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Abstract

Topics in the singularities of plurisubharmonic
functions

Jongbong An

Department of Mathematical Sciences

The Graduate School

Seoul National University

Plurisubharmonic functions are fundamental objects in complex analysis
with many applications in complex geometry and even in algebraic geometry.
Their singularities can be extremely complicated : some of the most impor-
tant tools one can use to study the singularities include multiplier ideals and
approximation theorems.

In the first part, based on joint work with Hoseob Seo, we study prob-
lems on equisingular approximation. Recently Guan gave a criterion for the
existence of decreasing equisingular approximations with analytic singulari-
ties, in the case of diagonal type plurisubharmonic functions. We generalize
a weaker version of this to arbitrary toric plurisubharmonic functions.

In the second part, we study plurisubharmonic singularities on singular
varieties. Our main result in this part is a generalization of the Rashkovskii-
Guenancia theorem on multiplier ideals of toric plurisubharmonic functions
to the normal Q-Gorenstein case. This also generalizes an algebraic result of
Blickle to analytic multiplier ideals.

Key words: Plurisubharmonic functions, Multiplier ideal sheaves, Toric
plurisubharmonic functions, Equisingular approximations
Student Number: 2014-21200
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Chapter 1

Introduction

A plurisubharmonic function is one of the most important objects in complex
analysis for connecting algebraic geometry and analytic geometry. The notion
of plurisubharmonic (psh for short) functions was first independently devel-
oped by [Le42] and [O42] to characterize the pseudoconvexity of domains
in Cn. Plurisubharmonic functions are not only used for characterization of
convexities but also used in many areas of complex geometry. For example,
plurisubharmonic functions are local weights of singular Hermitian metrics
with semipositive curvature (cf. [D10]).

The singularities of plurisubharmonic functions can be extremely compli-
cated. Some of the most important tools one can use to study the singulari-
ties include multiplier ideals and approximation theorems. In this thesis, we
present two main results (in Chapter 3 and in Chapter 4, respectively) from
our study of multiplier ideals and approximation theorems.

After setting up preliminaries in Chapter 2, in Chapter 3, based on joint
work with Hoseob Seo, we study problems on equisingular approximation.
Recently Guan gave a criterion for the existence of decreasing equisingu-
lar approximations with analytic singularities, in the case of diagonal type
plurisubharmonic functions. We generalize a weaker version of this to arbi-
trary toric plurisubharmonic functions.
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In Chapter 4, we study plurisubharmonic singularities on singular vari-
eties. Our main result in this part is a generalization of the Rashkovskii-
Guenancia theorem on multiplier ideals of toric plurisubharmonic functions
to the normal Q-Gorenstein case. This also generalizes an algebraic result of
Blickle to analytic multiplier ideals.

In the following Sections 1.1 and 1.2, we have more description of the two
main results in Chapter 3 and Chapter 4, respectively.

1.1 Equisingular approximations of plurisubhar-

monic functions

Since singularities of psh functions are highly complicated in general, one
frequently approximates a psh function by other psh singularities which are
easier to handle.

In the fundamental work [D92a], Demailly gave a crucial method of ap-
proximating a general psh function φ by ones easier to understand, namely
those given by multiplier ideals J pmφq for m ě 1. Since then, the Demailly
approximation has had far-reaching developments and applications, see e.g.
[DK01], [DPS01], [D10], [D13], [R12], [K14], [K16], [G16], [G20], [GL20].

In [DPS01, Theorem 2.3], an important variant of Demailly approxima-
tion was given so that one can approximate φ by a decreasing equisingular
sequence φm Ñ φ which means that the multiplier ideals are all equal :
J pφmq “ J pφq. Such decreasing equisingular approximation was applied in
the proof of the hard Lefschetz theorem [DPS01, Theorem 2.1]. However,
the key property of analytic singularities could not be preserved in [DPS01,
Theorem 2.3].

Indeed, Guan later showed by an example [G16] that one cannot in general
expect all three of ‘decreasing’, ’equisingular’ and ’analytic singularities’ to
hold simultaneously for an approximation of psh functions. On the other
hand, it is known (from [D92a], [DPS01] and [D13]) that any two of the
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three can be made to hold in an approximation.
Moreover in a later paper [G20], for the special case of diagonal psh

functions, Guan gave the following criterion for the existence of decreasing
equisingular approximations with analytic singularities.

Theorem 1.1.1 (Qi’an Guan). [G20, Theorem 1.1] Let 1 ď m ă n be
integers. Let a1, . . . , am be positive real numbers. The psh function φ “

log
m
ř

i“1

|zi|ai on Cn has a decreasing equisingular approximation with analytic

singularities near 0 if and only if one of the following conditions holds:

1. The psh function φ itself has analytic singularities near 0, i.e., there
exists c P Rą0 such that ai

c
P Qą0 for each 1 ď i ď m.

2. The equation
m
ř

i“1

xi

ai
“ 1 has no positive integer solutions.

Note that the function φ in Theorem 1.1.1 does not necessarily have
analytic singularities when ai’s are irrational, cf. [K16, Example 4.1]. For
example, φpz1, z2q :“ log p|z1|

?
2 ` |z2|

?
3q in C2 does not have analytic sin-

gularities but satisfies (2) in Theorem 1.1.1. Therefore φ has a decreasing
equisingular approximation with analytic singularities near 0. In Chapter 3,
we will generalize a weaker version of Theorem 1.1.1 for arbitrary toric psh
functions. This is our first main result of this thesis, obtained from joint work
with Hoseob Seo.

Theorem 1.1.2. Let φ be a toric psh function defined on Dp0, rq Ă Cn.
Then the following are equivalent.

1. φ admits a decreasing, equisingular approximation pφmq by toric psh
functions which have analytic singularities.

2. There exists a polyhedron P in Rn satisfying the following three con-
ditions:

(i) p2{cqP is a rational polyhedron for some c ą 0,
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(ii) P pφq Ď P and P ` Rn
` Ď P ,

(iii) pintP q X Zn
` “ pintP pφqq X Zn

`.

This is a weaker version of Theorem 1.1.1 since in (1), the approximant
φm itself is assumed toric. Here, r “ pr1, . . . , rnq is a polyradius of a polydisk
in Cn and a polyhedron is a finite intersection of upper hyperplanes in Rn

(see Definition 3.2.10, Definition 3.2.12 and Theorem 3.2.16). In particular,
if all equations of hyperplanes are represented by rational coefficients and
rational constant, we say that the polyhedron is rational.

Our main strategy is to consider convex conjugates of toric psh functions.
We will present an explicit characterization for convex functions associated to
toric psh functions with analytic singularities. Then we will show the relation
between convex functions and their conjugates when convex functions are
from toric psh functions with analytic singularities. Using this we will prove
the main theorem using convergence of convex conjugates.

1.2 Multiplier ideal sheaves on singular vari-

eties

On a complex manifold, plurisubharmonic functions already have compli-
cated singularities. On a (reduced) singular variety or on a (reduced) complex
space, plurisubharmonic functions are still defined. Study of their singulari-
ties becomes certainly much harder in this setting of a singular variety.

As a first guide, we need to look at the study of singularities in algebraic
geometry, in the context of the minimal model program and singularity of
pairs, cf. [KM98]. Let pX,∆q be a pair and let a be an ideal sheaf defined on
X. Then the multiplier ideal sheaf J pX,∆q of a on pX,∆q is defined as

J ppX,∆q, aq “ µ‹OX 1pKX 1 ´ tµ‹
pKX ` ∆q ` cF uq.
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Here µ is a log resolution of ∆ and a. Also F is the inverse image sheaf of a
by µ. For more on definitions and properties of the multiplier ideal sheaves
on normal varieties, we refer to [L04], [FH09], [BFFU15].

In this thesis, as a first step toward plurisubharmonic singularities on a
singular variety, we study toric psh functions. By a toric psh function, we
mean a psh function which is invariant under the torus action. These ideas
are based on convex geometry related to toric psh functions and monomial
ideals. For related topics, we refer to [Ho01], [Gu11], [R11], [Bl04] for the
concepts of Newton polyhedron(or Newton convex body) of monomial ideals
and toric psh functions for computations of multiplier ideal sheaves.

As the second main result of this thesis, we generalize the Rashkovskii-
Guenancia theorem ([R11], [Gu11]) to toric psh functions on a singular toric
variety.

Theorem 1.2.1. [Theorem 4.4.1] Let X be a normal Q-Gorenstein affine
toric variety given by the cone σ Ă NR whose dimension is set to be n “

dim NR. Let φ be a toric psh function on X. Then the multiplier ideal
J pφq :“ J pφqpXq of φ on X is a monomial ideal and given by the following
condition

χv
P J pφq ðñ v ´ divpKXq P intpP pφqq

where χv is a monomial in the affine coordinate ring CrXs of X and divpKXq

is the point associated to a canonical divisor of X in the vector space MR,
the dual space of the vector space NR.

In fact, Theorem 1.2.1 generalizes results in [Gu11], [R11], [Ho01] and
[Bl04]. We also have the following corollary.

Corollary 1.2.2. Let X be a Q-Gorenstein affine toric variety and let φ be
a toric psh function defined on X. Then the openness property holds, i.e.,

J pφq “ J pp1 ` ϵqφq for ϵ ! 1.
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Corollary 1.2.2 says that the openness property hold for toric psh func-
tions defined on affine toric varieties, as a partial generalization in this special
case of the openness theorem of Guan and Zhou [GZ15].
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Chapter 2

Preliminaries

In Chapter 2, we prepare preliminaries needed for our main results in the
following two chapters. In Section 2.1, we introduce the notion of psh func-
tions and their properties. In Section 2.2, we introduce psh singularities and
multiplier ideal sheaves of psh functions. In Section 2.3, we introduce toric
psh funtions together with their properties and some examples.

2.1 Plurisubharmonic functions

In this section we will introduce psh functions. These objects appear to char-
acterize the convexity of domains in Cn. However, psh functions do not play
an important role in several complex variables merely. Plurisubharmonic
functions are used in complex geometry vastly with notion of singularities
in complex geometry. Now, let Ω Ă Cn be an open set. Most of materials are
included in [B], [DX].

Definition 2.1.1. A function φ : Ω ÝÑ r´8,8q is said to be psh if φ is
upper-semicontinuous, locally in L1, not identically ´8 on any component
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of Ω, and the restriction of φ to each complex line is subharmonic, i.e.,

φpz0q ď
1

2π

ż 2π

0

φpz0 ` ξeiθqdθ

for all z0 P Ω and ξ P Cn such that tz0 ` zξ | z P C, |z| ď 1u.

Remark 2.1.2. Some authors do not impose a condition φ P L1
locpΩq nor

being identically ´8. In our paper, we add φ P L1
loc to assure the well-

definedness of
?

´1BB̄φ as a current and to exclude the trivial case being
identically ´8.

The set of psh functions on Ω is denoted by PshpΩq. We mention some
properties of psh functions. Some authors include psh functions that identi-
cally equal to ´8 on some component. But for the sake of convenience, we
do not include them.

Proposition 2.1.3. Plurisubharmonic functions have the following proper-
ties.

i. If φ P PshpΩq, then it is also subharmonic as 2n-variables.

ii. If pφkq Ă PshpΩq is a decreasing sequence of psh functions and if
φ :“ lim

kÑ8
φk is not identically ´8, then φ is also psh.

iii. If φ P PshpΩq is psh and pρϵq is a family of smoothing kernel, then the
convolution pφϵq :“ pφ ‹ ρϵq is smooth, defined on Ωϵ. Moreover, the
family pφϵq is non-decreasing in ϵ and lim

ϵÑ0
φϵ “ φ.

iv. Let φ1, . . . , φk P PshpΩq and let χ : Rk Ñ R be a convex function which
is non-decreasing in each variable. Then the composition χpφ1, . . . , φkq

is also in PshpΩq. In particular φ1`. . .`φk , maxtφ1, . . . , φku, logpeφ1`

. . . ` eφkq are psh.
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v. Let pφαq Ă PshpΩq be locally uniformly bounded above and φ “

supφα. Then the regularized upper envelope

φ‹ :“ lim
ϵÑ0

sup
Bpz,ϵq

φ

is psh and is equal to φ a.e..

vi. Let φ P C2pΩq. Then φ is psh iff its complex Hessian

ˆ

B2φ

BzjBz̄k

˙

1ďj,kďn

is pointwise semi-positive definite. Equivalently,
?

´1BB̄φ ě 0.

vii. Let f : Ω Ñ Ω1 be a holomorphic mapping between domains. Then if
φ P PshpΩ1q, f ‹φ P PshpΩq as a distribution.

Note that most properties in Proposition 2.1.3 follow from the properties
of subharmonic functions. Also, we can use Proposition 2.1.3 (vii) to define
psh functions on complex manifolds.

Definition 2.1.4. Let X be a complex manifold of dimension n and let
φ : X Ñ r´8,8q. Then φ is said to be psh on X if for any local trivialization
U Ă Cn, g : U Ñ X, g‹φ P PshpUq. If φ is locally equal to the sum of a psh
function and a smooth function, we say that φ is quasi -psh.

