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Abstract

Non-Contact Sleep Monitoring Using
Impulse Radio Ultra-Wideband Radar Based
on Long Short-Term Memory Network

Hyun Bin Kwon
Interdisciplinary Program in Bioengineering
The Graduate School

Seoul National University

Manual scoring of sleep stages and sleep events from polysomnography (PSG)
records is essential to understand the sleep architecture and sleep-related breathing
disorder. Since the PSG requires a specialized expert, a lab environment, and
obtrusive sensors, non-contact methods for sleep staging and sleep disorder
monitoring using impulse-radio ultra-wideband (IR-UWB) radar have been
investigated over the past years. However, the existing sleep staging models need to

be improved interpretability and reliability. Moreover, the existing methods for



monitoring SAHS (sleep apnea hypopnea syndrome), one of the most common sleep
disorders, have limitations in that the radar-person distance is fixed, and the detected
apnea hypopnea (AH) event cannot be provided in real-time.

In sleep staging study, an attention-based bidirectional long short-term memory
(attention-based Bi-LSTM) model for automatic sleep stage scoring using an IR-
UWRB radar which can remotely detect vital signs is proposed. Sixty-five young (30.0
+ 8.6 yrs.) and healthy volunteers underwent nocturnal PSG and IR-UWB radar
measurement simultaneously. However, the 14 subjects were excluded because they
had sleep apnea, periodic limb movement, and abnormal sleep. Among 51 recordings,
26 were used for training, 8 for validation, and 17 for testing. Sixteen features
including movement-, respiration-, and heart rate variability-related indices were
extracted from the raw IR-UWB signals in each 30-s epoch. Sleep stage
classification performances of attention-based Bi-LSTM model with optimized
hyperparameters were evaluated and compared with those of the conventional LSTM
networks for the same test dataset. In the results, an accuracy of 82.6 £ 6.7% and a
Cohen’s kappa coefficient of 0.73 + 0.11 for the classification of wake, REM sleep,
light (N1+N2) sleep, and deep (N3) sleep which is significantly higher than those
using the conventional LSTM networks (p < 0.01) were achieved. Moreover, the
classification performances were higher than those reported in the comparative
studies.

In the SAHS detection study, a novel approach for real-time AH event detection
with IR-UWB radar using a deep learning model is proposed. Thirty six PSG
recordings and simultaneously measured IR-UWB radar data were used in the

experiments. After the clutter was removed, IR-UWB radar images were segmented

i



by sliding a 20-s window at 1-s shift, and categorized into two classes: AH and N
(Normal). A hybrid model combining the convolutional neural networks and LSTM
(CNN-LSTM) was trained with the data, which consisted of class-balanced segments.
Time sequenced outputs were then fed to an event detector in order to identify valid
AH events. Therefore, the proposed method showed a Cohen’s kappa coefficient of
0.728, sensitivity of 0.781, specificity of 0.956, and an accuracy of 0.930. According
to the apnea-hypopnea index (AHI) estimation analysis, the Pearson correlation
coefficient between the estimated AHI and reference AHI was 0.97. In addition, the
average accuracy and kappa of SAHS diagnosis was 0.98 and 0.96, respectively, for

AHI cutoffs of = 5, 15, and 30 events/h. The proposed method achieved the state-

of-the-art performance for classifying SAHS severity without any hand-engineered
feature regardless of the user’s location.

The experimental results demonstrated that the effectiveness of the LSTM
networks which coupled with attention mechanism and CNN model for sleep
monitoring. Our approaches can be utilized for a cost-effective and reliable sleep

monitoring system in a home environment.

Keyword : non-contact sleep monitoring, sleep apnea hypopnea syndrome,
impulse radio ultra-wideband, long short-term memory network, attention

mechanism, convolutional neural network.

Student Number : 2015-21208
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Introduction

1.1. Background

Humans sleep almost one-third of their lifetimes. Numerous researches have
reported that sleep plays an important role in our physical and mental health and our
daily functioning in many ways. Sleep has been proposed as serving an energy-
saving function [1], the restoration of our tissues [2], thermoregulation [3], metabolic
regulation [4], adaptive immune functions [5], emotion regulation [6], and memory
consolidation [7]. In contrast, sleep deprivation and sleep disorders negatively
influence mood [8], cognitive performance, and motor function [9, 10] and increase
the risk of cardiovascular diseases [11-13], obesity [14] and diabetes [15]. Therefore,
continuous monitoring sleep in daily life is very important for a healthy life.

Polysomnography (PSG) is the gold standard for analyzing human sleep. PSG
results include sleep duration, sleep stages, sleep-related disorders, sleep
fragmentation, and sleep quality. For accurate sleep monitoring, PSG typically

requires recordings of multichannel biomedical signals including an electro-



encephalogram (EEG), electrooculogram (EOG), electromyogram (EMGQG),
respiration signals, and blood oxygen saturation. Therefore, PSG can only be
conducted by sleep technicians in laboratories equipped to carry out these tests [16].
Moreover, because the sleep technicians score sleep stages and sleep events visually,
it is subjective and may have human errors. Several previous studies reported that
manual scoring of sleep stages and sleep events exhibit inter-rater variability [17,
18]. In addition, as shown in Fig. 1-1, a large number of electrodes have to be
attached to patients that may cause discomfort and affect their sleeping behavior [19];

thus, it is not suitable for long-term continuous sleep monitoring.

Figure 1-1. Sensors for standard PSG (Source: Aystesis.com)

2 S =g kg
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1.2. Sleep Architecture

Normal human sleep consists of two core sleep stages: rapid eye movement
(REM) sleep and non-rapid eye movement (NREM) sleep, which alternate in a cyclic
manner. Sleep stage scoring rules for normal human were first defined by
Rechtschaffen & Kales (R&K) in 1968 [20] and adapted by the American Academy
of Sleep Medicine (AASM) [21]. Sleep stages are scored by different characteristics
of EEG, EOG, and EMG. NREM and REM sleep alternate through the night at about
90-minutes (approximately 4-6 NREM-REM cycles during night sleep). According
to the AASM manual, NREM sleep is further divided into N1, N2, and N3 sleep
stages as shown in Fig. 1-2 (a). The distribution of each sleep stage across a sleep
period is called as sleep architecture and it is visualized in the form of a hypnogram
(Fig. 1-2 (b)). N1 sleep stage (2-5% of sleep time) is the lightest sleep stage and is a
transition state from wakefulness to sleep. It is defined by attenuated EEG alpha
rhythm (8-13 Hz) and the appearance of low-amplitude mixed-frequency EEG
activity. N2 sleep stage (45-55% of sleep time) is characterized by the appearance of
sleep spindle and K-complex. Sleep spindle is a train of distinct sinusoidal waves
with frequency 11-16 Hz lasting at least 0.5 s. K-complex is a negative sharp wave
followed by a positive wave lasting more than 0.5 s. N1 and N2 sleep stages are
called as light sleep. N3 sleep stage (13-23% of sleep time) is the deepest sleep stage
and is called deep sleep or slow wave sleep (SWS). It is defined by high amplitude
slow wave activity (SWA, 0.5—4 Hz) accounting for more than 20% of an epoch (30
s). REM sleep stage (20-25% of sleep time) is associated with REM in the EOG,

low-amplitude and mixed-frequency EEG, and low chin EMG tone.
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Figure 1-2. (a) EEG, EOG, and EMG signals during wake and each sleep stage. a: Sleep
spindle, b: K-complex, c: Slow oscillation, (b) Hypnogram with sleep stages (Wake:
wakefulness, REM: REM sleep, N1-N3: NREM sleep stages).



1.3. Sleep Apnea Hypopnea Syndrome

Sleep apnea and hypopnea syndrome (SAHS) is the most common sleep-related
breathing disorder in the general population and is caused by partial or complete
obstruction of the upper airway [22]. This disorder is characterized by repetitive
events in which breathing is shallow or paused during sleep [23]. Apnea event is
defined as the absence of tidal volume for more than 10 s and hypopnea is defined
as a decrease in the tidal volume of more than 30% for at least 10 s that is
accompanied by at least a 3% decrease in oxygen saturation or terminated by an
arousal from sleep [21]. Apnea events are classified as ‘obstructive’ if they are
accompanied by inspiratory effort against the occluded pharynx and ‘central’ if they
are not. The apnea-hypopnea index (AHI) is the number of apnea and hypopnea (AH)
events per hour of sleep. SAHS severity can be classified according to the AHI; non-
SAHS is defined as an AHI of <5, mild SAHS as an AHI of 5-15, moderate SAHS
as an AHI of 15-30, and severe SAHS as an AHI > 30. Fig. 1-3 shows the mechanism

of SAHS event.

Normal Breath Sleep Apnea

Soft palate

Uvula

Blocked
airway

Figure 1-3. The mechanism of sleep apnea event



These events are typically accompanied by blood oxygen desaturation and
arousals during sleep, leading to daytime sleepiness, decreased cognitive function
and negative mood [24, 25]. Moreover, SAHS is known as a risk factor for several
complications including hypertension, type 2 diabetes, cardiovascular disease, stroke,
and heart failure in untreated patients [26, 27]. In previous study, Peppard et al. [28]
reported that approximately 14% of men and 5% of women in population of
Wisconsin adults affected by SAHS. Similarly, 27% of men and 17 % of women in
the middle-aged Korean population were found to have an AHI of 5 or more [29].
Moreover, Kang et al. [30] showed that the prevalence of high-risk group of SAHS
was 12.4 % in Korean adults by questionnaire-based study. Hence, monitoring for
unrecognized SAHS and appropriate treatment allows preventative measurement to

reduce these potential health problems and death.



