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Abstract 

In this study, a numerical model for the prediction of anisotropic strengths 

of API steel pipe using a distortional anisotropic hardening model, namely, 

the HAH model, is proposed. The investigated HAH model can express the 

material behaviors under reverse and cross-loading paths. The multi-

component evolution laws for the reverse loading behavior were additionally 

implemented to improve the predictive accuracy of the existing HAH model. 

For the stable finite element implementation of the model, the fully implicit 

stress update algorithm was first developed. The proposed algorithm solves a 

complete set of residuals as nonlinear functions of stress, equivalent plastic 

strain, and all the state variables of the model. Also, the consistent tangent 

modulus is provided. Comprehensive comparison assessments are presented 

regarding the accuracy and stability with different numerical algorithms, 

strain increments, material properties, and loading conditions. The flow stress 

and r-value evolutions under reverse/cross-loading conditions prove that the 

fully implicit algorithm with a complete set of residuals is robust and accurate, 

even with large strain increments. By contrast, the cutting-plane method and 

partially-implicit Euler backward method, which are characterized by a 

reduced number of residuals, result in unstable responses under abrupt 
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loading path changes. Furthermore, as an alternative method for calculating 

complex first and second derivatives of the model, algorithms with analytical 

and numerical derivatives were studied. The developed algorithms are 

implemented into the finite element modeling of a large-size S-rail forming 

and springback. The fully implicit algorithm performs well for the whole 

simulation with the solely static implicit scheme. Finally, as an application of 

the HAH model with multi-component evolution laws, the strengths 

prediction of the steel plate after bending and reverse bending (BRB) 

deformation was conducted. The BRB test was designed to mimic the 

common pipe manufacturing process in a practical manner. The predicted 

directional strengths agree well when the HAH model is employed. By 

contrast, the classical isotropic hardening and iso-kinematic hardening model 

over- and under-estimate the strengths. The improved accuracy of the strength 

prediction with the investigated HAH is attributed to the anisotropic 

identification of the flow behavior under both load reversal and cross-loading 

conditions, whereas the isotropic-kinematic hardening only considers the 

flow behavior at load reversal.  

Keywords: Anisotropic hardening; Cross-loading; Fully implicit stress 

update algorithm; Strength prediction; Pipe forming 

Student number: 2018-39490 
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1. Introduction 

 

1.1. Anisotropic strengths of the API steel pipe 

API steel pipe is the most efficient means of transporting crude oil. API steel 

pipes are exposed to various working environments such as deserts, polar 

regions, and the undersea. The pipes should satisfy the required mechanical 

properties according to the working environments. Therefore, the selection of 

the optimum material is one of the key factors in obtaining reliable 

mechanical properties of pipes after their formation. The required mechanical 

properties of manufactured pipes include commonly reported uniaxial tensile 

properties such as yield strength, uniform elongation, and tensile properties. 

In particular, the yield strengths along the transverse and longitudinal of the 

pipe are critical. The yield strength in the transverse or hoop direction decides 

the maximum internal pressure that the pipe can hold. The yield strength in 

the longitudinal direction provides the standard required for the structural 

stability of the pipe during installation or under a working environment. The 

transverse strength of the pipe was evaluated using common tensile tests on 

the specimens taken out from the pipe product. That is, the part of the pipe (in 

a tubular shape) is taken and flattened after applying reverse bending and 



2 

 

unloading. The longitudinal strength of the pipe was evaluated using the 

tensile specimen without the flattening process. Therefore, the deformation 

paths involved in these processes are complex. In terms of the change in 

material properties with respect to the initial (as-received) state of the plate 

(before pipe forming), the plate material experiences multiple bending, 

unloading, and reverse bending before the tensile test for a strength evaluation. 

1.2. Anisotropic hardening behaviors and models 

Changes in the deformation path bring the intricate microstructures, leading 

to more complex mechanical properties. The complex mechanical responses 

include the Bauschinger effect and transient flow behavior under reversed 

loading path [1-5]. These anisotropic hardening behaviors of sheet metals 

have been reported to be critical factors for the springback of automotive 

sheet parts [6-9]. More recently, the anisotropic hardening behavior of 

advanced sheet metals has been further investigated under more complex 

loading paths than simple reverse loading. For instance, the deformation of 

ferritic-phased steels shows significant stress overshooting (or larger stress 

than the monotonic flow stress) when the loading path changes to being 

orthogonal to the previous loading path [10-15]. Interestingly, du-al-phase 

steels with mixed ferrite and martensite phases exhibit a clear softening under 
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the same loading path changes [15-18]. These plastic behaviors under 

orthogonal loading path changes are called cross-hardening and cross-

softening, respectively. Experimental observations on these complex 

mechanical behaviors, which cannot be explained through the simple 

isotropic plasticity model, require the implementation of new anisotropic 

models in the field of metal forming and plasticity. Indeed, this complex 

behavior can influence the formability and springback of advanced sheet 

metals [9]. 

In the literature, a significant amount of works have proposed models for 

the anisotropic hardening behavior. The kinematic hardening is a 

representative concept, which explains the Bauschinger effect and transient 

flow hardening at load reversal by introducing yield surface translation during 

plastic deformation. The kinematic hardening models were pioneered by 

Prager [19] and Ziegler [20], and further extended by adding nonlinear terms 

[21] or by coupling with the isotropic hardening model. The series of iso-

tropic and kinematic hardening models was well implemented into the finite 

element (FE) simulations for sheet metals, especially when the metals exhibit 

the Bauschinger effect, transient behavior, and permanent softening under 

reversed loading paths [22-25]. 
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The kinematic hardening-based anisotropic hardening models were further 

extended by combing the distortional hardening concept to reproduce 

mechanical responses under rather complex loading conditions, beyond the 

simple loading-reverse loading path. Ortiz and Popov [26] introduced the 

distortion of the yield surface by controlling the size of the effective stress. 

Feigenbaum and Dafalias [27,28] employed the fourth-rank anisotropic 

tensor as a function of plastic deformation, but the fundamental basis they 

used remained that of the isotropic-kinematic hardening. Teodosiu and Hu 

[29] introduced new effective values into the yield condition related to the 

structure and interactions of dislocations as a major plasticity mechanism. 

François [30] expressed the egg-shaped yield function by de-composing the 

deviatoric stress into its collinear and orthogonal parts with respect to the back 

stress of kinematic hardening. Badreddine et al. [31] developed a non-

associated elastoplastic anisotropic hardening model, which is coupled with 

a damage model based on François’s approach [30]. Qin et al. [32] suggested 

a model represent the Bauschinger effect with the kinematic hardening 

component, while other strain-path change effects could be expressed through 

the distortion of the yield surface. 

Besides the kinematic hardening or combined kinematic-distortional 

hardening, several anisotropic hardening models are solely based on the 
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distortional hardening approach. Some of the distortional hardening models 

were developed to express the yield surface evolution by using the anisotropic 

coefficients as a function of the plastic work or equivalent plastic strain [33-

36]. However, these models don’t take into account the loading path change 

effect. Barlat and one the of co-authors of the present study [37-39] proposed 

a series of anisotropic hardening models without yield surface translation, 

which they named the homogeneous yield function based anisotropic 

hardening (HAH) models. The main concept of the HAH model consists of 

using the distortion of the yield surface along a designated loading path, 

which is called a microstructure deviator, and the distortional amounts are 

controlled via adequately defined plastic state variables. Later, the model was 

extended for reproducing the latent hardening, work hardening stagnation 

[38], as well as cross-softening under more general loading conditions [39]. 

The performance of the HAH model was validated through many applications, 

including the springback in U-draw bending and industrial S-rail forming [40-

46]. The model is also applicable to the subjects where non-linear strain path 

effects are important, such as the fracture behaviors of metal after pre-

deformation [47-49]. 
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1.3. Stress update algorithms 

As the constitutive models of plasticity advanced, especially the hardening 

laws, their implementations into FE simulations have become increasingly 

challenging. This is mainly attributed to the advanced constitutive models 

having more state variables, which are non-linearly cross-related. These 

challenges led to more robust numerical formulations and implementations of 

the constitutive models, which eventually determine the accuracy and 

robustness of the FE simulations. Numerous numerical algorithms have been 

proposed to take into account the stress integration or stress update using the 

elastic-plasticity constitutive models. The details of the general theoretical 

studies on these stress-integration algorithms for nonlinear plasticity have 

been well documented in a book by Simo [50]. 

The basic principle of the stress update algorithm for the classical rate-

independent elastoplastic model consists of locating the stress state on the 

yield surface described in the six-dimensional stress space, which is 

consistent with the material hardening. The hardening of the material is often 

represented by a uniaxial stress-plastic-strain curve as a reference stress state. 

Most of the stress update algorithms have been developed in the elastic-

predictor and plastic-corrector schemes. For example, the closest point 
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projection method (CPPM) [51-53] and the cutting-plane method (CPM) [54] 

have been employed as popular stress integration algorithms in FE models. 

The CPPM is often based on the Euler backward method (EBM), and thus it 

is an implicit method requiring the first and second derivatives of the yield 

surface to satisfy both the consistency and flow rule (or normality rule). In 

contrast, the CPM only satisfies the consistency condition without requiring 

the second derivative of the yield function; thus, this approach is also referred 

to as a semi-explicit method.  

Regarding the stress integration algorithms on the distortional hardening 

models, similar approaches, based on either the CPPM or CPM schemes, have 

been reported. Lee et al. [55] implemented the first version of the HAH model 

into the commercial ABAQUS software using both the CPPM and CPM 

approaches. This implementation was also extended to the enhanced version 

of the HAH model; however, in this case, only the CPM scheme was applied 

in combination with a sub-stepping numerical method [56]. Recently, Choi 

and Yoon [57] also reported the implementation of the HAH model using the 

Euler backward scheme, but they calculated the derivatives of the yield 

function using numerical finite differences. More recently, Yoon et al. [58] 

coupled the CPPM scheme with a line-search algorithm for an updated 

version of the HAH model [59] to improve the numerical efficiency. However, 
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the existing numerical integration schemes do not fully exploit the implicit 

CPPM scheme. In other words, these approaches only account for the partial 

number of residuals to attain the solution process of linearized equations 

under the Newton-Raphson method. In this sense, these methods can be 

regarded as a partial or semi-implicit integration algorithm based on the Euler 

backward scheme. 

1.4. Predictions of the pipe strength in previous studies  

Taking advantage of the improved accuracy of the advanced constitutive 

models, the strengths of pipes manufactured by various processes have been 

predicted. Examples of pipe forming include UOE, JCOE, spiral, and roll 

forming processes, which have been selectively employed in consideration of 

the material properties, thickness, and pipe diameter. Although the details of 

these processes are different, their pipe-forming technologies involve 

common deformation paths dominated by multiple bending and reverse 

bending with superimposed stretching. Therefore, most studies on the model 

predictions of the pipe strength have used hardening models that account for 

the Bauschinger effect under reversed loading conditions. The kinematic 

hardening law has been regarded as the most appropriate for this purpose [60–

66]. The investigations on the strength predictions using the well-known 
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nonlinear kinematic hardening model by Chaboche or its modified models are 

representative examples because they enable the reproduction of the 

anisotropic hardening response under load reversal [60–62, 64, 65]. 

Alternatively, a multi-surface kinematic hardening model, such as the two-

surface model, was employed by Lee et al. [63] to predict the yield strength 

of roll-formed ERW pipes.  

However, to date, most of the previous strength prediction models [60–66] 

have been characterized by reverse loading tests such as tension-compression 

(or compression–tension) tests along the material orientation of interest. In 

general, the material direction has been chosen along the circumferential of 

the tube or pipe for practical reasons. As a result, the yield strength along the 

direction could be predicted well within the expected accuracy. Several 

studies have predicted the yield strengths of pipes along other directions. 

Thibaux and Van den Abeele [62] predicted the yield strength of a pipe formed 

30° off the rolling direction using their analytical model. They used average 

anisotropic hardening parameters calculated from the collected material data 

found in the literature. The predicted strengths were in good agreement with 

the overall tendency of the yield strength change after the pipe-forming 

process. However, in terms of quantitative accuracy, the predictions need to 

be improved. More recently, Cooreman et al. [61] presented a yield strength 
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prediction model using the isotropic yield function and Chaboche kinematic 

hardening law. They predicted the yield strengths of a spiral-formed pipe 

along both circumferential and longitudinal directions using a finite element 

simulation. In their study, they simplified the spiral-forming process through 

four-point bending tests, and the specimens along different orientations were 

removed after the bending tests. Their prediction was accurate in the 

circumferential direction, which corresponded to the transverse of the rolling 

direction. However, the predicted strengths along the other directions were 

not satisfactory because the kinematic hardening model employed in their 

study overestimated the flow softening in the longitudinal direction, which 

was identified based on the Bauschinger behavior in the circumferential 

direction. Therefore, a more advanced constitutive model, which accounts for 

path-dependent hardening behavior in both directions, needs to be 

implemented for the prediction of the pipe strength with better accuracy. 

1.5. Objectives and outlines 

Inspired by the advances and limitations of the current modeling approach, 

in this study, we aim to investigate the effect of the anisotropic hardening 

model on the strength prediction of a pipe manufactured through a multi-

bending process. Because a pipe is formed with a constant radius of 
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curvature, as shown in Figure. 1.1(a), the laboratory-scale analysis employs 

a four-point plate bending process to equivalently simulate the pipe 

formation, as indicated in Figure. 1.1(b). The flattening process of the plate 

sample taken out of the pipe was conducted to fabricate dog-bone shape 

specimens. This process was simulated in the laboratory by bending the bent 

specimen in the reverse direction, which simulated the pipe formation. 

Subsequently, tensile tests were conducted for three specimens along 

different plate orientations. In particular, the strengths along both the 

circumferential and longitudinal directions of the major bending axis are 

evaluated. For the hardening model, the enhanced version of the HAH 

model [39] was used to represent the distortional hardening. An isotropic 

and kinematic hardening (IKH) model and a pure isotropic hardening (IH) 

model are comparatively considered to highlight the importance of the 

loading path-dependent constitutive law in a finite element simulation. 

Special modeling is applied to improve the HAH model under a strain path 

change by proposing multi-component evolution laws of the Bauschinger 

effect and the transient hardening behavior.
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Figure. 1.1. (a) Schematic illustration of strength evaluation of a pipe along 

different orientations, and (b) its laboratory-scale experiment using a four-

point bending test. 

In Chapter 2, a summary of the investigated HAH distortional hardening 

model is presented with key evolution laws for the model state variables. The 

modified evolution rules of the state variables on the Bauschinger effect and 

transient hardening behavior are presented. 

