitly controlling the bias through our frame-

work and observing the performance gap between our models with and without

the bias, we confirm that the main contribution of the bias comes from its ca-

pability to capture subordinate clauses (SBAR) and verb phrases (VP). This

observation provides a hint for what some previous work on unsupervised pars-

ing desired to obtain by introducing the bias to their models. It is intriguing

to see that all of the existing grammar induction models are inferior to the

right-branching baseline in recognizing SBAR and VP (although some of them

already utilized the right-skewness bias), implying that the same problem—

models do not properly capture the right-branching nature—may also exist in

current grammar induction models. One possible assumption is that the mod-

els do not need the bias to perform well in language modeling, although future

work should provide a rigorous analysis about the phenomenon.

On the other hand, the existing models show exceptionally high recall scores

on noun phrases (NP), even though our PLMs also have success to some extent

in capturing noun phrases compared to naïve baselines. From this, we conjecture

that neural models trained with a language modeling objective become largely

equipped with the ability to understand the concept of NP. In contrast, the

PLMs record the best recall scores on adjective and adverb phrases (ADJP

81

and ADVP), suggesting that the LMs and existing models capture disparate

aspects of English syntax to differing degrees. To further explain why some

PLMs are good at capturing ADJPs and ADVPs, we manually investigated the

attention heatmaps of the sentences that contain ADJPs or ADVPs. From the

inspection, we empirically found that there are some keywords—including ‘two’,

‘ago’, ‘too’, and ‘far’—which have different patterns of attention distributions

compared to those of their neighbors, and that these keywords can be a clue for

our framework to recognize the existence of ADJPs or ADJPs. It is also worth

mentioning that ADJPs and ADVPs consist of a relatively smaller number of

words than those of SBAR and VP, indicating that the PLMs combined with

our method have strength in correctly finding small chunks of words, i.e., low-

level phrases.

Meanwhile, in comparison with other LM models, GPT-2 and XLNet based

models demonstrate their effectiveness and robustness in unsupervised parsing.

Particularly, the XLNet-base model serves as a robust baseline achieving the top

performance among LM candidates. One plausible explanation for this outcome

is that the training objective of XLNet, which considers both autoencoding

(AE) and autoregressive (AR) features, might encourage the model to be better

aware of phrase structure than other LMs. Another possible hypothesis is that

AR objective functions (e.g., typical language modeling) are more effective in

training syntax-aware neural models than AE objectives (e.g., masked language

modeling), as both GPT-2 and XLNet are pre-trained on AR variants. However,

it is hard to conclude what factors contribute to their high performance at this

stage.

Interestingly, there is an obvious trend that the functions in F d—the dis-

tance measure functions for attention distributions—lead most of the LM in-

stances to the best parsing results, indicating that deriving parse trees from

82

attention information can be more compact and efficient than extracting them

from the LMs’ intermediate representations, which should contain linguistic

knowledge beyond phrase structure. In addition, the results in Table 5.3 show

that large parameterizations of the LMs generally increase their parsing per-

formance, but this improvement is not always guaranteed. Meanwhile, as we

expected in Section 5.4.3 and as seen in the ‘A’ (attention head number) col-

umn of Table 5.3, the average of attention distributions in the same layer often

provides better results than individual attention distributions.

5.5.3 Experimental Results on MNLI

We present the results of various models on the MNLI test set in Table 5.4.

We observe trends in the results which mainly coincide with those of the PTB

dataset. Particularly, (1) right-branching trees are strong baselines for the task,

especially showing their strengths in capturing SBAR and VP clauses/phrases,

(2) our method resorting to PLMs is also comparable to the right-branching

trees, demonstrating its superiority in recognizing different aspects of phrase

categories including prepositional phrases (PP) and adverb phrases (ADVP),

and (3) attention distributions seem more effective for distilling the phrase

structures of sentences than intermediate representations.

However, there are some issues worth mentioning. First, the right-branching

baseline seems to be even stronger in the case of MNLI, recording a score of over

50 in sentence-level F1. We conjecture that this result comes principally from

two reasons: (1) the average length of sentences in MNLI is much shorter than

in PTB, giving a disproportionate advantage to naïve baselines, and (2) our

data preprocessing, which follows Kim et al. (2019c), removes all punctuation

marks, unlike previous work (Htut et al., 2018; Drozdov et al., 2019), leading to

an unexpected advantage for the right-branching scheme. Moreover, it deserves

83

Models f L A S-F1 SBAR NP VP PP ADJP ADVP

Baselines
Random Trees - - - 21.4 11% 25% 16% 22% 22% 27%
Balanced Trees - - - 20.0 8% 29% 11% 20% 22% 32%
Left Branching Trees - - - 8.4 6% 13% 1% 4% 1% 8%
Right Branching Trees - - - 51.9 65% 28% 75% 47% 45% 30%
Random XLNet-base (F v) - - - 22.0 12% 26% 15% 22% 22% 25%
Random XLNet-base (F d) - - - 23.5 14% 26% 18% 22% 22% 25%

PLMs (λ=0)
BERT-base HEL 9 10 36.1 36% 37% 34% 45% 26% 42%
BERT-large JSD 17 10 37.0 38% 32% 34% 50% 22% 39%
GPT2 JSD 1 10 44.0 43% 53% 31% 60% 24% 40%
GPT2-medium JSD 3 12 49.1 57% 32% 61% 44% 35% 37%
RoBERTa-base JSD 10 9 36.2 26% 35% 34% 50% 23% 44%
RoBERTa-large JSD 3 6 39.8 20% 28% 35% 30% 28% 27%
XLNet-base HEL 1 6 39.0 25% 39% 28% 59% 35% 44%
XLNet-large HEL 1 15 42.2 32% 49% 27% 62% 32% 49%

PLMs (λ=1.5)
BERT-base HEL 2 12 52.7 64% 35% 70% 50% 46% 30%
BERT-large HEL 4 4 51.7 63% 31% 71% 49% 46% 30%
GPT2 HEL 1 10 52.2 57% 53% 49% 62% 32% 42%
GPT2-medium HEL 2 1 53.9 53% 57% 50% 62% 29% 44%
RoBERTa-base HEL 2 3 52.0 64% 31% 72% 49% 47% 30%
RoBERTa-large L1 23 - 52.7 55% 40% 65% 53% 43% 41%
XLNet-base L2 8 - 54.9 57% 49% 61% 55% 44% 57%
XLNet-large L2 12 - 53.5 54% 47% 59% 51% 48% 60%

Other models
PRPN-UP†‡ - - - 48.6∗ - - - - - -
PRPN-LM†‡ - - - 50.4∗ - - - - - -
DIORA† - - - 51.2∗ - - - - - -
DIORA(+PP)† - - - 59.0∗ - - - - - -

Table 5.4 Results on the MNLI test set. Bold numbers correspond to the top 3
results for each column. L: layer number, A: attention head number (AVG: the
average of all attentions). †: Results reported by Htut et al. (2018) and Drozdov
et al. (2019). ‡: Approaches in which COO parser is utilized. ∗: These results
are not strictly comparable to ours, due to the difference in data preprocessing.

to consider the fact that the gold-standard parse trees in MNLI are not human-

annotated, rather automatically generated.

Second, in terms of consistency in identifying the best choice of f and g

for each LM, we observe that most of the best combinations of f and g tuned

for PTB do not correspond well to the best ones for MNLI. Does this obser-

vation imply that a specific combination of these functions and the resulting

84

performance do not generalize well across different data domains? To clarify,

we manually investigated the performance of some combinations of f and g,

which are tuned on PTB but tested on MNLI instead. As a result, we discover

that particular combinations of f and g which are good at PTB are also com-

petitive on MNLI, even though they fail to record the best scores on MNLI.

Concretely, the union of fd(JSD) and gd(9,13)—the best duo for the XLNet-base

on PTB—achieves 39.2 in sentence-level F1 on MNLI, which is very close to

the top performance (39.3) we can obtain when leveraging the XLNet-base. It

is also worth noting that GPT-2 and XLNet are efficient in capturing PP and

ADVP respectively, regardless of the data domain and the choice of f and g.

5.6 Analysis

5.6.1 Performance Comparison by Layer

To take a closer look at how different the layers of PLMs are in terms of parsing

performance, we retrieve the best sentence-level F1 scores from the lth layer of

each LM from all the combinations of f and gl, with regard to the PTB dataset,

and then we plot the scores in Figure 5.2. Each score is from the models to which

the bias is not applied.

From the graphs, we observe several patterns. First, XLNet-based models

outperform other competitors across most of the layers. Second, the best out-

comes are largely shown in the middle layers of the LMs akin to the observation

from Shen et al. (2019), except for some cases where the first layers (especially

in case of MNLI) record the best. Interestingly, GPT-2 shows a decreasing

trend in its output values as the layer becomes high, while other models gen-

erally exhibit the opposite pattern. Moreover, we discover from raw statistics

that regardless of the choice of f and gl, the parsing performance reported as

S-F1 is moderately correlated with the layer number l. In other words, it seems

85

1 2 3 4 5 6 7 8 9 10 11 12
Layer

16

20

24

28

32

36

40

Se
nt

en
ce

-le
ve

l F
1

bert-base
gpt2
roberta-base
xlnet-base

0 2 4 6 8 10 12 14 16 18 20 22 24
Layer

16

20

24

28

32

36

40

Se
nt

en
ce

-le
ve

l F
1

bert-large
gpt2-medium
roberta-large
xlnet-large

Figure 5.2 The best layer-wise S-F1 scores of PLMs on the PTB test set. (Left)
The performance of the X-‘base’ models. (Right) The performance of the X-
‘large’ models.

that there are some particular layers in the LMs which are more sensitive to

syntactic information.

5.6.2 Estimating the Upper Limit of Distance Measure Func-
tions

Although we have introduced effective candidates for f , we explore the potential

of extracting more sophisticated trees from PLMs, supposing we are equipped

with a pseudo-optimum f , call it fideal. To obtain fideal, we train a simple linear

layer on each layer of the PLMs with supervision from the gold-standard trees of

the PTB training set, while g remains unchanged—the PLMs are frozen during

training. We choose the XLNet-base model as a representative for PLMs. We

assume fideal is only compatible with the functions in Gv, as the functions in Gd

are not suitable for training as the sizes of the representations provided by Gd

are variable according to the length of an input sentence. To train the pseudo-

optimal function fideal, we minimize a pair-wise learning-to-rank loss following

86

Model f L A S-F1 SBAR NP VP PP ADJP ADVP

Baselines (from Table 1)
Random XLNet-base (F v) - - - 19.6 9% 26% 12% 20% 23% 24%
Random XLNet-base (F d) - - - 20.1 11% 25% 14% 19% 22% 26%
XLNet-base (λ=0) JSD 9 AVG 40.1 35% 56% 26% 38% 47% 68%
XLNet-base (λ=1.5) HEL 7 AVG 48.3 62% 53% 50% 58% 49% 74%

Trained models (gold trees)
Random XLNet-base fideal - - 41.2 28% 58% 29% 50% 35% 41%
XLNet-base (worst case) fideal 1 - 58.0 47% 75% 56% 71% 50% 61%
XLNet-base (best case) fideal 7 - 65.1 61% 82% 67% 78% 55% 73%

Table 5.5 Results of training a pseudo-optimum fideal with PTB and XLNet-
base model.

previous work (Burges et al., 2005; Shen et al., 2018c):

Lrank
dist =

∑
i,j>i

[1− sign(dgold
i − dgold

j)(dpred
i − dpred

j)]+,

where dgold and dpred are computed from the gold tree and our predicted one,

respectively. [x]+ is defined as max(0, x). We train the fideal with the PTB

training set for 5 epochs. Each batch of the training set contains 16 sentences.