1.4. Impulse-Radio Ultra-Wideband Radar

Impulse-radio ultra-wideband (IR-UWB) is a short-range wireless
communication technique operating in the range of 3.1-10.6 GHz (Fig. 1-4). UWB
technology was developed for military purpose, but it was released as a private
technology by the federal communications commission (FCC) in 2002.

Due to the wide bandwidth and narrower impulse signals, IR-UWB radars have
the following advantages compared to other radio sensors (i.e., Wi-Fi, Bluetooth, and
Doppler radar) [31]: (1) high speed communication over short distances; (2) strong
material penetration capabilities; (3) robustness to multipath propagation; and (4)
high spatial resolution. Therefore, various applications have been demonstrated
using IR-UWB radars, such as remotely detecting vital signs, i.e., respiration and
heart rate by measuring the distance from the human chest [32-33]. By using the
signals from IR-UWB radar, several researchers have proposed a series of algorithm

that automatically extracts physiological information during sleep [34-36].
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1.5. Related Works

PSG is the gold standard method to determine sleep stages and diagnose SAHS.
To overcome the limitations mentioned in Section 1.1, numerous alternative methods
have been proposed that classify sleep stages and AH events automatically using the
minimum number of signals. In previous studies [38, 39], a single channel EEG
measured during PSG was used to score sleep stages. Choi ef al. detected SAHS
events with using a single nasal pressure signal [40]. Pulse oximetry based studies
revealed a relatively high correlation coefficient (» > 0.9) between the AHI from PSG
and the estimated one [41, 42]. Wrist activity was measured by acceleration sensor
to develop and evaluate automatic sleep scoring methods in usual home
environments [43, 44]. Acceleration sensor was also placed to the diaphragm and
suprasternal notch and used to SAHS detection system [45, 46].

Previous studies have found that the variation of autonomic nervous system
(ANS) is specifically associated with distinct sleep stages [47-51]. In NREM sleep,
sympathetic activity decreases and parasympathetic activity increases as the sleep
stage deepens from N1 to N3. In contrast, during REM sleep, sympathetic activity is
more dominant and becomes unstable like in wakefulness. From these characteristics,
heart rate variability (HRV) parameters that provide a quantitative assessment of the
ANS activity have been considered as one of the most useful features for sleep
staging. The HRV parameters derived from electrocardiogram (ECG) signals were
used for automatic sleep scoring [52-55] and photoplethysmogram (PPG)-based
sleep stage classification was also studied [56]. HRV parameters were also used to
detect AH events in many alternative methods [57-59]. These methods were based

on the fact that SAHS affects HRV during sleep.



Although these studies showed reliable performances for automatic sleep stage
scoring and SAHS diagnosis using the minimum number of signals, several studies
have pointed out that the sensor must be attached to the body, thereby their
applicability for long-term monitoring decreases. To overcome the shortcomings,
recent studies have proposed alternative methods to classify sleep stages and
diagnose SAHS using unconstrained or non-contact sensors such as piezoelectric
pressure sensor, depth camera and thermal camera [60-63]. Nevertheless, these
methods still require the user to physically contact the sensor, or have privacy issues.

The limitations of the alternative methods have motivated studies on non-
contact sleep monitoring methods using radio technology that allow for the reliable
acquisition of physiological information. In recent studies, deep learning models
such as recurrent neural networks (RNNs) and long short-term memory (LSTM)
networks have shown the higher accuracy compared with traditional machine
learning methods for the four-stage sleep scoring, i.e., light sleep (N1+N2) stage,
deep sleep (N3) stage, wake stage, and REM sleep stage, using IR-UWB radar sensor.
Zhao et al. [64] introduced a sleep stage classification model that adapts a
convolutional neural network (CNN) to extract features from radio frequency (RF)
signals and couples it with RNNs. The mean accuracy for the four sleep stages was
79.8 £ 2.9 %, and the mean Cohen’s kappa coefficient was 0.70 [64]. Toften et al.
[36] assessed a commercialized product Somnofy®, which applied temporal
convolutional networks (TCN) and LSTM networks to the IR-UWB radar for the
four sleep stages in 71 PSG data. The results showed an accuracy of 76 + 7% and
Cohen’s kappa coefficient of 0.63 + 0.10. Despite the relatively good performance,

there are two issues remain in sleep stage classification using physiological signal

10 A= T



with deep learning model. Firstly, these studies have a critical issue that it is difficult
to interpret the variables or features that influence the classification because of the
black box nature of deep learning. In addition, the commercialized product is not
openly available. Secondly, for the measured physiological signals, including
cardiorespiratory and movement-related signal, not all timesteps contribute equally
to determining the sleep stages. In other words, the features on some timesteps may
show more prominent contribution than the others in distinguishing the sleep stages.
However, there is not any attempt to consider the temporal dependencies for sleep
staging.

Recently, a few studies have developed algorithms for the estimation of apnea
hypopnea index (AHI) and diagnosis of SAHS using only IR-UWB radar [65-67].
Javaid et al. [65] implemented an under-the-mattress ultra-wideband (UWB) radar
sensor to detect apnea-hypopnea (AH) events using linear discriminant classifier for
4 patients with sleep apnea. Zhou et al. [66] investigated a wireless radar sleep
screening device (ZG-S01A) that estimates AHI and total sleep time (TST) based on
the IR-UWB radar, and Kang et al. [67] proposed an algorithm for the detection of
AH events with the constant false alarm rate (CFAR) algorithm and weight function
base on the IR-UWB radar. Both studies showed high correlation coefficient between
estimated AHI and PSG AHI and high sensitivity and specificity for diagnostic
efficacy in three different AHI cutoffs. Most of the existing radio frequency (RF)
sensor-based methods mainly used the adaptive threshold method based on the
AASM manual [68]. The adaptive threshold utilizes a procedure of extracting the
respiratory signal from the IR-UWB radar and detecting the decrease in amplitude

relative to the baseline respiratory signal. However, this procedure requires
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information about the location of the human chest to extract the breathing signal
from the radar data. Moreover, AH events are usually accompanied by body
movements, which act as a factor that prevents radar from not only finding accurate
body position but also determining the exact baseline amplitude. In addition, there
have been numerous studies on real-time monitoring of SAHS using alternative
sensors because it is critical to provide real-time instantaneous feedback for any
associated medical treatment, such as continuous positive airway pressure (CPAP)
pressure adjustments, when an AH event appears [40, 69, 70]. Nonetheless, none of

the existing studies provide real-time AH event detection techniques.
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1.6. Motivation and Objectives

To address the issues for sleep staging, I propose the usage of attention
mechanism for sleep stage classification in this study. Attention mechanism is one
of the most widely used methods for explainable deep learning [71]. Attention-based
RNNS selectively encourage the model to focus on and assign heavier weights to
certain parts of the physiological information varying over time [72]. Using this
attention mechanism, the computational model identifies meaningful and
discriminatory features that contribute to the classification. Owing to these
characteristics, the attention mechanism has been successfully applied to natural
language processing and also biosignal sequence processing in previous studies [72,
73]. In particular, this approach has been previously applied to classifying sleep
stages. Recent works have reported that the automatic sleep staging model, which
applies RNNs coupled with the attention mechanism to PSG data, exhibits better
classification performance compared with conventional machine learning and deep
learning methods [74-76]. Therefore, I hypothesized that the attention mechanism is
suitable for obtaining an interpretable and a clinically effective deep learning model
for sleep staging based on IR-UWB radar. To the best of my knowledge, this is the
first study that applies the attention mechanism to a deep learning model for sleep
staging with cardiorespiratory signals.

In addition, to effectively address the challenges of SAHS monitoring, I propose
a deep learning approach based on a CNN in combination with a LSTM network.
CNNs automatically filter out noise and extract the valuable feature from a signal or
image without any domain knowledge [77, 78]. Although CNNs are useful in

extracting patterns that appear as a local trend or appear the same in different regions
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of the time sequence, they are not suitable for capturing temporal dependencies [79].
LSTM network, which is a variant of RNN, contains cyclic feedbacks that are
designed to handle the temporal sequence [60]. Thus, LSTM layers can encode
relevant information of class-specific characteristics across time [80]. Owing to these
characteristics, the models combined with CNN and LSTM, have been successfully
applied in detecting SAHS using bio-signal sequences, in recent studies [8§1-83]. On
this premise, I take the temporal characteristics of radar signals into consideration
and propose a hybrid model architecture that combines CNNs and LSTM network.
To best of my knowledge, none of the previous studies applied a deep learning
algorithm to monitor sleep-related breath disorder using RF sensors.

Therefore, this study was conducted to establish non-contact sleep monitoring
methods using IR-UWB radar for the continuous and accurate monitoring of sleep
stages and SAHS events.

This study has the following two goals:

1) The development of an attention-based bidirectional LSTM networks
(attention-based Bi-LSTM) for automatic sleep stage scoring using a single
IR-UWB radar

2) The development of a hybrid CNN-LSTM network to accurately detect AH

events based on a single IR-UWB radar
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1.7. Dissertation Outline

This thesis consists of following chapters.

*  Chapter 2 presents the deep neural networks approach for non-contact
sleep staging using IR-UWB radar and discusses the potential applicability
of the model compared with other methods.

*  Chapter 3 describes a hybrid deep neural network model for real-time
apnea-hypopnea event detection using IR-UWB radar. In addition, its
clinical usability is assessed.