Note that the above definition is well-defined, since every transition func-
tion is holomorphic and do not affect pshity of φ. Sometimes we have to
deal with psh singularities on compact complex manifolds. However we know
that the only possible psh functions defined on compact complex manifolds
should be constant. Therefore instead of considering psh functions, we some-
times consider the class of quasi-psh functions. Next, we define an important
class of quasi-psh functions, namely quasi-psh functions with analytic singu-
larities.
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Definition 2.1.5. Let X be a complex manifold of dimension n and φ a
quasi-psh function on X. Then φ is said to have analytic singularities if for
any x P X, there is a neighborhood of x P U and holomorphic functions
f1, . . . , fk P OpUq such that φ can be represented as φ “

c

2
logp|f1|2 ` . . . `

|fk|2q ` Op1q for some c ě 0 on U .

We sometimes denote φ “ c log|a| ` Op1q where a “ pf1, . . . , fkq is an
ideal in OpUq. In this notation, we say φ has analytic singularities of type ac.
Note that we did not define the function c log|a| and we cannot even define
log|a| as a function, since we cannot choose a canonical set of generators for
a. But the notation as above makes sense because change of generators only
affects by Op1q term.

2.2 Plurisubharmonic singularities

For a given psh function φ, there are several ways to measure how φ is
singular. We begin with the Lelong number of psh functions.

2.2.1 Lelong numbers of psh functions

In this subsection, we will define the Lelong number and variants of Lelong
numbers for φ. Then we will interpret them by an algebraic language. We
will fix X being a complex manifold of dimension n and Ω being a domain
in Cn in this subsection.

Let φ P PshpΩq. Pick x P Ω such that Dpx, rq ĂĂ Ω. Due to subhar-
monicity of φ, we know that fptq :“ sup

Bpx,etq

φ is convex increasing function

defined on p´8, log rs. Thus, we have
fptq ´ fplog rq

t ´ log r
is non-decreasing func-

tion of t. Letting t Ñ ´8, we obtain the following limit.
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Definition 2.2.1. Let φ, f as above. Then we define the Lelong number of
φ at x by

νxpφq “ lim
tÑ´8

fptq

t
.

Note that the convexity of f implies

fptq ´ fplog rq

t ´ log r
ě lim

tÑ´8

fptq ´ fplog rq

t ´ log r
“ νxpφq

for t ď log r. In other words, φpzq ď νxpφq log
|z ´ x|
r

` sup
Bpx,rq

φ. Since r is

fixed, we can arrange sup
Bpx,rq

φ to be Op1q. It follows that

νxpφq “ maxtγ P R` | φpzq ď γ log
|z ´ x|
r

` Op1q near xu.

This type of inequality is in particular valid in the case when φ has
analytic singularities. Suppose that φ has the singularity of type ac at x.
Then the Lelong number of φ at x is the product of c and the multiplicity of
a at x.

2.2.2 Multiplier ideal sheaves of psh functions

The notion of multiplier ideal sheaf was introduced in [N89] (cf. [D93b])
(while related ideas had already existed).

Definition 2.2.2. Let φ be a psh function defined on an open subset Ω Ă Cn.
The multiplier ideal sheaf J pφq of φ is the ideal sheaf of OΩ such that each
germ satisfies the following integrability condition:

J pφqx “ tf P OΩ,x | |f |2e´2φ is locally integrable at xu.

Here, the measure is taken to be the Lebesgue measure on pΩ, zq where z is
a local holomorphic coordinate.
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If φ has analytic singularities, the definition of J pφq is related to algebraic
multiplier ideal sheaf. Explicitly, if φ is locally equal to

c

2
logp|f1|2 ` . . . `

|fk|q ` Op1q, then the multiplier ideal sheaf is equal to J pacq where a is an
ideal on OpUq generated by f1, . . . , fk. For the proof of this, we need the
following basic functorial property.

Proposition 2.2.3 ([D10, Proposition 5.8], [L04, Proposition 9.3.43]). Let
µ : X 1 Ñ X be a modification of complex manifolds and let φ be a psh
function defined on X. Then

µ‹pOpKX 1 b J pφ ˝ µqq “ OpKXq b J pφq.

Before discussing the well-definedness of multiplier ideal sheaves, recall
the definition of algebraic multiplier ideal sheaf. Let a be an ideal sheaf and
let c ą 0 be a positive number. Let µ : X 1 Ñ X be a log resolution of a.
Then we define the (algebraic) multiplier ideal sheaf J pacq associated to c
and a by

J pacq “ µ‹OX 1pKX 1{X ´ tc ¨ Duq.

Here, KX 1{X is the relative canonical divisor of X 1 over X and a ¨ OX 1 “

OX 1p´Dq.

Proposition 2.2.4. [L04, Theorem 9.3.42] Let X be a complex manifold
and let φ “

c

2
logp|f1|2 ` . . . ` |fk|2q ` Op1q be a psh function with analytic

singularities defined on an open subset U Ă X, then J pφq “ J pacq where a

is an ideal generated by f1, . . . , fk P OpUq.

We end this section with relating the Lelong number with multiplier ideal
sheaf.

Lemma 2.2.5. [Sk72] Let φ be a psh function defined on an open subset
Ω Ă Cn and let x P Ω.

i. If νxpφq ă 1, e´2φ is locally integrable near x, i.e., J pφqx “ OΩ,x.
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ii. If νxpφq ě n ` s for some integer s ě 0, then e´2φ ě C|z ´ x|´2n´2s in
a neighborhood of x and J pφqx Ă ms`1

x where mx is the maximal ideal
of OΩ,x.

iii. The zero variety V pJ pφqq satisfies Enpφq Ă V pJ pφqq Ă E1pφq where
Ecpφq is the c-upperlevel set of Lelong numbers of φ.

2.3 Toric plurisubharmonic functions

In this section, we briefly introduce what is toric psh function and related
properties of toric psh functions. We begin with the definition.

Definition 2.3.1. Let Dp0, rq be a polydisk in Cn with a polyradius r “

pr1, . . . , rnq. A psh function defined on Dp0, rq is said to be toric(or multi-
circled in [R11]) if its value is invariant under torus action, i.e., φpz1, . . . , znq “

φpeiθ1z1, . . . , e
iθnznq where θ1, . . . , θn are elements in R.

In case psh function φ is toric, φ has a nice property by following.

Proposition 2.3.2. Let φ be a toric psh function defined on Dp0, rq. Then
one can associate the increasing convex function g defined on p´8, log r1q ˆ

. . . ˆ p´8, log rnq which satisfies gplog|z1|, . . . , log|zn|q “ φpz1, . . . , znq.

Sketch of the Proof. Fix z P Dp0, rq and let the radius of each component be
given by ti. Then φpzq is equal to sup

wPDp0,tq

φpwq where t “ pt1, . . . , tnq. Note

that t ÞÑ sup
wPDp0,tq

φpwq is already increasing and convex by convexity proper-

ties of psh functions. See [DX, §1.5, 5.13, 5.14] for the convexity properties
of psh functions.

Also, there is a very nice description of multiplier ideal sheaf when φ

is toric. Before characterization, we need the following preliminary tools in
convex analysis. Let us begin with the definition.

13



Definition 2.3.3. Let g : Rn ÝÑ p´8,`8s be a convex function which
is not trivial in the sense of being g is not identically neither ´8 nor
8. Then define the convex conjugate g˚ : Rn ÝÑ p´8,`8s by g˚pxq

def
“

sup
yPRn

pxx, yy ´ gpyqq. Also, the domain of g˚ is called the Newton convex body

of g and we denote the Newton convex body of g by P pgq.

Remark 2.3.4. We mention some properties of g˚. Let g be a convex func-
tion defined on Rn.

1. g˚ is also a convex function.

2. If g is increasing in each variable, then g˚ is decreasing in each variable,
and vice versa.

3. g˚˚ ď g and g˚˚ is lower semicontinuous. g˚˚ “ g if and only if g is
convex and lower semicontinuous.

The first two statements are straightforward and see [H07, Chapter 2] for the
last.

We define P pφq by P pgq where g is the increasing convex function asso-
ciated with φ.

Remark 2.3.5. We mention some properties of P pφq.

1. The Newton convex body P pgq is closed under the operation of trans-
lation by v P Rn

ě0. Indeed, if x P P pgq and v P Rn
ě0, then x ` v P P pgq.

Later, we will generalize this property to toric psh functions defined on
arbitrary affine toric variety.

2. If φ has analytic singularities of monomial ideal a and c ą 0, then P pφq

is a convex hull of the union of c ¨ v ` Rn
ě0 where zv P a.
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Remark 2.3.6. Let g be a convex function on Rn
´ :“ tpx1, . . . , xnq |

x1, . . . , xn ă 0u which is increasing in each variable. For positive real numbers
r1, . . . , rn and x P Rn, we have the following inequality:

sup
yPIr

pxx, yy ´ gpyqq ď sup
yPRn

´

pxx, yy ´ gpyqq

“ sup
yPRn

´

pxx, y ´ ry ´ gpy ´ rq ` xx, ry ´ gpyq ` gpy ´ rqq

ď sup
yPIr

pxx, yy ´ gpyqq ` xx, ry

where Ir “ p´8,´r1q ˆ . . . ˆ p´8,´rnq is a product of open intervals in
R and r “ pr1, . . . , rnq P Rn. This shows that shrinking the domain of a
toric psh function near the origin does not affect its Newton convex body.
Also, the structure of Newton convex body determines L2-integrability of
monomials with respect to e´2φ, so this observation gives the integrability of
a function on a bounded open subset containing 0 is independent of a choice
of a bounded open subset.

Remark 2.3.7. In [Gu11, Definition 1.7], [R11, Section 3.1], authors inde-
pendently define the notion of Newton convex bodies([R11] used the term
indicator diagram instead) of φ to characterize multiplier ideal sheaves of
toric psh functions. In this paper, I mainly use terms used in [Gu11].

Using these definitions and notions we can describe the following charac-
terization of multiplier ideal sheaf in toric psh functions

Theorem 2.3.8. [Gu11, Theorem 1.13], [R11, Proposition 3.1] Let φ be a
toric psh function defined on Dp0, rq. Then the multiplier ideal J pφq :“

J pφqpDp0, rqq is a monomial ideal and we have:

zα P J pφq ðñ α ` 1 P intpP pφqq.
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Chapter 3

Equisingular approximations of
plurisubharmonic functions

In Chapter 3, we will discuss results on the approximation of psh functions
by psh functions with analytic singularities. We will describe sufficent and
necessary conditions for admitting decreasing equisingular with analytic sin-
gularities approximation for toric psh functions. Among other things, we use
convex analysis for our main theorem in this chapter.

3.1 Equisingular approximations

In this section, we introduce some preliminaries for our main theorem. Let
us begin with the Demailly approximation theorem.

Theorem 3.1.1. [D92a] Let φ be a psh function on a bounded pseudoconvex
open set Ω Ă Cn. For every m ą 0, let HΩpmφq be the Hilbert space of
holomorphic functions f on Ω such that

ş

Ω
|f |2e´2mφdλ ă 8 and let φm “

1
2m

log
ř

|σl|2 where pσlq is an orthonormal basis of HΩpmφq. Then there are
constants C1, C2 ą 0 independent of m such that

i. φpzq ´
C1

m
ď φmpzq ď sup

|ζ´z|ăr

φpζq `
1

m
log

C2

rn
for every z P Ω and

16



r ă dpz, BΩq. In particular, φm converges to φ pointwise and in L1
loc

topology on Ω as m Ñ 8 and

ii. νpφ, zq ´
n

m
ď νpφm, zq ď νpφ, zq for every z P Ω.

The proof of Theorem 3.1.1 uses L2 extension of holomorphic functions
from points. Theorem 3.1.1 connects some results in algebraic geometry into
the analytic geometry. For example, any positive singular metric of singular
Hermitian line bundle can be approximated by psh functions with logarith-
mic poles. These functions can be transformed into a metric associated with
simple normal crossing divisors via techniques in algebraic geometry such as
log resolution of ideal sheaf. We refer to [D93b], [DK01] for applications to
algebraic geometry.

Example 3.1.2. [K14, Theorem 2.1] proved that there exists a decreasing
subsequence of pφnq in Theorem 3.1.1 in sense of adding some constants.
Explicitly, pφpknqq with pknq “ p2nq is decreasing if we add some constant to
each psh approximant. The proof uses the subadditivity of multiplier ideal
sheaves. (For the subadditivity theorem, see [DEL00].) However we do not
expect that the approximation in Theorem 3.1.1 being decreasing in general.

Let X “ C2 with coordinates px, yq and let D “
3

ř

i“1

2
3
Di where D1 “ tx “ 0u,

D2 “ ty “ 0u, D3 “ tx ` y “ 0u. Then there is no pCnq such that makes
tφn ` Cnu decreasing.

Now we will introduce some preliminary results on equisingular approxi-
mations and examples. We mainly follow [DPS01], [G16], [G20].

Before introducing the fundamental result from [DPS01], we define the
equisingularities of two psh functions.

Definition 3.1.3. Let φ, ψ be two (quasi-)psh functions defined on complex
manifold X. Then φ, ψ are said to be equisingular if their two multiplier
ideal sheaves coincide.
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Theorem 3.1.4. [DPS01] Let T “ α `
?

´1BB̄φ be a closed p1, 1q-current
on a compact Hermitian manifold pX,ωq, where α is a smooth p1, 1q-closed
form and φ a quasi-psh function. Let γ be a continuous real p1, 1q-form such
that T ě γ. Then there is a sequence pφνq converging to φ pointwise where

1. φν is smooth in XzZν of an analytic set Zν Ă X.

2. tφνu is a decreasing sequence and Zν Ă Zν`1 for all ν.

3.
ş

X
pe´2φ ´ e´2φν qdVω is finite for every ν and converges to 0 as ν Ñ 8.

