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Abstract

PassSSD: A Ransomware-proof SSD Using

Fine-Grained I/O Whitelisting

Nagmat Nazarov

Computer Science and Engineering

The Graduate School

Seoul National University

In recent years, Ransomware has been popular among cybersecurity experts

because of the easy creation of new variants capable of bypassing anti-viruses

and anti-malware. As Ransomware is targeting SSD (Solid State Drive) storage

which is widely adopted in various emerging data-driven applications, modern

storage systems are required to satisfy new requirements such as high secu-

rity and protection. Therefore, it becomes crucial to develop new protection

techniques that can properly address new challenges. In this thesis, we pro-

pose protection techniques that enable secure real-time flash storage systems

without compromising performance and reliability. Our techniques are moti-

vated by FTL (Flash Translation Layer) mechanism inside SSD and Hardware-

based PrC (program context) register. Application whitelisting mitigates the

ransomware attacks by specifying a list of pre-approved executable files allowed

on a computer system, but this type of coarse-grained protection is vulnerable

to control-flow hijacking attacks on safe application side. We propose PassSSD
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- a fine-grained I/O whitelisting for a secure SSD using I/O (input/output)

Program Contexts on RISCV architecture by modifying FlashBench [11] FTL.

We grant access to input/output requests based on whitelisted PrC’s (pro-

gram context) residing in FTL Superblock. In PassSSD, the PrC is extracted

dynamically on ext4 write end() function under inode.c on page granularity,

where we attach PrC signature to every write syscalls and send (PrC,data) tu-

ple to FlashBench FTL. On FlashBench FTL, the PrC monitor unit checks the

incoming PrC from the Whitelist and allows the execution if PrC is whitelisted.

By employing efficient protection on SSD, all unauthorized I/O requests are

denied by the disk drive, logical page, and its physical page are separated by

exploiting whitelisting technique. We implemented PassSSD on a FlashBench

to verify the effectiveness of the proposed schemes. Our experimental results

show that PassSSD can achieve the same performance level as a baseline scheme

(FlashBench) with only 1% overhead bandwidth which is very negligible. 1

Keywords: I/O Whitelisting, ransomware, FTL (Flash Translation Layer),

program context, RISCV

Student Number: 2019-23358

1The author of this thesis is a Global Korea Scholarship scholar sponsored by the Korean
Government
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Chapter 1

Introduction

Ransomware is a type of malware from cryptovirology that threatens to publish

the victim’s data or perpetually block access to it unless a ransom is paid.

While there exists simple ransomware which locks the system so that it is

not difficult for a knowledgeable person to restore the system, more advanced

malware uses a technique called cryptoviral extortion. It encrypts the victim’s

files, making them inaccessible, and demands a ransom payment to decrypt

them [14, 18]. Ransomware has been popular among cybersecurity experts in

recent years because of the easy creation of new variants capable of bypassing

anti-viruses and anti-malware [16]. Apart from easy implementation, the high

financial benefits of ransomware make it a profitable business, which motivates

many cyber criminals to develop and distribute various ransomware programs

[1].

There are two types of ransomware: locky and crypto. Locky ransomware

locks the entire system from access by its user, but it is usually easy to resolve.

However, crypto-ransomware uses encryption technology to lock selected files

from user access; this is much more difficult to resolve and the damage caused

may be irreversible. We will focus on Crypto ransomware in our thesis since it

is a more popular type employed by cyber criminals [2]. By the end of 2021, it

is estimated that a business will be targeted by a ransomware attack every 11
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seconds, causing up to $20 billion in damage [9].

1.1 Motivation

The primary target of ransomware is data files created by a user through an

application(e.g Microsoft Word, Adobe Reader). Application whitelisting is a

good approach to mitigate ransomware attacks [10] where it specifies a list of

pre-approved software applications or executable files allowed on a computer

system. It does not require continuous scanning which reduces bandwidth, CPU,

and memory. It is good protection against zero-day malware attacks [17]. Apart

from pros, application whitelisting has the following cons :

1) An attacker may exploit safe applications (like Word processor, Adobe Reader)

to execute malicious code.

2) Dynamic-link library (DLL) injection may place a copy of the malicious li-

brary into the system.