In Chapter 3, for the FE implementation of the HAH model, the stress 

integration algorithms of the HAH model were studied. The numerical 

integration algorithms investigated in this study are introduced, alongside a 

summary of previous studies. Based on the studied algorithms, the accuracy 
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and stability of the individual algorithms are comparatively evaluated via one-

element analyses under two distinctive loading path changes. Also, an S-rail 

forming and springback simulation are provided as a benchmark problem to 

assess the validity of the proposed fully implicit numerical algorithm. 

In Chapter 4, FE simulations for the anisotropic strengths prediction of 

steel plate after prior bending and reverse-bending are carried out using the 

developed fully implicit stress update algorithms in Chapter 4. The overall 

experimental procedures are described including the identification of used 

elastic-plastic constitutive models. The anisotropic strengths prediction 

results are provided with further discussion on the effect of hardening models 

and the yield point phenomenon. 

It is expected that this study would be useful in investigating the 

mechanical properties of the plate after the pipe forming process. Note that 

the contents of the thesis were reconstructed from our two previous researches 

of H. Choi et al. (2021) [67, 68]. 
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2. The homogeneous yield function based 

anisotropic hardening (HAH) model with multi-

component evolution laws 

2.1. Summary of the HAH hardening law 

The HAH model was developed to predict the path-dependent anisotropic, 

non-linear evolution of plastic hardening [37–39]. The first version of the 

HAH model [37] could reproduce the commonly observed Bauschinger effect 

at load reversal, and it was further extended later to model the hardening or 

softening under cross-loading conditions [38, 39]. The model is based on the 

distortional hardening concept and does not include the commonly applied 

back stress tensor in the kinematic hardening laws. As a distortional hardening 

model, the HAH law involves a special state variable, which determines the 

direction of yield surface distortion at various loading path changes, and is 

called the microstructure deviator ˆ s
h .  

The yield criterion ( F ) defined with the HAH model is as follows: 

( ) ( ) ( ) ( ) ( )
1/ˆ, σ σ 0, 1,2, , ,,

q

i s hF g i L C R =  − =  + − = =s
s h , (2.1) 
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where   and σ  are the yield surface and equivalent stress, s  and ˆ s
h  

are the deviatoric and microstructure deviator tensors, and 
ig  and   are 

the state variables and equivalent plastic strain, respectively. In this study, ˆ s
h  

is defined as 
/

ˆ

8 3 :
=

s

s s

s

h
h

h

h
  and the initial value of s

h   is set to the 

deviatoric stress ( s ) at the beginning of the plastic deformation. 

In Eq. (2.1), the yield surface is a combination of 
s   and 

h  , which 

represent the initially isotropic or anisotropic yield function and its distorting 

contribution along ˆ s
h , respectively, and are defined as follows:  

 2 2 2( ) ( )
q

s p  = +s s , (2.2) 

1 2
ˆ ˆ ˆ ˆ: : : :

q q
q q

h f f = − ++s s s s
h s h s h s h s , (2.3) 

where q   is a constant for determining the shape of the distorted yield 

surface. Note that Eq. (2.2) or 
s  is initially undistorted but experiences 

another distortion in the orthogonal direction to the active loading direction. 

For this, the following equations are defined. 

( )
8 ˆ ˆ:
3

c =
s s

s h s h , (2.4) 
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( )
8 ˆ ˆ:
3

o c= − = − s s
s s s s h s h , (2.5) 

where 
cs  and 

os  are collinear and orthogonal to ˆ s
h , respectively. Then, 

( ) s  and ( )P s represent undistorted and orthogonally distorted functions, 

respectively, with the definitions of 
1

= +c o

Lg
s s s   and 

(1 )C
P o

L

g

g

−
=s s  . In 

addition, the variables 
Lg   and 

Cg   control the cross-hardening and 

softening of the flow stress, respectively. Note that if 1= =L Cg g , Eq. (2.2) 

recovers its form as an isotropic yield function, or ( ) =s s . 

Eq. (2.3) is introduced in the HAH concept for anisotropic distortion along 

ˆ s
h , which is controlled by variables 

1f  and 
2f . 

( )1 , 1, 2
q

q

i if g i−= − = , (2.6) 

where the state variables 
ig  correspond to the ratio of the flow stress on 

the distorted yield surface to that in the isotropically expanding flow stress.  

Figure. 2.1 shows a graphical interpretation of yield surface distortions in 

the π-plane when the loading is applied along ˆ s
h , with two example cases 

of cross-hardening and softening shown in Figure. 2.2(a) and (b), respectively. 

Cross-hardening is defined as higher stress than monotonic stress in the 
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loading direction orthogonal to the current loading (see the red dashed surface 

in Figure. 2.2(a)). By contrast, when the flow stress in the loading direction 

orthogonal to the current loading is lower than that of the monotonic loading 

(see the blue dashed surface in Figure. 2.2(b)), it is defined as cross-softening. 

The normalized yield surfaces are also compared with those assumed as 

undergoing isotropic hardening (shown as a black solid line). The state 

variables used for the illustration are listed in Table 2.1. 
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(a) 

 

(b) 

Figure. 2.1. Example HAH yield surfaces distorted under (a) cross-hardening 

and (b) cross-softening conditions. The black solid line represents an 

isotropically expanding yield surface, which is normalized by a reference 

tensile yield stress. The coordinates sx, sy, and sz represent the π-plane. 
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Table 2.1. HAH state variables of the generic material used in Figure. 2.1. 

 11h  22h  33h  ( )ijh i j  
1g  

2g  
Lg  

Cg  

(a) 0.25 0.25 -0.5 0 0.3 0.7 1.2 1.0 

(b) 0.25 0.25 -0.5 0 0.3 0.7 1.0 0.8 

 

2.2. Evolutions of state variables for enhanced accuracy 

The HAH model was developed to predict the path-dependent anisotropic, 

non-linear evolution of plastic hardening [37–39]. The first version of the 

HAH model [37] could reproduce the commonly observed Bauschinger effect 

at load reversal, and it was further extended later to model the hardening or 

softening under cross-loading conditions [38, 39]. The model is based on the 

distortional hardening concept and does not include the commonly applied 

back stress tensor in the kinematic hardening laws. As a distortional hardening 

model, the HAH law involves a special state variable, which determines the 

direction of yield surface distortion at various loading path changes, and is 

called the microstructure deviator ˆ s
h .  

State variables, ( )1 ~ 4, , ,ig i L C R= and ˆ s
h , are introduced to control the 

distortion of the yield surface. Although there are many choices of evolution 
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rules, in this study, they are expressed as functions of equivalent plastic strain. 

In the following sections, the evolution rules are described in detail by 

classifying them into three groups.  

2.2.1. Multi-component evolution laws for load-reversal 

In reversed loading, the flow stress produces the well-known Bauschinger 

effect, which is characterized by lower yield stress than the flow stress before 

loading path change, transient hardening, and permanent softening. As shown 

in Figure. 2.1, different state variables are associated with yield surface 

distortion with respect to the sign of ˆ :s
h s . For example, if a current state is 

on the ˆ : 0s
h s   side, 

2g   represents the transient behavior of the flow 

curve, and
1g  expresses the Bauschinger effect. The evolution laws of state 

variables associated with a load reversal are proposed as follows: 

( )0 0
d

1
d dd

d d
b 1 t 1

b t1

g g g g

g g
u

g
u

  = =

= − +  , (2.7) 

( )0 0

d dd

d
1

d d
b 2 t 2

b t2

g g g g

u u
g gg

  = =

= − +  , (2.8) 

( )0

d
1

d

d d
s 3

3 s

g g

u
g g

  =

= −  , (2.9) 
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0

d d

d d
s 4

4 s

g g

g g
u

  =

=  , (2.10) 

where 
0 1u =  if ˆ : 0s

h s ; otherwise 
0 0u = . The subscripts, “ b ”, “ t ”, and 

“ s ” of the state variables stand for the Bauschinger effect, transient behavior, 

and permanent softening, respectively. The evolution laws of the Bauschinger 

effect and the transient behavior are proposed as multi-component 

exponential functions of the equivalent plastic strain. 

( )2, 3

1 1

dd

d d

n n
b, jb

j j b, j

j j

gg
k R k g

 = =

= = −  , (2.11) 

( )1,

1 1

dd

d d

n n
t, jt

j j s t, j

j j

gg
k R g g

 = =

= = −  , (2.12) 

( )5 4

d

d

s
s

g
k k g


= − , (2.13) 

where
jR  is a parameter satisfying 

1

1
n

j

j

R
=

= . The suggested evolution laws 

converge the state variables to constants controlled with 
3k   and 

4k  . The 

convergence rates are related to the constants 
2, jk  , 

1, jk  , and 
5k  . If 

1 2 3 4 1g g g g= = = = , the model recovers isotropic hardening. 

In the following illustration, the effectiveness of the multi-component 

evolution rule is presented by estimating the tension-compression-tension 
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flow curve obtained for the investigated material of the present study. As 

Figure 2.2. shows the material exhibits considerable Bauschinger effect and 

transient hardening. Also, the flow curves in the second tensile loading 

converge to the monotonic loading at large strain. Three sets of HAH 

hardening parameters are evaluated; one-component rule (n=1) in Eq. (2.11)-

(2.12), two-component rule (n=2), and one-component without permanent 

softening parameter (
4 1k =  , 

5 0k =  ). Additionally, the isotropic hardening 

results were compared. All the parameters were determined by the Nelder-

Mead simplex optimization. In Figure. 2.2(b), all curves predicted by 

different sets of evolution rules are compared. Both one- and two-component 

models could predict the reverse tensile curve with reasonable accuracy when 

a small amount of permanent softening is accounted for. However, the result 

indicates that the two-component evolution rule could more flexibly capture 

the smooth transient behavior from elastic to plastic region, and the gradually 

approaching flow stress toward the monotonic curve. The one-component 

rule without the permanent softening parameter significantly overestimated 

the flow curve at the second tensile loading. Considering this preliminary 

evaluation, the two-component model (n=2 in Eq. (2.11) and (2.12)) were 

used for all simulations with the HAH model in this study. 
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(a) 

 

(b) 

Figure. 2.2. (a) Tension-compression-tension curves calculated by HAH 

model with one-, two-component, and one-component without permanent 

softening (PS) parameters, and (b) the closed-up view during the second 

tension stage. 
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2.2.2. Latent hardening and contraction under cross-loadings 

The loading path change is identified using a single scalar parameter, cos  , 

as follows [38, 39]:  

( )5 4

d

d

s
s

g
k k g


= − , (2.14) 

where s  is a normalized deviatoric stress tensor such as normalized 
s

h  

in Eq. (2.1). Similar to the rule proposed in a previous study [39], the 

evolutions of cross-hardening and cross-softening are defined as follows:  

( ) ( )

( )
( )( )2 2

σ σd
1 cos cos 1 1

d σ

L
L L

g
k L g


 

 

 −  
= − + − + − 

  

, (2.15) 

( ) 2d
1 1 cos

d

C
C C

g
k C g


 −= + −  , (2.16) 

where 
Lk  , L  , 

Ck  , and C   are constant parameters introduced for 

controlling the cross-hardening and softening, respectively. As shown in Eq. 

(2.16), cross-hardening does not occur if no loading path changes, or 

cos 1 =  . By contrast, cross-softening always occurs with plastic 

deformation and evolves under a cross-loading condition, or cos 0 = . Note 

that if L= C =1 , there are no cross-loading effects. 
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2.2.3. Evolutions of the microstructure deviator 

The microstructure deviator ˆ s
h  determines the directions of the distortion 

under various loading path changes. The rotation or evolution of the 

microstructure deviator is defined as a function of the equivalent plastic strain 

as follows:  

( )   1/

0

ˆd ˆ2u 1 cos cos
d

Rk g 

= −   + −

s
ss

h
h

z
, (2.17) 

where 
Rg   is introduced to trigger an initial rotation of ˆ s

h   under the 

cross-loading path. In addition, k  and z  are the model constants for 
Rg  

evolution. It evolves as 

( ) ' 2d
1 cos

d

R
R R R

g
k k g


=  − − . (2.18) 

Here, 
Rk   and '

Rk   are material constants, which are 5, 15, and 0.2, 

respectively, in this study. If cos   , ˆ s
h  rotates toward the s  direction, 

but rotates toward the −s   direction if cos    . A more complete 

description of the evolution rules of the state variables can be found in [37–

39]. 
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3. Stress integration algorithms of HAH model 

 

3.1. Motivation and general statement 

The HAH model is featured with more number of plastic state variables 

than conventional isotropic hardening. Note that the only state variable in the 

von Mises isotropic model is the equivalent plastic strain. This increased 

number of state variables is inevitable for efficient modeling of path-

dependent anisotropic hardening, while the overall numerical procedure 

becomes complex. The stress and microstructure deviator tensors and 8 

plastic state variables (    and ( )ig i 1 ~ 4,L,C,R=  ) are associated with the 

numerical stress integration of the HAH model. Therefore, a total of 20 

unknowns (6 for stress tensor, 6 for microstructure deviator, and 8 state 

variables) are required to be solved by a stress integration algorithm for 

continuum elements. For the shell element under the plane stress assumption, 

the number of unknowns is reduced to 14. Moreover, the state variables are 

cross-related since the investigated distortional yield surface evolves as a 

function of the equivalent plastic strain. Therefore, if all the state variables 

are treated as independent, a total of 20 (or 14) nonlinear equations should be 

simultaneously solved for continuum (or shell) elements. However, if only 



27 

 

parts of the state variables are assumed as independent, the exact evolution of 

dependent variables should be included in the residuals of the independent 

variables. For the HAH model, this is not an easy task because the evolution 

laws cannot be expressed explicitly as functions of other independent 

variables. An additional iterative process is required to determine the state 

variables in the stress update algorithms in this case [55].  

Another challenge in the computational modeling of HAH plasticity is the 

continuous, anisotropic distortions of yield surface during plastic deformation. 

The distortional characteristics may lead to abrupt changes in the first and/or 

second gradients of yield function, which are also complex functions of 

plastic deformation. The gradients are key factors in the flow rule of elastic-

plasticity theory, and the accurate numerical integration algorithm 

implemented in the Euler backward scheme is essential for robust finite 

element simulations. Due to the difficulty, previous studies employed 

numerically calculated derivatives based on the finite difference method 

[57,58,69]. 

