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ABSTRACT

Robust Hierarchical Motion

Planning and Control for Rescue Robots

by

Seongil Hong

Department of Mechanical and Aerospace Engineering

Seoul National University

Over the last several years, robotics has experienced a striking development, and

a new generation of robots has emerged that shows great promise in being able

to accomplish complex tasks associated with human behavior. Nowadays the ob-

jectives of the robots are no longer restricted to the automaton in the industrial

process but are changing into explorers for hazardous, harsh, uncooperative, and

extreme environments. As these robots usually operate in dynamic and unstruc-

tured environments, they should be robust, adaptive, and reactive under various

changing operation conditions.

iii



We propose online hierarchical optimization-based planning and control method-

ologies for a rescue robot to execute a given mission in such a highly unstructured

environment. A large number of degrees of freedom is provided to robots in or-

der to achieve diverse kinematic and dynamic tasks. However, accomplishing such

multiple objectives renders on-line reactive motion planning and control problems

more difficult to solve due to the incompatible tasks. To address this problem, we

exploit a hierarchical structure to precisely resolve conflicts by creating a priority

in which every task is achieved as much as possible according to the levels. In par-

ticular, we concentrate on the reasoning about the task regularization to ensure

the convergence and robustness of a solution in the face of singularity. As robotic

systems with real-time motion planners or controllers often execute unrehearsed

missions, a desired task cannot always be driven to a singularity free configura-

tion.

We develop a generic solver for regularized hierarchical quadratic programming

without resorting to any off-the-shelf QP solver to take advantage of the null-space

projections for computational efficiency. Therefore, the underlying principles are

thoroughly investigated. The robust optimal solution is obtained under both equal-

ity and inequality tasks or constraints while addressing all problems resulting from

the regularization. Especially as a singular value decomposition centric approach is

leveraged, all hierarchical solutions and Lagrange multipliers for properly handling

the inequality constraints are analytically acquired in a recursive procedure. The

proposed algorithm works fast enough to be used as a practical means of real-time

control system, so that it can be used for online motion planning, motion control,

and interaction force control in a single hierarchical optimization.

Core system design concepts of the rescue robot are presented. The goals of the

robot are to safely extract a patient and to dispose a dangerous object instead of



humans. The upper body is designed humanoid in form with replaceable modu-

larized dual arms. The lower body is featured with a hybrid tracked and legged

mobile platform to simultaneously acquire versatile manipulability and all-terrain

mobility. Thus, the robot can successfully execute a driving task, dangerous object

manipulation, and casualty extraction missions by changing the pose and modu-

larized equipments in an optimized manner.

Throughout the dissertation, all proposed methods are validated through ex-

tensive numerical simulations and experimental tests. We highlight precisely how

the rescue robot can execute a casualty extraction and a dangerous object disposal

mission both in indoor and outdoor environments that none of the existing robots

has performed.

Keywords: Hierarchical optimization, regularization, singularity robustness, pri-

ority, inequality constraint, rescue robot.
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g, ġ task function and time derivative of task function

ρ regularization coefficient

xxv



Notation Meaning

e, e∗ task error and optimal task error vectors

Dk k level regularization matrix

Zk null space basis matrix

Yk row space basis matrix

Y k augmented row space basis matrix [Y1, · · · ,Yk]

σ singular values

Σ diagonal matrix composed of singular values σ1, . . . , σl

Σ−1 inverse matrix of Σ

J† Moore-Penrose generalized inverse matrix of J

J ] Reflexive generalized inverse matrix of J

Q triangular matrix of complete orthogonal decomposition

Ik k level identity matrix with an appropriate dimension

µ Lagrange multiplier vector

M∗ Lagrange multiplier matrix

W working set

(i) iteration number of active set method

cst(k, r) rth constraint of the level k

gA ≺ gB priority order: gA task has higher priority than gB



Notation Meaning

K, L position and velocity gain matrices

df , f desired and measured forces

C Compliance gain matrix of force control

δ Output of force controller

G stiffness matrix of the environment

r environment’s rest position

t time





1
Introduction

1.1 Motivations

Striking developments of humanoid and field robotics have taken place recently.

Nowadays, the roles of robots are no longer limited to the automaton in the indus-

trial process but are changing into explorers for hazardous, harsh, uncooperative,

and extreme environments. A new generation of robots has emerged that shows

great promise in being able to accomplish complex tasks associated with human

behavior.

For example, DARPA Robotics Challenge (DRC) has spawned real world robots

and accelerated relevant technology advancement [1, 2, 3, 4, 5]. DRC has a sce-

nario for a large-scale disaster response given the hazard involved and the quick

response needed. Robots can be one of the best solutions in mitigating such events

1
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in a safe and timely manner. As these robots usually operate in dynamic and un-

structured environments, they should be robust, adaptive, and reactive under var-

ious changing operation conditions. However, DRC shows that there are still chal-

lenging problems including falls, failed attempts at tasks, long periods of robot

inactivity, and operator errors, so that it seems to be waiting for a solution for

real world robotic applications [6]. Moreover, these robots cannot show the fast

and stable mobility while traversing on a wide variety of rough terrains [7]. In

this dissertation, we propose real-time optimization-based hierarchical control al-

gorithms and novel hardware design concepts for a robot to reactively perform a

rescue mission in such a highly unstructured environment.

The general hypothesis that the movement of humans and animals are optimal

is one of the fundamentals of bionics. For many biological systems, it has long been

observed that motion control can likely be the result of their optimized process,

and it comes from a life long learning process. For example, the acquisition of

fundamental motor skills in sports is to efficiently synthesize and arrange multi-

ple optimized motion tasks such as locomotion, manipulation, and stability under

the physical constraints. Locomotion tasks can include walking, running, jumping,

hopping, and slide. Manipulation tasks are throwing, catching, kicking, striking,

trapping, and dribble. Finally, stability skills are such as balance, twisting, turn-

ing and bending, and physical constraints are joint angle ranges and torque lim-

its. These motion tasks are also differently classified according to the biomechanics

perspective [8].

The dexterous human skills refers to synthesizing the multiple optimized mo-

tion tasks in an optimized manner and including decision making in case of con-

flicts between the tasks. There are more important and less important tasks, and

the hierarchy is maintained or even changed depending on situations. These skills
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are developed throughout the lifespan by participating in physical activity.

Humans and humanoid robots are multi-body systems having much in com-

mon. The large number of degrees of freedom (DoF) allows the humans and hu-

manoid robots to adapt to a variety of environments and to execute several tasks

skillfully at the same time. Thus, modern intelligent humanoid and articulated

robots often attain their tree-like mechanical structure to simultaneously achieve

diverse kinematic and dynamic tasks [9]. The motion tasks or primitives of a hu-

manoid robot are the behaviors of the hands, legs, head, center of gravity, body

posture, and physical constraints.

However, accomplishing such multiple objectives renders on-line reactive mo-

tion planning and control problems more difficult to solve. Because the objectives

typically described in the operational space and configuration space are often con-

flicting, it can lead to a robot configuration in which none of these tasks is exactly

satisfied [10, 11, 12, 13]. A decision making emerges to address the incompatible

tasks, and we now describe this problem in more detail. In what follows, we use

the constraint, objective, and task interchangeably.

1.2 Related Works and Research Problems for Hierarchical

Control

1.2.1 Classical Approaches

A solution to address the conflicting tasks is to impose weights according to the

importance of the tasks [14, 15], where the objective function can be a weighted

sum of multiple costs. Physical constraints such as joint operation range and mo-

tor torque limits should be always satisfied regardless of motion tasks, however
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this approach does not satisfy any objectives exactly inversely proportional to the

weight. Moreover, the selection of a suitable weight depending on the task varia-

tions is very difficult and time consuming [16]. For instance, the weight employed

for the manipulation tasks may be completely different from the weight for the

locomotion tasks.

Another well-known strategy is the use of a hierarchical structure to precisely

resolve conflicts by creating a priority [17, 18]. This resolution strategy has been

widely used for controlling redundant manipulators and humanoid robots, where

every task is achieved as much as possible at different priority level without inter-

fering with the fulfillment of the higher priority tasks [19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33]. The task-priority framework allows the simultaneous

execution of multiple objectives in a hierarchical manner, analogous to natural hu-

man motion [34, 35]. However, a significant drawback of the classical prioritization

algorithm is its inability to explicitly incorporate inequality tasks while guarantee-

ing singularity robustness [16, 36].

1.2.2 State-of-the-Art Strategies

A direct approach to dealing with inequality constraints is to take each constraint

into quadratic program (QP) and solve each level of QP sequentially using an off-

the-shelf QP solver [37, 38, 39, 40, 41, 42]. This cascade-QP is computationally

inefficient because the level k optimization problem is first solved in the kth QP,

and then repeatedly solved at each of the following levels as a constraint. Further-

more, when advancing within the hierarchy, the computation time also increases

because of the increased size of the augmented constraint and the iterative process

used to find the optimal active set.



1.2. Related Works and Research Problems for Hierarchical Control 5

At each level QP, the optimal active set may be completely different. For in-

stance, suppose that a humanoid robot manipulates a heavy object with dual arms

in the front. When the dual arm task is solved, the center of mass inequality con-

straint is activated to keep the point inside the support polygon. In the next lower

level, the pelvis is positioned on the back, and then the front center of mass posi-

tion constraint is deactivated. The active set method can activate and deactivate

a constraint several times as moving along the hierarchy or cascade, and finally

the repetition of all these iterative processes can be inefficient.

