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Abstract

Topics in the singularities of plurisubharmonic
functions

Jongbong An

Department of Mathematical Sciences
The Graduate School

Seoul National University

Plurisubharmonic functions are fundamental objects in complex analysis
with many applications in complex geometry and even in algebraic geometry.
Their singularities can be extremely complicated : some of the most impor-
tant tools one can use to study the singularities include multiplier ideals and
approximation theorems.

In the first part, based on joint work with Hoseob Seo, we study prob-
lems on equisingular approximation. Recently Guan gave a criterion for the
existence of decreasing equisingular approximations with analytic singulari-
ties, in the case of diagonal type plurisubharmonic functions. We generalize
a weaker version of this to arbitrary toric plurisubharmonic functions.

In the second part, we study plurisubharmonic singularities on singular
varieties. Our main result in this part is a generalization of the Rashkovskii-
Guenancia theorem on multiplier ideals of toric plurisubharmonic functions
to the normal (Q-Gorenstein case. This also generalizes an algebraic result of

Blickle to analytic multiplier ideals.

Key words: Plurisubharmonic functions, Multiplier ideal sheaves, Toric
plurisubharmonic functions, Equisingular approximations
Student Number: 2014-21200
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Chapter 1
Introduction

A plurisubharmonic function is one of the most important objects in complex
analysis for connecting algebraic geometry and analytic geometry. The notion
of plurisubharmonic (psh for short) functions was first independently devel-
oped by |Le42| and [O42| to characterize the pseudoconvexity of domains
in C". Plurisubharmonic functions are not only used for characterization of
convexities but also used in many areas of complex geometry. For example,
plurisubharmonic functions are local weights of singular Hermitian metrics
with semipositive curvature (cf. [D10]).

The singularities of plurisubharmonic functions can be extremely compli-
cated. Some of the most important tools one can use to study the singulari-
ties include multiplier ideals and approximation theorems. In this thesis, we
present two main results (in Chapter 3 and in Chapter 4, respectively) from
our study of multiplier ideals and approximation theorems.

After setting up preliminaries in Chapter 2, in Chapter 3, based on joint
work with Hoseob Seo, we study problems on equisingular approximation.
Recently Guan gave a criterion for the existence of decreasing equisingu-
lar approximations with analytic singularities, in the case of diagonal type
plurisubharmonic functions. We generalize a weaker version of this to arbi-

trary toric plurisubharmonic functions.



In Chapter 4, we study plurisubharmonic singularities on singular vari-
eties. Our main result in this part is a generalization of the Rashkovskii-
Guenancia theorem on multiplier ideals of toric plurisubharmonic functions
to the normal Q-Gorenstein case. This also generalizes an algebraic result of
Blickle to analytic multiplier ideals.

In the following Sections 1.1 and 1.2, we have more description of the two

main results in Chapter 3 and Chapter 4, respectively.

1.1 Equisingular approximations of plurisubhar-

monic functions

Since singularities of psh functions are highly complicated in general, one
frequently approximates a psh function by other psh singularities which are
easier to handle.

In the fundamental work [D92a|, Demailly gave a crucial method of ap-
proximating a general psh function ¢ by ones easier to understand, namely
those given by multiplier ideals 7 (my) for m > 1. Since then, the Demailly
approximation has had far-reaching developments and applications, see e.g.
[DKO1]|, [DPS01], [D10], [D13], [R12], [K14], [K16], [G16], [G20], [GL20].

In [DPSO01, Theorem 2.3|, an important variant of Demailly approxima-
tion was given so that one can approximate ¢ by a decreasing equisingular
sequence ¢,, — ¢ which means that the multiplier ideals are all equal :
J(om) = T (p). Such decreasing equisingular approximation was applied in
the proof of the hard Lefschetz theorem [DPS01, Theorem 2.1]. However,
the key property of analytic singularities could not be preserved in [DPSO01,
Theorem 2.3|.

Indeed, Guan later showed by an example [G16] that one cannot in general
expect all three of ‘decreasing’, ’equisingular’ and ’analytic singularities’ to
hold simultaneously for an approximation of psh functions. On the other

hand, it is known (from [D92a|, [DPS01] and [D13]) that any two of the



three can be made to hold in an approximation.
Moreover in a later paper [G20], for the special case of diagonal psh
functions, Guan gave the following criterion for the existence of decreasing

equisingular approximations with analytic singularities.

Theorem 1.1.1 (Qi’an Guan). [G20, Theorem 1.1] Let 1 < m < n be

integers. Let ay,...,a, be positive real numbers. The psh function ¢ =
m
log Z |2

=1
singularities near 0 if and only if one of the following conditions holds:

% on C" has a decreasing equisingular approximation with analytic

1. The psh function ¢ itself has analytic singularities near 0, i.e., there
exists ¢ € R.o such that ¢ € Q¢ for each 1 < < m.
m
2. The equation ) z— = 1 has no positive integer solutions.
i=1
Note that the function ¢ in Theorem 1.1.1 does not necessarily have
analytic singularities when a;’s are irrational, cf. [K16, Example 4.1]. For
example, ¢(z1,z) = log (|z1|V2 + |22|¥3) in C? does not have analytic sin-
gularities but satisfies (2) in Theorem 1.1.1. Therefore ¢ has a decreasing
equisingular approximation with analytic singularities near 0. In Chapter 3,
we will generalize a weaker version of Theorem 1.1.1 for arbitrary toric psh
functions. This is our first main result of this thesis, obtained from joint work
with Hoseob Seo.

Theorem 1.1.2. Let ¢ be a toric psh function defined on D(0,7) < C".

Then the following are equivalent.

1. ¢ admits a decreasing, equisingular approximation (¢,,) by toric psh

functions which have analytic singularities.

2. There exists a polyhedron P in R" satisfying the following three con-

ditions:
(i) (2/c)P is a rational polyhedron for some ¢ > 0,

3



(ii) P(¢) < Pand P+ R%} < P,
(ili) (int P) nZ7 = (int P(yp)) N Z".

This is a weaker version of Theorem 1.1.1 since in (1), the approximant
©m itself is assumed toric. Here, r = (r1,...,7,) is a polyradius of a polydisk
in C" and a polyhedron is a finite intersection of upper hyperplanes in R™
(see Definition 3.2.10, Definition 3.2.12 and Theorem 3.2.16). In particular,
if all equations of hyperplanes are represented by rational coefficients and
rational constant, we say that the polyhedron is rational.

Our main strategy is to consider convex conjugates of toric psh functions.
We will present an explicit characterization for convex functions associated to
toric psh functions with analytic singularities. Then we will show the relation
between convex functions and their conjugates when convex functions are
from toric psh functions with analytic singularities. Using this we will prove

the main theorem using convergence of convex conjugates.

1.2 Multiplier ideal sheaves on singular vari-

eties

On a complex manifold, plurisubharmonic functions already have compli-
cated singularities. On a (reduced) singular variety or on a (reduced) complex
space, plurisubharmonic functions are still defined. Study of their singulari-
ties becomes certainly much harder in this setting of a singular variety.

As a first guide, we need to look at the study of singularities in algebraic
geometry, in the context of the minimal model program and singularity of
pairs, cf. [KM98|. Let (X, A) be a pair and let a be an ideal sheaf defined on
X. Then the multiplier ideal sheaf J(X,A) of a on (X, A) is defined as

J((X,8),0) = Ox (Kx: — | (Kx + &) + cFY).



Here p is a log resolution of A and a. Also F' is the inverse image sheaf of a
by p. For more on definitions and properties of the multiplier ideal sheaves
on normal varieties, we refer to [L04], [FH09|, [BFFU15|.

In this thesis, as a first step toward plurisubharmonic singularities on a
singular variety, we study toric psh functions. By a toric psh function, we
mean a psh function which is invariant under the torus action. These ideas
are based on convex geometry related to toric psh functions and monomial
ideals. For related topics, we refer to [HoO1|, [Gull|, [R11], [B104] for the
concepts of Newton polyhedron(or Newton convex body) of monomial ideals
and toric psh functions for computations of multiplier ideal sheaves.

As the second main result of this thesis, we generalize the Rashkovskii-
Guenancia theorem (|R11], [Gull]) to toric psh functions on a singular toric

variety.

Theorem 1.2.1. [Theorem 4.4.1] Let X be a normal Q-Gorenstein affine
toric variety given by the cone 0 < Ny whose dimension is set to be n =
dim Ng. Let ¢ be a toric psh function on X. Then the multiplier ideal
J(p) == T(p)(X) of ¢ on X is a monomial ideal and given by the following
condition

X' e J(p) «— v —div(Kx) € int(P(y))

where x” is a monomial in the affine coordinate ring C[X] of X and div(Kx)
is the point associated to a canonical divisor of X in the vector space Mg,

the dual space of the vector space Ng.

In fact, Theorem 1.2.1 generalizes results in |[Gull|, [R11], [HoO01] and
[Bl04]. We also have the following corollary.

Corollary 1.2.2. Let X be a Q-Gorenstein affine toric variety and let ¢ be
a toric psh function defined on X. Then the openness property holds, i.e.,

J(p) =T((1+e€)p) for e « 1.



Corollary 1.2.2 says that the openness property hold for toric psh func-
tions defined on affine toric varieties, as a partial generalization in this special

case of the openness theorem of Guan and Zhou [GZ15].



Chapter 2
Preliminaries

In Chapter 2, we prepare preliminaries needed for our main results in the
following two chapters. In Section 2.1, we introduce the notion of psh func-
tions and their properties. In Section 2.2, we introduce psh singularities and
multiplier ideal sheaves of psh functions. In Section 2.3, we introduce toric

psh funtions together with their properties and some examples.

2.1 Plurisubharmonic functions

In this section we will introduce psh functions. These objects appear to char-
acterize the convexity of domains in C". However, psh functions do not play
an important role in several complex variables merely. Plurisubharmonic
functions are used in complex geometry vastly with notion of singularities
in complex geometry. Now, let {2 € C" be an open set. Most of materials are
included in [B], [DX].

Definition 2.1.1. A function ¢ : Q — [—0,0) is said to be psh if ¢ is

upper-semicontinuous, locally in L!, not identically —co on any component



of 2, and the restriction of ¢ to each complex line is subharmonic, i.e.,

1 2T 0
< — “)do
o) < 5 | pleo+ 6

for all zp € Q and & € C™ such that {zg + 2§ | z € C, |z| < 1}.

Remark 2.1.2. Some authors do not impose a condition ¢ € L}, () nor
1

o O assure the well-

being identically —oo. In our paper, we add ¢ € L
definedness of 4/—~100¢ as a current and to exclude the trivial case being

identically —oo.

The set of psh functions on €2 is denoted by Psh(2). We mention some
properties of psh functions. Some authors include psh functions that identi-
cally equal to —oo on some component. But for the sake of convenience, we

do not include them.

Proposition 2.1.3. Plurisubharmonic functions have the following proper-

ties.
i. If p € Psh(£2), then it is also subharmonic as 2n-variables.

ii. If (¢r) = Psh(Q) is a decreasing sequence of psh functions and if

Y= klim @k is not identically —oo, then ¢ is also psh.
—00

iii. If p € Psh(Q) is psh and (p.) is a family of smoothing kernel, then the
convolution (¢.) := (¢ * p.) is smooth, defined on .. Moreover, the

family (o) is non-decreasing in € and liné Ve = .

iv. Let ¢1,..., 0 € Psh(Q) and let y : R¥ — R be a convex function which
is non-decreasing in each variable. Then the composition x(p1, ..., k)
is also in Psh(2). In particular ¢1+...4+¢) , max{ys, ..., vx}, log(e? +
...+ €¥*) are psh.



v. Let (po) < Psh(£2) be locally uniformly bounded above and ¢ =

sup ¢,. Then the regularized upper envelope

@" = lim sup ¢
e—0 B(z,€)

is psh and is equal to ¢ a.e..

vi. Let ¢ € C%(Q). Then ¢ is psh iff its complex Hessian

=
0202k 1<, k<n

is pointwise semi-positive definite. Equivalently, v/—130p > 0.

vii. Let f: Q — Q' be a holomorphic mapping between domains. Then if
p € Psh(§Y), f*o € Psh(f) as a distribution.

