

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Remote Memory for Virtualized
Environments

가상화환경을위한원격메모리

AUGUST 2021

DEPARTMENT OF ELECTRICAL ENGINEERING &
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Changyeon Jo

Remote Memory for Virtualized Environments

가상화환경을위한원격메모리

지도교수 Bernhard Egger

이논문을공학박사학위논문으로제출함

2021년 4월

서울대학교대학원

전기⋅컴퓨터공학부

조창연

조창연의공학박사학위논문을인준함

2021년 7월

위 원 장 이재진

부위원장 Bernhard Egger
위 원 엄현상

위 원 Thomas Gross
위 원 Patrick Stuedi

Abstract

The raising importance of big data and arti�cial intelligence (AI) has led to an un-
precedented shift in moving local computation into the cloud. One of the key drivers
behind this transformation was the exploding cost of owning and maintaining large
computing systems powerful enough to process these new workloads. Customers ex-
perience a reduced cost by renting only the required resources and only when needed,
while data center operators bene�t from e�ciency at scale.

A key factor in operating a pro�table data center is a high overall utilization of its
resources. Due to the scale of modern data centers, small improvements in e�ciency
translate to signi�cant savings in the total cost of ownership (TCO).

There are many important elements that constitute an e�cient data center such
as its location, architecture, cooling system, or the employed hardware. In this thesis,
we focus on software-related aspects, namely the utilization of computational and
memory resources. Reports from data centers operated by Alibaba and Google show
that the overall resource utilization has stagnated at a level of around 50 to 60 per-
cent over the past decade [29,64]. This low average utilization is mostly attributable to
peak demand-driven resource allocation despite the high variability of modern work-
loads in their resource usage. In other words, data centers today lack an e�cient way
to put idle resources that are reserved but not used to work.

In this dissertation we present RackMem, a software-based solution to address
the problem of low resource utilization through two main contributions. First, we
introduce a disaggregated memory system tailored for virtual environments. We ob-
serve that virtual machines can use remote memory without noticeable performance
degradation under moderate memory pressure on modern networking infrastructure.
We implement a specialized remote paging system for QEMU/KVM that reduces the
remote paging tail-latency by 98.2% in comparison to the state of the art. A job pro-
cessing simulation at rack-scale shows that the total makespan can be reduced by
40.9% under our memory system.

i

While seamless disaggregated memory helps to balance memory usage across
nodes, individual nodes can still su�er overloaded resources if co-located workloads
exhibit high resource usage at the same time. In a second contribution, we present
a novel live migration technique for machines running on top of our remote paging
system. Under this instant live migration technique, entire virtual machines can be
migrated in as little as 100 milliseconds. An evaluation with in-memory key-value
database workloads shows that the presented migration technique improves the state
of the art by a wide margin in all key performance metrics.

The presented software-based solutions lay the technical foundations that allow
data center operators to signi�cantly improve the utilization of their computational
and memory resources. As future work, we propose new job schedulers and load
balancers to make full use of these new technical foundations.

Keywords: virtualization, live migration, remote memory, RDMA
Student Number: 2012-20869

ii

Contents

Abstract i

Contents iii

List of Figures vii

List of Tables ix

Chapter 1 Introduction 1

1.1 Contributions of the Dissertation . 3

Chapter 2 Background 5

2.1 Resource Disaggregation . 5
2.2 Transparent Remote Paging . 7
2.3 Remote Direct Memory Access (RDMA) 9
2.4 Live Migration of Virtual Machines 10

Chapter 3 RackMem Overview 13

3.1 RackMem Virtual Memory . 13
3.2 RackMem Distributed Virtual Storage 14
3.3 RackMem Networking . 15
3.4 Instant VM Live Migration . 16

Chapter 4 RackMem Virtual Memory 17

iii

4.1 Design Considerations for Achieving Low-latency 19
4.2 Pagefault handling . 20

4.2.1 Fast-path and slow-path in the pagefault handler 21
4.2.2 State transtion of RackVM page 23

4.3 Latency Hiding Techniques . 25
4.4 Implementation . 26

4.4.1 RackVM kernel module . 27
4.4.2 Dynamic rebalancing of local memory to multiple VMs 29
4.4.3 RackVM for virtual machines 29
4.4.4 Running unmodi�ed applications 30

Chapter 5 RackMem Distributed Virtual Storage 31

5.1 The Distributed Storage Abstraction 32
5.2 Memory Management . 33

5.2.1 Remote memory allocation 33
5.2.2 Remote memory reclamation 33

5.3 Fault Tolerance . 34
5.3.1 Fault-tolerance and Write-duplication 34

5.4 Multiple Storage Support in RackMem 36
5.5 Implementation . 38

5.5.1 The Remote Memory Backend 38
5.5.2 Linux Demand Paging on RackDVS 39

Chapter 6 Networking 40

6.1 Design of RackNet . 40
6.2 RackNet RPC Implementation . 41

6.2.1 RPC message layout . 41
6.2.2 RackNet RPC processing steps 42

Chapter 7 Instant VM Live Migration 44

7.1 Background and Motivation . 45
7.1.1 The need for a tailored live migration technique 45
7.1.2 Software bottlenecks . 46
7.1.3 Utilizing workload variability 46

iv

7.2 Design of Instant . 47
7.2.1 Instant Region Migration . 47

7.3 Implementation . 48
7.3.1 Extension of RackVM for Instant 49
7.3.2 Instant region migration . 49
7.3.3 Pre-fetch optimizations . 51
7.3.4 Downtime optimizations . 51
7.3.5 QEMU modi�cation for Instant 52

Chapter 8 Evaluation - RackMem 53

8.1 Execution Environment . 54
8.2 Pagefault Handler Latency . 56
8.3 Single Application Performance . 57

8.3.1 Batch-oriented Applications 58
8.3.2 Internal pagesize and performance 59
8.3.3 Write-duplication overhead 60
8.3.4 RackDVS slab size and performance 62
8.3.5 Latency-oriented Applications 63
8.3.6 Network Bandwidth Analysis 64
8.3.7 Dynamic Local Memory Partitioning 66
8.3.8 Rack-scale Job Processing Simulation 67

Chapter 9 Evaluation - Instant VM Live Migration 69

9.1 Experimental setup . 69
9.2 Target Applications . 70
9.3 Comparison targets . 70
9.4 Database and client setups . 71
9.5 Memory disaggregation scenarios . 71

9.5.1 Time-to-responsiveness . 71
9.5.2 E�ective Downtime . 73
9.5.3 E�ect of Instant optimizations 75

Chapter 10 Conclusion 77

10.1 Future Directions . 78

v

요약 89

vi

List of Figures

Figure 1.1 In�niband adapter performance. 2

Figure 2.1 Resource disaggregation . 6
Figure 2.2 Breakdown alanysis of the pagefault handling latency. . . . 8
Figure 2.3 VM live migration overview. 11

Figure 3.1 An overview and the main components in RackMem. 14

Figure 4.1 The main components in RackVM and the Linux counter parts. 18
Figure 4.2 Overview of RackVM region. 19
Figure 4.3 Code of the RackMem pagefault handler. 20
Figure 4.4 The slowpath in the RackMem pagefault handler. 22
Figure 4.5 the fastpath in the rackmem pagefault handler. 22
Figure 4.6 The page state transition diagram. 23

Figure 5.1 Overview and the main components in RackDVS. 32
Figure 5.2 Data layout of RackMem. 33
Figure 5.3 Write duplication for fault tolerance in RackMem. 36
Figure 5.4 Multiple storage backends in RackDVS. 37

Figure 6.1 The RPC message layout of RackNet. 41
Figure 6.2 The RPC message layout of RackNet. 42
Figure 6.3 RackNet RPC processing timeline. 43

vii

Figure 7.1 Total migration time of VM running YCSB workloads under
memory pressure. 45

Figure 7.2 Major components in Instant. 47
Figure 7.3 Instant VM live migration timeline. 49
Figure 7.4 The metadata layout. 50

Figure 8.1 Pagefault handling overhead of RackMem. 56
Figure 8.2 Normalized execution time of batch-oriented applications

under memory limits (log scale, lower is better). 58
Figure 8.3 Averaged normalized execution time of all batch-oriented

applications. 59
Figure 8.4 E�ect of the internal page size. 60
Figure 8.5 Write duplication overhead. 61
Figure 8.6 E�ect of slab size on the execution time. 62
Figure 8.7 Distribution of transaction latency of OLTP-Bench (log scale,

lower is better). 63
Figure 8.8 Network bandwidth utilization of applications with RackMem. 64
Figure 8.9 Dynamic local memory partitioning. 65
Figure 8.10 Rack-scale simulation of a job processing scenario. 67

Figure 9.1 Time-to-responsiveness of live migration techniques. 72
Figure 9.2 E�ective downtime of live migration techniques. 74
Figure 9.3 YCSB latency scatter plot (5M keys, 20-thread) 75

viii

List of Tables

Table 8.1 Evaluated RackMem con�gurations. 54
Table 8.2 Compared implementations. 55
Table 8.3 Working set size for 30/60 second windows and peak resident

set size (RSS) of target applications. Values in MB. 55

ix

Chapter 1

Introduction

The volume of data centers has been increasing rapidly in the last decade with the
rising interest of arti�cial intelligence (AI), machine learning (ML), and big data ana-
lytics. These workloads require more and more resources (i.e., computation, memory,
and storage), and we expect this trend will continue or even increase in the upcoming
years.

Since the sheer volume of modern workloads is very large, the role of software
runtime in datacenters is increasingly important to better utilize the limited resources
in data centers. Especially, many modern workloads are running in the virtualized
environments (i.e., 70% percent, according to an industry report [4]), which implies
improving virtualized environments is the key to the above problem.

Virtualization gives many advantages for better utilizing system resources by
consolidating more workloads on the same machine and deal with the workload vari-
ability with live migration (i.e., moving the workloads on a heated server to other ma-
chines). It has been widely adopted in production environments [58] and providing
the foundation of modern clouds serving billions of users.

On the other hand, virtualization is still experiencing e�ciency problems. We

1

2003
2005

2007
2011

2014
2018

2021
2023

Year

0

250

500

750

1000

T
hr

ou
gh

pu
t (

G
b/

s)

(a) Infiniband throughput

2003
2005

2007
2011

2014
2018

2021
2023

Year

0

2

4

A
da

pt
er

 L
at

en
cy

 (
s)

(b) Infiniband latency

Figure 1.1 In�niband adapter performance.

have seen a signi�cant portion of unutilized resources in data centers; The recent
publications from Google and Alibaba show the average utilization of CPU and mem-
ory in their clusters are stagnated at 60% and 40% levels separately in 2019 [29, 64].
It is quite impressive improvement compared to 40% utilization of the 2011 Google
traces [57]; however, we still have a large room for improvement at the top.

There are two major reasons that fundamentally limit the e�ciency of virtual-
ized environments. First, a machine cannot utilize resources beyond the physical ma-
chine’s boundary. Especially memory is di�cult to share between machines due to
the lack of e�cient sharing mechanism and a signi�cant gap between the local and
remote access latency.

Second, modern workloads are highly volatile in their resource usage, making it
di�cult to co-locate multiple workloads on the same machine to improve resource
utilization. Aggressive memory overcommit increases the chance of SLOs (Service
Level Objectives) violation, and it forces to keep a non-negligible amount of resources
in each server idle. Virtual machine (VM) live migration is a promising solution for
handling the resource variability since it allows a VM can be moved between servers
without noticeable downtime. However, VM live migration requires sending all states
(i.e., the whole memory of a VM) to the destination server, and the cost is prohibitively
high with large VM instances, which are common these days.

Memory disaggregation has been proposed recently as a promising solution to

2

address the problems mentioned above. The major motivation of memory disaggre-
gation lies in the remarkable performance of modern commodity networks. Com-
modity networking technologies provide a sub-microsecond remote memory access
latency with more than 100gbit/s bandwith [49].

In�niband standard also doubling the performance by every a few years. Fig-
ure 1.1 shows the In�niband standard improvement over years in throughput and la-
tency. A 4-lane In�niband adapter will be expected to provide 1,000 Gb/s of through-
put with sub-microsecond latency in 2023, rapidly blurring the boundary between
local and remote memory. By building a shared memory pool accessible through
the fast network, memory is easily shared between the machines in the same clus-
ter. It helps to increase memory utilization by making idle memory is utilized by
remote machines and has been proved its usability in many articles in the recent
days [12, 14, 27, 28, 42, 44, 45, 59].

However, the software-based memory disaggregation still experiences subopti-
mal performance due to the poorly optimized software stack, and lack of mechanism
for seamless and instant VM live migration in virtualized environments. In our thor-
ough evaluation, the state-of-the-art solutions [14, 27, 28] su�er from long tail laten-
cies (two orders of magnitude slower software overhead than the actual I/O at the
tail) under intensive remote paging scenarios. Also, despite the bene�t of accessing
any data in any node with memory disaggregation, VM live migration still su�ers
from long latency to complete due to the entire memory copy from the source to
the destination host. Furthermore, memory disaggregation unexpectedly makes the
vanilla VM live migration slower, since it does not properly consider the context of
the memory disaggregation.

1.1 Contributions of the Dissertation

In this dissertation, we make the following contributions:

• We present RackMem, a software-based memory disaggregation for virtualized
environments that provide ∼10 microseconds of remote memory access latency
at the 90th percentile. RackMem achieves the signi�cant latency improvement
by optimizing the three layers coposing the remote paging: the virtual memory

3

(Chapter 4), the backend distrubted storage (Chapter 5), and the networking
library for remote node communitation (Chapter 6).

• We present instant and seamless virtual machine migration that provides a
small constant latency (around 100ms) for VM live migration and minimize
performance degradation during VM live migration (Chapter 7).

• We evaluate the proposed techniques with a extensive set of real applications
(Chapter 8 and Chapter 9)

By running virtual machines on RackMem, data center operators have two bene-
�ts. First, RackMem enables transparent memory sharing for nodes in the same clus-
ter. RackMem e�ectively hides the remote memory access latency by utilizing the
local memory as cache with a number of optimization techniques. Under moderate
remote paging scenarios, applications show close to native performance with Rack-
Mem. Applications also show high tolerance in performance even under the intensive
remote paging scenarios. It provides a higher degree of elasticity for utilizing memory
in the cluster and helps to improve the overall memory utilization.

Second, the instant VM live migration quickly (∼100ms) resolves hotspot in the
cluster. It is useful even if RackMem handles a hotspot by utilizing idle memory in
other clusters. By moving a VM to another server, we can utilize more computation
resources on the destination host and reduce the remote paging by directly accessing
the destination server’s local memory. Instant VM live migration is also attractive for
the maintenance scenario that virtual machines have to be migrated to safe nodes
when VMs experience performance anomaly due to malfunctioning hardware.

4

Chapter 2

Background

In this chapter, we provide necessary background for the rest of the dissertation. First,
we explain the memory disaggregation, a technique that building a shared memory
pool and utilize it through high-performance interconnect technologies. Second, we
present the background of remote direct memory access (RDMA). RDMA provides
an e�cient mechanism for remote memory access bypassing the kernel in I/O oper-
ations and completely avoid the interaction with the remote server. Third, the live
migration of virtual machines which is a core mechanism for the seamless operation
of datacenters running virtualized workloads.

2.1 Resource Disaggregation

Traditionally a single task is allowed to utilize only the local resources (i.e., resources
connected on the same main board) which we call "server centric" architecture (Fig-
ure 2.1 (a)). In server centric architecture, a job scheduler maintains the state of avail-
able resources in each server, and place a task only if the node has enough resources
to serve the task’s resource requirements. This architecture has a serious disadvan-
tage. When each node in the cluster only partially meets the resource requirements,

5

datacenter network

Unified interconnect
NIC

CPU CPU CPU
MEM MEM MEM

NIC

CPU CPU CPU
MEM MEM MEM

CPU MEM MEMMEM

SSD SSD

(a) node centric (b) resource centric

CPU

GPU

SSD GPUSSD GPU

GPU

Figure 2.1 Resource disaggregation

the request will fail even though the cluster has enough aggregated resources to serve
the request. Users prone to request more resources than they actually use, so resource
overcommit could alleviate the situation. However, this approach has a potential risk
of resource depletion since we cannot know future resources usage of the co-located
tasks. Wrong resource overcommit would result in severe slowdown of the tasks or
unexpected termination of tasks in the worst case.

The main reason of deploying the server centric architecture as common prac-
tice is the performance gap between local and remote access. If we consider remote
memory access latency, it was a few orders of magnitude slower than the local mem-
ory access. To make it matter worse, utilizing remote resources usually requires a
signi�cant modi�cation in applications. Cache coherent distributed memory cannot
solve the problem, since the high cost of software based cache coherency will quickly
eliminate the bene�t of utilizing remote resources.

However, the relentless e�ort for improving the networking hardware perfor-
mance, the idea of utilizing remote resouces has been reviving in the recent days.
The performance of modern networking hardware is closing to the speed-of-light,
and blurs the boundary between local and remote accesses. The latest network in-
terface card (NIC) from NVIDA, ConnectX-7, advertises its sub-microsecond latency
and 400Gb/s throughput on PCIe 5.0 [3]. The advances in the networking hardware
result in "resource centric" architecture (Figure 2.1 (b)) which is a promising solution
for the resource fragmentation problem. In resource centric architecture, individual
resource pools (e.g., CPU, memory, storage, accelerators) are connected through fast
interconnect technology to provide a single cloud computer image. Resource centric

6

architecture provides high elasiticy in resource management. Resource fragmentation
does not exists anymore, and dynamic resource scaling is easy since the all resources
are available through the uni�ed interconnect.