4. J pφνq “ J pφq for all ν.

5. Tν “ α `
?

´1BB̄φν satisfies Tν ě γ ´ ϵνω, where lim
νÑ8

ϵν “ 0.

We have two remarks.

Remark 3.1.5. Condition 3 in Theorem 3.1.4 is stronger than condition 4
in Theorem 3.1.4. Indeed, since we know φν ě φ, J pφq Ď J pφνq. Then if
f P J pφνq, condition 3 directly tells us that f is also in J pφq.

Remark 3.1.6. Condition 1 in Theorem 3.1.4 gives a very intriguing prob-
lem. The problem is whether φν can have analytic singularities whose poles
are along Zν . Unfortunately, the answer is negative, because approximants
φν in the proof of Theorem 3.1.4 may be locally equal to φ itself near some
singular point.

Now the following is a specific example due to Guan of psh singulari-
ties that cannot admit a decreasing equsingular approximation with analytic
singularities.

Example 3.1.7. [G16] Let n ě 2 and pCn, pz1, . . . , znqq be coordinates de-
fined on Cn. Let

φ1pzq :“ logpmaxt|z1|, . . . , |zn´1|, |zn|auq,
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where 1 ă a ă 3
2

is irrational. Let

φ2 :“ maxtφ1 ´ 18n, 6 logp|z1|2 ` ¨ ¨ ¨ ` |zn|2q ´ 6nu.

Let
φ :“ ´Mηp´φ2, 0q,

where η “ p 1
1000

, 1
1000

q and Mη is as in [DX, Lemma I.5.18]. Then there exists
a c ą 0 that cφ is psh and does not admit decreasing, equisingular approxi-
mation with analytic singularities.

We remark that the proof that φ is psh needs some cumbersome compu-
tations based on definition of Mη. Also it can be shown that φ is equal to φ1

near 0.
The work of Guan [G20] generalized this example in more broader cate-

gory. He presented a criterion whether psh function in certain class admits
the decreasing equisingular approximation with anlaytic singularities or not.
First, we briefly introduce what class of psh functions we will deal with.

Let pz1, . . . , znq be the coordinates on Cn. We will consider the following
class of psh weights:

tlog
m
ÿ

i“1

|zi|ai | m ď n, ai ą 0 for any 1 ď i ď mu.

Here, a psh weight means a germ of psh function at 0.

Theorem 3.1.8. [G20] The weight φ “ log
m
ř

i“1

|zi|ai has decreasing equisin-

gular approximations with analytic singularities near 0 if and only if one of
the following statements holds:

1. φ has analytic singularity near 0, i.e., there exists c P Rą0 such that
ai
c

P Qą0 for any 1 ď i ď m.

2. The equation
m
ř

i“1

xi

ai
“ 1 has no positive integer solutions.
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In this subsection, we will give ideas used for the proof of Theorem 3.1.8.
Before we prepare the proof of theorem, we add a simple remark.

Remark 3.1.9. Theorem 3.1.8 contains the result of Example 3.1.7. Indeed,
if we set ai’s in φ1 to be a1, . . . , am´1 “ 1, am “ a where a is an irrational
between p1, 3

2
q. Then φ1 satisfies the condition 2 of Theorem 3.1.8. Thus

φ1 does not admit a decreasing equisingular approximation with analytic
singularities.

Note that the function φ in Theorem 3.1.8 does not necessarily have ana-
lytic singularities when ai’s are irrational, cf. [K16, Example 4.1]. For exam-
ple, φpz1, z2q :“ log p|z1|

?
2 ` |z2|

?
3q in C2 does not have analytic singularities

but satisfies (2) in Theorem 3.1.8.

Remark 3.1.10. When φ “ log
m
ř

i“1

|zi|ai , one can easily compute the mul-

tiplier ideal of φ at 0 P Cn using the Rashkovskii-Guenancia theorem 2.3.8.
Note that the Newton convex body of φ is given by intersection of Rn

ě0 and

tx P Rn |
m
ř

i“1

xi

ai
ě 1u. Then the multiplier ideal sheaf of φ at 0 is monomial

and described as

tzm P J pφq0 | m ` 1 P intpP pφqqu.

Here, m “ pm1, . . . ,mnq is a multi-index for exponent of monomial and
1 “ p1, . . . , 1q.

3.2 Equisingular approximation of toric psh func-

tions

So far, we introduced a series of examples related to nonexistence of decreas-
ing equisingular approximation with analytic singularities. In particular, ex-
amples of [G16] and [G20] are both toric psh functions. Inspired by methods
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and proofs of these counterexamples, we would like to present a criterion of
existence of toric decreasing equisingular approximation with analytic singu-
larities. Our main objective is following.

Theorem 3.2.1. Let φ be a toric psh function defined on Dp0, rq. The
followings are equivalent.

1. φ admits a decreasing, equisingular approximation pφmq by toric psh
functions which have analytic singularities.

2. There exists a polyhedron P satisfying the following three conditions:

(i) p2{cqP is a rational polyhedron for some c ą 0,

(ii) P pφq Ď P and P ` Rn
ě0 Ď P ,

(iii) pintP q X Zn
ě0 “ pintP pφqq X Zn

ě0.

Here, r “ pr1, . . . , rnq is a polyradius of a polydisk in Cn and a polyhe-
dron is a finite intersection of upper hyperplanes in Rn (see Definition 3.2.10,
Definition 3.2.12 and Theorem 3.2.16). In particular, if all equations of hy-
perplanes are represented by rational coefficients and rational constant, we
say that the polyhedron is rational.

For the proof of Theorem 3.2.1, we delineate the behavior of toric plurisub-
ahrmonic functions with analytic singularities. Also, we will present the rela-
tions between convergence of sequence of convex functions and convergence
of its conjugates. Most of preliminaries are found in Section 2.3.

Section 3.2 is organized as follows. In Subsection 3.2.1, we characterize
how toric psh functions with analytic singularities and their Newton convex
bodies look like. We also interpret the result of Guan [G20] using convex
analysis related to toric psh functions. In Subsection 3.2.2, we observe how
convex conjugates of toric psh functions with analytic singularities should
behave and demonstrate relationships between the convergence of convex
functions and the convergence of their conjugates. Finally, in Subsection 3.3,
we prove the main theorem and present some relevant examples.
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3.2.1 Newton convex bodies for analytic singularities

In this subsection, we will prove the following characterization of psh function
with analytic singularities and what convex conjugate of toric psh functions
with analytic singularities looks like.

Proposition 3.2.2. Let φ be a toric psh funtion with analytic singulari-
ties on a unit polydisk Dp0, 1q Ď Cn. Then φ is associated to a monomial
ideal with weight c P R`, i.e., φ »

c

2
logp|z|2α1 ` ¨ ¨ ¨ ` |z|2αmq near 0 where

α1, . . . , αm are multi-indices and » means that their difference is in Op1q.

Remark 3.2.3. For a toric psh function φ with analytic singularities, if we
write

φ “
c

2
logp|g1|2 ` ¨ ¨ ¨ ` |gr|2q ` Op1q

near 0, then it is hard to say that the value of |g1|2`¨ ¨ ¨` |gr|2 is independent
of torus action. Notwithstanding the failure above, we can say vanishing of
|g1|2 ` ¨ ¨ ¨ ` |gr|2 is invariant under torus actions.

Proof. We will show by the induction on dimension of domain. Write

φ “
c

2
logp|g1|2 ` ¨ ¨ ¨ ` |gr|2q ` Op1q

near z “ 0.
(Induction on n) Let n “ 1. Let g1, . . . gr have a common zero at 0 with

multiplicity k. Then we may assume |g1|2 ` ¨ ¨ ¨ ` |gr|2 is nonvanishing at
0 by extracting |z|2k. If |g1|2 ` ¨ ¨ ¨ ` |gr|2 vanish at some point z0 ‰ 0, by
Remark 3.2.3, it vanishes on the circle |z| “ |z0|. By the maximum principle
|g1|2 ` ¨ ¨ ¨ ` |gr|2 vanishes on the disk Dp0, |z0|q, contradiction. Thus |g1|2 `

¨ ¨ ¨ ` |gr|2 is nowhere vanishing. In particular, it is bounded below by some
positive number C on some locally compact neighborhood of 0. So, we can
always write φ “ 1

2
log|z|2k ` Op1q near 0.

Now, suppose n ě 2. We introduce some auxiliary notations for con-
venience: Hj is the hyperplane defined by zj and zpiqαpiq is a monomial of
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z1, ¨ ¨ ¨ , pzi, ¨ ¨ ¨ zn with multi-index exponent αpiq. If the common zero set of
g1, . . . , gr contains all Hj, 1 ď j ď n, then similarly, one can extract zα where
α is a multi-index from all g1, . . . , gr so that |g1|2 ` ¨ ¨ ¨ ` |gr|2 vanish identi-
cally on none of Hj, 1 ď j ď n. So, we may assume that tg1 . . . , gru has no
common factor which is a nontrivial monomial. Now if we restrict φ on Hj,
by the induction hypothesis,

φ|Hj
“
c

2
log

´

|g1|Hj
|2 ` ¨ ¨ ¨ ` |gr|Hj

|2
¯

` Op1q

»
c

2
log

´

|zpjqαpj,1q|
2

` ¨ ¨ ¨ ` |zpjqαpj,mjq|
2
¯

.

If we put

hjpzpjqq “
|g1pjq|2 ` ¨ ¨ ¨ ` |grpjq|2

|zpjqαpj,1q|
2

` ¨ ¨ ¨ ` |zpjqαpj,mjq|
2 ,

then it is nowhere vanishing, well-defined positive-valued function on Hj. In
particular, it is bounded below by some positive number Cj ą 0. Let C 1 be
the minimal number among C1, . . . , Cn.

We can argue as above procedure for all j and obtain the set S by joining
zpjqαpj,ijq. Here, 1 ď j ď n and 1 ď ij ď mj. We may regard such αpi, ijq

as a multi-index in n variables inserting 0 for i-th component which is the
excluded index while we were restricting to the hyperplane Hi. So, we may
re-index such messy notations by zβ1 , ¨ ¨ ¨ , zβl . Now, we are enough to show
the following equality:

φ “
c

2
log

´

|zβ1|2 ` ¨ ¨ ¨ ` |zβl |2
¯

(*)

up to Op1q.

Proof of (*): Since every torus-invariant subvariety of Dp0, 1q is given by an
intersection of hyperplanes and Zpg1, . . . , grq does not have any codimension
1 irreducible components, we know that φ itself has a pole set of codimension
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ě 2. We now observe the function

hpzq “
|g1|2 ` ¨ ¨ ¨ ` |gr|2

|zβ1|2 ` ¨ ¨ ¨ ` |zβl |2
.

If it has a pole at some point η, then η should be in some Hj. But on Hj,
hpzq ď hjpzq and hjpzq cannot blow up at η. Thus it is well-defined. Again,
using similar argument with pn “ 1q-case, depending upon the maximum
principle and Remark 3.2.3, we know that h cannot vanish at w where all
wi are nonzero. Now we are enough to check that if some wi “ 0, say wn “

0, then hpwq ě
C

n
min
wj“0

phjpwqq ě
CC 1

n
for some C ą 0 by Lemma 3.2.4.

Therefore, h is bounded below by some positive lower bound near 0.

Lemma 3.2.4. Let a, bi, 1 ď i ď n, b1 ď ¨ ¨ ¨ ď bn are positive real numbers,
then

a

b1 ` ¨ ¨ ¨ ` bn
ě
C

n
min
1ďiďn

a

bi
, where C “

ˆ

b1
bn

` ¨ ¨ ¨ `
bn
b1

˙´1

.

Proof. It is straightforward from the rearrangement inequality :
ˆ

bn
b1

` ¨ ¨ ¨ `
b1
bn

˙

na ě pb1 ` ¨ ¨ ¨ ` bnq

ˆ

a

b1
` ¨ ¨ ¨ `

a

bn

˙

.

In fact, we can take two increasing sequences by xi “ bi and yi “ a
bn`1´i

for
1 ď i ď n. Then npxnyn ` ¨ ¨ ¨ ` x1y1q ě px1 ` . . . xnqpy1 ` . . . ynq.

Using Proposition 3.2.2, we have a useful characterization for toric psh
with analytic singularities.

Corollary 3.2.5. If φ is a toric psh with analytic singularities, written as

φ “
c

2
log p|z|2b1 ` ¨ ¨ ¨ ` |z|2brq ` Op1q,
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and g is a convex increasing function associated to φ defined on Rn
´, then g

is of a form c max
1ďiďr

xbi, xy upto Op1q.

Proof. Since we know that log max
1ďiďr

|z|bi ď logp|z|b1 `¨ ¨ ¨` |z|brq ď log max
1ďiďr

r ¨

|z|bi , φ can be written as
c

2
log max

1ďiďr
|z|2bi `Op1q. This concludes the proof

Using this, we can associate the Newton convex body associated with
toric psh with analytic singularities. For a set of finite points b “ tb1, . . . , bru

in Rn
`, let P pbq be the Minkowski addition of the convex hull of b and Rn

`.
We call P pbq the closed polytope determined by b.

Proposition 3.2.6. Let φ be of a form as in Corollary 3.2.5 and let g be
the associated convex function defined on Rn

ď0. Then P pφq is the closed sub-
set in Rn

` represented as cP pbq ` Rn
ě0, where b is the set of exponents in a

representation of φ and P pbq is the convex hull of tb1, . . . , bru.