This shortcoming is tackled by hierarchical quadratic program (HQP) [43, 44].

The HQP algorithm exploits the prioritized solution computed using a complete

orthogonal decomposition (COD) and the null space projections. Thus, by consid-

ering all level tasks at once, the algorithm can find the solution more than five-

times faster than the cascade-QP and even faster than a weighted least-squares

optimization [44, 45]. The HQP method is known to be 10 times faster than the

classical method of [18] for an equality constrained problem. Despite its outstand-

ing computational efficiency, HQP is of limited utility in the real world because

singularity robustness is not guaranteed.

As robotic systems with real-time motion planners or controllers often execute

unrehearsed missions, a desired task cannot always be driven to a singularity free

configuration. At near the singularity, a large, unpredictable, and discontinuous

motor torque may cause physical damage to the robot and its environment, or

even inadvertently bring harm to humans. The most serious problem of singularity

is not at singular points themselves, but rather in the neighborhood of singular

points. In the vicinity of singularity, even for a small change of the output, an

excessive change of the input is often required. The inversion process inherently

suffers from this sensitivity close to singular points. When avoiding the singularity
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region, the reachable space of a robot is significantly reduced.

As an alternative approach for hierarchical optimization, a trust region method

is utilized, although a major difficulty is determining a suitable size of the trust

region for a real-time control system [16, 46]. Thus, instead of recalculating solu-

tions with a different size of the trust region, an empirical rule is used within a

limited number of iterations. If the trust region is too small, the solution of the

model may not be close to the optimal point, although it can be close enough to

the optimal point with a substantial step. Otherwise, if the radius is too large,

the solution can be far from the optimal point, and another iteration should be

performed with the smaller region.

Regularized hierarchical differential dynamic programming is suggested where

the optimal control framework, i.e. receding horizon control, is exploited by es-

tablishing strict task prioritization between the cost functions [47]. However, the

computation time is too long for a fast on-line control system because one iteration

takes 1.3 s and dozens of iterations are needed until the convergence is obtained.

At each level, the algorithm involves iterating forward pass computing the cost of

all tasks for a given locally optimal control policy, and it is followed by a backward

pass which finds a locally optimal solution. The two processes are based on the

differential dynamic programming and iterative linear quadratic regulator (iLQR)

[48, 49].

Machine learning approaches can make use of hierarchical structure, but these

studies often focus on the machine learning itself for learning operational space

control [50] or manipulability transfer [51]. Therefore, they do not investigate hi-

erarchical motion control under the inequality constraints.

Kinematic singularity problem can be addressed by forward dynamics approach
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[52]. Forward dynamic simulation and an impedance controller are utilized to gen-

erate a stable joint reference trajectory for a given task space trajectory. However,

the control structure is complex. Because the controller is composed of forward

dynamic control, nonlinear robust inner-loop compensator for calculating model

response [53], and stable PD controller given by [54]. Moreover, this forward dy-

namics scheme for singularity robustness is only applied to non-redundant robotic

manipulators [52].

1.2.3 Research Problems

In general, in order to penalize such a large control input or solution and en-

sure the convergence, regularization is widely used in robotics, optimal control,

numerical optimization, and machine learning with slightly different goals but in

a similar way. In numerical optimization, the regularization is leveraged to guar-

antee good feasibility and convergence by preventing ill conditioning of the it-

eration matrix with small values of regularization coefficients [55, 56]. For ma-

chine learning and parameter identification, regularization plays an important role

that allows complex models to be trained on limited size of data sets, thereby

adding restrictions on the parameters in order to reduce the generalization error

[57, 58, 59, 60]. Regularization of robotics and optimal control also penalizes the

norm of the solution or control input but takes much larger coefficient due to the

physical limit of actuators. As regularization is invasive to control performance, it

has a strong relationship with robustness. Thus extensive studies have been carried

out [61, 62, 63, 64, 65, 66].

Despite of its importance, singularity robustness is not explicitly discussed in
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an inequality-constrained hierarchical optimization due to the mathematical com-

plexity [46]. Indeed, it is known to be an open problem to seamlessly integrate reg-

ularization with inequality-constrained hierarchical optimization [16, 36]. To achieve

singularity robustness, a widely used and powerful approach would be to replace

the pseudo inverse with the damped least-squares (DLS) inverse in the solution

obtained from unregularized equality-constrained optimization [62, 63, 67, 68, 69].

Although the HQP algorithm without regularization has also adopted this DLS

strategy, the mixed problem of task regularization and inequality-constrained hier-

archical optimization has not been thoroughly investigated [44, 70, 71]. Hereafter,

we refer to this as DLS-HQP, which simply replaces the pseudo inverse in the

solution with the DLS-inverse. The DLS-HQP approach does not formulate a reg-

ularized optimization problem nor address difficulties resulting from regularization

such as a non-convexity, regularization-induced errors, difficulty to find Lagrange

multipliers, and not leaving redundant resources from higher to lower levels. Es-

pecially, we show that, without considering the regularization errors in Lagrange

multipliers, the optimization algorithm brings about a cycling in the neighborhood

of singularity, and it yields the same solution and working set repeatedly to an

earlier iteration [16, 55]. Moreover, the algorithm cannot properly deactivate an

inequality constraint.

The authors who proposed the HQP algorithm posed this singularity robust-

ness problem resulting from HQP or DLS-HQP as follows [16]: “The solutions to

the non-regularized prioritized problem (HQP in this thesis) can be obtained very

efficiently, with the help of specific matrix factorization and lexicographic active set

methods when handling inequality constraints, which do not apply to the regularized

case [44, 45]. An advantageous aspect of regularization however is that it precludes

ill-conditioning when approaching singularities, and ill-conditioning can prevent the
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proper termination of the active set methods used to handle inequality constraints,

by inducing a cycling in their iterations.”

In [36], the same problem is also pointed out: “However, the HQP solver is

also very accurate, which means that for highly ill-conditioned problems, it will

doubtlessly answer with very high-value control. This is not acceptable in robotics,

where we generally do not want to apply a 1015rad/s velocity on the robot joints

because the target to grasp is 1cm too far from the robot. ... However, we are not

able yet to propose an extension of this regularization to an inequality HQP. In par-

ticular, we did not find yet a good solution to take into account the regularization

in the active-search loop.”

In this dissertation, we are going to address this problem by tightly integrating

regularization and inequality-constrained hierarchical optimization for real-time mo-

tion planning and control.

1.3 Robust Rescue Robots

While most of DRC teams use bipedal humanoid robots, some pursued statically

stable hybrid mobile platform with a combination of legs and wheels. As the legged

robots are able to strategically choose contact points on the ground, they can

move even on really rough terrain [72]. However, most of the advanced walking

humanoid robots still suffer from precise balancing control on irregular terrain,

and they are apt to fall down while doing tasks as shown in DRC [7]. On the

other hand, the robots with hybrid mobile platform showed highly successful re-

sults by utilizing a pose transformation. These kinds of robots include CHIMP,

RoboSimian, DRC-Hubo, and Momaro as presented in Figure 1.1.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 1.1: Existing rescue robots with mobile platform: (a) CHIMP (CMU Highly

Intelligent Mobile Platform) (b) RoboSimian (c) DRC-Hubo (d) Momaro (e)

RoNA (f) Bear (g) RIBA

CHIMP placed third in the DRC finals. It is designed to maintain static stabil-

ity to avoid balancing control [73]. As the robot is equipped with powered tracks

on its arms and legs, and it can move over uneven terrain. When the manipula-

tion task execution is required, CHIMP stands up on two legs and manipulates an

object with the other two arms as shown in Figure 1.1. CHIMP does not perform

any bipedal walking motions.

RoboSimian is a statically stable quadrupedal robot and showed its robustness

and versatility with an apelike shape. Due to the four generic limbs, it can execute

manipulation tasks and drive with four wheels on the limbs [74]. DRC-Hubo was

the winner of the DRC finals. This adaptable robot takes advantage of bipedal
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walking and driving over flat terrain using wheels incorporated into its knee and

ankles. DRC-Hubo transforms between a standing posture for walking and a kneel-

ing posture for driving [75, 76]. As the Momaro robot can drive omnidirectional,

it can move in restricted spaces. With six limbs, two are used for manipulation

and the remaining four legs are utilized for locomotion [77].

As you can see from the robots mentioned above, a hybrid mobile platform

provides a large, stable, and flexible support polygon, and the statically stable

platform is advantageous for movement in various terrain. However, most impor-

tantly, these DRC robots do not attain all-terrain mobility on the challenging en-

vironments and do not have a high load carrying capacity for executing rescue

missions.

Worldwide there are a few robots capable of lifting and transferring an injured

person. As a modern rescue robot, a battlefield extraction assist robot (BEAR) is

developed by Vecna Robotics [78]. It is known that BEAR can lift over 227kg us-

ing the hydraulic actuators. However, until now it has not shown the most crucial

capability to lift a patient lying on the ground and to operate in a real unstruc-

tured environment as far as the author knows.

There is another well known mobile rescue robot whose name is RoNA (RObotic

Nurse Assistant). The purpose is to lift and transfer a patient from a bed to chair

and reposition the patient on the bed [79, 80]. It is able to lift up to 136kg and

utilizes a holonomic mobile platform that move laterally and diagonally and ro-

tate within its own footprint. However, this holonomic platform is usually suitable

for only indoor environments, and the outdoor application is severely restricted.