*  Chapter 4 summarizes the conclusions of the preceding chapters.

This thesis is based on following scientific articles that have been accepted for

publication (chapter 2 and chapter 3):

*  Chapter 2
[84] H. B. Kwon et al., “Attention-based LSTM for Non-Contact Sleep
Stage Classification using IR-UWB Radar,” /[EEE JBHI, In press.

e  Chapter 3
[85] H. B. Kwon et al., “Hybrid CNN-LSTM Network for Real-Time
Apnea-Hypopnea Event Detection Based on IR-UWB Radar,” IEEE

Access, In press.

The author of this thesis contributed to the above studies as follows: conception
and design of the experiments; data acquisition, analysis, and interpretations; and

wrote and reviewed the manuscript.
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2

LSTM Model for
Non-Contact Sleep Stage Classification
Using IR-UWB radar

A non-contact sleep staging method is investigated in this chapter. Based on
non-contactly measured IR-UWB signals, attention-based Bi-LSTM network model
is proposed for classifying sleep stage automatically. An optimal attention-based Bi-
LSTM architecture that produces the best performance is searched. Sleep stage
classification performance of the attention-based Bi-LSTM model is compared with
those reported in previous works. At last, role of the attention mechanism in sleep

staging is analyzed and the application of the model is discussed.
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2.1. Methods

2.1.1. Subjects

This study was performed in accordance with the ethical standards in the
Declaration of Helsinki, and the Institutional Review Board of Seoul National
University Hospital (IRB No. 1906-120-1043) approved this prospective cohort.
Subjects were invited to volunteer through posters on the school bulletin board in
Seoul National University. Before proceeding with the PSG, subjects were initially
screened by questionnaires to ensure that they do not have a history of sleep,
psychiatric, neurological, or cardiovascular disorder. Qualifying 65 subjects
underwent overnight PSG at the Center for Sleep and Chronobiology of Seoul
National University Hospital. As a result of the PSG, six subjects had moderate or
severe sleep apnea (AHI > 15), four subjects had periodic limb movement index
(PLMI) > 15, and four subjects could not achieve normal sleep due to sensor
discomfort (sleep efficiency (SE) < 50%). These 14 PSGs were excluded at the data
analysis stage, considering potential factors that affect the quality of IR-UWB radar
signals or autonomic controls during sleep [86-88]. A total of 51 people who satisfied
the inclusion and exclusion criteria were included in the experiments. All participants
were briefed about the objective and procedure of the experiment, and they signed

the consent forms.
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2.1.2. Polysomnography and IR-UWB Radar

All PSG data were recorded with a NEUVO system (Compumedics Ltd.,
Victoria, Australia). After PSG recording, the sleep stages were scored by a sleep
technologist and verified by two sleep clinicians according to the 2018 AASM
manual [68]. The following physiological data were collected: EEG at O2-M1, C4-
M1, and F4-M1; submental and tibialis anterior EMG; bilateral EOG; ECG; oronasal
airflow, thoracic and abdominal respiratory effort, and nasal pressure using a
thermistor, piezoelectric-type belts, and nasal cannula/pressure transducer; body
posture from a 3-axis accelerometer; and blood oxygen saturation using a pulse
oximeter. Of all these signals, only the blood oxygen saturation was sampled at 200
Hz, and all other signals were measured at 500 Hz. The anthropometric and sleep
parameters of the subjects are summarized in Table 2-1. The proportion of each sleep
stage was calculated based on total sleep time. Note that the mean percentage of N3
stage is 6.7%, which may appear to be lower than normal healthy population.
However, according to [89], the proportion of N3 stage for the normal and mild
obstructive sleep apnea group in Korean population tends to be relatively small, with
only 8.6% on average.

A commercially available IR-UWB radar system on chip (SoC) X4 (Novelda,
Oslo, Norway) was adopted. The IR-UWB radar was fixed on a tripod within a range
of approximately 0.5 to 2 m from the human chest and measured simultaneously with
the PSG as depicted in Fig. 2-1. The distance was selected as a position where a
stable signal can be measured considering that the radar detection range is 3 m and
body position on the bed might change during sleep. The transmitter of the radar has

a center frequency of 7.29 GHz and a bandwidth of 1.5 GHz. The receiver sampled
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the reflected signal at 23.328 GS/s and the radar signals were digitized at a speed of
20 fps. Because the frequency range of the heart rate signal is between 1 - 2 Hz, and
the frequency range of the respiration signal is between 0.1 - 0.7 Hz [90], previous
studies could obtain reliable heart rate, respiration rate, and HRV using IR-UWB
radar with 20 fps or lower sampling rate [32, 86, 91].

Before starting the PSG, the sleep technologist asked the subjects to hold their
breath for 15-20 s during calibration time. In this manner, the two devices were
synchronized in time by finding the section where the thoracic respiratory effort from
PSG and breath signal from IR-UWB appear flat at the same time (Fig. 2-2).
Moreover, I could synchronize the devices in time by maximizing the cross-
correlation between the movement from the two devices in more detail. For acquiring,
processing, and storing data from the IR-UWB radar, I used MATLAB 2019a

(MathWorks, New York, MA, USA).
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Table 2-1. Summary of anthropometric and sleep parameters

Characteristics Mean = S.D.
Sex (male/female) 26/25
Age (years) 30.0+ 8.6
BMI (kg/m?) 227439
AHI (events/h) 28+34
PLMI (events/h) 45+9.5
Time in bed (min) 435.4+42.1
Total sleep time (min) 403.4+51.5
Sleep efficiency (%) 92.4+5.1
Sleep Onset Latency (min) 7.4+9.8
Wake after Sleep Onset (min) 24.6+16.9
Stage N1 (%) 109+6.2
Stage N2 (%) 61.5+83
Stage N3 (%) 6.7+5.1
Stage REM (%) 20.9+4.7

S.D., Standard deviation; BMI, body mass index;

periodic limb movement index.
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Figure 2-1. Measurement of IR-UWB radar with PSG in the experiment
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2.1.3. Radar Data Processing

After the raw data acquisition with the IR-UWB radar, the features of the
training deep learning model were extracted automatically by the software
algorithms every 30-s epoch. The data processing is described in Fig. 2-3.

When there are multiple channels, the raw signal received from an IR-UWB
radar can be represented as the sum of the responses of several channels, including

the subject’s respiration and heartbeat [90]:

r(t, 1) = Aap(t — 1a(D)) + X A p(T — 7)) (2-1)

where r(t,t) indicates the received signal with a real-time factor t, which is
generally called “slow-time,” and the observed range factor t, which is called “fast-
time”. p(t) is the normalized received pulse. A; and A, are the amplitudes of
each multipath component and the reflected pulse on the body, respectively. 7; and
T4 represent the corresponding time delay. The time delay 7,4(t) varies with the
movement of the chest with slow time. While the portion of the received pulse
associated with respiration and heartbeat is Agp(t — 74(t)) , the multipath

components, called “clutter,” should be removed.

FEATURE EXTRACTION

BODY
MOVEMENT
i ; DEEP
RADAR CLUTTER CHEST i i
SIGNAL || REMOVAL || DETECTIoN [ i | RESPIRATION | = LEARNING
: : MODEL
HEARTBEAT
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In the sleep environment, the background is considered to be stationary,
whereas the human body changes its position when rolling over, twitching, and in
terms of chest movements caused by breathing and heartbeat. Therefore, I obtained
the target signals by subtracting the DC component from the raw radar signals with
a moving-average method [90, 91]. The clutter was calculated as the average of each
30-s epoch amplitudes along the fast time range bin. Fig. 2-4 (a) shows an example
of the received raw radar signal in this study, and Fig. 2-4 (b) summarizes the result
after the clutter component is removed. The row index refers to the received
waveforms from different distances, and the column index indicates the sampling
times. The waveform after applying the moving-average method is preferable for
observing the cardio-respiration activity around 1 m, which is equal to the distance

of the radar device from the body.
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Figure 2-4. Example of clutter removal. (a) Received raw radar signal (b) After application
of moving average method
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After removing the clutter from the raw radar signal, the most prominent
location of the human chest was detected for every 30-s epoch. The distance between
the radar and the human chest fluctuates periodically around the nominal distance
because of respiration and heartbeat motion. However, the amplitude of the breathing
signal is considerably higher compared with that of the heartbeat signal [92], and the
interference caused by the harmonics of the breathing signal increases the difficulty
of measuring the heart rate [33]. Therefore, only the respiration signal was
considered in finding the optimal region presumed to be the human chest in this study.
By calculating the spectral power in the respiration frequency range of 0.1-0.7 Hz
in the fast-time domain, the position of the target with the highest power could be
chosen, and the cardiorespiratory signal of the chest could be obtained for every 30-
s epoch [90]. Fig 2-5 (a) presents an example of the selected cardiorespiratory signal.