Ideal resource disaggregation will come with a special hardware supports [1, 2,
9], however, there are still many challenges until we get commodity products at the
market. Inventing a new hardware costs a lot and there is a risk of failure that the new
hardware is not adopted by the standard in the market. Or, they may not be realized,
we have seen a number of abandoned industry projects [6, 7] in the recent years.

Software-based solutions still attractive and provides the similar bene�ts with
o�-the-shelf NICs. Compared to the hardware-based approaches, it even gives more
bene�ts in terms of applicability and con�gurability. Legacy systems can bene�t from
the software-based solution, and it is also possible to implement various resource
management policies in software.

In addition to that, current operating systems are already prepared for the mem-
ory disaggregation. The virtual memory provides the core mechanism to implement
the illusion of locally available disaggregated memory with hardware MMU. A num-
ber of attempts [14, 27, 28, 48] have shown that simple modi�cation in the swap sub-
system in Linux allows running unmodi�ed applications on disaggregated memory
and improved the cluster wide memory utilization.

In the rest of this dissertation, we focus on the similar approach for memory
disaggregation to better apply it to the virtualized environments.

2.2 Transparent Remote Paging

There are many interfaces for utilizing remote memory. For example, high-performance
computing applications explicitly utilize remote memory with specialized interfaces
such as MPI and RDMA [41]. Or a key-value store interface [23,38,40], �le system in-
terface [12,47,62], or distributed shared memory [15,51,60] can be deployed as a type
of higher-level abstraction. In this paper, we target the extreme case of the interface
that does not require modi�cation of an application. We call this approach transparent
remote paging. The transparent remote paging heavily relies on virtual memory. By
running an application on virtual memory, we can direct an access request to remote

7

50th 90th 95th 99th 99.5th 99.9th
Percentile

101

102

103
La

te
nc

y
(

s)

RackMem - read
RackMem - mgmt
RackMem - reclaim
Linux - read
Linux - mgmt
Linux - reclaim

Figure 2.2 Breakdown alanysis of the pagefault handling latency.

memory by using the pagefault handling mechanism.

Transparent remote paging cannot utilize the full potential of the performance
bene�t of using remote memory. The application often performs unnecessary I/O for
small data, and di�cult to apply optimization that utilizing the memory access pat-
tern of applications. However, this approach can be utilized without any modi�cation
of applications, which is appropriate for production environments that modifying
user applications is prohibited.

The common approach for realizing the transparent remote paging is using the
swap subsystem that is available in most operating systems. We have seen a recent
remote paging system that are built on top of Linux swap subsystem with remote
memory storage [14, 28, 48, 53]. Enable remote memory paging in Linux is simple. A
block device using remote memory as a storage backend is registered as a backend
of swap subsystem. Then, Linux swaps out data to remote memory under memory
pressure for unmodi�ed applications.

However, the current implementation of Linux virtual memory’s poor perfor-
mance prevents deploying such a remote paging system for production environments.
Figure 2.2 plots the latency of Linux’ pagefault handler (kernel version 5.3.9) with In-

8

�niswap [28], a state-of-the-art transparent remote paging system built on the Linux
swap subsystem, and compared its performance to ours for di�erent percentiles. To
stress demand paging, the Spark PageRank benchmark is executed in a cgroup limit-
ing the available local memory to 30% of the workload’s working set size. Looking at
the performance of the Linux pagefault handler �rst, compared to the median value
(50tℎ percentile) with a latency of 24�s, the 99tℎ and 99.9

tℎ percentile exhibit a severe
43- and 81-fold slowdown at 721�s and 2840�s, respectively.

Handling a demand paging pagefault can be broken down into three actions:
mgmt: management overhead caused by updating data structures and page tables,
read: reading a page from backing storage, and reclaim: reclaiming a page in local
memory1. The bars in Figure 2.2 reveal the latencies of the three actions. While mgmt

and read observe a “modest” 10-fold slowdown from the 50 to the 99.9
tℎ percentile,

the slowdown of reclaim is dramatic: 167-fold at 99, 313-fold at 99.5, and 351-fold at
the 99.9

tℎ percentile. The analysis of Linux’s pagefault handler reveals severe bottle-
neck in the software that hampers exploiting the full potential of fast disaggregated
memory.

2.3 Remote Direct Memory Access (RDMA)

In Section 2.1 we have introduced a high-performance commodity NIC providing
ultra-low latency with high bandwidth [3]. The major performance bene�t of such
hardware comes from the "end host architecture," which allows direct access of the
hardware to userspace applications.

With direct access, userspace application enjoys the performance bene�ts pro-
vided by the hardwares such as:

• Kernel bypass eliminates the context switching overhead between the userspace
and the kernel for sending I/O requests to the hardware. It signi�cantly reduces
the inter-node communication latency.

• Remote direct memory access, allowing direct remote memory without involv-
ing the remote CPU in the I/O processing. It minimizes the computation over-

1Page reclamation involves �nding a victim page and can trigger writing data to backing storage if
no free page is available

9

head for I/O processing and improves the networking performance.

However, the bene�ts do not come for free. There are a few challenges for achiev-
ing the high-performance:

• Writing an optimized application using the direct access hardware is signi�-
cantly more complex than traditional applications such as using POSIX socket.
For example, writing an application in ibverbs [10] (a standard library for writ-
ing RDMA applications) requires signi�cantly more lines of code for the same
functionality.

• Commodity RDMA devices have scarce resource on the device. Without careful
considerations on the resource management, it limits the scalability of RDMA
applications.

In this dissertation, we present a system that actively utilizes RDMA for minimiz-
ing latency and throughput. We present our approach for achieving the performance
bene�ts and the techniques for overcoming the challenges in Chapter 4, Chapter 5,
and Chapter 6.

2.4 Live Migration of Virtual Machines

VM live migration is a technique that is moving a running VM to another server with-
out a (mostly) noticeable downtime. VM live migration is necessary for data centers’
operation by enabling seamless maintenance of hardware, software updates, and load
balancing.

VM migration requires entire states (e.g., CPU states, memory, VM metadata)
copy of the target VM to the destination host; otherwise, the VM cannot continue
the execution after the migration. Since the memory state can be several terabytes, it
takes the most of the overhead of VM migration.

The simplest way to migrate a VM is stop-and-copy that stops the target VM,
transfers the entire states to the destination, and resumes the VM. This technique,
however, su�ers from long downtime since the VM cannot respond until the huge
amount of data transfer is �nished. Due to the above reason, stop-and-copy cannot
deliver the live for VM migration.

10

source

time

destination

prepare stop-and-copy restore

downtime

total migration time

VM running at full/reduced speed VM stopped

Figure 2.3 VM live migration overview.

Two main approaches bring live to VM migration.

Pre-copy [19, 52] iteratively transfers the modi�ed memory of a VM. The �rst
iteration sends the entire memory to the destination node. If data is transferred faster
than modi�ed, the iterative process will converge. Once the modi�ed data falls below
a given threshold, the VM is stopped, the remaining modi�ed data copied, and then
the VM resumes on the destination node.

Post-copy [11,31] sends only the CPU state and immediately resumes the VM on
the destination node. Since the migrated VM starts without its memory, any access
to yet unrestored pages generate a pagefault. Typically a background process assists
the pagefault handler in bringing pages to the destination node. Unlike pre-copy, the
entire memory is transferred exactly once, however, VMs often experience a severe
performance degradation after migration.

Hybrids between pre- and post-copy have been proposed [61]. Other optimiza-
tions employ data compression, CPU throttling, or parallel fetching of data stored on
disk [33–35, 46, 63].

Figure 2.3 shows the three phases of VM live migration:

Prepare: VM is running on the source host. Send the VM states to the destination.

Stop-and-copy: VM is not running in this phase. Source side sends remaining
VM states to the destination to synchronize the states between two hosts.

Restore: VM is running on the destination host. The destination side fetches the
remaining data from the source host to complete the migration.

11

Stop-and-copy is necessary for all techniques. Prepare and Restore phases are op-
tional depends on techniques. Only one of them is enabled in some techniques (pre-
copy, post-copy), or both of them are enabled (post-copy with pre-copy). Both of them
can be disabled when the VM is running on disaggregated memory.

A VM live migration technique is evaluated for the following criteria:

• Total Time: the period of VM live migration between the beginning and the
completion.

• Downtime: the period of stop-and-copy phase.
• Transferred Data: the total transferred data from the source to the destination

to migrate the VM.
• Performance: the performance degradation of workloads in the target VM dur-

ing the VM live migration.
• Resource Usage: the additional resource usages during the live migration (e.g.

CPU, memory).

We use the performance metrics for the evaluation of VM live migration tech-
niques in Chapter 9.

12

Chapter 3

RackMem Overview

Figure 3.1 shows a high-level overview of RackMem. RackMem is a set of compo-
nents that work cooperatively to provide low-latency remote paging and instant live
migration for virtual machines. In this chapter, we give a high-level overview of the
core components in RackMem.

3.1 RackMem Virtual Memory

RackMem virtual memory (RackVM) is the user-facing layer of RackMem. Userspace
applications can request virtual address spaces to RackVM, and RackVM provides
transparent remote paging for the address space. Userspace applications can perform
native memory instructions on the address space without worrying about remote
paging and resource management.

We design RackVM to minimize the pagefault handling latency and to maximize
the paging throughput. To optimize the paging performance, RackVM deploys the
pro-active page reclamation, tailored pre-fetching mechanism, and an e�cient victim
page selection algorithm. We will discuss the design and implementation detail in
Chapter 4.

13

Virtual Memory

VM VM VM

Hypervisor

User space

Kernel space

Distributed Storage

RDMA NIC

Hardware

Local Storage

Instant

Networking Library

Figure 3.1 An overview and the main components in RackMem.

We also provide a hypervisor that is modi�ed to allocate VM’s memory from
RackVM. Using virtualization as the main abstraction of the remote memory gives
two signi�cant advantages. First, by running applications in VM, unmodi�ed applica-
tions can bene�t from the transparent remote paging, which makes the proposed sys-
tem signi�cantly more practical than requiring modi�cation. Second, it also enables
a seamless transition from the traditional architecture to the disaggregated architec-
ture. Datacenter administrators can deploy the proposed system without disrupting
the existing environments running virtual machines.

3.2 RackMem Distributed Virtual Storage

RackMem distributed virtual storage (RackDVS) provides a byte-addressable storage
abstraction of remote memory. RackVM uses RackDVS to allocate backend storage
for the managed virtual address space and uses the space to store local pages under
memory pressure.

RackDVS provides the three key features that are necessary to support the target
virtual memory.

14

High-performance. RackDVS utilizes the high-performance remote memory
(accessed with RDMA) as the main storage. To provide the best performance, Rack-
DVS minimizes the control operation overhead in the data operations; most I/O re-
quests are processed quickly and directly on the hardware.

Reliability. The remote memory can fail anytime; providing reliability is an im-
portant goal in RackDVS. RackDVS provides reliability by making a copy of remote
page in the local storage with write I/O duplication. We co-design RackVM and Rack-
DVS to hide the I/O duplication overhead in the background.

Multi-storage support. RackDVS deploys a simple design to enable utilizing
multiple available storage. This design gives more chances for optimizing the perfor-
mance per dollar by building a proper hierarchy of storage.

We present the design and the implementation detail of RackDVS in Chapter 5.

3.3 RackMem Networking

RackMem Networking (RackNet) is a kernel space RDMA and RPC library. RackDVS
heavily uses RackNet to implement remote memory storage backend, and RackVM
also uses it to implement instant VM live migration (Figure 3.1). Usage of RackNet
is not limited to RackMem; any other kernel space distributed service can be imple-
mented on top of RackNet. In overall RackNet provides the following core bene�ts:

Easy to use. The easy programming interface enables quick implementation of
distributed services using RDMA. Compared to using ibverbs directly, with RackNet,
the same feature can be implemented in much shorter lines of code.

E�cient on-device resource utilization. The modern RDMA NIC has known
for limited scalability due to the limited on-device resources [39] (e.g., virtual to phys-
ical address translation cache). A popular approach for minimizing the on-device re-
source usage is making multiple applications share the same connection [65]. This
approach has known for great scalability than the approach creating a separate con-
nection for each RDMA application. RackNet enables connection sharing by mediat-
ing applications in the central space.

Resource e�cient kernel-to-kernelRPC.RackNet implements a stateless kernel-

15

to-kernel RPC that is providing around 10 microseconds latency for a dummy RPC
with two-side verbs and interrupt-based completion handling. An RPC client can call
a remote function without binding it to the server; this approach does not require ad-
ditional space to store the state in the memory. RackNet has no busy polling thread
to handle the incoming RPC requests. The interrupt-based RPC handling saves a sig-
ni�cant amount of computation resources than using a dedicated polling thread.

We present the design and the implementation detail of RackNet in Chapter 6.

3.4 Instant VM Live Migration

The last core feature of RackMem is instant VM live migration. We implement the
instant VM live migration by extending RackVM to support address space migration
to another node and modify the hypervisor to exploit the feature to implement instant
VM live migration. (Figure 3.1)

Unlike the traditional VM live migration techniques that require an entire mem-
ory copy of VM to the destination, the instant VM live migration only requires trans-
ferring a small amount of metadata to the destination describing the page location
and the core data structures. The instant VM live migration has the two main perfor-
mance bene�ts as follows:

Instant. The re-location of the execution context of a VM is almost instant. Our
technique only requires transferring a small amount of data to complete a VM mi-
gration; we �nish a migration mostly within 100ms.

Seamless.The migrated VM may experience performance degradation for a short
period to fetch missing working set pages from the source machine. Our technique
quickly recovers from the performance degradation compared to the state-of-the-
art implementation [31, 56] by utilizing the signi�cantly faster pagefault handler in
RackVM.

We explain the our design and implementation of the instant VM live migration
in Chapter 7.

16

Chapter 4

RackMem Virtual Memory

RackMem virtual memory provides a software-based abstraction for remote memory.
Hardware-based transparent remote memory access will be ideal; however, it is not
(yet) supported by commodity hardware and is expected to take long years until de-
ployed as a common option in datacenters. RackMem is a software-based approach of
remote memory to run applications without a signi�cant performance loss, even for
intensive remote paging scenarios. RackMem will be a great software-based solution
until hardware-based solutions are realized in the future.

The main design goal of RackVM, while providing reasonable usability, is provid-
ing the best possible paging performance comparable to the local memory. Remote
memory access is still an order of magnitude slower (600ns) than local memory ac-
cess (60ns). Without an elaborated design, the remote memory will perform poorly
and quickly lose its advantage of utilizing idle resources due to the signi�cant perfor-
mance degradation. Andres et al. [43] have shown small improvements in memory
utilization translate to millions of dollars at a large scale. Hence RackMem’s main
goal is improving virtual memory performance to exploit the fast storage backends
fully (e.g., RDMA and NVMe SSD).

Figure 4.1 shows the main components in RackVM and the counterparts in Linux.

17

Kernel

VM

VM memory address space

RackVM

Pagefault handler

Pro-active page reclamation

Pre-fetching pages

RackDVS

Virtual memory

Local Memory NIC

Remote Memory

RackNet

Swap subsystem

Block device

Figure 4.1 The main components in RackVM and the Linux counter parts.

RackVM roughly includes the same functionalities provided by "virtual memory" and
"swap subsystem" in Linux. RackVM automatically moves local pages to the backing
storage under memory pressure, and minimizes the pagefault handling overheads
with the two main optimizations pro-active page reclamation and pre-fetching pages.

The "pro-active page reclamation" reduces the pagefault handling latency by avoid-
ing page-reclamation in the critical path. The "Pre-fetching pages" reduces the num-
ber of pagefaults by pre-fetching pages if there is a clear sequential memory access
pattern.

In the rest of this chapter, we present the design and the implementation detail
of RackVM.

18

RackVM

VM 1 VM 2

RackVM Region 1

inactive pages

active pages

RackVM Region 2

inactive pages

active pages

remote remote

reclaim reclaim

Figure 4.2 Overview of RackVM region.

4.1 Design Considerations for Achieving Low-latency

Figure 4.1 shows an overview of RackVM region. A region is mapped to an entire
address space of a VM (or linear virtual address space). To avoid the bottleneck and
improve scalability, we design RackVM to maintain separate data structures for each
virtual address space.

Virtual memory management. In RackMem, all memory requests are directed
to RackVM. RackVM creates a memory region associated with the request on the
memory allocation request, initializes necessary data structures, and creates a de-
scriptor for the region. RackVM transparently manages the virtual address ranges
with the help of hardware page faults. RackVM installs its custom page fault handler
for each region to directly handle the page faults and bypasses the default OS handler.
Since our abstraction is the virtual memory, user-level applications directly execute
memory instructions on the virtual address range.

RackVM manages the region at the internal page granularity and delays the actual
memory allocation until the �rst access. When an application accesses an untouched
address, RackVM allocates a new page from the local memory and maps it to the
applications’ virtual memory space. RackVM does not swap out a page until it hits

19

def rackmem_vm_fault(struct vm_fault *vmf)
{

/* Step 1: obtain the RackMem region pointer */
rr = (struct rack_region *) vmf->vma->private_data;
/* Step 2: lock the page */
r_page = &rr->pages[index];
lock(&r_page->lock);
/* Step 3: Is the pagefault on the prefetched pages? */
if (r_page->flags & INACTIVE)) { /* yes */

/* remap the page and insert it to the tail of the active list */
rack_page_remap(rr, r_page, address);

} else { /* prefetch miss */
/*
* Step 4: Get a free page.
* The overhead of calling this function is highly dependent on
* whether it is taking the slowpath or the fastpath.
*/

rack_get_page(rr, &r_page->buf);
/* Step 5: restore the page from the backing storage (RackDVS) */
rack_page_restore(rr, r_page);

}
/* Step 6: unlock the page */
unlock(&r_page->lock);
/* Step 7: (optional) do proactive page reclamation */
rack_request_reclamation(rr, nr_pages);
/* Step 8: (optional) do prefetch */
rack_prefetch_pages(rr, address, window_size, cache_hit);

}

Figure 4.3 Code of the RackMem pagefault handler.

the local memory limit threshold. To handle a page request beyond the local memory
limit, RackVM selects a victim page and swap out the page by directing the write re-
quest to RackDVS layer. If a swapped-out page is requested later, RackVM restores the
page by reading data from RackDVS layer. The local memory limit is con�gured for
each region and dynamically modi�able at any time through the userspace interface.