Note that most properties in Proposition 2.1.3 follow from the properties
of subharmonic functions. Also, we can use Proposition 2.1.3 (vii) to define

psh functions on complex manifolds.

Definition 2.1.4. Let X be a complex manifold of dimension n and let
¢ : X — [—0,). Then ¢ is said to be psh on X if for any local trivialization
UcC g:U— X, g*¢e Psh(U). If v is locally equal to the sum of a psh

function and a smooth function, we say that ¢ is quasi-psh.

Note that the above definition is well-defined, since every transition func-
tion is holomorphic and do not affect pshity of ¢. Sometimes we have to
deal with psh singularities on compact complex manifolds. However we know
that the only possible psh functions defined on compact complex manifolds
should be constant. Therefore instead of considering psh functions, we some-
times consider the class of quasi-psh functions. Next, we define an important
class of quasi-psh functions, namely quasi-psh functions with analytic singu-

larities.



Definition 2.1.5. Let X be a complex manifold of dimension n and ¢ a
quasi-psh function on X. Then ¢ is said to have analytic singularities if for
any r € X, there is a neighborhood of x € U and holomorphic functions
fi,---, fr € O(U) such that ¢ can be represented as ¢ = glog(\f1|2 +...+
| f&|?) + O(1) for some ¢ = 0 on U.

We sometimes denote ¢ = clogla| + O(1) where a = (f1,..., fx) is an
ideal in O(U). In this notation, we say ¢ has analytic singularities of type a“.
Note that we did not define the function clog|a| and we cannot even define
log|a| as a function, since we cannot choose a canonical set of generators for
a. But the notation as above makes sense because change of generators only
affects by O(1) term.

2.2 Plurisubharmonic singularities

For a given psh function ¢, there are several ways to measure how ¢ is

singular. We begin with the Lelong number of psh functions.

2.2.1 Lelong numbers of psh functions

In this subsection, we will define the Lelong number and variants of Lelong
numbers for ¢. Then we will interpret them by an algebraic language. We
will fix X being a complex manifold of dimension n and €2 being a domain
in C" in this subsection.

Let ¢ € Psh(f2). Pick z € Q such that D(z,r) cc €. Due to subhar-

monicity of ¢, we know that f(¢) := sup ¢ is convex increasing function
B(z,et)

f(t) — f(logr)
t—logr
tion of t. Letting ¢ — —oo0, we obtain the following limit.

defined on (—o0,logr]. Thus, we have is non-decreasing func-

10



Definition 2.2.1. Let ¢, f as above. Then we define the Lelong number of

p at x by

ve(p) = lim m

t——oo t
Note that the convexity of f implies

f(t) — flogr) _ .~ f(t) — f(logr)
t—logr T i5s—w  t—logr

= Vx(gp)

|z — x| , ,
+ sup ¢. Since r is
r B(z,r)
fixed, we can arrange sup ¢ to be O(1). It follows that
B(z,r)

for ¢ < logr. In other words, ¢(z) < v.(p)log

|2 — x|

vi(p) = max{y € Ry | ¢(z) < vlog — + O(1) near z}.

This type of inequality is in particular valid in the case when ¢ has
analytic singularities. Suppose that ¢ has the singularity of type a° at z.
Then the Lelong number of ¢ at z is the product of ¢ and the multiplicity of

aat x.

2.2.2 Multiplier ideal sheaves of psh functions

The notion of multiplier ideal sheaf was introduced in [N89] (cf. [D93b])
(while related ideas had already existed).

Definition 2.2.2. Let ¢ be a psh function defined on an open subset 2 < C".
The multiplier ideal sheaf J(p) of o is the ideal sheaf of Og such that each

germ satisfies the following integrability condition:
T () = {f € Oq. | | f]?e 2% is locally integrable at x}.

Here, the measure is taken to be the Lebesgue measure on (£, z) where z is

a local holomorphic coordinate.

11



If p has analytic singularities, the definition of 7 () is related to algebraic
multiplier ideal sheaf. Explicitly, if ¢ is locally equal to glog(| AP+ +
|fx|) + O(1), then the multiplier ideal sheaf is equal to J(a®) where a is an
ideal on O(U) generated by fi,..., fi. For the proof of this, we need the

following basic functorial property.

Proposition 2.2.3 ([D10, Proposition 5.8], [L04, Proposition 9.3.43]). Let
i X' — X be a modification of complex manifolds and let ¢ be a psh
function defined on X. Then

e (O(Kx: @ T (p o)) = O(Kx) @ T ().

Before discussing the well-definedness of multiplier ideal sheaves, recall
the definition of algebraic multiplier ideal sheaf. Let a be an ideal sheaf and
let ¢ > 0 be a positive number. Let u : X’ — X be a log resolution of a.
Then we define the (algebraic) multiplier ideal sheaf J(a¢) associated to c¢
and a by

J(a%) = 1.Ox/(Kxyx — |c- D).

Here, Kx//x is the relative canonical divisor of X’ over X and a-Ox =
Ox:(—D).

Proposition 2.2.4. [L04, Theorem 9.3.42| Let X be a complex manifold
and let p = glog(|f1|2 + ...+ |fi]*) + O(1) be a psh function with analytic
singularities defined on an open subset U < X, then J () = J(a®) where a
is an ideal generated by fi,..., fr € O(U).

We end this section with relating the Lelong number with multiplier ideal
sheaf.

Lemma 2.2.5. [Sk72| Let ¢ be a psh function defined on an open subset
2 < C" and let x € Q.

i. If v, (¢) < 1, e 2% is locally integrable near z, i.e., J(¢). = Oq..

12



ii. If v,(¢) = n + s for some integer s = 0, then e > Clz — 3;|—2"—28 in

a neighborhood of = and J(p), < mS*!

of Og’x.

where m,, is the maximal ideal

iii. The zero variety V(7 (yp)) satisfies E,(¢) < V(J(¢)) < Ei(p) where
E.(¢) is the c-upperlevel set of Lelong numbers of .

2.3 Toric plurisubharmonic functions

In this section, we briefly introduce what is toric psh function and related

properties of toric psh functions. We begin with the definition.

Definition 2.3.1. Let D(0,r) be a polydisk in C" with a polyradius r =
(r1,...,7s). A psh function defined on D(0,r) is said to be toric(or multi-
circled in [R11]) if its value is invariant under torus action, i.e., ¢(z1, ..., 2,) =
i0
e

o(e®zy,...,e%2,) where 0, ..., 0, are elements in R.

In case psh function ¢ is toric, ¢ has a nice property by following.

Proposition 2.3.2. Let ¢ be a toric psh function defined on D(0,r). Then
one can associate the increasing convex function g defined on (—oo,logr;) x

. X (—o0,logr,) which satisfies g(log|z1],...,log|z.]) = w(z1, ..., 2n).

Sketch of the Proof. Fix z € D(0,7) and let the radius of each component be

given by t;. Then ¢(z) is equal to sup ¢(w) where ¢t = (t1,...,t,). Note
weD(0,t)
that ¢ — sup ¢(w) is already increasing and convex by convexity proper-
weD(0,t)

ties of psh functions. See DX, §1.5, 5.13, 5.14] for the convexity properties
of psh functions. O

Also, there is a very nice description of multiplier ideal sheaf when ¢
is toric. Before characterization, we need the following preliminary tools in

convex analysis. Let us begin with the definition.

13



Definition 2.3.3. Let g : R® — (—o0, +o0] be a convex function which
is not trivial in the sense of being ¢ is not identically neither —oo nor
0. Then define the convex conjugate g* : R" — (—c0, +0] by g*(x) def

sup ((x,y) — g(y)). Also, the domain of g* is called the Newton convex body
yeR™

of g and we denote the Newton convex body of g by P(g).

Remark 2.3.4. We mention some properties of ¢g*. Let g be a convex func-
tion defined on R™.

*

1. ¢g* is also a convex function.

2. If g is increasing in each variable, then g* is decreasing in each variable,

and vice versa.

3. ¢** < g and ¢g** is lower semicontinuous. ¢** = ¢ if and only if g is

convex and lower semicontinuous.

The first two statements are straightforward and see [HO7, Chapter 2| for the

last.

We define P(¢) by P(g) where g is the increasing convex function asso-

ciated with ¢.
Remark 2.3.5. We mention some properties of P(p).

1. The Newton convex body P(g) is closed under the operation of trans-
lation by v € RZ. Indeed, if x € P(g) and v € RY,, then z + v € P(g).
Later, we will generalize this property to toric psh functions defined on

arbitrary affine toric variety.

2. If ¢ has analytic singularities of monomial ideal a and ¢ > 0, then P(y)

is a convex hull of the union of ¢ v + RY; where 2” € a.

14



Remark 2.3.6. Let g be a convex function on R” := {(z1,...,z,) |
x1,..., 2, < 0} which is increasing in each variable. For positive real numbers

ri,...,m, and z € R™ we have the following inequality:

sup ((r,y) — 9(y)) < sup ((z,9) — g(y))

yely yeR™
= sup ((zy = 1) =gy = 1) + (2,1 = 9(y) + 9(y — 1))
yeR™
<sup ((z,y) — g(y)) + (z,r)
yelr
where [, = (—o0,—7r1) x ... x (—00,—7,) is a product of open intervals in

R and r = (ry,...,r,) € R™ This shows that shrinking the domain of a
toric psh function near the origin does not affect its Newton convex body.
Also, the structure of Newton convex body determines L2-integrability of
monomials with respect to e=2%, so this observation gives the integrability of
a function on a bounded open subset containing 0 is independent of a choice

of a bounded open subset.

Remark 2.3.7. In [Gull, Definition 1.7], [R11, Section 3.1|, authors inde-
pendently define the notion of Newton convex bodies(|[R11]| used the term
indicator diagram instead) of ¢ to characterize multiplier ideal sheaves of

toric psh functions. In this paper, I mainly use terms used in [Gull].

Using these definitions and notions we can describe the following charac-

terization of multiplier ideal sheaf in toric psh functions

Theorem 2.3.8. [Gull, Theorem 1.13|, [R11, Proposition 3.1] Let ¢ be a
toric psh function defined on D(0,r). Then the multiplier ideal J(p) :=
J(¢)(D(0,r)) is a monomial ideal and we have:

2°e J(p) = a+1eint(P(yp)).

15



Chapter 3

Equisingular approximations of

plurisubharmonic functions

In Chapter 3, we will discuss results on the approximation of psh functions
by psh functions with analytic singularities. We will describe sufficent and
necessary conditions for admitting decreasing equisingular with analytic sin-
gularities approximation for toric psh functions. Among other things, we use

convex analysis for our main theorem in this chapter.

3.1 Equisingular approximations

In this section, we introduce some preliminaries for our main theorem. Let

us begin with the Demailly approximation theorem.

Theorem 3.1.1. [D92a] Let ¢ be a psh function on a bounded pseudoconvex
open set @ < C". For every m > 0, let J%,(my) be the Hilbert space of
holomorphic functions f on Q such that {,|f[?e">"¢d\ < o0 and let ¢, =
o log Y|oy|* where (o) is an orthonormal basis of 7 (me). Then there are
constants C7, Cs > 0 independent of m such that

&

1 C:
iLop(z) = — < pnl(2) < sup @(() + —log—j for every z € Q and
m C—2l<r m-o
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r < d(z,09). In particular, ¢,, converges to ¢ pointwise and in L]

loc

topology on 2 as m — oo and

v(p,z) — % < v(om, 2) < v(p, 2) for every z € Q.

The proof of Theorem 3.1.1 uses L? extension of holomorphic functions
from points. Theorem 3.1.1 connects some results in algebraic geometry into
the analytic geometry. For example, any positive singular metric of singular
Hermitian line bundle can be approximated by psh functions with logarith-
mic poles. These functions can be transformed into a metric associated with
simple normal crossing divisors via techniques in algebraic geometry such as
log resolution of ideal sheaf. We refer to [D93b|, [DKO01] for applications to

algebraic geometry.