Typical ransomware goes through infection, persistence, removing backup copies,

encryption, and notice. Specifically, we consider that ransomware may exhibit

the following behaviors. As Application whitelisting (coarse-grained) is vulnera-

ble to control-flow hijacking attacks [13] on safe applications, we propose doing

fine-grained whitelisting based on PrC value of binaries where PrC uniquely

represents an execution path of a program up to a write system call and value

of PrC is calculated by summoning program counter (PC) values of each exe-

cution path of function calls.

Ransomware may access files through a regular file system or directly access

the raw disk drive without going through the file system. Traditional access

control mechanisms are implemented in the file system. If ransomware bypasses

the file system, on conventional SSD’s there is no more barrier in the disk drive.
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Since the proposed access-control mechanism is implemented in the FlashBench

FTL, it can prevent both direct access attacks and attacks through a regular

file system.

1.2 Contributions

There are several methods to mitigate Ransomware attacks. The most well-

known methods are Backup/Recovery based ransomware protection, Signature-

based ransomware detection, System monitoring-based ransomware detection

schemes, and Application whitelisting. As an example, Application Whitelist-

ing tools such as Microsoft Applocker can choose applications that are approved

for use. Therefore, applications that are not on the whitelist will get blocked

from execution. Since whitelisting on application whitelisting is done by the

host, it is easily exposable to various host-level attacks which may lead to

control-flow hijacking attacks. To overcome these issues we designed and imple-

mented ransomware-proof PassSSD using Fine-Grained I/O PrC by exploiting

whitelisting inside SSD where whitelisting management is done by FTL.

This thesis describes i) PassSSD: A Ransomware-proof SSD using Fine-

Grained I/O Whitelisting on FTL by exploiting program context register and ii)

protection scheme inside SSD which protects from unauthorized I/O even when

the OS is not trustworthy. We exploited the PrC register where each program

context is identified by summoning program counter values of each execution

path of function calls. The goal is to support fine-grained I/O whitelisting for

a PassSSD. This thesis provides insight as to protect against Ransomware with

low overhead by leveraging the PrC register on RISCV architecture. We also

implemented proactive manner cybersecurity functions on FTL, which black-

lists zero-day ransomware attacks if it keeps attacking the system. The main
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contributions of this study are as follows: First, our experimental results show

that PassSSD can protect the data against ransomware attacks, with minimal

computation and space overheads for the PrC and whitelist management. Sec-

ond, we implemented PrC fetch mechanism on Operating System.

Another challenge in designing PassSSD is the PrC register where we pro-

posed hardware-based PrC signature calculation instead of software-based cal-

culation. The latter has too much computation overhead and binaries are com-

piled with fno-frame-pointer, while our approach updates PrC on jal/jalr in-

struction and extended CSR registers to expose PrC to the OS. The key chal-

lenge on PassSSD is that we compute PrC on CPU (Trusted environment)

without involving DRAM and SSD while achieving low space overhead since

the computation is done on hardware.

1.3 Thesis Structure

The rest of the paper is organized as follows. In Chapter 2, we review FTL-

based ransomware protection schemes and present a key motivation of our work.

Chapter 3 describes the design and implementation of our PassSSD prototype

and its protection mechanism. In Chapter 3 we explain program contexts and

PrC fetch mechanism. We present our experimental environment and evaluation

in Chapter 5, followed by a conclusion in Chapter 6.
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Chapter 2

Background

The FTL (Flash Translation Layer) is a firmware made up of software and hard-

ware which manages SSD operations like logical-to-physical address translation,

garbage collection, wear leveling, block management, and error correction code.

There are several approaches where the FTL mechanism has been exploited to

mitigate ransomware attacks. To overcome backup overheads of host-level de-

fense schemes, storage-level solutions have been proposed by Park et. al where

the authors leveraged the out-of-place update property of NAND Flash to de-

crease back-up overheads [12]

2.1 Program Context

A key observation in the processor architecture is that program instructions

(or their program counters) provide a highly effective means of recording the

context of program behavior. Consequently, program-counter-based (PC-based)

prediction techniques have been extensively studied and widely used in modern

computer architectures. In PassSSD, we employ a write program context as such

a higher-level classification unit for representing single I/O activity regardless

of the type of I/O workloads. A program context (PrC) [6, 19], which uniquely

represents an execution path of a program up to a write system call, is known

to be effective in representing single I/O activities [7]. PrC value is calculated
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by summoning return address values in the stack. By attaching PrC to I/O

activities using program contexts during run-time on hardware, PassSSD can

automate the whole process of PrC fetch from within the kernel with no extra

overhead. We explain PrC in more detail in Chapter 4.