A nursing-care assistant robot RIBA (Robot for Interactive Body Assistance) is

also woking only in an indoor environment [81]. The configurations of these mo-

bile rescue robots are shown in Figure 1.1.
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In summary, these robots do not attain both dexterous manipulability and all-

terrain mobility to operate in a highly unstructured environment.

1.4 Research Goals

In this dissertation, we propose new hardware design concepts and optimization-

based control strategies for the rescue robot to reactively operate in a highly un-

structured environment. We develop a regularized hierarchical quadratic program

(RHQP) solver for real-time motion planning and control without resorting to any

off-the-shelf optimization software for fast transcription of the objectives into the

full-body joint space motion. Particularly, we are reasoning about task regular-

ization to ensure the convergence and robustness of the solution in the face of

singularity.

We find the robust optimal solution for hierarchical least-squares optimization

under both equality and inequality tasks. As a singular value decomposition (SVD)

centric approach is leveraged, all hierarchical solutions and Lagrange multipliers

for properly handling the inequality constraints are analytically obtained in a re-

cursive procedure. Moreover, we modify the active set method for fast compu-

tation, and the proposed algorithm works fast enough to be used as a practical

means of real-time motion control system. A novel system design concepts of a

rescue robot are presented. Although field robotics is concerned with the latest

robotic engineering technologies, we concentrate on the core design concepts that

can be shared with all other robots.

Throughout the thesis, we demonstrate the effectiveness of the proposed hier-

archical optimization solver and the design concepts through extensive numerical

simulations and experimental tests. We highlight precisely how the rescue robot
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can successfully execute a casualty extraction and an explosive ordnance disposal

in both indoor and outdoor environments that none of the existing robots has

performed.

We now describe in more detail the main contributions of this thesis.

1.5 Contributions of This Thesis

1.5.1 Robust Hierarchical Task-Priority Control

We thoroughly investigate the underlying principles of regularized hierarchical op-

timization for real-time motion planning and control in a single hierarchical loop.

While addressing all of the problems mentioned in Section 1.2, the RHQP solver

guarantees the following advantages despite of the introduction of regularization.

• Singularity Robustness

For singularity robustness, task regularization is considered from the very be-

ginning of the hierarchical optimization. We progressively explore the strate-

gic components in a unified and consistent way to integrate regularization

and inequality-constrained hierarchical optimization. This challenging prob-

lem is also posed in [16, 36], but the mixed problem is not fully discussed

due to the mathematical complexity such as a non-convexity, regularization-

induced errors, difficulty to find Lagrange multipliers, and not leaving redun-

dant resources from higher to lower levels. To tackle the problems in a uni-

fied and computationally efficient way, a singular value decomposition centric

approach is used. Therefore, the robust optimal solutions and Lagrange mul-

tipliers are recursively and analytically obtained.

• Inequality Constraint Handling
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For what concerns the most important aspects of inequality constraints, it

can be recognized that inequalities are active or not, depending on the sit-

uation. Because the resource or degrees of freedom should be determined to

perform given active inequality tasks. A naive way to deal with the inequal-

ity constraint is to clamp or activate it as the equality constraint on the limit

value to restrict any further motion if a constraint is violated [67]. However,

when to relax the clamped constraint is problematic.

The RHQP solver is able to precisely control inequality constraints using a

modified active set method with Lagrange multipliers. The modified algo-

rithm is simple and fast because it does not use a step direction nor a step

length usually used in numerical optimization. Moreover, it operates regard-

less of whether the initial point is feasible or not for an initial working set.

The modified active set method focuses only on finding a blocking constraint

and deactivating an unnecessary constraint.

• Elimination of Cycling

A cycling means that the active set method does not move from the cur-

rent iterate, but returns the same solution and working set repeatedly to an

earlier iteration. It causes an infinite sequence [16, 41, 55, 82, 83, 84]. The

proposed algorithm finds the optimal solution and optimal active set without

showing any cycling and deactivates an unnecessary constraint at the right

time. We show that, without considering the regularization induced errors in

Lagrange multipliers, the algorithms such as HQP and DLS-HQP result in

a cycling in the neighborhood of singularity.

• Top-Most Priority of Physical Inequality Constraints
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Generally, an artificial potential function can be used to indirectly treat in-

equality constraint by projecting the function’s gradient in the null space of

the higher priority tasks as the least priority objective. Even far from the

constraints the potential function always influences on the whole DoF, and

therefore it is difficult to impose a high priority on the potential function.

For example, if joint angle ranges are expressed by the potential function

with the top-most priority, and then there is no redundant resource for the

lower level optimization. Top priority can be imposed on the potential func-

tion as the clamping method by activating the function on the limit value if

a constraint is violated [85]. However, when to deactivate it is still ambigu-

ous.

However, RHQP imposes the top-most priority on the physical inequality

constraints such a joint operation range. This eliminates the possibility that

the motion tasks violate the physical constraints.

• Computational Efficiency

As mentioned earlier in Section 1.2, the cascade-QP is computationally inef-

ficient because the level k optimization problem is first solved in the kth QP,

and then repeatedly solved at each of the following levels as a constraint.

Indeed, one of the most attractive features of the RHQP solver is that it

allows us to find the optimal solution very efficiently by considering all level’s

hierarchical tasks together with only one active set. The Lagrange multiplier

matrix eliminates the iterative process used to find each level optimal active

set.
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All necessary Lagrange multiplier and optimal solution are obtained in a re-

cursive procedure that exploits the result of the previous level to aid in ob-

taining the result for the current level. Consequently, under the equality and

inequality constraints, the proposed algorithm works fast. As the control fre-

quency is set at 1kHz for the rescue robot, the hierarchical optimization al-

gorithm should provide the calculated results every 1 ms. The average com-

putation time for a 19-DoF rescue robot is less than 0.1 ms on a typical

personal computer.

• Performance versus Robustness

We mathematically show that regularization requires for us to trade off ro-

bustness against performance. Because the priority task can interfere with

all following level tasks in spite of the absence of task confliction. This small

coupling error induced by regularization is the only price we have to pay

instead of guaranteeing convergence and robustness of the solution.

• Generalization of Hierarchical Quadratic Programming

We show that the optimal solutions of unregularized HQP in [44] can be

exactly recovered from the RHQP solutions by setting each level regulariza-

tion coefficient to zero. Therefore, we provide a generalization of the HQP

framework.

1.5.2 Design Concepts of Robust Rescue Robot

The ultimate goal of the rescue robot, Hurcules (HUmanoid ResCUe robot for

caLamity rESponse) is to extract an impaired person lying on the ground in the

battlefields or hazardous environments and to transfer him or her to a safe place.
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The other key mission is to dispose and transfer a dangerous or explosive object

instead of humans.

The important design concepts are presented to realize how a mechanical struc-

ture can be developed to have an effect to both manipulation capability and all-

terrain mobility. The Hurcules robot is uniquely designed for mobile manipulation

with statically stable platform, so that the robot can execute complex manipula-

tion tasks without concerning about balancing control. Yet the robot makes use

of a stable tank like posture when the versatile mobility is required.

The upper body of the robot is designed humanoid in form with replaceable

modularized dual arms. The lower body is featured with a hybrid tracked and

legged platform to simultaneously acquire versatile manipulability and mobility on

difficult terrain. As a result, the robot can efficiently perform a driving task, dan-

gerous object manipulation, and casualty extraction missions by changing the pose

and modularized equipments in an optimized manner.

1.5.3 Hierarchical Motion and Force Control

While maintaining all of the strength of RHQP as mentioned in 1.5.1, the RHQP

algorithm is extended to motion and force control. Interaction force control is

one of the crucial requirements for the successful manipulation tasks, and a re-

solved acceleration-based hierarchical approach is suitable for both motion and

force control utilizing accelerations, velocities, and positions. While modern hier-

archical solvers can handle motion and force control, the mixed problems of sin-

gularity robustness and inequality-constrained optimization are not thoroughly in-

vestigated [12, 13, 30, 31, 44, 71, 86, 87]. Nearly rank deficient Jacobians coming

from kinematic or algorithmic singularities lead to numerical instability, excessive
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joint accelerations, and large torques. These approaches may require that the sin-

gularity problem should be solved outside the control loop.

In order to address this problem in a single hierarchical control loop, we fo-

cus on the integration of the RHQP algorithm and the motion and force control

schemes. A spring-mass-damper system is realized with the additional operational

space inner position or velocity control loops. Then the force control is conducted

according to this controlled dynamical system by closure of the force control loop.

As often the force measurement is noisy, we do not directly use a derivative ac-

tion of the force measurement. Instead, the stabilizing damping effect is obtained

through the virtual damper implemented by the operational space velocity feed-

back. Therefore, the force control scheme requires a stabilizing PD control action

based on velocity and position measurements as well as force error. To achieve zero

steady-state force error, an integral action is often applied to the system. However,

integral action can lead to the slow response, wind-up, and reduced stability mar-

gin. Thus, instead of resorting to the integral action, we reject steady-state force

error by suitably designing the operational space dynamics.