Remark 3.2.7. In Proposition 3.2.6, we need not assume that φ itself is of
analytic singularities. Indeed, no conditions of bi are imposed.

Proof. Since P pcφq “ cP pφq, we may assume that c “ 1. It is just from
writing conditions of being in P pφq. Denote P pbq ` Rn

ě0 by Q. Then since
each bi P P pφq, Q Ď P pφq, due to the minimality of convex hull P pbq and
each bi P P pφq.

If t P P pφq is not in Q, then there is a unique vector v that determines
the distance dpt, P pbq ` Rn

`q “ dpt, t ` vq “ |v| ą 0. Here, the uniqueness
of v follows from the convexity of set Q. Also v should be in Rn

ě0. This v
determines a unique region Av defined as:

Av “ ty P Rn
| x´v, yy ď x´v, t ` vyu.

In fact, Av is the lower half-space of a supporting hyperplane of Q at t ` v

which is perpendicular to ´v. Since bj P A for every 1 ď j ď r, we know that

xt ´ bj ` v,´vy ě 0.
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Now. let yk “ ´kv ´ ϵ P Rn
´ be a sequence of points in Rn

´ where k is a
positive integer and ϵ is a small vector in Rn

´. By the definition of P pφq, the
following sequence tk “ xt, yky ´ max

1ďiďr
xbi, yky should be bounded above. It is

equivalent to xt, yky ´ max
1ďiďr

xbi, yky “ min
1ďiďr

xt ´ bi, yky is bounded above. We
can reformulate this again by

min
1ďiďr

xt ´ bi, yky “ min
1ďiďr

xt ´ bi,´kv ´ ϵy

“ min
1ďiďr

xt ´ bi,´kvy ` xt ´ bi,´ϵy

ě min
1ďiďr

pxt ´ bi ` v,´kvy ` x´v,´kvy ` Cq

ě min
1ďiďr

k|v|2 ` C.

Here, C is a bounded constant coming from xt ´ bi,´ϵy and the last
inequality comes from our observation xt ´ bj ` v,´vy ě 0 discussed above.
But this goes to 8 as k Ñ 8 and contradicts our definition of P pφq.

Remark 3.2.8. The above proposition also demonstrates that the definition
of Newton convex body of a psh function is a generalization of the definition
of Newton convex body of a monomial ideal. In fact, a Newton convex body
of a monomial ideal a “ pzb1 , . . . , zbmq where b1, . . . , bm are exponents of gen-
erators of a is defined by Convpb1, . . . , bmq ` Rn

ě0. This is coherent with the
Newton convex body of a toric psh function with anlytic singularities deter-
mined by a monomial ideal a. See [Bl04, Ho01] for details of the definition.

Combining these results with the Rashkovskii-Guenancia’s theorem The-
orem 2.3.8, we can interpret the result of [G20] in the category of toric psh
functions.

Example 3.2.9 ([G20]). If φ “ max
1ďiďm

log |zi|ai defined as a germ of a toric

psh function at pCn, 0q, then by Proposition 3.2.6, its Newton convex body
can be computed concretely, P pφq “

`

H X Rn
ě0

˘

` Rn
ě0, where H is the
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hyperplane defined by a linear equation
m
ÿ

i“1

xi
ai

“ 1.

3.2.2 Convex conjugate of analytic singularities

In this section, we will characterize the convex conjugate of toric psh functions
with analytic singularities and prove the relevance between convergence of
convex functions and convergence of their convex conjugates.

Definition 3.2.10. A closed subset P Ď Rn is a H-polyhedron if P is given
by the intersection of finite numbers of half-spaces. More explicitly, there
exist p vectors a1, . . . , ap and p real numbers b1, . . . , bp such that P is given
by P “ tx P Rn : xai, xy ď bi for all i “ 1, . . . , pu.

By normal vectors in this paper, we mean outward normal vectors. If all
ai and bi can be taken to be in Qn and Q respectively, P is said to be rational.

Theorem 3.2.11. [S, Theorem 2.4.9] Let P be a H-polyhedron in Rn and
p a point in the boundary of P . If F1, . . . , Fm are the facet of P containing
p and a1, . . . , am are normal vectors for F1, . . . , Fm respectively, then every
normal vector a of a supporting hyperplane of P at p is in the conical hull of
a1, . . . , am, that is, there are nonnegative real numbers λ1, . . . , λm such that

a “ λ1a1 ` ¨ ¨ ¨ ` λmam

Definition 3.2.12. A closed subset P Ď Rn is a V-polyhedron if there exist
a finite set of points Y and a finite set of vectors V such that P is the sum
of the convex hull of Y and the conical hull of V , that is,

P “ convpY q ` conepV q.

As in the case of a H-polyhedron, a V-polyhedron is said to be rational
if one can take all points in Y and all vectors in V from Qn.
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Lemma 3.2.13. Let Q be a rational H-polyhedron in Rn
´ such that Q`Rn

´ Ď

Q and let g be a convex function with dompgq “ Q, increasing in each
variable. Then the followings are equivalent.

1. The epigraph of g is a rational H-polyhedron.

2. There are a finite set of vectors ts1, . . . , sNu in Qn
` and a finite set of

rational numbers ta1, . . . , aNu such that

gpxq “ max
1ďiďN

pxsi, xy ` aiq

on Q.

Symmetrically, if we set P as a rational H-polyhedron in Rn
` such that

P ` Rn
` Ď P and let h be a convex function with domphq “ P , decreasing in

each variable. Then the followings are equivalent.

1. The epigraph of h is a rational H-polyhedron.

2. There are a finite set of vectors tt1, . . . , tNu in Qn
´ and a finite set of

rational numbers tb1, . . . , bNu such that

hpxq “ max
1ďiďN

pxti, xy ` biq

on P .

Proof. Suppose that epipgq is a rational H-polyhedron. Let Stx ď a be a
system of essential inequalities for epipgq, where S is an pn ` 1q ˆ pp ` qq

matrix rs1 ¨ ¨ ¨ sp`qs with si, a P Qn`1. We may assume that sp`1, . . . , sp`q

corresponds with essential inequalities for Q, that is, the pn`1q-th coordinate
of sk is nonzero if and only if k “ 1, . . . , p. Thus we can normalize s1, . . . , sp so
that their pn` 1q-th coordinates are all ´1. Set sk “ ps1

k,´1q P Rn ˆR1pk “

1, . . . , p). Now we shall prove that g can be written as the form

gpx1
q “ max

1ďiďp
pxs1

i, x
1
y ´ aiq,
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where ai is an i-th coordinate of a. Then x “ px1, xn`1q P epipgq if and only
if x1 P Q and x satisfies the nonvertical inequaliteis in Stx ď a:

xs1
1, x

1
y ´ a1 ď xn`1,

...

xs1
p, x

1
y ´ ap ď xn`1.

Equivalently, x “ px1, xn`1q P epipgq if and only if x1 P Q and

max
1ďiďp

pxs1
i, x

1
y ´ aiq ď xn`1. (˚)

Observing that gpx1q “ inf txn`1 : px1, xn`1q P epipgqu, we have

gpx1
q “ maxpxs1

i, x
1
y ´ aiq.

Note that every s1
i should be in Qn

`, because all s1
i are essential and g is

increasing.
The converse is immediate from the observation p˚q.

Remark 3.2.14. In Lemma 3.2.13, if Q is a (not necessarily rational) H-
polyhedron, the followings are equivalent (with the same proof).

1. The epigraph of h is a H-polyhedron.

2. There are a finite set of vectors tt1, . . . , tNu in Rn
´ and a finite set of

real numbers tb1, . . . , bNu such that

hpxq “ max
1ďiďN

pxti, xy ` biq

on Q.

Theorem 3.2.15. Let g and Q be as in Lemma 3.2.13 and assume that g
satisfies one of the equivalent condition in Lemma 3.2.13. If h is the convex
conjugate of g, then epiphq is a rational V-polyhedron.
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Proof. Assume that g can be written as

gpx1
q “ max

1ďiďp
pxs1

i, x
1
y ´ aiq

on Q with s1
i P Qn

` and ai P Q. Observe that hps1
iq “ supy1pxs1

i, y
1y ´ gpy1qq

attains its supremum at any y1 such that py1, gpy1qq is on a facet Fi of epipgq

which is given by the equation xps1
i,´1q, xy “ ai. Thus we have gpy1q “

xs1
i, y

1y ´ ai for such y1 and thus hps1
iq “ ai. Observe that in general s1 is

contained in P “ domphq and hps1q “ k if and only if xps1,´1q, xy “ k is a
supporting hyperplane of epipgq and meets epipgq. For notational convenience,
write si “ ps1

i,´1q. Let V be the set of points in Rn`1 given by

V “ tpu1, bq P Rn
` ˆ R : xu1, x1

y “ b is a supporting hyperplane H 1

such that H 1
X Q is a facet of Q. u

We will prove

epiphq “ convpps1
1, a1q, . . . , ps1

p, apqq ` conepV Y ten`1uq, (3.2.1)

where en`1 “ p0, . . . , 0, 1q P Rn`1.
Let s1 be a point in P . Since xs1, y1y ´ gpy1q is a piecewise-affine concave

function in y1 on Q, it attains the supremum, say at y1
0 P Q. By the above

observation, xps1,´1q, xy “ hps1q is a supporting hyperplane of epipgq at y0.
If y1

0 is in the interior of Q, then ps1,´1q is a positive combination of the
normal vectors of the nonvertical facets of epipgq containing y0. Here, by
a nonvertical facet, we mean that its normal vector has nonzero pn ` 1q-th
component. Without loss of generality, suppose that F1, . . . , Fm are the facets
of epipgq containing y0. Then by Theorem 3.2.11, there exist λ1, . . . , λm ě 0

such that
ps1,´1q “ λ1s1 ` ¨ ¨ ¨ ` λmsm.
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Comparing the pn ` 1q-th component of both sides of this, we know that s1

is given by the convex combination of s1, . . . , sm with coefficients λ1, . . . , λm.
Furthermore, y0 satisfies the equation xsi, xy “ ai for all i “ 1, . . . ,m, the
convex combination of these m equations with coefficients λ1, . . . , λm also
holds at y0. Therefore,

hps1
q “ xps1,´1q, y0y “

m
ÿ

i“1

λixsi, y0y “

m
ÿ

i“1

λiai

holds and thus ps1, hps1qq is contained in convps1, . . . , smq.
Now, assume that y1

0 is on the boundary of Q and cannot be taken to be
in the interior of Q. Let u1

1, . . . , u
1
l be normal vectors of the facets of Q at

y1
0 with xu1

i, y
1
0y “ bi. Write ui “ pu1

i, 0q for i “ 1, . . . , l. By Theorem 3.2.11
again, we obtain

ps1,´1q “

m
ÿ

i“1

λisi `

l
ÿ

j“1

µjuj, (3.2.2)

where
ř

i λi “ 1 and µj ě 0 for all j. Applying x‚, py1
0, gpy1

0qqy on both sides
of (3.2.2), we have

hps1
q “

m
ÿ

i“1

λihps1
iq `

l
ÿ

j“1

µjbi,

which implies

ps1, hps1
qq “

m
ÿ

i“1

λips
1
i, aiq`

l
ÿ

j“1

µjpu
1
j, bjq P convpps1

1, a1q, . . . , ps
1
p, apqq`conepV q.

This shows that epiphq is contained in the sum of the convex hull of ps1
1, a1q

, . . . , ps1
p, apq and the conical hull of V Yten`1u. The converse follows immedi-

ately from the definition of supporting hyperplanes. Because the image of a
V-polyhedron under a projection is again a V-polyhedron, we conclude that
P and epiphq are V-polyhedron. Since we can take ps1

i, aiq and pu1
i, biq to be

rational, P and epiphq are also rational.
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Theorem 3.2.16 ([M], [Z, Theorem 1.2]). Every H-polyhedron is a V-
polyhedron. Also every V-polyhedron is a H-polyhedron.

Thanks to Theorem 3.2.16, we can drop H or V from H-polyhedrons or
V-polyhedrons and just call them polyhedrons. Now we have the following
characterization for toric psh functions with analytic singularities.

Theorem 3.2.17. Let φ be a toric psh function on Dp0, rq Ď Cn with
analytic singularities and let g be the convex function associated to φ. Then
the domain P of g˚ is a polyhedron such that P ` Rn

` Ď P and p2{cqP is
rational. Furthermore, g˚ can be written as

g˚
pyq “

c

2
max
1ďiďN

pxti, yy ` biq ` Op1q (3.2.3)

where ti P Qn
´ and bi P Q.

Conversely, let P Ď Rn
` be a polyhedron such that p2{cqP is rational and

P ` Rn
` Ď P and let h be a function on P defined by

hpyq “
c

2
max
1ďiďN

pxsi, yy ` aiq ` vpyq (3.2.4)

where si P Qn
`, ai P Q and v is a bounded function such that h is convex and

decreasing in each variable. Then φpz1, . . . , znq :“ h˚plog |z1|, . . . , log |zn|q is
a toric psh function with analytic singularities on Dp0, rq Ď Cn for some
r ą 0.

Proof. This is an immediate consequence of Lemma 3.2.13, Remark 3.2.14
and Theorem 3.2.15.

Remark 3.2.18. In the converse part of Theorem 3.2.17, r could be any
positive real number such that

p´8,´rqn Ď domph˚
q.
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For the proof of main theorem, we want to describe a relationship between
the convergence of a sequence of convex functions with the convergence of
its conjugate. Start with the following simple lemma.