2.2 Whitelisting

A whitelist is a list of discrete entities, such as hosts, email addresses, net-

work port numbers, runtime processes, or applications that are authorized to

be present or active on a system according to a well defined baseline. Whitelists

are primarily used as a form of access control: permitting activity correspond-

ing to the whitelist and intended to stop the execution of malware and other

unauthorized software. Unlike security technologies such as antivirus software,

which blocks known bad activity and permits all other, whitelisting technologies

are designed to permit known good activity and block all other.

An application whitelist is a list of applications and application components

(libraries, configuration files, etc.) that are authorized to be present or active

on a host according to a well-defined baseline[15]. On Application Whitelisting,

whitelisting is managed by the host and used in an enterprise environment

where granularity is coarse-grained and executed on the Application level. While

on our approach whitelisting is managed by FTL (Flash Translation Layer)

and used on SSD storage where granularity is fine-grained and executed on

PrC(program context) level where we focus on write syscalls.

How does whitelisting software distinguish between unapproved and

approved applications? The NIST (National Institute of Standards and

Technology) guide breaks down the various attributes that can be used for this

purpose:
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a) The file name.

b) The file path.

c) The file size.

d) A digital signature by the software’s publisher.

e) A cryptographic hash.

Choosing attributes is largely a matter of achieving the right balance of se-

curity, maintainability, and usability. In our approach, we chose PrC as the

right attribute for whitelisting I/O. We also manage whitelisting inside SSD

since managing whitelisting by the host (on Application whitelisting) is easily

exposable to various host-level attacks.

Advantages of Whitelisting compared to Blacklisting: i) protects against

zero-day malware attacks and doesn’t need signature updates, ii) no continuous

scanning required which in turn reduces bandwidth, CPU, and memory utiliza-

tion, iii) only allowed applications, processes and executable are allowed to run

and iv) unlicensed applications or software can be blocked which will eliminate

copyright or license claims from the vendor. According to [5] whitelisting hasn’t

gained much popularity because of the misperception that it is very costly to

implement. In our approach, we implemented fine-grained I/O whitelisting with

1% bandwidth overhead on SSD performance.

2.3 Ransomware protection

Microsoft’s advice on tackling ransomware is that a tested reliable backup

regime is the best way to mitigate the damage from a ransomware attack.

While antivirus is still advocated, as we have seen, this may not be updated

soon enough to block an attack. Microsoft also suggests AppLocker which blocks

programs from running in common places. However, there is still a possibility
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of new variants.

2.3.1 SSD-Level Ransomware Defense

Recently SSD-Level Ransomware defense is becoming popular. NAND flash

memory does not support in-place updates, so SSDs handle host writes in an

append-only manner, leaving obsolete file data unmodified and writing updates

to different pages, and making the existing page invalid. Only SSD firmware,

a flash translation layer (FTL) removes the invalid pages as blocks (groups

of pages) and copies valid data on a block to a new block which is called

GC (Garbage collection). Therefore, by preventing GC from erasing possibly

attacked data, SSD-level solutions can back them up at no I/O cost. Further-

more, since these backup and removal processes are done inside SSDs, they can

protect data from evasion attacks at the host level.

A ransomware tolerant SSD, FlashGuard was proposed by Huang et. al.

which has a firmware-level recovery system that allows quick and effective re-

covery from encryption ransomware without relying on explicit backups [8].

FlashGuard leverages the observation that the existing SSD already performs

out-of-place writes to mitigate the long erase latency of flash memories. There-

fore, when a page is updated or deleted, the older copy of that page is anyway

present in the SSD. FlashGuard slightly modifies the GC mechanism of the SSD

to retain the copies of the data encrypted by ransomware and ensure effective

data recovery.

SSD Insider [3] proposed a new approach to defending against ransomware

inside NAND flash-based SSDs where features rely on observing the block I/O

request headers only, and not the payload. For perfect and instant recovery,

they proposed using the delayed deletion feature of SSDs, which is intrinsic to

NAND flash. SSD-Insider addressed the limitations of FlashGuard by leveraging
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a ransomware detection algorithm on the storage side. By monitoring unique

I/O footprints of ransomware, it detects whether a host is under a ransomware

attack or not within 10 seconds. This early detection enables SSD-Insider not to

maintain backup data for a long time, which mitigates the high space overhead

problem. SSD-Insider, however, could be easily compromised by ransomware

variants that intentionally issue modified I/O patterns that evade the SSD-

Insider’s detection algorithm.