Motivated from the above issues in the finite element modeling for the 

distortional HAH model, in-depth comparative studies on the stress 

integration algorithms are tried in this study. For this purpose, numerical 
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investigations on two common algorithms are considered: the cutting plane 

method (CPM) and Euler backward method (EBM). Only plane stress 

condition is studied, but the overall approach can be directly extended to the 

general stress state. Moreover, the EBM algorithm is formulated with 

different numbers of residuals for updating state variables: EBM with 4 

residuals (EBM-4R), and EBM with 14 residuals (EBM-14R) for the plane 

stress condition. The EBM-4R includes residuals for 3 stress components and 

an equivalent plastic strain, while the EBM-14R has additional 10 residuals 

for 3 microstructure deviator components and the 7 state variables on the yield 

function distortions. Then, to study the effect of the algorithm for calculating 

the derivatives of evolving yield surface, two different methods for updating 

the yield surface gradients are considered for the EBM-14R algorithm: 

analytically derived derivatives (EBM-14R/AD), and numerical derivatives 

based on the finite-difference (EBM-14R/ND). Note that only analytical 

derivatives are used for the EBM-4R algorithm. In summary, a total of 4 

different stress integration algorithms are comparatively studied in the present 

studies; i.e., CPM, EBM-4R, EBM-14R/AD, EBM-14R/ND. In Figure. 3.1., 

the schematic interpretations of the 4 stress integration algorithms are 

presented. It is seen in Figure. 3.1(c) that the normal directions to the yield 

surface are not identical between the EBM algorithms with analytical and 
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numerical derivatives, which is resulted from the truncation error that 

occurred from the finite difference used for the numerical derivatives. The 

detailed derivations for the analytical and numerical derivatives of the HAH 

model are presented in Appendix A and B. 

 

(a) 

 

(b) 
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(c) 

Figure 3.1. The geometrical interpretations of the implemented algorithms: 

(a) Cutting-plane method (CPM) (b) Euler backward method using analytical 

derivatives (EBM-AD) (c) Euler backward method using finite difference 

method (EBM-ND). 

 

3.2. Stress update algorithms for elastic-plasticity 

A In the implementation of small strain elastic-plasticity, the total strain 

increment,    is additively decomposed into its elastic component, 
e  

and plastic component, 
p . 

e p  + =   . (3.1) 

If the associated flow rule is applied, p  is calculated with the gradient 
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of yield function,   and a scalar multiplier,  . 

p 
 


 =


. (3.2) 

The stress increment,   is written as following for the isotropic linear 

elastic metals. 

( )p: :
 

   =   
 

C C  =  −   −


, (3.3) 

where C is the fourth-order elastic stiffness matrix. The relation between 

plastic multiplier,    and equivalent plastic strain increment,    is 

obtained from the 1st order homogeneous function and the plastic work 

equivalence principle. 

p :
:




  = = 
 





  = . 

(3.4) 

Therefore, it is noted that the stress integration in Eq. (3.3) is to update the 

equivalent plastic strain increment Eq. (3.4). Depending on the algorithmic 

treatment in the above general procedure, there have been various algorithmic 

procedures for numerically accurate and efficient integration methods.  

In general, for most constitutive laws and their corresponding numerical 

implementations, the following predictor-corrector algorithm has been 
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employed. 

Trial

n 1 n n 1:+ ++C =   , (3.5) 

( ) ( ) ( )i

T

n

rial

n n,1 n
ˆR g , σ 0, i 1~ 4,L,C,R+=   =−s
h  , (3.6) 

where n 1+  is the total strain increment at the current time step n+1, and 

Trial

n 1+   is the trial stress as a predictor. The numerical algorithm begins to 

check the condition in Eq. (3.6) as an elastic process, while an iterative 

process is followed if the condition in Eq. (3.6) is not satisfied. Note that Eq. 

(3.6) is simplified to represent the yield function   as a function of state 

variables in the HAH model. 

In the next sub-sections, existing numerical algorithms for the stress 

integration of the HAH model are first introduced, followed by the 

algorithmic development of the proposed modeling in the present work. 
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3.3. Stress integration algorithms for the HAH: a review of existing 

algorithms 

3.3.1. Cutting-plane method (CPM) 

Lee et al. presented the first numerical algorithm for the original HAH 

model [37, 55] and the enhanced version of the HAH model [56] based on the 

cutting-plane method (CPM). In their CPM approach, the only independent 

variable is the equivalent plastic strain,  . For each iteration of the current 

time step n+1, 
(k 1)

n 1

+

+   is calculated from Eq. (3.2) –(3.4) using the 

linearized Eq. (3.6). 

( )
(k)

(k 1)(k)
n 1n 1

n 1

R
R 0

+

++

+

 
+   = 

 
, (3.7) 

(k)(k) (k)

n 1 n 1 n 1

R σ
:

ε+ + +

 



    
=     

   
−

 




, (3.8) 

(k) (k)

n 1 n 1

:
+ +

    
= −   

   
C




, (3.9) 

( )
(k)

(k 1)
n 1

(k)(k)n 1

n 1 n 1

R

σ
: :

ε

+
+

+

+ +

  =
   

+   
  



  
C

 

, 
(3.10) 

Then, the state variables and stress tensor for k+1 iteration can be explicitly 
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updated using the value in Eq. (3.10) as follows. 

( )(k 1) (k) (k 1)

n 1 n 1 n 1

+ +

+ + + =  +   , (3.11) 

( ) ( )

( )

(k)
(k 1)(k) i,n 1(k 1) (k) (k)

n 1i,n 1 i,n 1 i,n 1 i,n 1

dg
g g g g ,

d

i 1 ~ 4,L,C,R ,

+
++

++ + + +

 
= +  = +   

 

=

 (3.12) 

( ) ( )
(k) (k 1)(k 1) (k) (k)

n 1n 1 n 1 n 1 n 1

(k)

n 1
ˆdˆ ˆ ˆ ˆ
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( )n 1

(k 1)(k 1)
n 1n 1 :
+

+

+
++  − = C  , (3.14) 

The iterative procedure continues until the following condition is satisfied. 

( ) ( ) ( ) ( )
(k 1)(k 1)(k 1) 6
n 1 ni,n 1

(k

n

+1)

n 1 1
ˆg , σ σ Tol , Tol 10

++

+

+ −
++ + −     =s

h , (3.15) 

Therefore, in the CPM the only unknown variable is    and all other 

variables are treated as a function of  . In the algorithmic aspect, this leads 

to the yield surface gradient (in Eq. (3.10)) expressed as a complex form. 
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Lee et al. [56] employed a Newton-Raphson procedure as an alternative to 

the analytical derivation of the gradient and an additional sub-stepping 

method was also used for numerical stability. Moreover, the further 

simplification of Eq. (3.16) was suggested by ignoring higher-order terms as 

follows. 
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In the implicit FE formulation, an algorithmic tangent modulus is 

commonly required to obtain a quadratic convergence rate. However, in the 

conventional CPM-based stress integration algorithm, this cannot be readily 

applied. For example, an additional numerical technique was proposed for the 

tangent moduli to preserve the quadratic convergence rate [54], but not for 
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the distortional hardening models. For the CPM of HAH or e-HAH in Lee et 

al. [55, 56], the continuum tangent modulus, ep
C  was used as an alternative 

to the consistent tangent modulus. 

n 1 n 1

ep n 1 n 1 n 1

n 1n 1 n 1 n 1

n 1n 1 n 1

: :
d

.
d σ

: :

+ +

+ + +

++ + +

++ +

  
 

  = = −
  

+ 
 



 

C C

C C

C

  



 

 (3.18) 

3.3.1. Euler backward method (EBM) 

There are previous researches for developing the Euler backward method 

(EBM) based stress integration algorithm of distortional anisotropic 

hardening laws. However, their algorithms simplified the set of equations in 

the EBM algorithm by reducing the number of residuals associated with the 

state variables. Residuals on stress tensor and equivalent plastic strain were 

required to satisfy the common consistency condition in elastic-plasticity 

under the associated flow rule. However, this method has a similar problem 

as in the CPM-based algorithm [56] because parts of state variables should be 

functions of independent variables when the number of the residuals is less 

than that of independent variables in the enhanced version of the HAH model. 

This may cause difficulty in calculating the first and second derivatives of the 

yield function during its evolution as a function of plastic deformation. 
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The EBM algorithm developed by Lee et al. [55] introduced the following 

residuals.  

( ) ( )
( )

(k) (k)(k) (k)

n 1n 1 i,n 1 i,
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,n 1 n 11
ˆR g , σ ,

,i 1 7, 5 L, 6 C, 7 R
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= =

s
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 (3.19) 

(k) p(k) (k)

n 1,n n 12 1 ,+ +  +− +=   R   (3.20) 

To apply a multi-variable Newton-Raphson method, the residuals are 

linearized as follows. 
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The linearized equations can be calculated with respect to ( )
(k )

n 1+   , 

( )
(k )

n 1+
 σ  by solving the following system. 
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σ

. (3.23) 

After converged solutions of Eq. (3.23), the other variables are updated 
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explicitly using Eqs. (3.11)-(3.13). The iterative process stops when the 

following conditions are satisfied. 

( )(k) (k)

1 i,n 1 2, 1n nR σ Tol, Tol.+ + +   R  (3.24) 

As aforementioned, the major difficulty in this algorithmic procedure is 

with the calculation of the first and second derivatives due to the 

anisotropically evolving yield function, and this evolution is closely 

associated with the multiple numbers of dependent variables in the enhanced 

version of HAH. To overcome this issue, Lee et al. [55] employed the multi-

step Newton-Raphson method by subdividing the variables 1or2g . Recently, 

Choi and Yoon [57] also applied the multi-stage EBM algorithm by using the 

sub-division of strain increment, n 1+ , which was originally proposed by 

Yoon et al. [70]. Yoon et al. [58] also used a line-search method for the step 

size control on Eq. (3.22) as an alternative effort to increase the stability of 

the algorithm for the distortional hardening model. 

Contrary to the CPM algorithm, the EBM-based stress integrations have 

quadratic convergence which is consistent with the global Newton-Raphson 

method. The consistent tangent modulus can be expressed as follows.  
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As shown in Eq. (3.25), the tangent modulus requires the calculations of 

the first and second derivatives of yield function under the associated flow 

rule. As discussed previously, the existing EBM-based algorithms introduced 

simpler forms without presenting complete derivations of their analytical set. 

 

3.4. Stress integration algorithms for the HAH: proposed algorithms 

3.4.1. Cutting-plane method (CPM) 

In comparison with the CPM algorithm used by Lee et al. [55], where the 

effect of dependent variables is included in the yield surface gradient, the 

present CPM introduces the linearization of yield condition, Eq. (3.6) as 

follows. 
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After substituting Eqs. (3.26) and (3.9) into Eq. (25), ( )
(k 1)

n 1

+

+
   can be 

calculated. 
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The state variables and the stress tensor for the (k 1)+ th iteration at the 

current time step are iteratively updated by using Eqs. (3.11)-(3.14) until Eq. 

(3.15) is satisfied. The tangent modulus ep
C  is also calculated using the 

consistency condition 

n 1 n 1 n 1
n 1n 1 n 1
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By substituting Eq. (3.3) into Eq. (3.28), the elastoplastic tangent modulus 

is expressed as follows. 
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, (3.29) 
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3.4.2. Fully implicit Euler backward method (EBM) 

The characteristic of the enhanced version of the HAH model is that the state 

variables are cross-related to each other. The complexity resulted from the 

constitutive model makes it difficult in constructing exact linearization of the 

governing equation with a limited number of independent variables. This is 

the reason why the previous existing algorithms were developed with their 

simplifying methods. In this study, our effort is focused on deriving a fully 

implicit EBM algorithm by simultaneously solving the whole residuals 

defined for stress tensor, microstructure deviator tensor, and 8 state variables 

(or equivalently 14 unknowns) associated with the HAH at plane stress 

condition. To the best knowledge of the present authors, this is the first trial 

for the algorithmic implementation of the distortional anisotropic hardening 

enhanced HAH model.  

In the following, a set of nonlinear equations defining residuals of the 

enhanced HAH model is provided. Eq. (3.30) is from the consistency 

condition, Eq. (3.31) represents the associated flow rule, Eq. (3.32) is for the 

state variables controlling the distortion of yield surface, and Eq. (3.33) is 

defined for the rotation of microstructure deviator, ˆ s
h . 
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Linearization of Eqs. (3.30)-(3.33) leads to the following equations. 
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Then, the solutions of the above-linearized equations are obtained for 
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Eq. (3.38) shows that the Jacobian matrix has a size of 14 by 14 when it is 

expressed as the Voigt notation under the plane stress condition. By applying 

Newton’s method, all state variables are updated for ( )k 1+ th iteration and 

it continues until the residuals satisfy the following criteria. 
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, (3.39) 

In this study, tolerance, Tol is set to be 610−  for all residuals with proper 

normalizations.  

The linearized flow rule, Eq. (3.3) and isotropic linear elasticity, Eq. (3.2) 
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lead to the calculation of consistent tangent modulus ep
C  for the EBM of 

the enhanced HAH model as follows. 

( )n 1n n1 1d : d d p

+ + += −σ C   , (3.40) 
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Substituting Eq. (3.41) into Eq. (3.40), 
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The consistency condition with Eq. (3.41) brings 

 
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Finally, ep
C  can be calculated from Eqs. (3.43) and (3.42) as follows. 
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Note that the previously formulated EBM-based algorithms with 4 

residuals [55,57,58] can be retrieved if residuals in the current formulation 

are properly reduced. Moreover, the numerical algorithm can be simply 

extended to a general stress state. The flow chart of the proposed fully implicit 

EBM and CPM algorithms is shown in Figure 3.2. 
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Figure 3.2. Flow chart for two stress update schemes; CPM and EBM. 
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3.5. Evaluations of stress update algorithms for the HAH 

In this section, evaluations of the numerical accuracy and stability of the 

proposed stress integration algorithms are analyzed for different case 

problems. The algorithms described in the previous sections were 

implemented in the static implicit finite element software ABAQUS/Standard 

using the user material subroutine UMAT.  

For the comparative study, 4 algorithms were implemented in the FE model; 

CPM, EBM-4R, EBM-14R/AD, EBM-14R/ND. Here, 4R and 14R denote 4 

and 14 residuals based on EBM algorithms, respectively, and AD and ND 

represent the analytical derivative and numerically calculated derivatives 

based on finite difference, respectively. Note that the EBM-14R represents 

the fully implicit Euler backward algorithm implemented for the extended 

HAH model for the first time. 

The two-level of the evaluation procedure is presented in the following 

sections. First is a very detailed fundamental analysis on the accuracy of the 

different algorithms for the investigated anisotropic hardening model, HAH. 

For this, the anisotropic characteristics of flow stress and r-value are predicted 

and evaluated under two different loading paths. Only a single element is used 

in this level to rule out other numerical effects. To clarify the effect of 
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anisotropic hardening responses of the enhanced HAH under different 

loading paths, various model materials are selectively compared. The 

investigated model materials for the evaluation exhibit high or low evolution 

rates, and hardening or softening under cross-loading. To represent the initial 

anisotropy of material, the non-quadratic anisotropic yield function, Yld2000-

2d [71, 72] is employed. The summary of the initial (undistorted) yield 

function, Yld2000-2d is referred to Appendix C. 