The RHQP based motion and force control scheme is able to ensure singular-

ity robustness and proper handling of the inequality constraint. The effectiveness

is demonstrated through numerical simulations and experimental tests with the

position-controlled Hurcules robot. Consequently, a desired interaction force is reg-

ulated from the motion control schemes in conjunction with the outer force feed-

back loop so that the robot successfully extracts an injured lying on the ground.
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1.6 Dissertation Preview

Dissertation is organized as shown in Figure 1.2. Chapter 2 briefly describes the

task-priority motion planning and control framework. Chapter 3 is devoted to dis-

cussion on RHQP subject to both equality and inequality tasks. We recursively

obtain the singularity robust optimal solution, the optimal task error, hierarchi-

cally decomposed Jacobian matrix, and Lagrange multipliers while resolving all

difficulties resulting from regularization. In Chapter 4, we present the core design

concepts of the Hurcules rescue robot and then demonstrate the effectiveness of

the proposed RHQP solver through extensive numerical simulations and experi-

mental tests. The integration of the RHQP algorithm and the motion and force

control laws is the topic of Chapters 5. In Chapter 6, we conclude this dissertation

with a summary of our main results and discuss further research directions.
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2
Preliminaries for Task-Priority

Control Framework

2.1 Introduction

The task priority framework is suitable to handle the redundant problems for man-

aging multiple tasks. We briefly describe a task-priority motion planning and con-

trol framework from an optimization perspective for further understanding of the

proposed RHQP algorithm. By formulating the hierarchical problem in the least-

squares optimization [43, 88], the optimal solution is derived in a unified and con-

sistent way, and therefore it can be naturally extended to RHQP. We focus on

finding the solution and null space projecting matrix in a recursive fashion to re-

duce the matrix dimension and number of usage of SVD for fast computation. To

obtain the null space projecting matrix in a recursive form, Greville’s method is

leveraged. It provides a means to compute the Moore-Penrose generalized inverse

by resorting to a finite iterative procedure [89].

21



22 Preliminaries for Task-Priority Control Framework

High Level Planning

(User Input)
Rescue Mission

1st Priority Task

Joint angle range

2nd Priority Task

Left hand pose

Right hand pose

3rd Priority Task

Swivel angle

5th Priority Task

Gaze angle

1st Priority 

Constraint

2nd Priority 

Task

Null space

projector of 

task #1

3rd Priority 

Taask

Null space

projector of 

task #1 and #2

Hierarchical Motion Planning and Control

...

Robot Control

Sensor

M
o
n
ito
rin
g

Hierarchical Optimization

Swivel angle

4th Priority Task

Pevis pose

 ds
k

Task space desired 

velocity command

Joint Space 

Motion Control

.
Optimal velocity

solution

(Joint space reference)

 q
k

 *

Hand Pose Control Swivel Angle ControlPelvis and Gaze Angle Control

.

Body posture

 q
Joint angle

Forward map

  s
k
=φ

k
(q)

Figure 2.1: Real-time control block diagram for the hierarchical motion planning

and control framework. As the control frequency is set at 1kHz for the Hurcules

robot, a hierarchical optimization algorithm should provide the results every 1 ms.
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2.2 Task-Priority Inverse Kinematics

The task-priority strategy has been widely used for controlling redundant manipu-

lators and humanoid robots, where every task is accomplished as much as possible

at different priority level [17, 18, 20, 27, 67]. As the hierarchical strategy is to es-

tablish priority between tasks, the lower level task produces only a self-motion

which does not interfere with the fulfillment of the higher priority tasks. This im-

plies that the lower priority task is satisfied only in the null space of the higher

priority task, and the concept is extended to multiple tasks.

The schematic block diagram for the task priority framework is presented in

Figure 2.1. The index k (1 ≤ k ≤ p) refers to the level, where 1 denotes the highest

priority, and p is the least rank of priority or total number of levels. The index

reflects the relative importance among tasks. As the control frequency is set at

1kHz for the Hurcules robot, a hierarchical optimization algorithm should provide

the results every 1 ms. In what follows, we use the constraint, objective, and task

interchangeably, and the effector designates a frame or bodies to which we impose

tasks.

From now on, we explain the task-priority inverse kinematics problem from the

least-squares optimization perspective. Considering the following general k level

task characterized by the pose of an effector as a function of the joint variables

sk = φk(q), (2.2.1)

where the vector sk ∈ Rmk is the position vector defined in the task space and the

vector q ∈ Rn is a joint angle. As the vector function φk(q) is generally nonlinear,

the linear differential relation is usually used

ṡk = Jk(q)q̇ (2.2.2)
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with q̇ the joint velocity, ṡk is the task space velocity vector, and Jk is the Jaco-

bian matrix

Jk(q) =
∂φk(q)

∂q
∈ Rmk×n. (2.2.3)

The Jacobian matrix allows the effector’s linear and angular velocities to be de-

scribed as a function of the joint variables with respect to the reference frame.

The inverse kinematic problem is to find the joint variable q̇ corresponding to a

given effector position and orientation ṡk in (2.2.2).

In the case of kinematic structures with a large number of degrees of freedom,

solving a set of such linear equations (2.2.2) often appears to be under-determined,

over-constrained or may be incompatible. The task hierarchy establishes a prior-

ity or hierarchy between the tasks, and it usually utilizes task Jacobian and its

null space projection operators. Consequently, the hierarchy implies that each k

level equation (2.2.2) is solved only in the null space of the priority tasks with

the number of {1, · · · , (k − 1)}.

Let us consider the following least-squares optimization problem with equality

constraints

min
q̇k

1

2
||Jkq̇k − dṡk||2 (2.2.4)

subject to Jk−1q̇k = Jk−1q̇
∗
k−1 (2.2.5)

where the vector dṡk ∈ Rmk is the desired velocity vector defined in the task space,

q̇∗k−1 is the optimal solution for {1, · · · , (k−1)} tasks, and the augmented Jacobian

matrix is

Jk =


J1

...

Jk

 . (2.2.6)
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The optimization problem with the quadratic objective function (2.2.4) and the

linear constraint (2.2.5) is called quadratic program (QP) [55, 56]. The problem

now is to obtain the optimal solution q̇∗k ∈ Rn that satisfies the constraint (2.2.5)

and minimizes the objective function (2.2.4) in the least-squares sense. The con-

straint implies that the solution q̇∗k should not change all previous constraints rep-

resented by the augmented task Jacobian Jk−1 and the previous level optimal so-

lution q̇∗k−1. Thus hierarchical structure ensures that the j level task is not affected

by the k level for all j < k.

A generic solution to this least-squares problem is

q̇k = q̇∗k−1 + Pk−1tk (2.2.7)

where tk is an arbitrary parameter vector to satisfy additional objectives with the

lower priority. Pk−1 ∈ Rn×n is a null space projecting matrix of the augmented

Jacobian Jk−1 and it is calculated by [18]

Pk = I − J†kJk (2.2.8)

where I ∈ Rn×n is the identity matrix and J†k is the pseudo-inverse of a matrix

Jk satisfying four criteria also known as Moore-Penrose conditions [90, 91]

JkJ
†
kJk = Jk, (2.2.9)

J†kJkJ
†
k = J†k , (2.2.10)

(JkJ
†
k)T = JkJ

†
k , (2.2.11)

(J†kJk)
T = J†kJk. (2.2.12)

In order to find the solution, the constrained minimization problem can be
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transformed into the unconstrained optimization problem by substituting the so-

lution (2.2.7) into (2.2.4). The result is

min
tk

1

2
||Jkq̇∗k−1 + JkPk−1tk − dṡk||2. (2.2.13)

The constraint (2.2.5) is satisfied by the solution (2.2.7). The solution t∗k minimiz-

ing (2.2.13) is directly obtained by taking the partial derivative with respect to

tk. Then we have

t∗k = (JkPk−1)† dṡk − (JkPk−1)†Jkq̇
∗
k−1. (2.2.14)

Substituting (2.2.14) into (2.2.7) leads to the solution as follows:

q̇∗k = q̇∗k−1 + Pk−1(JkPk−1)†(dṡk − Jkq̇∗k−1). (2.2.15)

The matrix Pk−1(JkPk−1)† can be rewritten as:

Pk−1(JkPk−1)† = Pk−1(JkPk−1)T ((JkP k−1)(JkPk−1)T )−1

= Pk−1Pk−1J
T
k ((JkP k−1)(JkPk−1)T )−1

= P T
k−1J

T
k ((JkP k−1)(JkPk−1)T )−1

= (JkPk−1)†, (2.2.16)

where Pk is both symmetric (P T
k = Pk) and idempotent (PkPk = Pk). From

(2.2.16), the equivalent solution to (2.2.15) would be

q̇∗k = q̇∗k−1 + (JkPk−1)†(dṡk − Jkq̇∗k−1). (2.2.17)

This recursive solution has the same form proposed by [18].

For the justification of the special form of (2.2.17), we suppose neither Jk nor

JkPk−1 is singular. Let us consider k-th task. Substituting the solution (2.2.17)
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into the k level task as follows:

Jkq̇
∗
k = Jkq̇

∗
k−1 + Jk(JkPk−1)†(dṡk − Jkq̇∗k−1)

= dṡk, (2.2.18)

where we use following relation by referring to Pk−1(JkPk−1)† = (JkPk−1)† in

(2.2.16)

Jk(JkPk−1)† = (JkPk−1)(JkPk−1)† = I. (2.2.19)

Hence, from (2.2.18), the k-th task is satisfied by the optimal solution (2.2.17).