Example 3.1.2. [K14, Theorem 2.1| proved that there exists a decreasing
subsequence of (y,) in Theorem 3.1.1 in sense of adding some constants.
Explicitly, (¢,)) with (k,) = (2") is decreasing if we add some constant to
each psh approximant. The proof uses the subadditivity of multiplier ideal
sheaves. (For the subadditivity theorem, see [DEL00|.) However we do not

expect that the approximation in Theorem 3.1.1 being decreasing in general.
Let X = C? with coordinates (z,y) and let D = Z 2D; where Dy = {x = 0},

Dy = {y = 0}, D3 = {z +y = 0}. Then there is no (C,) such that makes
{¢n + C,,} decreasing.

Now we will introduce some preliminary results on equisingular approxi-
mations and examples. We mainly follow [DPS01|, [G16], [G20].
Before introducing the fundamental result from [DPS01|, we define the

equisingularities of two psh functions.

Definition 3.1.3. Let ¢, 1 be two (quasi-)psh functions defined on complex
manifold X. Then ¢, ¥ are said to be equisingular if their two multiplier

ideal sheaves coincide.
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Theorem 3.1.4. [DPS01] Let T = a + +/—190p be a closed (1, 1)-current
on a compact Hermitian manifold (X,w), where « is a smooth (1, 1)-closed
form and ¢ a quasi-psh function. Let v be a continuous real (1, 1)-form such

that 7" = ~. Then there is a sequence (,) converging to ¢ pointwise where

1. ¢, is smooth in X\Z, of an analytic set Z, ¢ X.

[\)

. {¢u} is a decreasing sequence and 7, ¢ 7, for all v.

3. {(e7?% —e7??)dV, is finite for every v and converges to 0 as v — 0.

4. J(p) = T(p) for all v.

5. T, = a + /=100y, satisfies T}, > v — €,w, where lim ¢, = 0.

v—0

We have two remarks.

Remark 3.1.5. Condition 3 in Theorem 3.1.4 is stronger than condition 4
in Theorem 3.1.4. Indeed, since we know ¢, = ¢, J(¢) € J(p,). Then if
f e J(p,), condition 3 directly tells us that f is also in J(¢).

Remark 3.1.6. Condition 1 in Theorem 3.1.4 gives a very intriguing prob-
lem. The problem is whether ¢, can have analytic singularities whose poles
are along Z,. Unfortunately, the answer is negative, because approximants
@, in the proof of Theorem 3.1.4 may be locally equal to ¢ itself near some

singular point.

Now the following is a specific example due to Guan of psh singulari-
ties that cannot admit a decreasing equsingular approximation with analytic

singularities.

Example 3.1.7. [G16] Let n > 2 and (C",(z1,...,2,)) be coordinates de-
fined on C". Let

p1(2) := log(max{|zi], ..., [2n-1l, [2n]"}),
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where 1 < a < % is irrational. Let
©o = max{p; — 18n,6log(|z1]* + -+ + |2,]?) — 6n}.

Let
¥ = _Mn(_9027 0)7

055+ To55) and M, is as in [DX, Lemma 1.5.18]. Then there exists

a ¢ > 0 that cp is psh and does not admit decreasing, equisingular approxi-

where 7 = (

mation with analytic singularities.

We remark that the proof that ¢ is psh needs some cumbersome compu-
tations based on definition of M, . Also it can be shown that ¢ is equal to ¢;
near 0.

The work of Guan [G20] generalized this example in more broader cate-
gory. He presented a criterion whether psh function in certain class admits
the decreasing equisingular approximation with anlaytic singularities or not.
First, we briefly introduce what class of psh functions we will deal with.

Let (z1,...,2,) be the coordinates on C". We will consider the following

class of psh weights:

{log Z|Zl
i=1

Here, a psh weight means a germ of psh function at 0.

a;

m < n,a; >0 for any 1 <i < mj}.

Theorem 3.1.8. [G20] The weight ¢ = log >_|z;|% has decreasing equisin-
i=1
gular approximations with analytic singularities near 0 if and only if one of

the following statements holds:

1. ¢ has analytic singularity near 0, i.e., there exists ¢ € Ry such that

“ € Qo for any 1 <i < m.

m
2. The equation ] %t = 1 has no positive integer solutions.
i=1 "
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In this subsection, we will give ideas used for the proof of Theorem 3.1.8.

Before we prepare the proof of theorem, we add a simple remark.

Remark 3.1.9. Theorem 3.1.8 contains the result of Example 3.1.7. Indeed,
if we set a;’s in ¢y to be ay,...,a4,-1 = 1, a,, = a where a is an irrational
between (1,32). Then ¢ satisfies the condition 2 of Theorem 3.1.8. Thus
1 does not admit a decreasing equisingular approximation with analytic

singularities.

Note that the function ¢ in Theorem 3.1.8 does not necessarily have ana-
lytic singularities when a;’s are irrational, cf. [K16, Example 4.1]. For exam-
ple, p(z1, z5) == log (|z1]V2 + | 22|¥3) in C? does not have analytic singularities
but satisfies (2) in Theorem 3.1.8.

a;

Remark 3.1.10. When ¢ = log >_|z|%, one can easily compute the mul-

=1
tiplier ideal of ¢ at 0 € C" using the Rashkovskii-Guenancia theorem 2.3.8.

Note that the Newton convex body of ¢ is given by intersection of RZ; and
{reR" | >} % > 1}. Then the multiplier ideal sheaf of  at 0 is monomial
i=1 '

and descril;ed as

{zMeT(@) | m+1eint(P(p))}

Here, m = (mq,...,m,) is a multi-index for exponent of monomial and
1=(1,...,1).

3.2 Equisingular approximation of toric psh func-

tions

So far, we introduced a series of examples related to nonexistence of decreas-
ing equisingular approximation with analytic singularities. In particular, ex-

amples of [G16] and |G20] are both toric psh functions. Inspired by methods

20



and proofs of these counterexamples, we would like to present a criterion of
existence of toric decreasing equisingular approximation with analytic singu-

larities. Our main objective is following.

Theorem 3.2.1. Let ¢ be a toric psh function defined on D(0,r). The

followings are equivalent.

1. ¢ admits a decreasing, equisingular approximation (¢,,) by toric psh

functions which have analytic singularities.
2. There exists a polyhedron P satisfying the following three conditions:

(i) (2/c)P is a rational polyhedron for some ¢ > 0,
(ii) P(p) € P and P +RZ%, < P,
(iii) (int P) nZ%, = (int P(p)) N ZZ,.

Here, r = (ry,...,7,) is a polyradius of a polydisk in C" and a polyhe-
dron is a finite intersection of upper hyperplanes in R” (see Definition 3.2.10,
Definition 3.2.12 and Theorem 3.2.16). In particular, if all equations of hy-
perplanes are represented by rational coefficients and rational constant, we
say that the polyhedron is rational.

For the proof of Theorem 3.2.1, we delineate the behavior of toric plurisub-
ahrmonic functions with analytic singularities. Also, we will present the rela-
tions between convergence of sequence of convex functions and convergence
of its conjugates. Most of preliminaries are found in Section 2.3.

Section 3.2 is organized as follows. In Subsection 3.2.1, we characterize
how toric psh functions with analytic singularities and their Newton convex
bodies look like. We also interpret the result of Guan [G20] using convex
analysis related to toric psh functions. In Subsection 3.2.2, we observe how
convex conjugates of toric psh functions with analytic singularities should
behave and demonstrate relationships between the convergence of convex
functions and the convergence of their conjugates. Finally, in Subsection 3.3,

we prove the main theorem and present some relevant examples.
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3.2.1 Newton convex bodies for analytic singularities

In this subsection, we will prove the following characterization of psh function
with analytic singularities and what convex conjugate of toric psh functions

with analytic singularities looks like.

Proposition 3.2.2. Let ¢ be a toric psh funtion with analytic singulari-
ties on a unit polydisk D(0,1) < C". Then ¢ is associated to a monomial
ideal with weight ¢ € R, , i.e., ¢ ~ glog(\z]%‘l + <o+ [2]**™) near 0 where

aq, ..., 0y, are multi-indices and ~ means that their difference is in O(1).

Remark 3.2.3. For a toric psh function ¢ with analytic singularities, if we
write
c 2 2
p =5 logllgif" +- - +1g,") +O(1)

near 0, then it is hard to say that the value of |g1]* +- - -+ |g,|” is independent
of torus action. Notwithstanding the failure above, we can say vanishing of

2 2. .. ,
lg1|” + -+ + |g-|” is invariant under torus actions.

Proof. We will show by the induction on dimension of domain. Write
c
p=3 log(lg1|* + -~ + |g-[*) + O(1)

near z = 0.

(Induction on n) Let n = 1. Let g1,...g, have a common zero at 0 with
multiplicity k£. Then we may assume |gi|?> + -+ + |g-|* is nonvanishing at
0 by extracting [z|?*. If |g|> + - -+ + |g,|? vanish at some point zy # 0, by
Remark 3.2.3, it vanishes on the circle |z| = |2o|. By the maximum principle
lg11> + - - - + |g|* vanishes on the disk D(0, |29|), contradiction. Thus |g;|* +
-++ +]g,])? is nowhere vanishing. In particular, it is bounded below by some
positive number C' on some locally compact neighborhood of 0. So, we can
always write ¢ = £ log|z|* + O(1) near 0.

Now, suppose n = 2. We introduce some auxiliary notations for con-

venience: H; is the hyperplane defined by z; and z(i)a(i) is a monomial of
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21,0y Ziy -+ - 2 with multi-index exponent «(7). If the common zero set of
gi, ..., gy contains all H;, 1 < j < n, then similarly, one can extract z“ where
« is a multi-index from all gy, ..., g, so that |g;|> + -+ + |g,|? vanish identi-
cally on none of H;, 1 < j < n. So, we may assume that {g; ..., g,} has no
common factor which is a nontrivial monomial. Now if we restrict ¢ on Hj,

by the induction hypothesis,

P, = 5108 (191,12 + -+ Lol |2) + O(1)

J
~Nal(g, 2 Na(g,mg 2
log (IZ(J) PO ()] )

0

NN o

If we put

=+ - -
. 27
G OO e f2G) )

then it is nowhere vanishing, well-defined positive-valued function on H;. In
particular, it is bounded below by some positive number C; > 0. Let C’ be
the minimal number among C, ..., C),.

We can argue as above procedure for all j and obtain the set S by joining
2(5)204), Here, 1 < j < n and 1 < i; < m;. We may regard such (i, ;)
as a multi-index in n variables inserting 0 for i-th component which is the
excluded index while we were restricting to the hyperplane H;. So, we may
re-index such messy notations by 271, -- 2%, Now, we are enough to show

the following equality:

c 2 2
o = 5log (17 + - + ") (*)
up to O(1).

Proof of (*): Since every torus-invariant subvariety of D(0, 1) is given by an
intersection of hyperplanes and Z(gi, ..., g,) does not have any codimension

1 irreducible components, we know that ¢ itself has a pole set of codimension
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> 2. We now observe the function

o+ + gl
‘25W2.+..._+|Zﬁ

h(z) 5
|

If it has a pole at some point 1, then 7 should be in some H;. But on H;,
h(z) < h;(z) and h;(z) cannot blow up at 7. Thus it is well-defined. Again,
using similar argument with (n = 1)-case, depending upon the maximum
principle and Remark 3.2.3, we know that h cannot vanish at w where all

w; are nonzero. Now we are enough to check that if some w; = 0, say w,, =

0, then h(w) > %mi_r(l)(hj(w)) >

for some C' > 0 by Lemma 3.2.4.

Therefore, h is bounded below by some positive lower bound near 0. O

]

Lemma 3.2.4. Let a,b;, 1 <i<n, by <---<b, are positive real numbers,
then

a C . a b, b\ "
m>51§z‘1§nb_f where C—(E+...+a) ‘

Proof. 1t is straightforward from the rearrangement inequality :

b, b a a
- e = > (b -+ b, — - — ]
<bl+ —l—bn)na (by + -+ )<b1+ +bn)

In fact, we can take two increasing sequences by x; = b; and y; = —2

bnt1—i
1 <i<n Then n(x,yn + - +x1y1) = (1 + .. 20) (Y1 + - Yn)- O

for

Using Proposition 3.2.2, we have a useful characterization for toric psh

with analytic singularities.