4.2 Pagefault handling

Quick page fault handling is important in any demand paging system. However, it
is even more important when it is running with high-performance storage backends
such as remote memory with RDMA and NVMe SSD. Especially, RDMA provides

20

single-digit microseconds for remote memory access, which means the software over-
head of a page fault handler takes a signi�cant portion of the total paging latency.

RackVM deploys a number of techniques to minimize the page fault handling
latency while maximizing the throughput and reduce the number of page faults.

First, RackVM handles concurrent page faults on multiples threads. Pagefaults on
di�erent pages do not block each other in RackVM. Second, RackVM actively per-
forms prefetch to keep the local memory with pages that will likely be accessed in
the near more future. Third, RackVM manages per region free and active lists to avoid
contention and tries to keep a small number of pages in the free lists to respond to
the paging request immediately. RackVM also reorders the pages in the lists to hold
weak LRU properties.

Figure 4.3 shows the annotated code of RackMem’s fast page fault handler. We
describe the overall page fault handling routine as follows:

1. Obtain the page pointer in the a�ected region.
2. Lock the page.
3. Lookup the page in the local cache. If found (eg., prefetch hit), map the page

into virtual address space and goto step 6.
4. Find a free page in the cache; if no such page exists, select and evict a victim

page.
5. If accessed page has been paged out, restore its original data.
6. Unlock the page
7. Wake-up proactive page reclamation thread to proactively evict infrequently

accessed pages and create a pool of available free pages
8. Perform synchronous prefetch with data around the faulting address to reduce

future pagefaults.

4.2.1 Fast-path and slow-path in the pagefault handler

Figure 4.3 shows a simpli�ed visualization of the two main paths in the pagefault
handler: the fastpath and the slowpath; Step 3 is omitted for the simplicity. RackVM
has been designed to minimize the number of taking the slowpath. We explain the

21

Lock Check
INACTIVE

Check
ACTIVE Restore Unlock

RDMA
READ

INACTIVE ACTIVE

RDMA
WRITE

D D D

D D D

D

Figure 4.4 The slowpath in the RackMem pagefault handler.

Lock Check
INACTIVE

Check
ACTIVE Restore Unlock

RDMA
READ

INACTIVE ACTIVE

RDMA
WRITE

D D D

D D D
C C C

C

Figure 4.5 the fastpath in the rackmem pagefault handler.

�ow of each path in detail as follows.

Slowpath in pagefault handler. Figure 4.4 shows the slowpath in RackVM
pagefault handler. In the slowpath, the pagefault handler �rst checks the INACTIVE

pool but failed to get a readily available page from the pool. In this case, an ACTIVE

22

ACTIVEIDLE

INACTIVE

REMOTE

Mapped

Unmapped

first access

proactive
reclaim

reactive
reclaim

prefetch hit /
wrong reclaim

prefetch

page fault

pagefault without I/O
with I/O

pagefault with I/O

Figure 4.6 The page state transition diagram.

page must be reclaimed, which requires deleting the mapping in the page table and
writing the page to the remote memory. Finally, the reclaimed page is restored with
the original data by reading the page from the remote memory. In total, two RDMA
I/O is required to serve the slow path request.

Fastpath in pagefault handler. Figure 4.5 shows the fastpath in RackVM page-
fault handler. The pagefault handler �rst locks the page and checks if there is an
available free page in the INACTIVE pool. In fastpath, the pagefault handler success-
fully get a page from the pool and use it immediately without writing the data to
remote memory. The pagefault handler restores the previous data of the page, then
returns to the userspace.

4.2.2 State transtion of RackVM page

Figure 4.6 shows the life cycle and state transition of a RackVM page. The RackVM
page is the internal unit of memory management, it determines the lock granularity
and the minimum size of I/O. A RackVM page size can be a multiple of the system
page size.

We classify a RackVM page into the following four categories: IDLE, ACTIVE, IN-
ACTIVE, and REMOTE.

23

All pages are in the IDLE state on creation. An IDLE page has no mapping to a
local page; a pagefault is generated on the �rst access to an IDLE page. In response to
the pagefault, local memory is allocated to the page, and RackVM modi�es the page
state from IDLE to ACTIVE.

An ACTIVE page has a mapping in the page table; access on an ACTIVE does not
generate pagefault. When a new ACTIVE page is created, it is inserted to the tail of
ACTIVE list, and ACTIVE pages in the list are reclaimed from the head under memory
pressure. We do not reorder the pages in that list to maintain least-recently-used
(LRU) order. Rather we use a FIFO queue that avoids the overhead of sorting the list.
While maintaining exact LRU order is bene�cial for slow backends where the sort
overhead is hidden by the I/O latency to access the device, for fast backends such as
In�niBand RDMA, maintaining LRU order would cause a bottleneck.

From ACTIVE to REMOTE transition occurs on the reactive reclamation (the slow-
path in Figure 4.4). The allocated memory for the page is reclaimed and reused to
serve a new ACTIVE page. The number of this transition should be minimized since
the cost of the state transition is high and occurs in the critical path of the pagefault
handler.

From ACTIVE to INACTIVE transition occurs on the proactive reclamation (Sec-
tion 4.3) This transition occurs in the background to keep the INACTIVE pool popu-
lated. INACTIVE pages can be reused without writing the data to remote memory. By
maintaining enough pages in the INACTIVE pool, we can reduce the overall page-
fault handling latency. Rarely, the reclaimed page in INACTIVE list is accessed again.
We call this case "wrong reclaim," which should be minimized. But the penalty of the
wrong reclaim is not signi�cant because the inverse transition can be made without
an I/O.

From REMOTE to ACTIVE transition occurs when the VM accesses a remote page
which is the case, the page has no mapping in the page table. Handling this page-
fault has a high cost due to the I/O overhead to restore the original data; a prefetch
technique can be deployed to reduce the number of this transition.

From REMOTE to INACTIVE transition is occured by the prefetch mechanism in
RackVM (Section 4.3). Pages that are likely to be accessed in the near future are
prefetched, then the pages are inserted to the head of INACTIVE list. If a prefetched

24

page in the INACTIVE list is accessed before it is reclaimed, from INACTIVE to ACTIVE

transition occurs. In this case, we can serve the access request without performing
an I/O. Increasing the number of prefetch hits is also an important optimization goal
in RackVM.

4.3 Latency Hiding Techniques

The two main techniques for the major performance improvement in RackMem are
prefetch and proactive page reclamation. We describe the detailed design of the two
techniques in this section.

Prefetching. Prefetch can eliminate a costly I/O operation in the critical path of
page fault handling. By prefetching pages that are expected to be accessed soon, we
give more computation time to applications by reducing the number of page faults.
Prefetch is especially useful when an application has clear sequential memory access
patterns since multiple I/O operations on the consecutive addresses can be merged
and processed much on many storage devices (e.g., HDD). Prefetch has been success-
fully employed in many I/O-oriented applications. Local memory is not scarce in the
common scenario of such applications. Fetching additional data from I/O device in
idle pages is cheap but gives signi�cant bene�t when the application has strong spa-
tial locality. However, in remote memory paging scenarios, paging occurs when local
memory is scarce, making unique challenges. Since local memory is scarce, we need
to reclaim a few pages to serve prefetch pages. Prefetch should only evict cold pages
that will not be accessed in the near future and correctly fetch data that is likely to
be accessed soon. The cost of wrong prefetch is signi�cantly higher in scare memory
scenarios.

RackMem deploys a conservative approach for prefetch. RackMem strictly iden-
ti�es sequential memory access patterns and performs prefetch only when an appli-
cation shows strong sequential access patterns. The cost of wrong prefetch quickly
o�sets the bene�t of prefetch, so we design our prefetch algorithm to do nothing most
of the time to avoid being wrong. To better identify a more sequential access pattern
for the prefetch, RackMem maintains per region and per-core prefetch window. It
helps to separate mixed sequential memory access patterns from the stream.

25

Reactive and proactive page reclamation. When the local cache is full or a
memory region hits the local memory limit, accessing an unmapped page requires
paging out of a victim page. We summarize the main challenges for the page recla-
mation: �rst, when the victim page is dirty, paging out requires adding signi�cant
overhead to the memory access of the user application. Second, selecting wrong page
as victim page (i.e., a page that is accessed soon again) will severely hurt the per-
formance since it triggers a number of I/O to move data between the local memory
and the backing storage. Third, since our target environments use high-performance
backing storage (e.g., RDMA), software overheads of victim selection algorithms eas-
ily result in a signi�cant performance loss. A good page reclamation algorithm needs
a careful tradeo� between the accuracy and the computation overhead of the algo-
rithm.

RackMem employs both reactive (foreground) and proactive (background) page
reclaim policies to address the challenges mentioned above. Reactive page reclama-
tion occurs when the local memory is full, and a page needs to be reclaimed to serve
a page fault. Reactive page reclamation occurs in the critical path of the page fault
handling, and we cannot hide the overhead in the background. The reclamation algo-
rithm should quickly �nd a victim page rather than sacri�cing the accuracy. Proactive
page reclamation prepares a pool of immediately usable pages in the background, so
it contributes to reducing the chance of reactive page reclamations and improves the
overall remote paging latency. Since proactive page reclamation runs in the back-
ground, we can hide the latency from the critical path of the page fault handling. A
complex but more accurate victim selection algorithm is preferred in proactive page
reclamation.

4.4 Implementation

We implement RackVM as a separate kernel module of Linux kernel. Users can al-
locate and release RackMem managed memory address space through mmap system
call on RackVM character device at /dev/rack_vm. We also provide a wrapper library
written in C to facilitate writing userspace applications. Users can set region-speci�c
memory management policy through the debugfs interface with UNIX �le I/O opera-
tions. RackMem manages the regions that belong to the same process as a group and

26

manage them in the same subdirectory of the debugfs. We implement a userspace
daemon that implements a simple local memory balancing policy to the co-located
applications to show the e�ectiveness of the debugfs interface for the limited local
memory management.

4.4.1 RackVM kernel module

RackVM kernel module implements a character device and registers it at /dev/rack_vm.
Applications request RackMem virtual region by invoking mmap system call with a �le
descriptor of the character device and the desired size of the allocation. RackVM im-
plements its own page fault handler for RackVM regions to capture memory accesses
on the region and handle the remote memory paging transparently to user applica-
tions.

Prefetch algorithm. The prefetch algorithm in RackVM implements a modi�ed
version of the virtual memory area-based (VMA-based) prefetching technique that
has recently been integrated into the Linux kernel. VMA-based prefetching is exploit-
ing spatial locality in the virtual address space rather than the physical location of the
data. VMA-based prefetching achieves better accuracy than physical address-based
prefetching at the expense of losing the ability to exploit sequential I/O requests.
This is, however, less of a concern since recent storage devices such as SSDs, NVMe,
or RDMA-backed remote memory provide good random access performance, hence
VMA-based prefetching is considered a better choice.

RackMem maintains a dynamic window size that dictates how many pages are
prefetched after a page fault. Other than the VMA-based prefetcher, RackMem tracks
page faults on a per-core-basis by storing the prefetch window size and the last faulted
address in processor-local storage. This simple optimization allows RackMem to de-
tect and exploit distinct per-core memory access patterns.

The synchronous prefetching is invoked at the end of a page fault (Figure 4.3). In
our experiments, asynchronous prefetching in the background did not yield signi�-
cant performance bene�ts. The reason for this somewhat unexpected result is that the
latency of prefetch operations is lower than the overhead incurred of asynchronous
I/O and extra synchronization in a background thread.

27

Active and free list. Pages mapped into the virtual memory space of a user ap-
plication are maintained on the so-called active list, whereas available (unmapped)
pages are included in the free list. These lists are managed separately for each Rack-
Mem memory region. A page is added to the tail of the active list (= most recently
inserted) when it is mapped into the virtual address space in reaction to a page fault.
A page that is proactively paged out is moved to the free list but keeps its data so
that it can be brought back quickly if referenced before being paged out. A page’s
data structure contains an 8-bit value that represents a metric for the access time and
frequency. A background task periodically scans the active bits of the hardware page
tables. Upon updates, the 8-bit value of a page is rotated right by one bit, and the
access bit of the page is stored in the MSB (most signi�cant bit). By interpreting the
value as an integer, this 8-bit value directly re�ects the access time and frequency of
the page. Note that the position of pages on the active list is determined entirely by
the insertion order, i.e., the active list is not re-ordered based on the access times of
the active pages.

Reactive and proactive page reclamation. RackMem employs di�erent poli-
cies for reactive and proactive page reclamation. If the free list is empty, a page is
reactively reclaimed by paging its contents out to remote memory. The latency of
reactive page reclamation needs to be a short as possible since it adds to the total
pagefault handling latency. RackMem employs a constant-time algorithm that sim-
ply selects the page located at the head, i.e., least recently accessed position of the
access list as the victim page. To avoid reactive page reclamations, a proactive page
reclamation thread is woken-up at the end of the pagefault handler if the number of
pages on the free list is lower than a given threshold minf ree . Since sorting the active
list based on the page access frequencies would be too computationally expensive,
RackMem employs an approximate LRU algorithm that scans the �rst k ∗ minf ree

pages from the head of the list (= least recently inserted). A page is selected as a
victim if its normalized access score is below threshold t as follows

victim(page) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

yes if (p −mean)/stdev ≤ t

no otherwise

where p stands for the access score of the page,mean and stdev represent the mean

28

value and standard deviation of all active pages’ access scores, and t is the selection
threshold. This heuristic avoids sorting the active list and provides a simple way of
trading computational overhead for accuracy. We empirically setminf ree = 512, k = 4,
and t = 0.

4.4.2 Dynamic rebalancing of local memory to multiple VMs

RackVM provides a user-level API that allows to dynamically adjustment the local
memory cache size of RackVM memory regions. In addition, statistics about RackVM
such as the access frequency of each page or the total number of pagefaults are ex-
posed to user-space through RackVM’s debugfs device. This design allows for pow-
erful memory optimizations based on the obtained statistics. As a proof-of-concept,
we have implemented a simple local memory rebalancer in Python that periodically
rebalances the local cache size of all RackVM memory regions in proportion to the
number of active pages and pagefaults of a region. This memory re-balancer is espe-
cially useful when multiple VM requires �uctuating memory demands over time.

4.4.3 RackVM for virtual machines

The /dev/rackmem device node provides a simple interface to utilize RackVM-backed
distributed memory, however, applications need to be modi�ed to allocate memory
from RackVM. For native applications, library interpositioning is used to intercept
calls to the dynamic memory management library and are elaborated in Section 4.4.4
below. To seamlessly support Infrastructure-as-a-Service (IaaS) virtualization where
workloads are executed in isolated virtual machines [13], RackVM includes a modi�ed
QEMU/KVM hypervisor. The RackVM QEMU/KVM hypervisor maps the memory of
a virtual machine to a RackVM memory region instead of local memory. The modi�-
cation requires only a few additional lines of code that open RackVM’s /dev/rackmem
device and pass its descriptor to the (already present) mmap() system call to setup the
memory of a VM.

29

4.4.4 Running unmodi�ed applications

Thanks to extensive hardware support and e�cient virtual machine monitors, appli-
cations run with little performance overhead in a VM. Nevertheless, running applica-
tions natively without modi�cations is an important use case especially for HPC. To
provide the fast paging and bene�t of remote memory access to native applications,
RackVM includes a library that can be interpositioned to intercept the dynamic mem-
ory management requests (malloc/free, new/delete, mmap/munmap and variants) of
the C standard library. The library creates one RackVM region that serves as the
heap area for the numerous and often small dynamic memory requests. This avoids
interacting with the lower levels of RackVM and is a design also chosen by related
work [12].

30

Chapter 5

RackMem Distributed Virtual Storage

RackMem Distributed Virtual Storage (RackDVS) provides a byte-addressable stor-
age abstraction of multiple storages in remote nodes, and it is also the main storage
backend of RackVM (Chapter 4). Figure 5.1 shows an overview of RackDVS. RackVM
request virtual byte-addressable storage from RackDVS. The virtual storage address
space is linearly mapped to the virtual memory address space; an evicted page is
stored at the same o�set in the virtual storage in the result of paging.

We use remote memory as the primary storage backend for RackDVS to realize
a rack-scale memory disaggregation. By attching RackDVS to RackVM, the evicted
pages in RackVM are automatically distributed to the cluster by RackDVS.

RackDVS also supports fault tolerance of remote memory backend; An evicted
page is optionally replicated to the local storage for reliability. On the failure of a
remote node, RackDVS restores the same copy from the local storage.

Another interesting aspect of RackDVS is multiple storage backends support which
means RackDVS is not limited to the remote memory backend. Any storage device
that implements the RackDVS interface can be registered as a backend of RackDVS.
RackDVS utilizes multiple storages with a simple priority-based policy.