Ransomblocker [12] was proposed to defend against all possible ransomware

attacks by delaying every data deletion until no attack is guaranteed. To reduce

storage overheads of the delayed deletion, Ransomblocker employs a time-out-

based backup policy. Based on the fact that ransomware must store an en-

crypted version of target files, early deletions of obsolete data are allowed if no

encrypted write was detected for a short interval.

2.4 Limitations of existing Approaches

FlashGuard [8] keeps all invalid pages for 2-4 weeks if the pages have been read

before invalidation. This is based on the fact that ransomware has to read and

encrypt victim files. While it may be the most thorough way to protect user

files against ransomware attacks, GC and space overheads cannot be avoided.

By analyzing block I/O traces collected from enterprise systems, FlashGuard’s

authors conclude that only a few files are removed after being read. However,

many counterexamples can be found in various scenarios. For a simple example,

suppose that a user downloads a film and removes it after watching if he doesn’t

like it. With FlashGuard, this file will not be removed from an SSD for a very

long time, unnecessarily occupying huge space.

SSD-Insider[4] maintains suspicious data for a short period. Thus, SSD-
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Insider does not waste lots of free space to keep suspicious data and does not

seriously suffer from GC overheads. The detection algorithm of SSD-Insider,

however, can be easily compromised by ransomware variants. For example,

SSD-Insider guesses that there may be ransomware attacks if a sharp increase

of overwrite requests from a host is observed for a short time interval. If ran-

somware intentionally slows down its encryption speed, SSD-Insider may fail to

detect it, allowing GC to permanently erase victim data.
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Chapter 3

PassSSD : Design and
Implementation

We first introduce the overview of PassSSD in Section 3.1. Then we describe the

Disk-level Access Control in Section 3.2. Finally, we present the threat model

and use cases in Section 3.3 and Section 3.4, respectively.

The proposed approach is the implementation of a ransomware-proof SSD

Using Fine-Grained I/O whitelisting. We integrated an access control mech-

anism inside the SSD disk drive by modifying FlashBench FTL. The access-

control mechanism allows access to files under protection only for authorized

(Whitelisted) program context I/O. This access-control mechanism specifically

targets preventing ransomware. This access-control mechanism can be imple-

mented in the file system. But, compared to file system implementation, disk-

level implementation has the following advantages.

Security: Since a disk drive is a separate system from a host, it is not easy

to compromise both host and disk drive at the same time. Especially, if the

disk drive does not allow firmware update by the host, it is very difficult to

compromise the disk drive unless the disk drive is physically accessible.

Compatibility: The implementation of the disk-level access-control mecha-

nism is independent of a file system. To support PassSSD, a small additional
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kernel modifications need to be done to the file system.

We have designed and implemented a prototype ransomware-proof PassSSD,

using fine-grained I/O Program Context, where we support Kernel PrC fetch by

exploiting Hardware-based PrC calculation. Fine-Grained I/O Whitelisting is

supported on FlashBench FTL. Apart from that, we support proactive manner

cybersecurity functions, where our prototype blocks unauthorized access. If the

adversary keeps requesting the write(), PassSSD adds that application to the

blacklist where it can be used to avoid zero-day attacks.

3.1 PassSSD Overview

In this section, we will briefly discuss our key design principles. We envision

PassSSD to be ransomware-proof protection to block ransomware attacks. An

overview of a PassSSD is shown in Figure 3.1 presents a bottom-up description

of the system for each component necessarily implemented at every level of

OS stack and device drive. On our prototype PassSSD, the PrC is extracted

dynamically on ext4 write end() function under inode.c on page granularity.

PassSSD attaches PrC signature to every write syscalls on page granularity to

each LPA where our page size is 4KB and sends (PrC, data) tuple to FlashBench

FTL. On FlashBench FTL, the PrC monitor unit checks the incoming PrC from

the Whitelist and attaches designated PPA if PrC is whitelisted or discards if

not.

Specifically, we have implemented a PrC management framework in OS

kernel and the FTL extension for disk-level access control management on the

SSD with the following main design goals: (i) protection from unauthorized I/O

even when the OS is not trustworthy and (ii) lightweight PrC management in

OS kernel.

12



Figure 3.1 PassSSD Overall Architecture.