We use an ADAM optimizer (Kingma and Ba, 2014) with the learning rate 5e-4.

We train the variations of fideal differentiated by the choice of g in Gv and report

the best result in the Table 5.5. Each fideal is chosen based on its performance

on the PTB validation set. Considering the randomness of training, every result

for fideal is averaged over 3 different trials.

In Table 5.5, we present three new results using fideal. As a baseline, we

report the performance of fideal with a randomly initialized XLNet-base. Then,

we list the worst and best result of fideal according to g, when it is combined

with the pre-trained LM. We here mention some findings from the experiment.

First, comparing the results with the pre-trained LM against one with the ran-

dom LM, we reconfirm that pre-training an LM apparently enables the model

to capture some aspects of grammar. Specifically, our method is comparable

87

to the linear model trained on the gold-standard trees. Second, we find that

there is a tendency for the performance of fideal relying on different LM lay-

ers to follow one we already observed in Section 5.6.1—the best result comes

from the middle layers of the LM while the worst from the first and last layer.

Third, we identify that the LM has a potential to show improved performance

on grammar induction by adopting a more sophisticated f . However, we em-

phasize that our method equipped with a simple f without gold-standard trees

is remarkably reasonable in recognizing constituency grammar, being especially

good at catching ADJP and ADVP.

5.6.3 Constituency Tree Examples

We visualize several gold-standard trees from PTB and the corresponding tree

predictions for comparison. We randomly select four sentences from PTB and

visualize their trees from Figure 5.3 to Figure 5.6, where the resulting group

of trees for each sentence consists of a gold constituency tree and two induced

trees (one without the right-skewness bias and the other with the bias) from

our best model—XLNet-base. The ‘T’ character in the induced trees indicates

a dummy tag.

88

S

CC

But

NP-SBJ

NP

NNP

HOFI

POS

's

JJ

first

NN

offer

VP

MD

would

VP

VB

have

VP

VBN

given

NP

NP

NNP

Ideal

POS

's

JJ

other

NNS

shareholders

NP

NP

QP

RB

about

CD

10

NN

%

PP

IN

of

NP

DT

the

JJ

combined

NN

company

T

T

T

But

T

T

T

HOFI

T

T

's

T

T

first

T

offer

T

T

T

would

T

have

T

given

T

T

T

Ideal

T

T

's

T

T

other

T

shareholders

T

T

T

about

T

T

T

10

T

%

T

of

T

T

the

T

T

combined

T

company

T

T

T

But

T

T

HOFI

T

T

T

's

T

T

first

T

offer

T

T

T

would

T

have

T

given

T

T

T

Ideal

T

T

's

T

T

other

T

shareholders

T

T

about

T

T

T

10

T

%

T

T

of

T

T

the

T

T

combined

T

company

Figure 5.3 Gold (top) and predicted trees (one without the bias in the middle,
the other with the bias at the bottom) for the sentence ‘But HOFI ‘s first
offer would have given Ideal ’s other shareholders about 10 % of the combined
company’.

89

S

S

NP-SBJ

PRP

It

VP

VBD

was

NP-PRD

NNP

Friday

DT

the

NNP

13th

CC

and

S

NP-SBJ

DT

the

NN

stock

NN

market

VP

VBD

plummeted

NP-EXT

QP

RB

nearly

CD

200

NNS

points

T

T

T

T

It

T

was

T

T

Friday

T

T

the

T

13th

T

T

T

and

T

T

the

T

T

stock

T

market

T

T

plummeted

T

T

nearly

T

T

200

T

points

T

T

T

It

T

T

was

T

T

Friday

T

T

the

T

13th

T

T

and

T

T

T

the

T

T

stock

T

market

T

T

plummeted

T

T

nearly

T

T

200

T

points

Figure 5.4 Gold (top) and predicted trees (one without the bias in the middle,
the other with the bias at the bottom) for the sentence ‘It was Friday the 13th
and the stock market plummeted nearly 200 points’.

90

S

PP-TMP

IN

Until

ADVP

RB

recently

NP-SBJ

NP

JJ

national

NNS

governments

PP-LOC

IN

in

NP

NNP

Europe

VP

VP

VBD

controlled

NP

NP

JJS

most

PP

IN

of

NP

DT

the

NN

air

NN

time

CC

and

VP

VBD

allowed

NP

ADJP

JJ

little

CC

or

DT

no

NN

advertising

T

T

T

T

Until

T

recently

T

T

national

T

T

governments

T

T

in

T

Europe

T

T

T

controlled

T

T

T

T

most

T

T

of

T

the

T

air

T

time

T

T

T

and

T

allowed

T

T

T

little

T

T

or

T

no

T

advertising

T

T

T

Until

T

recently

T

T

T

T

national

T

governments

T

T

in

T

Europe

T

T

controlled

T

T

T

most

T

T

of

T

T

the

T

T

air

T

time

T

T

T

and

T

allowed

T

T

little

T

T

or

T

T

no

T

advertising

Figure 5.5 Gold (top) and predicted trees (one without the bias in the middle,
the other with the bias at the bottom) for the sentence ‘Until recently national
governments in Europe controlled most of the air time and allowed little or no
advertising’.

91

S

NP-SBJ

NNS

Analysts

CC

and

NNS

competitors

ADVP

RB

however

VP

VBP

doubt

SBAR

S

NP-SBJ

DT

the

NNS

numbers

VP

VBD

were

ADJP-PRD

RB

that

JJ

high

T

T

T

Analysts

T

T

and

T

competitors

T

T

T

however

T

doubt

T

T

T

T

the

T

numbers

T

were

T

T

that

T

high

T

T

T

Analysts

T

T

and

T

competitors

T

T

T

however

T

doubt

T

T

T

the

T

numbers

T

T

were

T

T

that

T

high

Figure 5.6 Gold (top) and predicted trees (one without the bias in the mid-
dle, the other with the bias at the bottom) for the sentence ‘Analysts and
competitors however doubt the numbers were that high’.

92

5.7 Summary

We have proposed a simple but effective method of inducing constituency trees

from pre-trained language models in a zero-shot learning fashion. Furthermore,

we have reported a set of intuitive findings observed from the extracted trees,

demonstrating that PLMs exhibit some properties similar to constituency gram-

mar. In addition, we have shown that our method can serve as a strong baseline

for English grammar induction when combined with (or even without) appro-

priate linguistic biases.

On the other hand, there are still remaining issues that can be good start-

ing points for future work. First, although we analyzed our method based on

two popular datasets, we focused only on English grammar induction. As each

language has its own properties (and correspondingly would need individual-

ized biases), it is desirable to expand this work to other languages. In the next

chapter, we overcome this limitation by considering eight additional languages

in evaluation. Second, it would also be desirable to investigate whether fur-

ther improvements can be achieved by directly grafting the PLMs onto existing

grammar induction models. Lastly, by verifying the usefulness of the knowledge

from the PLMs and linguistic biases for grammar induction, we want to point

out that there is still much room for improvement in the existing grammar

induction models.

93

Chapter 6

Multilingual Syntactic Analysis
with Enhanced Techniques

6.1 Introduction

In the previous chapter, we have presented a novel methodology of inducing

constituency parse trees from pre-trained language models (PLMs) and thus

paving the way for investigating the inner workings of the models. We improve

upon this paradigm by proposing a novel chart-based method and an effective

top-K ensemble technique. Moreover, we demonstrate that we can broaden the

scope of application of the approach into multilingual settings.

Constituency Parse Extraction from Pre-trained LanguageModels (CPE-

PLM) relies on the combination of (i) simple distance metric functions and (ii)

the representations obtained from PLMs. The core assumption underlying the

methodology is that PLMs hold syntactic knowledge enough to be utilized for

predicting parse trees by themselves. Although the CPE-PLM framework has

demonstrated that non-trivial trees resembling gold-standard annotations can

94

be extracted from general PLMs even without fine-tuning on treebanks, it has

been also reported that CPE-PLM’s freedom from task-specific training comes

at the cost of its performance inferior to that of unsupervised parsers. Further-

more, it has yet to be verified that CPE-PLM is also effective for languages

other than English.

In this chapter, we first attempt to narrow the performance gap between

unsupervised parsers and CPE-PLM by introducing a novel method inspired

by neural chart-based algorithms (Durrett and Klein, 2015; Stern et al., 2017;

Kitaev and Klein, 2018). In contrast to the top-down CPE-PLM method in

the previous chapter, which focuses on detecting the boundary of two subspans

in a phrase relying only on the knowledge from the two words around the

boundary, our chart-based method considers all components in a phrase to

judge how plausible the phrase is. Furthermore, we introduce a simple but

effective ensemble technique that utilizes the pre-defined set of attention heads

which are confirmed as being effective by their performance on the validation

set. We show that our chart-based method outperforms or is competitive to the

top-down method and that the top-K ensemble plays a key role in boosting

their performance.

Second, the limitation of most previous studies for both unsupervised pars-

ing and CPE-PLM is that they are heavily English-centric, leaving an open

question whether they are universally applicable. To investigate this problem,

we test CPE-PLM on several other languages. Specifically, we propose to intro-

duce multilingual PLMs (Conneau and Lample, 2019; Conneau et al., 2020) into

CPE-PLM to grant the framework an ability to deal with multiple languages

simultaneously. We show that the CPE-PLM methods built upon multilingual

PLMs are able to induce reasonable parses for sentences in nine languages in

an integrated and language-agnostic manner, achieving figures superior or com-

95

parable to ones from neural PCFGs (Kim et al., 2019c; Zhao and Titov, 2021).

In supplementary analyses, we provide intuitive explanations about the inner

workings of our method. For instance, we confirm the existence of universal at-

tention heads which seem to be responsible for capturing syntactic information

irrespective of the input language.

6.2 Related work

Pre-trained language models (PLMs) now lie at the heart of many studies in the

literature. Following the trend, much effort has been made to develop English

PLMs (Devlin et al. (2019); Liu et al. (2019b); Radford et al. (2019); Yang

et al. (2019), inter alia), to construct non-English PLMs (Martin et al. (2019);

i.a.), and to train multilingual variants (Conneau and Lample, 2019; Conneau

et al., 2020). We explore the potential use of these PLMs as zero-shot parsers.

The trees induced by our method can also be leveraged as a tool for probing

PLMs, similar to the recent work that attempts to explore some knowledge in

PLMs (Clark et al., 2019; Jawahar et al., 2019). In particular, Chi et al. (2020)

extended Hewitt and Manning (2019) to multilingual settings, analogous to our

work. Still, it is different from ours in that it requires explicit supervision and

devotes itself to dependency grammar.

Mareček and Rosa (2019) developed an approach similar to ours, but they

focused on Transformers trained for machine translation rather than language

models. Work on neural unsupervised parsing (Shen et al. (2018b, 2019); Kim

et al. (2019c); Shi et al. (2020), inter alia) also seeks to generate parse trees

without supervision from gold-standard trees. It is worth noting that some work

such as Kann et al. (2019) and Zhao and Titov (2021) attempts to evaluate

unsupervised parsers in multilingual settings, akin to our work. The difference

96

between ours and theirs is that our method does not require training a parser

for each language, instead relying on the off-the-shelf PLMs.