Now think of (k − 1)-th task

dṡk−1 = Jk−1q̇
∗
k−1. (2.2.20)

The (k − 1)-th task should be satisfied if q̇∗k−1 is replaced with q̇∗k as follows:

dṡk−1 = Jk−1q̇
∗
k. (2.2.21)

To prove this, we substitute the optimum (2.2.17) into the right hand side of

(2.2.21), and we obtain the result as

Jk−1q
∗
k−1 + Jk−1(JkPk−1)†(dṡk − Jkq∗k−1) = dṡk−1 (2.2.22)

where

Jk−1(JkPk−1)† = 0. (2.2.23)

Since Pk−1 is the projector onto the null space of the Jacobian for {1, . . . , k− 1}.

Therefore, the optimal solution (2.2.17) dose not disturb the higher priority tasks.

A singularity occurs at which the task Jacobian is rank-deficient compared to

its nominal rank, and the mobility is reduced. For example, if Jk is singular by
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itself, the configuration is termed a kinematic singularity. Otherwise, if each level

Jacobian has full row rank but more than two Jacobians together become singular,

it is referred to an algorithmic singularity. The corresponding tasks conflict [18,

68]. The incompatible objectives emerge in the form of linearly dependent rows of

the Jacobian matrices.

The most serious problem of singularity is not at singular points themselves,

but rather in the neighborhood of singular points. In the neighborhood of singular

points, even for a small change of dṡk, an excessive change of q̇k is often required.

Generally, the inversion process inherently suffers from this sensitivity close to sin-

gular points. Moreover, the singularity can significantly reduce the reachable space

of the robots.

2.3 Recursive Formulation of Null Space Projector

By leveraging SVD, we can find the null space projector in a recursive way to

enhance a computational efficiency. The SVD of the matrix of JkPk−1 ∈ Rmk×n

in (2.2.17) is

JkPk−1 =
[
Uk Vk

]Σk 0

0 0

Y T
k

ZT
k

 (2.3.24)

= UkΣkY
T
k (2.3.25)

where [Uk Vk] and [Yk Zk] are orthonormal square matrices and Σk ∈ Rlk×lk is

the diagonal matrix composed of the singular values σ1, . . . , σlk . In terms of this

decomposition, Uk ∈ Rmk×lk and Vk ∈ Rmk×(mk−lk) are the bases of the column

and left null space of JkPk−1, respectively. Each Yk ∈ Rn×lk and Zk ∈ Rn×(n−lk)

corresponds to the basis of row and null space. As we do not assume that JkPk−1
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is full rank, lk may be less than both mk and n. The expression of (2.3.25) is

known as the thin SVD.

The pseudo-inverse is obtained directly:

(JkPk−1)† =
[
Yk Zk

]Σ−1
k 0

0 0

UT
k

V T
k

 (2.3.26)

= YkΣ
−1
k U

T
k (2.3.27)

where the inverse matrix Σ−1
k is cheaply obtained by inverting each main diagonal

element of Σk. The advantage of the SVD is that it gives a completely reliable

means to solve least square problems even if the matrix does not have full rank

[92] and also provides the condition number for us to conveniently monitor the

feasibility of the solution.

It is computationally wasteful if we do not use any information of Pk−1 for

acquiring Pk. Thus we explore to obtain the recursive form of Pk by using the

result of the previous null space projector Pk−1. The recursive calculation of Pk

is firstly proposed in [10, 67]. In this thesis, we derive it in a slightly different way

for simplicity. Toward this recursive form we use Greville’s method that provides

a means to compute the Moore-Penrose generalized inverse [89].

At first, we need the matrix Jk to be partitioned as

Jk =

Jk−1

Jk

 . (2.3.28)

Assume that JkPk−1 6= 0, and then generalized inverse of the partitioned matrix
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can be written as follows [89]:

Pk = I − J†kJk

= I −

Jk−1

Jk

† Jk−1

Jk


= I −

[
J†k−1 − (Jk − JkJ†k−1Jk−1)†JkJ

†
k−1 (Jk − JkJ†k−1Jk−1)†

]Jk−1

Jk


= I − J†k−1Jk−1 −

(
Jk(I − J†k−1Jk−1)

)†
JkJ

†
k−1Jk−1 +

(
Jk(I − J†k−1Jk−1)

)†
Jk

= I − J†k−1Jk−1 − (JkPk−1)†Jk J
†
k−1Jk−1 + (JkPk−1)†Jk

= I − J†k−1Jk−1 + (JkPk−1)†(JkPk−1)

= Pk−1 − (JkPk−1)†JkPk−1, (2.3.29)

where Greville’s method is exploited in the second line. If the matrix decomposi-

tion (2.3.25) and (2.3.27) are used, then from (2.3.29) more computationally effi-

cient formula is acquired as follows:

Pk = Pk−1 − YkY T
k . (2.3.30)

In this way, the previous computational effort for Pk−1 is used to good advantage

and not wasted. However, the computation of the null space projecting matrix

given in (2.2.8) requires two SVD calculations to find J†k and (JkPk−1)†. Moreover,

the size of the augmented Jacobian Jk increases as moving along the hierarchy.

It should be clear that the size of augmented projection matrix Pk ∈ Rn×n

keeps a constant matrix size for all k, and the number of arithmetic operations

for JkPk−1 do not decrease as the hierarchy advances sequentially (as k increases).

In the next chapter, computationally more efficient method will be described by

using the basis matrix where the computational effort decreases as k increases.
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2.4 Conclusion

We described the task-priority algorithm to deal with multiple conflict tasks. The

hierarchical inverse kinematics from the least-squares optimization perspective is

presented for further understanding of the proposed RHQP algorithm. For com-

putational efficiency, the null space projecting matrix is found in a recursive form

based on the Greville’s method. However, the usage of the null space basis to be

described in the next chapter is more efficient.

The task-priority resolution strategy has been widely used for controlling re-

dundant manipulators and humanoid robots. However, a significant drawback of

the classical prioritization algorithm is its inability to explicitly treat inequality

tasks. A modern optimization-based control can handle the inequality constrained

problems by resorting to an off-the-shelf numerical optimizer, but it does not not

fully discussed the mixed problem of singularity robustness and inequality con-

strained problem while guaranteeing computational efficiency.

For real world robotic applications, the robustness and safety issues and the

satisfaction of the physical constraints are undoubtedly the first and foremost prob-

lem that should be ensured. Because, near singular configurations, a desired task

space motion can often requires extremely large configuration space control input.

If the singularity robustness is not fully guaranteed, it can damage the robot hard-

ware and the environment or even inadvertently hurt humans.

We are going to directly face with the singularity robust optimization prob-

lem by developing a generic solver for regularized hierarchical least-squares opti-

mization subject to both equality and inequality tasks. This proposed solver also
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eliminates the possibility that the motion tasks violate the physical inequality con-

straints. We do not use any off-the-shelf QP solver to take advantage of the null-

space projections for computational efficiency. In particular, the underlying prin-

ciples of the hierarchical optimization are thoroughly investigated.



3
Robust Hierarchical Task-Priority

Control

3.1 Introduction

Modern intelligent humanoid and articulated robots often attain their tree-like me-

chanical structure with a large number of DoF to simultaneously achieve diverse

kinematic and dynamic tasks [9]. As redundant degree of freedom can be con-

veniently exploited to satisfy a number of tasks or constraints, it provides more

dexterity and versatility to the robot. Singularity avoidance, obstacle avoidance,

compliant motion, and posture control are some examples of the tasks to be ad-

ditionally fulfilled along with the primary task [90].

The task space or operational space function approach proposes to design a

motion in a space dedicated to the task to be performed. Once the task space

motion is generated and then the remaining work is to translate this reference

into the configuration space motion. The transcription makes it clear that a fast

33
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and reliable solver is required for real-time motion planning and control. However,

on-line motion planning and control problems become difficult to solve due to the

complexity of the tree-like structure and various forms of constraints and tasks.

Moreover, as the multiple tasks are seldom orthogonal, they lead to conflicts re-

garding to their fulfillment.

The use of hierarchical or task-priority strategy for redundancy resolution has

been extensively studied since the early 1980s to precisely resolve conflicts by es-

tablishing a priority order among the tasks [17, 18, 91]. This method has been

widely used for controlling redundant manipulators, humanoid robots, and ani-

mation characters, where every task is achieved as much as possible at different

priority level without interfering with the fulfillment of the higher priority tasks

[20, 21, 22, 67, 39, 24, 27, 30]. However, a significant drawback of the classical

prioritization algorithm is its inability to explicitly incorporate inequality tasks.

A naive way to deal with an inequality constraint is to clamp or activate it

as the equality constraint on the limit value to restrict any further configuration

space motion if a constraint is violated [67]. However, when to relax the clamped

constraint is problematic. An artificial potential function can be used to indirectly

treat inequality constraint by projecting the function’s gradient in the null space of

the higher level tasks as the least priority objective. The potential function always

influences on the whole DoF, and therefore it is difficult to have a high priority.

For example, if joint angle ranges are expressed by the potential functions with

the top-most priority, and then there is no redundant DoF for the lower level op-

timization. Even though we can impose top priority on the potential function as

the clamping method by activating the potential function on the limit value [85],

when to deactivate it is still ambiguous as well.
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3.1.1 Motivations

Nowadays the rapid advances in computer technology certainly contribute to pop-

ularizing real-time optimization-based motion planning and control for complex

robotic systems. The powerful off-the-shelf QP solver enables to numerically solve

inequality-constrained hierarchical optimization problems [37, 38, 40, 41, 42]. This

cascade-QP can be computationally inefficient [37, 38]. Because the level k opti-

mization problem is first solved in the kth QP, and then repeatedly solved at each

of the following levels as a constraint. Furthermore, when advancing within the

hierarchy, the computation time also increases because of the increased size of the

augmented constraint and the iterative process used to find the optimal active set

for each level QP. Moreover, at each level QP of the cascade, the optimal active

set may be completely different.