Corollary 3.2.5. If ¢ is a toric psh with analytic singularities, written as

@ = Slog ([ + -+ [2") + O(1),
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and ¢ is a convex increasing function associated to ¢ defined on R”, then g

is of a form cln<1a<x<bz~,x> upto O(1).

bi L log(|z]P + - -+ +2|*) < log max r-

Proof. Since we know that log max |z
<i<r

c
|2|%, ¢ can be written as 5 log max |2|* +O(1). This concludes the proof [
<isr

Using this, we can associate the Newton convex body associated with
toric psh with analytic singularities. For a set of finite points b = {by,...,b,}
in R%, let P(b) be the Minkowski addition of the convex hull of b and R”.
We call P(b) the closed polytope determined by b.

Proposition 3.2.6. Let ¢ be of a form as in Corollary 3.2.5 and let g be
the associated convex function defined on RZ,. Then P(y) is the closed sub-
set in R represented as cP(b) + RZ, where b is the set of exponents in a

representation of ¢ and P(b) is the convex hull of {b,...,b,}.

Remark 3.2.7. In Proposition 3.2.6, we need not assume that ¢ itself is of

analytic singularities. Indeed, no conditions of b; are imposed.

Proof. Since P(cyp) = cP(p), we may assume that ¢ = 1. It is just from
writing conditions of being in P(y). Denote P(b) + R%, by Q. Then since
each b, € P(yp), Q < P(y), due to the minimality of convex hull P(b) and
each b; € P(y).

If t € P(p) is not in @, then there is a unique vector v that determines
the distance d(t, P(b) + R) = d(t,t +v) = |v| > 0. Here, the uniqueness
of v follows from the convexity of set (). Also v should be in RZ;. This v

determines a unique region A, defined as:
Ay ={yeR" | {—v,y) <{-v,t+v)}.

In fact, A, is the lower half-space of a supporting hyperplane of Q) at t + v

which is perpendicular to —v. Since b; € A for every 1 < j < r, we know that
{&—=bj+v,—v)=0.
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Now. let y, = —kv — € € R™ be a sequence of points in R” where k is a
positive integer and € is a small vector in R”. By the definition of P(¢p), the
following sequence ty, = {t,y,) — max (b, yxy should be bounded above. It is
equivalent to {t,yx) — 1121?3@2-, Yk) = 1rélii£1r<t — b, yx) is bounded above. We

can reformulate this again by

min (t — b;, yp) = 1r£1ii£1r<t — b, —kv —¢€)

1<i<r

min {t — b;, —kvy + {t — b;, —€)

I<i<sr

min ({t — b; + v, —kv) + {(—v, —kv) + C)

1<i<r

> min kfv]* + C.
I<i<r

\Y

Here, C' is a bounded constant coming from {t — b;, —¢) and the last
inequality comes from our observation {t — b; + v, —v) = 0 discussed above.

But this goes to o0 as k — oo and contradicts our definition of P(y). O

Remark 3.2.8. The above proposition also demonstrates that the definition
of Newton convex body of a psh function is a generalization of the definition
of Newton convex body of a monomial ideal. In fact, a Newton convex body

br ..., 2") where by, ..., b, are exponents of gen-

of a monomial ideal a = (z
erators of a is defined by Conv(by,...,b,) + R%,. This is coherent with the
Newton convex body of a toric psh function with anlytic singularities deter-

mined by a monomial ideal a. See [B104, HoO1] for details of the definition.

Combining these results with the Rashkovskii-Guenancia’s theorem The-
orem 2.3.8, we can interpret the result of [G20| in the category of toric psh

functions.

Example 3.2.9 (|G20]). If ¢ = max log |2;|* defined as a germ of a toric

psh function at (C",0), then by Proposition 3.2.6, its Newton convex body
can be computed concretely, P(y) = (H N Rgo) + RZ,, where H is the
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hyperplane defined by a linear equation Z i
a.

i=1 "
3.2.2 Convex conjugate of analytic singularities

In this section, we will characterize the convex conjugate of toric psh functions
with analytic singularities and prove the relevance between convergence of

convex functions and convergence of their convex conjugates.

Definition 3.2.10. A closed subset P < R" is a ‘H-polyhedron if P is given
by the intersection of finite numbers of half-spaces. More explicitly, there
exist p vectors ay,...,a, and p real numbers by, ...,b, such that P is given
by P={xeR":{a;,z)y <b; foralli=1,... p}.

By normal vectors in this paper, we mean outward normal vectors. If all

a; and b; can be taken to be in Q" and Q respectively, P is said to be rational.

Theorem 3.2.11. [S, Theorem 2.4.9] Let P be a H-polyhedron in R™ and
p a point in the boundary of P. If Fy,..., F,, are the facet of P containing
p and aq,...,a, are normal vectors for F},..., F}, respectively, then every
normal vector a of a supporting hyperplane of P at p is in the conical hull of

ai,...,a,,, that is, there are nonnegative real numbers \q, ..., \,, such that
a=May+ -+ Apam

Definition 3.2.12. A closed subset P < R" is a V-polyhedron if there exist
a finite set of points Y and a finite set of vectors V such that P is the sum
of the convex hull of Y and the conical hull of V', that is,

P = conv(Y) + cone(V).

As in the case of a H-polyhedron, a V-polyhedron is said to be rational

if one can take all points in Y and all vectors in V' from Q.

27



Lemma 3.2.13. Let ) be a rational H-polyhedron in R” such that Q+R" <
@ and let g be a convex function with dom(g) = @, increasing in each

variable. Then the followings are equivalent.

1. The epigraph of g is a rational H-polyhedron.

2. There are a finite set of vectors {sq,...,sy} in Q" and a finite set of

rational numbers {aq,...,ay} such that

g(x) = max ((s;,x) + a;)

1<isN

on Q.
Symmetrically, if we set P as a rational H-polyhedron in R such that

P +R? < P and let h be a convex function with dom(h) = P, decreasing in

each variable. Then the followings are equivalent.

1. The epigraph of A is a rational H-polyhedron.
2. There are a finite set of vectors {t1,...,ty} in Q" and a finite set of
rational numbers {by, ..., by} such that

h(xz) = max ({t;,x) + b;)

I<i<N
on P.

Proof. Suppose that epi(g) is a rational H-polyhedron. Let S’z < a be a
system of essential inequalities for epi(g), where S is an (n + 1) x (p + q)
matrix [s1 -+ Spiq] With s;,a € Q"1 We may assume that spi1,...,Spiq

corresponds with essential inequalities for @), that is, the (n+1)-th coordinate

of s;, is nonzero if and only if £ = 1, ..., p. Thus we can normalize s4, ..., s, so
that their (n + 1)-th coordinates are all —1. Set s; = (s}, —1) e R" x R'(k =
1,...,p). Now we shall prove that g can be written as the form

9(a') = max({si, 2) — i),

28



where q; is an i-th coordinate of a. Then x = (2/,x,,1) € epi(g) if and only

if 2/ € @ and z satisfies the nonvertical inequaliteis in Sz < a:

<S/17 x/> — < Tn+1,

(s, a")y — ap < Ty
Equivalently, x = (2/, x,.1) € epi(g) if and only if 2’ € @ and

max ((s;, &') — i) < Tns1. (+)

Observing that g(z') = inf {z, 41 : (', 2,41) € epi(g)}, we have
g(z') = max({s}, 2) — a;).

Note that every s, should be in Q7 , because all s; are essential and g is
increasing.

The converse is immediate from the observation (). O

Remark 3.2.14. In Lemma 3.2.13, if () is a (not necessarily rational) H-

polyhedron, the followings are equivalent (with the same proof).

1. The epigraph of h is a H-polyhedron.

2. There are a finite set of vectors {t1,...,ty} in R” and a finite set of

real numbers {by,...,by} such that

h(x) = max ({t;,x) + b;)

1<i<N

on (.
Theorem 3.2.15. Let g and @) be as in Lemma 3.2.13 and assume that g

satisfies one of the equivalent condition in Lemma 3.2.13. If A is the convex

conjugate of g, then epi(h) is a rational V-polyhedron.
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Proof. Assume that g can be written as

9(z') = max ((s;, 2') — ai)

on @ with s; € Q7 and a; € Q. Observe that h(s;) = sup,/({s},y’) — g(¥/'))
attains its supremum at any y’ such that (v, g(y')) is on a facet F; of epi(g)
which is given by the equation {(s},—1),z) = a;. Thus we have g(y') =
(s, y") — a; for such 3 and thus h(s}) = a;. Observe that in general s’ is
contained in P = dom(h) and h(s") = k if and only if ((s',—1),z) = k is a
supporting hyperplane of epi(g) and meets epi(g). For notational convenience,
write s; = (s}, —1). Let V be the set of points in R"*! given by

V ={(u,b) e R} x R:{u 2"y =bis a supporting hyperplane H’
such that H' n Q is a facet of Q. }

We will prove
epi(h) = conv((s},a1),. .., (s}, a,)) + cone(V U {eni1}), (3.2.1)

where e,.1 = (0,...,0,1) e R**L,

Let s’ be a point in P. Since (s’,y") — g(¥/) is a piecewise-affine concave
function in ¢’ on @, it attains the supremum, say at y, € Q). By the above
observation, {(s’, —1),z) = h(s’) is a supporting hyperplane of epi(g) at yo.
If y; is in the interior of @, then (s’,—1) is a positive combination of the
normal vectors of the nonvertical facets of epi(g) containing yy. Here, by
a nonvertical facet, we mean that its normal vector has nonzero (n + 1)-th
component. Without loss of generality, suppose that F}, ..., F,, are the facets
of epi(g) containing yy. Then by Theorem 3.2.11, there exist Ay,..., A\, =0
such that

(s',=1) = A\is1 + - + AnSm-
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Comparing the (n + 1)-th component of both sides of this, we know that s’

is given by the convex combination of sy, ..., s,, with coefficients Ay, ..., \,,.
Furthermore, y, satisfies the equation {s;,x) = a; for all i = 1,...,m, the
convex combination of these m equations with coefficients Ay,..., A, also

holds at gy. Therefore,
h(s") =<(s",=1), 90) = 2 Ail8is Yo) = Z A
i=1 i=1

holds and thus (', h(s")) is contained in conv(sy,. .., Sm).

Now, assume that y is on the boundary of () and cannot be taken to be
in the interior of Q. Let u,...,u; be normal vectors of the facets of ) at
yo with (ul,yp) = b;. Write u; = (u},0) for i = 1,...,l. By Theorem 3.2.11

again, we obtain
(s',—1) Z Nisi + Z s, (3.2.2)

where >, \; = 1 and p; > 0 for all j. Applying (e, (y(, 9(y;))) on both sides
of (3.2.2), we have

m l
h(s') = D Nh(s)) + D b,
i=1 j=1

which implies
Z (s}, a; —|—Z pj(uf, b;) € conv((sh,ar), ..., (s,,ap))+cone(V).

This shows that epi(h) is contained in the sum of the convex hull of (), a;)
;5 (8}, ap) and the conical hull of V' U {e,;1}. The converse follows immedi-
ately from the definition of supporting hyperplanes. Because the image of a
V-polyhedron under a projection is again a V-polyhedron, we conclude that
P and epi(h) are V-polyhedron. Since we can take (s}, a;) and (u}, b;) to be

rational, P and epi(h) are also rational. ]
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Theorem 3.2.16 (|M], |Z, Theorem 1.2]). Every H-polyhedron is a V-
polyhedron. Also every V-polyhedron is a H-polyhedron.

Thanks to Theorem 3.2.16, we can drop H or V from H-polyhedrons or
V-polyhedrons and just call them polyhedrons. Now we have the following

characterization for toric psh functions with analytic singularities.