31

RackVM

Region (VM1) Region (VM2)

RackDVS

Local and remote storage management

Fault tolerance

SSDRemote
Memory PMEM

RackNet

Storage backends

address space address space

virtual storage
virtual storage

Figure 5.1 Overview and the main components in RackDVS.

In the rest of this chapter, we explain each feature of RackDVS in detail.

5.1 The Distributed Storage Abstraction

RackDVS provides an abstraction of byte-addressable linear address space on back-
end storage devices. RackDVS abstraction is similar to the block device in Linux but
provides close to hardware performance of modern fast storages (e.g., RDMA backed
remote memory). Once space is allocated with RackDVS, I/O requests on the space
are directed to hardware without a complex software-based I/O scheduling.

RackDVS manages the address space at slab granularity that is usually much
larger than a RackVM page size (Figure 5.2). The coarse-grained space management
reduces the metadata overhead in large-scale space allocation.

32

RackMem Region

Distributed Storage Slab

RackMem Internal Page
4K 4K 4K 4K

RackMem Internal Page
4K 4K 4K 4K

VM

Distributed Storage Slab

RackMem Internal Page
4K 4K 4K 4K

RackMem Internal Page
4K 4K 4K 4K

Distributed Storage Slab

RackMem Internal Page
4K 4K 4K 4K

RackMem Internal Page
4K 4K 4K 4K

Figure 5.2 Data layout of RackMem.

5.2 Memory Management

Like RackVM, RackDVS regions are identi�ed by a descriptor created upon request
and used to identify the region in subsequent calls to I/O operations. Distributed
storage is allocated lazily, i.e., allocation is delayed until the �rst access. RackDVS
manages distributed storage in �xed-size slabs which can store a number of RackMem
internal pages (Figure 5.2). A slab is allocated when its data is accessed for the �rst
time; the lazy allocation of slab reduces the total memory footprint of RackDVS by
minimizing the number of slab allocations.

5.2.1 Remote memory allocation

RackDVS selects a donor node from the list of available nodes providing backend
storage using the “power of two choices” distributed load-balancing algorithm [50]
that has shown good results in practice [28]. The algorithm randomly picks two nodes
from the node list and selects one with more idle memory.

5.2.2 Remote memory reclamation

By reading a page from the remote memory, two same copies of a page are generated
on both the remote memory and the local memory. The remote side copy only wastes
the memory, and ideally, it should be released for other use. Thanks to the single
owner assumption in RackMem (there is only a single user of a RackVM region at a

33

time), the remote memory can be safely released when the same copy is available in
the local memory.

To reclaim the remote memory, RackDVS deploys a reference counter-based re-
mote memory reclamation mechanism. On writing an internal page to the slab, Rack-
DVS increases the reference counter of the slab. If the slab accommodates n internal
pages at maximum, the reference counter can be increased up to n. Inversely, reading
an internal page from the slab decreases the reference counter. When RackVM reads
all pages in a slab and the reference counter goes to zero, RackDVS reclaims the slab
so that the remote node can use the released memory.

5.3 Fault Tolerance

RackDVS mainly utilizes the remote memory backend, which provides a single-digit
microseconds latency for fetching a page. The high performance and low latency give
signi�cant bene�ts for utilizing remote memory. However, the bene�t does not come
with free. By using remote idle memory in multiple nodes in the cluster at the same
time, also increases the chance of failure. If a node goes o�ine due to failure, the nodes
using the failed node cannot access the data anymore. The result will be catastrophic
by cascading the failure throughout the cluster. In this scenario, the failure domain is
extended to the cluster level by using RackMem.

RackMem provides fault tolerance by duplicating the write I/O to the local stor-
age. By duplicating write requests to the local storage, RackDVS can access the data
in the case of remote node failure.

5.3.1 Fault-tolerance and Write-duplication

The write-duplication enables fault tolerance by making the data survive on the fail-
ure of a remote node. There are three approaches for duplicating the write request to
the local storage. We discuss pros and cons of each approach as follows.

Consecutive synchronous I/O to remote and local storage. In this approach,
RackDVS �rst writes to remote memory and writes to the local storage after the
completion of remote memory write. The main advantage of this approach is the

34

simplest design and implementation. It does not require launching a separate thread
for asynchronous I/O and does not need to handle I/O completion from outside the
I/O function. However, the I/O latency is signi�cantly increased by delaying the com-
pletion of I/O to wait for the completion of local storage write. We also lose the all
performance bene�t of using remote memory with this approach.

Write synchronously to the remote memory and asynchronously to the

local storage. In this approach, RackDVS starts non-blocking write to the local stor-
age and immediately starts remote memory write. Once the remote memory write
is completed, the write function returns without waiting for the completion of local
storage write. The local storage write is handled in a separate thread in the back-
ground.

This approach provides minimal write latency among the three approaches; the
latency is almost the same as the original remote memory write. In�niswap [28],
a state-of-the-art remote paging system, also deploys this approach for their fault
tolerance mechanism.

However, this approach has a few critical shortcomings. First, the write request
in RackDVS mostly occurs in the context of local memory reclamation. It is expected
that the memory that having the data for the write request will be immediately re-
leased after the completion of the write request. However, the memory cannot be re-
leased until the asynchronous local write is ongoing. Second, this approach requires
a dedicated background thread for the local storage write and handling the comple-
tion. It adds non-negligible overhead to the system, which can degrade the overall
performance.

Write asynchronously to the remote memory and synchronously to the

local storage. is bounded to the local storage performance. Figure 5.3 illustrate the
�ow of write duplication in this approach. RackDVS starts non-blocking remote mem-
ory write, then starts local storage write immediately and waits for the completion
of the local storage writes. The non-blocking remote memory write is also handled
inside of the same write call after the completion of the local storage write. In most
cases, remote memory write completes earlier than the local storage write; conse-
quently, the write latency is bounded to the local storage performance.

This approach can exploit the full bene�t of the I/O model of RDMA and the

35

Write-back request of
a victim page

Re-use the victim page
to handler the pagefault

REMOTE
DRAM

LOCAL
STORAGE

synchronous local
storage write

initiate
RDMA write

RDMA write
completion

local storage write
completion

Figure 5.3 Write duplication for fault tolerance in RackMem.

proactive page reclamation of RackVM. First, posting an I/O request in the RDMA
model is naturally non-blocking; a background task for the non-blocking I/O is un-
necessary in RDMA. Second, write occurs in the context of the page reclamation
in RackVM. Since RackVM pro-actively reclaims pages in the background, we can
hide the local storage write latency in the background. This approach has the most
simple design among the three approaches with little degradation on the overall per-
formance.

We deploy this approach for the main fault tolerance mechanism in RackDVS. We
discuss the overhead and requirement of storage performance for the transparent I/O
duplication in Section 8.3.3 of Chapter 8.

5.4 Multiple Storage Support in RackMem

RackMem supports multiple storages and builds a hierarchical storage by utilizing
them with priority. Figure 5.4 shows the overall design of the hierarchical storage us-
ing multiple backend storages. Di�erent storage types of slabs can support a RackDVS

36

RMEM

PMEM

SSD
slab

slab

Get a slab to write an internal page

slab

slab

slab

slab

slab

slab

slab

the reclamation mechanism
updates the slab pools

Figure 5.4 Multiple storage backends in RackDVS.

region. When a region user accesses an unallocated space in the region, RackDVS al-
locates a new slab from the hierarchical storage by checking the remaining space of
each storage tier. The user assigns a priority for each storage; a slab is allocated from
the highest priority storage that has a remaining space to satisfy the request.

In RackMem, the slab allocation requests are mainly performed to serve and write
I/O of page reclamation. By allocating a slab from a faster device, we can reduce the
overhead of page reclamation.

The slab of faster storage is frequently updated with the page reclamation mech-
anism, which maximizes the utility of the hierarchical storage.

37

5.5 Implementation

We implement RackDVS and backend storages as separate kernel modules. The Rack-
DVS kernel module provides byte-addressable storage with a set of storage APIs that
support allocation, deallocation, and data transfer operations.

RackDVS de�nes I/O interface for backend storage. Therefore, any device driver
that implements the RackDVS interface can be used backend storage of RackDVS.
This section also discusses the main backend storages using remote memory and
other storage backends.

5.5.1 The Remote Memory Backend

We implement the remote memory backend using RackNet (Chapter 6), a kernel space
RDMA and the RPC library of RackMem. RackDVS registers RPC functions for allo-
cation, release, and memory management on top of RackNet.

The allocation handler receives a remote slab allocation request with a size. The
handler is executed in kernel space and allocates a physically contiguous memory for
RDMA, and then sends the DMA address to the client side so the other machine can
store evicted page with RDMA.

Reducing the slab allocation overhead. The remote memory backend needs
to issue an RPC request to allocate a slab. The slab allocation overhead is signi�-
cantly higher in the remote memory backend than local storage backends due to the
roundtrip latency; optimizing the slab allocation latency is the main implementation
goal in the remote memory backend. To minimize slab allocation latency, we make
the remote memory backend implement a local slab pool to serve most incoming
requests without the roundtrip to the remote node.

The slab pool has a number of slabs that are immediately usable by RackDVS.
The slab pool has three con�gurable parameters. The target pool size de�nes the de-
sired size of the pool. The low and high thresholds de�ne the threshold to trigger a
background task to resizing the pool. The backend device checks the pool size with
the given thresholds on every slab allocation request and launches a background task
if resizing is required.

38

With this optimization, the backend device can respond to allocation requests
immediately in most cases.

5.5.2 Linux Demand Paging on RackDVS

RackDVS layer can also serve as a storage backend to Linux’s virtual memory man-
ager. It is useful when virtualization support is not available in the system. By utiliz-
ing Linux’s virtual memory, we can bring the bene�t of memory disaggregation to all
processes not limited to virtual machines with sacri�cing the paging performance.

We modify the implementation of Linux’s nullb high-performance block de-
vice [26] to employ RackDVS as its backend storage device. While such an approach
forfeits the advantages of RackMem’s fast path implemented in its virtual memory
module, it enables Linux demand paging to disaggregated memory and thus also un-
modi�ed applications to pro�t from RackMem.

The implementation of In�niswap [28] as the representative of the state-of-the-
art backend to Linux demand paging is also implemented in this way. One of the
main performance optimizations of In�niswap is its use of nullb’s per-core I/O re-
quest queue. We have further optimized the In�niband block device by implementing
I/O merging and by using the scatter/gather functionality of the RDMA driver. This
improved implementation of In�niswap is used as the main comparison target in the
following evaluation section.

39

Chapter 6

Networking

The RackMem networking layer (RackNet) provides an easy abstraction of inter-node
communication mechanisms such as remote procedure call (RPC) and remote direct
memory access (RDMA) for other components in RackMem. RackNet provides good
scalability by e�ciently utilizing the limited on-device resources with connection
sharing, reduces RPC overhead handling with an interrupted-based completion han-
dling mechanism.

6.1 Design of RackNet

Figure 6.1 illustrates the overall architecture of RackNet. RackNet establishes only
two QP connections between two nodes. We dedicatedly use each QP for RDMA and
RPC request handling separately.

Each QP serves all RDMA and RPC requests from other RackMem components
such as RackDVS and RackVM. The remote memory backend in RackDVS utilizes
the RDMA QP for reading/writing data from/to remote nodes and utilizes the RPC
QP for allocation/deallocation of remote memory. RackVM also uses the RPC QP to
implement the instant region migration in Chapter 7.

40

RackNet

RDMA
QP

RackDVS

Remote Memory
Backend

RDMA
QP

RPC
QP

RackVM

Instant
VM Migration

CQ CQ

RackNet

RDMA
QP

RDMA
QP

RPC
QP

CQ CQ

Figure 6.1 The RPC message layout of RackNet.

6.2 RackNet RPC Implementation

We implement RackNet as a separate kernel module. RackNet exposes userspace in-
terfaces for connection and disconnection of nodes. Useful statistics of RackNet is
also available through debugfs. Once a connection is established with other nodes,
kernel-space applications can use RackNet APIs to register and call remote functions.

6.2.1 RPC message layout

Figure 6.2 shows the RPC message layout of RackNet. A message has seven reserved
entires, which are in total 52 bytes. An arbitrary size payload is included at the tail;
the size is RPC implementation-speci�c.

RPC_ID entry de�nes the function ID of a RPC handler. RPC_TYPE presents the
side where the message is processed, either client or server. SEND_COMP is the �ag
to check the send request completion. RECV_COMP is the �ag to check the receive re-
quest completion. RET_CODE provides information of success of failure of the request.

41

RPC
ID

4B

RPC
TPYE

4B

SEND
COMP

4B

RECV
COMP

4B

RET
CODE

4B

SEND
PTR

8B

RECV
PTR

8B

PAYLOAD

k

52B

Figure 6.2 The RPC message layout of RackNet.

SEND_PTR is pointing the address of the send message. RECV_PTR is pointing the ad-
dress of the receive message. PAYLOAD contains the input arguments or the result of
an RPC function.

We explain how each �eld is used in the context of RPC processing in the next
subsection.

6.2.2 RackNet RPC processing steps

Figure 6.3 shows an RPC processing timeline of RackNet. First, the client allocates a
new RPC message and �lls the �elds and the payload with corresponding data (¶). In
the next step, the completion handler on the client-side is waked up and process the
completion by setting SEND_COMP �eld in the message. As a result of the completion
handling, the client receives noti�cation by polling the SEND_COMP �eld in the message
(· and ¸).

Now the server-side has the received message from the client. The completion
handler on the server-side launches a new thread and passes the message to process
the RPC request (¹). As the next step, the RPC handling thread processes the request
and sends the result to the client by making a new message. The RPC handling thread
checks the SEND_COMP �eld by polling to check the success of message transmission.
(º, », ¼, and ½)

The client-side handler receives the RPC result message from the server-side. The
client-side handler reads SEND_PTR �eld in the received message to �nd the origi-
nal request message and then sets RECV_PTR �eld in the original message with the
corresponding pointer. Finally, the client-side handler noti�es the client by setting

42

1 Send RPC
request

Client
RPC Caller

Client
Comp. Handler

Server
Comp. Handler

Server
RPC Handler

Poll send
comp.

set completion flag
launch a thread to
handle the RPC

request

Make
RPC result

Send RPC
response

set completion flag

Poll
send comp.

Poll recv
comp.

set the received
message

Get the result

Time

2 4

5

6

7

3

8

9
10

11

Figure 6.3 RackNet RPC processing timeline.

RECV_COMP �eld in the original message (¾ and ¿).

This RackNet RPC implementation achieves 17�s of latency on average for pro-
cessing a dummy RPC function. The latency number is slightly higher than state-of-
the-art RPC systems [37, 54, 65], but it does not limit the performance of the current
RackMem implementation. We have optimized RackMem to hide RPC processing la-
tency in the background and reduce the number of RPC calls in common scenarios
by using a special function to process bulk requests in one RPC. The current design
and implementation of RackNet provide more than enough performance and great
usability.

43

Chapter 7

Instant VM Live Migration

In this chapter, we present Instant, a novel VM live migration technique that in-
stantly and seamlessly migrates VMs running on RackMem. The proposed technique
(almost) instantly migrates a VM by only transferring a small amount of meta-data
containing the VM’s memory pages to the destination instead of sending the entire
data to the destination node.

Instant employs a number of techniques to minimize the performance degrada-
tion incurred immediately after migration by proactively bringing recently accessed
memory pages into the local memory of the destination host. A thorough evaluation
with batch-oriented and latency critical applications shows that Instant outperforms
existing techniques by a wide margin and achieves close to constant migration times
and quick performance recovery after migration.

Instant VM live migration address a slightly di�erent problem that we have dis-
cussed so far. We start this chapter by introducing the necessary background to un-
derstand the rest of this chapter better.

44

0% 10% 20% 30% 40% 50%
Memory Pressure

0

50

100

150

To
ta

l M
ig

ra
tio

n
Ti

m
e

(s
ec

s) PRE
POST

Figure 7.1 Total migration time of VM running YCSB workloads under memory pres-
sure.

7.1 Background and Motivation

7.1.1 The need for a tailored live migration technique

As we have outlined in the introduction, the combination of disaggregated memory
with virtualized environments is an ideal match to solve intermittent resource spikes
by moving infrequently used pages to a less-loaded remote machine [36]. If the re-
source shortage continues, however, one or more VMs from the overloaded host need
to be migrated away. Existing live migration techniques are ill-suited for this purpose
since they copy the entire memory from the source to the destination node, i.e., in a
high-resource-utilization phase with memory already paged out, these algorithms in-
crease memory pressure during migration because they need to bring in all remotely
storage pages back to the source host before sending the data to the destination.

Figure 7.1 shows the total migration time of a VM running the YCSB [20] work-
loads under memory pressure. We insert 5 million keys to a Redis database running
in the VM and send requests with the update mostly workload in YCSB benchmark.
The requestor client runs in a separate machine and uses 20 threads at full speed
to generate the requests. We measure the total migration time of the pre-copy (PRE)
and post-copy (POST) live migration technique in QEMU [56]. To simulate memory
pressure, we limit the VM’s local memory using cgroups [25] with a remote memory
swap backend [28].

45

The results show a signi�cant degradation in the total migration time under mem-
ory pressure. In the unloaded case (all memory local), PRE and POST �nish migration in
31 and 26 seconds, respectively, while transferring 15.6 GiB at 514 MiB/s and 11.3 GiB
at 447 MB/s at separately. As the memory pressure increases, the throughput drops
rapidly. At a memory pressure of 50% (50% of memory is remote), the total migration
time of PRE and POST increases by a factor of 5.0x and 3.4x. The reason for this slow-
down is that the pages need to be brought back to the source machine before being
sent to the destination; and these transfers compete with the migration for network
bandwidth.