3.2 Disk-level Access Control

As we have mentioned, there is intelligent Ransomware that can evade system-

level protection, that’s why we need a more robust defense mechanism. Ran-

somware can directly access the disk without file system intervention since

Ransomware can encrypt the disk. That’s why we implemented the protec-

tion scheme inside the SSD to protect from unauthorized I/O even when the

OS is not trustworthy. It divides OS (Operating System) and FTL to support

fine-grained I/O to guarantee ransomware protection. FlashBench FTL, which

is a firmware in the SSD, manages PrC (program context) per page. To autho-

rize a request the OS needs to put a request along with the PrC. The PrC is

sent together with the data on the file system layer until the write reaches the

FTL. On FTL, requested pages are allowed to execute if PrC is whitelisted.

In this thesis, we implemented PassSSD as a prototype on RISCV archi-
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tecture where we support Hardware-based PrC calculation. When the device

receives a write command, the authentication is granted as follows. When SSD

receives a write request, the SSD firmware first reads the PrC from the Flash-

Bench FTL and compares it with the PrC sent by the host. If the value of a

PrC is different, it sends an error message back to the host without performing

the write operation because it is not authenticated. If the PrC value is the same

as that in the FlashBench FTL, write operation is allowed.

In Linux OS, it is possible to write directly from block devices without the

file system intervention. The attacker can directly access the disk block without

knowing the contents and can encrypt the data (e.g. read sector 0 - 100 and

encrypt the data). By developing a protection mechanism inside Flashbench

SSD, we overcome this problem.

FlashBench-FTL: PassSSD extends the FlashBench FTL, which is firmware

in the SSD, manages the PrC per page. To authorize a request, an application

does not need to put a request along with the PrC. It is done automatically on

a write system call. On each write syscall, PrC is attached along with the page

on the file system layer until it is executed on FTL.

Fine-Grained input-output whitelisting: Data blocks must be given ac-

cess based on whitelisted PrC value to grant access to the data page. This access

control must be implemented within the disk drive. All data blocks need to be

protected based on PrC whitelisting. The data pages must be protected by the

I/O whitelisting technique according to the PrC value on binary files. It is also

necessary to minimize the performance and space overhead of managing the

PrC per page in the disk drive. In addition, the cost of keeping this information

persistent should be minimized.
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Figure 3.2 Control Flow hijacking attack on Application Whitelisting.

Flush daemon: Sync is a standard system call in the Unix OS, which com-

mits all data in the kernel filesystem to non-volatile storage buffers, data that

has been scheduled for writing via low-level I/O system calls. Higher-level I/O

layers such as stdio may maintain separate buffers of their own. Some Unix

systems run a kind of flush daemon, which calls the sync function regularly.

Buffers are also flushed when file systems are unmounted or remounted read-

only. In our implementation, the flush daemon writes back the page cache to

SSD along with the PrC.

Inode protection: In PassSSD, both the user data and the metadata of the

file are protected by the PrC. Whenever there is a write request we first update

the data and then we access the inode table, inode bitmap, and data bitmap to

make the updates. We encountered a metadata inconsistency problem when we

were attaching PrC on the ext4 da write end function. To solve this problem,

we changed the PrC attach function to the ext4 write end function where we

used no delay allocation.

3.3 Threat Model: Ransomware Attacks

The primary target of ransomware is data files created by a user through an

application (e.g Microsoft Word, Adobe Reader). Application whitelisting is a

good approach to mitigate ransomware attacks. It is good protection against
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zero-day malware attacks. Apart from pros, application whitelisting has the

following cons :

1) An attacker may exploit safe applications (like Word processor, Adobe Reader)

to execute malicious code.

2) Dynamic-link library (DLL) Injection may place a copy of the malicious li-

brary into the system. Typical ransomware goes through infection, persistence,

removing backup copies, encryption, and notice. Specifically, we consider that

ransomware may exhibit the following behaviors. As Application whitelisting

(coarse-grained) is vulnerable to control-flow hijacking attacks (figure 3.2) on

safe applications, we propose doing fine-grained whitelisting based on the pro-

gram context (PrC) value of binaries.

3.3.1 Attacker Model

Ransomware may be a user-level application with a root privilege. Ransomware

can acquire a root privilege by exploiting vulnerabilities in applications or oper-

ating system. Once it has a root privilege, it can access the files of other users.

The proposed technique can defend files against this type of ransomware too.