6.3 Method

6.3.1 Chart-based CPE-PLM

Although the top-down method in the previous chapter has shown its effective-

ness in extracting non-trivial phrase structures from PLMs, there still remains

much room for improvement, considering that this method by nature operates

in a greedy fashion rather than taking account of the probabilities of all pos-

sible subtrees. In other words, the top-down CPE-PLM method only relies on

the information obtained from the representations of two words to estimate the

likelihood of the space between the two words becoming a target to be split.

To overcome this limitation, we propose a novel approach based on chart pars-

ing which executes an exact inference to find the most probable parse while

effectively considering all possibilities with dynamic programming.

Following the previous work on chart parsing (Stern et al., 2017; Kitaev and

Klein, 2018), we assign a real-valued score stree(T) for each tree candidate T ,

which decomposes as stree(T) =
∑

(i,j)∈T sspan(i, j), where sspan(i, j) is a score

(or cost) for a constituent that is located between positions i and j (1 ≤ i ≤

j ≤ n) in a sentence. Specifically, sspan(i, j) is defined as follows:

sspan(i, j) =

scomp(i, j) + mini≤k<j ssplit(i, k, j) if i < j

0 if i = j

where ssplit(i, k, j) = sspan(i, k)+sspan(k+1, j). In other words, scomp(i, j) mea-

sures the validity or compositionality of the span (i, j) itself while ssplit(i, k, j)

indicates how plausible it is to divide the span (i, j) into two subspans (i, k)

97

Algorithm 2 Chart to Syntactic Distance
1: n: Length of an input sentence S.

2: C ∈ Rn×n: Chart matrix whose elements are sspan(i, j).

3: P ∈ Rn×n: Matrix, whose (i, j)th element is the split point of the span (i, j) of the

sentence S.

4: s: Start position, initialized as 1.

5: e: End position, initialized as n.

6: function C2D(C, P , s, e)

7: if s = e then

8: return [] (empty vector)

9: else

10: v ← C[s][e]

11: p← P [s][e]

12: return [C2D(C, P , s, p); v; C2D(C, P , p+1, e)]

13: ([·; ·]: vector concatenation)

14: end if

15: end function

and (k + 1, j). We choose the most probable k that brings us the minimum

cost of ssplit(i, k, j). Note that each constituent is by definition evaluated with

the scores of its children in addition to its own score. Once scomp(·, ·) is prop-

erly defined, it is straightforward to compute every sspan(i, j) by utilizing the

CKY algorithm (Cocke, 1969; Kasami, 1966; Younger, 1967). In the following

subsections, we formulate two variants of scomp(·, ·) in detail.

Finally, our parser outputs T̂ , the tree that requires the lowest score (cost) to

build, as a prediction for the parse tree of the input sentence: T̂ = argminT stree(T).

Technically, after completing filling in the chart matrix, each of whose element

is sspan(i, j), we derive T̂ by applying Algorithm 2 and Algorithm 1 (Chapter

5) in order.

98

Pair Score Function

The methodology introduced above abstracted over the choice of scomp(·, ·); in

what follows we propose two candidates for it. First, we propose a pair score

function sp(·, ·) which is defined as follows:

sp(i, j) :=

(
j − i+ 1

2

)−1 ∑
(wx,wy)∈pair(i,j)

f(g(wx), g(wy)),

where pair(i, j) returns a set consisting of all combinations of two words from

a span (i, j)—e.g., pair(1, 3) = {(w1, w2), (w1, w3), (w2, w3)}. The intuition be-

hind this formulation is that every pair of words in a constituent should have

similar attention distributions so that the pair’s embeddings become similar to

each other in the subsequent layers of PLMs. For f(·, ·) and g(·), we again take

advantage of F d and Gd specified in Section 5.4.4.1

Characteristic Score Function

We also propose another candidate for scomp(·, ·), namely a characteristic score

function sc(·, ·). Instead of measuring the similarities of all pairs of attention

distributions, we pre-define c as the characteristic vector of a given constituent

and evaluate the cost of each word in the constituent with regard to this value.

Although c can be realized in many ways, for simplicity, we here use the average

of all the attention distributions of words in a constituent. As a consequence,

sc(i, j) is formalized as follows:

sc(i, j) :=
1

j − i+ 1

∑
i≤x≤j

f(g(wx), c),

where c = 1
j−i+1

∑
i≤y≤j g(wy).

1This implies that we make only use of the attention distributions of PLMs, as it is verified
by the previous work (Kim et al., 2020) and our preliminary experiments that attention
distributions offer more useful signals in this setting.

99

6.3.2 Top-K Ensemble for CPE-PLM

The part remaining ambiguous so far in clarifying CPE-PLM algorithms is

about how to properly select the distance measure function f and representation

extractor function g from the set of candidates, i.e., F d andGd. Basically, we can

consider a typical case where we acquire the best combination of f and g using

the validation set and apply it to the test set. In addition, we introduce one

more option, called top-K ensemble, that enables us to integrate the knowledge

from several attention heads.

Specifically, we first pick an arbitrary candidate for f , dubbed f̂ .2 Then, we

compute the parsing performance of every possible combination of f̂ and g ∈ Gd

on the validation set and sort Gd according to the performance of its elements.

After that, we simply choose the top K elements from the sorted Gd and allow

all of them (GdtopK) to participate in parsing instead of just leveraging the best

single one. At test time, given an input sentence, we predict K separate trees

using every element from GdtopK , and then convert the trees into corresponding

syntactic distance vectors (Algorithm 2). Finally, we compute the average of

the syntactic distance vectors and translate this averaged vector into the final

tree prediction (Algorithm 1). By introducing the top-K ensemble technique,

it becomes possible to obtain a more accurate tree prediction while seamlessly

combining diverse syntactic signals provided by different attention heads.

6.4 Experiments

6.4.1 General Configurations

To evaluate, we prepare the PTB (Marcus et al., 1993) dataset for English and

the SPMRL (Seddah et al., 2013) dataset for the eight other languages: Basque,

2In practice, we test every element f ∈ F d exhaustively to select the best one as F d consists
of only two elements.

100

Figure 6.1 Performance of CPE-PLM methods on PTB. Chart-based (CP and
CC) approaches show superior figures in most cases compared to TD. The top-K
ensemble also provides orthogonal improvements.

French, German, Hebrew, Hungarian, Korean, Polish, and Swedish. We use

the standard split of each dataset, and the datasets are preprocessed following

Kim et al. (2019c) and Zhao and Titov (2021)—removing punctuation marks.

We leverage the unlabelled sentence-level F1 (percentage) score as a primary

metric to evaluate the extent to which tree predictions resemble corresponding

gold-standard trees. The hyperparameter K, which determines the number of

attention heads engaging in the top-K ensemble, is decided by grid search on

some reasonable candidates ({5, 10, 20, 30}). We empirically found that K=20

is versatile across different settings. From now on, we employ the abbreviations

TD, CP, and CC to refer to the top-down (Chapter 5), chart-pair (the approach

defined in this chapter and equipped with sp), and chart-characteristic method

(the approach defined in this chapter and with sc) respectively.

101

Language French German Korean Swedish

Method TD CP CC TD CP CC TD CP CC TD CP CC

Naïve baselines
Random 16.2 13.9 22.2 16.4
Left-branching 5.7 10.0 18.5 8.4
Right-branching 26.4 14.7 19.2 30.4

PCFGs
N-PCFG† 42.2 37.8 25.7 14.5
C-PCFG† 40.5 37.3 27.7 23.7

Mono. PLMs 41.4 42.4 42.8 38.4 39.6 39.7 51.1 47.3 47.4 35.6 38.4 38.9

Table 6.1 CPE-PLM’s performance on French, German, Korean, and Swedish.
The best score for each language is in bold. †: results from Zhao and Titov
(2021).

6.4.2 Experiments on Monolingual Settings

We first assess CPE-PLM on the PTB dataset. We apply our methods to three

different categories of English PLMs—BERT (Devlin et al., 2019), RoBERTa

(Liu et al., 2019b), and XLNet (Yang et al., 2019).3 We also test the effect of the

top-K ensemble by combining it with each of the CPE-PLM method. In Figure

6.1, we confirm that our chart-based methods mostly outperform the top-down

approach, showing an improvement of up to nearly five points (RoBERTa-large:

33.8 → 38.6). Moreover, we reveal that the top-K ensemble provides significant

improvements on parsing performance in an orthogonal manner, regardless of

the accompanying method. This result implies that the cues that can contribute

to inducing parse trees may be distributed across different parts of PLMs, rather

than concentrated on a specific attention head. We attain the 46.4 F1 score by

combining XLNet, the CP method, and the top-K ensemble, which is six points

higher than the best performance (40.1) reported in the previous chapter.

3We prepare two variants for each PLM: (i) X-base consists of 12 layers, 12 attention heads,
and 768 hidden dimensions. (ii) X-large has 24 layers, 16 heads, and 1024 dimensions.

102

Next, we evaluate CPE-PLM methods on French, German, Korean, and

Swedish, for which language-specific BERT variants are available.4 As baselines,

we prepare three naïve methods—random and left/right-branching trees—in

addition to N(eural)-PCFG and C(ompound)-PCFG (Kim et al., 2019c), which

are representative unsupervised parsers.5 For CPE-PLM, we consider both the

top-down and chart methods, all of which are combined with the top-K ensem-

ble. In Table 6.1, the CPE-PLM methods demonstrate performance compara-

ble (French / German) or superior (Korean / Swedish) to that of the strong

baselines. In particular, CPE-PLM shows much better performance in Korean

and Swedish, where PCFGs failed to obtain meaningful results. We conjec-

ture this discrepancy in part comes from the availability of subword-level fea-

tures, to which PLMs have access while PCFGs do not, considering that the

SPMRL dataset is originally constructed for testing morphologically-rich lan-

guages. Meanwhile, CP and CC outperform TD on 3 out of 4 languages, albeit

the gaps are relatively small compared to the English case. This outcome leads

to two implications: (i) the effectiveness of a CPE-PLM method depends on the

language where it is applied, and (ii) our top-K ensemble is broadly helpful for

all the parsing methods, reducing the gap between their performance.

6.4.3 Experiments on Multilingual Settings

4The PLMs we utilize per language are listed as follows. German: bert-base-german
(https://deepset.ai/german-bert). French: camembert (Martin et al., 2019). Swedish:
bert-base-swedish (https://github.com/huggingface/transformers/tree/master/model_
cards/KB/bert-base-swedish-cased). Korean: KoBERT-base (https://github.com/
SKTBrain/KoBERT).

5We rely on Zhao and Titov (2021) to report PCFG models’ performance. Note that the
authors assume they have access to parses in the PTB dev set to select the best hyperpa-
rameters following Kim et al. (2019c). This condition is exactly the same for our English
models and cross-lingual transfer settings in Table 6.2. Meanwhile, we additionally employ
the SPMRL validation set in Table 6.1 and the Multi-ling. part of Table 6.2, which can give
undesirable extra gains to CPE-PLM.