We need a live migration algorithm that is aware of the underlying memory orga-
nization and that does not needlessly copy remote pages via the source to the desti-
nation, but instead only transfers the memory location such that the destination node
can retrieve the page when it is accessed.

7.1.2 Software bottlenecks

Live migration support in popular open-source hypervisors [5,56] was initially devel-
oped over a decade ago when 1 Gbit/s network was standard. As a consequence, the
implementations cannot utilize the full bandwidth of modern networks, and through-
put stagnates at the 10 Gbit/s level. In addition, optimizations that were e�ective with
slow networks have no or an adverse e�ect as the network is getting faster. I/O is
much cheaper these days, and using computation to reduce I/O is in general not rec-
ommended anymore. For these reasons, we believe it is the right time to architect VM
live migration and make develop a novel instant live migration algorithm that fully
exploits the bene�ts of remote memory.

7.1.3 Utilizing workload variability

VM live migration is a widely known technique for improving resource utilization by
moving VMs from highly loaded to lightly loaded servers. Modern workloads exhibit
a high variability in their resource usage; resources are frequently idle over the entire
execution period. VM live migration should be completed fast enough to utilize these
resource holes. For example, idle resources on the destination server may have disap-
peared by the time a long-running VM live migration has completed. The presented

46

VM

Hypervisor

RackVM

Migration
Module

RackDVS

VMVMVM

Metadata

VM

Hypervisor

RackVM

Migration
Module

RackDVS

VMVMVM

Metadata

Pre-fetch

VM
metadata

Source Destination

Region
Metadata

RackNet RackNet

Figure 7.2 Major components in Instant.

instant VM live migration techniques enables new opportunities for better utilizing
resource variability in data centers. The ability to complete VM live migration around
100ms will make many chances for utilizing the idle resources in data centers.

7.2 Design of Instant

Figure 7.2 shows the high-level architecture of Instant. The migration module han-
dles region migration request from users. On a migration request, the module com-
municates with its counterpart on the destination to initiate a copy of the region
metadata and invalidate the region on the source side. Region migration transfers
only a minimal amount of data, this is what enables the instant part of the presented
VM migration technique. The hypervisor heavily relies on this module to perform
instant VM migration.

7.2.1 Instant Region Migration

Instant migrates a VM by only sending the metadata of the VM’s virtual memory. In
other words, Instant only has a stop-and-copy phase during migration. It is the main
di�erence to other approaches that require at least two phases, "prepare + stop-and-
copy" for pre-copy and "stop-and-copy + restore" in the case of post-copy. In addition

47

to that, pre-copy and post-copy require a copy of the entire memory to complete a VM
migration.

Despite of the instant migration capability, a VM’s performance can be degraded
after migration since the working set pages do not exist in the destination’s local
memory. We implement an optional restore phase to quickly restore VM performance
after the instant migration through a background fetch process.

Stop-and-copy. The instant VM migration immediately starts from this pahse.
VM stops execution, and the necessary data to resume the VM on the destination is
transferred. The virtual memory module sends the region metadata to the destina-
tion, and the hypervisor sends the minimal VM state and the VM’s metadata to the
destination. The region metadata includes the location and the address of each page.
The VM state includes the processor state, device bu�ers, and the VM con�guration.

Restore. The VM continues its execution on the destination node. The pages be-
longing to the VM’s working set will still be located in the source machine. Depending
on the number of working set pages and the VM’s activity, the VM can experience
a severe performance degradation on the destination. To quickly restore the perfor-
mance of the VM, we optionally launch a background task that pre-fetches the work-
ing set pages from the source machine. The background task starts with the list of
pages in the active list, and fetches the pages in recently added page �rst order.

7.3 Implementation

We implement Instant components as a set of Linux kernel modules. Instant com-
prises two main modules. First, the virtual memory module provides transparent pag-
ing to disaggregated memory with the region migration mechanisms. Second, the
networking module provides RPC and RDMA functionalities to the virtual memory.

We deploy QEMU/KVM for virtualization and modify it to utilize Instant for
VM’s memory allocation.

48

SRC

DST

1 Start stop-and-copy
CTRL
DATA

U
se

r s
pa

ce
Ke

rn
el

 sp
ac

e

2 Initiate
metadata
transfer

5
Sync.

Metadata copy
with RDMA

Clean up
4

SRC

DST
3

6 Resume VM

Figure 7.3 Instant VM live migration timeline.

7.3.1 Extension of RackVM for Instant

RackVM module allocates a unique region identi�er (rID) for each region, a remote
node can access the region with rID through the associated RPC call provided by
RackNet.

The kernel module implements a set of ioctl calls to provide the region mi-
gration mechanisms. There are two ioctl calls for stop-and-copy, and restore. The
optimizations are discussed in more detail in Sections 7.3.4 and 7.3.3.

7.3.2 Instant region migration

Figure 7.3 shows breakdown of each step of stop-and-copy in Intant.

1. QEMU stops the VM on the source machine and starts the stop-and-copy phase.
The source side QEMU sends a small message including hostname and rID

to the destination to starts region migration. The region migration does not
block the stop-and-copy in QEMU. The two data streams send data in parallel

49

n
1
n
2
n
3 remote inactive active

n
1

n
2

n
3

4B 4B 8B 8B

page_index node_hash remote_addr local_addr

Figure 7.4 The metadata layout.

throughout the stop-and-copy phase.

2. The destination receives region migration requests and issues the associated
ioctl call to the kernel module with the given parameters from the source.
The kernel module �nd the source node using the hostname and request meta-
data migration with the rID. This communication occurs in the kernel space in
parallel to the userspace communication.

3. The source-side kernel module allocates memory space for RDMA and �lls out
the space with the metadata of the target region. Figure 7.4 shows the metadata
layout. The space is mainly divided into three parts for remote, inactive, active
pages separately. The size of a page metadata is 24B. The �rst 4-byte is the
page index. The next 4-byte is the host node of the page. The next 8-byte is
DMA address for RDMA, remote node can access this page using this address.
The last 8-byte is the local virtual address, local node can directly access the
page’s data using this address. The destination receives the DMA address of
the metadata and reads it with one RDMA read.

4. The destination kernel module reconstructs the region using the received meta-
data and releases the remote memory of metadata by issuing an RPC request to
the source machine. Now the control is returned to the userspace to complete
the migration.

5. The destination side QEMU synchronized with the source and resume the VM.

50

7.3.3 Pre-fetch optimizations

Running a background task on the destination host to fetch working set pages from
the source machine is an e�ective technique to reduce the burst page faults in the
restoration phase. When the hypervisor enables this optimization, the destination
task launches a kernel thread to read the recently used pages from the source ma-
chine. The destination node can identify the list of pages for prefetch by investigating
the received region metadata. The received metadata reserves the least recently added
order of the pages. The region migration module inserts the pages in the reverse order
to the prefetch recently accessed pages �rst.

7.3.4 Downtime optimizations

Instant VM live migration sends the region metadata in stop-and-copy phase in addi-
tion to the CPU states, device bu�ers, and VM metadata which makes its downtime
longer depends on the size of the metadata. In this section, we present a number of
optimization techniques to hide the metadata transfer latency.

Latencyhiding. Instant VM live migration only sends the memory region’s meta-
data through the kernel-to-kernel connection. The rest of the data, such as CPU states,
device bu�ers, and VM metadata, are transferred by the separate link by QEMU in the
userspace. The CPU states, device bu�ers, and VM metadata are separately allocated,
and each allocation is very small (usually less than 1MB in total). The data is naturally
�t to the local memory use case and little reason to store them on the disaggregated
memory.

However, preparing and sending small data chunks through the network is ine�-
cient and takes a few milliseconds to complete. By considering the presented reasons,
hiding the metadata transfer latency along with them is a reasonable idea.

We initiate the metadata transfer by calling an associated ioctl call to the region
migration module. The function initiates a kernel task to transfer metadata to the
destination and immediately returns to the userspace. After the completion of the
metadata transfer, the source side issues an RPC call to restore the necessary data
structure on the destination. On the while, the userspace process sends the rest and
complete the VM migration.

51

7.3.5 QEMU modi�cation for Instant

We modify QEMU/KVM to demonstrate the instant VM migration. The modi�ed
QEMU provides interfaces to con�gure migration capabilities (on/o� switches) and
parameters. Migration parameters allow �ne-tuning of each capability with the set of
con�gurable parameters. We add a new migration capability instant to QEMU with
tuning parameters to control the migration mechanisms of the kernel modules.

52

Chapter 8

Evaluation - RackMem

This chapter presents an evaluation of RackMem on a real cluster with a wide range
of latency-critical and batch processing workloads. We divide the evaluation into two
main parts (Chapter 8 and Chapter 9). The �rst part focus on the evaluation of single
or co-located application performance under memory pressure with RackMem. We
mainly address the following questions throughout the �rst part evaluation.

• Can RackMem’s virtual memory improve the pagefault handler throughput and
reduce the tail latency? (Section 8.2)

• Does RackMem provide better performance for applications under a disaggre-
gated environment? (Section 8.3)

• How e�ciently can RackMem utilize local memory when co-located applica-
tions share local memory? (Section 8.3.7)

• Can RackMem improve performance of a job processing cluster by sharing un-
used memory between physical machines? (Section 8.3.8)

In the second part, we present evaluation of instant VM live migration on Rack-
Mem.

53

Con�guration Description

RACK base implementation
RACK.R RACK with proactive page reclamation
RACK.P RACK with prefetching
RACK.RP RACK with prefetching and proactive page reclamation

Table 8.1 Evaluated RackMem con�gurations.

8.1 Execution Environment

All evaluations and experiments are performed on a cluster composed of four physical
nodes comprising a Xeon Silver 4114 processor (10 cores / 20 threads) and 64GB of
DRAM. Each machine uses a Mellanox In�niBand ConnectX-4 NIC (56 Gbit/s single-
port throughput) for RDMA networking and an Intel SSD SC2KB480G7R for local
storage. All nodes run Linux 5.3 with KVM/QEMU 4.2 for virtual machines.

E�ect of RackMem Optimizations. We evaluate RackMem with the four dis-
tinct con�gurations: RACK, RACK.R, RACK.P, and RACK.RP to evaluate the e�ect of indi-
vidual optimization described in Section 4.3. Table 8.1 shows the detail con�guration
of each optimization.

Targets for comparison.RackMem is compared against two di�erent local back-
ends and the state-of-the-art RDMA distributed memory implementation from re-
lated work. Table 8.2 gives an overview of the evaluated implementations. LMEM stores
and retrieves data in the local DRAM. This approach uses pmem.io [55] to avoid the
block layer overhead of a RAM disk. SSD, on the other hand, evaluates Linux virtual
memory backed by a local SSD. Infiniswap or Linux.RMEM represents the state-of-
the-art of Linux virtual memory paging to a RDMA-backed distributed storage back-
end. Infiniswap is the main competitor and comparison target to RackMem. For the
comparison, we use an improved implementation of In�niswap (Section 5.5.2) be-
cause the open-sourced implementation [32] does not run correctly on recent Linux
kernels which also include patches that improve the performance of the swap sub-
system [24].

Enforcing local memory limits and sharing. To evaluate performance with
a varying local cache size, we arti�cially limit the amount of local memory available

54

Implementation Pagefault Handler Backend

LMEM Linux local memory
SSD Linux local SSD
Infiniswap Linux RDMA distributed memory
RackMem RackMem RDMA distributed memory

Table 8.2 Compared implementations.

Mean (30s) Max (30s) Mean (60s) Max (60s) Peak RSS

Spark.PgRank 947 3365 2104 4181 4372

Parsec.Bodytrack 553 1970 1198 2190 2234
Parsec.Canneal 382 1289 822 1730 1845

Parsec.Dedup 1064 4148 2416 4734 4832
Parsec.Raytrace 579 1696 1241 2389 2826

Parsec.Vips 932 3506 2105 4090 4178

NPB.bt 184 1336 415 1401 1401
NPB.dc 301 1295 663 1399 1400
NPB.ft 383 1871 881 1984 1983
NPB.is 393 1542 898 1736 1737

NPB.mg 288 1085 640 1147 1145

OLTPBench.tpcc 259 1318 488 1902 2715
OLTPBench.twitter 297 1346 567 2361 3421

OLTPBench.wikipedia 410 1514 766 2023 5199

Table 8.3 Working set size for 30/60 second windows and peak resident set size (RSS)
of target applications. Values in MB.

to the applications. In the case of RackMem, the amount of local cache size can be
dynamically set through the debugfs interface (Section 4.4). In scenarios that employ
Linux’s virtual memory with demand paging (LMEM, SSD, and Infiniswap), the amount
of memory available to the workload is limited through the use of cgroups [25] by
setting the memory_limits_in_bytes parameter to the desired value.

Target Applications RackMem, In�niswap, and the Linux-native targets for
comparison are evaluated with a wide range of real-world workloads including batch-
oriented and latency-critical applications.

Batch-oriented applications include PageRank from Spark (PgRank) [67], CIFAR10

55

101 102 103 104 105

Latency (μs)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
Infiniswap
RACK
RACK.R
RACK.P
RACK.RP

Figure 8.1 Pagefault handling overhead of RackMem.

inference from Tensor�ow (Tensorflow.CIFAR10), four applications (Canneal, Ray-
trace, Vips, and Dedup) from the Parsec benchmark suite [18], and �ve workloads
(mg, is, ft, bt, and dc) from the NASA Parallel Benchmarks (NPB) [17]. The applica-
tions tpcc, twitter, and wikipedia from OLTP-Bench [22] represent latency critical
workloads.

Table 8.3 lists the benchmarks along with the mean and the maximum of the
working set size for a sliding window of 30 and 60 seconds, respectively. The last
column shows the peak resident set size (RSS), i.e., the highest amount of memory
allocated over the entire course of execution for each application.

8.2 Pagefault Handler Latency

The latency of handling major pagefaults by RackMem and the Linux kernel is mea-
sured by adding tracepoints [21] to the relevant functions in the Linux kernel and the
virtual memory module of RackMem.

The PageRank benchmark Spark.PgRank is executed in a VM with a local memory
limit of 30% of its peak RSS. The breakdown of the latencies has already been shown
in Figure 2.2. That �gure revealed the extreme tail latencies of Linux demand paging
with fast backends. RackMem, on the other hand, not only achieves a 4-fold shorter
latency at the 50tℎ percentile, but its tail latency increases only modestly from 7�s at
50, 12 at 95, 17 at 99, and 35�s at the 99.9 percentile. Compared to Linux, RackMem

56

achieves an 80-times shorter latency at the 99.9 percentile.

Figure 8.1 plots the cumulative distribution function (CDF) of the pagefault han-
dling latency In�niswap and RackMem with di�erent optimizations enabled. The
results clearly show the bene�t of RackMem’s latency-optimized pagefault handler
compared to Linux’s implementation. All con�gurations of RackMem signi�cantly
outperform In�niswap using the Linux pagefault handler, both for the median la-
tency and especially also in terms of tail latency. Compared to the median latency of
24.4 µs in the case of Linux/In�niswap, the median latency of RackMem with reactive
page reclamation is over three times smaller at 6.76 µs.

The �gure also visualizes the impact of proactive reclamation and prefetching on
latency. RACK.R and RACK.RP both exhibit shorter latencies than RackMem without
proactive page reclamation, demonstrating the bene�t of avoiding victim page se-
lection and eviction on the critical path. Note that prefetching not only leads to to
shorter latencies but also increases tail latency compared to no prefetching. This is
visible in the CDF from Figure 8.1: Almost all pagefaults under RackMem without op-
timizations (RACK) exhibit latencies between 10 and 20 µs. With prefetching (RACK.P),
the fastest 25 percent of pagefaults experience a shorter latency, and the 40 percent
of the tail latencies are longer compared to RACK (note the crossover points of the
two policies in the CDF graph). The reason for this behavior is as follows. Prefetched
pages are not directly mapped, but added to the free list. If a fault occurs on such a
page (prefetch hit), the page is moved to the active list and mapped into the process’
address space without causing I/O operations, yielding a larger number of pagefaults
with short latencies. The longer tail, on the other hand, is caused by prefetching itself
which is performed synchronously at the end of the pagefault handler (Figure 8.1).

8.3 Single Application Performance

This section analyzes how RackMem improves end-to-end application performance
for batch-oriented and latency-critical workloads.

57

30 40 50 60 70 80 90100
1.0

1.2

1.4

1.6

Sl
ow

do
w

n
(a) Tensorflow.CIFAR10

30 40 50 60 70 80 90100
1

2

4

8

Sl
ow

do
w

n

(b) Spark.PgRank

30 40 50 60 70 80 90100
1.0
1.1
1.2
1.3
1.4
1.5

Sl
ow

do
w

n

(c) Parsec.Bodytrack

30 40 50 60 70 80 90100
1
2
4
8

16
32
64

Sl
ow

do
w

n

(d) Parsec.Canneal

30 40 50 60 70 80 90100
1.0

1.2

1.4

1.6
Sl

ow
do

w
n

(e) Parsec.Raytrace

30 40 50 60 70 80 90100
1

2

4

Sl
ow

do
w

n

(f) Parsec.Vips

30 40 50 60 70 80 90100
1

2

4

Sl
ow

do
w

n

(g) Parsec.Dedup

30 40 50 60 70 80 90100
1
2
4
8

16
32
64

Sl
ow

do
w

n

(h) NPB.mg

30 40 50 60 70 80 90100
1
2
4
8

16
32

Sl
ow

do
w

n

(i) NPB.is

30 40 50 60 70 80 90100
Local memory (%)

1
2
4
8

16
32
64

Sl
ow

do
w

n

(j) NPB.ft

30 40 50 60 70 80 90100
Local memory (%)

1
2
4
8

16
32

Sl
ow

do
w

n

(k) NPB.bt

30 40 50 60 70 80 90100
Local memory (%)

1

2

4

8

Sl
ow

do
w

n

(l) NPB.dc

SSD
Infiniswap
LMEM
RACK.R
RACK.P
RACK.RP

Figure 8.2 Normalized execution time of batch-oriented applications under memory
limits (log scale, lower is better).