Lemma 3.2.19. Let pfkq be a decreasing sequence of convex functions de-
fined on an open subset in Rn. Then lim

kÑ8
fk is also convex.

Proof. We can prove the convexity directly.

lim
kÑ8

fkpλx ` p1 ´ λqyq ď λfnpxq ` p1 ´ λqfnpyq

ď λfmpxq ` p1 ´ λqfnpyq

Here m ď n are arbitrary positive integers. Letting n Ñ 8 and then letting
m Ñ 8, we obtain the result.

For the sake of our argument, we introduce a notion of lower semicon-
tinuous regularization. For a family of lower semicontinuous functions pfαq

which is locally uniformly bounded below, its infimum f “ inf
α
fα is not lower

semicontinuous in general. To resolve this we define the lower semicontinuous
regularization by:

f△
pxq “ lim

ϵÑ0
inf

yPBpx,ϵq
fpyq ď fpxq.

Then it is easy to check that f△ is the largest lower semicontinuous which is
ď f . Also note that f△pxq is equal to fpxq whenever f is lower semicontinuous
at x. Using this notion, we are now ready to prove the following lemma.

Lemma 3.2.20. Let pgmq be an increasing sequence of lower semicontinuous
convex functions defined on Rn converging to a convex function g pointwise.
Then pg˚

mq is a decreasing sequence converging to g˚ pointwise on the relative
interior of dom g˚

Proof. First, we know that convex conjugate operation is order-reversing,
so pg˚

mq is decreasing. Also, we know that for each m, g˚˚
m “ gm by lower
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semicontinuity of gm. Then using the well-known fact of convex conjugate
pinf

α
fαq˚px˚q “ sup

α
f˚
αpx˚q, we obtain

pinf
m
g˚
mq

˚
pxq “ sup

m
g˚˚
m pxq

“ sup
m
gmpxq “ gpxq.

Taking convex conjugate to both side again, we have pinf
m
g˚
mq˚˚pxq “ g˚pxq.

We observe that inf
m
g˚
m is convex by the previous lemma. Using the property

from Remark 2.3.4 (3) to pinf
m
g˚
mqpxq, g˚pxq ď pinf

m
g˚
mqpxq. In general, we can

not say about the lower semicontinuity of inf
m
g˚
m. Since gm ď g, we know pg˚

mq

is locally uniformly bounded below by g˚ and we can think about the lower
semicontinuous regularization of pinf

m
g˚
mq

△
ď inf

m
g˚
m. Taking both sides to ˚˚,

which is order-preserving and we know that pinf
m
g˚
mq

˚˚ is equal to g˚. Also,

pinf
m
g˚
mq

△ is lower semicontinuous and convex so the double conjugate of the

left side is equal to itself pinf
m
g˚
mq

△. For convexity of pinf
m
g˚
mq

△, we refer to

[H07, Proposition 2.2.2]. What we have shown is pinf
m
g˚
mq

△
ď g˚. Combining

this with g˚ ď pinf
m
g˚
mq, we obtain

pinf
m
g˚
mq

△
ď g˚

ď pinf
m
g˚
mq.

Since pinf
m
g˚
mq is convex, it is continuous in the relative interior of dom g˚.

This implies that pinf
m
g˚
mq in fact coincides with pinf

m
g˚
mq

△ in the realtive
interior of dom g˚. This concludes the proof.

3.3 Proof of Theorem 3.2.1 and some examples

Now we are ready to prove the main theorem.

Proof of Theorem 3.2.1. If pφmq is a decreasing sequence of toric psh func-
tions with analytic singularities converging to to φ and J pφmq “ J pφq for
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all n ě 1, then P :“ P pφ1q satisfies the three conditions of the statement 2.
Now assume that there exists a polyhedron P satisfying the three condi-

tions in the statement 2. Let g be the convex function associated to φ. Then
we can find a sequence of points pui, αiq

8
i“1 in Qn`1

ě0 ˆ Q such that

epipg˚
q “

c

2
¨

8
č

i“1

H`
ui,αi

(3.3.1)

where H`
u,α is the closed half-space defined by tx P Rn`1 : xu, xy ě αu.

Indeed, let q be a point in Qn`1
ě0 X pRn`1

ě0 z epipg˚qq. Since epipg˚q is a closed
convex set and dpq, epipg˚qq ą 0, there exists pu1, α1q P Rn`1

ě0 ˆ R such that
Hu1,α1 separates q and epipg˚q strongly, that is, there exists ϵ ą 0 such that
q ` ϵBp0, 1q Ă intpH´

u1,α1q and epipg˚q ` ϵBp0, 1q Ă intpH`
u1,α1q, where Bp0, 1q

is the unit ball in Rn`1. We can choose pu, αq P Qn`1
ě0 ˆQ which is sufficiently

close to pu1, α1q so that the hyperplane Hu,α also separates q and epipg˚q

strongly. Enumerating all points in Qn`1
ě0 XpRn`1

ě0 z epipg˚qq by positive integers
gives (3.3.1). Let g˚

i be the convex function on Rn whose epigraph is given
by

pP ˆ Rq X

˜

c

2
¨

i
č

j“1

H`
uj ,αj

¸

.

It is obvious that g˚
i is increasing in each variable and lower semicontinuous.

Let φi be the psh function associated to the convex conjugate of g˚
i . Then

all φi have analytic singularities by Theorem 3.2.17. Furthermore, φi is equi-
singular to φ since the Newton convex body P pφiq of φi lies between P and
P pφq. Note that each g˚

i is of the form (3.2.4) without a bounded function,
we may assume that each φi is defined on Dp0, rq. Since pg˚

i q is an increasing
sequence of convex functions, pφiq is a decreasing sequence converging to φ
on Dp0, rq by Lemma 3.2.20.

Remark 3.3.1. Assuming 2 in Theorem 3.2.1 with φ being diagonal, we
can show that the condition of our main theorem implies the condition of
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Theorem 3.1.8. If P “ P pφq satisfies 2 in Theorem 3.2.1, it is nothing but
1 in Theorem 1.1.1. Assume now that φ does not have analytic singularities

and t “ pt1, . . . , tnq is a positive integer solution of
m
ř

i“1

xi

ai
“ 1. A vector

c ¨ pa´1
1 , . . . , a´1

m , 0, . . . , 0q cannot be rational for every c ą 0. This implies
that t should be contained in intP , which contradicts piiiq of Theorem 3.2.1
2.

We can create fruitful examples with this theorem. For this, given a closed
convex set P Ă Rn

` satisfying P ` Rn
` Ă P , we can construct a psh function

defined in Dp0, rq Ă Cn for some polyradius r whose Newton convex body is
equal to P . To elaborate the statement, we introduce the following related
notions.

Definition 3.3.2. cf. [Si98], [K15] Let a‚ “ pakq be a graded sequence of
ideals in Crz1, . . . , zns, i.e., ap ¨ aq Ă ap`q for any p, q P Zě0. Then a Siu psh
function associated to a‚ is defined as

φ “ φa‚
“ log

˜

ÿ

kě1

ϵk|ak|1{k

¸

where ϵk is a choice of nonnegative coefficients that make the series converge.

In [KS20], it was proved that for any given convex set P P Rn
ě0 satisfying

P ` Rn
ě0 Ă P , there exists a graded sequence of ideals a‚ and a Siu psh

function associated to a‚ whose Newton convex body is exactly equal to
P (See [KS20, Proposition 2.9]). As a result, for an arbirtrary convex subset
P P Rn

ě0 satisfying P ` Rn
ě0 Ă P , we can construct a toric psh function φ

whose Newton convex body is equal to P .
Next, we introduce a notion of extreme point. Let K be a convex set.

Definition 3.3.3. [H07, Definition 2.1.8] A point x in K is called extreme if

x “ λ1x1 ` λ2x2, x1, x2 P K ñ x1 “ x2 “ x
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where λ1, λ2 ą 0, λ1 ` λ2 “ 1.

Example 3.3.4. Let P “ tpx, yq P R2
ě0 | xy ě 1u X R2

ě0. Then we can
construct a Siu psh function φ associated to a graded sequence of monomial
ideals whose Newton convex body is equal to P . We will show that for every
c ą 0, cφ satisfies the condition (2) in Theorem 3.2.1. There are two cases of
sets of lattices we need to consider. First, let A1, . . . , AN be lattice points in
Rą0zP pcφq. Then for each Aj for 1 ď j ď N , there exists a unique point Bj

on BP pcφq such that the distance between Aj and Bj is the distance between
Aj and P pcφq. Let Hj “ tajx` bjy` cj “ 0u be the equation of tangent line
of xy “ c at Bj. Then, by changing aj, bj, cj slightly, we can take Hj having
following properties.

1. For each 1 ď j ď N , Hj separates Aj and P pcφq.

2. For each 1 ď j ď N , Hj is rational.

Secondly, there are lattice points B1
1, . . . , B

1
M on the BP pcφq. Then for each

1 ď j ď M , let H 1
j be the tangent line of xy “ c at B1

j. Now, if we take the
polyhedron defined as

P “

N
č

j“1

H`
j X

M
č

j“1

H 1`

j ,

then this P exactly satisfies the condition p2q in Theorem 3.2.1. Here, H`
j

and H 1`

j are upper hyperplanes such that contains P pcφq.

Remark 3.3.5. In particular, we would like to emphasize that there exist a
toric psh function φ whose boundary has a lattice point on its interior, but
admits a decreasing, equisingular approximation with analytic singularities.
Note that such φ does not exist when we only consider in the category of
psh functions logmax|zi|ai without analytic singularities, because it neither
holds p1q nor p2q in Theorem 3.1.8.
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Chapter 4

Multiplier ideal sheaves on
singular varieties

In Chapter 4, we will discuss the notion of multiplier ideal sheaves on sin-
gular varieties and related properties. Since most of analytic multiplier ideal
sheaves are infeasible to compute in singular cases, so we describe a combi-
natoric characterization when psh functions are toric. The results contain a
generalization of Rashkovskii-Guenancia’s theorem Theorem 2.3.8. We begin
by preliminary notions.

4.1 Singularities of normal varieties

In this section, we introduce definitions and notions related to our main
results. All varieties in this section is of field k “ C. Also, we mean varieties
by irreducible varieties. Most of materials in Section 4.1 come from [KM98],
[K97].
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4.1.1 Canonical sheaves on normal varieties

Let X be a normal variety. For a divisor D(formal finite sum of irreducible
closed subvarieties of codimension 1), we define the divisorial sheaf OpDq

associated to D by OpDqpUq “ tf P kpXq | divpfq ` D|U ě 0u. Here kpXq is
the function field of X. In general, OpDq is coherent of rank 1, i.e., the vector
space OpDqη b kpXq is a kpXq-vector space of rank 1, but not necessarily
invertible.

Example 4.1.1. Let X “ txy “ z2u Ă C3 be a normal variety and let
D “ tx “ z “ 0u and let E “ ty “ z “ 0u and take U “ XzE.

Take h “
1

x
. Then h P ΓpU,OpDqq. Also, if we take h “

1

z
, then divphq ` D|U “

pp´D ´ Eq ` Dq|U “ E|XzE “ 0. Since U meets D, neither of
x

z
,
z

x
can be

regular in U . Hence OpDq is not invertible.

Definition 4.1.2. Let X be a normal variety and D be a divisor. If OpDq

happens to be locally free of rank 1, we say D is a Cartier divisor. Otherwise,
D is called a Weil divisor. A Q-divisor is a linear combination of prime
divisors with rational coefficients. A Q-divisor is said to be Q-Cartier if
there exists an integer m P Zą0 such that mD is a Cartier divisor.

Next, we are going to define a canonical divisor, which is closely related
to sheaf of holomorphic pn, 0q-form in complex manifold. Let X be a normal
variety of dimension n. As we said, when X is smooth, we define the canon-
ical line bundle to be ωX :“ detpΩ1

X{kq, i.e., the n-th exterior power of the
cotangent bundle of X over k. When X is not smooth, let U “ XzXsing and
consider ωU :“ detpΩ1

U{kq. Let θU be a rational section of ωU , i.e. locally, θU
can be written as

θU “
g2pzq

g1pzq
dz1 ^ . . . ^ dzn.

Take the divisor of θU defined by divpθUq
loc
:“ divp

g2
g1

q is well-defined on U .

Since X is normal, XzU is of codim ě 2 and we know that the natural
restriction map Z1pXq

ρ
ÝÑ Z1pUq is an isomorphism. Here, Z1pXq, Z1pUq are
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abelian groups of Weil divisors on X,U respectively. Now, we define KX

by the inverse image of ρ by divpθUq, which is a Z-Weil divisor on X and
depending on the choice of θU .

The divisorial sheaf OXpKXq is well-defined, i.e., independent of choice
of θU . Indeed, for any two rational forms θU and θ1

U on U , they are linearly
equivalent on U and can be extended to linear equivalence on Z1pXq. It is
well-known that two divisorial sheaves OXpD1q,OXpD2q are isomorphic when
two divisors D1, D2 are linearly equivalent. We call OXpKXq by the canonical
sheaf of X.

Definition 4.1.3. Let X be a normal variety. Then X is said to be Goren-
stein if the canonical sheaf is invertible(or, a canonical divisor is Cartier). X
is said to be Q-Gorenstein if there is an integer m P Zą0 such that the sheaf
associated to a multiple of canonical sheaf is invertible(or a canonical divisor
is Q-Cartier.