The other level is a real scale simulation based on the S-rail forming and 

springback process [42], which was proposed as a benchmark problem and 

often utilized for the analysis of constitutive model and numerical algorithm 

in the sheet metal forming community. The reason for choosing the 

benchmark is that most of the existing finite element simulations have been 

based on hybrid explicit and implicit algorithms. In other words, the forming 

process is solved by the dynamic explicit FE model as a quasi-static problem, 

while the springback is calculated by a static implicit algorithm. The first is 

applied to avoid divergence problems typically encountered in the contact 

problems between complex tools and sheet metal, and the implicit algorithm 

is optimum for the unloading process of springback to reduce the 

computational time. In this study, all the stress integration algorithms are 

implemented into the static implicit FE software and the numerical 
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performance of each algorithm is comparatively studied for their applicability 

to industrial-sized problems. Two materials, stainless steel (STS) and dual-

phase steel (DP) are investigated because they have been used for real 

automotive parts and show distinctive anisotropic hardening behaviors under 

loading path changes. 

3.5.1. One element analysis  

In the one element analysis, the loading condition is a compression-tension 

(C-T). The accuracies of the predicted flow stress and r-value are compared 

for the investigated numerical algorithms. Two loading paths are simulated 

for the C-T test. The first path is a 5% compression along the rolling direction 

(RD) followed by a 10% tension in the same direction. This case is denoted 

as ‘C5T10R’. Here, ‘R’ represents that the loading path is ‘Reversed’ loading. 

During the compression along RD, the rate of yield function distortion 

represented by the transient behavior and the Bauschinger effect is maximum 

on the opposite side of compressive loading or tension along RD. 

The second loading path is a 5% compression along RD followed by 10% 

tension along 54° to the RD. Note that the angle 54° corresponds to the cross-
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loading in which the condition : 0=
s

h s   is satisfied1 . The second case is 

denoted as ‘C5T10CR’ in which ‘CR’ represents the “Cross” loading. This 

loading path is selected because the cross-loading effect with rotation of 

microstructure deviator becomes maximized at the loading direction with 

: 0=
s

h s  condition.  

A 4-node shell element with reduced integration in ABAQUS/Standard, or 

S4R, is used. The boundary conditions for the above cases are schematically 

shown in Figure3.3. 

The r-value along angle θ to RD is defined in Eq. (3.45) and calculated by 

nodal displacements of an element. 

( ) ( ) 

p p

width 2

p p p

thickness 1 2

p p p p

1 1 2 2

r ,

where ln 1 u and ln 1 u ,



 
= = −
  + 

 = +   = + 

. (3.45) 

where, 
p

1u  and 
p

2u are the element nodal displacements along RD and 

transverse direction (TD), respectively, during tension, and the superscript ‘ p ’ 

represents the plastic part of the strain or displacement.  

                                       
1 The exact angle for the cross-loading condition is 54.74°. 
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In Table 1 and 2, the mechanical properties of the two model materials and 

the constitutive parameters for the initial yield function and e-HAH model are 

listed, respectively. The model material ‘MAT 1’ and ‘MAT 2’ have distinctive 

HAH parameters, but other properties such as elasticity, initial yield function, 

and isotropic hardening are identical. For the isotropic hardening, the power-

law type Swift hardening law, ( ) ( )
n

0σ K e = + is applied for both materials. 

  

(a) (b) 

  
(c) (d) 
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Figure 3.3. Boundary conditions for the one element compression-tension 

analysis: (a) 5% compression along RD followed by (b) 10% tension along 

RD, (c) 5% compression along RD followed by (d) 10% tension along 54° to 

RD. The dashed line and the solid line represent before deformation and after 

deformation, respectively. 

 

 

Table 3.1. Anisotropic mechanical properties. The subscript 0, 45, 90 

represent rolling direction (RD), diagonal direction (DD), and transverse 

direction (TD), respectively. 

Material σ0/σ0 σ45/σ0 σ90/σ0 σb/σ0 r0 r45 r90 rb 

MAT 1, 2 1.0 1.0 1.0 1.0 0.5 1.0 1.5 1.0 
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Table 3.2. Constitutive parameters of isotropic linear elasticity and e-HAH model. 

Elastic and isotropic hardening parameters 

Material E[GPa] Poisson’s ratio K (MPa) e0 n 

MAT 1,2 70.0 0.33 500.0 0.01 0.2 

Yld2000-2d coefficients 

Material m α1 α2 α3 α4 α5 α6 α7 α8 

MAT 1,2 8.0 0.7826 1.1778 1.1075 0.9753 1.0154 0.9028 0.9989 0.9990 

Enhanced HAH model parameters 

Material q k k1 k2 k3 k4 k5 L kL S kS 

MAT 1 2.0 250.0 300.0 250.0 0.25 0.80 50 1.0 0.0 0.80 75.0 

MAT 2 2.0 25.0 60 50.0 0.90 0.80 50 1.65 384.0 1.0 0.0 
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Figure 3.4-3.7 show the reference flow stress curves and the corresponding 

evolution of HAH surfaces of MAT 1 and MAT 2. Since the exact solutions 

are not available, a reference curve with a sufficiently small time step is 

assumed to be exact. The reference flow curves are obtained by the CPM 

implemented in the dynamic explicit FE software ABAQUS/Explicit with a 

user material subroutine VUMAT. The average strain increment is 82.4 10− . 

Figure 3.4(a) and Figure 3.6(a) present the flow stresses under the loading 

path C5T10R, while those in Figure 3.5(a) and Figure 3.7(a) are under 

C5T10CR. The evolutions of yield surfaces are provided in Figure 3.4(b) and 

Figure 3.6(b) for C5T10R, and Figure 3.5(b) and Figure 3.7(b) for C510CR. 

For comparison, the evolutions of isotropic yield surfaces are also included 

in the figures. In each figure, the three points A, B, C are indicated, where A 

and C represent the initial and final stress states during the second loading, 

respectively, and B is selected between the two loading points to compare the 

transient behavior in the second loading path.  

Figure 3.4(a) and (b) show that a significant amount of the Bauschinger 

effect and permanent softening (
4g σ 0.8224 σ =  ) are represented from the 

HAH parameters of MAT 1 under C5T10R. For C5T10CR in Figure 3.5(a) 

and (b), similar transient behavior and permanent softening are calculated, 

but the Bauschinger effect (contraction) is much less than the loading path 
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C5T10R. For MAT 2, the Bauschinger effect is less than the MAT 1 for 

loading path C5T10R though the permanent softening is also pronounced. 

However, the loading condition C5T10CR shows very noticeable stress 

overshooting after loading path change, and subsequent softening. Note that 

the two model materials MAT 1 and 2 are virtually designed to represent the 

characteristics of the HAH model. 

In the following, the accuracy of each investigated stress integration 

algorithm is assessed with different time increments. The effect of time step 

size on the accuracy of stress update is evaluated by one element simulations 

under the two loading paths. Three different strain increments during tensile 

loading are considered: 35.0 10− , 45.0 10−  and 65.0 10− . 

From the simulations, the evolution of flow stress and r-value at the second 

loading step are evaluated and the averaged relative errors are reported using 

the following equations.  

( )

( )

exact
N

m m

exact
m 1 m

exact
N

,m ,m

r exact
m 1 ,m

1
Error 100 %

N

r r1
Error 100 %

N r



=

 

= 

 −
= 



−
= 





. (3.45) 

where N  is a total number of data points used for the error estimations. 
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(a) 

 

(b) 

Figure. 3.4. Stress-equivalent plastic strain curve and evolution of the HAH 

yield surface for MAT 1: (a) flow stress curve and (b) HAH yield locus for 

C5T10R.  
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(a) 

 

(b) 

Figure. 3.5. Stress-equivalent plastic strain curve and evolution of e-HAH 

yield surface for MAT 1: (a) flow stress curve and (b) HAH yield locus for 

C5T10CR. 
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(a) 

 

(b) 

Figure. 3.6. Stress-equivalent plastic strain curve and evolution of e-HAH 

yield surface for MAT 2: (a) flow stress curve and (b) HAH yield locus for 

C5T10R. 
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(a) 

 

(b) 

Figure. 3.7. Stress-equivalent plastic strain curve and evolution of e-HAH 

yield surface for MAT 2: (a) flow stress curve and (b) HAH yield locus for 

C5T10CR. 
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3.5.1.1. Loading condition: C5T10R 

Figure 3.8 and 3.9 show the flow stress curves and r-value evolutions of MAT 

1 and MAT 2, respectively, under the C5T10R loading path. Three different 

strain increments were applied to each stress integration algorithm for this 

analysis. The detailed values including relative errors and CPU times are also 

listed in Table 3 and 4 for MAT 1 and MAT 2, respectively. At the first glance, 

all the numerical algorithms investigated look to present rather similar results. 

But, there are some distinctive features in the predicted flow curves and r-

values. Regarding the method of yield surface gradient calculation, both 

methods based on analytical derivatives (EBM-14R/AD) and finite difference 

(EBM-14R/ND) predicted almost the same level of accuracy when it is 

implemented in the fully implicit algorithm with 14 residuals. There are small 

differences in the computational cost measured by CPU time between the two 

cases. That is, EBM-14R/ND with finite difference method takes ~8% longer 

CPU time than the EBM-14R/AD with analytical derivatives.  

The effect of investigated algorithms on the accuracy and stability of the 

simulations with the HAH model becomes considerable when the evolution 

of yield surface becomes drastic within a given time increment. The flow 

stress curves predicted by CPM and EBM-4R (with 4 residuals based) show 
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significant oscillations at the early strain range of MAT 1 when the strain 

increment is large with 
3

xx 5 10− =  , which is shown in Figure 3.8(a) In 

contrast, the two algorithms with the same strain increment are stable for 

MAT 2 which shows less evolution rate than MAT 1 (Figure 3.9(a)). The state 

variable, 1g   controls the transient rate and Figure 3.10(a) shows its 

oscillations for MAT 1 when CPM and EBM-4R are used. As expected 1g

value of MAT 2 shows stable evolution even for the CPM and EBM-4R 

algorithms. In terms of the r-value evolution, the predicted values by CPM 

show very less accuracy for the strain increment of 
3

xx 5 10− =   . This 

inaccuracy is attributed to the ignorance of flow rule as a residual during the 

algorithmic treatment in the CPM. 
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Figure. 3.8. The evolution of the flow stresses and r-values of MAT 1 under 

C5T10R path for different stress integration algorithms with strain increments: 

(a),(b) 
3

xx 5 10− =  , (c), (d) 
4

xx 5 10− =  , and (e), (f) 
6

xx 5 10− =  . 
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Figure. 3.9. The evolution of the flow stresses and r-values of MAT 2 under 

C5T10R path for different stress integration algorithms with strain increments: 

(a),(b) 
3

xx 5 10− =  , (c), (d) 
4

xx 5 10− =  , and (e), (f) 
6

xx 5 10− =  . 
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Table 3.3. Average relative errors in the flow curves and r-values of MAT 1 

under C5T10R. 

Algorithm xx  Error


(%) 
r

Error (%) 
Total CPU 

time(sec) 

CPM 

35 10−  2.38 316 1.1 

45 10−  0.42 5.83 5.7 

65 10−  0.14 0.048 205 

EBM-4R 

35 10−  4.34 5.23 0.5 

45 10−  0.95 1.80 5.7 

65 10−  0.14 0.035 232 

EBM-14R/AD 

35 10−  1.62 0.63 0.6 

45 10−  0.32 0.10 5.8 

65 10−  0.14 0.010 231 

EBM-14R/ND 

35 10−  1.62 0.63 0.7 

45 10−  0.32 0.10 5.9 

65 10−  0.14 0.010 249 
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Table 3.4. Average relative errors in the flow curves and r-values of MAT 2 

under C5T10R. 

Algorithm xx  Error


(%) 
r

Error (%) 
Total CPU 

time(sec) 

CPM 

35 10−  0.42 124 0.8 

45 10−  0.18 4.88 5.9 

65 10−  0.21 0.048 206 

EBM-4R 

35 10−  0.27 3.43 0.7 

45 10−  0.17 0.19 6.0 

65 10−  0.21 0.022 202 

EBM-14R/AD 

35 10−  0.49 0.30 0.6 

45 10−  0.25 0.05 5.7 

65 10−  0.22 0.021 201 

EBM-14R/ND 

35 10−  0.49 0.29 0.7 

45 10−  0.25 0.04 6.0 

65 10−  0.22 0.021 227 
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(a) 

 

(b) 

Figure. 3.10. Evolutions of the state variables 1g   for different stress 

integration algorithms with strain increment 
3

xx 5 10− =  : (a) MAT 1and 

(b) MAT 2. 



68 

 

3.5.1.2. Loading condition: C5T10CR  

Figure 3.11 and 12 show the flow stresses and r-value evolutions under the 

cross-loading path, C5T10CR, for MAT 1 and MAT 2, respectively. The 

accuracy and stability of the investigated stress integration algorithms for 

MAT 1 and MAT 2 are summarized in Table 3.5 and Table 3.6, respectively. 

Similar to the reverse loading path, C5T10R, overall accuracies in flow stress 

and r-values increase as the strain increment decreases as readily expected. 

However, due to the anisotropic hardening and its orthogonal distortion in the 

e-HAH model, special observations can be also noticed, which mostly occur 

with the large strain increment, 
3

xx 5 10− =  . The evolution of the r-value 

predicted by CPM showed abnormal behavior as shown in Figure 3.11(a). 

This is because the semi-explicit algorithm does not account for the 

minimization of residual for a flow rule. Moreover, as shown in Figure 3.11(a) 

and (b), the flow stresses and r-values predicted by CPM and EBM-4R show 

different tendencies from algorithms with 14 residual-based EBMs. In Figure 

3.13(a) and (b), the evolutions of the two-state variables, 1g  and 2g , with 

strain increment, 
3

xx 5 10− =   are presented. Under this loading path, the 

transient behavior of CPM and EBM-4R is controlled by 2g   because the 

loading path indicator cos   is negative for both algorithms (Figure 3.14 
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(a)). However, in contrast, other algorithms including the exact solution 

cos  is positive which leads 1g  to having a major effect on the transient 

behavior. This is the cause of abnormally predicted flow stress curves and r-

value evolutions of the two algorithms. That is, the undesirable evolutions of 

state variables result in significantly deviated stress updates in the HAH 

model as shown in Figure 3.14(d).  

Similar to MAT 1, oscillating flow curves are also predicted with CPM and 

EBM-4R for MAT 2 when the time increment is not small enough. In this 

loading path, this fluctuating flow behavior is attributed to the state variable 

Lg   associated with the latent hardening (Figure 3.15). Note that the flow 

curve of MAT 2 is more influenced by Lg  than MAT 1 because of the slower 

evolution of 
s

h .  