8.3.1 Batch-oriented Applications

The sensitivity of an application with regards to memory disaggregation is deter-
mined by measuring the relative slowdown while restricting the available local mem-
ory from 100 percent (baseline, local performance) down to 30 percent.

58

30 40 50 60 70 80 90 100
Local Memory (%)

1

2

4

8

16

32

Sl
ow

do
w

n

SSD
Infiniswap
LMEM
RACK.R
RACK.P
RACK.RP

Figure 8.3 Averaged normalized execution time of all batch-oriented applications.

Figure 8.2 plots the normalized execution times of the batch-oriented applica-
tions under the di�erent con�gurations. The results demonstrate that RackMem’s
optimized virtual memory directly translates to end-to-end application performance
gains under memory disaggregation. Interestingly, for most applications RackMem
even outperforms LMEM that uses the much faster local memory as a paging device.
This result again implies that Linux’s virtual memory implementation becomes the
main bottleneck for fast storage devices. SSD and Infiniswap show a lower tolerance
under intensive paging scenarios, and the bene�t of utilizing additional memory is
lost by the severe performance degradation.

The aggregated results over all batch-oriented applications in Figure 8.3 show the
bene�ts of RackMem over the other approaches and the e�ect of RackMem’s opti-
mizations. At 30% local memory, the average normalized execution time for RACK.RP,
RACK.R, RACK.P are 3.29, 3.44, and 3.89, respectively, demonstrating that both individ-
ual optimizations contribute to RACK.RP, the best performing con�guration.

8.3.2 Internal pagesize and performance

The internal page size in RackMem determines the granularity of locking and min-
imum I/O unit size. It is an important performance tuning parameter and analyzing
the e�ect of the internal page size on performance is necessary for better optimization

59

40% 60% 80% 100% Mean
Local memory (%)

0.0

0.5

1.0

1.5

2.0

Sl
ow

do
w

n

4K 8K 16K 32K 64K 128K 1024K

Figure 8.4 E�ect of the internal page size.

of RackMem.

Figure 8.4 shows Spark.PageRank performance under various memory limits for
internal page sizes from 4KB to 1MB. The result shows a performance improvement
trend with increasing the internal page size from 4KB to 128KB. However, the amount
of improvement is also diminishing with the increasing pagesize. A larger size than
128KB rather degrades the performance; the bene�t of increasing the internal page
size does not exist anymore.

Many modern data-intensive applications have spatial locality in memory access
patterns. Such types of applications can bene�t from a larger internal page size by
fetching more data with one I/O read. However, the increasing internal page size, at
the same time, increases the chance of lock contention on the same address space,
which �nally o�sets the bene�t of a larger page size.

8.3.3 Write-duplication overhead

RackMem supports fault tolerance by duplicating write I/O to the local storage. How-
ever, enabling write duplication also increases the I/O latency for write. Therefore, it
is important to see the performance impact caused by the write-duplication.

60

40% 60% 80%
Local memory (%)

0

1

2

3

4

5

6

7

Sl
ow

do
w

n
(a) Without proactive reclamation

40% 60% 80%
Local memory (%)

0

1

2

3

4

5

6

7

Sl
ow

do
w

n

(b) With proactive reclamation

NoDup
0us
10us
20us
40us
80us
100us

Figure 8.5 Write duplication overhead.

To measure the e�ect of I/O duplication and investigate the storage requirements
for seamless I/O duplication, we implement an emulated local storage that using lo-
cal DRAM as the storage. The emulated storage writes the data to the DRAM with an
additional delay. We emulate the additional delay by adding busy waiting in the I/O
function. Figure 8.5 shows the execution time of Spark.PageRank under local mem-
ory limits for 40%, 60%, and 80% separately. We also measure the e�ect of proactive
reclamation by running the same experiments with and without the po-active recla-
mation.

Figure 8.5 (a) shows Spark.PgRank performance with I/O duplication, but with
disabled proactive page reclamation. The performance degradation from the I/O du-
plication is clear in this result with the increasing delay in the emulated storage.
The additional delay is directly contributed to the longer pagefault handling latency,
which results in poor performance of the target application.

Figure 8.5 (b) shows the same experiments with enabled proactive reclamation.
The application much better tolerates the increased I/O delay than the setup in Fig-
ure 8.5 (b). The proactive reclamation eliminates most I/O write in the critical path,
and the optimization e�ect is clearly shown in the result. The result also implies a 20
microseconds latency for writing a page to local storage would not degrade the appli-
cation performance with fault tolerance support. Modern high-performance storage

61

SPK.PR SPK.CC PAR.BS PAR.FA PAR.BT PAR.FS PAR.FR Mean
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sl
ow

do
w

n

16K 64K 128K 256K 512K 1MB 2MB 4MB

Figure 8.6 E�ect of slab size on the execution time.

such Intel Optance SSD and SAMSUNG Z-SSD meets the performance requirements,
which makes deploying RackMem promising for practical use.

8.3.4 RackDVS slab size and performance

RackMem allocates remote memory at slab granularity. A larger slab size reduces the
total number of RPCs for allocation and reduces the total metadata footprint. On the
other hand, a smaller slab size can provide better space utilization by reducing the
unused space in slabs; however, the frequent slab allocation can be a bottleneck of
the pagefault handler.

Figure 8.6 shows the normalized execution time of Spark and Parsec applications
under intensive paging scenarios. We limit the available local memory for each work-
load by 40% of the total RSS size. The evaluation is repeated for di�erent slab sizes
from 16KB to 4MB.

The result shows little performance impact from using di�erent slab sizes. Rack-
Mem e�ectively reduces the overhead of using smaller slab size with the two opti-
mizations. First, RackMem maintains a small pool of slabs and keeps the pool popu-
lated. Thus, the local pool handles most of the slab requests and eliminates the RPC

62

103 104 105 106

Latency (μs)

10−1

10−2

10−3

10−4

1-
C

D
F

(a) OLTPBench.TPCC

Baseline
RACK.RP
Infiniswap
SSD

102 103 104 105 106 107

Latency (μs)

10−1

10−2

10−3

10−4

10−5

1-
C

D
F

(b) OLTPBench.Twitter

103 104 105 106

Latency (μs)

10−1

10−2

10−3

10−4

10−5

1-
C

D
F

(c) OLTPBench.Wikipedia

Figure 8.7 Distribution of transaction latency of OLTP-Bench (log scale, lower is bet-
ter).

overhead in the critical path. Second, we implemented an RPC for the bulk allocation
of slabs. The RPC allows RackMem can allocate multiple slabs on a remote node with
one RPC. The two optimizations make RackMem tolerates the overhead of smaller
slab sizes.

8.3.5 Latency-oriented Applications

For latency-oriented applications, we measure the transaction latencies of the OLTP
workloads at 30% of the peak RSS available as local memory. Figure 8.7 plots the
function 1 − CDF in log scale to e�ectively visualize the tail latency. We compare the
baseline (native execution in local memory) with RACK.RP, Infiniswap, and SSD.

The transaction latencies of Tpcc, Twitter, and Wikipedia from OLTP-Bench
are shown in Figure 8.7. The result demonstrates the feasibility of deploying memory
disaggregation in an environment running latency-critical applications. For OLTP-

Bench.tpcc and OLTPBench.wikipedia, RACK.RP shows great tolerance even under
an intensive memory disaggregation setup at a local memory limit of 30% w.r.t. RSS.
For OLTPBench.tpcc, the 99th percentile latencies of BASELINE, RACK.RP, Infiniswap,
and SSD are 246ms, 257ms, 348ms, and 487ms, respectively. OLTPBench.Twitter, which
has a relatively higher throughput than the other two workloads, is a di�cult bench-
mark under memory disaggregation. Nevertheless, Rack.RP is able to signi�cantly
reduce the tail latency compared to Infiniswap which shows the bene�t of Rack-
Mem’s virtual memory for latency-critical workloads. In OLTPBench.Twitter case,
�nally, the 99th percentile latency of BASELINE, RACK.RP, Infiniswap, and SSD are

63

30% 40% 50% 60% 70% 80% 90%
Local Memory (%)

0

250

500

750

1000

B
an

dw
id

th
 U

ti
liz

at
io

n
(M

B
/s

)

Mean
Median

Figure 8.8 Network bandwidth utilization of applications with RackMem.

5.5ms, 12.4ms, 25.7ms, and 67.3ms, respectively.

8.3.6 Network Bandwidth Analysis

A common concern of distributed memory is network bandwidth utilization. Fre-
quent accesses to remote memory can potentially saturate a node’s network band-
width and cause prolonged pagefault handling latencies. While saturation can occur
at the recipient (local) and the remote memory donor nodes, the network of the local
node is more likely to be congested under heavy loads because remote memory is
distributed to several donor nodes (Section 5.5).

Figure 8.8 plots the network bandwidth utilization of RackMem with prefetch and
reclaim activated (RACK.RP) for all applications from Figure 8.2. The boxplot visualizes
the bandwidth distribution at one-second intervals for each memory con�guration.
The black and red lines indicate the mean and median values, the boxes represent
the 25tℎ and 75tℎ percentile, and the bottom/top whiskers show the 5tℎ and 95

tℎ per-
centile of the distribution. The results show an exponential increase in the consumed
network bandwidth as the local memory limit is lowered. At the 30% local memory
limit, the 95

tℎ percentile bandwidth of a single application reaches 1.15 GB/s. With
HDR In�niBand speeds reaching 200 Gb/s (24 GB/s) [8], network bandwidth only
gets saturated when 20 parallel applications running at a 30% local memory limit si-

64

0 500 1000 1500 2000
Elapsed Time (s)

0

2

4

6

R
SS

 (G
B

)

(a) Linux (Infiniswap)

VM0
VM1
VM2
VM3

0 500 1000 1500 2000
Elapsed Time (s)

0

2

4

6

R
SS

 (G
B

)

(b) RackMem (MM Off)

0 500 1000 1500 2000
Elapsed Time (s)

0

2

4

6

R
SS

 (G
B

)

(c) RackMem (MM On)

Figure 8.9 Dynamic local memory partitioning.

multaneously reach peak network bandwidth utilization. The FDR In�niBand setup
of our cluster (56 Gb/s or 6.5 GB/s) can support �ve parallel applications a 30% local

65

memory without su�ering from bandwidth saturation.

RackMem has the ability to automatically re-balance local memory to the co-
located applications (Section 4.4.1); as a consequence, it is unlikely that co-located
applications all consume peak network bandwidth utilization in a realistic scenario.
Indeed, the analysis in Section 8.3.1 showed that RackMem achieves close to optimal
performance at a 50% local memory ratio even without automatic re-balancing.

8.3.7 Dynamic Local Memory Partitioning

Multiple applications are often co-located on the same physical machine to improve
resource utilization. An important and interesting problem in such a scenario is to
allocate the right amount of resources to the di�erent applications. Modern data cen-
ter applications exhibit a dynamically changing working set which makes it di�-
cult to distribute resources statically. This section evaluates the dynamic memory
re-allocator of RackMem (Section 4.4.1) that redistributes the amount of local mem-
ory in proportion to the number of pagefaults generated by the concurrently running
applications over a 60-second window.

For the evaluation, four virtual machines (VM) with 4 VCPUs and 8 GB of RAM
are co-located. Each VM serially executes 20 random batch processing workloads
until completion. The total available local memory is limited to 6 GB, i.e., 1.5 GB
per VM with an equal partitioning. This setup is executed with RackMem’s static
and dynamic partitioning and compared to In�niswap. Since In�niswap does support
per-application memory limits, the four VMs are executed in a cgroup with 6 GB or
RAM. Measured performance metrics are the mean job completion time and the total
time to completion de�ned by the point in time when all VMs have completed their
workloads.

Figure 8.9 plots the results. Figure 8.9 (a) shows the results for RackMem without a
dynamic memory manager. Once allocated memory is never rebalanced. All VMs re-
ceive a similar amount of memory; the time to completion is 1,986s. Figure 8.9 (b) plots
the results with RackMem’s dynamic memory repartitioning. VMs are assigned more
or less memory depending on their number of pagefaults. We observe that all VMs
exhibit di�erent phases and that the phases of high memory requirements do not nec-
essarily occur simultaneously. This allows RackMem’s dynamic memory partitioner

66

0 50 100 150 200 250 300 350
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) Job Completion Time

Optimal
RackMem
Infiniswap
Node-centric

0 50 100 150 200 250 300 350 400
Epoch

0

20

40

60

80

100

U
ti

liz
at

io
n

(%
)

(b) Memory Utilization (%)

Figure 8.10 Rack-scale simulation of a job processing scenario.

to allocate more memory to VMs when required. VM 3, for example, is assigned up
to 3.5 GB at the 600 second mark. With memory re-balancing, the time to completion
is 1,873s, a 5.6% reduction compared to the static allocation under RackMem. Finally,
Figure 8.9 (c) shows the result for In�niswap with a total time to completion of 2,062s.
Linux also shows a noisier pattern than RackMem, which results in more overhead for
frequent repartitioning. The mean job completion times of RackMem with/without
dynamic repartitioning and In�niswap are 354s, 362s, and 400s, respectively.

8.3.8 Rack-scale Job Processing Simulation

Finally, we analyze the potential performance bene�t of RackMem for job processing
in a cluster with a simulation. Figure 8.10 demonstrates the the potential of mem-
ory disaggregation in comparison with the node-centric model. The �gure plots the
simulated execution a job queue containing 1000 data center workloads (Table 8.3)
on a cluster comprising thirty-�ve 40-core machines with 16 GB of RAM and �ve
nodes with 20 cores and 32 GB of physical memory each. A job requires between 1-8
cores and 4-32 GB of memory. In the Node-centric scenario, a job is placed only if
a node can satisfy the requested CPU and memory resources. The Optimal scenario
shows the potential (and upper limit) of memory disaggregation by assuming no per-
formance penalty for remote memory accesses. This scenario is logically identical to
pooling the resources of all 40 nodes into a single node with 1500 CPU cores and

67

720 GB of memory. The scenarios RackMem and Infiniswap show the performance of
the presented approach and the state-of-the-art RDMA paging [28]. Jobs are placed
on a node if at least 50 percent of the requested memory resources are available lo-
cally. In these scenarios, remote memory accesses incur overhead; the slowdown in
dependence of the amount of available local memory is obtained from real-world
experiments (Figure 8.2).

The cumulative distribution function (CDF) of the job completion time for the
four scenarios is shown in Figure 8.10 (a). The mean turnaround time of Optimal,
RackMem, Infiniswap, and Node-centric is 48.4, 59.1, 100.2, and 120.5 epochs, re-
spectively, and all disaggregation scenarios show clear bene�ts over the node-centric
model even with realistic performance penalties. The aggregated memory utilization
is plotted in Figure 8.10 (b). We observe that that memory disaggregation allows the
available resources to be utilized almost fully at all times. The simulation also demon-
strates the bene�ts of RackMem’s optimized demand paging in contrast to Ini�niswap
which is implemented as a swap device backend to Linux’s demand paging system.

68

Chapter 9

Evaluation - Instant VM Live

Migration

This section presents evaluation of Instant for YCSB benchmark [20] and compari-
son to other migration techniques. Our evaluation answers the following questions.

• How fast Instant can complete VM migration?
• How quickly Instant recovers from the performance degradation caused by

the cold miss on the target node.

9.1 Experimental setup

The source and destination nodes are equipped with an Intel(R) Xeon(R) Silver 4114
2.20GHz processor (10-core, 20-thread) and 64 GiB of local memory. Each machine
runs Ubuntu 18.04 with Linux kernel version 5.3.7. The machines are connected by
a ConnectX-4 56g In�niband NIC with a theoretical bandwidth of 56 Gbit/s and a
latency of 0.6�s. The disaggregated memory and VM live migration tra�c share the
same In�niband connection and can interfere. The VM network is physically sepa-
rated and uses a 1 Gbit/s Ethernet NIC. QEMU/KVM version 4.2 provides the hypervi-

69

sor, and the VMs run Ubuntu 18.04 as their guest OS. The VMs use network-attached
storage to access their disk images. VM disk I/O tra�c is routed through the VM net-
work. All VMs used in the experiments are equipped with 4-VCPU and 32 GB of local
memory.

9.2 Target Applications

We evaluate Instant for an in-memory key-value database with the workloads in
Yahoo Cloud Serving Benchmark (YCSB). We run a Redis server inside a VM and send
requests from a node in the same cluster. We evaluate Instant for the following six
workloads in YCSB.

• Update Heavy (UH): 50/50 mixed reads and writes.
• Read Mostly (RM): 95/5 mixed reads and writes.
• Read Only (RO): 100% reads requests.
• Read Latest (RL): The client inserts new records and sends read requests

mostly on the recently added keys.
• Short Ranges (SR): Send requests on short range keys.
• Read-Modify-Write (RMW): The client read a key from the DB, modify, and

write back the modi�ed value.

9.3 Comparison targets

We compare Instant for the VM live migration techniques available in QEMU v4.2.
Speci�cally, we use the following techniques for the comparisons.

• PRE uses iterative pre-copy to reduce downtime of VM live migration. We en-
able MULTIFD to increase the migration bandwidth on the fast network in our
cluster.