The sleep stages are associated with distinct mechanisms of autonomic nervous
control [93]. During non-REM sleep, parasympathetic activity increases and
sympathetic activity decreases. In contrast, autonomic balance is shifted toward
sympathetic predominance during REM sleep and wakefulness. Moreover,
respiratory rthythm during REM sleep and wakefulness become significantly faster
and irregular compared with non-REM sleep. Body movement is also an important
parameter that distinguishes REM sleep from wakefulness. In normal sleep, human
body physically moves during wakefulness however, during REM sleep, more
frequent and relatively short-duration twitches are observed compared with other
sleep stages [94]. Based on the characterized physiological conditions and previous
study, in which an LSTM networks for sleep staging using PVDF film sensor was

developed [60], 16 parameters for each epoch were extracted (Table 2-2).
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Figure 2-5. Extraction of breathing and heart movements from the raw signal of IR-UWB
radar (a) cardio-respiratory signal after clutter removal (b) extracted respiratory signal (c)
rectified and smoothed signal and (d) extracted heartbeat signal.
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To compute a movement parameter (mov_dens), the IR-UWB radar signal was
divided into 60 segments with 0.5-s length, and the variance for each segment was
calculated. Then, the percentage of the segments that was higher than the empirically
determined threshold was extracted every 30-s epoch. For the respiration-related
parameters, the breath signal was extracted from the cardiorespiratory signal by
filtering with a band-pass (0.15-0.4 Hz) filter (see Fig. 2-5 (B)), and the respiration
frequency (fresp) Was calculated with an autocorrelation method during each 30-s
epoch.

HRYV is the most widely used tool for quantitatively assessing the ANS activity
[26]. By analyzing the HRV in the time and frequency domains, information on
cardiac autonomic modulation can be obtained. To estimate the HRV values, the
heartbeat was detected as per the method used in my previous study [60]: (1) the IR-
UWRB radar signal was subtracted by the smoothed radar signal using a moving
average filter with a span of 10 samples (signal length of IR-UWB radar during 0.5s);
(2) the absolute values of the filtered signal were acquired (see Fig. 2-5 (c) gray line);
(3) the 0.8—1.5 Hz band-pass filter was applied to remove baseline drift affected by
respiration in order to obtain a clear heartbeat (see Fig. 2-5 (¢) black line); and (4)
the locations of the local maxima in the extracted heartbeat signal (see Fig. 2-5 (d))
were found, and inter-beat intervals were measured as the peak intervals. The mean
heart rate (mHR) could be calculated from the consecutive IBIs for every 30-s epoch.
A power spectral analysis of HRV was performed through a fast Fourier
transformation (FFT) for 5 min windows; the spectral power in the low-frequency
(LF) range between 0.04 to 0.15 Hz representing sympathetic activity, and power in

the high-frequency (HF) range between 0.15 to 0.4Hz representing parasympathetic
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activity. The LFHF ratio indicates the ratio of sympathetic to parasympathetic
activity [15]. The standard deviation of fresp (tfresp) and mHR (tmHR) were
investigated every 10 epochs with a sliding window of 1 epoch. In addition, the
smoothed values of abovementioned parameters, listed in Table 2-2, were obtained
by using the Savitzky—Golay filter, which is a finite impulse response smoothing
filter of polynomial order of 2 and frame length of 31 epochs. Finally, the z-score
normalization was performed on the extracted parameters for entire-night recording,

such that the mean value was 0 and the variance was 1.
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2.1.4. Proposed Deep Learning Model

Proposed deep learning network, attention-based Bi-LSTM architecture
comprises two bidirectional LSTM layers and an attention layer, shown in Fig. 2-6.
The LSTM layer comprises 9 sequence length, 16 input dimensions, and 512 units
per layer. LSTMs consist of memory blocks that can store long-term dependencies
from the input sequence and control the flow of information [95]. Each memory
block is comprised of three activation gates: input gate, output gate, and forget gate.
The activations of the input and output information flow are controlled by the input
and output gates, respectively. The forget gate sets the amount of information
forgotten and updated. The hidden state is calculated based on the output gate and
the updated memory cell. The sigmoid and tanh functions were set as the recurrent
activation function and activation function of the LSTM, respectively. In addition,
by combining two forward and backward LSTMs, that is, a bidirectional LSTM, the
input data can learn both the previous and following information of the target class

in each timestep [96].
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Because of the dynamics of physiological interactions in the brain and
autonomic controls during each sleep stage [97], I believe the sequential feature
vectors from the LSTM layers contribute differently for the classification of the four
sleep stages. To improve the performance of the LSTM networks by focusing on
certain timesteps with more discriminative sleep stage related features, I added an
attention model to automatically learn the importance of feature vectors in each time
step. The attention mechanism is applied to the sequence modeling output from the
bi-LSTM output hidden state vectors h; at every timestep i = 1, 2, 3, ..., N. The

importance score S; was calculated with the score function tanh as follows:
s; = tanh(Wsh; + by) (2-2)

where W and bg are a trainable weight and bias, respectively. Next, the
attention weight a; was evaluated through the softmax function, and the output
vector v was achieved by multiplying the attention weight vector and with

corresponding hidden state vector as follows:

a; = softmax(s;) = % (2-3)

v=2Yah; (2-4)

Finally, the attention layer is followed by a fully connected layer, which
classifies the four classes.

To find the optimal value of hyperparameters, I compared the classification
performance of the deep learning model on the validation dataset. The candidate of

' ! |
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the hyperparameters were set as follows: the length of input sequence {1-15}; type
of LSTM structure {unidirectional, bidirectional }; number of LSTM units {16, 32,
64, 128, 256, 512}; and number of LSTM layers {1, 2, 3}. The target labels were set
as the scored sleep stage corresponding to the end of each input sequence for the
unidirectional LSTM and the center of each input sequence for bidirectional LSTM

as shown in Fig. 2-7.
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Figure 2-7. Range of input data for the deep learning model when using (a) unidirectional
LSTM (b) bidirectional LSTM. The sleep stage indicated by the red line is the target label;
the gray and dashed part of the raw signal is the corresponding input sequence.
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I trained the model using the Adam optimizer [98] with a learning rate of 0.001,
and categorical cross-entropy was used as a loss function. The model was trained for
maximum 100 epochs with an early stopping patience of 10 and the batch size of 32.
I trained and validated deep learning model with a hold-out method for developing
a generalized model. In addition, the number of input segments was sufficient for
model training. The numbers of recordings for training/ validation/ testing datasets
were 26/ 8/ 17; they were randomly divided without data overlap. In total, the number
of segments in the all datasets was 37,732. However, among the segments, the
number of wake stage, light sleep, deep sleep, and REM sleep was 2,321, 22,146,
7,623, and 5,642, respectively. Therefore, to prevent the model from overfitting
because of class imbalance and to enhance the performance, a dropout layer [99]
were applied after every LSTM layer and fully connected layer. The dropout rate was
set to 20%. Moreover, I utilized a method that was suggested in previous studies
[100]. This method adjusts the class weights inversely proportional to the number of

segments in each class as follows:

_ chass:{W,L,D,R} Nclass

Wclass -

(2-5)

Nciass

where W,,ss 1s the class weight and N_;,¢s 1s the number of segments in the
training dataset. In this way, all classes contributed equally to the loss function as if
all classes had the same number of segments when training the model. Thus,
weighting by the relative frequency of its class label could serve to prevent
overfitting for the majority of classes, i.e., light sleep.

To evaluate the performance of the classification of the four sleep stages, the
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conventional metric of overall accuracy was calculated by the generating confusion
matrix. The accuracy (P,) was computed from the sum of the diagonal elements
divided by the total number of samples (Eq. (2-6)). However, because of the sample
imbalance among the sleep stages, the Cohen’s kappa coefficient (Kappa) was also
considered for evaluating the performance. The Kappa was computed by factoring

out the chance agreement as follows:

_ TPciass
P, = Eclassz{W.L,D,R} Total (2'6)
P,—P
Kappa = =+ 2-7)
1-P,
_ TPclasstFPclass TPclasstFNclass
Pe - chass:{W,L,D,R} (2'8)

Total Total

where P,, TP, FP, and FN are the hypothetical probability of chance
agreement, true positives, false positives, and false negatives, respectively.
To wvalidate the effect of attention mechanism, I evaluated the classification
performance of the proposed attention-based Bi-LSTM networks and compared it
with the performance of the conventional bidirectional LSTM networks for the same
dataset. Next, I visualized the attention weight for each sleep stage and the response
of the attention-based Bi-LSTM to analyze the role of the attention layer.
Furthermore, I measured the class separability using a measure called the general
discrimination value (GDV), which is defined as the difference between the mean

inter-cluster separation and the mean intra-cluster variability [100]. The GDV A4

was calculated considering that N points x,—1 y = (xn,l' ey Xy, D) are distributed
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within D-dimensional space and label [, assigns each point to one of L distinct

classes Ci=1,; as follows:

11

7wl

2

4= (-1

=1d (C) - Yt Be141 d(C Cy)] (2-9)

Here, the mean intra-class distances d(C;) and the mean inter-class distances

d(C;, C,,) were calculated as follows:

— 2 _
40D = it it d(sis) (2-10)
d(CiCp) = Tty By d (5™ (2-11)

Ny, is the number of points in class k, and sgk) is the i-th point of class k. The

quantity d(a, b) is the distance between a and b in the Euclidean distance.
Models were implemented in Python 3.7 and the Keras framework [101] with

TensorFlow backend [102]. The training was done using a GTX1080 8 GB GPU and

a 3.4 GHz Intel i7-6700 CPU.
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2.2. Results

2.2.1. Hyperparameter tuning

I selected the hyperparameter combination that achieved the highest Kappa for
the validation set (Table 2-3). The model with the longer input sequence length or a
higher number of units showed better classification performance, regardless of the
type of LSTM or the number of LSTM layers. Therefore, the results with the number
of units fixed at 512 are summarized in Fig. 2-8 (a). The highest Kappa was obtained
for the model with two bidirectional LSTM layers (named as ‘L2 bi’, red line) with
an input sequence length of 9 and unit number of 512; thus, the best-performance
model was selected. Fig. 2-8 (b) shows the details of the performance in terms of the

length of input sequence and the number of units.