103

https://deepset.ai/german-bert
https://github.com/huggingface/transformers/tree/master/model_cards/KB/bert-base-swedish-cased
https://github.com/huggingface/transformers/tree/master/model_cards/KB/bert-base-swedish-cased
https://github.com/SKTBrain/KoBERT
https://github.com/SKTBrain/KoBERT

L
an

gu
ag
e

E
n
gl
is
h

B
as
qu

e
Fr
en

ch
G
er
m
an

H
eb

re
w

H
u
n
ga
ri
an

K
or
ea
n

P
ol
is
h

S
w
ed

is
h

M
et
h
od

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

P
C
F
G
s

N
-P

C
FG
†

50
.8

30
.2

42
.2

37
.8

41
.0

37
.9

25
.7

31
.7

14
.5

C
-P

C
FG
†

55
.7

27
.9

40
.5

37
.3

39
.2

38
.3

27
.7

32
.4

23
.7

M
on

o-
li
n
g.

42
.9

46
.4

45
.0

41
.4

42
.4

42
.8

38
.4

39
.6

39
.7

51
.1

47
.3

47
.4

35
.6

38
.4

38
.9

M
u
lt
i-
li
n
g.

M
-B

E
R
T

40
.3

45
.0

44
.8

40
.0

40
.9

41
.6

42
.9

44
.6

45
.6

39
.3

40
.6

40
.3

42
.3

42
.5

42
.0

38
.2

39
.1

40
.4

52
.1

50
.9

49
.8

41
.6

43
.0

42
.9

37
.3

37
.4

39
.3

X
LM

44
.2

47
.7

46
.2

43
.3

44
.1

44
.7

43
.7

46
.0

46
.0

39
.2

41
.3

40
.4

43
.9

44
.2

44
.3

40
.8

42
.3

42
.2

43
.0

41
.6

41
.0

44
.3

44
.9

44
.4

39
.0

40
.1

40
.7

X
LM

-R
45

.5
46

.7
47

.0
43

.7
43

.8
45

.1
45
.8

44
.2

45
.5

41
.4

42
.2

41
.6

45
.0

43
.2

45
.3

42
.4

44
.0

43
.4

55
.9

55
.7

54
.3

43
.1

43
.7

44
.6

39
.5

40
.6

41
.5

X
LM

-R
-L

41
.7

44
.6

45
.1

44
.3

44
.1

45
.2

39
.5

42
.4

42
.9

38
.9

41
.0

40
.7

43
.7

44
.1

46
.3

39
.8

41
.5

41
.3

51
.8

52
.6

51
.8

41
.7

43
.5

44
.5

36
.2

38
.6

39
.4

C
ro
ss
-l
in
g.

M
-B

E
R
T

39
.8

39
.8

41
.1

42
.2

44
.6

45
.5

37
.7

40
.3

39
.3

39
.7

42
.8

42
.8

36
.2

39
.4

38
.0

48
.9

47
.0

45
.7

39
.8

41
.9

42
.3

36
.0

39
.1

38
.7

(+
,−

)
(-
0.
2)

(-
1.
1)

(-
0.
5)

(-
0.
7)

(0
.0
)

(-
0.
1)

(-
1.
6)

(-
0.
3)

(-
1.
0)

(-
2.
6)

(+
0.
3)

(+
0.
8)

(-
2.
0)

(+
0.
3)

(-
2.
4)

(-
3.
2)

(-
3.
9)

(-
4.
1)

(-
1.
8)

(-
1.
1)

(-
0.
6)

(-
1.
3)

(+
1.
7)

(-
0.
6)

X
LM

40
.6

41
.2

42
.1

44
.2

46
.3

46
.1

38
.9

41
.5

40
.3

42
.4

45
.8

43
.9

38
.0

42
.2

40
.7

40
.1

39
.5

38
.4

42
.2

44
.5

44
.4

38
.2

40
.9

40
.9

(+
,−

)
(-
2.
7)

(-
2.
9)

(-
2.
6)

(+
0.
5)

(+
0.
3)

(+
0.
1)

(-
0.
3)

(+
0.
2)

(-
0.
1)

(-
1.
5)

(+
1.
6)

(-
0.
4)

(-
2.
8)

(-
0.
1)

(-
1.
5)

(-
2.
9)

(-
2.
1)

(-
2.
6)

(-
2.
1)

(-
0.
4)

(0
.0
)

(-
0.
8)

(+
0.
8)

(+
0.
2)

X
LM

-R
43

.4
42

.1
43

.7
45

.4
45

.1
46

.2
41

.5
42

.2
41

.5
45

.5
45

.2
46

.3
41

.3
43
.4

41
.9

52
.6

49
.6

48
.9

44
.3

45
.4

44
.8

40
.4

41
.0

41
.4

(+
,−

)
(-
0.
3)

(-
1.
7)

(-
1.
4)

(-
0.
4)

(+
0.
9)

(+
0.
7)

(+
0.
1)

(0
.0
)

(-
0.
1)

(+
0.
5)

(+
2.
0)

(+
1.
0)

(-
1.
1)

(-
0.
6)

(-
1.
5)

(-
3.
3)

(-
6.
1)

(-
5.
4)

(+
1.
2)

(+
1.
7)

(+
0.
2)

(+
0.
9)

(+
0.
4)

(-
0.
1)

X
LM

-R
-L

43
.9

42
.6

43
.6

39
.4

42
.3

43
.2

38
.6

40
.6

40
.6

42
.8

44
.7

45
.4

38
.6

39
.9

40
.7

51
.6

51
.3

50
.5

42
.6

44
.9

45
.1

37
.1

39
.6

40
.0

(+
,−

)
(-
0.
4)

(-
1.
5)

(-
1.
6)

(-
0.
1)

(-
0.
1)

(+
0.
3)

(-
0.
3)

(-
0.
4)

(-
0.
1)

(-
0.
9)

(+
0.
6)

(-
0.
9)

(-
1.
2)

(-
1.
6)

(-
0.
6)

(-
0.
2)

(-
1.
3)

(-
1.
3)

(+
0.
9)

(+
1.
4)

(+
0.
6)

(+
0.
9)

(+
1.
0)

(+
0.
6)

T
ab

le
6.
2
P
er
fo
rm

an
ce

of
C
P
E
-P

LM
on

9
la
ng

ua
ge
s.
M
on

o-
li
n
g.
:C

P
E
-P

LM
’s
pe

rf
or
m
an

ce
in

m
on

ol
in
gu

al
se
tt
in
gs
.

M
u
lt
i-
li
n
g.
:
th
e
re
su
lt
s
w
he
n
co
m
bi
ne
d
w
it
h
m
ul
ti
lin

gu
al

P
LM

s.
C
ro
ss
-l
in
g.
:
th
e
pe

rf
or
m
an

ce
w
he
n
re
ly
in
g
on

cr
os
s-
lin

gu
al

tr
an

sf
er
,
in

ad
di
ti
on

to
th
e
re
la
ti
ve

lo
ss
es

or
ga
in
s
(+

,−
)
co
m
pa

re
d
to

th
e
or
ig
in
al

re
su
lt
s.

T
he

be
st

sc
or
e
pe

r
P
LM

is
in

b
ol
d
w
hi
le

th
e
be

st
fo
r
ea
ch

la
ng

ua
ge

is
un

de
rl
in
ed

.†
:r

es
ul
ts

fr
om

Zh
ao

an
d
T
it
ov

(2
02
1)
.

104

Theoretically, multilingual PLMs have a potential to be a core asset for

CPE-PLM, given that they are able to deal with sentences from over a hundred

languages simultaneously. However, it has not yet been investigated whether

they can play a role as expected. To shed light on this issue, we conduct exper-

iments with the CPE-PLM methods built upon multilingual PLMs. We apply

four multilingual PLMs to nine languages in total. We use a multilingual ver-

sion of the BERT-base model (M-BERT, Devlin et al. (2019)), the XLM model

trained on 100 languages (XLM, Conneau and Lample (2019)), XLM-R, and

XLM-R-L(arge) (Conneau et al., 2020). For baselines, we only consider PCFGs

as we verified in Section 6.4.2 that they can subsume naïve baselines. We also

list CPE-PLM’s performance in monolingual settings for reference. Again, we

utilize the TD, CP, and CC methods combined with the top-K ensemble.

In the Multi-ling. section of Table 6.2, we report CPE-PLM’s performance

with multilingual PLMs when the best attention heads are separately selected

for each language, relying on the validation sets of respective languages. We ob-

serve that the CPE-PLM framework works pretty well across languages when

it is built upon multilingual PLMs, outperforming PCFGs except for English.

Surprisingly, we discover that for every language we consider, there exists at

least one multilingual PLM that outperforms its monolingual counterpart. For

instance, we achieve the F1 score of 47.7 in English with the XLM model, which

is higher than all the scores we achieved for English in monolingual settings.

In conclusion, we confirm that multilingual PLMs can serve as a core compo-

nent for an integrated CPE-PLM framework that processes different languages

simultaneously. Regarding the effect of parsing strategies, we identify that CP

and CC generally outperform TD, and that the only exception occurs in Ko-

rean. We assume this is related to the linguistic properties of target languages,

but we leave a thorough analysis on this as future work.

105

Next, we evaluate CPE-PLM in a harsher condition where the validation

set is given only for English. Concretely, we attempt to parse sentences in eight

other languages with the CPE-PLM methods optimized for English (i.e., the

attention heads are chosen based on the PTB validation set), performing zero-

shot cross-lingual transfer from English to others. Note that this constraint

facilitates revealing the true value of CPE-PLM by answering the following

research question: given no access to parsers or gold-standard trees in target

languages at all, can we induce non-trivial parse trees by solely relying on the

knowledge residing in PLMs?

In the Cross-ling. section, we present the performance of cross-lingual

transfer and relative performance losses or gains (+,−) compared against the

language-specific optimization (Multi-ling.). To our surprise, we reveal that

the cross-lingual transfer leads to negligible losses or even small gains in most

cases. This is also in line with the reports from related work (Pires et al. (2019);

Cao et al. (2020); i.a.) that multilingual PLMs are effective in cross/multi-

lingual NLP tasks. Our finding implies that there exist universal attention

heads that are sensitive to the phrase structures of sentences irrespective of the

input language. We seek to analyze this phenomenon in detail in the following

section.

6.5 Analysis

In this section, we present several analyses that facilitate our understanding

of the inner workings of CPE-PLM. We employ XLM-R, whose specification is

elaborated in Conneau et al. (2020), as a backbone and the CC method as a

parsing scheme.