Remark 4.1.4. Since one can pull-back rational function by morphism be-
tween normal varieties, we can naturally consider the pull-back of KX when-
ever KX is (Q-)Cartier. In general, we need some supplementary divisor to
make KX being Q-Cartier. We will discuss this notion in the following sec-
tion.

4.1.2 Singularities of pairs

Let f : Y Ñ X be a birational morphism between normal varieties. Since
KX is not Q-Cartier in general, we take a Q-Weil divisor B on X such that
KX ` B is Q-Cartier. Thus we can take pull-back mpKX ` Bq for some
m P Zą0. Define

f˚
pKX ` Bq :“

1

m
f˚

pmpKX ` Bqq.

Then singularities of pair pX,Bq are measured by the difference between KY

and f˚pKX`Bq. Note that for KY , one can choose a rational differential form
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θV defined on V “ Y zYsing well-behaved under the choice of θU which deter-
mines KX . So, the difference between KY and f˚pKX `Bq is independent of
the choice of θU .

Example 4.1.5. Let X be a smooth surface and let Y Ñ X be the blow-up
of a point p P X. Then locally, blow-up can be described by the following
monomial morphism

pu, vq ÞÑ puv, vq “ ps, tq.

In particular, ds^ dt “ pvdu`udvq ^ dv “ vdu^ dv. Since tv “ 0u is a local
defining equation for the exceptional divisor E and we know that OXpKXq

is a sheaf of holomorphic pn, 0q-forms if X is smooth, we obtain

KY “ f˚KX ` E.

Definition 4.1.6. Let X be a normal variety such that the canonical divi-
sor KX is Q-Cartier. Let m P Zą0 be an index of KX where the divisorial
sheaf OpmKXq is locally free. We say that X has terminal (resp. canoni-
cal) singularities if there is a log resolution of singularities for pX,B “ ϕq

f : Y Ñ X such that KY “ f˚KX `
ÿ

iPI

aiEi such that ai ą 0(resp. ai ě 0)

where Excpfq “
ď

iPI

Ui.

Remark 4.1.7. If X is smooth, then X has terminal singularities.

Example 4.1.8. Let X “ txy ´ z2 “ 0u Ă C3. If we blow up X at p “

p0, 0, 0q, thenKY “ f˚KX`0¨E. ThusX is not terminal, but canonical(There
is a well-known fact that terminal surface is smooth).

We define log singularities of pair pX,Bq.

Definition 4.1.9. The pair pX,Bq is klt (Kawamata log terminal) if ai ą ´1

and also the coefficients of B “
ÿ

bjBj with bj P p0, 1q. The pair pX,Bq is

lc (log canonical) if ai ě ´1 and also the coefficients of B “
ÿ

bjBj with
bj P r0, 1s.
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Remark 4.1.10. 1. In [K97], [KM98], being klt allows bj P p´8, 1q.

2. In the analytic setting, suppose X is smooth. Let B “
ÿ

bjBj “
ÿ

bj divphjq where hj are local holomorphic functions. Then

pX,Bq : klt ðñ h “
ź 1

|hj|2bj
is locally integrable.

4.2 Toric geometry

In this section, we review some basic facts from toric geometry which are
necessary and intuitive. Most of materials are from [F93]. Again, we fix our
base field k “ C.

4.2.1 Convex Polyhedral Cones

From now on, we denote N for the lattice(which is isomorphic to Zn for
some n P N). For given N , N b R becomes the n-dimensional vector space.
Denote it V unless we note for it specifically. Now, a convex polyhedral cone
generated by v1, . . . , vk is a set

σ “ tc1v1 ` . . . ` ckvk|c1, . . . , ck ě 0u .

Such vectors v1, . . . , vk are called the generators for σ. The dimension dim
σ of σ is defined by the dimension of the vector space spanned by σ. The
dual σ_ of any subset σ is defined by the set of equations of supporting
hyperplanes, i.e.,

σ_
“ tu P V ‹

| xu, vy ě 0 for any v P σu .

A face τ of σ is the intersection of σ with any supporting hyperplane:

τ “ σ X uK
“ tv P σ : xu, vy “ 0u
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for some u in σ_. A cone itself is regarded as a face, while others are called
proper faces. In particular, a face τ is called a facet if it is of codimension
one.

We present the properties of convex polyhedral cones and their dual cones.
See [F93, §1] for the proofs.

Proposition 4.2.1. Let σ, σ_, V be as above.

i pσ_q_ “ σ.

ii Any face is also a convex polyhedral cone and any intersection of faces
is a face. A face of face is also a face.

iii Any proper face is contained in some facet.

iv The topological boundary of a cone that spans V is the union of its
proper faces(or facets).

v If σ spans V and σ ‰ V , then σ is the intersection of the half-spaces
Hτ “ tv P V : xuτ , vy ě 0u, as τ ranges over the facets of σ. Here, uτ is
a vector(may not be unique) that satisfies a relation τ “ σ X uτ

K for a
facet τ of σ.

vi The dual of a convex polyhedral cone is a convex polyhedral cone.

This demonstrates that polyhedral cones also can be defined as the inter-
section of half-spaces: for generators u1, . . . ut of σ_,

σ “ tv P V : xu1, vy ě 0, . . . xut, vy ě 0u

We say that σ is rational if all of its generators can be taken from N . From
the above procedure, we can check that σ_ is also rational. Indeed, the form
of uτ is a solution for linear system of equations which have coefficients as
integers.
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Proposition 4.2.2. Let σ_ be the dual cone of σ. Then followings hold.

i (Gordan’s Lemma) If σ is a rational convex polyhedral cone, then Sσ “

σ_ X M is a finitely generated semigroup.

ii If τ is a face of σ, then σ_ X τK is a face of σ_, with dimpτq+dimpσ_ X

τKq “ n “dimpV q. This sets up a 1-1 correspondence between the faces
of σ and the faces of σ_. The smallest face of σ is σ X p´σq.

iii If u P σ_, and τ “ σ X uK, then τ_ “ σ_ ` Rě0 ¨ p´uq.

iv Let σ be a rational convex polyhedral cone, and let u be in Sσ “ σ_XM .
Then τ “ σ X uK is a rational convex polyhedral cone. All faces of σ
have this form, and Sτ “ Sσ ` Zě0 ¨ p´uq.

v If σ and σ1 are rational convex polyhedral cones whose intersection τ

is a face of each, then Sτ “ Sσ ` Sσ1 .

We end up this subsection by charaterizing cones of our main interest.

Proposition 4.2.3. For a convex polyhedral cone σ, the followings are equiv-
alent:

1. σ X p´σq “ t0u;

2. σ contains no nonzero linear subspace;

3. there is a u in σ_ with σ X uK “ t0u;

4. σ_ spans V ‹.

Remark 4.2.4. A cone satisfying the above conditions is called strongly
convex. If the cone is strongly convex, then the rays generated by a minimal
set of generators are exactly the one-dimensional faces of σ. We will write
"τ ă σ" to mean that τ is a face of σ. A cone is called simplicial, or a simplex,
if it is generated by independent generators.
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4.2.2 Affine toric varieties

We have seen Sσ is a finitely generated semigroup if σ is a strongly convex
rational polyhedral cone. Any additive semigroup S determines a "group
ring" CrSs, which is a commutative C-algebra. As a vector space, it has a
basis χu, as u varies over S, with multiplication determined by addition in
S:

χu
¨ χu1

“ χu`u1

.

The unit 1 is χ0. Generators tuiu for the semigroup S determine generators
tχuiu for the C-algebra CrSs.

Any finitely generated C-algebra A determines a complex affine variety,
which we denote by SpecA. In our applications, A will be a domain, so SpecA
will be an irreducible variety. We will speak of a point of SpecA for an ordi-
nary closed point unless we specify otherwise.

For A “ CrSs constructed from a semigroup, the points are easy to de-
scribe: they correspond to homomorphisms of semigroups from S to C, where
C is regarded as an abelian semigroup via multiplication:

Specm CrSs “ HomsgpS,Cq.

For a semigroup homomorphism x from S to C and u in S, the value of the
corresponding function χu at the corresponding point of SpecmCrSs is the
image of u by the map x : χupxq “ xpuq.

When S “ Sσ arises from a strongly convex rational polyhedral cone, we
set Aσ “ CrSσs and

Uσ “ Spec CrSσs “ Spec Aσ,

the corresponding affine toric variety. All of these semigroups will be sub-
semigroups of the group M “ St0u. If e1, . . . , en is a basis for N , and e‹

1, . . . , e
‹
n
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is the dual basis for M , write

Xi “ χe‹
i P CrM s.

As a semigroup, M has generators, ˘e‹
1, . . . ,˘e

‹
n, so

CrM s “ CrX1,
1

X1

, . . . , Xn,
1

Xn

s

“ CrX1, . . . , XnsX1¨...¨Xn

which is the ring of Laurent polynomials in n variables. So

Ut0u “ Spec CrM s – C‹
ˆ . . . ˆ C‹

“ pC‹
q
n

is an affine algebraic torus. All of our semigroups S will be subsemigroups
of a lattice M , so CrSs will be a subalgebra of CrM s; in particular, it is a
domain. When a basis for M is chosen as above, we usually write elements
of CrSs as Laurent polynomials in the corresponding variables Xi. Note that
all of these algebras are generated by monomials in the variables Xi.

The torus T “ TN corresponding to M or N can be written intrinsically:

TN “ Spec CrM s “ HompM,C‹
q “ N bZ C‹.

For a basic example, let σ be the cone with generators e1, . . . , ek for some
k, 1 ď k ď n. Then

Sσ “ Zě0 ¨ e‹
1 ` . . . ` Zě0 ¨ e‹

k ` Z ¨ e‹
k`1 ` . . . ` Z ¨ e‹

n

Hence Aσ “ CrX1, . . . Xk, Xk`1,
1

Xk`1
, . . . , Xn,

1
Xn

s, and

Uσ “ C ˆ . . . ˆ C ˆ C‹
ˆ . . . ˆ C‹

“ Ck
ˆ Cn´k.

It follows from that if σ is generated by k elements that can be completed to a
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basis for N , then Uσ is a product of affine k-space and an pn´kq-dimensional
torus. In particular, such affine toric varieties are nonsingular.

Example 4.2.5. Let N be a lattice of rank 3, and let σ be the cone generated
by four vectors v1, v2, v3, and v4 that generate N and satisfy v1 `v3 “ v2 `v4.
The variety Uσ is a "cone over a quadric surface". If we take N “ Z3 and
vi “ ei for i “ 1, 2, 3, so v4 “ e1`e3´e2, then Sσ is generated by e‹

1, e
‹
3, e

‹
1`e‹

2,
and e‹

2 ` e‹
3, so

Aσ “ CrX1, X3, X1X2, X2X3s “ CrW,X, Y, Zs{pWZ ´ XY q.

Therefore Uσ is the hypersurface defined by WZ “ XY in C4.

If σ is a cone in N , the torus TN acts on Uσ,

TN ˆ Uσ Ñ Uσ,

as follows. A point in t P TN can be identified with a map M Ñ C‹ of groups,
and a point x P Uσ with a map Sσ Ñ C of semigroups; the product t ¨ x is
the map of semigroups Sσ Ñ C given by

u ÞÑ tpuqxpuq.

The dual map on algebras, CrSσs Ñ CrSσs b CrM s, is given by mapping χu

to χu b χu for u P Sσ. When σ “ t0u, this is the usual product in TN . These
maps are compatible with inclusions of open subsets corresponding to faces
of σ. In particular, they extend the action of TN on itself.

4.2.3 Singularities in toric geometry

In this section, we will discuss the criterion for being Uσ nonsingular and the
resolution of singularities for toric varieties.
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Proposition 4.2.6. An affine toric variety Uσ is nonsingular if and only if
σ is generated by part of a basis for the lattice N , in which case

Uσ – Ck
ˆ pC‹

q
n´k, k “ dimpσq.

We therefore call a cone nonsingular if it is generated by part of a basis
for the lattice, and we call a fan nonsingular if all of its cones are nonsingular.
Although a toric variety may be singular, every toric variety is normal:

Proposition 4.2.7. Each ring Aσ “ CrSσs is integrally closed.

To define the multiplier ideal sheaves on toric varieties X, we need a res-
olution of singularities and log resolution of an ideal sheaf. In toric varieties,
there is a combinatoric characterization for resolution of singularities. Let Σ
be a fan defined in the lattice N .

Theorem 4.2.8. [CLS11, Theorem 11.1.9, 11.2.2] Every fan Σ has a refine-
ment Σ1 with the following properties:

1. Σ1 is smooth.

2. Σ1 contains every smooth cone of Σ.

3. Σ1 is obtained from Σ by a sequence of star subdivisions.

4. The toric morphism ϕ : XΣ1 Ñ XΣ is a projective resolution of singu-
larities.

Furthermore we can set ϕ as an SNC resolution of singularities.

Theorem 4.2.9. [CLS11, Theorem 11.3.10] Let a Ď Crx1, . . . , xns be a
monomial ideal. Then there is a toric morphism ϕ : XΣ Ñ Cn that is a
log resolution of a.
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4.3 Multiplier ideal sheaves on singular vari-

eties

In this section, we will discuss the definition of multiplier ideal sheaves on
singular varieties and its subtleties. Let us begin with the definition of psh
functions defined on normal variety X.