Table 2-3. Hyperparameters in the proposed model

Parameters Values
Input (# of features x sequence length) 16x9
sequence length 9
Directionality of LSTM Bidirectional
Learning rate 0.001
# of LSTM layers 2
Hidden units (the first LSTM) 512
Hidden units (the second LSTM) 512
Output 4
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Figure 2-8. Performance of attention-based LSTM model with (a) input sequence, uni-/bi-
directional LSTM and number of layers, (b) input sequence length and units with two bi-
LSTM layer. LSTM, long-short-term memory; L1~3, the number of LSTM layers; uni-,
unidirectional; bi-, bidirectional.
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2.2.2. Model Performance on Test Dataset

The accuracy curve of the training and validation phase to investigate the over
or underfitting of the designed deep learning model was presented in Fig. 2-9 (a),
and Fig 2-9 (b) shows the loss curve of the training and validation dataset. There is
no overfitting in the proposed model.

Table 2-4 lists the average accuracies and Kappa values along with their
standard deviations for the proposed attention-based Bi-LSTM model and the
conventional LSTM model for the same dataset. In addition, a paired t-test was
conducted between the results to compare the performance. The proposed model has
an accuracy of 82.6% and a Kappa of 0.73, which is significantly higher than the
results of the conventional LSTM model (p < 0.01). The detailed values for the test
subjects are illustrated in Fig. 2-10. Fig. 2-11 show the confusion matrix of the
conventional LSTM model and the attention-based Bi-LSTM model. As shown in
Fig. 2-11, the attention-based Bi-LSTM model outperforms the conventional LSTM

model for all sleep stages.

Table 2-4. Accuracy and Cohen’s kappa coefficient on each dataset

Dataset Network Accuracy (%) Kappa
Training attention-based Bi-LSTM 86.5+7.2 0.75+0.20
Validation attention-based Bi-LSTM 80.1 + 8.6 0.71+0.15
Test attention-based Bi-LSTM 82.6+6.7 0.73+0.11
LSTM 79.2+17.6 0.68 +0.09

p-value” 0.006 0.0006

* Wilcoxon signed-rank test for accuracy and Kappa between Attention Bi-LSTM and LSTM
on test dataset
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2.2.3. Attention Weight

To verify that my model can pick up the stage-specific importance information,
I plotted the distribution of the attention weights assigned to each timestep from 0 to
1. A high weight in certain regions indicates that the corresponding timestep contains
a relatively important characteristic. Fig. 2-12 shows the distribution for each sleep
stage for the training and test datasets. According to Fig. 2-12, the attention layer
assigned the highest weight on the current epoch (timestep = 0) during deep sleep
and wake. However, during light sleep and REM sleep, the highest weight in both
training and test datasets was assigned to one epoch before (timestep = -1) and two

epochs before (timestep = -2) the current epoch, respectively.
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2.2.4. Visualization of Class Separability

I visualized the sleep stage embeddings by dimensionality reduction into two
dimensions by using the t-distributed neighbor embedding (t-SNE) method [103].
The perplexity for t-SNE was set to 30.0, the metric was “Euclidean,” which is
interpreted as the squared Euclidean distance, and the method was “Barnes_Hut.”
Moreover, I applied a GDV algorithm to quantify the class separability. A GDV of 0
indicates randomly shuffled labels, and a GDV of -1 is the case of perfect class
separability [100]. Fig. 2-13 shows the response of each layer organizing attention-
based Bi-LSTM model to data points which randomly sub-sampled for better
viewing. It can be observed that the separability for the four sleep stages improved
with each deeper network layer. In addition, the GDV value decreased for deeper

layers.
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2.2.5. Additional Analysis

Although 17 PSG recordings were used as the test dataset in this experiment,
there is a possibility that the model shows high performance only in the test dataset.
Therefore, I additionally conducted 3-fold cross validation without hyperparameter
tuning. 51 subjects were randomly divided into 3 equal-size subsets. In each 3-fold
loop, 2 subsets (N = 34) were used as the training dataset, and 1 subset (N = 17) was
used for test dataset. Hyperparameters were selected as the combination chosen in
the hold-out method. The results are shown in Table 2-5. The model achieved a
Kappa of 0.72 = 0.14 and accuracy of 82.0 = 7.3% across the entire dataset. In
addition, the result also showed significant difference with the performance of
LSTM model. Considering that there is no significant difference in the performance

for the test datasets in all folds compared to the results presented in Table 2-4, it can

be argued that my model performs well for all subjects.

Table 2-5. Accuracy and Cohen’s kappa coefficient on 3-fold cross validation

Dataset N Network Accuracy (%) Kappa
Training 34 AB-LSTM 85.8+6.6 0.76 £0.16
Fold 1 Test 17 AB-LSTM 82.7+7.4 0.73+£0.12
Training 34 AB-LSTM 86.0+7.4 0.76 £0.20
Fold 2 Test 17 AB-LSTM 81.5+7.6 0.70+0.18
Fold 3 Training 34 AB-LSTM 85.5+7.1 0.74+0.16
Test 17 AB-LSTM 81.8+7.1 0.71 £0.11
51 AB-LSTM 82.0=+73 0.72+0.14
Overall Test 51 LSTM 75.6+ 7.8 0.66 +0.12
p-value” 0.001 0.024

AB-LSTM, attention-based Bi-LSTM, * Wilcoxon signed-rank test
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To interpret the better performance of the proposed model, I need to understand
how the different features contribute to the classification of sleep stages. Therfore, I
set the value of parameters one by one to zero, and then trained the model and
evaluated the Cohen’s kappa value for sleep stage classification. The reduction of
the classification performance according to the exclusion of each parameter indicates
how useful the parameter is for classifying sleep stage. Fig. 2-14 shows the
degradation in sleep stage classification performance corresponding to the
parameters with the surrogate data. A higher degradation indicates the higher

importance of the feature in classifying sleep stages.
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In order to verify how reliable the extracted heartbeat and respiration signals
were reliable, I conducted two additional comparative experiments. First, I compared
the heart rate (mHR) and respiration rate (fresp) calculated using the heartbeat and
respiration signals extracted from the radar to ECG and respiratory effort of the PSG.
To rule out the effect of any movements, any epoch with mov_dens > 0 was excluded
and interpolated for analysis. As a result, the correlation coefficient of heart rate was
0.87 + 0.08 and respiratory rate was 0.83 + 0.10. Moreover, the correlation
coefficient did not differ by sex (BR: Male = 0.86 + 0.07, Female = 0.88 + 0.08, p-
value = 0.382; HR: Male = 0.85 £ 0.10, Female = 0.81 + 0.10, p-value = 0.182).
Second, I investigated the influence of the radar signal according to the posture
during sleep. For reference on posture during sleep (supine, left, and right), body
position recorded at S00Hz on PSG was used. As a result, both accuracy and Kappa
were almost the same in all posture (supine position: accuracy = 82.5 %, Kappa =
0.73, N = 11151 epochs; left position: accuracy = 80.7 %, Kappa = 0.70, N = 1188
epochs; right position: accuracy = 82.8 %, Kappa = 0.72 + 0.15, N = 1675). Based
on these results, it can be argued that the heartbeat and respiration signals obtained
by my algorithm were sufficiently reliable and that the input parameters of deep

learning networks could be accurately calculated.
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2.3. Discussion

2.3.1. Comparison with Automatic Scoring Model of Previous Studies

Table 2-6 lists the recent studies on sleep stage classification that use
cardiorespiratory and movement-related signal based on RF sensors. The sizes of
dataset in this study was sufficient for training the deep learning model. The

attention-based Bi-LSTM model outperformed the models of previous works.
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2.3.2. Role of Attention Mechanism in Sleep Staging

According to Table 2-4, the attention mechanism enhances the sleeps stage
classification capability of LSTMs based on IR-UWB radar signals. In particular, as
shown in Fig. 2-11, the increase in TP for light sleep was mainly because of the
decrease in FN in deep sleep and vice versa. Similarly, the attention-based Bi-LSTM
differentiates between REM sleep and wake more precisely. This observation agrees
with the visualization of the outputs from the LSTM layers and attention layer (Fig.
2-13). In Fig. 2-13 (c), although the LSTMs showed successful separability for wake
and REM sleep from non-REM sleep, they failed to learn coherent information
between light sleep and deep sleep, as well as REM sleep and the wake stage. In
contrast, the outputs from the attention layer showed clearly distinct clusters. Thus,
it can be interpreted that the attention mechanism plays a key role in separating light
sleep and deep sleep, and REM sleep and wake in the attention-based Bi-LSTM.

Fig. 2-12 shows that the model utilizes the attention module to give different
weight distributions based on the importance of each timestep according to the sleep
stage. As can be seen from the results, the current epoch contains particularly
prominent characteristics in deep sleep and wake, whereas less attention was given
to the current epoch during light sleep and REM sleep. The variance in the attention
weights over timesteps is relatively higher in the deep sleep and wake stage.
Considering that the probability of each epoch remaining the same stage of deep
sleep and wake is lower than that for light and REM sleep in both training and test
datasets (probability: REM sleep = 0.962, light sleep = 0.933, deep sleep = 0.793,
wake = 0.624), it might be supposed that the meaningful information for identifying

deep sleep and wake is mainly contained in the current epoch. Moreover, it is well
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known that body movement, which is the most important phenomenon
characterizing wake stage, mostly occurs in short periods during the wake epoch
[110].