106

L
an

gu
ag
e

E
n
gl
is
h

B
as
qu

e
Fr
en

ch
G
er
m
an

H
eb

re
w

H
u
n
ga
ri
an

K
or
ea
n

P
ol
is
h

S
w
ed

is
h

M
et
h
od

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

T
D

C
P

C
C

P
re
-t
ra
in
in
g
d
at
a

T
ok
en
s
(M

)†
30

0.
8

2.
0

56
.8

66
.6

31
.6

58
.4

54
.2

44
.6

12
.1

Si
ze

(G
iB
)†

55
60

8
27

0
97

80
10

29
7

33
99

78
07

56
44

64
90

77

V
al
.
&

T
es
t
d
at
a

Si
ze

(V
al
id
at
io
n)

17
00

94
8

12
35

50
00

50
0

10
51

20
66

82
1

49
4

Si
ze

(T
es
t)

24
16

94
6

25
40

49
99

71
6

10
09

22
87

82
2

66
6

X
L
M
-R

45
.5

46
.7

47
.0

43
.7

43
.8

45
.1

45
.8

44
.2

45
.5

41
.4

42
.2

41
.6

45
.0

43
.2

45
.3

42
.4

44
.0

43
.4

55
.9

55
.7

54
.3

43
.1

43
.7

44
.6

39
.5

40
.6

41
.5

C
ro
ss
-li
ng

ua
l

43
.4

42
.1

43
.7

45
.4

45
.1

46
.2

41
.5

42
.2

41
.5

45
.5

45
.2

46
.3

41
.3

43
.4

41
.9

52
.6

49
.6

48
.9

44
.3

45
.4

44
.8

40
.4

41
.0

41
.4

(+
,−

)
(-
0.
3)

(-
1.
7)

(-
1.
4)

(-
0.
4)

(+
0.
9)

(+
0.
7)

(+
0.
1)

(0
.0
)
(-
0.
1)

(+
0.
5)

(+
2.
0)

(+
1.
0)

(-
1.
1)

(-
0.
6)

(-
1.
5)

(-
3.
3)

(-
6.
1)

(-
5.
4)

(+
1.
2)

(+
1.
7)

(+
0.
2)

(+
0.
9)

(+
0.
4)

(-
0.
1)

T
ab

le
6.
3
Fa

ct
or

co
rr
el
at
io
n

an
al
ys
is
.
T
he

fir
st

se
ct
io
n

de
sc
ri
be

s
th
e
st
at
is
ti
cs

of
th
e
da

ta
ut
ili
ze
d

fo
r
tr
ai
ni
ng

X
LM

-R
.
T
he

se
co
nd

se
ct
io
n
di
sp
la
ys

th
e
ch
ar
ac
te
ri
st
ic
s
of

th
e
va
lid

at
io
n
an

d
te
st

se
ts
.
†:

fr
om

C
on

ne
au

et
al
.

(2
02
0)
.

107

6.5.1 Factor Correlation Analysis

First, we attend to two factors that may affect CPE-PLM’s performance: (i) the

amount of the data consumed to train a PLM, and (ii) the number of sentences

in the validation and test sets. In Table 6.3, we do not notice a clear relationship

between the amount of pre-training data and performance. We conjecture this

result is rooted in the sampling technique exploited when pre-training XLM-

R. Specifically, the technique readjusts the probability of sampling a sentence

from each language, increasing the number of tokens sampled from low-resource

languages while mitigating the bias towards high-resource languages (Conneau

et al., 2020). On the other hand, we discover that the languages for which the

size of the validation sets are relatively small (i.e., Hebrew, Polish, and Swedish)

tend to benefit from cross-lingual transfer, implying that the insufficient num-

ber of examples in the validation set might cause some noise or lead to the

suboptimal result in the selection of attention heads.

6.5.2 Visualization of Attention Heads

We revealed in Section 6.4.3 that CPE-PLM’s performance for most languages

does not suffer much from cross-lingual transfer, suggesting that there would

exist significant overlaps among the sets of the attention heads selected for re-

spective languages. To verify our hypothesis, in Figure 6.2, we visualize the

language-specific sets of the top 20 heads existing in XLM-R. We observe that

the heads effective for CPE-PLM are distributed over the middle-to-upper (6-

12) layers of XLM-R, implying that phrase-level information is pervasive in the

upper layers rather than the lower ones. In addition, we discover that most of

the heads detected as sensitive to syntax respond to multiple languages simul-

taneously and that there exist a few heads proven to be important for dealing

with all the nine languages we consider. Our finding of the existence of such

108

1 2 3 4 5 6 7 8 9 10 11 12
Attention Heads

1

2

3

4

5

6

7

8

9

10

11

12

La
ye

r

XLM-R

English
Basque
French
German
Hebrew
Hungarian
Korean
Polish
Swedish

Figure 6.2 Visualization of the sets of the top 20 attention heads (in XLM-R)
for 9 languages. Each cell is filled with the color assigned for a language if the
corresponding head is responsible for parsing the language.

universal attention heads explains why CPE-PLM is robust to cross-lingual

transfer in multilingual settings, in addition to providing a partial clue on why

multilingual PLMs are excel at cross-lingual transfer as reported in previous

work (Pires et al. (2019); Cao et al. (2020); inter alia).

6.5.3 Recall Scores on Noun and Verb Phrases

To assess CPE-PLM’s performance in a more fine-grained manner and probe the

extent to which it detects the core components of sentences, we present its recall

scores on gold-standard noun and verb phrases. We only target the languages

whose gold-standard trees contain proper tags in their test sets. In Figure 6.3, we

confirm that compared to the random baseline, CPE-PLM has a decent ability

to identify noun phrases, succeeding in retrieving more than half of NPs for

109

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

NP VP NP VP NP VP NP VP NP VP

English German Hebrew Korean Swedish

Re
ca

ll
(%

)

Figure 6.3 Recall scores on gold-standard NPs and VPs. The light bars indicate
the random baseline’s performance while the dark ones show that of the CC
method.

every language. On the contrary, CPE-PLM seems relatively weak in recognizing

VPs which are generally longer and more complex than NPs. This implies that

CPE-PLM might struggle with grasping the whole structure of sentences (e.g.,

VPs), although it successfully perceives small phrasal components (e.g., NPs).

6.6 Limitations and Future Work

We here mention a few limitations of our approach and propose avenues for

future work. First, analogous to several unsupervised parsers (Shi et al., 2020)

including PCFGs (Zhao and Titov, 2021), the current form of our method re-

lies on a few gold-standard annotations from the validation set to determine

the best hyperparameters. This dependency makes it hard to say that our ap-

proach is entirely unsupervised, although it steps aside from a typical way of

learning parsers with supervision. A next, promising yet challenging, step will

be therefore to develop a remedy that enables our method to be free from the

annotations. Note that our cross-lingual transfer experiments also shed some

110

light on how to relieve such dependency.

While we have shown that CPE-PLM can be superior or comparable to

PCFGs and that it can function as an effective tool for analyzing PLMs, its

performance still falls short of expectations in terms of whether it can practically

substitute standard parsers, similar to the case of unsupervised parsers. To

improve its performance, we have a plan as future work to design an ensemble

method that gathers diverse information from heterogeneous PLMs.

6.7 Summary

In this chapter, we have studied the extension of the CPE-PLM framework.

To this end, we have introduced a chart-based method and top-K ensemble for

improving performance, and extended the range of application of the paradigm

to different languages by applying multilingual PLMs. We have also verified

that our approach is robust to cross-lingual transfer. Finally, we have provided

analyses on the inner workings of our method. For instance, we have discovered

universal attention heads which are consistently sensitive to syntactic informa-

tion irrespective of the input language.

111

Chapter 7

Conclusion

Sentence representation learning is a fundamental step in natural language pro-

cessing that defines the way of deriving the integrated meaning of a higher-level

concept (i.e., sentence) from its constituents—words and phrases. In this dis-

sertation, we have concentrated on the fact that syntax, which is a subfield in

linguistics where the order of combining its elements to construct a sentence

is theoretically studied, can suggest a plausible intuition on developing a new

method for training and analyzing neural models for sentence representations.

In Chapter 3, we have proposed a neural model, called SATA Tree-LSTM,

that takes better advantage of explicit supervision from constituency parse trees

to derive sentence representations. Its merit comes from the introduction of

structure-aware tag representations, which are implemented such that they can

reflect the surrounding context of target tags in parse trees.

In Chapter 4, we have assumed that syntactic information is implicitly dis-

tributed over the weights of already trained Transformers, blended with other

sentence-level knowledge, and have suggested to consider all the intermediate

112

layers of the Transformers to capture the holistic meaning of an input sentence.

To this end, we have introduced a self-guided contrastive learning method

that fine-tunes those pre-trained Transformers in an self-supervised fashion.

On the other hand, we have presented a system for inducing phrase-structure

parse trees from pre-trained language models (PLMs), dubbed as CPE-PLM

(Constituency Parse Extraction from Pre-trained LanguageModels). In Chap-

ter 5, we have introduced one of the instances of the framework called top-down

CPE-PLM, which utilizes simple top-down parsing mechanism to generate

parse trees only sticking to the internal knowledge of PLMs. By analyzing the

parse trees derived from our method, we have examined the lower bound of the

degree to which PLMs understand syntactic concepts.

In Chapter 6, we have developed a revised version of the CPE-PLM frame-

work, i.e., chart-based CPE-PLM, which is reminiscent of chart parsers in

the typical parsing literature. With the aid of this approach, we have demon-

strated that the syntactic capabilities of PLMs are superior to what was known

before. We have also verified that CPE-PLM is applicable for languages other

than English, and that there exist universal attention heads in PLMs which are

sensitive to the syntactic aspects of input sentences irrespective of their source

language.

Although we have partially validated its utility in Chapter 3, it remains

as a topic of active research whether explicit modeling of syntax is vital in

sentence representation learning, considering the fact in particular that pre-

training gigantic models with a colossal number of data guarantees some extent

of understanding of syntax as observed in Chapter 5 and Chapter 6. It might

not be necessary anymore to explicitly consider syntactic structure in neural

network design, especially when it is our top priority to improve the performance

of sentence representations in downstream tasks.

113

Nevertheless, it is worth noting that indeed, syntax-inspired models still

have their merits in data and model efficiency. In Chapter 3, we have already

demonstrated that tree-LSTMs can achieve performance competitive to that of

pre-trained models which require a lot more parameter budgets and training

data. This point can be much more attractive when we are in low-resource

settings, where it is impossible to collect a sufficient amount of labeled data or

even a satisfactory amount of plain text for pre-training. Therefore, as future

work, it is desired to broaden our experimental environments into more diverse

and extreme cases—beyond common benchmarks—where we may discover more

practical advantages of taking syntax into account in network modeling.

On the other hand, even though we did not cover the case, Transformers

can also accept additional syntactic knowledge as recursive neural network.

For instance, Strubell et al. (2018) have shown that it is beneficial in the case

of semantic role labeling to encourage one of the attention heads in Trans-

former to reflect the syntactic structure of input sentences. Moreover, several

other research groups are also actively conducting their research on improv-

ing the Transformer architecture relying on syntactic intuitions (Wang et al.

(2019c); Bai et al. (2021); inter alia). As it is still controversial whether such

modifications are crucial in making a remarkable breakthrough in performance

improvement, we expect that more effort from the community will be devoted

to solving this conundrum.

Finally, we would like to highlight that syntax is an essential ingredient in

enhancing the degree of our comprehension with respect to the inner workings

of the current form of neural language models which are inherently black boxes.

As we begin to rely more on neural models in resolving a number of problems

in real-world scenarios, the interpretability of neural networks is becoming in-

creasingly important, particularly in the perspective that we should guarantee

114

their correctness. It is also critical to master the working mechanism of our

neural models in a practical point of view, as this can lead to more effective uti-

lization of them as in Chapter 4. In these regards, syntax-oriented models such

as one in Chapter 3—the models that are created to precisely follow syntactic

instructions in building their computation graphs—can be appealing, as their

inner workings are relatively more transparent compared against those of typi-

cal neural architectures. Moreover, as demonstrated in Chapter 5 and Chapter

6, we can utilize syntactic approaches in revealing the extent to which the way

a neural model deals with sentences agrees with ours—i.e., the way we process

sentences in our brain. To conclude, we anticipate that syntax will function as

a core component in bridging research on human language processing and one

on language processing of machines.

115

Bibliography

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg.

2017. Fine-grained analysis of sentence embeddings using auxiliary prediction

tasks. Proceedings of ICLR.