Ransomware may hijack system calls, but cannot access kernel data struc-

tures in file system layers. System call hijacking is one of the most popular

techniques to implement a rootkit (kernel-level malware). A system call may be

replaced by a malicious one. However, it is assumed that kernel data structures

cannot tamper because it requires recompilation of the kernel, which is more

challenging than hijacking.

We modified FlashBench FTL on our prototype PassSSD. As in figure 3.3,

we separated FTL from OS and implemented PrC manager unit inside FTL

which manages access control on disk drive using whitelisting.
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Figure 3.3 FlashBench Flash Translation Layer overview.

If the attacker exploits root/supervisor privileges and turns off any

anti-virus daemons or system monitoring tools: This attack exploits a

common remote code execution vulnerability, which gives an attacker a remote

shell on the device. This attack can be considered as the entry point for other

subsequent attacks. PassSSD can prevent unauthorized data modifications even

if the kernel is not trustworthy, since we exploit FlashBench FTL which is

decoupled from the OS.

The attacker can directly write from the disk: In Linux OS, it is possible

to write directly from block devices without the file system intervention. The

attacker can directly access the disk block without knowing the contents and

can encrypt the data. It is the reason why we need to develop a more robust

protection mechanism inside the SSD.

How do we guarantee that PassSSD is safe under the assumed at-

tack model? We need to consider if there is any chance that malware’s PrC

colliding with the authorized program’s PrC. We need to prove that each PrC

is a unique signature, and the chance of having the same PrC among different

programs is extremely low. The attacker might be able to create a binary that
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has the same PrC as the authorized program, but assuming that the attacker

knows one authorized PrC ”A”, generating a program that has the same PrC

is not simple, since the PrC value depends on the library the program uses and

plus the program binary ( this means the attacker needs to analyze the library

of the system).

3.4 Use Cases

Our PassSSD prototype can be used on Bitcoin Hot Wallet (also known as

”Online Wallets”) security-sensitive application for storing coins. Hot wallets

are wallets that run on internet-connected devices like computers, phones, or

tablets. This can create vulnerability because these wallets generate the private

keys to your coins on these internet-connected devices. While a hot wallet can

be very convenient to access and make transactions with your assets quickly,

they also lack security. Apart from Hot Wallets, PassSSD can be used to back

up the entire bitcoin wallet early and often. In case of a computer failure, a

history of regular backups may be the only way to recover the currency in the

digital wallet.
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Chapter 4

Program Context

A key observation in the processor architecture is that program instructions

(or their program counters) provide a highly effective means of recording the

context of program behavior. Consequently, program-counter-based (PC-based)

prediction techniques have been extensively studied and widely used in modern

computer architectures. In PassSSD, we employ a write program context as

such a higher-level classification unit for representing I/O activity regardless of

the type of I/O workloads. A program context (PrC) [6, 19], which uniquely

represents an execution path of a program up to a write system call, is known

to be effective in representing single I/O activities [7].

In this paper, we argue that a program context can be used to build the

right abstraction for input/output activities on different binary programs. Here,

a PrC represents an execution path of an application that invokes input/output

related system call function write(). We could extract PrC using various meth-

ods, but the most common approach is to represent each PrC with its signature.

4.1 Hardware-based PrC register

We create a new 64-bit CSR (Control and Status Register) register PC-CSR

(program context-CSR). The address space of the actual program is 48bit. As

you see in Table 4.1 Hardware automatically updates the register value ac-
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Table 4.1 PrC Calculation mechanism

Jump Instruction (JAL,JALR)

JAL $(ra),$(offset) Function Call

JALR $(zero),$(ra) Function return

JALR $(ra),$(dest register) Function Call

cording to the Program Context calculation rule. Only the lower N bits of the

address can cause almost no overflow in the current Program Context addi-

tion/subtraction method. The register can be read and modified with the “csr”

assembly instruction only in supervisor mode. On Function call, PC = PC +

(Current Program Counter) + 4 and on function return PC = PC - (return

address).

4.2 PrC(Program Context) Calculation

Program context (PrC) value is calculated by summoning return address val-

ues in the stack. As you see in figure 4.1 the PrC value in function boo will

be the sum of the return address of foo, boo, and bar which makes PrC =

1004+2004+3204. By attaching the PrC to I/O activities using PrC register

during run-time on hardware, PassSSD can automate the whole process of PrC

fetch from within the kernel with no extra overhead.