In Fig. 2-12, significant timesteps to determine the sleep stage during light sleep
and REM sleep are 1 and 2 epochs before the current epoch, respectively. ANS is
closely related along anatomical and physiological lines to the sleep regulation
system, and also plays a role in the interaction between central nervous system (CNS)
and cardiorespiratory system. The interaction is associated with sleep control and
modulated according to CNS-defined sleep stages [93]. Notably, the previous studies
have shown that the distinct physiological states, i.¢e., sleep stages, have an influence
on the characteristic time lags underlying the interaction [97]. Considering these
physiological relationships, my result is in line with previous studies reporting that
cardiorespiratory dynamics precedes modulation in EEG activity [111, 112].
Therefore, [ can speculate that attention mechanism can capture such physiologically

stage-specific characteristics, which effectively distinguish the sleep stages.
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2.3.3. Importance of Features

According to Fig. 2-14, movement was the most important for determining the
sleep stage, followed by respiration-related features and time-domain HRV indices.
Finally, the frequency-domain HRV indices were the least important.

In my previous work, I conducted a similar analysis to evaluate the importance
of features for sleep staging using PVDF [60]. Movement was the most important
feature consistently in that study as well. However, the frequency-domain HRV
parameters were the second-most important feature group, which is contrary to the
results of the present study. Considering this, it can be suggested that the significance

of features for sleep staging depends on the device.
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2.3.4. Limitations

The proposed method has a few limitations. First, this study investigated the
recordings of only healthy subjects. Considering the prevalence of sleep disorders
and its comorbidities, further studies are required to validate my model to
generalized populations. Moreover, the IR-UWB sensor has potentials for
application in monitoring and diagnosing patients with sleep disorders such as sleep-
related breathing disorders, movement disorder, insomnia, and narcolepsy. Second,
my study was conducted in a controlled laboratory environment. Given the real-
world environment, more complex noise or non-static clutter might occur during
nocturnal sleep. Therefore, to confirm the feasibility, my model ought to be tested in
home environments in future studies. Finally, for an interpretable deep learning
model with good performance, I used the calculated features and RNNSs in this study.

However, further studies on reducing the model complexity should be investigated.
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3

LSTM Model for Real-Time
Apnea-Hypopnea Event Detection Based
on IR-UWB Radar

A non-contact sleep staging model using attention-based Bi-LSTM network
model was investigated in the previous chapter, in which it was concluded that the
proposed model achieved the best classification performance compared with
previous works. To enhance the usability of the sleep monitoring, a technology that
extends the range of users to patients with sleep disorders as well as normal people
is required. For this purpose, a method for monitoring sleep breathing disorder is
investigated in this chapter, particularly, sleep apnea hypopnea event detection is
studied. A hybrid CNN-LSTM network model is proposed for classifying apnea-
hypopnea event in real-time. Based on the classified outputs, SAHS diagnostic
efficacy of the proposed approaches is compared with that of previous works. Finally,

the clinical effectiveness of the model is discussed.



3.1. Methods

3.1.1. Subjects and Measurements

This study was performed in accordance with the ethical standards in the
Declaration of Helsinki, and the Institutional Review Board of Seoul National
University Hospital (IRB-SNUH No. 1807-190-964) approved this prospective
cohort. All participants were briefed about the objective and procedure of the
experiment, and they signed the consent forms. Subjects with suspected SAHS were
recruited from clinic populations and the online clinical trials center of SNUH.

Subjects were initially screened by study coordinators to ensure that they met
inclusion criteria and exclusion criteria. The inclusion criteria were adults whose

ages were = 18 yrs. and who were judged as a part of the high-risk group in both

the and STOP-BANG questionnaire [115] and Berlin questionnaire [116] (Fig. 3-1
(a) and (b)). Exclusion criteria were people who had any history of sleep disorders
other than SAHS, psychiatric, neurological, or cardiovascular disorders. Qualifying
40 subjects underwent overnight PSG at the Center for Sleep and Chronobiology of
SNUH. As a result of the PSG, 4 PSG recordings for which incomplete data were
collected due to a defective cable connecting the IR-UWB radar and PC were
excluded, leaving 36 PSG recordings for analysis. SAHS was diagnosed with an AHI

> 5 events/h, and they were classified into three groups: mild SAHS (5 = AHI <
15 events/h), moderate SAHS (15 = AHI < 30 events/h), and severe SAHS (AHI
= 30 events/h). The IR-UWB radar was measured simultaneously with PSG and

time-synchronized with PSG system in time. The anthropometric and sleep

parameters of the subjects are summarized in Table 3-1.
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(a) STOP-BANG Questionnaire

S (snore): Do you snore loudly?

B (BMI): Is your body mass index more
than 35 kg/m??

T(tired): Do you often feel tired, fatigued,
or sleepy during the daytime?

A (age): Are you older than 50 years?

O (observed to have stopped breathing):
Has anyone observed that you stop
breathing, or choke or gasp during your
sleep?

N (neck size): Is your neck circumference
greater than 43 cm (for male)/ 41 cm (for
female)

P (high blood pressure): Do you have or
are you being treated for high blood
pressure?

G (gender): Are you male?

STOP-BANG score:

OSA (obstructive sleep apnea) low risk: (0-2)
OSA (obstructive sleep apnea) intermediate risk: (3-4)
OSA (obstructive sleep apnea) high risk: (5-8)

or STOP score > 2 and one of the following conditions is satisfied: B, N, G

Figure 3-1. (a) STOP-BANG questionnaire
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(b) Berlin Questionnaire

Category 1

1. Do you snore?
a. Yes

b. No

c. Don’t know

. If yes, your snoring is?

. slightly louder than breathing

. As loud as talking

. Louder than talking

. Very loud — can be heard in adjacent room

00 oc N

. How often do you snore?
. Nearly every day

. 3-4 times a week

. 1-2 times a week

. 1-2 times a month

. Never or nearly never

o 00 o W

4. Has your snoring ever bothered other
people?

a. Yes

b. No

c. Don’t know

5. Has anyone noticed that you quit
breathing during your sleep?

a. Nearly every day

b. 3-4 times a week

c. 1-2 times a week

d. 1-2 times a month

e. Never or nearly never

Category 2

6. How often do you feel tired or
fatigued after your sleep?

a. Nearly every day

b. 3-4 times a week

c. 1-2 times a week

d. 1-2 times a month

e. Never or nearly never

7. During your waking time, do you
feel tired, fatigued or not up to par?

a. Nearly every day

b. 3-4 times a week

c. 1-2 times a week

d. 1-2 times a month

e. Never or nearly never

8. Have you ever nodded off or fallen
asleep while driving a vehicle?

a. Yes

b. No

If yes, how often does it occur?
a. Nearly every day

b. 3-4 times a week

c. 1-2 times a week

d. 1-2 times a month

e. Never or nearly never

Category 3

9. Do you have high blood pressure?
a. Yes

b. No

Scoring Question:
Scoring Categories:

Any answer with gray highlight is a positive response
Category 1 is positive with 2 or more positive response to questions 1-5

Category 2 is positive with 2 or more positive response to questions 6-8
Category 3 is positive with positive response to questions 9

High risk: if two to three categories are scored as “positive”
Low risk: if zero to one category is scored as “positive”

Figure 3-1. (b) Berlin questionnaire
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Table 3-1. Subject demographics and sleep-related variables

Variable Mild Moderate Severe
Non-SAHS
/Group SAHS SAHS SAHS
N (M/F) 4/2 6/4 5/4 7/4
Age (yrs.) 30.4 (8.9) 37.4 (16.9) 43.2 (13.6) 40.7 (8.3)
BMI (kg/m?) 22.1(4.9) 24.2 (4.1) 28.4 (4.8) 30.3 (7.4)

TRT (min)  443.2(52.9)  4272(39.5)  394.9(72.1)  435.6 (30.9)

SE (%) 89.9 (6.8) 92.5 (4.6) 91.7 (4.8) 88.4 (9.1)
SOL (min) 8.5 (7.8) 8.1 (13.6) 3.9(5.2) 45 (5.8)
PLMI (evis/h) 1.3 (1.6) 3.8(5.1) 2.4 (4.0) 0.6(1.2)
AHI (evis/h) 33(0.7) 8.6 (2.8) 22.8(3.2) 92.0 (80.4)
# A evts 2.0 2.1) 10.8 (16.1) 208(293)  172.5(161.3)
#H evts 19.7 (4.9) 45.1(17.3) 117.7 (42.7)  197.8(172.7)

All results presented as mean (standard deviation). N-number of subjects; M-male; F-female;
BMI-body mass index; TRT-total recording time; SE-sleep efficiency; SOL-sleep onset
latency; PLMI-periodic limb movement index; AHI-apnea—hypopnea index; evts-events; A-
apnea; H-hypopnea; SAHS-sleep apnea and hypopnea syndrome.
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3.1.2. Signal Preprocessing and Segmentation

Because the multiple baseband signals obtained by the IR-UWB radar sensor
can be expressed as a 2-D virtual image, the raw signals were preprocessed and
segmented to train and test the CNN-LSTM model. The window size was set to 20 s
with a shift of 1 s to sufficiently reflect the normal breathing section. The image
segment included all ranges from 0 to 2 m. In the sleep environment, the background
is considered to be stationary, while the human body changes its position in terms of
chest movements caused by breathing. Therefore, 1 obtained the target signals by
subtracting the DC component from the raw radar signals with a moving-average
method [90]. The clutter was calculated as the average of each 20-s epoch amplitudes
along the fast time range bin. Then, the image was downsized from 300x400 pixels
to 80300 pixels with area interpolation method to increase learning speed.