In terms of the computational time, all investigated numerical algorithms 

present marginally similar computation times in comparison to a much larger 

difference in accuracy, especially under large strain increments. However, 

there is a meaningful point to be noticed between the algorithms of EBM-

14R/ND and EBM-14R/AD. That is, the finite difference gradient-based 

algorithm (EBM-14R/ND) has a 10~15% longer CPU time than those of the 

analytical gradient algorithm (EBM-14R/AD) for the C5T10CR loading path.  
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Figure. 3.11. The evolution of the flow stresses and r-values of MAT 1 under 

C5T10CR path for different stress integration algorithms with strain increments: 

(a),(b) 
3

xx 5 10− =  , (c), (d) 
4

xx 5 10− =  , and (e), (f) 
6

xx 5 10− =  .
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Figure. 3.12. The evolution of the flow stresses and r-values of MAT 2 under the 

C5T10CR path for different stress integration algorithms with strain increments: 

(a),(b) 
3

xx 5 10− =  , (c), (d) 
4

xx 5 10− =  , and (e), (f) 
6

xx 5 10− =  . 
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(a) 

 

(b) 

Figure 3.13. The evolutions of (a) 1g  , (b) 2g   for different numerical 

algorithms under the C5T10CR loading path. The strain increment is 

3

xx 5 10− =  . 
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(a) 

 

(b) 

Figure 3.14. The evolutions (a) cos   for different numerical algorithms 

under the C5T10CR loading path. (b) Yield loci for EBM-4R and EBM-

14R/AD with 
s

h . The strain increment is 
3

xx 5 10− =  . 



74 

 

 

Figure 3.15. Evolution of Lg   for different stress integration algorithms 

under the loading path C3T10CR with strain increment, 
3

xx 5 10− =  . 
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Table 3.5. Average relative errors in the flow curves and r-values of MAT 1 

under C5T10CR. 

Algorithm xx  Error


(%) 
r

Error (%) 
Total CPU 

time(sec) 

CPM 

35 10−  22.2 155 1.6 

45 10−  0.56 19.4 5.9 

65 10−  0.65 0.57 196 

EBM-4R 

35 10−  22.4 43.8 0.5 

45 10−  0.61 2.86 6.2 

65 10−  0.65 1.60 210 

EBM-14R/AD 

35 10−  0.38 2.78 0.8 

45 10−  0.88 1.89 6.0 

65 10−  0.66 1.57 222 

EBM-14R/ND 

35 10−  0.44 4.77 1.1 

45 10−  0.88 1.84 7.6 

65 10−  0.66 1.58 260 

 

 

 

 

 



76 

 

Table 3.6. Average relative errors in the flow curves and r-values of MAT 2 

under C5T10CR. 

Algorithm xx  Error


(%) 
r

Error (%) 
Total CPU 

time(sec) 

CPM 

35 10−  12.7 663 0.8 

45 10−  0.16 13.4 5.7 

65 10−  0.27 0.10 210 

EBM-4R 

35 10−  1.61 2.98 0.5 

45 10−  0.11 1.60 6.0 

65 10−  0.28 0.96 208 

EBM-14R/AD 

35 10−  0.57 3.71 0.7 

45 10−  0.33 1.55 7.1 

65 10−  0.28 0.95 200 

EBM-14R/ND 

35 10−  0.56 4.91 1.3 

45 10−  0.33 2.45 13.0 

65 10−  0.28 1.83 221 
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3.5.2. Industrial problem: S-rail forming and springback 

In this section, the proposed stress integration algorithms are applied to the 

simulation of the large-scale industrial part forming with purely implicit FE 

software. Though the implicit FE has been employed for the large-scale 

models, this is often limited to simple material constitutive law such as 

isotropic and kinematic hardening. To the best knowledge of the present 

authors, the application of the anisotropic distortional hardening model with 

cross-hardening or softening (that is, HAH model) to the simulation of 

industrial forming process with a static implicit FE is the first trial. 

Alternatively, numerous studies have employed the combined dynamic 

explicit and implicit approach for complex forming and elastic driven 

springback simulations, respectively. This is even more true when the elastic-

plasticity constitutive laws become more complex like the present anisotropic 

hardening model, HAH. 

In this study, the S-rail part forming and springback simulations are 

performed as a benchmark of the industrial forming process [42]. The 

simulations were carried out by the static implicit solver, ABAQUS/Standard. 

From the simulation results, springback, equilibrium iterations, time 

increment, and computation time during the forming step were comparatively 
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analyzed among CPM, EBM-14R/AD, and EBM-14R/ND algorithms. Real 

automotive sheet metals made of dual-phase steel (DP780) and stainless steel 

(STS) are employed in the simulations. Note that DP780 shows significant 

cross-contraction (or softening) behavior under loading path changes due to 

the large Baushinger effect induced by its martensitic islands embedded in the 

ferrite matrix. In contrast, the STS sheet exhibits stress over-shooting or 

cross-hardening behavior under loading path changes. The material properties 

and their related model parameters are listed in Table. 3.7. In Figure 3.16, the 

FE model set-up including tool and sheet dimensions is presented. 
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Table 3.7. Constitutive parameters of isotropic linear elasticity and e-HAH model. 

Elastic and isotropic hardening parameters 

Material E[GPa] Poisson’s ratio K (MPa) e0 n 

DP780 194.0 0.33 1295.0 0.0008 0.142 

STS 223.9 0.33 882.6 0.0056 0.224 

Yld2000-2d coefficients 

Material m α1 α2 α3 α4 α5 α6 α7 α8 

DP780 6 0.946 1.022 1.015 1.000 1.011 0.968 1.009 1.006 

STS 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Enhanced HAH model parameters 

Material q k k1 k2 k3 k4 k5 L kL S kS 

DP780 2 120.0 150.0 78.5 0.25 1.0 0.0 1.0 0.0 0.8 75.0 

STS 2 18.7 580.0 10.0 0.90 0.88 240 1.65 384.0 1.0 0.0 
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(a) (b) 

 

(c) 

Figure 3.16. (a) Schematic view of FE model set-up for S-rail forming 

simulation, (b)-(c) dimensions of the tools and blank, respectively. 

. 
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The thickness of the blank sheet is 1.2mm and the blank holding force of 

200kN was applied during the forming simulation. The friction coefficient 

between the blank and tools was set as 0.05. A total of 37mm punch 

displacement was applied. As for blank elements, 4264 4-node shell elements 

with reduced integration (S4R) were used. The simulation consisted of 

holding, forming, and springback steps. Springback simulations were 

conducted by removing the tools after applying constraints on three specific 

nodes on X’-Z’ plane to prevent the rigid body motion. That is, the center 

node was fixed, one node on the Z’ axis was constrained along the X’ and Y’ 

direction, and the last node on the X’ axis was constrained along the Z’ 

direction. The simulation time for each step equals one (though it does not 

have physical meaning due to the static implicit FE algorithm. This is a 

relative measure for the strain increment control for different stress 

integration algorithms). The reference, minimum and maximum time 

increments for forming step were 35.0 10−  , 51.0 10−   and 21.0 10−  , 

respectively. 

The springbacks at sections A, B, and C are described in Figure 3.16(c). 

Section A and C are on the Z-plane 115mm  away from the center. Section 

B lies on the Z’-plane which is 30 degrees rotated plane along the Y-axis. 
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In Figure 3.17 and 18, the springback results at sections A, B, and C are 

presented for DP780 and STS. There are almost no differences in springback 

results among the investigated algorithms. This may be due to the automatic 

time stepping built-in ABAQUS and the time increment is relatively small 

enough to have accurate solutions. 

In Table 3.8, the averaged equilibrium iteration number, averaged time 

increment ( avgt  ) and relative wallclock time are listed. The relative 

wallclock time is normalized with the value calculated by the CPM. There are 

quite big differences in the size of time increment and the calculation time 

among the algorithms. The average time increment for CPM is almost half of 

the one based on EBM. It is considered that the tangent modulus calculated 

with CPM is not consistent with the Newton-Raphson method in ABAQUS, 

which requires a rather smaller time step compared to EBM algorithms.  

For both materials, EBM-14R/AD and EBM-14R/ND show the negligible 

difference for averaged time increment and the average equilibrium iteration 

number. In other words, the approximate computation cost for global 

equilibrium calculation in FE software between the two algorithms is similar. 

It is presumed that the two algorithms have very similar accuracy under a 

given time increment. In the case of the STS, the EBM-14R/AD and the 
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EBM-14R/ND show similar wallclock times, whereas in the case of the 

DP780 it is different. The EBM-14R/ND is approximately 40% slower than 

the EBM-14R/AD and the difference is much bigger than the ones of single 

element analysis. The reason may be due to the difference in convergence 

speed due to the selection of yield function. The difference between DP780 

and STS is the exponent of the anisotropic yield function. Therefore, the 

degree of nonlinearity in the non-quadratic yield function may bring different 

numerical accuracies in calculating numerical derivatives. 
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(a) 

 
(b) 

 

(c) 

Figure 3.17. Springback results of DP780 at (a) section A, (b) section B and 

(c) section C. 
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(a) 

 
(b) 

 

(c) 

Figure 3.18. Springback results of STS at (a) section A, (b) section B, and (c) 

section C. 
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Table 3.8. The averaged equilibrium iteration number, the averaged time 

increment, and the relative wallclock time during the forming step. 

Algorithm 

Average equilibrium 

iteration number 
avgt  

Relative 

wallclock time 

DP780 STS DP780 STS DP780 STS 

CPM 13.42 13.71 31.21 10−  
45.62 10−  1.0 1.0 

EBM-

14R/AD 
9.47 12.72 32.23 10−  

31.10 10−  0.59 0.57 

EBM-

14R/ND 
9.90 12.53 32.26 10−  

31.12 10−  0.84 0.54 

 

3.6. Summary 

In this study, a fully implicit stress integration algorithm is developed for the 

enhanced version of the HAH model, which is capable of reproducing the 

cross-hardening and softening under complex loading path changes by 

introducing the distortional hardening concept. Particularly, the proposed 

algorithm solves for the complete set of residuals defined from the HAH 

model in the context of the Euler backward method (EBM). The major 

difference between the developed model and other previous stress integration 

algorithms can be summarized as follows. 
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⚫ The developed EBM algorithm is formulated based on a total of 

14 residuals for stress tensor, microstructure deviator tensor, and 

the whole state variables associated with the HAH model. On the 

contrary, the previous algorithms for the HAH models introduced 

a partially implicit scheme by considering a limited number of 

residuals for the simplicity of modeling. This leads to unstable and 

inaccurate evolutions of plastic state variables related to the 

distortions of yield function at loading path changes. 

⚫ For calculating the first and second derivatives of yield surface, 

which are inevitably required in the formulations of common 

predictor-corrector numerical schemes, the present model 

provided both analytical (EBM-AD) and finite difference-based 

numerical methods (EBM-ND). The analytical expressions of the 

HAH yield surface are given in the appendix.  

The accuracy and robustness of the developed algorithm and 

implementation were validated by one-element analysis and a large-sized 

industrial problem. For the one-element analysis, the compression-tension 

test and compression-cross tension test were conducted for two representative 

materials. For the large-sized problem, the S-rail benchmark forming and 
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springback simulations were conducted. The summary of the validations is 

presented as follows. 

⚫ The semi-explicit CPM and the implicit EBM with partially 

introduced residuals (EBM-4R) resulted in abnormal evolution of 

stress-strain curve or r-value for both reversed and cross-loading 

conditions when the strain increment became larger. In contrast, 

the fully implicit with the complete set of residuals (EBM-14R) 

showed stable and accurate results regardless of investigated strain 

increments. Moreover, with the EBM-14R algorithm, both 

methods based on analytical and numerical derivatives provided 

virtually the same accuracy.  

⚫ For the cross-loading path, the ignorance of the residuals for the 

evolution of the HAH yield surface led to the abnormally wrong 

rotation of the microstructure deviator 
s

h , which brought about 

undesirable evolutions of other state variables. This justifies the 

better accuracy and robustness of the present fully implicit 

algorithm based on full consideration of residuals of the HAH 

model.  

⚫ For the S-rail forming and springback, the investigated algorithms 
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were all successful without divergence even with static implicit 

solver and complicated HAH model. However, the EBM-based 

algorithms required less computational time than the CPM. This is 

due to the smaller time step determined from the automatic time 

increment resulted from the non-consistent tangent modulus of the 

CPM algorithm. 

⚫ Noticeable differences in averaged time increments and the 

equilibrium iteration number were obtained between the EBM-AD 

and EBM-ND in the S-rail forming simulations. But, the yield 

surface exponent, which determines the sharpness of the non-

quadratic yield function at the bi-axial stress state, played as a 

more dominant factor for the computation cost for the numerical 

derivative-based EBM algorithm. 
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4. Anisotropic strengths prediction of steel plate 

after prior bending-reverse bending deformation 

 

4.1. Experiments 

In this study, a carbon steel plate made of SNT355 with a thickness of 6.6 mm 

was investigated. This material has been used for manufacturing structural 

pipes and its chemical composition is listed in Table 4.1. The material has 

been used for manufacturing structural pipes. Owing to its low carbon 

concentration, the material exhibits yield point elongation in a uniaxial 

tension test. All experiments on the material characterization and the 

bending/reverse-bending (BRB) were conducted using an Instron 8801 

universal testing machine (10 tons). Strain distributions were measured using 

digital image correlation (DIC) and VIC-3D software. 

 

Table 4.1. Composition of SNT 355 carbon steel specimens. 

 C Si Mn P S N 

Weight 

(%) 
<0.22 < 0.55 < 1.60 < 0.030 < 0.015 < 0.006 
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4.1.1. Uniaxial tension and disk compression tests  

Uniaxial tension tests were conducted to measure the basic elastic-plastic 

properties and anisotropy of the investigated material. In addition, a special 

disk compression test was additionally conducted to obtain an equi-biaxial 

flow stress curve and plastic anisotropy. Tensile tests were conducted at 0° 

(TD), 45° (DD), and 90° (RD) from the reference direction, which 

corresponds to the transverse to the rolling direction of the plate. The 

specimen geometry used for the tensile test is presented in Figure. 4.1. All 

tests were conducted under quasi-static conditions with a strain rate of 

31 10− /s. The Lankford coefficients (or r-value) were also measured from the 

tensile test along the three orientations. 