• POST sends only minimal VM states and resumes the VM on the destination.
The remaining pages on the source machine are fetched by the background
task or pagefault handler.

• INSTANT is the stop-and-copy only version of Instant.

70

9.4 Database and client setups

We prepare two Redis databases that are having 1 million and 5 million keys sep-
arately. The RSS sizes of each VM are 3GB and 11GB separately. We refer to each
database as 1M and 5M.

We stress the database with YCSB clients con�gured to use 4-thread or 20-thread.
We refer to each con�guration as 4T and 20T separately. For example, the scenario
running a 20-thread client for a database having 5 million keys is 5M/20T.

9.5 Memory disaggregation scenarios

We consider two memory disaggregation scenarios for the evaluation. The �rst sce-
nario is allocating all pages in the local memory. Despite the ability to use remote
memory, we consider it as a common scenario of Instant. Cluster scheduler places
VM on the node having enough resources; it is a reasonable assumption that most
VMs rarely experience memory pressure in datacenters. In this case, the VM migrated
with INSTANT experiences burst remote paging after the migration.

The second scenario is migrating VM under memory pressure. It is also a com-
mon scenario of VM live migration for load balancing. In this case, part of the VM’s
memory is stored in the destination. The destination also has enough local memory
to accommodate the target VM.

We deploy two nodes for the evaluation simulating the above scenarios.

9.5.1 Time-to-responsiveness

Time-to-responsiveness (TTR) is a useful metric to pinpoint the time of the VM per-
formance is restored. For example, 10s for TTR (90%) means the performance does not
degrade below 90% after 10s. We use a slightly modi�ed de�nition of TTR, originally
proposed by Irene et al. [68]. To compute TTR, we �rst normalize the YCSB latency by
the mean latency without the migration overhead. The normalized latency becomes
1.0 if the observed latency is greater or equal to the mean latency. We compute the
moving average of the normalized latency with a one-second window and draw the

71

Update
Heavy

Read
Mostly

Read
Only

Read
Latest

Short
Range

Read
Modify
Write

Mean
0

10

20

30

40

50
T

T
R

 (s
)

(a) YCSB Benchmark - Local Memory: 100%

POST PRE-MULTIFD INSTANT

Update
Heavy

Read
Mostly

Read
Only

Read
Latest

Short
Range

Read
Modify
Write

Mean
0

15

30

45

60

75

T
T

R
 (s

)

(b) YCSB Benchmark - Local Memory: 75%

Update
Heavy

Read
Mostly

Read
Only

Read
Latest

Short
Range

Read
Modify
Write

Mean
0

25

50

75

100

125

T
T

R
 (s

)

(c) YCSB Benchmark - Local Memory: 50%

Figure 9.1 Time-to-responsiveness of live migration techniques.

TTR. We use 80% TTR for all scenarios as the performance metric.

Figure 9.1 shows the comparison of mean TTR for all migration techniques and
YCSB workload con�gurations: 5M/4T, 10M/4T, and 5M/4T. Figure 9.1 (a) is the re-
sult of migrating VMs without memory pressure. In this scenario, all local pages are

72

fetched on the destination in Instant. Instant does not get a performance bene�t
from the pre-existing pages on the destination; this scenario is the most unfavorable
scenario for Instant. On average, POST, PRE, and Instant achieve 10.6s, 20.4s, and
8.4s TTRs separately. Instant reduces the TTRs by 20.1% and 59.0% over POST and
PRE separately.

Figure 9.1 (b) migrates VMs under a light memory pressure; it stores 75% of the
total memory footprint in the local memory and stores rest of them in remote memory
(destination node in this scenario). In this scenario, a smaller subset of the pages are
already available in the destination, Instant copies less pages in the migration phase
than PRE and POST in this sceanrio. On average, POST, PRE, and Instant achieves 36.0s,
65.3s, and 8.0s TTRs for separately. Instant reduces the TTRs by 78.8% and 87.7%
over POST and PRE separately. The performance improvement with Instant is much
more signi�cant due to other techniques start to su�er from the thrashing between
the remote paging and the migration process.

Figure 9.1 (c) migrates VMs under a severe memory pressure. Only 50% of the
pages compared to the total memory footprint are stored in the local memory. PRE
and POST su�ers from a signi�cant paging overhead due to the thrashing. On average,
POST, PRE, and Instant achieves 61.6s, 111.7s, and 6.9s TTRs for separately. Instant
reduces the TTRs by 88.7% and 93.8% over POST and PRE separately.

Instant is the only technique that is constantly showing the single digit TTR
in all con�gurations. Actually, the TTR is improved as the VM gets more memory
pressure which shows the an unique characteristic of Instant. This result shows the
seamless aspect of Instant technique.

9.5.2 E�ective Downtime

Figure 9.2 shows e�ective downtime of each technique for the six YCSB workloads
under di�erent memory pressure scenarios. E�ective downtime is not same to the
reported downtime in QEMU. The reported downtime in QEMU only measures the la-
tency of sending a small amount of data that includes processor states, device bu�ers,
and VM metadata; the actual service interruption time can be highly di�er from the
reported value especially for the post-copy based techniques.

73

Update
Heavy

Read
Mostly

Read
Only

Read
Latest

Short
Range

Read
Modify
Write

Mean
0

5

10

Ef
fe

ct
iv

e
D

ow
nt

im
e

(s
) (a) YCSB Benchmark - Local Memory: 100%

POST PRE-MULTIFD INSTANT

Update
Heavy

Read
Mostly

Read
Only

Read
Latest

Short
Range

Read
Modify
Write

Mean
0

5

10

15

Ef
fe

ct
iv

e
D

ow
nt

im
e

(s
) (b) YCSB Benchmark - Local Memory: 75%

Update
Heavy

Read
Mostly

Read
Only

Read
Latest

Short
Range

Read
Modify
Write

Mean
0

10

20

Ef
fe

ct
iv

e
D

ow
nt

im
e

(s
) (c) YCSB Benchmark - Local Memory: 50%

Figure 9.2 E�ective downtime of live migration techniques.

The e�ective downtime measures the service interruption time outside of the VM.
We de�ne the e�ective downtime as the 99.95tℎ interval of two consecutive YCSB
responses after the VM live migration is initiated.

Figure 9.2 (a) is the e�ective downtime from the VM live migrations without mem-

74

0 20 40 60
Elapsed Time (secs)

0.5

1.0

1.5

La
te

nc
y

(m
s)

(a) Update Heavy

PRE
POST
INSTANT
INSTANT-PF

0 20 40 60
Elapsed Time (secs)

0.5

1.0

1.5

La
te

nc
y

(m
s)

(b) Read Mostly

0 20 40 60
Elapsed Time (secs)

0.5

1.0

1.5

La
te

nc
y

(m
s)

(c) Read Only

0 20 40 60
Elapsed Time (secs)

0.5

1.0

La
te

nc
y

(m
s)

(d) Read Latest

0 20 40 60
Elapsed Time (secs)

0

50

100
La

te
nc

y
(m

s)

(e) Short Ranges

0 20 40 60
Elapsed Time (secs)

0.5

1.0

1.5

La
te

nc
y

(m
s)

(f) Read-Modify-Write

Figure 9.3 YCSB latency scatter plot (5M keys, 20-thread)

ory pressure. E�ective downtime of POST, PRE, and Instant are 8.43s, 1.58s, and 0.62s
for separately. Instant achieves the shortest e�ective downtime among the three
techniques. Instant reduces the e�ective downtime by 92.6% and 60.7% over POST

and PRE separately.

We can see the similar trends for the di�erent memory pressure scenarios: Fig-
ure 9.2 (b) and (c). Instant is the only technique that achieves subsecond e�ective
downtime. For the 75% and 50% local memory sceanrios, Instant achieves 0.61s and
0.84s of e�ective downtime separately.

9.5.3 E�ect of Instant optimizations

Figure 9.3 shows a latency scatter plot of six YCSB workloads for PRE, POST, and In-
stant optimizations. We selectively show the 5M/20T scenario that shows the di�er-
ence of target techniques. We only include 1,000 random samples for each technique
to draw the scatter plots with a reasonable number of data points. The latencies longer
than the 99.95

tℎ value are excluded to scale down Y-axis within a reasonable range,
mostly the �rst few points at the beginning of the restoration phase are excluded.

POST does not show any point in the early stage of restoration. It starts to show
points after 20 seconds after the beginning. INSTANT does not run background fetch

75

task in the destination. INSTANT shows a slightly better latency at the beginning, but
the full restoration of the performance is much slower than INSTANT-PF which is
running a background task to fetch working set pages from the source machine.

76

Chapter 10

Conclusion

Virtualized environment is a promising target for applying remote memory. Virtual
machines run in isolated environments, and seamless remote memory access is eas-
ily enabled through hypervisor. The remote memory enabled VMs can tolerate un-
der memory pressure by utilizing remote to store infrequently accessed data. As a
demonstration of the idea, we presented RackMem. RackMem enables seamless VM
execution on remote memory by minimizing software overhead with specialized re-
mote paging stacks for modern high-performance networking devices. The set of
optimizations in RackMem eliminates the page reclamation latency in the critical
path and reduces the number of page faults. In the rack-scale simulation, RackMem
enabled cluster signi�cantly improved the mean job processing time (40.9%).

In addition to RackMem, we present the instant and seamless migration of virtual
machines. We observed the remote memory unexpectedly solves the long-standing
problem in VM live migration (i.e. entire memory copy). The ability of location-
independent memory access and e�cient remote paging mechanism enables instant
migration of virtual machines by only sending minimal metadata. The e�cient re-
mote paging mechanism in RackMem also provides signi�cantly better restoration
performance than the post-copy implementation in QEMU/KVM. We demonstrate

77

the performance improvement of instant VM live migration with in-memory key-
value workloads in YCSB benchmark.

RackMem and instant VM live migration solve the fundamental limitations in
the traditional datacenter architecture that limiting resource e�ciency. By applying
RackMem, data center jobs can be placed onto more nodes and improve the overall
utilization. In addition to that, the instant migration mechanism quickly resolves the
load imbalance in the data centers by quickly moving VMs to less loaded servers.
We expect the future data centers will actively deploy similar approaches to push the
limit of the current resource e�ciency.

10.1 Future Directions

The proposed techniques in this dissertation open new interesting future research
directions.

Warehouse-scale memorymanagement. Allocating the right amount of local
memory for VMs is important to maximize the utility of the limited resources. In
RackMem, we presented a local memory manager for intra-node VMs. Scaling up the
local memory manager for warehouse-scale will be interesting and important for the
datacenter-wide resource e�ciency. A more sophisticated algorithm could be used to
�nd the right allocation of local memory, such as miss ratio curve prediction [66, 69]
and machine learning. An e�cient algorithm for �nding a global VM placement and
resource allocation will also be interesting future work.

Pre-fetch with memory access prediction. Memory access with pagefault
handling is still a few orders of magnitude slower than local memory access (10000ns
vs. 60ns). Prefetching with accurate memory access prediction can potentially elimi-
nate the page fault handling overhead in remote paging systems. With ideal systems,
the VM under intensive memory pressure will run more seamlessly.

We expect machine learning approach for memory access prediction would be
promising [16, 30]. Applying such techniques in the kernel space would be an inter-
esting research direction since kernel space has little time budget for the prediction.

Frequent VM live migration for idle resource utilization. Instant VM live

78

migration reduces the total migration time of VM order of magnitude faster than the
traditional approaches. Only our approach can migrate a VM back and forth among
multiple servers in milliseconds scale by avoiding the entire memory copy. This abil-
ity enables utilizing a short period of resource variability existing in millions of VMs
in data centers that have not been utilized due to the lack of a proper mechanism. For
example, if there are periodic patterns of ephemeral idle resources (e.g., 10s), we can
migrate a VM under resource pressure to utilize the short period of idle resources.
We expect there are plenty of rooms for improving resource utilization in a shorter
time scale. Applying instant VM live migration will be a promising approach for ad-
dressing this issue.

79

Bibliography

[1] About gen-z | gen-z consortium | open-systems interconnect. https://
genzconsortium.org/about-us/. (Accessed on 05/24/2021).

[2] Ccix. https://www.ccixconsortium.com/. (Accessed on 05/24/2021).

[3] Connectx-7 ethernet datasheet. https://www.nvidia.com/content/dam/en-zz/
Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf. (Ac-
cessed on 05/24/2021).

[4] Gartner retires the magic quadrant for x86 server virtualization infras-
tructure. https://www.gartner.com/en/documents/3642418/gartner-retires-the-
magic-quadrant-for-x86-server-virtua. (Accessed on 05/24/2021).

[5] Home - xen project. https://xenproject.org/. (Accessed on 05/24/2021).

[6] Intel con�rms retreat on omni-path. https://www.hpcwire.com/2019/08/01/
report-intel-retreats-on-omni-path/. (Accessed on 05/24/2021).

[7] The machine: A new kind of computer. https://www.hpl.hp.com/research/
systems-research/themachine/. (Accessed on 05/24/2021).

[8] Nvidia mellanox connectx-6 vpi adapter cards | nvidia. https://www.nvidia.com/
en-us/networking/in�niband-adapters/connectx-6/. (Accessed on 05/24/2021).

[9] Opencapi consortium: O�cial site. https://opencapi.org/. (Accessed on
05/24/2021).

80

https://genzconsortium.org/about-us/
https://genzconsortium.org/about-us/
https://www.ccixconsortium.com/
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.gartner.com/en/documents/3642418/gartner-retires-the-magic-quadrant-for-x86-server-virtua
https://www.gartner.com/en/documents/3642418/gartner-retires-the-magic-quadrant-for-x86-server-virtua
https://xenproject.org/
https://www.hpcwire.com/2019/08/01/report-intel-retreats-on-omni-path/
https://www.hpcwire.com/2019/08/01/report-intel-retreats-on-omni-path/
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.nvidia.com/en-us/networking/infiniband-adapters/connectx-6/
https://www.nvidia.com/en-us/networking/infiniband-adapters/connectx-6/
https://opencapi.org/

[10] rdma-core/ibverbs.h at master · linux-rdma/rdma-core. https://github.
com/linux-rdma/rdma-core/blob/master/libibverbs/ibverbs.h. (Accessed on
08/10/2021).

[11] Y. Abe, R. Geambasu, K. Joshi, and M. Satyanarayanan. Urgent virtual ma-
chine eviction with enlightened post-copy. In Proceedings of The12th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, VEE
’16, page 51–64, New York, NY, USA, 2016. Association for Computing Machin-
ery.

[12] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S. Novaković, A. Ra-
manathan, P. Subrahmanyam, L. Suresh, K. Tati, R. Venkatasubramanian, and
M. Wei. Remote regions: a simple abstraction for remote memory. In 2018
USENIX Annual Technical Conference (USENIX ATC 18), pages 775–787. USENIX
Association, 2018.

[13] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, P. Subrahmanyam,
L. Suresh, K. Tati, R. Venkatasubramanian, and M. Wei. Remote memory in the
age of fast networks. In Proceedings of the 2017 Symposium on Cloud Computing,
SoCC ’17, pages 121–127. ACM, 2017.

[14] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera, A. Panda,
S. Ratnasamy, and S. Shenker. Can far memory improve job throughput? In
Proceedings of the Fifteenth European Conference on Computer Systems, EuroSys
’20, New York, NY, USA, 2020. Association for Computing Machinery.

[15] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel. Treadmarks: shared memory computing on networks of work-
stations. Computer, 29(2):18–28, 1996.

[16] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan. Classifying memory ac-
cess patterns for prefetching. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 513–526, New York, NY, USA, 2020. Association for
Computing Machinery.

81

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/ibverbs.h
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/ibverbs.h

[17] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, et al. The NAS parallel
benchmarks. International Journal of High Performance Computing Applications,
5(3):63–73, 1991.

[18] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-
sity, January 2011.

[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. War�eld. Live migration of virtual machines. In Proceedings of the 2nd Confer-
ence on Symposium on Networked Systems Design and Implementation - Volume
2, NSDI’05, 2005.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmark-
ing cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10, page 143–154, New York, NY, USA, 2010. Asso-
ciation for Computing Machinery.

[21] J. Corbet. Fun with tracepoints [lwn.net]. https://lwn.net/Articles/346470/, 8
2009. (Accessed on 05/24/2021).

[22] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. Oltp-bench: An
extensible testbed for benchmarking relational databases. Proc. VLDB Endow.,
7(4):277–288, Dec. 2013.

[23] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. Farm: Fast remote
memory. In 11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 401–414, Seattle, WA, Apr. 2014. USENIX Associa-
tion.

[24] L. Foundation. mm, swap: use rbtree for swap extent. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
4efaceb1c5f8136d5fec3f26549d294b8e898bd7, 7 2019.

[25] L. Foundation. cgroups(7) - linux manual page. http://man7.org/linux/man-
pages/man7/cgroups.7.html, 2020.

82

https://lwn.net/Articles/346470/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4efaceb1c5f8136d5fec3f26549d294b8e898bd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4efaceb1c5f8136d5fec3f26549d294b8e898bd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4efaceb1c5f8136d5fec3f26549d294b8e898bd7
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html

[26] L. Foundation. Null block device driver. https://www.kernel.org/doc/html/
latest/block/null_blk.html, 2020.

[27] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Rat-
nasamy, and S. Shenker. Network requirements for resource disaggregation.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI ’16, pages 249–264. USENIX Association, 2016.

[28] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. E�cient memory dis-
aggregation with in�niswap. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 649–667. USENIX Association, 2017.