Fig. 3-2 summarizes the examples of synchronized IR-UWB radar image, nasal
airflow, and thoracic respiratory effort during no apnea event, central sleep apnea
(CSA), obstructive sleep apnea (OSA), and hypopnea for 1 min. During no apnea
event (Fig. 3-2 (a)), respiration activity that occurs at a distance of approximately 1
m in the radar image is clearly visible. In contrast, in central apnea (Fig. 3-2 (b)), it
can be seen that the airflow and thoracic waveform disappear, and at the same time,
the breathing pattern in the radar image also disappears. In the obstructive apnea (Fig.
3-2 (c)) and hypopnea (Fig. 3-2 (d)), a significant decrease appears in the thoracic
waveform, and the contrast due to breathing in the radar image is weakened.

The preprocessed images were categorized into two classes: AH and N. If at
least 10 s of a segment occurred within an apnea and hypopnea event period, it was

labeled as class AH. Other cases were labeled as class N. As a result, 138,067
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segments were labeled as class AH, and 778,471 segments were labeled as class N.
Next, to prevent the model from overfitting to the majority number of the class, |
made the training set consist of the same number of samples for each class. Because
class N had more segments than class AH, for each subject, class N segments were
randomly subsampled by the imbalance ratio. The original imbalance ratio of the
training set, which is the number of class N segments divided by the number of class

AH, was 5.64.
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Figure 3-2. Example of IR-UWB raw data and different normalized PSG signals with normal
breath and three types of respiratory events (a) no apnea event (b) central sleep apnea (c)
obstructive sleep apnea, and (d) hypopnea. Red areas indicate where the respiratory event
occurred. The PSG signals were recorded at 500 Hz, and the IR-UWB signals were sampled

with 20 frame per second.

64 '

L

-y B



3.1.3. CNN-LSTM Architecture

As shown in Fig. 3-3, the proposed deep learning network CNN-LSTM
architecture comprises three convolutional layers, two max-pooling layers, one
bidirectional LSTM layer, and one fully connected layer. Note that the input image
is treated as a 1-D signal based on time axis, and 1-D CNNs were applied. This is to
better preserve the temporal characteristics of the breathing pattern and feed the
time-dependent feature vectors into the LSTM units. Moreover, 1-D CNN has less
computational complexity than 2-D CNN [117].

To find the optimal hyperparameters and evaluate the model performance, I
used a nested 6-fold cross-validation. To do this, subjects were randomly divided
into 6 equal-size subsets. In the outer 6-fold cross-validation loop, 5 subsets were
used as the training dataset, and 1 subset was used for test dataset. At each inner fold,
the training dataset was further divided into 6 equal-size subsets. Then, 5 subsets
were used as the training dataset, and 1 subset was used for the validation dataset.
From the results of the 6x6 inner folds, the best hyperparameters were selected by
maximizing Cohen’s kappa coefficient for the validation dataset. The candidate
hyperparameters were set as follows: number of CNN layers {1-5}; number of
convolution filters {32, 64, 128, 256, 512}; kernel size for convolution {3, 5, 7, 9,
11}; type of LSTM structure {unidirectional, bidirectional }; and number of LSTM
units {32, 64, 128, 256, 512}. Table 3-2 shows the detailed configuration of various
layers of the proposed model. The total number of parameters required for learning
in all layers was 1,793,986.

In each CNN layer, the layer input and the kernel were convolved with the stride

of 2 and same padding. I trained the model using the Adam optimizer [98] and He
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normal initializer [ 118]. Learning rate was set to 0.001, and binary cross-entropy was
used as a loss function. The model was trained for maximum 100 epochs with an
early stopping patience of 10 and the batch size of 128. Models were implemented
in Python 3.7 and the Keras framework [101] with TensorFlow backend [102]. The
training and test process were done using a GTX 1080 8GB GPU and a 3.4 GHz

Intel 17-6700 CPU.
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Table 3-2. Configuration of various layers of the proposed model

L ype e S Aon oupucsape Yoo
Input 300 x 80
BatchNorm_1 300 x 80 320
Conv 1D 1 64@1x 9 ReLu 150 x 64 46,144
Max pool 1 2x1 75 x 64
Conv 1D 2 128@1x 5 ReLu 38 x 128 41,088
Conv 1D 3 256@1% 3 ReLu 19 x 256 98,560
Max pool 2 2x1 9 x 256
LSTM 1 512 Sigmoid 512 1,574,912
FC 1 ReLu 64 32,832
Output Softmax 2 130

BatchNorm-batch normalization; Conv-convolutional neural network; Max pool-max
pooling; LSTM-long short-term memory network; FC-fully connected.

68



3.1.4. Performance Evaluation

After finding the optimal hyperparameters, I evaluated the performance of the
sleep apnea event detection for the test dataset. Test segments were applied to the
CNN-LSTM model, and classification outputs, representing class AH or class N,
were received. Finally, these time sequenced classified labels were then fed to the
event detector to identify valid AH events. The event detector judges valid AH events
if at least six consecutive segments are classified as class AH.

To evaluate the performance of the sleep apnea event detection, I performed
three analyses. First, the conventional metric of accuracy (ACC), sensitivity (SENS),
specificity (SPEC), and Cohen’s kappa coefficient (Kappa) were calculated by the
generating a confusion matrix between the estimated results and reference PSG
results, according to a segment-by-segment analysis. Second, I estimated AHI based
on the number of valid AH events. Then, the Pearson’s correlation analysis and
Bland-Altman analysis between the estimated AHI and reference PSG AHI were
conducted. Lastly, the SAHS diagnostic performance for AHI cutoff = 5, 15, and 30
events/h was validated with ACC, SENS, SPEC, positive predictive value (PPV),

and Kappa.
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3.2. Results

3.2.1. Segment-by-segment analysis

I calculated the time taken to classify all the test segments to verify the real-
time application of the trained model. As a result, because it took 211.9 seconds to
classify the 916,538 test segments, it took approximately 0.00023 seconds to classify
one segment on average. Therefore, this model is sufficiently capable of real-time
event detection.

Fig. 3-4 (a) presents the performance graph of the accuracy from the training
and validation dataset, and Fig 3-4 (b) illustrates the performance graphs of the loss
function from the training and validation dataset.

Table 3-3 shows the performance of the proposed model for the test dataset
based on segment-by-segment analysis. AH events classified by the CNN-LSTM
model were compared with the scored AH events from the reference PSG. When
computing the performance for apnea event detection in each of the severity groups,
SENS and Kappa value tended to gradually increase from the non-SAHS group (AHI

< 5 events/h) to the severe SAHS group (AHI = 30 events/h). For the overall test

segments, | obtained a ACC of 0.930, SENS of 0.781, SPEC of 0.956, and Kappa of

0.728.
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3.2.2. AHI estimation analysis

Intra-class correlation coefficients and Bland-Altman plots were used to assess
the agreement between the estimated AHI (AHIgst) from IR-UWB radar and PSG-
derived AHI (AHIpsg). Fig. 3-5 (a) and (b) show the scatter plots of the AHIgst versus
AHIpsg and Bland-Altman plots for the entire night sleep. The Pearson correlation
coefficient (N =36) was 0.970 with p <0.001. Bland-Altman shows low mean biases
(-1.983), and the limits of agreement were -14.655 to 10.689. To verify the
performance in detail, the AHI of each hour was additionally calculated from both
the IR-UWB radar and PSG for each subject. Fig. 3-5 (c) shows that the Pearson
correlation coefficient for overall samples (N = 258) was 0.955 with p < 0.001.
Moreover, Bland-Altman also shows low mean biases (-1.567), and the limit of
agreement was -17.710 to 15.375 (Fig 3-4 (d)).

Table 3-4 and Table 3-5 summarize the SAHS severity classification and
diagnostic performance for all test subjects. The diagnostic performance was
calculated for AHI cutoffs of 5, 15, and 30 events/h. Therefore, the average values

for ACC, SENS, SPEC, PPV, and Kappa were 0.98, 0.97, 1.00, 1.00, and 0.96.
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Figure 3-5. Scatter plots of estimated AHI using the proposed method (AHIgst) versus
reference AHI obtained from polysomnography (AHIpsg) for (a) total sleep time and (c) each
hour from all subjects. Bland-Altman plots for visualization of the agreement between
AHlIgst and AHlpsg for (b) total sleep time and (d) each hour from all subjects. Gray line
indicates an identity line in (a, ¢). Gray bold line and blue lines in (b, d) indicate the average
difference (Bias) and the average + 1.96*standard deviation, respectively.
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Table 3-4. SAHS severity classification

Reference SAHS severity

Non- Mild Moderate Severe
IR-UWB Non- 6 0 0 0
Mild 0 9 0 0
Moderate 0 1 8 0
Severe 0 0 1 11
Table 3-5. SAHS diagnostic performance
AHI cutoff
(events/h) ACC SENS SPEC PPV Kappa
>5 1.00 1.00 1.00 1.00 1.00
>15 0.97 1.00 0.94 0.95 0.94
=30 0.97 1.00 0.96 0.92 0.94
Average 0.98 1.00 0.97 0.96 0.96
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3.3. Discussion

The purpose of this study was to develop a new diagnostic algorithm for real-
time SAHS monitoring by using a deep learning method based on a non-contact
sensor. A single IR-UWB radar was used as a breathing monitoring device, and a
hybrid model combining CNNs and LSTM network was used as a classifier for the
AH event in this study. To demonstrate the ability to detect an AH event in real-time,
the radar image with overlapping window was input into the CNN-LSTM model.