The disk compression test was conducted by compressing a 12-mm 

diameter disk (Figure 4.2(a)) along the thickness direction. Aerosol-type 

graphite was applied to the specimen surface to reduce friction between the 

specimen and tool. An engineering strain, defined as (X0 -X)/X0, was 

measured using the initial X0 and current distance X, marked in the testing jig 

displacement using the DIC technique (Figure 4.2(b)). The measured stress-

strain curves are shown in Figure. 4.3, and their values are summarized in 

Table 4.2. Note that the stress-strain curves show obvious upper and lower 
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yield points, particularly in the uniaxial loading along the 0o direction and in 

the disk compression tests. In addition, planar anisotropy was observed in 

both the stress and r-value but was more pronounced in the r-values. 

 

 

 

Figure 4.1. A tensile test specimen with dimensions. 

 

 

 
(a) 
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(b) 

Figure 4.2. (a) A tensile test specimen with dimensions, (b) schematic 

illustrations for the disk compression test. 

 

Figure 4.3. Measured uniaxial tensile stress-strain curves along 0° (TD), 45° 

(DD), and 90° (RD). Besides, the flow stress curve of disk compression along 

the material normal direction (ND) is also presented.
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Table 4.2. Basic mechanical properties of SNT 355. 

Loading 

Young’s 

modulus 

[GPa] 

Upper 

yield 

strength 

[MPa] 

Lower 

yield 

strength 

[MPa] 

Tensile 

strength 

[MPa] 

Uniform 

elongation 

[mm/mm] 

r-value 

Tensile 0° 

207 

495.5 477.7 575.5 0.124 0.769 

45° - 456.1 553.3 0.129 0.939 

90° - 462.5 574.3 0.123 0.5 

Compression 500.1 479.5 - - - 
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4.1.2. Tension-compression-tension test and two-step tension test 

To characterize the anisotropic hardening under a load reversal condition, a 

continuous tension-compression-tension (TCT) test was conducted. To avoid 

a non-uniform deformation caused by the Lüders band propagation [43] at an 

early strain of approximately 1.4%, the magnitudes of the pre-strain were set 

as 3% and 4%. Approximately 2% compression was applied after each pre-

strain and then followed by tension up to specimen rupture. The same 

specimen configurations were applied for the TCT test as for the uniaxial 

tensile test. The same specimen as applied in the uniaxial tensile test was used 

for the TCT test. 

Two-step tension (TT) tests were conducted to identify the cross-loading 

response of the material. First, a large-sized specimen (shown in Figure. 

4.4(a)) was prepared with reduced thickness from the as-received specimen 

(owing to the load limit of the tensile test equipment) using electrical 

discharging machining. During the first loading step, 3% and 4% pre-strains 

were applied to the large-sized specimens. Then, small-sized specimens (as 

shown in Figure. 4.4(a)) 45 ° and 90° from the reference directions were taken 

from the pre-tensioned large-sized specimen. The strain was measured within 

the gauge length shown in Figure. 4.4(a) using the DIC technique. The strain 
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distribution of the large-sized specimen is reasonably uniform, as shown in 

Figure. 4.4(b). 

 
(a) 

 

(b) 

Figure 4.4. (a) Sub-sized specimens taken from a large-sized specimen for 

the two-step tension test, and (b) example strain distributions of the large-

sized specimens. 
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4.1.3. Bending-reverse bending (BRB) test 

A four-point bending-reverse bending (BRB) test was employed in this study 

to replicate the strain path change in the pipe (or tube) formation. The 

experimental setup of the BRB test is shown in Figure. 4.5(a) and (b). The 

strain measurement area was chosen at the center of the plate, as shown in 

Figure 4.6, and the DIC was used to obtain the strain distribution. The 

dimensions of the bending specimen and span distances are shown in Figure. 

4.6. The deflection during the bending test was controlled using an 

extensometer (Figure. 4.5(b)). 

In Figure. 4.7(a), the BRB test procedure is presented. The same number 

marked in the specimens symbolizes the same specimen. The test consists of 

bending, (first) unloading, reverse bending, and (second) unloading, which is 

schematically shown in Figure. 4.7 (a)–(d), respectively. After the first 

unloading (Figure. 4.7 (b)), the shape of the specimen was scanned to measure 

the amount of springback. Then, the unbent specimen was reversed, bent 

again, and unbent to obtain the final flattened specimen (Figure. 4.7(c)–(d)). 

The applied deflections for the initial bending and reverse bending were 27.0 

and 26.8 mm, respectively. 

Upon completing the BRB test, uniaxial tensile specimens were taken out 
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from the region between two inner pins, as shown in Figure. 4.7(e). Uniaxial 

tensile tests at 0°, 45°, and 90° from the reference direction were conducted 

to measure the strengths after the BRB test. 

 

 

Figure 4.5. Experimental setup for a bending/reverse bending (BRB) test: (a) 

front side view, (b) backside view. 

 

 

Figure 4.6. Test dimensions of the bending/reverse bending (BRB) test. 
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Figure 4.7. Schematic illustration of the BRB test: (a) bending, (b) first 

unloading, (c) reverse bending, (d) second unloading, and (e) locations of 

tensile specimens taken out from the BRB test specimen. 
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4.2. Material modeling 

4.2.1. Plastic anisotropy  

For the plastic anisotropy of the initial (as-received) plate, Hill’s 1948 yield 

function [74] was implemented. 

( )
( ) ( ) ( )

2 22

2 2 22 2 2

− + − + −
=

+ + +

yy zz zz xx xx yy

yz zx xy

F G H

L M N

     


  
 . (4.1) 

where F, G, H, L, M, and N are the coefficients of anisotropy, and the 

subscripts x and y represent 0° and 90° to the rolling direction, respectively. 

The anisotropic coefficients were identified from the directional differences 

in yield strengths and the biaxial stress measured from the disk compression 

stress. The yield stresses were determined after removing the unstable region 

of yield point elongation. Note that the coefficients L and M were assumed to 

be 1.5, which corresponds to the isotropic condition of the through-thickness 

stress components. It is a reasonable assumption because the major 

deformation mode of the BRB and subsequent tension is not much associated 

with the through-thickness deformation. There have been studies applying the 

same assumptions in the literature [75, 76] for the prediction of sheet plastic 

anisotropy. The other coefficients are listed in Table 4.3 and the yield function 

is represented in Figure 4.8. with von-Mises criterion. 
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Table 4.3. Hill 1948 anisotropy coefficients. 

F G H L M N 

0.5041 0.4899 0.5101 1.5 1.5 1.669 

 

 

Figure 4.8. Identified Hill1948 and von-Mises yield locus. 
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4.2.2. Apparent elastic chord modulus 

Many studies reported that the modulus of elastic unloading or reloading 

decreased after applying prior plastic deformation. The variation of the 

modulus has been explained and modeled by continuum damage mechanics 

[77-84]. But, in this study, the simplified chord modulus approach based on 

dislocation-based anelasticity [85,86] was employed because it has been 

preferred in the modeling of sheet metal forming process, especially for 

springback simulations [16, 44, 46, 87-93]. 

( ) ( ) ( ) 0 0 1 expaE E E E  = − − − − . (4.2) 

where 
0E  and 

aE  represent the initial Young’s modulus and a saturated 

chord modulus after a prior equivalent plastic strain, respectively. In addition, 

   is a material constant. The material parameters for the investigated 

material were 
aE  =170.5 GPa and   =234.2, which were determined by 

fitting the unloading and reloading curves of the TCT tests. The degradation 

of the chord modulus according to Eq. (4.2) is shown in Figure 4.9. It is shown 

that approximately 18% of the initial elastic modulus decreased at a plastic 

strain of less than 5%, which is important for the simulation of elastic 

unloading. 
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Figure 4.9. The apparent elastic modulus measured as a concept of chord 

modulus. 

 

4.2.3. Monotonic stress-strain curve (without strain path change) 

To accurately capture the hardening behavior of SNT355 steel at lower 

strain, the yield point elongation was modeled using a simple law. The 

hardening law combines perfect plasticity with a lower yield point ( yσ ) and 

a typical monotonic hardening law (
Hσ ) and written as 

( ) ( ) ( ) y Hσ σ 1 σR R=  + −    . (4.3) 

( ) ( )( )1
0.5 arctan LLR   


= − − . (4.4) 
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where ( )R   is newly proposed to approximate a step function at L=  . 

Here, L  determines the slope of the step, L  is an equivalent plastic strain 

where the yield phenomenon ends and 
Hσ  represents a common monotonic 

strain-hardening law without instability. In this study, a combined Swift-Voce 

hardening law was used to accurately reproduce the flow stress curve. 

( ) ( ) ( ) ( )( )H 0σ 1 exp
n

S VW K W K Q=  + + − −  −     . (4.5) 

where W, KS, ε0, n, KS, Q, and β are the material constants. On the right-

hand side, the first and second terms contribute to the power-law and 

saturation-type hardening behaviors, respectively, and their weight is 

determined by a constant W. Using Eq. (4.5), the fitted hardening curve is 

shown in Figure 4.10, which presents an extremely high correlation with the 

experiment within the entire measured deformation range. The identified 

monotonic hardening parameters are listed in Table 4.4. The isotropic part of 

the HAH model corresponds to the isotropic hardening (IH) and their model 

parameters are identical. The HAH model converged to the IH model when 

only monotonic loading is considered. Interested readers can refer to the 

previous article by Barlat et al. [37-39]. 
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Figure 4.10. The comparison of plastic hardening curve between measured 

and fitted values. 

 

 

Table 4.4. Coefficients for the monotonic hardening curve (Eq. (4.5)) 

Isotropic hardening (IH) coefficients 

L  L  σy [MPa] W 
KS [MPa] 0

  n 

881.4 1.04×10-4 0.1432 

15000 0.0142 479.616 0.9514 
KV [MPa] Q[MPa] β 

769.9 536.0 42.23 
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4.2.4. Anisotropic hardening behaviors under strain path changes 

In this section, the anisotropic hardening behaviors are modeled using the 

distortional HAH model with newly proposed multi-component evolution 

laws. The model parameters were calibrated using experimentally measured 

TCT and TT test results (see Chapter 4.1.2 and 4.1.3). In addition, for 

comparison purposes, other widely used hardening models were also 

considered. The comparisons include the classical isotropic hardening (IH) 

and isotropic–kinematic hardening (IKH) models. Note that the isotropic 

hardening law can be simply obtained by turning off all anisotropic 

hardening-related terms in the investigated HAH model. However, the IKH 

model has a back stress concept, similar to the concept of the microstructure 

deviator, which translates the yield surface. A brief summary of the IKH 

model is provided in Appendix D. To achieve sufficiently high accuracy in 

the monotonic and reverse loading conditions between the HAH and IKH 

models, the IKH with three back stress components was employed in this 

study. Then the distinctive predictive ability of other more complex loading 

paths, the TT tests, is studied among different hardening models. The 

identified anisotropic hardening parameters are listed in Table 4.5. 

The anisotropic hardening coefficients of IKH (Ci, γi with i = 1–3) and 

HAH model (Ri, k1,j, k2,j, k3, k4, and k5 with j = 1–2) were calibrated by 
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applying a best-fitting procedure using the TCT curves. Moreover, the 

coefficients k, L, kL, C, and kC, which are related to the cross-loading behavior, 

were identified from the TT tests. Note that the IKH model does not have 

parameters for the cross-loading condition, while they are predicted using the 

calibrated parameters from either reverse or cross-loading data. In general, 

kinematic hardening models have been calibrated based on reversed loading 

conditions. 

The TCT stress-strain curves are predicted by the three hardening laws for 

3% and 4% pre-strains in Figure 4.11(a) and (b), respectively. As shown in 

the figures, all hardening laws perfectly fit the monotonic stress-strain curves. 

However, the IH model over-predicts the flow stresses after the loading 

direction is reversed. By contrast, both kinematic hardening (IKH) and 

distortional hardening (HAH) models could predict the reversed stress-strain 

curves with virtually identical accuracy. 

Figure 4.11 shows stress-strain curves of TT loadings with different pre-

strains of large-sized tensile specimens. For the tension tests at 45°, as shown 

in Figure 4.12(a), experiments showed lower yield stresses in the second 

loading than the stress before unloading from the first tensile tests. Then, flow 

stresses saturated rapidly to the monotonic tensile curve as the deformation 

proceeded. As expected, the stress-strain curve predicted by the IH model 
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recovered the monotonic curve owing to its isotropic yield surface expansion. 

In the case of the IKH model, it captured the lowered yield stress in the second 

loading, but the magnitude was quite under-estimated. Contrary to the two 

conventional models, the distortional hardening-based HAH model with 

cross-loading related evolution laws could reproduce the cross-softening of 

the second tensile loading with significantly improved accuracy.  

For the second tension 90° from the first loading, the flow stress also 

exhibited a cross-softening but did not converge to the monotonic stress-strain 

curve within the measured region. Similarly, the IH model could not produce 

softening of the second loading curve, and the IKH model significantly 

underestimated it. Again, the HAH model could only predict the softened 

flow stress under the cross-loading condition.  

Table 4.5. Coefficients for the iso-kinematic hardening and HAH model 

Isotropic-kinematic hardening (IKH) coefficients 

C1 [MPa] γ1 C2 [MPa] γ2 C3 [MPa] γ3 

19500 201.5 1528.0 16.5 740.8 5.5 

HAH coefficients (with q = 2) 

k R1 R2 k1,1 k1,2 k2,1 k2,2 

9.65 0.65 0.35 355.7 16.4 132.5 81.5 

k3 k4 k5 L kL C kC 

0.41 1.0 0 1.0 0 0.85 42.5 
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(a) 

 

(b) 

Figure 4.11. Predicted TCT stress–strain curves by IH, IKH, and HAH 

models: (a) Tension 3% + Compression 2% + Tension and (b) Tension 4% + 

Compression 2% + Tension. 
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(a) 

 

(b) 

Figure 4.12. Predicted stress-strain curves of two-step tension for pre-strains 

using IH, IKH, and HAH models: (a) 45° tension and (b) 90° tension after 0° 

tension. 
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4.3. Strength prediction of the plate after bending-reverse bending 

As an example of a pipe formation, a four-point bending test and simulation 

were utilized for the validation of the proposed material modeling. To 

summarize, bending represents the formation of a pipe using a planar plate, 

and reverse bending is used for the flattening process before the tensile test. 

For the finite element (FE) simulation of the BRB test and the tensile tests for 

the strength prediction, Abaqus/standard finite element software was used 

with the implementation of HAH and IKH models in the user material 

subroutine, UMAT.  

The simulation consists of a BRB step and a subsequent tensile test step. 