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal, Luke

Zettlemoyer, and Sonal Gupta. 2020. Better fine-tuning by reducing repre-

sentational collapse. arXiv preprint arXiv:2008.03156.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor

Gonzalez-Agirre, Weiwei Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada

Mihalcea, German Rigau, Larraitz Uria, and Janyce Wiebe. 2015. SemEval-

2015 task 2: Semantic textual similarity, English, Spanish and pilot on inter-

pretability. In Proceedings of SemEval.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor

Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau, and Janyce

Wiebe. 2014. Semeval-2014 task 10: Multilingual semantic textual similarity.

In Proceedings of SemEval.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre,

Rada Mihalcea, German Rigau, and Janyce Wiebe. 2016. SemEval-2016 task

116

1: Semantic textual similarity, monolingual and cross-lingual evaluation. In

Proceedings of SemEval.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. 2012.

SemEval-2012 task 6: A pilot on semantic textual similarity. In Proceedings

of SemEval.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo.

2013. *SEM 2013 shared task: Semantic textual similarity. In Proceedings of

*SEM.

Guillaume Alain and Yoshua Bengio. 2016. Understanding intermediate layers

using linear classifier probes. arXiv preprint arXiv:1610.01644.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural ma-

chine translation by jointly learning to align and translate. In Proceedings of

ICLR.

Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang, Jing Bai, Jing Yu, and

Yunhai Tong. 2021. Syntax-bert: Improving pre-trained transformers with

syntax trees. In Proceedings of EACL.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003.

A neural probabilistic language model. The journal of machine learning

research, 3:1137–1155.

Leonard Bloomfield. 1926. A set of postulates for the science of language.

Language, 2(3):153–164.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry

Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara

Logacheva, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves,

117

Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia,

Marco Turchi, Karin Verspoor, and Marcos Zampieri. 2016. Findings of the

2016 conference on machine translation. In Proceedings of the First Confer-

ence on Machine Translation.

Ondřej Bojar, Christian Federmann, Mark Fishel, Yvette Graham, Barry Had-

dow, Philipp Koehn, and Christof Monz. 2018. Findings of the 2018 confer-

ence on machine translation (WMT18). In Proceedings of the Third Confer-

ence on Machine Translation.

Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher D Man-

ning. 2015. A large annotated corpus for learning natural language inference.

In Proceedings of EMNLP.

Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christo-

pher D Manning, and Christopher Potts. 2016. A fast unified model for

parsing and sentence understanding. In Proceedings of ACL.

Peter F Brown, Vincent J Della Pietra, Peter V Desouza, Jennifer C Lai, and

Robert L Mercer. 1992. Class-based n-gram models of natural language.

Computational linguistics, 18(4):467–480.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-

plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,

Amanda Askell, et al. 2020. Language models are few-shot learners. arXiv

preprint arXiv:2005.14165.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-

ton, and Greg Hullender. 2005. Learning to rank using gradient descent. In

Proceedings of ICML.

118

Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Multilingual alignment of

contextual word representations. In Proceedings of ICLR.

Fredrik Carlsson, Evangelia Gogoulou, Erik Ylipää, Amaru Cuba Gyllensten,

and Magnus Sahlgren. 2021. Semantic re-tuning with contrastive tension. In

Proceedings of ICLR.

Andrew Carnie. 2012. Syntax: A generative introduction. John Wiley & Sons.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia.

2017. SemEval-2017 task 1: Semantic textual similarity multilingual and

crosslingual focused evaluation. In Proceedings of SemEval.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St

John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,

et al. 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175.

Qian Chen, Zhen-Hua Ling, and Xiaodan Zhu. 2018. Enhancing sentence em-

bedding with generalized pooling. In Proceedings of COLING.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.

A simple framework for contrastive learning of visual representations. In

Proceedings of ICML.

Xinlei Chen and Kaiming He. 2020. Exploring simple siamese representation

learning. arXiv preprint arXiv:2011.10566.

Zhou Cheng, Chun Yuan, Jiancheng Li, and Haiqin Yang. 2018. Treenet: Learn-

ing sentence representations with unconstrained tree structure. In Proceedings

of IJCAI.

Ethan A. Chi, John Hewitt, and Christopher D. Manning. 2020. Finding uni-

versal grammatical relations in multilingual BERT. In Proceedings of ACL.

119

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase

representations using rnn encoder–decoder for statistical machine translation.

In Proceedings of EMNLP.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018. Learning to compose

task-specific tree structures. In Proceedings of AAAI.

Noam Chomsky. 1957. Syntactic structures. Mouton, The Hague.

Noam Chomsky. 1965. Aspects of the Theory of Syntax. MIT press.

Noam Chomsky. 1975. The Logical Structure of Linguistic Theory. Plenum.

Alexander Clark. 2001. Unsupervised induction of stochastic context-free gram-

mars using distributional clustering. In Proceedings of the 2001 workshop on

Computational Natural Language Learning-Volume 7, page 13.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning.

2019. What does BERT look at? an analysis of BERT’s attention. In Proceed-

ings of the ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural

Networks for NLP.

John Cocke. 1969. Programming languages and their compilers: Preliminary

notes. New York University.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,

Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke

Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual rep-

resentation learning at scale.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An evaluation toolkit for

universal sentence representations. In Proceedings of LREC.

120

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine

Bordes. 2017. Supervised learning of universal sentence representations from

natural language inference data. In Proceedings of EMNLP.

Alexis Conneau, Germán Kruszewski, Guillaume Lample, Loïc Barrault, and

Marco Baroni. 2018. What you can cram into a single $&!#* vector: Probing

sentence embeddings for linguistic properties. In Proceedings of ACL.

Alexis Conneau and Guillaume Lample. 2019. Cross-lingual language model

pretraining. In Proceedings of NeurIPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.

BERT: Pre-training of deep bidirectional transformers for language under-

standing. In Proceedings of NAACL.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2014. Adaptive multi-

compositionality for recursive neural models with applications to sentiment

analysis. In Proceedings of AAAI.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit Iyyer, and Andrew Mc-

Callum. 2019. Unsupervised latent tree induction with deep inside-outside

recursive auto-encoders. In Proceedings of NAACL.

Greg Durrett and Dan Klein. 2015. Neural CRF parsing. In Proceedings of

ACL-IJCNLP.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. 2016.

Recurrent neural network grammars. In Proceedings of NAACL.

Chris Dyer, Gábor Melis, and Phil Blunsom. 2019. A critical analysis of biased

parsers in unsupervised parsing. arXiv preprint arXiv:1909.09428.

121

Jeffrey L Elman. 1990. Finding structure in time. Cognitive science, 14(2):179–

211.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to-

sequence attentional neural machine translation. In Proceedings of ACL.

Kawin Ethayarajh. 2019. How contextual are contextualized word representa-

tions? comparing the geometry of BERT, ELMo, and GPT-2 embeddings. In

Proceedings of EMNLP-IJCNLP.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik. 2016. Probing for se-

mantic evidence of composition by means of simple classification tasks. In

Proceedings of the 1st Workshop on Evaluating Vector-Space Representations

for NLP.

Hongchao Fang and Pengtao Xie. 2020. Cert: Contrastive self-supervised learn-

ing for language understanding. arXiv preprint arXiv:2005.12766.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive

learning of sentence embeddings. arXiv preprint arXiv:2104.08821.

Alan Henderson Gardiner. 1922. The definition of the word and the sentence.

British Journal of Psychology: General Section, 12(4):352–361.

John M Giorgi, Osvald Nitski, Gary D Bader, and Bo Wang. 2020. Declutr:

Deep contrastive learning for unsupervised textual representations. arXiv

preprint arXiv:2006.03659.

Yoav Goldberg. 2019. Assessing bert’s syntactic abilities. arXiv preprint

arXiv:1901.05287.

122

Christoph Goller and Andreas Kuchler. 1996. Learning task-dependent dis-

tributed representations by backpropagation through structure. In Proceed-

ings of International Conference on Neural Networks (ICNN).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.

MIT Press.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin Stoyanov. 2021. Su-

pervised contrastive learning for pre-trained language model fine-tuning. In

Proceedings of ICLR.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2019. Visualizing and understanding

the effectiveness of bert. arXiv preprint arXiv:1908.05620.

Zellig S Harris. 1954. Distributional structure. Word, 10(2-3):146–162.

Kazuma Hashimoto, Makoto Miwa, Yoshimasa Tsuruoka, and Takashi

Chikayama. 2013. Simple customization of recursive neural networks for se-

mantic relation classification. In Proceedings of EMNLP.

Serhii Havrylov, Germán Kruszewski, and Armand Joulin. 2019. Cooperative

learning of disjoint syntax and semantics. In Proceedings of NAACL.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020.

Momentum contrast for unsupervised visual representation learning. In Pro-

ceedings of CVPR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep

into rectifiers: Surpassing human-level performance on imagenet classifica-

tion. In Proceedings of ICCV.

John Hewitt and Christopher D. Manning. 2019. A structural probe for finding

syntax in word representations. In Proceedings of NAACL.

123

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016. Learning distributed

representations of sentences from unlabelled data. In Proceedings of NAACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.

Neural computation, 9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-

tuning for text classification. In Proceedings of ACL.

Phu Mon Htut, Kyunghyun Cho, and Samuel Bowman. 2018. Grammar in-

duction with neural language models: An unusual replication. In Proceedings

of the EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural

Networks for NLP.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Fi-

rat, and Melvin Johnson. 2020. XTREME: A massively multilingual multi-

task benchmark for evaluating cross-lingual generalisation. In Proceedings of

ICML.

Minlie Huang, Qiao Qian, and Xiaoyan Zhu. 2017. Encoding syntactic knowl-

edge in neural networks for sentiment classification. ACM Transactions on

Information Systems (TOIS), 35(3):26.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: accelerating

deep network training by reducing internal covariate shift. In Proceedings of

ICML.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya

Banerjee, and Fillia Makedon. 2020. A survey on contrastive self-supervised

learning. arXiv preprint arXiv:2011.00362.

124

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. 2019. What does BERT

learn about the structure of language? In Proceedings of ACL.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and

Tuo Zhao. 2020. SMART: Robust and efficient fine-tuning for pre-trained nat-

ural language models through principled regularized optimization. In Pro-

ceedings of ACL.

Dan Jurafsky. 2000. Speech & language processing. Pearson Education India.

Katharina Kann, Anhad Mohananey, Samuel R. Bowman, and Kyunghyun Cho.

2019. Neural unsupervised parsing beyond English. In Proceedings of the

2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo

2019).

Tadao Kasami. 1966. An efficient recognition and syntax-analysis algorithm for

context-free languages. Coordinated Science Laboratory Report no. R-257.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia, Alex Wang, Tom Mc-

Coy, Ian Tenney, Alexis Ross, Tal Linzen, Benjamin Van Durme, et al. 2019a.

Probing what different nlp tasks teach machines about function word com-

prehension. In Proceedings of the Eighth Joint Conference on Lexical and

Computational Semantics (* SEM).

Taeuk Kim, Jihun Choi, Daniel Edmiston, Sanghwan Bae, and Sang-goo Lee.

2019b. Dynamic compositionality in recursive neural networks with structure-

aware tag representations. In Proceedings of AAAI.

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-goo Lee. 2020. Are pre-

trained language models aware of phrases? simple but strong baselines for

grammar induction. In Proceedings of ICLR.