Theorem 3.2.17. Let ¢ be a toric psh function on D(0,r) < C" with
analytic singularities and let g be the convex function associated to ¢. Then
the domain P of g* is a polyhedron such that P + R} < P and (2/c)P is

rational. Furthermore, g* can be written as

" (y) = = max ((ti,y)+b;) + O(1) (3.2.3)

2 1<i<N

where t; € Q™ and b; € Q.
Conversely, let P < R be a polyhedron such that (2/c)P is rational and
P + R < P and let h be a function on P defined by

C

h(y) = 5 [hax ({(s5,y) + a;) +v(y) (3.2.4)

where s; € Q7 , a; € Q and v is a bounded function such that A is convex and
decreasing in each variable. Then ¢(z1, ..., 2,) := h*(log |z, ..., log|z,]) is
a toric psh function with analytic singularities on D(0,7) < C" for some

r > 0.

Proof. This is an immediate consequence of Lemma 3.2.13, Remark 3.2.14
and Theorem 3.2.15. O

Remark 3.2.18. In the converse part of Theorem 3.2.17, r could be any

positive real number such that

(=00, —r)" < dom(h*).
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For the proof of main theorem, we want to describe a relationship between
the convergence of a sequence of convex functions with the convergence of

its conjugate. Start with the following simple lemma.

Lemma 3.2.19. Let (f;) be a decreasing sequence of convex functions de-

fined on an open subset in R™. Then lim f; is also convex.
k—o0

Proof. We can prove the convexity directly.

I fi(Az + (1= Ny) < Afu(@) + (1= 2 fuly)

< AMom(z) + (1= X) fu(y)

Here m < n are arbitrary positive integers. Letting n — o0 and then letting

m — 00, we obtain the result. O

For the sake of our argument, we introduce a notion of lower semicon-
tinuous regularization. For a family of lower semicontinuous functions (f,)
which is locally uniformly bounded below, its infimum f = igf fa is not lower
semicontinuous in general. To resolve this we define the lower semicontinuous

reqularization by:

FA() =i inf f(y) < f(a).
€—0 yeB(x,€)
Then it is easy to check that f* is the largest lower semicontinuous which is
< f. Also note that f2(z) is equal to f(x) whenever f is lower semicontinuous

at z. Using this notion, we are now ready to prove the following lemma.

Lemma 3.2.20. Let (g,,) be an increasing sequence of lower semicontinuous
convex functions defined on R™ converging to a convex function g pointwise.
Then (g¥) is a decreasing sequence converging to g* pointwise on the relative

interior of dom g*

Proof. First, we know that convex conjugate operation is order-reversing,

so (g¥*) is decreasing. Also, we know that for each m, ¢g** = g,, by lower
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semicontinuity of g,,. Then using the well-known fact of convex conjugate
(inf fo)*(z*) = sup f¥(x*), we obtain

(inf g7,)* () = sup g* ()

= sup gm () = g(z).

Taking convex conjugate to both side again, we have (inf ¢*)**(z) = g*(z).
We observe that inf ¢, is convex by the previous lemmaTUsing the property
from Remark 2.3.2(3) to (inf ¢%)(z), ¢*(x) < (inf g},)(x). In general, we can
not say about the lower sem?continuity of inf ¢, .mSince gm < g, we know (g*)
is locally uniformly bounded below by ¢* gnd we can think about the lower
semicontinuous regularization of (inf g*)® < inf ¢* . Taking both sides to **,
which is order-preserving and we f{nnow that (T%f g )™ is equal to g*. Also,
(i%f g;';)A is lower semicontinuous and convex so the double conjugate of the
left side is equal to itself (igf g*)®. For convexity of (igf g*)%, we refer to
[HO7, Proposition 2.2.2]. What we have shown is (i7rrllf g*)® < g*. Combining

this with ¢* < (inf ¢,), we obtain

(inf g;‘})A < g* < (infg}).

Since (inf g)) is convex, it is continuous in the relative interior of dom g*.
m
This implies that (inf g*) in fact coincides with (infg*)® in the realtive
m m

interior of dom g*. This concludes the proof. O

3.3 Proof of Theorem 3.2.1 and some examples

Now we are ready to prove the main theorem.

Proof of Theorem 3.2.1. If (¢,,) is a decreasing sequence of toric psh func-

tions with analytic singularities converging to to ¢ and J(p.,) = J(¢) for
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all n > 1, then P := P(¢;) satisfies the three conditions of the statement 2.
Now assume that there exists a polyhedron P satisfying the three condi-
tions in the statement 2. Let g be the convex function associated to ¢. Then

we can find a sequence of points (u;, ;)7 in Q2" x Q such that

o0
- c
epi(g*) = 5 - (N Hi (3.3.1)
=1

where H, is the closed half-space defined by {z € R™™ : (u,z) > a}.
Indeed, let ¢ be a point in Q5" n (RZH" epi(g*)). Since epi(g*) is a closed
convex set and d(q, epi(g*)) > 0, there exists (v, a’) € RZ" x R such that
H, . separates ¢ and epi(g*) strongly, that is, there exists e > 0 such that
q +eB(0,1) cint(H, ) and epi(g*) + ¢B(0,1) < int(H,}, ), where B(0, 1)
is the unit ball in R"*!. We can choose (u, a) € Q%" x Q which is sufficiently
close to (u',a’) so that the hyperplane H,, also separates ¢ and epi(g*)
strongly. Enumerating all points in Q25" n(RZ{"\ epi(g*)) by positive integers

gives (3.3.1). Let g¥ be the convex function on R™ whose epigraph is given

by 4
& : +
(P x R) n (5 0 Hu],,aj) .

j=1
It is obvious that ¢ is increasing in each variable and lower semicontinuous.
Let ¢; be the psh function associated to the convex conjugate of g;. Then
all p; have analytic singularities by Theorem 3.2.17. Furthermore, ¢; is equi-
singular to ¢ since the Newton convex body P(y;) of ¢; lies between P and
P(p). Note that each g} is of the form (3.2.4) without a bounded function,
we may assume that each ¢; is defined on D(0,r). Since (g}*) is an increasing
sequence of convex functions, (¢;) is a decreasing sequence converging to ¢
on D(0,7) by Lemma 3.2.20. O

Remark 3.3.1. Assuming 2 in Theorem 3.2.1 with ¢ being diagonal, we

can show that the condition of our main theorem implies the condition of
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Theorem 3.1.8. If P = P(yp) satisfies 2 in Theorem 3.2.1, it is nothing but

1 in Theorem 1.1.1. Assume now that ¢ does not have analytic singularities

m
and t = (t1,...,t,) is a positive integer solution of > % = 1. A vector
i=1 "
c-(a7',...,a;},0,...,0) cannot be rational for every ¢ > 0. This implies

that ¢ should be contained in int P, which contradicts (iii) of Theorem 3.2.1
2.

We can create fruitful examples with this theorem. For this, given a closed
convex set P < R satisfying P + R} < P, we can construct a psh function
defined in D(0,r) < C™ for some polyradius r whose Newton convex body is
equal to P. To elaborate the statement, we introduce the following related

notions.

Definition 3.3.2. cf. [Si98|, [K15] Let a. = (a;) be a graded sequence of
ideals in Clzy,...,2,], i.e., a, - a, < a,4, for any p,q € Z=(. Then a Siu psh

function associated to a, is defined as

© = ¢, = log (2 €k|ak|1/k>

k=1
where ¢, is a choice of nonnegative coefficients that make the series converge.

In [KS20], it was proved that for any given convex set P € RZ, satisfying
P + RY, < P, there exists a graded sequence of ideals a, and a Siu psh
function associated to a, whose Newton convex body is exactly equal to
P(See [KS20, Proposition 2.9]). As a result, for an arbirtrary convex subset
P e RY, satisfying P + RZ; < P, we can construct a toric psh function ¢
whose Newton convex body is equal to P.

Next, we introduce a notion of extreme point. Let K be a convex set.

Definition 3.3.3. [H07, Definition 2.1.8] A point z in K is called extreme if
T=MT+ ATy, T, 1€ K =1 =00 =2
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where /\1,)\2 > 0,)\1 + )\2 = 1.

Example 3.3.4. Let P = {(z,y) € R, | zy > 1} M R%,. Then we can
construct a Siu psh function ¢ associated to a graded sequence of monomial
ideals whose Newton convex body is equal to P. We will show that for every
¢ > 0, cp satisfies the condition (2) in Theorem 3.2.1. There are two cases of
sets of lattices we need to consider. First, let Ay, ..., Ay be lattice points in
R-o\P(cp). Then for each A; for 1 < j < N, there exists a unique point B;
on 0P(cy) such that the distance between A; and B; is the distance between
A; and P(cy). Let H; = {a;x + by + ¢; = 0} be the equation of tangent line
of zy = c at B;. Then, by changing a;, b;, ¢; slightly, we can take H; having

following properties.
1. For each 1 < j < N, H; separates A; and P(cyp).
2. For each 1 < j < N, H; is rational.

Secondly, there are lattice points Bj,..., B}, on the dP(cy). Then for each
1 < j < M,let Hj be the tangent line of zy = c at B}. Now, if we take the
polyhedron defined as

M
1+
Hj7
1

N
P=(H N
Jj=1 J

then this P exactly satisfies the condition (2) in Theorem 3.2.1. Here, H ]+
and H ’j+ are upper hyperplanes such that contains P(cy).

Remark 3.3.5. In particular, we would like to emphasize that there exist a
toric psh function ¢ whose boundary has a lattice point on its interior, but
admits a decreasing, equisingular approximation with analytic singularities.
Note that such ¢ does not exist when we only consider in the category of
psh functions log max|z;|* without analytic singularities, because it neither
holds (1) nor (2) in Theorem 3.1.8.
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Chapter 4

Multiplier ideal sheaves on

singular varieties

In Chapter 4, we will discuss the notion of multiplier ideal sheaves on sin-
gular varieties and related properties. Since most of analytic multiplier ideal
sheaves are infeasible to compute in singular cases, so we describe a combi-
natoric characterization when psh functions are toric. The results contain a
generalization of Rashkovskii-Guenancia’s theorem Theorem 2.3.8. We begin

by preliminary notions.

4.1 Singularities of normal varieties

In this section, we introduce definitions and notions related to our main
results. All varieties in this section is of field k = C. Also, we mean varieties
by irreducible varieties. Most of materials in Section 4.1 come from [KM9§],
[K97].
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4.1.1 Canonical sheaves on normal varieties

Let X be a normal variety. For a divisor D(formal finite sum of irreducible
closed subvarieties of codimension 1), we define the divisorial sheaf O(D)
associated to D by O(D)(U) = {f € k(X) | div(f) + D], = 0}. Here k(X) is
the function field of X. In general, O(D) is coherent of rank 1, i.e., the vector
space O(D), ® k(X) is a k(X)-vector space of rank 1, but not necessarily

invertible.

Example 4.1.1. Let X = {xy = 2?} < C? be a normal variety and let
D={x=2=0}and let F={y=2=0} and take U = X\FE.
1 1
Take h = —. Then h € I'(U, O(D)). Also, if we take h = —, then div(h) + D|,, =
x z

(=D —E)+ D)|y; = Elxu = 0. Since U meets D, neither of f’ Z can be
z
regular in U. Hence O(D) is not invertible.

Definition 4.1.2. Let X be a normal variety and D be a divisor. If O(D)
happens to be locally free of rank 1, we say D is a Cartier divisor. Otherwise,
D is called a Weil divisor. A Q-divisor is a linear combination of prime
divisors with rational coefficients. A Q-divisor is said to be Q-Cartier if

there exists an integer m € Z-o such that mD is a Cartier divisor.

Next, we are going to define a canonical divisor, which is closely related
to sheaf of holomorphic (n,0)-form in complex manifold. Let X be a normal
variety of dimension n. As we said, when X is smooth, we define the canon-
ical line bundle to be wy = det(Qﬁc/k), i.e., the n-th exterior power of the
cotangent bundle of X over k. When X is not smooth, let U = X\ X§;,,, and
consider wyr := det(Q%] /k). Let 0y be a rational section of wy, i.e. locally, 0y

can be written as

0, — 92(2)

dzi A ... Adzy,.
91(2)

Take the divisor of 6y defined by div(6y) < div( @) is well-defined on U.
g
Since X is normal, X\U is of codim > 2 and we know that the natural

restriction map Z'(X) % Z'(U) is an isomorphism. Here, Z'(X), Z*(U) are
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abelian groups of Weil divisors on X, U respectively. Now, we define Kx
by the inverse image of p by div(fy), which is a Z-Weil divisor on X and
depending on the choice of 0.