For example, suppose that a humanoid robot manipulates a heavy object with

dual arms in the front. When the dual arm task is solved, the center of mass

inequality constraint is activated to keep the point inside the support polygon. In

the next hierarchy, the pelvis is positioned on the back, and then the front center

of mass position constraint is deactivated. The active set method may activate and

deactivate a constraint several times when moving along the hierarchy or cascade.

As a result, this repetition of all these iterative processes can be inefficient.

This computational inefficiency of the cascade-QP is tackled by hierarchical

quadratic program (HQP) proposed by [43, 44]. The HQP algorithm exploits the

prioritized solution computed using a complete orthogonal decomposition (COD)

and the null space projections to efficiently solve the equality and inequality con-

strained QP. Thus it can find the solution more than five-times faster than the

cascade-QP and even faster than a weighted least-squares optimization [44, 45].
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The HQP method is known to be 10 times faster than the classical method of

[18] for the equality constrained problem. Despite its outstanding computational

efficiency, HQP is of limited utility in the real world because the singularity ro-

bustness is not guaranteed.

3.1.2 Objectives

We are going to find a robust optimal solution for on-line hierarchical least-squares

optimization subject to both equality and inequality constraints. We focus our at-

tention on reasoning about task regularization to ensure the convergence and ro-

bustness of the solution in the face of singularity. The mixed problem of regular-

ization and inequality constrained hierarchical optimization has hardly been dis-

cussed due to the mathematical complexity such as a non-convexity, regularization-

induced errors, difficulty to find Lagrange multipliers, and not leaving redundant

resources from higher to lower levels. Task regularization is considered from the

very beginning of the problem and we address the problem by formulating regu-

larized hierarchical quadratic programming. Then we obtain the solution in a uni-

fied and computationally efficient way by leveraging singular value decomposition

(SVD) and the modified active set method.

Especially, a singular value decomposition centric approach is leveraged, and

therefore all hierarchical solutions and Lagrange multipliers for properly handling

the inequality constraints are analytically obtained. We mathematically show that

regularization requires for us to trade off robustness against performance, and the

optimal solutions of unregularized HQP in [44] can be exactly recovered from the

RHQP solutions by setting each level regularization coefficient to zero.

The RHQP solver allows us to find the optimal solution very efficiently by
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considering all level’s hierarchical tasks together with only one active set. The La-

grange multiplier matrix eliminates the iterative process used to find each level

optimal active set. We propose the modified active set algorithm which is simple

and fast. Because it does not use a step direction nor a step length usually used

in numerical optimization.

The active set method for solving an inequality constrained QP is to classify in-

equality constraints into active and inactive constraints. The active constraints are

treated as equality ones while the inactive constraints are ignored. Thus, this chap-

ter is organized as follows. We begin by introducing the task function approach.

The hierarchical optimization under the equality constraints is firstly investigated,

and then inequality-constrained optimization problem is solved. The effectiveness

and performance of the proposed RHQP solver are proved through numerical sim-

ulations with a simple mobile robot where the robustness and convergence of the

solution are guaranteed in the face of singularity.

3.2 Task Function Approach

The aim of the task function approach or operational space control is to express

the objective in the space dedicated to the task to be performed or output value

of a sensor. When executing multiple tasks simultaneously, the corresponding task

functions are grouped, sorted in priority order and then solved. Let q ∈ Rn be the

joint position or configuration vector of the robot and the task function gk : Rn →

Rmk be the control objective. The index k (1 ≤ k ≤ p) refers to the level, where 1

denotes the highest priority, and p is the least rank of priority or total number of

levels. The index reflects the relative importance among tasks. In what follows, we

use the constraint, objective, and task interchangeably, and the effector designates
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a frame or bodies to which we impose tasks.

The task function is given by

gk := sk − dsk, (3.2.1)

where

sk = φk(q). (3.2.2)

The vector dsk is the desired task such an effector pose and sk ∈ Rmk is the

position vector. The function φk(q) is a forward mapping from the configuration

space to the task space. As the map φk(q) is often nonlinear function of q without

trivial inverse, a linearized function is used

ġk = Jk(q)q̇ − dṡk, (3.2.3)

where

Jk(q) =
∂φk(q)

∂q
∈ Rmk×n (3.2.4)

is the task Jacobian and dṡk is the desired task space velocity. To bring the task

function to zero, a proportional correction is introduced such as

ġk := −Kkgk, (3.2.5)

and we thus get the following ordinary differential equation [38, 93]

Jkq̇ = −Kkgk + dṡk, (3.2.6)

where Kk is a positive definite (usually diagonal) gain matrix, and q̇ is a feasible

joint velocity to be determined. If the task is feasible, then the task function tends

to zero along the trajectory

ġk +Kkgk = 0 (3.2.7)
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Figure 3.1: A simple robot contains a mobile base that allows to move along the

horizontal axis with q1 and an arm of unit length connected by means of a revolute

joint with an angle q2. The first level objective is to reach a target point ds1 with

the arm’s horizontal position, and the second level task is to position the mobile

base at a specified point ds2.

with a convergence rate that depends on the eigenvalues of matrix Kk. It ensures

the exponential convergence of the configuration vector q to a limit q∗ while sat-

isfying asymptotically gk = 0.

We can express a set of linear equality constraints or tasks in (3.2.6) as Jkxk =

yk and inequalities as Jkxk ≤ yk. For the case of (3.2.6), yk := −Kkgk + dṡk can

be used. In fact, any collection of equality and inequality constraints with =, ≥,

and ≤ can be expressed in this form by simple rearrangement of the inequality.

To further clarify the concept of the task function, let us consider a simple

mobile robot. The robot contains the mobile base to move along the horizontal

axis with q1 and an arm of unit length connected by means of a revolute joint

with an angle q2 as shown in Figure 3.1. Suppose two tasks are assigned with a

desired effector’s pose ds. The first priority task is to reach a target point ds1 with
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the arm’s horizontal position s1 = q1 + cos(q2), and second level is to position the

mobile base s2 = q1 at a specified point ds2 as close as possible. The task function

in (3.2.1) is described as

g(q) =

g1

g2

 =

(q1 + cos q2)− ds1

q1 − ds2

 , (3.2.8)

and the associated augmented Jacobian matrix is

J2(q) =

J1

J2

 =

1 − sin q2

1 0

 . (3.2.9)

The vector y is specified as follows:y1

y2

 =

−K1g1 + ds1

−K2g2 + ds2

 . (3.2.10)

A singularity occurs at which the task Jacobian is rank-deficient compared to

its nominal rank, and the mobility is reduced. For instance, if Jk is singular by

itself, the configuration is termed a kinematic singularity. Otherwise, if each level

Jacobian has full row rank but more than two Jacobians together become singu-

lar, it is referred to an algorithmic singularity. These corresponding tasks conflict

[18, 68]. The conflicting objectives emerges in the form of linearly dependent rows

of the Jacobian matrices. For example, the joint angle q2 = 2jπ (j = 0, 1, 2, . . .) in

(3.2.9) renders the two Jacobians to be linearly dependent, and the two objectives

tend to exploit the same joints so that there is no resource to satisfy multiple ob-

jectives simultaneously. In other words, the solution lies on algorithmic singularity.

The most serious problem of singularity is not at singular points themselves,

but rather in the neighborhood of singular points. In the neighborhood of singular

points, even for a small change of yk, an excessive change of xk is often required.
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Generally, the inversion process inherently suffers from this sensitivity close to sin-

gular points. Therefore, the singularity can significantly reduce the reachable space

of the robots.

3.3 Regularized Hierarchical Optimization with Equality Tasks

3.3.1 Regularized Hierarchical Optimization

We take into account task regularization from the beginning of hierarchical opti-

mization. Let us consider a set of least-squares optimization with task regulariza-

tion under equality constraints. The optimization problem is cast into the quadratic

cost and the quadratic constraint as follows:

Find x∗k ∈ argmin
x

1

2
||Jkx− yk||22 +

1

2
ρ2
k||Dkx||22 (3.3.11a)

subject to cj(x) = cj(x
∗
j ) ∀j < k (3.3.11b)

where

cj(x) =
1

2
||Jjx− yj ||22 +

1

2
ρ2
j ||Djx||22, (3.3.12)

and Dj is the selection matrix for regularization. The hierarchical structure en-

sures that the j level task is not affected by the k level for all j < k.

The hierarchical optimization (3.3.11) is to determine x∗k minimizing the Eu-

clidean norm of the task error and the solution subject to the strict quadratic

constraints (3.3.11b). The regularization parameter ρk controls the relative impor-

tance of the least-square error compared with the regularization term. Note that

regularization involves adding a penalty to both objective function (3.3.11a) and

constraints (3.3.11b). However, the reference [47] uses regularization only in the

objective function, not in the constraints, to hand down remaining usable resources
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to the next levels. Because if Dj has full column rank, there is no resource to op-

timize the following level tasks. In other words, there is no degrees of freedom left

afterwards. The regularizer should penalize each level task independently.