[29] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao. Who limits the
resource e�ciency of my datacenter: An analysis of alibaba datacenter traces.
In Proceedings of the International Symposium on Quality of Service, IWQoS ’19,
New York, NY, USA, 2019. Association for Computing Machinery.

[30] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang, C. Kozyrakis, and
P. Ranganathan. Learning memory access patterns. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 1919–1928. PMLR,
10–15 Jul 2018.

[31] M. R. Hines and K. Gopalan. Post-copy based live virtual machine migration
using adaptive pre-paging and dynamic self-ballooning. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, VEE ’09, New York, NY, USA, 2009. Association for Computing Ma-
chinery.

[32] In�niswap: E�cient memory disaggregation with in�niswap. https://github.
com/SymbioticLab/in�niswap, 2017.

[33] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan. Live virtual machine migration with
adaptive, memory compression. In 2009 IEEE International Conference on Cluster
Computing and Workshops, pages 1–10, Aug 2009.

83

https://www.kernel.org/doc/html/latest/block/null_blk.html
https://www.kernel.org/doc/html/latest/block/null_blk.html
https://github.com/SymbioticLab/infiniswap
https://github.com/SymbioticLab/infiniswap

[34] C. Jo and B. Egger. Optimizing live migration for virtual desktop clouds. In
IEEE 5th International Conference on Cloud Computing Technology and Science,
volume 1 of CloudCom ’13, pages 104–111, Dec 2013.

[35] C. Jo, E. Gustafsson, J. Son, and B. Egger. E�cient live migration of virtual
machines using shared storage. In Proceedings of the 9th ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, VEE ’13, pages 41–50,
New York, NY, USA, 2013. ACM.

[36] C. Jo, H. Kim, H. Geng, and B. Egger. Rackmem: A tailored caching layer for rack
scale computing. In Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, PACT ’20, page 467–480, New York,
NY, USA, 2020. Association for Computing Machinery.

[37] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter rpcs can be general and fast.
In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 1–16, Boston, MA, Feb. 2019. USENIX Association.

[38] A. Kalia, M. Kaminsky, and D. G. Andersen. Using rdma e�ciently for key-value
services. SIGCOMM Comput. Commun. Rev., 44(4):295–306, Aug. 2014.

[39] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for high perfor-
mance RDMA systems. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16), pages 437–450, Denver, CO, June 2016. USENIX Association.

[40] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast, scalable and simple
distributed transactions with two-sided (RDMA) datagram rpcs. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages
185–201, Savannah, GA, Nov. 2016. USENIX Association.

[41] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. Snucl: An opencl framework for
heterogeneous cpu/gpu clusters. In Proceedings of the 26th ACM International
Conference on Supercomputing, ICS ’12, page 341–352, New York, NY, USA, 2012.
Association for Computing Machinery.

[42] K. Koh, K. Kim, S. Jeon, and J. Huh. Disaggregated cloud memory with elastic
block management. IEEE Transactions on Computers, 68(1), 2018.

84

[43] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt, J. Chang,
A. Chaugule, N. Deng, J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and P. Ran-
ganathan. Software-de�ned far memory in warehouse-scale computers. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, pages 317–330,
New York, NY, USA, 2019. ACM.

[44] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. Wenisch.
Disaggregated memory for expansion and sharing in blade servers. In Proceed-
ings of the 36th Annual International Symposium on Computer Architecture, ISCA
’09, page 267–278, New York, NY, USA, 2009. Association for Computing Ma-
chinery.

[45] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and T. F.
Wenisch. System-level implications of disaggregated memory. In IEEE Inter-
national Symposium on High-Performance Comp Architecture, pages 1–12, Feb
2012.

[46] Z. Liu, W. Qu, W. Liu, and K. Li. Xen live migration with slowdown scheduling
algorithm. In Proceedings of the 2010 International Conference on Parallel and
Distributed Computing, Applications and Technologies, PDCAT ’10, pages 215–
221, Washington, DC, USA, 2010. IEEE Computer Society.

[47] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: an rdma-enabled distributed persistent
memory �le system. In 2017 USENIX Annual Technical Conference (USENIX ATC
17), pages 773–785. USENIX Association, 2017.

[48] H. A. Maruf and M. Chowdhury. E�ectively prefetching remote memory with
leap. In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages 843–
857. USENIX Association, July 2020.

[49] Mellanox. Mellanox products: Connectx®-5 single/dual-port adapter support-
ing 100gb/s with vpi. http://www.mellanox.com/page/products_dyn?product_
family=258&mtag=connectx_5_vpi_card, 6 2016.

[50] M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 12(10):1094–1104, Oct 2001.

85

http://www.mellanox.com/page/products_dyn?product_family=258&mtag=connectx_5_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=258&mtag=connectx_5_vpi_card

[51] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin. Latency-
tolerant software distributed shared memory. In 2015 USENIX Annual Technical
Conference (USENIXATC 15), pages 291–305, Santa Clara, CA, July 2015. USENIX
Association.

[52] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration for virtual
machines. In 2005 USENIX Annual Technical Conference (USENIX ATC 05), Ana-
heim, CA, Apr. 2005. USENIX Association.

[53] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel. Nswap: A network swapping
module for linux clusters. In Euro-Par 2003 Parallel Processing, pages 1160–1169,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[54] S. Novakovic, Y. Shan, A. Kolli, M. Cui, Y. Zhang, H. Eran, B. Pismenny, L. Liss,
M. Wei, D. Tsafrir, and M. Aguilera. Storm: A fast transactional dataplane for
remote data structures. In Proceedings of the 12th ACM International Conference
on Systems and Storage, SYSTOR ’19, page 97–108, New York, NY, USA, 2019.
Association for Computing Machinery.

[55] pmem.io. Persistent memory programming. http://pmem.io/, 8 2020.

[56] QEMU. Qemu. https://www.qemu.org/. (online, accessed July 2020).

[57] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the
Third ACMSymposium onCloud Computing, SoCC ’12, New York, NY, USA, 2012.
Association for Computing Machinery.

[58] A. Ruprecht, D. Jones, D. Shiraev, G. Harmon, M. Spivak, M. Krebs, M. Baker-
Harvey, and T. Sanderson. Vm live migration at scale. In Proceedings of the 14th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE ’18, New York, NY, USA, 2018. Association for Computing Machin-
ery.

[59] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A disseminated, distributed
OS for hardware resource disaggregation. In 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18), pages 69–87, 2018.

86

http://pmem.io/
https://www.qemu.org/

[60] Y. Shan, S.-Y. Tsai, and Y. Zhang. Distributed shared persistent memory. In
Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17, pages 323–
337. ACM, 2017.

[61] A. Shribman and B. Hudzia. Pre-copy and post-copy vm live migration for mem-
ory intensive applications. In European Conference on Parallel Processing, pages
539–547. Springer, 2012.

[62] P. Stuedi, A. Trivedi, J. Pfe�erle, A. Klimovic, A. Schuepbach, and B. Metzler.
Uni�cation of temporary storage in the nodekernel architecture. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 767–782, Renton, WA, July
2019. USENIX Association.

[63] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation of delta compression
techniques for e�cient live migration of large virtual machines. In Proceedings
of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ’11, pages 111–120, New York, NY, USA, 2011. ACM.

[64] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand, M. Harchol-
Balter, and J. Wilkes. Borg: The next generation. In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[65] S.-Y. Tsai and Y. Zhang. Lite kernel rdma support for datacenter applications.
In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
pages 306–324. ACM, 2017.

[66] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad. E�cient MRC con-
struction with SHARDS. In 13th USENIX Conference on File and Storage Technolo-
gies (FAST 15), pages 95–110, Santa Clara, CA, Feb. 2015. USENIX Association.

[67] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Clus-
ter computing with working sets. In Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud ’10, pages 10–10. USENIX Associ-
ation, 2010.

[68] I. Zhang, A. Garthwaite, Y. Baskakov, and K. C. Barr. Fast restore of check-
pointed memory using working set estimation. In Proceedings of the 7th ACM

87

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE ’11, page 87–98, New York, NY, USA, 2011. Association for Computing Ma-
chinery.

[69] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar. Dy-
namic tracking of page miss ratio curve for memory management. In Proceed-
ings of the 11th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XI, page 177–188, New York,
NY, USA, 2004. Association for Computing Machinery.

88

요약

인공지능및빅데이터컴퓨팅의유행으로인해클라우드환경으로의이전이가속되

고 있다. 클라우드 환경은 거대한 연산 자원을 상시 가동할 필요 없이 원하는 순간
원하는 양의 대한 연산 비용만을 지불하면 되기 때문에, 고객의 경우 서버 유지에
대한 비용을 크게 절감할 수 있고 클라우드 서비스를 제공하는 데이터센터는 연산

자원의이용효율을극대화할수있다.

이러한 시나리오에서 데이터센터 입장에서는 연산 자원 활용 효율을 개선하는

것이중요한목표가된다.최근데이터센터의규모는사상유래없는규모로증가하고
있기때문에작은효율개선으로도막대한경제적가치를창출할수있다.

데이터센터의효율은위치선정,구조설계,냉각시스템,하드웨어구성등등다
양한요소들에영향을받지만,이논문에서는특히연산및메모리자원을관리하는
소프트웨어설계및구현을다룬다.

이 학위 논문에서는 데이터 센터 효율 개선을 위한 소프트웨어 기반 기술을 제

안하며 크게 두가지 요소의 큰 기여를 만든다. 첫째로 우리는 가상화 환경을 위한
소프트웨어 기반 메모리 분리 시스템을 제안한다. 최근 고속 네트워크의 발전으로
인해 원격 메모리 접근 비용이 획기적으로 줄어 들었고, 이 논문에서는 현대 네트
워킹 하드웨어를 기반으로 원격 메모리 위에서 실행되는 가상 머신의 큰 성능 저

하 없이 실행할 수 있음을 보인다. 제안된 기술이 적용된 가상머신 하이퍼바이저
QEMU/KVM를통한실험결과,본논문에서제안한기법은기존시스템대비원격
페이징에대한꼬리지연시간을 98.2%개선한다.또한랙규모의작업처리시뮬레이
션을통한실험에서,제안된시스템은전체작업처리시간을기존시스템대비 40.9%
개선한다.

두번째기여는,원격메모리를이용하는즉각적인가상머신이주기법이다.가상
화환경의원격메모리활용에대한확장은그것만으로자원이용률향상에대해큰

기여를하지만,여전히한서버에서여러어플리케이션이경쟁적으로자원을이용하
는경우성능이크게저하될수있다.이논문에서제안하는즉각적인가상머신이주
기법은원격메모리상에서아주작은메타데이터의전송만으로가상머신의이주를

가능하게 한다. 메모리 상에 키와 값을 저장하는 데이터베이스 벤치마크를 실행하

89

는가상머신을기반으로한평가에서,제안된가상머신이주기법은기존기법대비
실질적인서비스중단시간을최대 92.6%개선한다.

이 학위 논문에서는 제안된 원격 메모리 시스템에 대한 두가지 소프트웨어 기

법을 데이터센터에 적용할 경우 획기적인 연산 및 메모리 자원 활용 효율 개선을

가져올것으로기대된다.

주요어:가상화,실시간이주,원격메모리,원격직접메모리접근
학번: 2012-20869

90

	Chapter 1. Introduction
	1.1 Contributions of the Dissertation

	Chapter 2. Background
	2.1 Resource Disaggregation
	2.2 Transparent Remote Paging
	2.3 Remote Direct Memory Access (RDMA)
	2.4 Live Migration of Virtual Machines

	Chapter 3. RackMem Overview
	3.1 RackMem Virtual Memory
	3.2 RackMem Distributed Virtual Storage
	3.3 RackMem Networking
	3.4 Instant VM Live Migration

	Chapter 4. Virtual Memory
	4.1 Design Considerations for Achieving Low-latency
	4.2 Pagefault handling
	4.2.1 Fast-path and slow-path in the pagefault handler
	4.2.2 State transition of RackVM page

	4.3 Latency Hiding Techniques
	4.4 Implementation
	4.4.1 RackMem Virtual Memory Module
	4.4.2 Dynamic Rebalancing of Local Memory
	4.4.3 RackVM for Virtual Machines
	4.4.4 Running Unmodified Applications

	Chapter 5. RackMem Distributed Virtual Storage
	5.1 The distributed Storage Abstraction
	5.2 Memory Management
	5.2.1 Remote memory allocation
	5.2.2 Remote memory reclamation

	5.3 Fault Tolerance
	5.3.1 Fault-tolerance and Write-duplication

	5.4 Multiple Storage Support in RackMem
	5.5 Implementation
	5.5.1 The Remote Memory Backend

	5.5.2 Linux Demand Paging on RackDVS

	Chapter 6. Networking
	6.1 Design of RackNet
	6.2 Implementation
	6.2.1 RPC message layout
	6.2.2 RackNet RPC Implementation

	Chapter 7. Instant VM Live Migration
	7.1 Motivation
	7.1.1 The need for a tailored live migration technique
	7.1.2 Software Bottlenecks
	7.1.3 Utilizing workload variability

	7.2 Design of Instant
	7.2.1 Instant Region Migration

	7.3 Implementation
	7.3.1 Extension of RackVM for Instant
	7.3.2 Instant region migration
	7.3.3 Pre-fetch optimizations
	7.3.4 Downtime optimizations
	7.3.5 QEMU modification for Instant

	Chapter 8. Evaluation - RackMem
	8.1 Execution Environment
	8.2 Pagefault Handler Latency
	8.3 Single Application Performance
	8.3.1 Batch-oriented Applications
	8.3.2 Internal Pagesize and Performance
	8.3.3 Write-duplication overhead
	8.3.4 RackDVS slab size and performance
	8.3.5 Latency-oriented Applications
	8.3.6 Network Bandwidth Analysis
	8.3.7 Dynamic Local Memory Partitioning
	8.3.8 Rack-scale Job Processing Simulation

	Chapter 9. Evaluation - Instant VM Live Migration
	9.1 Experimental setup
	9.2 Target Applications
	9.3 Comparison targets
	9.4 Database and client setups
	9.5 Memory disaggregation scenarios
	9.6.1 Time-to-responsiveness
	9.6.2 Effective Downtime
	9.6.3 Effect of Instant optimizations

	Chapter 10. Conclusion
	10.1 Future Directions

	요약

<startpage>13
Chapter 1. Introduction 1
 1.1 Contributions of the Dissertation 3
Chapter 2. Background 5
 2.1 Resource Disaggregation 5
 2.2 Transparent Remote Paging 7
 2.3 Remote Direct Memory Access (RDMA) 9
 2.4 Live Migration of Virtual Machines 10
Chapter 3. RackMem Overview 13
 3.1 RackMem Virtual Memory 13
 3.2 RackMem Distributed Virtual Storage 14
 3.3 RackMem Networking 15
 3.4 Instant VM Live Migration 16
Chapter 4. Virtual Memory 17
 4.1 Design Considerations for Achieving Low-latency 19
 4.2 Pagefault handling 20
 4.2.1 Fast-path and slow-path in the pagefault handler 21
 4.2.2 State transition of RackVM page 23
 4.3 Latency Hiding Techniques 25
 4.4 Implementation 26
 4.4.1 RackMem Virtual Memory Module 27
 4.4.2 Dynamic Rebalancing of Local Memory 29
 4.4.3 RackVM for Virtual Machines 29
 4.4.4 Running Unmodified Applications 30
Chapter 5. RackMem Distributed Virtual Storage 31
 5.1 The distributed Storage Abstraction 32
 5.2 Memory Management 33
 5.2.1 Remote memory allocation 33
 5.2.2 Remote memory reclamation 33
 5.3 Fault Tolerance 34
 5.3.1 Fault-tolerance and Write-duplication 34
 5.4 Multiple Storage Support in RackMem 36
 5.5 Implementation 38
 5.5.1 The Remote Memory Backend 38
 5.5.2 Linux Demand Paging on RackDVS 39
Chapter 6. Networking 40
 6.1 Design of RackNet 40
 6.2 Implementation 41
 6.2.1 RPC message layout 41
 6.2.2 RackNet RPC Implementation 42
Chapter 7. Instant VM Live Migration 44
 7.1 Motivation 45
 7.1.1 The need for a tailored live migration technique 45
 7.1.2 Software Bottlenecks 46
 7.1.3 Utilizing workload variability 46
 7.2 Design of Instant 47
 7.2.1 Instant Region Migration 47
 7.3 Implementation 48
 7.3.1 Extension of RackVM for Instant 49
 7.3.2 Instant region migration 49
 7.3.3 Pre-fetch optimizations 51
 7.3.4 Downtime optimizations 51
 7.3.5 QEMU modification for Instant 52
Chapter 8. Evaluation - RackMem 53
 8.1 Execution Environment 54
 8.2 Pagefault Handler Latency 56
 8.3 Single Application Performance 57
 8.3.1 Batch-oriented Applications 58
 8.3.2 Internal Pagesize and Performance 59
 8.3.3 Write-duplication overhead 60
 8.3.4 RackDVS slab size and performance 62
 8.3.5 Latency-oriented Applications 63
 8.3.6 Network Bandwidth Analysis 64
 8.3.7 Dynamic Local Memory Partitioning 66
 8.3.8 Rack-scale Job Processing Simulation 67
Chapter 9. Evaluation - Instant VM Live Migration 69
 9.1 Experimental setup 69
 9.2 Target Applications 70
 9.3 Comparison targets 70
 9.4 Database and client setups 71
 9.5 Memory disaggregation scenarios 71
 9.6.1 Time-to-responsiveness 71
 9.6.2 Effective Downtime 73
 9.6.3 Effect of Instant optimizations 75
Chapter 10. Conclusion 77
 10.1 Future Directions 78
요약 89
</body>