The divisorial sheaf Ox (K ) is well-defined, i.e., independent of choice
of 0y. Indeed, for any two rational forms 6y and 6, on U, they are linearly
equivalent on U and can be extended to linear equivalence on Z'(X). It is
well-known that two divisorial sheaves Ox (D;), Ox(Ds) are isomorphic when
two divisors Dy, Dy are linearly equivalent. We call Ox (K x) by the canonical
sheaf of X.

Definition 4.1.3. Let X be a normal variety. Then X is said to be Goren-
stein if the canonical sheaf is invertible(or, a canonical divisor is Cartier). X
is said to be Q-Gorenstein if there is an integer m € Z-o such that the sheaf

associated to a multiple of canonical sheaf is invertible(or a canonical divisor
is Q-Cartier.

Remark 4.1.4. Since one can pull-back rational function by morphism be-
tween normal varieties, we can naturally consider the pull-back of Kx when-
ever Kx is (Q-)Cartier. In general, we need some supplementary divisor to
make Ky being QQ-Cartier. We will discuss this notion in the following sec-

tion.

4.1.2 Singularities of pairs

Let f : Y — X be a birational morphism between normal varieties. Since
Ky is not Q-Cartier in general, we take a Q-Weil divisor B on X such that
Kx + B is Q-Cartier. Thus we can take pull-back m(Kx + B) for some
m € Z~g. Define

f*(Kx + B) := %f*(m(KX + B)).

Then singularities of pair (X, B) are measured by the difference between Ky

and f*(Kx+ B). Note that for Ky, one can choose a rational differential form
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6y defined on V' = Y'\Yy;,,, well-behaved under the choice of 8 which deter-
mines Kx. So, the difference between Ky and f*(Kx + B) is independent of

the choice of 6.

Example 4.1.5. Let X be a smooth surface and let ¥ — X be the blow-up
of a point p € X. Then locally, blow-up can be described by the following
monomial morphism

(u,v) — (uv,v) = (s,t).

In particular, ds A dt = (vdu + udv) A dv = vdu A dv. Since {v = 0} is a local
defining equation for the exceptional divisor F and we know that Ox(Kx)

is a sheaf of holomorphic (n,0)-forms if X is smooth, we obtain
Ky = f*Kx + E.

Definition 4.1.6. Let X be a normal variety such that the canonical divi-
sor K is Q-Cartier. Let m € Z-y be an index of Kx where the divisorial
sheaf O(mKx) is locally free. We say that X has terminal (resp. canoni-
cal) singularities if there is a log resolution of singularities for (X, B = ¢)
f:Y — X such that Ky = f*Kx + Zain such that a; > O(resp. a; > 0)
1€l
where Exc(f) = U U,.
iel

Remark 4.1.7. If X is smooth, then X has terminal singularities.
Example 4.1.8. Let X = {xy — 22 = 0} < C3. If we blow up X at p =
(0,0,0), then Ky = f*Kx+0-F. Thus X is not terminal, but canonical(There

is a well-known fact that terminal surface is smooth).
We define log singularities of pair (X, B).

Definition 4.1.9. The pair (X, B) is kit (Kawamata log terminal) if a; > —1
and also the coefficients of B = ijBj with b7 € (0,1). The pair (X, B) is
le (log canonical) if a; = —1 and also the coefficients of B = Ebij with
bj € [0,1].
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Remark 4.1.10. 1. In [K97|, [KM98]|, being kit allows b; € (—o0, 1).
2. In the analytic setting, suppose X is smooth. Let B = Ebij =

Z b; div(h;) where h; are local holomorphic functions. Then

1
(X,B) : kit < h= | | W is locally integrable.
31777

4.2 Toric geometry

In this section, we review some basic facts from toric geometry which are
necessary and intuitive. Most of materials are from [F93|. Again, we fix our

base field k = C.

4.2.1 Convex Polyhedral Cones

From now on, we denote N for the lattice(which is isomorphic to Z™ for
some n € N). For given N, N ® R becomes the n-dimensional vector space.

Denote it V' unless we note for it specifically. Now, a convexr polyhedral cone

generated by vy,..., v, is a set
o={cv + ...+ cpvgler, ... o = 0}
Such vectors vy, ..., v, are called the generators for 0. The dimension dim

o of o is defined by the dimension of the vector space spanned by o. The
dual ¢ of any subset ¢ is defined by the set of equations of supporting

hyperplanes, i.e.,
oV ={ueV*|{u,v) =0 for any veo}.
A face T of o is the intersection of ¢ with any supporting hyperplane:
r=0nut={veo:{uv) =0}
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for some u in ov. A cone itself is regarded as a face, while others are called
proper faces. In particular, a face 7 is called a facet if it is of codimension
one.

We present the properties of convex polyhedral cones and their dual cones.
See [F93, §1] for the proofs.

Proposition 4.2.1. Let 0, 0¥, V be as above.
i(0v)Y =o0.

ii Any face is also a convex polyhedral cone and any intersection of faces

is a face. A face of face is also a face.
iii Any proper face is contained in some facet.

iv. The topological boundary of a cone that spans V' is the union of its

proper faces(or facets).

v If 0 spans V and o # V, then o is the intersection of the half-spaces
H, ={veV :{u;,v) >0}, as 7 ranges over the facets of o. Here, u, is
a vector(may not be unique) that satisfies a relation 7 = o N u,* for a

facet 7 of 0.
vi The dual of a convex polyhedral cone is a convex polyhedral cone.

This demonstrates that polyhedral cones also can be defined as the inter-

section of half-spaces: for generators uy,...u; of oV,
o={veV:{u,v)=0,.. du,v)y =0}

We say that o is rational if all of its generators can be taken from N. From
the above procedure, we can check that ¢V is also rational. Indeed, the form
of u, is a solution for linear system of equations which have coefficients as

integers.
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Proposition 4.2.2. Let ¢¥ be the dual cone of ¢. Then followings hold.

i (Gordan’s Lemma) If o is a rational convex polyhedral cone, then S, =

oY n M is a finitely generated semigroup.

L is a face of ¥, with dim(7)+dim(c¥ N

ii If 7is a face of o, then 0¥ N7
1) = n =dim(V). This sets up a 1-1 correspondence between the faces

of o and the faces of o¥. The smallest face of o is 0 N (—0).
iii fuecY,and 7 =0 nut, then 7V = oV + Rop - (—u).

iv Let o be a rational convex polyhedral cone, and let u bein S, = oV M.

1

Then 7 = 0 N u™ is a rational convex polyhedral cone. All faces of o

have this form, and S; = S, + Zx¢ - (—u).

v If o and o’ are rational convex polyhedral cones whose intersection 7

is a face of each, then S, = S, + S,.
We end up this subsection by charaterizing cones of our main interest.

Proposition 4.2.3. For a convex polyhedral cone o, the followings are equiv-

alent:
1. on(—0)={0};
2. o contains no nonzero linear subspace;
3. there is a v in ¢V with o nut = {0};
4. oY spans V™.

Remark 4.2.4. A cone satisfying the above conditions is called strongly
convez. If the cone is strongly convex, then the rays generated by a minimal
set of generators are exactly the one-dimensional faces of 0. We will write
"t < 0" to mean that 7 is a face of 0. A cone is called simplicial, or a simplez,

if it is generated by independent generators.
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4.2.2 Affine toric varieties

We have seen S, is a finitely generated semigroup if o is a strongly convex
rational polyhedral cone. Any additive semigroup S determines a "group
ring" C[S], which is a commutative C-algebra. As a vector space, it has a
basis x“, as u varies over S, with multiplication determined by addition in

S

u+u’

XXt = x
The unit 1 is x°. Generators {u;} for the semigroup S determine generators
{x*"} for the C-algebra C[S].

Any finitely generated C-algebra A determines a complex affine variety,
which we denote by SpecA. In our applications, A will be a domain, so SpecA
will be an irreducible variety. We will speak of a point of SpecA for an ordi-
nary closed point unless we specify otherwise.

For A = C[S] constructed from a semigroup, the points are easy to de-
scribe: they correspond to homomorphisms of semigroups from S to C, where

C is regarded as an abelian semigroup via multiplication:
Specm C[S] = Hom,, (S, C).

For a semigroup homomorphism z from S to C and u in S, the value of the
corresponding function x* at the corresponding point of SpecmC[S] is the
image of u by the map z : x“(z) = z(u).

When S = S, arises from a strongly convex rational polyhedral cone, we
set A, = C[S,] and

U, = Spec C[S,]| = Spec A,

the corresponding affine toric variety. All of these semigroups will be sub-

semigroups of the group M = Sy. If ey, ..., e, is a basis for N, and €], ..., ¢},

rn
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is the dual basis for M, write
X, = x% e C[M].

As a semigroup, M has generators, *ej, ..., xe, so

) —n?

1 1
C[M] = C[Xl,z,...,Xn,—

= C[Xl, Ce 7Xn]X1-...~Xn
which is the ring of Laurent polynomials in n variables. So
Uy = Spec C[M] = C* x ... x C* = (C)"

is an affine algebraic torus. All of our semigroups S will be subsemigroups
of a lattice M, so C[S] will be a subalgebra of C[M]; in particular, it is a
domain. When a basis for M is chosen as above, we usually write elements
of C[S] as Laurent polynomials in the corresponding variables X;. Note that
all of these algebras are generated by monomials in the variables Xj;.

The torus T' = Ty corresponding to M or N can be written intrinsically:
Ty = Spec C[M] = Hom(M,C*) = N ®; C*.

For a basic example, let ¢ be the cone with generators ey, ..., e, for some
k,1 <k <n. Then

Se=Zso- €+ ...+ ZLso-e, +Z € 1+ ...+ Z-e
Hence A, :(C[Xl,...Xk,XkH,ﬁ,...,Xn,Xin], and

U, =Cx...xCxC"x...xC*=CFxC",

It follows from that if o is generated by k elements that can be completed to a
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basis for N, then U, is a product of affine k-space and an (n— k)-dimensional

torus. In particular, such affine toric varieties are nonsingular.

Example 4.2.5. Let N be a lattice of rank 3, and let ¢ be the cone generated
by four vectors vy, v9, v3, and vy that generate N and satisfy vy +wv3 = vy +v4.
The variety U, is a "cone over a quadric surface". If we take N = Z3 and
v; = e;fori =1,2,3,s0v4 = e;+e3—eq, then S, is generated by €7, e3, e] +e5,

and e; + e3, so
A, = C[Xy, X3, X1 Xy, Xo X3] =C[W, X, Y, Z]/(WZ — XY).
Therefore U, is the hypersurface defined by WZ = XY in C*.
If o is a cone in N, the torus Ty acts on U,,
Ty x U, — U,

as follows. A point in ¢ € Ty can be identified with a map M — C* of groups,
and a point x € U, with a map S, — C of semigroups; the product ¢ - = is

the map of semigroups S, — C given by
u— t(u)z(u).

The dual map on algebras, C[S,] — C[S,| ® C[M], is given by mapping x*
to x* ® x* for u € S,. When o = {0}, this is the usual product in 7. These
maps are compatible with inclusions of open subsets corresponding to faces

of o. In particular, they extend the action of Ty on itself.

4.2.3 Singularities in toric geometry

In this section, we will discuss the criterion for being U, nonsingular and the

resolution of singularities for toric varieties.
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Proposition 4.2.6. An affine toric variety U, is nonsingular if and only if

o is generated by part of a basis for the lattice N, in which case
U, =~ CF x (C*)"% k= dim(o).

We therefore call a cone nonsingular if it is generated by part of a basis
for the lattice, and we call a fan nonsingular if all of its cones are nonsingular.

Although a toric variety may be singular, every toric variety is normal:
Proposition 4.2.7. Each ring A, = C[S,] is integrally closed.

To define the multiplier ideal sheaves on toric varieties X, we need a res-
olution of singularities and log resolution of an ideal sheaf. In toric varieties,
there is a combinatoric characterization for resolution of singularities. Let X
be a fan defined in the lattice N.