It is reasonable to consider the first level optimization alone and then relaxed

second level optimization under the first level strict constraint. Then, we can ob-

tain the overall solution of hierarchical optimization in a recursive fashion. The

first level unconstrained optimization has the following cost function:

c1(x) :=
1

2
xTH1x− hT1 x (3.3.13)

with the associated Hessian

H1 := JT1 J1 + ρ2
1D

T
1 D1, (3.3.14)

and the gradient vector

h1 := JT1 y1. (3.3.15)

Among the possible x1, the minimum length solution x∗1 is obtained by using the

generalized inverse [92]

x∗1 = H†1h1 = (JT1 J1 + ρ2
1D

T
1 D1)†JT1 y1. (3.3.16)

The Hessian matrix

Hk := JTk Jk + ρ2
kD

T
kDk (3.3.17)

is usually used by assigning the regularization parameter ρk 6= 0 with DT
kDk = Ik

to render the matrix positive definite where Ik is the identity matrix. However,

for a hierarchical optimization, the Hessian matrices of all levels should not have

full column rank except for the least priority task. Because if DT
kDk = Ik, then
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there is no resource to optimize the following level tasks. Clearly, the regularization

selection matrix Dk should have the same row space basis to Jk that contributes

only to the level k to leave a parameter vector for lower level optimization. Later

we will specify a particular form of Dk, and now we suppose this condition is

satisfied.

The next problem is to optimize an additional second level task by setting k =

2, j = 1 in (3.3.11). The constraint (3.3.11b) leads to a quadratically constrained

quadratic programming, but it can be relaxed to the linear constraint [47]. Suppose

the solution has the form of

xk = x∗k−1 + x̂k, (3.3.18)

where x̂k is used to optimize k level objective function. With the solution (3.3.18),

the quadratic constraint c1(x2) = c1(x∗1) is respected if the following condition is

satisfied

1

2
x̂T2H1x̂2 + x∗T1 H1x̂2 − hT1 x̂2 = 0. (3.3.19)

A sufficient condition to hold (3.3.19) is to choose x̂2 in the null space of H1 and

hT1 by making all three terms zeros. That is

x̂2 = Z1(H1,h
T
1 )t2, (3.3.20)

where t2 is an arbitrary parameter vector and Z1 is the null space basis of H1 and

hT1 . In general, the solution (3.3.18) under the condition (3.3.20) is suboptimal for

the regularized hierarchical optimization due to ensuring only sufficient condition

in (3.3.19), but it respects hierarchical structure.
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The second level optimization problem can be reformulated as

min
x

1

2
||J2x− y2||22 +

1

2
ρ2

2||D2x||22 (3.3.21)

subject to x = x∗1 +Z1t2. (3.3.22)

Substituting (3.3.22) into (3.3.21) leads to the unconstrained optimization, and the

optimal solution is obtained which minimizes c1(x) at best and c2(x) if possible.

That is

x∗2 = x∗1 +Z1t
∗
2, (3.3.23)

where

t∗2 =
(

(J2Z1)T (J2Z1) + ρ2
2Z

T
1 D

T
2 D2Z1

)†
×
(

(J2Z1)T (y2 − J2x
∗
1)− ρ2

2Z
T
1 D

T
2 D2x

∗
1

)
. (3.3.24)

This solution can be generalized to an arbitrary number of tasks, and the fol-

lowing recursive solution is given by

x∗p =

p∑
k=1

Zk−1

(
(JkZk−1)T (JkZk−1) + ρ2

kZ
T
k−1D

T
kDkZk−1

)†
×
(

(JkZk−1)T (yk − Jkx∗k−1)− ρ2
kZ

T
k−1D

T
kDkx

∗
k−1

)
(3.3.25)

where Z0 is an n× n identity matrix. The vector x̂k in (3.3.18) is

x̂k = Zk−1(Hk−1,h
T
k−1)tk (3.3.26)

where Hk−1 and hk−1 are the stacked matrix and the vector augmented from level

1 to k − 1 and they are empty for k − 1 = 0 such as

Hk−1 =


H1

...

Hk−1

 . (3.3.27)
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In particular, the unregularized solution is recovered from the regularized optimal

solution (3.3.25) with ρk = 0 as follows:

x∗p =

p∑
k=1

{
Zk−1(JkZk−1)†(yk − Jkx∗k−1)

}
. (3.3.28)

This unregularized solution (3.3.28) is exactly same to the well-known formula pro-

posed by [44]. Hence, we provide a generalization of the HQP framework.

3.3.2 Optimal Solution

Now we shall express the optimal solution x∗k more compactly while obtaining Zk

and Dk recursively. The SVD provides a consistent solution for a least-squares

problem whether the matrix attains dependent columns or dependent rows [92].

The SVD of JkZk−1 ∈ Rmk×ok in the optimal solution (3.3.25) is given by

JkZk−1 =
[
Uk Vk

]Σk 0

0 0

Ỹ T
k

Z̃T
k

 (3.3.29)

= UkΣkỸ
T
k (3.3.30)

where [Uk Vk] and [Ỹk Z̃k] are orthonormal square matrices. Thus following

relations hold

UkU
T
k + VkV

T
k = Ik, (3.3.31a)

UT
k Uk = Ik, V T

k Vk = Ik, (3.3.31b)

UT
k Vk = 0, V T

k Uk = 0, (3.3.31c)

where Ik is the identity matrix with an appropriate dimension. The diagonal ma-

trix Σk is composed of the singular values σ1, . . . , σlk . As we do not assume that

JkZk−1 is full rank, lk may be less than both mk and ok. In terms of this decom-

position, Uk ∈ Rmk×lk and Vk ∈ Rmk×(mk−lk) are the bases of the column and left
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null space of JkZk−1, respectively. Each Ỹk ∈ Rok×lk and Z̃k ∈ Rok×(ok−lk) corre-

sponds to the basis of row and null space. The expression (3.3.30) is known as the

thin SVD and JkZk−1 is a projection of the k-th Jacobian into the all previous

null-space.

The pseudo-inverse of JkZk−1 is obtained directly:

(JkZk−1)† =
[
Ỹk Z̃k

]Σ−1
k 0

0 0

UT
k

V T
k

 (3.3.32)

= ỸkΣ
−1
k UT

k (3.3.33)

where the inverse matrix Σ−1
k is obtained by simply inverting each main diagonal

element of Σk. The pseudo-inverse matrix in (3.3.33) satisfies four criteria also

known as Moore-Penrose conditions (2.2.9)-(2.2.12).

New basis matrices are defined as follows:[
Yk Zk

]
= Zk−1

[
Ỹk Z̃k

]
, (3.3.34)

where Yk is n× lk matrix and Zk is n× (n− l1− 12 · · · − lk) matrix. If we specify

the regularization matrix Dk in (3.3.11a) as

Dk := Y T
k (3.3.35)

then regularization acts on the parameter vector of the row space participating

only in the k level tasks. Thus, it regularizes each level task independently and

leaves the null space basis denoted by Zk, which can be used to optimize the next

level objectives. This regularization matrix Dk in (3.3.35) and the pseudo-inverse



3.3. Regularized Hierarchical Optimization with Equality Tasks 47

(JkZk−1)† in (3.3.33) enable the optimal solution x∗k of (3.3.25) to be much com-

pactly expressed as

x∗k =

k∑
j=1

(
YjΣ̂

−1
j UT

j (yj − Jjx∗j−1)
)

(3.3.36)

= x∗k−1 + YkΣ̂
−1
k UT

k (yk − Jkx∗k−1)︸ ︷︷ ︸
x̂∗
k

(3.3.37)

where

Σ̂−1
k := (Σ2

k + ρ2
kIk)

†Σk, (3.3.38)

Y T
k x
∗
k−1 = 0 are used, and Ik ∈ Rlk×lk is an identity matrix. The ith singular

value of the matrix Σ̂−1
k is

σ̂k,i =
σk,i

σ2
k,i + ρ2

k

, 1 ≤ i ≤ lk, (3.3.39)

where σk,i is the ith diagonal component of Σk. Without the regularization param-

eter ρk, σ̂k,i would grow unboundedly as σk,i approaches zero near a singularity

as shown in Figure 3.2.

Note that the unregularized solution of (3.3.28) can be obtained from the reg-

ularized solution (3.3.37) by replacing Σ̂−1
k with Σ−1

k . The vector x̂∗k of (3.3.37)

contributes to optimize the k level task. It simultaneously mitigates the influence

of the high level tasks by removing its contribution from the current task by uti-

lizing YkΣ̂
−1
k UT

k Jkx
∗
k−1. As we will see in the following optimal task error, this

term does not perfectly compensate the effect caused by the priority tasks due to

regularization. Therefore, we always have a regularization error as long as ρk 6= 0

is used. The optimum x̂∗k in (3.3.37) is also acquired as

x̂∗k = YkY
T
k x
∗
k (3.3.40)

= YkΣ̂
−1
k UT

k (yk − Jkx∗k−1) (3.3.41)
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Figure 3.2: Comparison of the reciprocal singular values in (3.3.39). If the regular-

ization parameter is zero, the singular value σ̂k,i would grow unboundedly as σk,i

approaches zero near a singularity.

where Y T
k x
∗
k−1 = 0 is used.

It is worth remarking that as the hierarchy advances sequentially (as k in-

creases), the number of columns in Zk decreases, and thereby the computation of

the SVD for the matrix product JkZk−1 ∈ Rmk×(n−l1−l2−...−lk−1) becomes cheaper.