The BRB step involved bending, unloading, reverse bending, and unloading 

processes, and tensile tests were conducted along three different material 

orientations. Figure 4.13(a) shows the test specimens taken from the BRB 

specimens in the experiment, and those for the FE simulations are shown in 

Figure 4.13(b). Sub-sized specimens at 45° were removed from the large-

sized specimen A, and 0° and 90° specimens were removed from the large-

sized specimen B, as shown in the figure.
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(a) 

 

(b) 

Figure 4.13. (a) Tensile specimens for measuring strengths along three 

different material orientations and (b) the corresponding FE simulation 

models for BRB and tensile tests.
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In the FE models, mixed eight (C3D8R) and four-node (C3D6) continuum 

elements were used as the plate material, and the analytical rigid surface 

element was used for modeling the pins. There were nine elements throughout 

the thickness of the specimen. The friction between the plate and rigid pin 

was 0.12, which was determined by comparing the simulated bending strains 

with those of the experiments. Figure 4.14(a) shows the distribution of the 

longitudinal strain measured from the side of the bending specimen with the 

DIC technique. Note that the strain at the edge region is missing owing to the 

experimental limitation of the current DIC measurement. After reconstructing 

the strain distribution at the edge region using an FE-like interpolation 

scheme [94], the strain distribution can be obtained for the entire thickness 

region, as shown in Figure 4.14(b). The friction coefficient was then 

iteratively determined until the simulated strain distribution matched the 

experimental value (Figure 4.14(c)). 

Figure 4.15 shows a comparison of the FE calculated shapes of the plate 

specimen after the first bending and unloading using IH, IKH, and HAH 

models with the experimental profile. It is shown that all three hardening 

models show good agreement with the measured springback profile. This 

result is well expected because the major deformation mode is monotonic, 

which can be captured even by isotropic hardening (IH) and the three models 
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result in virtually the same result. Figure 4.16(a) and (b) show the calculated 

reaction force-displacement curves after the first bending and subsequent 

reverse bending. Again, the three models could predict the force curve with 

good agreement because the deformation does not involve any remarkable 

change in the strain path. However, in the reverse-bending case, the IH model 

significantly over-predicted the force whereas the IKH and HAH models 

showed extremely good agreement with the experiment. This is because in 

the reverse bending, the material experiences prior plastic deformation in the 

first bending, which represents the loading-reverse loading path. Since only 

IKH and HAH models could calibrate the tension followed by compression 

(or vice versa), the reduced punch (pin) load during reverse bending could be 

well predicted. 
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Figure 4.14. Longitudinal strain distribution viewed from the side of the 

bending specimen. (a) DIC measured strain contour, (b) reconstructed strain 

field, and (c) FE simulated strain field with optimized friction coefficient. 

 

Figure 4.15. Comparison of FE calculated deflection of the plate after first 

bending and unloading, i.e., springback profile. 
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(a) 

 

(b) 

Figure 4.16. Comparison of FE calculated (a) punch reaction force-

displacement curves during bending, and (b) reverse bending with three 

hardening models. 



115 

 

Figure 4.17-4.19 shows the engineering stress-strain curves of the 

specimens after the BRB test. As already mentioned in Chapter 4.1.3.  these 

samples experienced prior bending and reverse bending (with elastic 

unloading). Therefore, this test corresponds to the evaluation of the model 

prediction for the strength of the material after the loading path changes. For 

the FE simulations, the IH, IKH, and HAH were compared with experimental 

curves measured from three different material orientations. Figure 4.17-

4.19(a) present the stress-strain curves of the 0°, 45°, 90° specimens, Figure 

4.17-4.19(b) are their respective close-up figures within the small strain range. 

The measured stress-strain data were obtained from at least four tests and each 

representative curve was provided in the figures. In addition, for a detailed 

comparison, the yield and tensile strengths are summarized in Table 4.6 as 

well. In the table, the relative errors of the simulated values from the 

experimental data are presented using the equation,

pre exp

exp

(%) 100Error
 −


=   . Here, pre   and exp   are the predicted and 

measured strengths, respectively. 

The experimental data did not show noticeable upper yield points for all 

curves of the material orientations, but the yield plateaus up to a 1.25% strain 

could still be observed. Moreover, the BRB plate showed a much lower yield 
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strength of the 0° specimen than the material before BRB loading, that is, 

477.7 versus 433.6 MPa (see Table 4.6). Interestingly, the yield strengths of 

the other two oriented specimens along the 45 ° and 90° directions were 

similar. The FE simulation results showed that the classical IH model over-

predicted the yield stresses in all directions. In particular, the yield strength 

of the 0° specimen had an error of over 15% compared to the experiment. 

However, even the IH model could predict the flow stresses at a large strain, 

and the tensile strengths could be predicted within an error of 3%. The 

isotropic–kinematic hardening model or IKH could better predict the overall 

flow stresses along three orientations than the IH model. In particular, the 

large strain strength, including the tensile strength, could be predicted within 

an error of 1% for the 0° and 45° specimens. Because the IKH model could 

include the Bauschinger effect, the yield strength for the 0° specimen could 

be well captured from the experiment within an error of 2%. This is because 

the major deformation mode of BRB loading consists of load reversal at 0° 

from the reference direction. However, even the kinematic hardening model 

failed to predict the yield strengths of the 45° and 90° specimens. The relative 

errors were approximately over 10%. By contrast, the proposed distortional 

HAH hardening model could predict both the yield strength and the tensile 

strength in all three orientations within a 1% error. The different predictive 
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accuracies among the three hardening models can be well compared in the 

close-up Figure 4.17. Note that the IKH model significantly under-estimates 

the yield strength under the cross-loading history, which is because the large 

Bauschinger effect in the reference direction is memorized in the other two 

material orientations. By contrast, the HAH model has constitutive 

parameters that can be calibrated for the cross-loading mode independently 

from those for reversed loading conditions. Figure 4.17-4.19 also shows that 

all three hardening models failed to reproduce the yield plateau observed in 

the experiment. This limitation will be discussed in detail in the next section. 

 

Table 4.6. Comparison of FE predicted and measured yield strength (YS) and 

tensile strength (TS) of three different oriented plates after bending-reverse 

bending. The percentages (%) denote relative errors between the experimental 

value and different hardening models. 

Orient-

ation 
Strength 

Exp. 

(MPa) 

Relative errors (%) 

IH IKH HAH 

0o 
YS 433.6 15.3 -1.34 0.90 

TS 582.2 1.46 0.67 0.07 

45o 
YS 459.4 3.94 -11.8 0.52 

TS 565.2 2.11 0.87 0.66 

90o 
YS 463.4 6.50 -9.82 0.41 

TS 577.5 2.60 1.41 1.07 
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(a) 

 

(b) 

Figure 4.17. (a) Engineering stress-strain curves of specimens after BRB test 

along 0° direction, and (b) a magnified graph up to 5% engineering strain. 
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(a) 

 

(b) 

Figure 4.18. (a) Engineering stress-strain curves of specimens after BRB test 

along 45° direction, and (b) a magnified graph up to 5% engineering strain. 
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(a) 

 

(b) 

Figure 4.19. (a) Engineering stress-strain curves of specimens after BRB test 

along 90° direction, and (b) a magnified graph up to 5% engineering strain. 
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4.4. Discussion 

4.4.1. Effect of hardening model  

In the previous sections, isotropic hardening (IH) and two anisotropic 

hardening models (IKH and HAH) were implemented during the FE 

simulations. The predictive accuracy of each model for the tensile flow stress 

after bending and reverse bending (BRB) was compared with the experiment 

results. Three tensile orientations were considered as validation. The results 

showed that the anisotropic hardening models based on kinematic hardening 

and distortional hardening could predict the tensile flow stress well under a 

reverse loading path, that is, the tensile strength at 0° after the BRB. However, 

only the distortional hardening-based HAH model could predict the tensile 

strength of specimens along the 45 and 90° directions after the BRB. These 

two directions correspond to the near-cross-loading strain path change. 

To analyze the difference in the stress state, yield surfaces are described for 

the three hardening models. As an example, a finite element was selected from 

the center of the 90° tensile specimen taken from the BRB plate. The 

deformation path in the selected element corresponds to the compression 

followed by tension before applying tensile loading for evaluation of the 

strength. Figure 4.20(a) and (b) represents the yield surfaces corresponding 
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to the onset of plastic yielding (or yield stress) and maximum force (or tensile 

strength), respectively. In the figures, the stress components σxx and σyy 

correspond to the stresses along the 0° and 90° directions, respectively. As 

shown in Figure 4.20(a), the area of the yield surface (or equivalent area of 

the elastic region) predicted by IH is the largest, which caused an over-

predicted yield strength. By contrast, the stresses on the yield surfaces of IKH 

and HAH along the x-direction are similar; thus, their prediction of the yield 

strength was comparable along the 0° direction. The stresses on the yield 

surfaces in the y-direction are the least and largest for the IKH and IH models, 

respectively. The stress predicted by the HAH model is between the IH and 

IKH models and is close to the stress on the initial yield surface (as-received 

state). This is consistent with the experimental results shown in Figure 

4.18(b). In Figure 4.20(b), the flow curves along the 90° direction show 

almost no difference among the three models. This marginal difference 

corresponds to insignificant differences in tensile strengths predicted by the 

three models (Table 4.6). 

The negligible difference in strength prediction at large strain may be 

attributed to the small maximum bending strain of approximately 2% in this 

study, which is due to the limit of the machine capacity. To amplify the effect 

of the hardening model on the prediction of strength after cyclic bending 
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deformation, an additional FE simulation for the BRB test with increased 

deflection was performed. For this, a 54-mm deflection was applied during 

the first bending stage. Then, 49.5- and 51.5-mm deflections were applied to 

the cases of the IH and IKH (and HAH) models in the reversed bending step. 

The maximum bending strain in the first bending step was 4.5%. Using the 

deformation path, tensile loading was applied to each direction of the 

specimen in the FE simulation. Figure. 4.21 shows that the IH model results 

in significantly higher yield stress than those of the IKH and HAH models. 

The two anisotropic hardening models presented similar stress-strain curves 

along the 0° tension. Notably, the flow stresses predicted by the IKH model 

along the 45° and 90° tension resulted in considerable softening compared to 

the IH and HAH models up to a strain of 5%. Therefore, the analysis clearly 

demonstrates that the proper choice of hardening model can be critical for 

predicting the anisotropic strength of the material, which experienced prior 

complex loading path changes. In the present study, anisotropic hardening 

was employed to estimate the strengths after a reversed loading path. 

Moreover, the distortional hardening concept may be preferably utilized for 

the prediction of the yield strength under both reversed and cross-loading 

conditions. 
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(a) 

 

(b) 

Figure 4.20. Yield surfaces predicted by IH, IKH, and HAH models at an 

element of 90° tensile specimen under the (a) yield point and (b) tensile 

strength.  
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(a) 

 

(b) 
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(c) 

Figure 4.21. Engineering stress-strain curves predicted by different 

hardening models after cyclic bending with the maximum bending strain of 

4.7%: (a) 0°, (b) 45°, and (c) 90° tension. 
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4.4.2. Effect of yield point phenomenon  

The uniaxial tension and disk compression tests indicated the existence of 

yield point phenomenon with upper and lower yield stresses in the 

investigated materials. This well-known phenomenon originates from the 

solute interactions under the Cottrell atmosphere with dislocations in low-

carbon steel. That is, the pinning and release of dislocations owing to the 

interstitial atoms result in the upper yield point and the subsequent stress 

decrease in the stress-strain curve [95,96]. There is also another different 

mechanism causing the yield point phenomenon. The grain boundaries of the 

material with ultra-fine grained microstructure trap the dislocations and this 

causes similar behaviors of the dislocations as they are in the Cottrell 

atmosphere [97-100]. 

Many models were developed to express the yield point phenomenon [102-

109]. Because the propagation of the Lüders front is highly related to the 

strain rate, many studies developed based on the rate-dependent plasticity 

model [102-105]. Also, some researchers suggested rate-independent 

hardening law for the yield point phenomenon for the sake of simplicity and 

predicted the macroscopically observed phenomenon very well [106-109]. 

According to Rainer and Volker [109], the true material hardening 
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accompanying the yield point phenomenon is observed differently through 

common measurements. The authors reported that the actual upper and lower 

yield stresses in the inhomogeneous deformation region were higher and 

lower than those measured by the uniaxial tensile test. In this discussion, the 

effect of the yield point phenomenon on the prediction of yield stress after 

cyclic bending deformation is presented by implementing the concept of true 

hardening behavior at the early deformation level.  

To estimate the intrinsic (true) hardening behavior in the yield point region, 

the isotropic hardening law was split into early linear hardening (actually 

softening) from the upper yield point and subsequent nonlinear hardening. 

The simulation was then iterated until the apparent hardening curve measured 

by the experiment was obtained. For this, Eq. (4.5) was slightly modified as 

L y,upperσ σS =  + . Here, S is a slope connecting the upper yield point and 

lower yield point and y,upperσ   equals the true upper yield stress. The 

identified true upper and lower yield points satisfied the suggested equation 

in [4.5], which represented the Lüders strain extremely well. The determined 

values are S =12677.4 and y,upperσ = 542.1 MPa. 

Figure 4.22(a) shows the true hardening determined through the above 

procedure and results in an apparent stress-strain curve. The predicted curve 
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with the modified early hardening model showed excellent agreement with 

the experimentally determined uniaxial tensile curve in Figure 4.1. Therefore, 

the new hardening could capture very well the inhomogeneous deformation 

in the yield point elongation region, including the yield plateau in Figure 

4.22(b). Moreover, the modified hardening model could reproduce the Lüders 

band progression successfully, as demonstrated by the FE results in Figure 

4.22(c), which corresponds to the deformation stage in Figure 4.22(b) within 

the inhomogeneous deformation region.  

The previous simplified hardening based on combined perfect plastic and 

nonlinear hardening (see Eq. (4.5)) in the region of the yield point elongation 

could not accurately capture the inflected flow curves after cyclic BRB 

deformation. The modified hardening with initial linear softening was used 

for the prediction of the yield strengths in the three material orientations. Only 

the HAH model was used, and the results are shown in Figure 4.23. Note that 

the modified hardening model could reproduce the inflected (or stagnated) 

flow stress curves at approximately 1% strain. This stagnated hardening of 

the pre-deformed material was more pronounced in the 45° and 90° 

specimens, which is also consistent with the experiment. By contrast, 

hardening with the initial perfect plasticity predicted only monotonically 

increasing hardening without stagnation. This observation with the aid of an 
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FE simulation revealed the importance of modeling the yield point 

phenomenon if the yield strength or flow stress at the early deformation 

region needs to be accurately predicted. The existence of a yield plateau can 

be explained as follows. During bending and reverse bending, the materials 

through the plate thickness undergo plastic deformation. If the deformation is 

homogeneously applied with sufficient plastic strain, the material should not 

exhibit yield point elongation in the second tensile test. However, owing to 

the nature of bending, the material elements near the neutral surface are near 

elastic or plastic with a small amount under the investigated loading condition. 