Definition 4.3.1. Let X be a normal variety of dimension n. Let φ be an
upper semicontinuous function defined on X. Then we say φ is psh if there is
a local embedding U ãÑ V into a complex manifold V and a psh function Φ

on V such that φ “ Φ|U . Here, U is an open subset of X. A psh function φ is
said to have analytic singularities if there is an ideal sheaf a and an exponent
c such that φ can be locally written as

c

2
logp|g1|2 ` . . .` |gm|2q `Op1q where

g1, . . . , gm are local generators of a.

We also have to define the analytic multiplier ideal sheaf for psh function
defined on X. To do this, we first define how volume forms are defined on
singular varieties.

Let X be a normal Q-Gorenstein variety and ωX be its canonical sheaf
of index m, i.e., ωm

X is an invertible sheaf. Choose a local generator β of ωm
X

at x P U Ă X where U is open in X. Then α “ β
1
m defines an pn, 0q-form on

Ureg.
Using this α, we are able to define the analytic multiplier ideal sheaf of

psh functions. Let ν “ cnα ^ sα be a volume form on Ureg determined by α.

Definition 4.3.2. Let X be a normal Q-Gorenstein variety and φ be a
psh function defined on X. Then the multiplier ideal sheaf of φ is the ideal
sheaf of holomorphic functions J pφq whose each ring of sections satisfies the
following L2-integrability condition. Indeed, for an open subset U of X,

J pφqpUq “

"

f P OpUq

ˇ

ˇ

ˇ

ˇ

ż

V

|f |
2e´2φν ă 8 for any V ĂĂ Ureg

*

.
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Note that J pφqpUq is well-defined, i.e., it is independent of a choice of local
generator β.

Remark 4.3.3. Let π : X 1 Ñ X be a log resolution of singularities of a
pair pX,∆ “ 0q. Then the integrability condition on Definition 4.3.2 can be
rephrased as

ż

π´1pV q

|π ˝ f |2e´2π‹φ
ź

|zi|2bidz ^ dsz ă 8.

Here pziq is a local coordinate chart for π´1pV q and bi are coefficients of
exceptional divisors come from the log resolution.

First of all, we prove the coherence of J pφq.

Proposition 4.3.4. J pφq is coherent.

Proof. Note that the direct image sheaf of coherent sheaf by proper morphism
is coherent. Let π : X 1 Ñ X be a log resolution of pX, 0q and let KX 1 “

π‹KX `
ř

biEi. Define an ideal sheaf I on X 1 whose local section is defined
by

IpW q “

"

g P OpW q |

ż

W

|g|2e´2π‹φ
ź

|zi|2bidz ^ dsz ă 8

*

.

Here W is a locally bounded open subset of X 1 and pziq is a local coordinate
for W such that Ei “ tzi “ 0u. Since the multiplier ideal sheaf J pφq is a
direct image sheaf of I, we are enough to show the coherence of I.

The proof of the coherence of this ideal is analogous to the proof of
coherence of multiplier ideal sheaves in complex manifold. Let H2pW,φq be
the family of ideal sheaves on W generated by finite subsets of holomorphic
functions satisfying the integral condition in I. Then H2pW,φq has a maximal
element which is a coherent ideal sheaf on W . Since the result is local, we
are enough to check that I|W is coherent. Let I be a maximal element in
H2pW,φq and we are going to show I “ I. Note that I Ă I is obvious.
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To prove the equality, fix x P W and let E1, . . . , Ek be exceptional divisors
containing x. Note that if k “ 0, I is locally coherent and there is nothing
to prove. Thus, we only consider k ą 0. Using change of coordinates, we
may assume x “ 0 and Ei “ tzi “ 0u. We will show then Ix “ Ix. By the
viewpoint of Krull’s intersection theorem(See [E13, §5.4]), we are enough to
check that Ix `Ix Xms`1

x “ Ix for every integer s ě 0. Here let x be in some
proper intersection of Ei. Now for f P Ix and let θ be a cut-off function such
that θ “ 1 near x. Solve the equation B̄u “ g :“ B̄pθfq using Theorem ??
where the weight is given by

φ̃ :“ π‹φ ´
ÿ

bi log|zi| `
ÿ

p
n

k
` bi `

s

k
q log|zi| ` |z|2.

Then the Lelong number of φ̃ at x is νxpφ̃q ě pn ` sq and by Lemma 2.2.5,
we have F :“ u ´ θf is holomorphic and F P I . Now, we have fx ´ Fx “

ux P Ix X ms`1. This concludes the proof.

Next, the definition of analytic multiplier ideal sheaf is coherent with the
definition of algebraic multiplier ideal sheaf. For this, we define the algebraic
multiplier ideal sheaf in singular case.

Definition 4.3.5. Let X be a normal variety and let pX,∆q be a pair.
Let a be an ideal sheaf and c ą 0 a rational number. Fix a log resolution
µ : X 1 Ñ X of a that also resolves the pair pX,∆q. Suppose that KX 1 “

µ˚pKX ` ∆q `
ř

apEqE and a ¨ OX 1 “ OX 1p´F q where ´F “
ř

bpEqE.
Then define the (algebraic) multiplier ideal sheaf associated to a and c by

J ppX,∆q, aq “ µ‹OX 1pKX 1 ´ tµ‹
pKX ` ∆q ` cF uq

“ µ‹OX 1p
ÿ

rapEq ` cbpEqsEq.

Proposition 4.3.6. Let φ be a psh function of analytic singularities rep-
resented by ac. Then J pφq “ Jalgpacq. Here, Jalg means the definition of
algebraic multiplier ideal sheaf.
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Proof. Let U be an open subset in X and let f P J pφqpUq. Let π : Y Ñ X

be a log resolution of an ideal a so that π‹a is an invertible sheaf Op´Eq

associated with a simple normal crossing divisor E “
ÿ

biEi where Ei is
defined to be tzi “ 0u on some local coordinate chart pV, pziqq Ă π´1pUq.

We are enough to check the local integrability of f on U , so by the change
of coordinates, we are enough to check the integrability on local coordi-
nate chart of π´1pUq. Let KY “ π‹KX `

ÿ

aiEi. Then since π‹ν is equal

to
ź

|zi|2aidλ where dλ is the Lebesgue measure on V , the integrability is
equivalent to

ż

V

|π‹f |2e´2π‹φ
ź

|zi|2aidλ ă 8

for all coordinate charts V Ă π´1pUq.
Since eπ‹φ can be represented as a product of |zi|bi upto Op1q function, the

above integrability condition can be reformulated as
ż

V

|π‹f |2
ź

|zi|2pai´cbiqdλ ă

`8. Thus, for the integrability, we need to check that the multiplicity of f
with respect to zi is greater than cbi ´ ai ´ 1 for each i, i.e., whether π‹f

divides ztcbi´aiu
i or not should be checked. Explicitly,

f P J pφq ðñ f P π‹OY p´
ÿ

tcbi ´ aiuEiq

ðñ f P π‹OY p
ÿ

rai ´ cbisEiq

ðñ f P π‹OY pKY ´ tπ‹KX ` cEuq

ðñ f P Jalgpacq.

This concludes the proof.

Here, there should be limits on defining multiplier ideal sheaf on general
normal variety X, since singularities are assumed to be Q-Gorenstein. So,
we would like to mention a variant of multiplier ideal sheaf, so-called the
multiplier module. Let X be a normal variety which is not necessary to be
Q-Gorenstein.
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Definition 4.3.7. [Bl04, Definition 2] Let X be a normal variety and let a

be a sheaf of ideals on X. Let µ : Y Ñ X be a log resolution of a. Then
we define the multiplier module by Jωpacq :“ µ‹OY pKY ´ tcAuq Ď ωX where
a ¨ OY “ OY p´Aq and c ą 0.

First of all, it is well-defined, i.e., it is independent of a choice of a log
resolution. If we obtain two multiplier modules of an ideal from two different
log resolutions, we can take a common log resolution which dominates both
of them.

Note that it may not be an ideal sheaf indeed. However, in some specific
cases such as affine toric varieties, we can consider multiplier module as an
ideal sheaf. We will discuss this on later section.

For general case, we use a language of differential geometry. Let X be a
normal variety and φ be a psh function defined on X and let U be an open
subset of X. Then one can define a submodule Jωpφq of ωX which consists
of elements satisfying the integrability in U :

β P JωpφqpUq ðñ
?

´1
n2

f ^ fe´2φ
P L1

locpUregq

where f is restriction of β in Ureg.
Unlike multiplier ideal sheaf cases, we have the functorial property. In-

deed, if µ : X 1 Ñ X is a modification, µ‹pJωX1 pφ ˝ µqq “ JωX
pφq. It is

straightforward due to change of variables, see [D10, Proposition 5.8] for the
proof. Using this, we can prove that the definition above is indeed a gen-
eralization of algebraic definition of multiplier module. Let us distinguish
between algebraic definition and analytic definition by denoting Jω,an and
Jω,al for a moment.

Proposition 4.3.8. Let φ be a psh function with analytic singularities re-
lated to ac. Then Jω,anpφq “ Jω,alpa

cq.

Proof. Let U be a fixed relatively compact open subset of X and let µ : Y Ñ

X be a log resolution of a. Write a ¨ OY “ OY p´
ř

biEiq “ OY p´Eq. Take

53



a relatively compact coordinate chart pV, pyiqq Ă µ´1pUq and Ei “ tyi “ 0u

locally. Here we may check integrability condition on V instead of µ´1pUq,
since the integrability condition in multiplier module is local. By the change
of variables, we have the following integrability condition which is equivalent
to f P Jω,anpUq

ż

V

1

|y|2cbi
cnµ

‹f ^ Ěµ‹f ă `8.

Write µ‹f “ gdy1 ^ ¨ ¨ ¨ ^ dyn. Then the integrabilty is equivalent to divpgq ´

cb ą ´1. Here b “ divp
ź

ybii q and 1 “ divpy1 ¨ ¨ ¨ ynq. Thus divpgq ě

tcEu. Since a holomorphic n-form dy1 ^ ¨ ¨ ¨ ^ dyn corresponds to a ba-
sis of OY pKY qpV q, we get gdy1 ^ ¨ ¨ ¨ ^ dyn P OY pKY ´ tcEuqpV q. Hence
µ‹f P OY pKY ´ tcEuqpµ´1pUqq.

4.4 Multiplier ideal sheaves on toric varieties

In general, computation of a volume form in Definition 4.3.2 seems quite
difficult. So, we can not obtain any satisfactory example for multiplier ideal
sheaves of psh functions on singular varieties. Instead, if we restrict our case in
toric psh functions, we can get a combinatoric characterization of multiplier
ideal sheaves whose computations are feaasible.

In this section, we will define notion of toric psh functions on toric vari-
eties and related objects for computing multiplier ideal sheaves of toric psh
functions. Explicitly, we will prove the following theorem.

Theorem 4.4.1. Let X be a normal, Q-Gorenstein affine toric variety given
by the cone σ Ă NR whose dimension is set to be n “ dim NR. Let φ be a
toric psh function defined on X. Then the multiplier ideal J pφq :“ J pφqpXq

of φ on X is a monomial ideal and given by:

χv
P J pφq ðñ v ´ divpKXq P intpP pφqq.
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Here, divpKXq is a point in vector space NR whose point is related to the
Q-Cartier divisor KX . We will explicitly define divpKXq in later section.

4.4.1 Newton convex bodies of toric psh functions on

Cn

In this subsection, we will introduce the definition of Newton convex body
of a psh function defined on Cn and define the Newton convex body of psh
functions φ on general toric varieties and prove its well-definedness. Note
that we already know how the Newton convex body of psh functions defined
on polydisk Dp0, rq. We can observe that the Newton convex body is actullay
irrelevant to choice of r. So we can use this simple observation to enlarge our
domains of definition for P pφq. We start with the definition of a toric psh
function φ on a toric variety X.

Definition 4.4.2. Let X be a toric variety equipped with the torus action
T ˆ X ÝÑ X and let φ be a psh function on X. Then φ is said to be toric
if it is invariant under the torus action, i.e., φpgxq “ φpxq for every pair
pg, xq P T ˆ X.

Remark 4.4.3. Here, we note that being φ toric is invariant under com-
posites with toric morphisms. In fact, let π : Y Ñ X be a toric morphism
between two toric varieties and φ be a toric psh function. Then since π is
a holomophic mapping, being φ psh is obvious. For φ being toric, we are
enough to check φ ˝ πph ¨ yq “ φ ˝ πpyq where h is an element of the torus
acts on Y . Since π is equivariant under the group actions on X and Y , we
know that πph ¨ yq “ πphq ¨ πpyq and πphq is the element in the torus of X.
Hence, φ ˝ πph ¨ yq “ φpπphq ¨ πpyqq “ φpπpyqq “ φ ˝ πpyq.

Recall the definition of Newton convex body of toric psh functions defined
on Dp0, rq(Definition 2.3.1) and Remark 2.3.6. Using these properties, we will
define the notion of Newton convex body of toric psh functions defined on
Cn.
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Definition 4.4.4. Let φ be a toric psh function defined on Cn and g be a
convex function associated with φ on Rn. Define P pφq by the Newton convex
body of φ|Dp0,1q

. Here, 1 is a polyradius whose each radius is 1.

Remark 4.4.5. I would like to emphasize that this definition does not gen-
eralize our notion of Newton convex body of convex function. Indeed, if we
set φpzq “ log|z| defined on C, then the Newton convex body of associated
convex function is just t1u, which is totally different from the Newton con-
vex body of φ̃pzq “ log|z| defined on Dp0, 1q Ă C. We define this new notion
because we only focus on the local L2 -integrability of holomorphic functions
with respect to the weight e´2φ.