An important feature of the proposed method is that it detects individual AH
events in real-time and reports the results as per-segment classification performance.
Most previous studies do not report event detection performance and only present
AHI for the entire sleep. Javaid et al. [65], which detected AH events using a
machine learning technique with an under-the-mattress IR-UWB radar sensor, only
showed an accuracy, sensitivity, and specificity of 0.73, 0.71, and 0.71, respectively.
However, the number of participants in this study was very small, and the

classification performance also could be improved.
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3.3.1. Agreement between Proposed Method and Reference PSG

In the segment-by-segment analysis, the Kappa value of the proposed model for
all dataset segments was 0.72, which is a substantial agreement. Table 3-3 reports a
confusion matrix for overall segment-by-segment comparison between the proposed
CNN-LSTM model and reference PSG. The total number of false positives was
34309. Notably, of the 34309 false positives, about 68% contain events in which the
nasal airflow signal had an amplitude reduction of more than 30% compared to the
baseline. But the segments were recorded as “no event” because of the absence of
the desaturation or arousal of SpO,. Because additional information for classifying
hypopneas, such as EEG or SpO,, was not considered in this study, I speculate that
these segments would have led the model to misclassify it into class AH and cause
overestimated AH events. In Table 3-3, the Kappa value for all SAHS severity groups
exceeded 0.5, which reveals the proposed model detects the AH events with
substantial agreement. Note that the performance indices tend to gradually increase
from the non-SAHS group to severe SAHS group. When the ratio of hypopnea event
and apnea event was calculated for each severity group, it was found to be 9.85, 7.22,
3.87, and 1.15 in each group. In other words, the aforementioned overestimation
problem for hypopnea event deteriorated the model performance in the non-SAHS
and mild SAHS groups, where the ratio of hypopnea is relatively high. In addition,
according to Fig. 3-5 (b), the average bias value is -1.983, which means that the
model overestimated AH events as well.

However, despite the problem of overestimation, the sensitivity in the non- and
mild SAHS groups is lower than that of the moderate and the severe SAHS groups

(Table 3-3). Considering that the proportion of hypopnea events is relatively large in
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the non- and mild SAHS groups, it is reasonable to think that the factor that induced
misclassification into class N is a hypopnea event rather than an apnea event. In fact,
about 92% of false negatives in non- and mild SAHS groups contained hypopnea
events. These misclassifications can be understood from Fig. 3-2 in which the
hypopnea event shows breathing weakens and the amplitude decreases, but has a
similar the waveform image as no event. In addition, the average duration of
hypopnea events in the normal and mild groups was 26.3 s, whereas the average
duration of hypopnea corresponding to false negatives was only 13.5 s. In other
words, it can be assumed that the characteristic is not well reflected in the radar
image, so that it is misclassified as class N when a hypopnea event has a short

duration in non- and mild SAHS groups.
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3.3.2. Comparison with SAHS Diagnostic Models in Previous Studies

As shown in Table 3-5, despite the bias of IR-UWB radar compared to the AHI
of the reference PSG, the SAHS diagnostic performance showed a high value. The
outstanding diagnostic performance and the statistically high AHI correlation of the
model supports the fact that it can be used to clinically screen or continuously
monitor SAHS severity. When the results are compared with the previous studies
based on IR-UWB-radar technologies [66, 67], my results achieved better or equal
level of performances among the used metrics (Average diagnostic performance in
[66]: ACC=0.99, SENS =0.99, SPEC =0.99, PPV =0.99, Kappa = 0.98, correlation
coefficient of AHI = 0.97; Average diagnostic performance in [67]: ACC = 0.95,
SENS = 0.88, SPEC = 0.98, PPV = 0.98, Kappa = 0.88, correlation coefficient of
AHI = 0.93). This study is the first to investigate the effectiveness of deep learning
for sleep-related breathing disorders based on RF sensor. Fig. 3-2 shows that when
an AH event occurs, the amplitude of the sinusoidal form of thoracic movement due
to breathing decreases, which in turn weakens the contrast by oscillation in the radar
image. CNN modules can learn these prominent characteristics and extract robust
features [119]. Therefore, contrary to the existing rule-based algorithms based on
hand-engineered features that might miss important sleep apnea markers, my method
does not include the process of extracting and selecting hand-engineered features
[120]. Moreover, LSTM layer plays a key role in identifying the sequence pattern
information and short-term and long-term dependencies [121]. Thus, the proposed
model was able to determine whether an AH event occurred in the segment with high

performance in real-time with only 20-s of radar image.
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3.3.3. Robustness of Classification algorithm for Human Location

In addition, the high-performance detection ability was maintained in various
positions where the breath occurs. To confirm that my experiment showed high AH
event detection performance evenly, regardless of the location of the human chest, I
additionally calculated the distribution of the distances from the radar device to the
subject’s chest, and analyzed the correlation with the detection performance. The
distance of the chest with the highest power could be chosen by calculating the
spectral power of the radar signal in the respiration frequency range (0.1-0.7 Hz) in
the fast-time domain. The calculation was performed every 30-s epoch, but the
epochs recorded as the stage “Wake” or containing AH events were excluded from
the analysis. Therefore, the mean distance during the whole night’s sleep for each
subject was 0.98 £+ 0.31 m with a range of 0.84 — 1.32 m, and it did not show any

significant correlation with all AH event detection performance indices.
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3.3.4. Limitations

The proposed method has a few limitations. First, although the information
about actual sleep time is necessary for accurate AH event classification and AHI
calculation, the method could not take the sleep stage into account because the EEG
is not included. Moreover, the occurrence of AH events is greatly influenced by sleep
posture as well as sleep stage [122], but accelerometer was also not considered in
this study. However, recently, studies have been conducted to classify the sleep
stages and sleep posture based on IR-UWB radar signals [64, 84, 123]. Combining
these approaches with my method will allow the model to classify AH event and
calculate AHI accurately from a single IR-UWB radar. Second, this study could not
compare the agreement between respiratory disturbance index (RDI) between IR-
UWRB radar and reference PSG. RDI is also a criterion for classifying the severity of
SAHS and is very similar to AHI, but it includes the number of respiratory effort-
related arousals (RERAs) as well as apnea and hypopnea [68]. However, as
mentioned above, since EEG information could not be included in this study,
arousal-associated respiratory events could not be classified. Future studies
including additional EEG information will enhance the usefulness. Third, this study
did not differentiate detailed types of AH events, i.¢., obstructive sleep apnea, central
sleep apnea, mixed sleep apnea, and hypopnea. As show in Fig. 3-2, the respiration
signals from PSG show different patterns in which the waveform disappears or the
amplitude decreases depending on the type of AH event. However, there is a
limitation in recognizing the difference in the pattern only with the radar signal
reflected from the chest movement. Moreover, it is difficult to train the model

classifying the detailed type of AH events owing to an imbalance in the samples for
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each type. Finally, the model was tested in a controlled laboratory environment. To
confirm usability, the model ought to be validated at home environments in future

studies.
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Conclusion

PSG has been considered to be the gold standard tool for the assessment of
sleep; however, it has a few limitations. Various alternative sleep monitoring
methods have been developed to overcome the limitations of PSG. Nevertheless,
most of these methods still have limitations such as the need for physical contact
with the sensor, privacy issues, and inaccuracies. Even though non-contact sleep
monitoring methods using RF sensors have also been proposed, they need to be
improved interpretability and reliability and ensure real-time capability to increase
clinical applicability.

In this thesis, an optimal deep learning model for classifying the four sleep
stages using a non-contact sensor was developed. The proposed model adopted
bidirectional LSTM networks based on the attention mechanism to improve
interpretability and achieve better performance. A single IR-UWB radar was used,
and features related to cardiorespiratory information and physical movements were
extracted from the raw signal. The attention mechanism played an essential role in

effectively distinguishing light and deep sleep, and REM sleep and wake stage.
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According to previous studies [124, 125], inter-scorer agreement and Kappa for the
five sleep-stage classification (W, N1, N2, N3, and REM) based on the AASM
manual was approximately 82% and 0.76, respectively. Although the performance
of the proposed method is slightly lower than the clinical level, it is higher on
average compared to a state-of-the-art performance for four sleep staging using
ECG signal (accuracy = 77.0 £ 8.9%, Kappa = 0.61 + 0.15) [126]. Therefore, it
could be said that my method is potentially practical for long-term and in-home
sleep monitoring. Moreover, these findings show that the attention mechanism
might be useful in future researches about sleep stage classification based on
autonomic nervous activity.

In addition, I developed a deep learning model combining CNN and LSTM
network, and detected AH events based on overlapping images of IR-UWB radar,
allowing it to identify actual events in real-time. Despite not using any hand-
engineered features as input, the proposed method achieved the state-of-the-art
performance for classifying SAHS severity regardless of the user’s location.
Moreover, in this model, the hybrid architecture that exploits the benefits of both
deep learning techniques did not require a feature extraction and selection process.
Because of the advantages of that users do not need to attach any sensor to their
body, the IR-UWB radar is drawing attention as a sleep monitoring device that has
the potential as an alternative to PSG [16]. The proposed method based on the IR-
UWRB radar and LSTM network can be utilized for a cost-effective and reliable

SAHS monitoring in both hospital and home environments.
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