125

Taeuk Kim, Bowen Li, and Sang-goo Lee. 2021a. Multilingual chart-based con-

stituency parse extraction from pre-trained language models. arXiv preprint

arXiv:2004.13805.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021b. Self-guided contrastive

learning for BERT sentence representations. In Proceedings of ACL-IJCNLP.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In

Proceedings of EMNLP.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019c. Compound probabilistic

context-free grammars for grammar induction. In Proceedings of ACL.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro, Chris Dyer, and Gábor

Melis. 2019d. Unsupervised recurrent neural network grammars. In Proceed-

ings of NAACL.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S Zemel, Raquel Ur-

tasun, Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In

Proceedings of NeurIPS.

Nikita Kitaev and Dan Klein. 2018. Constituency parsing with a self-attentive

encoder. In Proceedings of ACL.

Dan Klein and Christopher Manning. 2004. Corpus-based induction of syntactic

structure: Models of dependency and constituency. In Proceedings of ACL.

Dan Klein and Christopher DManning. 2002a. A generative constituent-context

model for improved grammar induction. In Proceedings of ACL.

126

Dan Klein and Christopher D. Manning. 2002b. A generative constituent-

context model for improved grammar induction. In Proceedings of ACL.

Dan Klein and Christopher D Manning. 2003. Accurate unlexicalized parsing.

In Proceedings of ACL.

Reinhard Kneser and Hermann Ney. 1993. Improved clustering techniques for

class-based statistical language modelling. In Proceedings of Third European

Conference on Speech Communication and Technology.

Karim Lari and Steve J Young. 1990. The estimation of stochastic context-free

grammars using the inside-outside algorithm. Computer speech & language,

4(1):35–56.

Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. 2020. Contrastive

representation learning: A framework and review. IEEE Access.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li.

2020. On the sentence embeddings from pre-trained language models. In

Proceedings of EMNLP.

Bowen Li, Lili Mou, and Frank Keller. 2019. An imitation learning approach

to unsupervised parsing. In Proceedings of ACL.

Xin Li and Dan Roth. 2002. Learning question classifiers. In Proceedings of

COLING.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the ability

of lstms to learn syntax-sensitive dependencies. Transactions of the Associ-

ation for Computational Linguistics, 4:521–535.

127

Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and

Noah A. Smith. 2019a. Linguistic knowledge and transferability of contextual

representations. In Proceedings of NAACL.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017a. Adaptive semantic com-

positionality for sentence modelling. In Proceedings of IJCAI.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017b. Dynamic compositional

neural networks over tree structure. In Proceedings of IJCAI.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b.

Roberta: A robustly optimized bert pretraining approach. arXiv preprint

arXiv:1907.11692.

Lajanugen Logeswaran and Honglak Lee. 2018. An efficient framework for

learning sentence representations. In Proceedings of ICLR.

Ilya Loshchilov and Frank Hutter. 2017. Fixing weight decay regularization in

adam. arXiv preprint arXiv:1711.05101.

Jean Maillard, Stephen Clark, and Dani Yogatama. 2019. Jointly learning sen-

tence embeddings and syntax with unsupervised tree-lstms. Natural Language

Engineering, 25(4):433–449.

Christopher Manning and Hinrich Schutze. 1999. Foundations of statistical

natural language processing. MIT press.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993.

Building a large annotated corpus of English: The Penn Treebank. Compu-

tational Linguistics, 19(2):313–330.

128

David Mareček and Rudolf Rosa. 2018. Extracting syntactic trees from trans-

former encoder self-attentions. In Proceedings of the EMNLP Workshop

BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.

David Mareček and Rudolf Rosa. 2019. From balustrades to pierre vinken: Look-

ing for syntax in transformer self-attentions. In Proceedings of the ACL Work-

shop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella

Bernardi, and Roberto Zamparelli. 2014. A SICK cure for the evaluation

of compositional distributional semantic models. In Proceedings of LREC.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont,

Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah, and Benoît

Sagot. 2019. Camembert: a tasty french language model. arXiv preprint

arXiv:1911.03894.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017.

Learned in translation: Contextualized word vectors. In Proceedings of

NeurIPS.

Tomas Mikolov, Kai Chen, G.s Corrado, and Jeffrey Dean. 2013a. Efficient

estimation of word representations in vector space. Proceedings of Workshop

at ICLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

2013b. Distributed representations of words and phrases and their composi-

tionality. Proceedings of NeurIPS.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. 2018. Vir-

tual adversarial training: a regularization method for supervised and semi-

129

supervised learning. IEEE transactions on pattern analysis and machine

intelligence.

Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. 2020. On

the stability of fine-tuning bert: Misconceptions, explanations, and strong

baselines. arXiv preprint arXiv:2006.04884.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin. 2016.

Natural language inference by tree-based convolution and heuristic matching.

In Proceedings of ACL.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. 2015. Discrimina-

tive neural sentence modeling by tree-based convolution. In Proceedings of

EMNLP.

Tsendsuren Munkhdalai and Hong Yu. 2017. Neural semantic encoders. In

Proceedings of ACL.

Nikita Nangia and Samuel Bowman. 2018. Listops: A diagnostic dataset for

latent tree learning. In Proceedings of NAACL: Student Research Workshop.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, and Sergey

Edunov. 2019. Facebook fair’s wmt19 news translation task submission. In

Proceedings of the Fourth Conference on Machine Translation.

Yixin Nie and Mohit Bansal. 2017. Shortcut-stacked sentence encoders for

multi-domain inference. In Proceedings of the 2nd Workshop on Evaluating

Vector Space Representations for NLP (RepEval).

Bo Pang and Lillian Lee. 2004. A sentimental education: Sentiment analysis

using subjectivity summarization based on minimum cuts. In Proceedings of

ACL.

130

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for

sentiment categorization with respect to rating scales. In Proceedings of ACL.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:

Global vectors for word representation. In Proceedings of EMNLP.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word

representations. In Proceedings of NAACL.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012. A universal part-of-

speech tagset. In Proceedings of LREC.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is mul-

tilingual BERT? In Proceedings of ACL.

Jordan B Pollack. 1990. Recursive distributed representations. Artificial Intel-

ligence, 46(1-2):77–105.

Qiao Qian, Bo Tian, Minlie Huang, Yang Liu, Xuan Zhu, and Xiaoyan Zhu.

2015. Learning tag embeddings and tag-specific composition functions in

recursive neural network. In Proceedings of ACL.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. 2017. Learning to generate

reviews and discovering sentiment. arXiv preprint arXiv:1704.01444.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language models are unsupervised multitask learners.

Alessandro Raganato and Jörg Tiedemann. 2018. An analysis of encoder rep-

resentations in transformer-based machine translation. In Proceedings of the

EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Net-

works for NLP.

131

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.

Squad: 100,000+ questions for machine comprehension of text. In Proceedings

of EMNLP.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings

using Siamese BERT-networks. In Proceedings of EMNLP-IJCNLP.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A primer in bertol-

ogy: What we know about how bert works. Transactions of the Association

for Computational Linguistics, 8:842–866.

Rudolf Rosa and David Mareček. 2019. Inducing syntactic trees from bert

representations. arXiv preprint arXiv:1906.11511.

Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. In-

troduction to information retrieval, volume 39. Cambridge University Press

Cambridge.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho D. Choi,

Richárd Farkas, Jennifer Foster, Iakes Goenaga, Koldo Gojenola Gallete-

beitia, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann,

Wolfgang Maier, Joakim Nivre, Adam Przepiórkowski, Ryan Roth, Wolf-

gang Seeker, Yannick Versley, Veronika Vincze, Marcin Woliński, Alina

Wróblewska, and Eric Villemonte de la Clergerie. 2013. Overview of the

SPMRL 2013 shared task: A cross-framework evaluation of parsing morpho-

logically rich languages. In Proceedings of the Fourth Workshop on Statistical

Parsing of Morphologically-Rich Languages (SPMRL).

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving neural

machine translation models with monolingual data. In Proceedings of ACL.

132

Tao Shen, Zhou Tianyi, Long Guodong, Jiang Jing, Wang Sen, and Zhang

Chengqi. 2018a. Reinforced self-attention network: a hybrid of hard and soft

attention for sequence modeling. arXiv preprint arXiv:1801.10296.

Yikang Shen, Zhouhan Lin, Chin wei Huang, and Aaron Courville. 2018b. Neu-

ral language modeling by jointly learning syntax and lexicon. In Proceedings

of ICLR.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessandro Sordoni, Aaron

Courville, and Yoshua Bengio. 2018c. Straight to the tree: Constituency

parsing with neural syntactic distance. In Proceedings of ACL.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron Courville. 2019. Or-

dered neurons: Integrating tree structures into recurrent neural networks. In

Proceedings of ICLR.

Haoyue Shi, Karen Livescu, and Kevin Gimpel. 2020. On the role of supervision

in unsupervised constituency parsing. In Proceedings of EMNLP.

Haoyue Shi, Jiayuan Mao, Kevin Gimpel, and Karen Livescu. 2019. Visually

grounded neural syntax acquisition. In Proceedings of ACL.

Richard Socher, John Bauer, Christopher D Manning, et al. 2013a. Parsing

with compositional vector grammars. In Proceedings of ACL.

Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng.

2012. Semantic compositionality through recursive matrix-vector spaces. In

Proceedings of EMNLP.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y Ng, and Christopher D Man-

ning. 2011. Parsing natural scenes and natural language with recursive neural

networks. In Proceedings of ICML.

133

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Man-

ning, Andrew Ng, and Christopher Potts. 2013b. Recursive deep models

for semantic compositionality over a sentiment treebank. In Proceedings of

EMNLP.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from

overfitting. JMLR, 15(1):1929–1958.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A minimal span-based

neural constituency parser. In Proceedings of ACL.

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCal-

lum. 2018. Linguistically-informed self-attention for semantic role labeling.

In Proceedings of EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence

learning with neural networks. In Proceedings of NeurIPS.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved

semantic representations from tree-structured long short-term memory net-

works. In Proceedings of ACL.

Zhiyang Teng and Yue Zhang. 2017. Head-lexicalized bidirectional tree lstms.

TACL, 5:163–177.

Junfeng Tian, Zhiheng Zhou, Man Lan, and Yuanbin Wu. 2017. ECNU at

SemEval-2017 task 1: Leverage kernel-based traditional NLP features and

neural networks to build a universal model for multilingual and cross-lingual

semantic textual similarity. In Proceedings of SemEval.

134

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Proceedings of NeurIPS.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019.

Analyzing multi-head self-attention: Specialized heads do the heavy lifting,

the rest can be pruned. In Proceedings of ACL.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian

Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2019a. Superglue:

A stickier benchmark for general-purpose language understanding systems.

In Proceedings of NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and

Samuel R. Bowman. 2019b. GLUE: A multi-task benchmark and analysis

platform for natural language understanding. In Proceedings of ICLR.

Bin Wang and C-C Jay Kuo. 2020. Sbert-wk: A sentence embedding method

by dissecting bert-based word models. arXiv preprint arXiv:2002.06652.

Kexin Wang, Nils Reimers, and Iryna Gurevych. 2021. Tsdae: Using

transformer-based sequential denoising auto-encoder for unsupervised sen-

tence embedding learning. arXiv preprint arXiv:2104.06979.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen. 2019c. Tree transformer:

Integrating tree structures into self-attention. In Proceedings of EMNLP.

Yizhong Wang, Sujian Li, Jingfeng Yang, Xu Sun, and Houfeng Wang. 2017.