Remark 4.4.6. This definition also generalizes the Newton polygon of mono-
mial ideals in Cn in toric geometry. See [Ho01] for the definition of Newton
polygon. For the sake of terminology, we just refer Newton convex body for
dealing with analytic objects.

If we define the Newton convex body of toric psh function φ defined on
Cn, we can check that the J pφqpCnq can be computed in exactly the same
way as the Rashkovskii-Guenancia theorem. Explicitly,

Theorem 4.4.7. Let φ be a toric psh function defined on Cn. Then the
multiplier ideal J pφq :“ J pφqpCnq is a monomial ideal and we have:

zα P J pφq ðñ α ` 1 P intpP pφqq.

4.4.2 Newton convex bodies of toric psh functions on

affine toric variety

For the definition of P pφq on a general affine normal variety X, we begin
with a desingularization with a star-subdivision procedure. Say k subcones
σ1, . . . , σk are created during this procedure and µi, πi 1 ď i ď k are cor-
responding dual lattice maps, morphisms induced by inclusion maps of σi,
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1 ď i ď k. Furthermore, by change of coordinates, we may assume that µi

maps σ_ to Conepe‹
1, . . . , e

‹
nq and domain of πi looks like a neighborhood of

0 P Cn.

Definition 4.4.8. Let φ be a toric psh function defined on X. Define the

Newton convex body of φ P pφq by
k

Ş

i“1

µ´1
i pP pφ ˝ πiqq.

Since a star-subdivision may not be unique, we should clarify the well-
definedness of P pφq, i.e., it is independent of choice of subdivisions. For the
proof, we will use the following lemma.

Lemma 4.4.9. Suppose that there are two resolution of singularities
rX1, rX2

π1,π2
ÝÝÝÑ X, both of which are obtained by star-subdivisions. Then there

is a common resolution of singularities rX
π
ÝÑ X which dominates both π1 and

π2 and also is obtained by star-subdivision.

Proof. Let Σ be the fan realted withX and let Σ1,Σ2 be fans inNR represent-
ing rX1, rX2. Then let rΣ “ Σ1 Y Σ2. Note that this union can be interpretted
as a subdivision of each Σi so that is proper and birational. We can subdivide
this rΣ in sense of Theorem 4.2.8. Using the abuse of notation, we let rΣ be a
subdivided fan of union. Then rΣ Ñ Σi Ñ Σ, i “ 1, 2 where both the first and
second map are given by the identity maps on NR. This gives the result.

For discussing the well-definedness, by the above lemma, we may assume
that two resolutions are related with domination, i.e., π2 dominates π1. So
our problem is reduced to the following proposition.

Proposition 4.4.10. Let X “ Cn be the affine toric variety and π : Y Ñ X

be a modification of X where Y be a smooth toric variety obtained by star-
subdivision of σ into k subcones σ1, . . . , σk. Being similar as above, we let µi

and πi be corresponding dual lattice inclusion and morphism from smooth
coordinate chart of Y for each 1 ď i ď k. Let φ be a toric psh function
defined on X. Then

v P P pφq ðñ µipvq P P pφ ˝ πiq for all 1 ď i ď k.
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Proof. We know that µ1, . . . , µk are just the identity mapping which embeds
subcone σi into the cone σ. For P pφ ˝ πiq we need to consider φ ˝ πi as a psh
function defined on Cn. Indeed, for a moment, transform πi so that the dual
cone σ_

i of σi becomes cone τ “ xe‹
1, . . . , e

‹
ny and let this map be given by

the matrix Bi, i.e., e‹
j ÞÑ bj where bj is the j-th column of Bi. This is just a

composite of πi by some toric isomorphism with Cn. Denote this composite
transformed morphism by π1

i and its related linear transformation µ1
i. Then

we can consider φ ˝π1
i as a function defined on Cn. Let denote the associated

convex function to φ ˝ π1
i by gi. Then gipyW q “ gpBt

i ¨ yW q, here yW is a
coordinate on Rn which comes from taking log|¨| to the standard coordinate
chart of Uτ and Bt

i is the transpose of Bi. Hence, we can represent by P pφ˝π1
iq

using Bi:

sup
yW PRn

´

pxx, yW y ´ gipyW qq ď Op1q ðñ sup
yW PRn

´

pxx, yW y ´ gpBt
i ¨ yW qq ď Op1q

Now, letting x “ Bi¨xi and yi “ Bt
i ¨yW , we know that the characterization

of P pφ ˝ πiq is then equivalent to

sup
yiPBt

iR
n
´

pxxi, yiy ´ gpyiqq ď Op1q.

This characterizes how pµ1
iq

´1
pP pφ ˝ π1

iqq “ µ´1
i pP pφ ˝ πiqq “ P pφ ˝ πiq looks

like. Hence, from the viewpoint of the above characterization, the intersection
of all P pφ ˝ πiq is in fact,

#

x P MR

ˇ

ˇ

ˇ

ˇ

sup
yiPBt

iR
n
´

pxx, yiy ´ gpyiqq ď Op1q for all 1 ď i ď k

+

.

So, we are now enough to check that
k

Ť

i“1

Bt
iRn

´ is equal to Rn
´, or equivalently,
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k
Ť

i“1

Bt
iRn

` “ Rn
`. Indeed, recall that Bi is a linear transformation in MR that

sends σ_
i into τ “ xe1, . . . , eny_. We can consider the Rn

` in the left hand
side as a cone xe1, . . . , eny. Since the transpose of a linear map is just a dual
mapping of original linear map, it maps xe1, . . . , eny into exactly σi. So, we
conclude the proof.

Remark 4.4.11. If we set subdivision as trivial subdivision, i.e., no sub-
division, we know that P pφq’s definition is nothing but Definition 4.4.4.
Also, if we set φ to have analytic singularities of type ac, then this defini-
tion coincides with the original definition of the Newton convex body P pacq.
Let the monomials χv1 , . . . , χvr be generators of a. Then P pacq is equal to
Convpcv1, . . . , cvrq`σ_ and each P pφ˝πiq is given as Convpcv1, . . . , cvrq`σ_

i .
Since σ_ “

Ş

σ_
i , their intersection for all 1 ď i ď k should be equal to

Convpcv1, . . . , cvrq`σ_. For technicality, we refer Section 3.2 for related top-
ics.

We end up this subsection by the description of the canonical represen-
tation for the canonical divisor of X. Let u1, . . . , ur be minimal edges of σ,
i.e., generators of one-dimensional face of σ. Then the closure of orbit of
each edge ui defines prime divisor Di of X which is torus-invariant and also
there is the fact that every torus-invariant divisor can be written as a linear
combination of such Di’s. From the viewpoint of this description, a divisor
r

ř

i“1

aiDi is Q-Cartier if and only if there is a Q-valued vector m P MQ such

that xm,uiy “ ai for every i.
Now, it is well-known fact that there is a canonical choice of divisor KX

which is torus-invariant, explicitly, ´
r

ř

i“1

Di. Thus we can check whether X is

Q-Gorenstein or not easily. Also, this implies that OXpKXq can be naturally
embedded into OX as a monomial ideal when X is affine toric variety. In
particular, we can view the multiplier module as an ideal sheaf of OXpKXq.
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4.4.3 Proof of the Theorem 4.4.1

We will present the original Rashkovskii-Guenancia theorem which relates the
integrability of monomials with respect to a toric psh weight φ with its New-
ton convex body P pφq. Before presentation, we simply demonstrate lemma
which is a sufficient condition for being monomial ideals. In this lemma, the
condition is slightly different with the original paper. But the proof is exactly
the same. So, I did not include the proof.

Lemma 4.4.12. [Gu11, Lemma 1.12] If J is an ideal of CrSσs such that for
every f P J , monomials appear in f are also in J , then J is a monomial ideal.

Now we prove the main theorem Theorem 4.4.1.

Proof. (Proof of Theorem 4.4.1) Let X Ă CN be a closed torus equivariant
embedding, i.e., TX ãÑ TCN is a group homomorphism. Then for local inte-
grability, we are enough to show that χve´φ is L2-integrable on Dp0, rq XX

for arbitrary r P RN
ą0.Here 0 is the unique fixed point which is invariant under

the torus action by TX . Assume that X is determined by the cone σ Ă NR.
From the viewpoint above, we can consider J pφq as J pφq “ tf ||f |2e´2φ

is integrable with respect to a measure defined by a volume form on Dp0, rqX

Xregu. Rewrite this integrability condition using a toric desingularization
π : rX Ñ X which is also a log resolution. Assume that there are r smooth
coordinate charts U1, . . . , Ur such that cover π´1pXsingq and come from the
subdivided cones σ1, . . . , σr. Also, we may assume, by change of coordinate
via lattice mapping, that Ui “ Cn and πi : Cn Ñ X is a toric morphism for
each i. Since we restricted our domain to integrate by a relatively compact
subset of X near 0, we may assume that Ui “ Dp0, riq for some ri. Then by
change of coordinate again, we may assume all ri are equal to 1.

First, we will verify that J pφq is indeed a monomial ideal. Consider f P

J pφq can be written as
ř

avx
v where v are elements of Sσ. Then pulling back,
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integrability condition is written in nonsingular model. In fact, for each i,
ż

Dp0,1q

|f ˝ πi|2e´2φ˝πi |zi|2ai ă `8.

Since each v is mapped bijectively to a lattice point in MR which represents
a monomial of Ui, use the Parseval’s theorem so that

ÿ

ż

Dp0,1q

|av|2|xv ˝ πi|2e´2φ˝πi |zi|2ai ă `8.

This implies xv should be in J pφq for all v with av ‰ 0. Hence, by Lemma
4.4.12, we conclude that J pφq is a monomial ideal.

Let µi be the corresponding dual lattice morphism of πi for each i. The
integrability condition near 0 is then reformulated as follows:

ż

Dp0,1q

|χv
˝ πi|2e´2φ˝πi |zi|2ai ă `8

ðñ |χv
˝ πi|2|zi|2a

i

is integrable w.r.t. the weight e´2φ˝πi

ðñ µipvq ` ai ` 1 P int P pφ ˝ πiq

ðñ µipvq ´ µipdivpKXqq P int P pφ ˝ πiq “ int µipP pφqq.

Here, for each i, pzi1, . . . , z
i
nq is the coordinate chart of Ui “ Dp0,1q and

pai1, . . . , a
i
nq is n-tuple of coefficients of simple normal crossing divisors coming

from the relative canonical divisor. The second ðñ follows from Theorem
4.4.7.

Now, take both sides to µ´1
i and we obtain the result.

We conclude this section by the explanation how our main theorem gen-
eralizes the Rashkovskii-Guenancia theorem.

Remark 4.4.13. The proof also shows the case if φ is defined on XXDp0, rq

where Dp0, rq is a polydisk in CN which embeds in X. So, we have the
following corollary. Here, we define P pφq in the sense of Definition 4.4.8.
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Corollary 4.4.14. Let X be a normal, Q-Gorenstein affine toric variety
given by the cone σ Ă NR whose dimension is set to be n “ dim NR. Let φ
be a toric psh function defined on X X Dp0, rq. Then the multiplier ideal of
φ on X J pφq :“ J pφqpX X Dp0, rqq is monomial and J pφq is given by:

χv
P J pφq ðñ v ´ divpKXq P intpP pφqq.

Corollary 4.4.14 also generalizes the original Rashkovskii-Guenancia’s
theorem when we set X to be the affine space Cn.

Corollary 4.4.15. Let X be a normal, Q-Gorenstein affine toric variety and
let φ be a toric psh function defined on X. Then the openness property holds,
i.e.,

J pφq “ J pp1 ` ϵqφq for ϵ ! 1.

Proof. It follows from the fact that p1 ` ϵqP pφq “ P pp1 ` ϵqφq. Explicitly,
we can view this convex body in nonsingular model(with a desingularization
µ : rX Ñ X) of X. Then we can choose the smallest ϵ among ϵ’s that satisfy
openness property of P pφ ˝ µiq. Here, µi : Cn Ñ X is a composite of toric
coordinate chart map and desingularization µ.
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국문초록

다중조화버금함수는 복소해석학 뿐 아니라 복소기하학, 나아가 대수기하학에서

중요한연구대상입니다.다중조화버금함수의특이점들은굉장히복잡하고어렵고직

접적인 관찰 대신 이를 연구하기 위한 도구로 승수 아이디얼과 근사 정리를 이용하곤

합니다.

첫번째결과로서울대학교수학연구소소속인서호섭박사후연구원과 equisingu-

lar근사정리에대해서소개하려고합니다.최근에 Qi’an Guan에의해발표된해석적

특이점을 갖는 decreasing, equisingular 근사 정리라는 주제를 다중조화버금함수가

toric일 때 부분적으로 일반화할 수 있음을 설명합니다.

두번째 결과는 특이 다양체 위에서의 다중조화버금함수입니다. 기존의 다양체에

서와달리특이다양체에서다중조화버금함수및승수아이디얼이어떻게정의되는지

소개합니다. 또한 주요 결과로서, toric 다중조화버금함수의 경우, 승수 아이디얼을

계산하는데 주요 공식 중 하나인 Rashkovskii-Guenancia의 일반화를 제시합니다. 이

결과는 Blickle의대수적승수아이디얼공식을해석적으로일반화한것이기도합니다.

주요어휘: 다중조화버금함수, 승수 아이디얼, Toric 다중조화버금함수, Equi-
singular 근사 정리
학번: 2014-21200
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