4.3 PrC Uniqueness

We executed more than 100 binaries with write syscalls and didn’t encounter

a single unique PrC coming from different paths. Even if PrC calculation is

composed of addition/subtraction of return address, by changing orders of 10

functions each with write syscall it is extremely difficult to get the same PrC
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Figure 4.1 PrC Calculation.

with the permutation on that functions.

4.4 PrC Management Policy:

PrC Whitelisting management policy is very important in our prototype. In

our implementation, we have implemented a supervisor application where we

safely add/delete PrC and write the latest whitelisted PrC’s to the superblock

on the application layer where only the authorized ”Supervisor” Program can

read or update the whitelist table. We can achieve this by only allowing the

supervisor program’s unique PrC to access the whitelist table that resides in the

superblock. This means even authorized whitelisted programs cannot modify

the PrC whitelist. In our Supervisor application, we load the whitelist table on

initialization from the Superblock. Then insert, delete and print procedures are

executed on the loaded array. Finally, we flush back the updated whitelist table

to Superblock on exit from the Supervisor program. The reason why we have

implemented a whitelist on SuperBlock is that the file system automatically
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Figure 4.2 Pass-SSD execution path.

takes the Backups of SuperBlock. This way we can guarantee the persistence

of our whitelist.

Minimal OS support for Pass-SSD: Figure 4.2 shows the execution path

of the PassSSD prototype. We don’t need to make any changes to the Applica-

tion Layer. We attach PrC to each page on the file system layer until the write

is executed on FlashBench FTL. To differ file I/O requests, the OS must be

able to assign the PrC only to the page requests of file I/O operations.

4.5 Page PrC Transfer and OS Support

To perform PrC authentication per page request on a disk drive, it is essential to

transfer the PrC to the disk drive. The PrC corresponding to the LPA requested
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by the host must be correctly registered in the FlashBench FTL of the PassSSD.

Importantly, the PrC must be sent synchronously with the LPA page request.

After the page request is completed, the PrC must be deleted from the OS

kernel to minimize space overhead.
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Chapter 5

Evaluation and Experiments

In this chapter, we provide comprehensive experiments to evaluate the effec-

tiveness of the PassSSD. We demonstrate how PassSSD detects and stops ran-

somware. We will also discuss how PrC is important in detecting ransomware

in different ransomware attacks.

5.1 Experimental Methodology

We evaluate PassSSD on a modified RISCV freedom-u-sdk and FlashBench

FTL simulator [11]. We simulated a 1GB capacity flash-based SSD with a 4

KB page size and around 26200 blocks as in table 5.1. We modified the existing

structure of FlashBench [11] FTL to support PrC based whitelisting approach.

For experiments, we used 4 different variants of ransomware that behave differ-

ently in terms of attack patterns. We performed a step-by-step analysis of the

usefulness of the PassSSD for a ransomware attack. Then, introduce the FTL

overhead of PassSSD concerning FlashBench FTL excluding Kernel overhead

since Kernel overhead is negligible.
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Table 5.1 SSD Configuration for experiment

SSD Capacity 1024 MB Pages per Block 26200 Page Size 4KB

Table 5.2 FTL overhead of PassSSD and FlashBench FTL

Name Instruction count

PassSSD 1309 million

FlashBench FTL 1284 million

5.2 Implementation Environment

To prototype the PassSSD, we modified 150 lines of C code in the Linux VFS

and the generic block I/O layers, 100 lines of C code in the FlashBench FTL

[11].

Testbed: All experiments were performed on a simulator with a core design

that incorporates a 5-stage single-issue in-order pipeline. It implements the 64-

bit RV64GC scalar RISCV ISA. The operating system is Linux kernel 4.15 with

4 processors.

5.3 Experimental Results

In our experiments, we tested our prototype PassSSD against 4 different ran-

somware attacks where PassSSD was successful to overcome the attack. The

important thing in our experiments is that all 4 ransomware were attacking

through unique PrC, which shows how PrC abstraction is the right approach

to detect input/outputs. The adversary tries to attack the safe binaries and

overwrite the data inside executable binaries into the attacker’s code.
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Figure 5.1 The average IOPS comparison.