Tag-enhanced tree-structured neural networks for implicit discourse relation

classification. In Proceedings of IJCNLP.

135

Adina Williams, Andrew Drozdov, and Samuel R. Bowman. 2018a. Do la-

tent tree learning models identify meaningful structure in sentences? TACL,

6:253–267.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018b. A broad-coverage

challenge corpus for sentence understanding through inference. In Proceedings

of NAACL.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-

langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-

icz, et al. 2019. Huggingface’s transformers: State-of-the-art natural language

processing. arXiv preprint arXiv:1910.03771.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun, and Hao Ma.

2020. Clear: Contrastive learning for sentence representation. arXiv preprint

arXiv:2012.15466.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. 2020. Un-

supervised data augmentation for consistency training. In Proceedings of

NeurIPS.

Baosong Yang, Derek F Wong, Tong Xiao, Lidia S Chao, and Jingbo Zhu. 2017.

Towards bidirectional hierarchical representations for attention-based neural

machine translation. In Proceedings of EMNLP.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdi-

nov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for

language understanding. Proceedings of NeurIPS.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, and Wang

136

Ling. 2017. Learning to compose words into sentences with reinforcement

learning. In Proceedings of ICLR.

Daniel H Younger. 1967. Recognition and parsing of context-free languages in

time n3. Information and control, pages 189–208.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning rate method. arXiv

preprint arXiv:1212.5701.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015. Self-adaptive hierarchical

sentence model. In Proceedings of IJCAI.

Yanpeng Zhao and Ivan Titov. 2021. An empirical study of compound pcfgs.

arXiv preprint arXiv:2103.02298.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and Bo Xu.

2016. Text classification improved by integrating bidirectional lstm with two-

dimensional max pooling. In Proceedings of COLING.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. 2020.

Freelb: Enhanced adversarial training for natural language understanding. In

Proceedings of ICLR.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,

Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: To-

wards story-like visual explanations by watching movies and reading books.

In Proceedings of ICCV.

137

초록

구문론(syntax)은 언어학의 한 갈래로써, 자연어 문장의 형성 과정에 내포되어 있

는 원리와 그로 인해 촉발되는 여러 언어적 현상을 규정하고 이를 검증하는 연구

분야를총칭한다.구문론은단어,구및절과같은문장내의구성요소로부터해당

문장의 의미를 점진적으로 구축해 나가는 과정에 대한 체계적인 이론적 절차를

제공하며, 따라서 이는 자연어처리에서 문장 표현 학습 및 분석을 위한 방법론을

구상하는데 있어 활용될 수 있는 잠재성을 지니고 있다.

본 논문에서는 신경망 기반의 문장 표현 방법론을 개발하는 데 있어 구문론을

활용하는 두 측면에 관하여 논한다. 먼저, 언어학적인 파스 트리의 형태로 표현되

어 있거나 혹은 타 신경망 모델의 파라미터에 암시적으로 저장되어 있는 구문론적

지식을 도입하여 더 나은 문장 표현을 만드는 보다 직접적인 방법론을 제시한다.

이에더하여,구문론에바탕한문법적체계를이용하여학습이완료된신경망기반

문장표현모델들의작동원리를규명하고이들의개선점을찾는데도움을줄수있

는분석적접근법또한소개한다.실제환경에서의다각적인실험과검증을통하여

규칙 및 통계 기반 자연어처리에서 귀중한 자원으로 간주되었던 구문론이 신경망

기반의 모델이 대중적으로 사용되고 있는 현재의 자연어처리에서도 보완재로써

기능할 수 있음을 보인다. 구체적으로, 구문론이 고성능의 문장 표현을 위한 신경

망 모델 혹은 이를 위한 학습 방법론을 개발하는데 있어 효과적인 직관을 제공할

수 있음을 실증하고, 문장 표현 신경망 모델이 자체적으로 파스 트리를 복원해낼

수 있는 능력을 평가함으로써 구문론을 내부 작동 체계가 불명확한 신경망 모델의

작동 원리에 대한 이해도를 증진시키는 분석 도구로 활용한다.

주요어: 자연어처리, 기계 및 심층 학습, 신경망, 문장 표현, 구문론, 비지도 파싱,

문장 분류, 문장 유사도 측정, 재귀신경망, 트랜스포머, 사전학습 언어모델

학번: 2016-21197

138

	Chapter 1 Introduction
	1.1 Dissertation Outline
	1.2 Related Publications

	Chapter 2 Background
	2.1 Introduction to Syntax
	2.2 Neural Networks for Sentence Representations
	2.2.1 Recursive Neural Network
	2.2.2 Transformer
	2.2.3 Pre-trained Language Models

	2.3 Related Literature
	2.3.1 Sentence Representation Learning
	2.3.2 Probing Methods for Neural NLP Models
	2.3.3 Grammar Induction and Unsupervised Parsing

	Chapter 3 Sentence Representation Learning with Explicit Syntactic Structure
	3.1 Introduction
	3.2 Related Work
	3.3 Method
	3.3.1 Tree-LSTM
	3.3.2 Structure-aware Tag Representation
	3.3.3 Leaf-LSTM
	3.3.4 SATA Tree-LSTM

	3.4 Experiments
	3.4.1 General Conﬁgurations
	3.4.2 Sentence Classiﬁcation Tasks
	3.4.3 Natural Language Inference

	3.5 Analysis
	3.5.1 Ablation Study
	3.5.2 Representation Visualization

	3.6 Limitations and Future Work
	3.7 Summary

	Chapter 4 Sentence Representation Learning with Implicit Syntactic Knowledge
	4.1 Introduction
	4.2 Related Work
	4.3 Method
	4.3.1 Contrastive Learning with Self-Guidance
	4.3.2 Learning Objective Optimization

	4.4 Experiments
	4.4.1 General Conﬁgurations
	4.4.2 Semantic Textual Similarity Tasks
	4.4.3 Multilingual STS Tasks
	4.4.4 SentEval Benchmark

	4.5 Analysis
	4.5.1 Ablation Study
	4.5.2 Robustness to Domain Shifts
	4.5.3 Computational Efficiency
	4.5.4 Representation Visualization

	4.6 Limitations and Future Work
	4.7 Summary

	Chapter 5 Syntactic Analysis of Sentence Representation Models
	5.1 Introduction
	5.2 Related Work
	5.3 Motivation
	5.4 Method
	5.4.1 CPE-PLM
	5.4.2 Top-down CPE-PLM
	5.4.3 Pre-trained Language Models
	5.4.4 Distance Measure Functions
	5.4.5 Injecting Bias into Syntactic Distances

	5.5 Experiments
	5.5.1 General Conﬁgurations
	5.5.2 Experimental Results on PTB
	5.5.3 Experimental Results on MNLI

	5.6 Analysis
	5.6.1 Performance Comparison by Layer
	5.6.2 Estimating the Upper Limit of Distance Measure Functions
	5.6.3 Constituency Tree Examples

	5.7 Summary

	Chapter 6 Multilingual Syntactic Analysis with Enhanced Techniques
	6.1 Introduction
	6.2 Related work
	6.3 Method
	6.3.1 Chart-based CPE-PLM
	6.3.2 Top-K Ensemble for CPE-PLM

	6.4 Experiments
	6.4.1 General Conﬁgurations
	6.4.2 Experiments on Monolingual Settings
	6.4.3 Experiments on Multilingual Settings

	6.5 Analysis
	6.5.1 Factor Correlation Analysis
	6.5.2 Visualization of Attention Heads
	6.5.3 Recall Scores on Noun and Verb Phrases

	6.6 Limitations and Future Work
	6.7 Summary

	Chapter 7 Conclusion
	Bibliography
	초록

<startpage>20
Chapter 1 Introduction 1
 1.1 Dissertation Outline 5
 1.2 Related Publications 6
Chapter 2 Background 8
 2.1 Introduction to Syntax 8
 2.2 Neural Networks for Sentence Representations 10
 2.2.1 Recursive Neural Network 11
 2.2.2 Transformer 12
 2.2.3 Pre-trained Language Models 14
 2.3 Related Literature 16
 2.3.1 Sentence Representation Learning 16
 2.3.2 Probing Methods for Neural NLP Models 17
 2.3.3 Grammar Induction and Unsupervised Parsing 18
Chapter 3 Sentence Representation Learning with Explicit Syntactic Structure 19
 3.1 Introduction 19
 3.2 Related Work 21
 3.3 Method 23
 3.3.1 Tree-LSTM 24
 3.3.2 Structure-aware Tag Representation 25
 3.3.3 Leaf-LSTM 28
 3.3.4 SATA Tree-LSTM 29
 3.4 Experiments 31
 3.4.1 General Conﬁgurations 31
 3.4.2 Sentence Classiﬁcation Tasks 32
 3.4.3 Natural Language Inference 35
 3.5 Analysis 36
 3.5.1 Ablation Study 36
 3.5.2 Representation Visualization 38
 3.6 Limitations and Future Work 39
 3.7 Summary 40
Chapter 4 Sentence Representation Learning with Implicit Syntactic Knowledge 41
 4.1 Introduction 41
 4.2 Related Work 44
 4.3 Method 46
 4.3.1 Contrastive Learning with Self-Guidance 47
 4.3.2 Learning Objective Optimization 50
 4.4 Experiments 52
 4.4.1 General Conﬁgurations 52
 4.4.2 Semantic Textual Similarity Tasks 53
 4.4.3 Multilingual STS Tasks 58
 4.4.4 SentEval Benchmark 59
 4.5 Analysis 60
 4.5.1 Ablation Study 60
 4.5.2 Robustness to Domain Shifts 61
 4.5.3 Computational Efficiency 62
 4.5.4 Representation Visualization 63
 4.6 Limitations and Future Work 63
 4.7 Summary 65
Chapter 5 Syntactic Analysis of Sentence Representation Models 66
 5.1 Introduction 66
 5.2 Related Work 68
 5.3 Motivation 70
 5.4 Method 72
 5.4.1 CPE-PLM 72
 5.4.2 Top-down CPE-PLM 73
 5.4.3 Pre-trained Language Models 74
 5.4.4 Distance Measure Functions 76
 5.4.5 Injecting Bias into Syntactic Distances 77
 5.5 Experiments 78
 5.5.1 General Conﬁgurations 78
 5.5.2 Experimental Results on PTB 80
 5.5.3 Experimental Results on MNLI 83
 5.6 Analysis 85
 5.6.1 Performance Comparison by Layer 85
 5.6.2 Estimating the Upper Limit of Distance Measure Functions 86
 5.6.3 Constituency Tree Examples 88
 5.7 Summary 93
Chapter 6 Multilingual Syntactic Analysis with Enhanced Techniques 94
 6.1 Introduction 94
 6.2 Related work 96
 6.3 Method 97
 6.3.1 Chart-based CPE-PLM 97
 6.3.2 Top-K Ensemble for CPE-PLM 100
 6.4 Experiments 100
 6.4.1 General Conﬁgurations 100
 6.4.2 Experiments on Monolingual Settings 102
 6.4.3 Experiments on Multilingual Settings 103
 6.5 Analysis 106
 6.5.1 Factor Correlation Analysis 108
 6.5.2 Visualization of Attention Heads 108
 6.5.3 Recall Scores on Noun and Verb Phrases 109
 6.6 Limitations and Future Work 110
 6.7 Summary 111
Chapter 7 Conclusion 112
Bibliography 116
초록 138
</body>