Theorem 4.2.8. [CLS11, Theorem 11.1.9, 11.2.2] Every fan ¥ has a refine-

ment Y’ with the following properties:
1. ¥’ is smooth.
2. Y contains every smooth cone of X.
3. Y is obtained from X by a sequence of star subdivisions.

4. The toric morphism ¢ : Xyy — Xy is a projective resolution of singu-

larities.
Furthermore we can set ¢ as an SNC resolution of singularities.

Theorem 4.2.9. [CLS11, Theorem 11.3.10] Let a < Clxy,...,x,] be a
monomial ideal. Then there is a toric morphism ¢ : Xy — C” that is a

log resolution of a.
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4.3 Multiplier ideal sheaves on singular vari-

eties

In this section, we will discuss the definition of multiplier ideal sheaves on
singular varieties and its subtleties. Let us begin with the definition of psh

functions defined on normal variety X.

Definition 4.3.1. Let X be a normal variety of dimension n. Let ¢ be an
upper semicontinuous function defined on X. Then we say ¢ is psh if there is
a local embedding U < V into a complex manifold V' and a psh function ®
on V such that ¢ = ®|,;. Here, U is an open subset of X. A psh function ¢ is
said to have analytic singularities if there is an ideal sheaf a and an exponent
¢ such that ¢ can be locally written as glog(|gl|2 + ...+ [gm[?) +O(1) where

g1, ---,9m are local generators of a.

We also have to define the analytic multiplier ideal sheaf for psh function
defined on X. To do this, we first define how volume forms are defined on
singular varieties.

Let X be a normal Q-Gorenstein variety and wx be its canonical sheaf
of index m, i.e., w¥ is an invertible sheaf. Choose a local generator 3 of w¥%
at z € U © X where U is open in X. Then a = Sm defines an (n,0)-form on
Uheg-

Using this «, we are able to define the analytic multiplier ideal sheaf of

psh functions. Let v = ¢, A @& be a volume form on U,, determined by «.

Definition 4.3.2. Let X be a normal Q-Gorenstein variety and ¢ be a
psh function defined on X. Then the multiplier ideal sheaf of ¢ is the ideal
sheaf of holomorphic functions 7 (¢) whose each ring of sections satisfies the

following L2-integrability condition. Indeed, for an open subset U of X,

T)U) = {f e o)

f |flPe v < oo for any V cc U, } :
;
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Note that J(¢)(U) is well-defined, i.e., it is independent of a choice of local

generator 3.

Remark 4.3.3. Let 7 : X’ — X be a log resolution of singularities of a
pair (X, A = 0). Then the integrability condition on Definition 4.3.2 can be

rephrased as
J |7T o f|26_27r*<p n|zz|2bld2’ Adz < 0.
(V)
Here (2;) is a local coordinate chart for 7=!(V') and b; are coefficients of
exceptional divisors come from the log resolution.
First of all, we prove the coherence of J ().

Proposition 4.3.4. J(¢) is coherent.

Proof. Note that the direct image sheaf of coherent sheaf by proper morphism
is coherent. Let m : X’ — X be a log resolution of (X,0) and let Kx =
™ Kx + Y, b;E;. Define an ideal sheaf Z on X’ whose local section is defined
by

(W) = {g e O(W) | J lglPe™>™ ] J2i™dz A dZ < oo} .
w

Here W is a locally bounded open subset of X’ and (z;) is a local coordinate
for W such that E; = {z; = 0}. Since the multiplier ideal sheaf J(p) is a
direct image sheaf of Z, we are enough to show the coherence of Z.

The proof of the coherence of this ideal is analogous to the proof of
coherence of multiplier ideal sheaves in complex manifold. Let H?(W, ¢) be
the family of ideal sheaves on W generated by finite subsets of holomorphic
functions satisfying the integral condition in Z. Then H2(W, ) has a maximal
element which is a coherent ideal sheaf on WW. Since the result is local, we
are enough to check that Z|;, is coherent. Let .# be a maximal element in
H2(W, ¢) and we are going to show .# = Z. Note that .# < Z is obvious.
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To prove the equality, fix x € W and let F, ..., E; be exceptional divisors
containing x. Note that if £ = 0, Z is locally coherent and there is nothing
to prove. Thus, we only consider £ > 0. Using change of coordinates, we
may assume z = 0 and F; = {z; = 0}. We will show then Z, = ... By the
viewpoint of Krull’s intersection theorem(See [E13, §5.4]), we are enough to
check that ., + Z, nms*! = 7, for every integer s > 0. Here let = be in some
proper intersection of F;. Now for f € Z, and let # be a cut-off function such
that = 1 near z. Solve the equation du = g := 0(ff) using Theorem ??
where the weight is given by

@ =T"p— Zb log|z;| —I—Z + b, —|— ) log|zi| + |2

Then the Lelong number of ¢ at z is v,(¢) = (n + s) and by Lemma 2.2.5,
we have I’ := u — 0f is holomorphic and F' € .#. Now, we have f, — F, =

Uy € I, n m* L. This concludes the proof. O

Next, the definition of analytic multiplier ideal sheaf is coherent with the
definition of algebraic multiplier ideal sheaf. For this, we define the algebraic

multiplier ideal sheaf in singular case.

Definition 4.3.5. Let X be a normal variety and let (X, A) be a pair.
Let a be an ideal sheaf and ¢ > 0 a rational number. Fix a log resolution
i X' — X of a that also resolves the pair (X, A). Suppose that Kx =
p(Kx + A)+ Y a(E)E and a- Ox = Ox/(—F) where —F = > b(E)E
Then define the (algebraic) multiplier ideal sheaf associated to a and ¢ by

J((X,A),a) = . Ox/(Kx — [0 (Kx + A) + cF])
= 1.0x/(Y Ja(E) + cb(E)|E).

Proposition 4.3.6. Let ¢ be a psh function of analytic singularities rep-
resented by a®. Then J(¢) = Juy(a®). Here, J,, means the definition of

algebraic multiplier ideal sheaf.
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Proof. Let U be an open subset in X and let f € J(¢)(U). Let 7: Y — X
be a log resolution of an ideal a so that 7*a is an invertible sheaf O(—F)
associated with a simple normal crossing divisor £ = ZbiEZ- where FE; is
defined to be {z; = 0} on some local coordinate chart (V (z;)) < 7= 1(U).
We are enough to check the local integrability of f on U, so by the change
of coordinates, we are enough to check the integrability on local coordi-
nate chart of 7T_1<U). Let Ky = mKx + Z%’Ei- Then since 7*v is equal
to H\zi]%id)\ where d\ is the Lebesgue measure on V, the integrability is

equivalent to
[t T o <
v

for all coordinate charts V < 7=1(U).

Since €™ ¥ can be represented as a product of |z|% upto O(1) function, the
above integrability condition can be reformulated as | |7* f|? 1_[|zZ |2lai=eb) g\ <
+00. Thus, for the integrability, we need to check th‘é/it the multiplicity of f
with respect to z; is greater than cb; — a; — 1 for each 17, i.e., whether 7* f

|cbi—a;]
)

divides z or not should be checked. Explicitly,

fed(p) < femOy(=) |ch - aE)
— femOy()[a; - chi|E;)
— femOy(Ky — |7 Kx + cE|)
— fe Juya).

This concludes the proof.
O

Here, there should be limits on defining multiplier ideal sheaf on general
normal variety X, since singularities are assumed to be Q-Gorenstein. So,
we would like to mention a variant of multiplier ideal sheaf, so-called the
multiplier module. Let X be a normal variety which is not necessary to be

Q-Gorenstein.
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Definition 4.3.7. [Bl04, Definition 2| Let X be a normal variety and let a
be a sheaf of ideals on X. Let p1 : ¥ — X be a log resolution of a. Then
we define the multiplier module by J,(a¢) := 1Oy (Ky — |cA]) € wx where
a-0Oy = Oy(—A) and ¢ > 0.

First of all, it is well-defined, i.e., it is independent of a choice of a log
resolution. If we obtain two multiplier modules of an ideal from two different
log resolutions, we can take a common log resolution which dominates both
of them.

Note that it may not be an ideal sheaf indeed. However, in some specific
cases such as affine toric varieties, we can consider multiplier module as an
ideal sheaf. We will discuss this on later section.

For general case, we use a language of differential geometry. Let X be a
normal variety and ¢ be a psh function defined on X and let U be an open
subset of X. Then one can define a submodule J,(¢) of wx which consists

of elements satisfying the integrability in U:
2 —
ﬁ € jw((p)(U) = N -1 f A f672<p € Llloc(Ureg>

where f is restriction of 3 in U,,.

Unlike multiplier ideal sheaf cases, we have the functorial property. In-
deed, if p : X' — X is a modification, . (Ju,, (¢ o p)) = Jux(p). It is
straightforward due to change of variables, see [D10, Proposition 5.8] for the
proof. Using this, we can prove that the definition above is indeed a gen-
eralization of algebraic definition of multiplier module. Let us distinguish
between algebraic definition and analytic definition by denoting 7, 4, and

Juwal for a moment.

Proposition 4.3.8. Let ¢ be a psh function with analytic singularities re-
lated to a®. Then J,, an(¢) = Jw.a(ac).

Proof. Let U be a fixed relatively compact open subset of X and let Y —
X be a log resolution of a. Write a- Oy = Oy (— > b;E;) = Oy (—F). Take
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a relatively compact coordinate chart (V, (y;)) < p~Y(U) and E; = {y; = 0}
locally. Here we may check integrability condition on V instead of p~(U),
since the integrability condition in multiplier module is local. By the change
of variables, we have the following integrability condition which is equivalent

to f € Juan(U)
1 -
J T el [ At f < oo,
v [yl

Write p* f = gdy; A -+ A dy,. Then the integrabilty is equivalent to div(g) —
cb > —1. Here b = div(nyfi) and 1 = div(y; - - y,). Thus div(g) >
|cE|. Since a holomorphic n-form dy; A --- A dy, corresponds to a ba-
sis of Oy (Ky)(V), we get gdy; A -+ A dy, € Oy(Ky — |c¢E])(V). Hence
pf € Oy (Ky —[cE)(n=(U)).

O

4.4 Multiplier ideal sheaves on toric varieties

In general, computation of a volume form in Definition 4.3.2 seems quite
difficult. So, we can not obtain any satisfactory example for multiplier ideal
sheaves of psh functions on singular varieties. Instead, if we restrict our case in
toric psh functions, we can get a combinatoric characterization of multiplier
ideal sheaves whose computations are feaasible.

In this section, we will define notion of toric psh functions on toric vari-
eties and related objects for computing multiplier ideal sheaves of toric psh

functions. Explicitly, we will prove the following theorem.

Theorem 4.4.1. Let X be a normal, Q-Gorenstein affine toric variety given
by the cone ¢ < N whose dimension is set to be n = dim Ng. Let ¢ be a
toric psh function defined on X. Then the multiplier ideal J (¢) := J(¢)(X)

of p on X is a monomial ideal and given by:
X' € J(p) <= v—div(Kx) € int(P(p)).
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Here, div(Kx) is a point in vector space Ng whose point is related to the

Q-Cartier divisor Kx. We will explicitly define div(Kx) in later section.

4.4.1 Newton convex bodies of toric psh functions on
(C?’L

In this subsection, we will introduce the definition of Newton convex body
of a psh function defined on C™ and define the Newton convex body of psh
functions ¢ on general toric varieties and prove its well-definedness. Note
that we already know how the Newton convex body of psh functions defined
on polydisk D(0,r). We can observe that the Newton convex body is actullay
irrelevant to choice of r. So we can use this simple observation to enlarge our
domains of definition for P(yp). We start with the definition of a toric psh

function ¢ on a toric variety X.

Definition 4.4.2. Let X be a toric variety equipped with the torus action
T x X — X and let ¢ be a psh function on X. Then ¢ is said to be toric
if it is invariant under the torus action, i.e., p(gz) = ¢(x) for every pair
(9,2) e T x X.