Therefore, the additional tensile loading led to subsequent plastic deformation 

in the near-neutral surface, which induced the yield point elongation. Of 

course, the material elements away from the neutral surface during bending 

and reverse bending continue to experience a uniform deformation beyond 

the lower yield point region. Therefore, the deformation through the plate 

thickness is both homogeneous (near the plate surface) and inhomogeneous 

(near the neutral surface). During the second tensile loading, the deformation 

is localized in the material near the plate center because of the strain-softening 

from the upper yield point, whereas the other material elements do not 

significantly deform. The deformation in the center continues until the overall 

equilibrium is satisfied. Subsequently, the deformation becomes homogenous, 
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which is represented by continuous hardening after the stagnated flow region 

in Figure 4.23. Note that the Lüders strain increases as the magnitude of the 

upper yield point increases. 

 

(a) 

 

(b) 
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(c) 

Figure 4.22. (a) Identified true stress-strain curve implemented in the finite 

element model, the resultant (apparent) stress-strain curve, and experimental 

data. (b) Magnified (predicted) flow curve in the inhomogeneous deformation 

region. (c) Evolution of inhomogeneous deformation during yield point 

phenomenon. The color code denotes the equivalent plastic strain. 
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(a) 

 

(b) 
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(c) 

Figure 4.23. Comparison of predicted engineering stress-strain curves after 

BRB loading. The FE predicted curves are compared between the perfect 

plastic and linear softening model at the yield point elongation region: (a) 0°, 

(b) 45°, and (c) 90° tensile curves. 
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4.5. Summary 

In this study, a comparative study on the effect of the hardening model on 

the prediction strength of steel pipes was presented. Three hardening 

models based on isotropic hardening, combined isotropic–kinematic 

hardening, and homogenous yield function-based anisotropic hardening 

(HAH) model were investigated. The parameters of the HAH model were 

identified using two-step tension and disk compression tests. To simulate 

the commonly applied manufacturing process of steel pipes, a BRB test 

was proposed. Tensile tests on the specimens taken out from the formed 

plate after the BRB process were performed in three different material 

orientations. The conclusions are summarized as follows. 

⚫ The investigated HAH distortional hardening model could capture 

most of the anisotropic hardening behaviors in the proposed two-

step tension tests. That is, the Bauschinger effect and transient 

hardening behavior could be reproduced in the reverse loading 

experiment, whereas the cross-softening in the tension followed by 

the second orthogonal tension test. By contrast, the kinematic 

hardening model only captured the Bauschinger effect in the load-
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reversal but underestimated it under the cross-loading condition.  

⚫ The predicted strengths along both the circumferential and 

transverse directions to the major bending direction matched very 

well with the experimentally measured yield and tensile strengths 

when the HAH hardening model with modified evolution rule was 

applied. However, the conventionally employed isotropic 

hardening and isotropic–kinematic hardening model resulted in 

either an over- or under-estimated yield strength after the prior 

BRB test. In the case of the tensile strength, the isotropic-

kinematic hardening could reasonably predict the measured value. 

⚫ When the prior bending strain increased, the influence of the 

hardening model was more significant in the prediction of both the 

yield and tensile strengths. 

⚫ In addition to the flow strengths, the stagnated flow stress behavior 

under early plastic deformation after the bending and reverse 

bending processes could be well captured when the true yield point 

phenomenon was properly calibrated using the inverse numerical 

method.  
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5. Conclusion 

In order to propose a model for predicting the anisotropic strengths of API 

steel pipe, the enhanced version of the HAH model was investigated. The 

enhanced version of the HAH model can express the anisotropic hardening 

behaviors in both the reverse-loading path and the cross-loading path, e.g. 

Buaschinger effect, transient behavior, permanent softening, latent hardening 

(cross-hardening), and contraction (cross-softening). For the stable numerical 

calculation of the HAH model inside finite element simulation, the fully 

implicit stress update algorithm was proposed in this study. Based on the 

proposed algorithm, the anisotropic strengths of the steel plate after 

bending/reverse-bending deformation were predicted. 

 Most of the applications using the HAH model were focused on the 

expression of the anisotropic behaviors of automotive steel sheets. Unlike 

previous studies, the strain range that this study interest in is relatively 

small(~4%). To express the early part of transient behavior with a high 

evolution rate after pre-deformation, multi-component evolution laws were 

proposed. The HAH model with multi-component evolution law could 

express the transient behavior right after the Bauschinger effect. 

Because of the relatively small strain range that this study concern, finite 
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element simulation with an implicit solver is more efficient than the explicit 

solver. To get the stable solution using the implicit solver, a robust implicit 

algorithm for the HAH model is required. In this study, unlike previously 

proposed algorithms of the HAH model, an algorithm that considers all the 

state variables used in the model is proposed with the investigation in terms 

of the two subjects, i.e., the effect of the number of introduced residuals, and 

the difference between analytical derivatives and numerical derivatives.  

⚫ To investigate the effect of the number of residuals (or state variables) 

considered in the algorithms, three algorithms were studied, i.e., the 

cutting-plane algorithm (CPM or Semi-explicit), the Euler backward 

method with 4 residuals (EBM-4R), and the Euler backward method 

with 14 residuals (EBM-14R). Through one element assessment, the 

algorithms with a reduced number of residuals (CPM and EBM-4R) 

can predict a totally wrong r-value and the stress value. For the large-

scale forming simulation, the EBM-based algorithm required much 

less computational time than the CPM algorithm. This is the due to 

time increment size difference. Because of the inaccurate consistent 

tangent modulus of CPM the size of automatically decided average 

time increment is relatively small compared to the one of EBM. 
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⚫ To investigate the difference between the algorithms using 

analytical derivatives and numerical derivatives, EBM-14/AD and 

EBM-14/ND algorithms were proposed. In one element 

assessment, both algorithms showed similar performance in 

accuracy and calculation speed. However, the large-scale 

simulations with the material DP780 showed a difference between 

the two algorithms. The EBM-14/ND required more computation 

cost for the calculation. This result is expected to come from the 

non-quadratic yield locus used for the simulation. When the yield 

function exponent is not quadratic, the algorithms with numerical 

derivatives can cause additional computational cost within the 

stress update algorithm. 

The BRB test was designed to mimic the pipe forming process of the API 

steel pipe. To validate the proposed HAH model with multi-component 

evolution laws and the stress update algorithm, the strengths prediction of the 

steel plate after bending/reverse-bending (BRB) deformation was performed. 

For the comparative study, the predictions using isotropic hardening, iso-

kinematic hardening, and HAH models were conducted.  

⚫ The anisotropic hardening coefficients were identified based on 
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the TCT and TT tests. The isotropic hardening couldn’t express 

any of the anisotropic hardening behavior as expected. The iso-

kinematic hardening could capture the reversal loading behavior 

(TCT tests) very well but could not express the cross-loading 

behaviors (TT tests). The prediction by the proposed HAH model 

showed good agreement with the anisotropic hardening 

experimental results. 

⚫ As represented in the anisotropic hardening expression in TCT and 

TT tests, the IH model over-predict all the strengths after the BRB 

test. The IKH model could capture the strengths along the TD, 

which load-reversal behavior is important, but not for other 

directions. The proposed HAH model could capture the strengths 

along all the directions quite reasonably. As a result, the 

consideration of anisotropic hardening behaviors under the cross-

loading state is very important to predict the anisotropic strengths 

prediction of the material with cyclic bending deformation. 
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Appendix A: Analytical derivatives of the HAH 

model 

The first and second derivatives of the HAH model [39] are derived 

analytically as follows. 

A.1. The first derivatives of equivalent stress 

Only the derivatives in the case of : 0
s

h s  are presented here because a 

similar procedure can be employed for : 0
s

h s .  

( )
1 p2

p p
1

1

2

( )( )
( ) ( ) ( ) ( )

ˆ ˆf ( : ) :2 2

−

−

−






 +  + 

   = 


 
 
 
 
 
 


+



s s

ss
s s s s

σ σ

σ s
sh h

σ

q

q

q q

, (A.1.1) 

( )
1 p2

p p1

1

2

( )( )
( ) ( ) ( ) ( )

ˆ ˆ
ˆ

ˆf (2 : ) 2

−

−

−

 
 
 
 

 
 +  +



 

  
 =  


+

s s

s

s

ss
s s s s

h h
h

s sh

q

q

q q

, (A.1.2) 

For : 0
s

h s , 
1 3 4 R

0
g g g g

   
= = = =

   
.  

For : 0
s

h s , 
2 3 4 R

0
g g g g

   
= = = =

   
. 



142 

 

( )
1

1

2

2 2

1 1ˆ2 :
g q g

−
−  

=  −


 
 

 
    

s sh
q

q
, (A.1.3) 

( )

( )

1 p1 2
p p

L L L

p S

0 02 2

L L L L

( )( )
( ) ( ) ( ) ( )

g g g

( )( ) 4 1 g1
and

g '' g g '' g

q
q

−
−
  
 






  
=   +  + 

   

   −    
=  − =  −



 
      



ss
s s s s

ss
s s

s s

, (A.1.4) 

( )
1 p1 2

p p

C C

p

0

C L

( )
( ) ( ) ( )

g g

( ) 4
.

g '' g

−
−  



=   + 

 

−


 

   
=  

   

s
s s s

s
s

s

q
q

where , (A.1.5) 

A.2. The second derivatives of equivalent stress 

Similarly, only the derivatives in the case of : 0
s

h s  are presented here.  
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A.3. The first derivatives of the state variables ( )ig i 1 ~ 4,L,C,R= . 
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A.4. The first derivatives of the state variables ˆ s
h . 
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Appendix B Numerical derivatives of e-HAH model 

In the previous study by Choi and Yoon [57], the central finite difference 

method was adopted for numerical derivatives because of its faster 

convergence and lower error. Therefore, in this study, the same finite 

difference is employed. For the step size decision for numerical 

differentiation, the scaled stress space idea [69] is used. For the sake of 

simplicity, the Voigt notation under the plane stress condition is used. The 

step sizes for each state variable are defined based on common step size, as 

follows. 

1 2 2 1 1 22 2 2
a a a

a X X X X X X      = − + + + + , (B.1) 

 In this study, 6a =1.0 10−   was employed for the calculation. 

Examples of the first and second derivatives with respect to stress are shown 
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as follows. 
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, (B.4) 

Similarly, all other derivatives associated with the HAH can be calculated. 

There is a remark for using numerical derivatives with respect to 

( )ig i 1 ~ 4,L,S,R=  . g values have an admissible range of value; e.g.

10 g 1   . When 1g   equals 0 or 1, the numerical derivatives cannot be 

defined. In this case, the forward or backward difference method can be 

applied. 

Appendix C: Yld2000-2d yield function 

A non-quadratic anisotropic yield function proposed by Barlat et al. [71, 72] 

is formulated as follows 
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1 2 2 1 1 22 2 2
a a a

a X X X X X X      = − + + + + , (C.1) 

Where iX    and ( 1, 2)iX i =   are the principal values of linearly 

transformed Cauchy stress. For simplicity, the Voigt notation is used for the 

formulation. The relationship between ( )or X X  and   is as follows.  

C C T L

C C T L

   =  =   

   =  =   

s

s

X

X

 = 

 = 

, (C.3) 

The components of linear transformation matrixes consist of the 

anisotropic coefficients 1~8  as follows.  
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2 2
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4 4 4 2 8 2 2 0
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L
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
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       



− 
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 
  

− + + − − − + 
  = − − + − + + −
 
  

 (C.3) 

Appendix D: Isotropic-kinematic hardening (IKH) 

model 

The yield criterion for the isotropic-kinematic hardening was proposed by 

Chaboche [22], and is expressed as follows:  
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( ) ( )σiso  − = , (D.1) 

where    is a back stress tensor describing the translation of the yield 

surface, and ( )σiso   is an isotropic hardening term that determines the size 

of the yield surface. The translation of the yield surface can be modeled with 

multi-component back stresses with a nonlinear evolution law as follows.  

1

n

i

i

 
=

= , (D.2) 

( )
σ

i
i i i

iso

C
d d d= −  −      , (D.3) 

where Ci and γi are the hardening coefficients. In this study, three back 

stress tensors (i = 3) were employed.  

To produce the same monotonic hardening curve as the IH and HAH 

models, the following isotropic hardening term was used in the IKH model. 

( ) ( ) ( ) 
1

σ σ 1 exp
n

i
iso i

i i

C
  

=

= − − − 


, (D.4) 
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Korean abstract 

본 연구에서는 HAH 왜곡 이방경화모델을 사용하여 API 강관의 이방 

강도 예측을 위한 수치 모델을 제안하였다. HAH 모델은 재료의 역 하중 

또는 교차 하중 경로를 고려한 재료 거동을 표현할 수 있다. 기존 HAH 

모델의 예측 정확도 향상을 위해 다성분 변화 법칙을 적용하였다. 

모델을 유한요소해석에 안정적으로 적용하기 위하여 완전 내연 응력 

적분법을 처음으로 제안하였다. 제안된 알고리즘은 응력, 등가 소성 

변형률 및 모델의 상태변수 전부의 비선형 함수들의 잔여값을 

고려하였다. 또한 다양한 적분 알고리즘, 재료 특성, 하중 조건, 변형률 

증분에 따른 포괄적인 비교 평가를 수행하였다. 역/교차 하중시 모든 

잔여값들을 고려한 완전 내연 알고리즘이 큰 변형률 증분에서도 

강건하고 정확한 유동 응력과 r값의 변화를 예측함을 확인하였다. 

반대로, 모든 잔여값들을 고려하지 않은 반-외연 또는 부분 내연 

알고리즘의 경우 급격한 변형률 하중 변화에서 불안정한 해를 계산할 수 

있다. 더불어, 모델의 복잡한 1차 또는 2차 미분 값의 대안을 위해 

해석적인 미분과 수치적인 미분을 사용하였을 때 결과를 비교하였다. 

개발된 알고리즘은 S-rail 성형 및 스프링백을 정적 내연 유한 

요소법에서도 안정적으로 계산되었다. 마지막으로 다성분 변화법칙 

HAH모델을 굽힘/역굽힘 이후 강판의 방향별 강도 예측에 적용하였다. 
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굽힘/역굽힘 실험은 일반적인 강관 생산 공정의 변형을 실질적으로 

모사하기 위해 고안되었다. HAH모델 사용시 예측된 강도는 실험값과 잘 

일치하였다. 하지만, 기존 등방 경화 모델이나 등방-이동 경화 모델을 

사용시 강도를 정확하게 예측하지 못 하였다. 역하중에서의 거동만 

고려하는 등방-이동 경화모델과 달리 역하중과 교차하중에서의 재료의 

거동을 모두 고려하는 HAH모델이 더 나은 예측 정확도를 보였다. 

 

 

 

 

 

 

 

 

 

 

 

 

 

주요어: 이방 경화 거동, 교차 하중, 완전 내연 응력 적분법; 강도 
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