Apart from the ransomware protection, we measured IOPS (Input output

operations per second) overhead (any combination of excess or indirect compu-

tation time, memory, bandwidth, or other resources that are required to perform

a specific task) of PassSSD where we modified FlashBench FTL with baseline

FlashBench(the one before modification). We excluded kernel overhead while

transferring PrC from Operating System since it’s negligible in comparison with

FTL overhead. In table 5.2 you can see the average IOPS of our PassSSD FTL

and FlashBench FTL on fio-random-write and fio-seq-read-write workloads. We

tested our prototype with 100 whitelisted PrC’s and 10 different binaries. From

Figure 5.1, PassSSD achieves ransomware-proof property on our prototype with

less than 1 % IOPS overhead which is not a big burden for our prototype.
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Chapter 6

Conclusions

6.1 Summary

We have presented a novel Ransomware-proof PassSSD using Fine-Grained In-

put/Output Whitelisting with FlashBench FTL, to protect sensitive data re-

siding on SSD without degrading the SSD performance. By employing efficient

protection on SSD all unauthorized I/O requests are denied by the disk drive,

logical page, and its physical page are separated by exploiting whitelisting tech-

nique. Furthermore, PassSSD exploited hardware-based PrC(program context)

calculation, which significantly decreased the calculation overhead and space

overhead. We implemented PassSSD on a FlashBench to verify the effective-

ness of the proposed schemes. Our experimental results show that PassSSD can

achieve the same performance level as a baseline scheme with only 1% IOPS

overhead by SSD performance which is very negligible.

Lastly, we do note that our method shows high performance while fetching

PrC on Kernel and exploiting Hardware-based PrC calculation. Similar ap-

proaches have been implemented using software stack but it had high computa-

tion and space overhead, which is why overall performance may have degraded.
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6.2 Future Work

The current version of PassSSD can be further improved in several directions.

For example, if we can utilize the control flow integrity while extracting PrC on

applications we can dynamically allocate whitelisted PrC’s. The metadata of the

file structure can be further improved to robust metadata inconsistency. Also

thinking of extra security enhancements, when the program is loaded, the initial

PrC is set as the program binary hash value instead of zero, since generating a

program that has the ”same hash value” + ”same PrC” is extremely difficult.
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국문초록

최근몇년간랜섬웨어는안티바이러스및악성프로그램탐지우회기능을갖춘다

수의새로운변종이나타나면서사이버보안전문가들사이에서인기를끌고있다.

많은 수의 랜섬웨어는 데이터 중심 애플리케이션에 널리 채택되고 있는 SSD 저장

장치를 공략하고 있지만, 현재 가장 널리 사용되고 있는 랜섬웨어 보호 방식들은

성능 및 신뢰성에 한계가 있다. 따라서 본 논문에서는 성능과 신뢰성을 훼손하지

않고 실시간으로 안전한 SSD 저장 장치 PassSSD를 제안한다.

PassSSD는 프로그램의 I/O 수행 맥락인 I/O 프로그램 컨텍스트 서명을 활용

한다. I/O프로그램컨텍스트서명은응용이저장장치에접근할때의고유한서명

정보로 본 연구에서 개발한 하드웨어에 의하여 계산이 된다. 이러한 서명 정보를

SSD 내 FTL (Flash Translation Layer)에 [11] 전달함으로써, 응용이 수행하고

있는 I/O에 대해서 스토리지가 자체적으로 접근 권한을 판단하게 된다.

PassSSD는 FTL내에서화이트리스팅기술을활용한다.화이트리스팅은관리

자가사전에특정서비스또는액세스에대한접근권한을사전승인된프로그램에

대해서만 허용하는 정책으로, PassSSD는 사전에 등록된 I/O 프로그램 컨텍스트

에 대해서만 디스크 접근을 허가하게 된다. 즉 PassSSD는 응용이 요청한 I/O 에

대한 있는 I/O 프로그램 컨텍스트 서명을 확인하고, 해당 서명이 화이트리스트

에 있다면 저장 장치 내 데이터 접근을 허용하며, 없다면 이를 거부한다. 이로써

랜섬웨어 와 같은 무단 I/O 요청은 거부되고 저장 장치 내 데이터를 보호할 수

있다.

실험결과 PassSSD의 FTL은전체수행명령어대비 1.9%의적은추가명령어

수행만으로 성능 및 데이터 신뢰성을 보장할 수 있음을 확인하였다.

주요어: I/O 화이트 리스팅, 랜섬웨어, FTL, 프로그램 컨텍스트, RISCV

학번: 2019-23358
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