Remark 4.4.3. Here, we note that being ¢ toric is invariant under com-
posites with toric morphisms. In fact, let 7 : ¥ — X be a toric morphism
between two toric varieties and ¢ be a toric psh function. Then since 7 is
a holomophic mapping, being ¢ psh is obvious. For ¢ being toric, we are
enough to check g o w(h - y) = ¢ o w(y) where h is an element of the torus
acts on Y. Since 7 is equivariant under the group actions on X and Y, we
know that 7(h -y) = w(h) - 7(y) and mw(h) is the element in the torus of X.

Hence, p om(h-y) = ¢(n(h) - 7(y)) = p(n(y)) = pom(y).
Recall the definition of Newton convex body of toric psh functions defined
on D(0,7)(Definition 2.3.1) and Remark 2.3.6. Using these properties, we will

define the notion of Newton convex body of toric psh functions defined on
Cn.
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Definition 4.4.4. Let ¢ be a toric psh function defined on C" and g be a
convex function associated with ¢ on R™. Define P(y) by the Newton convex

body of ¢| D(0.1)- Here, 1 is a polyradius whose each radius is 1.

Remark 4.4.5. T would like to emphasize that this definition does not gen-
eralize our notion of Newton convex body of convex function. Indeed, if we
set ¢(z) = log|z| defined on C, then the Newton convex body of associated
convex function is just {1}, which is totally different from the Newton con-
vex body of ¢(z) = log|z| defined on D(0,1) = C. We define this new notion
because we only focus on the local L? -integrability of holomorphic functions

with respect to the weight e=2%.

Remark 4.4.6. This definition also generalizes the Newton polygon of mono-
mial ideals in C" in toric geometry. See [Ho01]| for the definition of Newton
polygon. For the sake of terminology, we just refer Newton convex body for

dealing with analytic objects.

If we define the Newton convex body of toric psh function ¢ defined on
C", we can check that the J(¢)(C") can be computed in exactly the same

way as the Rashkovskii-Guenancia theorem. Explicitly,

Theorem 4.4.7. Let ¢ be a toric psh function defined on C". Then the
multiplier ideal J(¢) := J(¢)(C") is a monomial ideal and we have:

2Ye J(p) <= a+1eint(P(y)).

4.4.2 Newton convex bodies of toric psh functions on

affine toric variety
For the definition of P(y) on a general affine normal variety X, we begin
with a desingularization with a star-subdivision procedure. Say k subcones

01,...,0 are created during this procedure and p;, m; 1 < ¢ < k are cor-

responding dual lattice maps, morphisms induced by inclusion maps of o;,
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1 < i < k. Furthermore, by change of coordinates, we may assume that pu;

maps oV to Cone(ey, ..., er) and domain of 7; looks like a neighborhood of

0eCn.

Definition 4.4.8. Let ¢ be a toric psh function defined on X. Define the
k

Newton convex body of ¢ P(¢) by () p; ' (P(p o m)).
i=1

Since a star-subdivision may not be unique, we should clarify the well-
definedness of P(yp), i.e., it is independent of choice of subdivisions. For the

proof, we will use the following lemma.

Lemma 4.4.9. Suppose that there are two resolution of singularities
X 1, )?2 ZL™, X, both of which are obtained by star-subdivisions. Then there
is a common resolution of singularities X 5 X which dominates both 7 and

o and also is obtained by star-subdivision.

Proof. Let ¥ be the fan realted with X and let 31, X5 be fans in Ny represent-
ing )?1, )?2. Then let 3 = Y1 U 2. Note that this union can be interpretted
as a subdivision of each ¥; so that is proper and birational. We can subdivide
this 3 in sense of Theorem 4.2.8. Using the abuse of notation, we let 3 be a
subdivided fan of union. Then & — %, — 3,1 = 1,2 where both the first and

second map are given by the identity maps on Ng. This gives the result. [

For discussing the well-definedness, by the above lemma, we may assume
that two resolutions are related with domination, i.e., mo dominates 7. So

our problem is reduced to the following proposition.

Proposition 4.4.10. Let X = C” be the affine toric variety and 7 : ¥ — X
be a modification of X where Y be a smooth toric variety obtained by star-
subdivision of ¢ into k subcones o1, ..., 0. Being similar as above, we let p;
and 7; be corresponding dual lattice inclusion and morphism from smooth

coordinate chart of Y for each 1 < ¢ < k. Let ¢ be a toric psh function
defined on X. Then

ve Plp) < pi(v) e Plpom;) for all 1 <i < k.
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Proof. We know that p, ..., are just the identity mapping which embeds
subcone ¢; into the cone o. For P(¢ om;) we need to consider ¢ o m; as a psh
function defined on C". Indeed, for a moment, transform 7; so that the dual
cone o, of o; becomes cone 7 = {ej,...,e:) and let this map be given by
the matrix B, i.e., €] — b; where b; is the j-th column of B;. This is just a
composite of m; by some toric isomorphism with C". Denote this composite
transformed morphism by 7} and its related linear transformation p. Then
we can consider g o} as a function defined on C". Let denote the associated
convex function to ¢ o w. by g¢;. Then g;(yw) = g(B! - yw), here yy is a
coordinate on R™ which comes from taking log|-| to the standard coordinate
chart of U, and B! is the transpose of B;. Hence, we can represent by P(por!)

using B;:

sup ((z,yw) — gi(yw)) < O(1) <= sup ((z,yw) — g(B;] - yw)) < O(1)

yw ER™ yw€ER?

Now, letting = B;-x; and y; = B!y, we know that the characterization

of P(p om;) is then equivalent to

sup  ((zi, yi) — 9(yi)) < O(1).

inBfRﬁ

This characterizes how (1))~ (P(p o)) = u; (P(pom;)) = P(pom;) looks
like. Hence, from the viewpoint of the above characterization, the intersection

of all P(p o) is in fact,

{%GMR

k
So, we are now enough to check that | ] B/R” is equal to R™, or equivalently,
i=1

sup ({x,y —g(y:)) <O(1) forall 1 <@ < k‘} :

y;€BIR™
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ij BIR" = R". Indeed, recall that B; is a linear transformation in Mg that
zS_eildS o) into 7 = {eq,...,e,)Y. We can consider the R’ in the left hand
side as a cone {ey, ..., e,). Since the transpose of a linear map is just a dual
mapping of original linear map, it maps {ey,...,e,) into exactly o;. So, we

conclude the proof. O

Remark 4.4.11. If we set subdivision as trivial subdivision, i.e., no sub-
division, we know that P(p)’s definition is nothing but Definition 4.4.4.
Also, if we set ¢ to have analytic singularities of type a‘, then this defini-
tion coincides with the original definition of the Newton convex body P(ac).
Let the monomials x"',...,x" be generators of a. Then P(a°) is equal to
Conv(cvy, ..., cv.)+0" and each P(pom;) is given as Conv(cvy, . .., cv.)+0, .
Since 0¥ = (o}, their intersection for all 1 < i < k should be equal to
Conv(cvy, ..., cv.)+0V. For technicality, we refer Section 3.2 for related top-

ics.

We end up this subsection by the description of the canonical represen-
tation for the canonical divisor of X. Let uy,...,u, be minimal edges of o,
i.e., generators of one-dimensional face of o. Then the closure of orbit of
each edge u; defines prime divisor D; of X which is torus-invariant and also
there is the fact that every torus-invariant divisor can be written as a linear
combination of such D,;’s. From the viewpoint of this description, a divisor
ZT] a;D; is Q-Cartier if and only if there is a Q-valued vector m € Mq such
Zt}llat {m,u;y = a; for every i.

Now, it is well-known fact that there is a canonical choice of divisor K x

T
which is torus-invariant, explicitly, — > D;. Thus we can check whether X is
i=1

Q-Gorenstein or not easily. Also, this ;mplies that Ox (K x) can be naturally
embedded into Ox as a monomial ideal when X is affine toric variety. In

particular, we can view the multiplier module as an ideal sheaf of Ox(Kx).
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4.4.3 Proof of the Theorem 4.4.1

We will present the original Rashkovskii-Guenancia theorem which relates the
integrability of monomials with respect to a toric psh weight ¢ with its New-
ton convex body P(y). Before presentation, we simply demonstrate lemma
which is a sufficient condition for being monomial ideals. In this lemma, the
condition is slightly different with the original paper. But the proof is exactly
the same. So, I did not include the proof.

Lemma 4.4.12. [Gull, Lemma 1.12| If J is an ideal of C[S,] such that for

every f € J, monomials appear in f are also in .J, then J is a monomial ideal.
Now we prove the main theorem Theorem 4.4.1.

Proof. (Proof of Theorem 4.4.1) Let X < C¥ be a closed torus equivariant
embedding, i.e., Ty — T¢n~ is a group homomorphism. Then for local inte-
grability, we are enough to show that x’e% is L2-integrable on D(0,r) n X
for arbitrary r € RY.Here 0 is the unique fixed point which is invariant under
the torus action by Tx. Assume that X is determined by the cone o < Ng.

From the viewpoint above, we can consider 7 (¢) as J (@) = {f||f[7e ">
is integrable with respect to a measure defined by a volume form on D(0,r) N
Xyeg}- Rewrite this integrability condition using a toric desingularization
7 : X — X which is also a log resolution. Assume that there are r» smooth
coordinate charts Uy, ..., U, such that cover ﬂfl(Xsing) and come from the
subdivided cones o1, ..., 0,. Also, we may assume, by change of coordinate
via lattice mapping, that U; = C" and 7; : C" — X is a toric morphism for
each 7. Since we restricted our domain to integrate by a relatively compact
subset of X near 0, we may assume that U; = D(0,r;) for some r;. Then by
change of coordinate again, we may assume all r; are equal to 1.

First, we will verify that J(¢) is indeed a monomial ideal. Consider f €

J () can be written as Y a,x” where v are elements of S,. Then pulling back,
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integrability condition is written in nonsingular model. In fact, for each 1,

D(0,1)

Since each v is mapped bijectively to a lattice point in Mg which represents

2P < 4o,

a monomial of U;, use the Parseval’s theorem so that

D(O,l)

This implies 2V should be in J(¢) for all v with a, # 0. Hence, by Lemma

2P < 4o

4.4.12, we conclude that J(¢) is a monomial ideal.
Let p; be the corresponding dual lattice morphism of ; for each 7. The

integrability condition near 0 is then reformulated as follows:

J ‘Xv o ,n_i|2672<po7ri
D(0,1)

— |\’ om[*|z'[* is integrable w.r.t. the weight e

2P < oo

—2¢poT;
— u(v)+a +1e int P(pom)

= pi(v) — pi(div(Kx)) € int P(pom) = int p;(P(p)).

Here, for each i, (2%,...,2}) is the coordinate chart of U; = D(0,1) and
(ai,...,a) is n-tuple of coefficients of simple normal crossing divisors coming
from the relative canonical divisor. The second <= follows from Theorem
4.4.7.

Now, take both sides to u; ' and we obtain the result. ]

We conclude this section by the explanation how our main theorem gen-

eralizes the Rashkovskii-Guenancia theorem.

Remark 4.4.13. The proof also shows the case if ¢ is defined on X n D(0, r)
where D(0,r) is a polydisk in CV which embeds in X. So, we have the
following corollary. Here, we define P(y) in the sense of Definition 4.4.8.
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Corollary 4.4.14. Let X be a normal, Q-Gorenstein affine toric variety
given by the cone o © Nr whose dimension is set to be n = dim Ng. Let ¢
be a toric psh function defined on X n D(0,r). Then the multiplier ideal of
pon X J(p):=T(p)(X nD(0,r)) is monomial and J () is given by:

X' € J(p) < v—div(Kx) € int(P(p)).

Corollary 4.4.14 also generalizes the original Rashkovskii-Guenancia’s

theorem when we set X to be the affine space C".

Corollary 4.4.15. Let X be a normal, Q-Gorenstein affine toric variety and
let ¢ be a toric psh function defined on X. Then the openness property holds,
ie.,

J(p) =T((1+e)p) for e « 1.

Proof. 1t follows from the fact that (1 + €)P(¢) = P((1 + €)¢). Explicitly,
we can view this convex body in nonsingular model(with a desingularization
I X — X) of X. Then we can choose the smallest ¢ among €’s that satisfy
openness property of P(p o ;). Here, p; : C* — X is a composite of toric

coordinate chart map and desingularization . O
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