Thus, exploiting JkZk−1 is computationally more efficient than using JkPk−1 be-

cause the null space projecting matrix

Pk = ZkZ
T
k ∈ Rn×n (3.3.42)

has a constant matrix size. Please refer to the Section 2.2 for a detailed explana-

tion.
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3.3.3 Task Error and Hierarchical Matrix Decomposition

The aim of this section is to find the optimal task error and a hierarchical ma-

trix decomposition recursively which will be used to find Lagrange multipliers for

controlling the inequality constraints.

From the general optimal solution (3.3.37), the first level solution is obtained

x∗1 = Y1Σ̂
−1
1 UT

1 y1. (3.3.43)

Then the corresponding optimal task error vector can be acquired using the or-

thonormal property of (3.3.2)

e∗1 = J1x
∗
1 − y1

= U1Σ1Σ̂
−1
1 UT

1 y1 − y1

= (U1Σ1Σ̂
−1
1 UT

1 −U1U
T
1 − V1V

T
1 )y1

= −V1V
T

1 y1 −U1T1U
T
1 y1, (3.3.44)

where

Tk := Ik −ΣkΣ̂
−1
k . (3.3.45)

The ith diagonal term of the matrix Tk is

Tk,i =
ρ2
k

σk,i2 + ρ2
k

, 1 ≤ i ≤ lk. (3.3.46)

The first term of task error in (3.3.44) associated with V1 represents the unre-

alizable part of the task due to kinematic singularity. Because the top priority

task cannot be influenced by any other tasks. The second term corresponds to the

regularization error resulting from penalizing the solution, and it cannot be 0 if

ρ1 6= 0.
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For the second level, SVD of J2Z1 in (3.3.25) is

J2Z1 =
[
U2 V2

]Σ2 0

0 0

Ỹ T
2

Z̃T
2

 (3.3.47)

= U2Σ2Ỹ
T

2 . (3.3.48)

The basis [U2 V2] decomposes the range space of J2Z1 ∈ Rm2×(n−l1) along its

column space and the orthogonal to it. We define another basis (3.3.34) as follows:[
Y2 Z2

]
:= Z1

[
Ỹ2 Z̃2

]
, (3.3.49)

which provides bases of the row and null space of J2Z1. As the matrix Y2 ∈ Rn×l2

is the basis of the row space, it can be used to optimize the current second level

task. The matrix Z2 ∈ Rn×(n−l1−l2) is the null space basis of both J1 and J2 so

that it would be exploited for optimizing the next level.

As we specify the regularization matrix as D2 = Y T
2 , the optimum x∗2 can be

rewritten from the optimal solution (3.3.37)

x∗2 = x∗1 + Y2Σ̂
−1
2 UT

2 (y2 − J2x
∗
1)︸ ︷︷ ︸

x̂∗
2

(3.3.50)

=
[
Y1 Y2

]Y T
1 x
∗
1

Y T
2 x̂
∗
2

 (3.3.51)

where Y1Y
T

1 x
∗
1 = x∗1 is used. By using (3.3.51), the optimal task error e∗2 can be
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acquired as follows:

e∗2 = J2x
∗
2 − y2 (3.3.52)

=
[
J2Y1 J2Y2 0

]
Y T

1 x
∗
1

Y T
2 x
∗
2

t3

− y2 (3.3.53)

=
[
U2 V2

]E2 Σ2 0

F2 0 0



Y T

1

Y T
2

ZT
2


︸ ︷︷ ︸

J2

[
Y1 Y2 Z2

]
Y T

1 x
∗
1

Y T
2 x
∗
2

t3

− y2 (3.3.54)

where Y T
2 x
∗
1 = 0 is used. The matrices

E2 := UT
2 J2Y1 (3.3.55)

F2 := V T
2 J2Y1 (3.3.56)

are newly defined, and the relations J2Y2 = J2Z1Ỹ2 = U2Σ2 is used. From (3.3.54),

we can see that the hierarchically decomposed matrix of J2.

Proceeding from the first to second level solution and matrix decomposition,

a recursive formulation can be established to include any number of tasks with a

decreasing order of priority. The optimum (3.3.37) can be rewritten as

x∗k =
[
Y k−1 Yk

]Y T
k−1x

∗
k−1

Y T
k x
∗
k

 , (3.3.57)

where

Y k :=
[
Y1 · · · Yk

]
(3.3.58)
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is defined and Y k−1Y
T
k−1x

∗
k−1 = x∗k−1 and (3.3.40) are used. The optimal task

error e∗k is obtained by using (3.3.57) as follows:

e∗k = Jkx
∗
k − yk (3.3.59)

=
[
JkY k−1 JkYk 0

]
Y T
k−1x

∗
k−1

Y T
k x
∗
k

tk+1

− yk (3.3.60)

=
[
Uk Vk

]Ek Σk 0

Fk 0 0



Y T
k−1

Y T
k

ZT
k


︸ ︷︷ ︸

Jk

[
Y k−1 Yk Zk

]
Y T
k−1x

∗
k−1

Y T
k x
∗
k

tk+1

− yk,

(3.3.61)

where

Ek := UT
k JkY k−1, (3.3.62)

Fk := V T
k JkY k−1. (3.3.63)

The relation JkYk = JkZk−1Ỹk = UkΣk and the orthonormal property of (3.3.2)

are used.

In (3.3.61), we can see that the hierarchically decomposed matrix of Jk for any

k ≥ 1

Jk = WkSkY
T
k , (3.3.64)

where

Wk :=
[
Uk Vk

]
, (3.3.65)

Sk :=

Ek Σk

Fk 0

 . (3.3.66)
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The matrix Uk is the range or reachable space basis, and thus the task associated

with this basis is realizable. However, the objective corresponding to Vk cannot be

fulfilled. The hierarchically decomposed Jacobian matrix of (3.3.64) can be rewrit-

ten as

Jk = (VkFk +UkEk)Y
T
k−1 +UkΣkY

T
k . (3.3.67)

The optimal task error is obtained by using (3.3.67), so that

e∗k = Jkx
?
k − yk (3.3.68)

= (VkFk +UkEk)Y
T
k−1x

∗
k +UkΣkY

T
k x
∗
k − yk (3.3.69)

= (VkFk +UkEk −UkΣkΣ̂
−1
k Ek)Y

T
k−1x

∗
k−1

+ (UkΣkΣ̂
−1
k UT

k − Ik)yk, (3.3.70)

where the following relation is used in (3.3.69)

Y T
k x
∗
k = Σ̂−1

k UT
k (yk − Jkx∗k−1) (3.3.71)

= Σ̂−1
k UT

k (yk − JkY k−1Y
T
k−1x

∗
k−1), (3.3.72)

= Σ̂−1
k UT

k yk − Σ̂−1
k EkY

T
k−1x

∗
k−1. (3.3.73)

If we use the orthonormal property of [Uk Vk], then the task error e∗k in (3.3.70)

can be split into two parts associated with the left null space basis Vk and the

range space basis Uk as follows:

e∗k = (VkFk +UkEk −UkΣkΣ̂
−1
k Ek)Y

T
k−1x

∗
k−1

+ (UkΣkΣ̂
−1
k UT

k −UkUT
k − VkV T

k )yk (3.3.74)

= Vk(FkY
T
k−1x

∗
k−1 − V T

k yk) +UkTk(EkY
T
k−1x

∗
k−1 −UT

k yk), (3.3.75)

where (3.3.45) is used.
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Finally, the optimal task error can be rewritten

e∗k = v∗k + u∗k, (3.3.76)

where

v∗k = Vk(FkY
T
k−1x

∗
k−1 − V T

k yk) (3.3.77)

= VkV
T
k (Jkx

∗
k−1 − yk) (3.3.78)

u∗k = UkTk(EkY
T
k−1x

∗
k−1 −UT

k yk) (3.3.79)

= UkTkU
T
k (Jkx

∗
k−1 − yk). (3.3.80)

The optimal task error (3.3.76) has a strong intuitive appeal. The first term v∗k

represents infeasible part due to the conflict with the priority tasks or a kine-

matic singularity itself while the second part u∗k denotes the task error induced

by regularization to penalize the solution. In particular, if the k level is not in the

kinematic or algorithmic singularities, then Vk and v∗k are empty and the k level

task is feasible. However, the regularization error u∗k does not vanish as long as

ρk 6= 0. Therefore, the priority task given by x∗k−1 interferes with the current k

level and all following level tasks. This regularization error is the price we have to

pay instead of guaranteeing the convergence and robustness of the solution near

singular points. To address the regularization error the regularization coefficient

adaptation is widely used [28, 61, 62, 63, 64, 65, 66]. Regularization coefficient ρk

increases from zero when the solution moves toward singularity. Thus the regular-

ization induced errors can be eliminated far from the singular points.

Based on the decomposed Jacobian matrix in (3.3.64), a stacked hierarchical
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matrix decomposition (HMD) of the augmented Jacobian Jk is obtained

Jk =

W k−1 0 0

0 Uk Vk



Sk−1 0 0

Ek Σk 0

Fk 0 0



Y T
k−1

Y T
k

ZT
k


= W kSkY

T
k . (3.3.81)

where

W k :=

W k−1 0 0

0 Uk Vk

 (3.3.82)

Sk :=


Sk−1 0

Ek Σk

Fk 0

 . (3.3.83)

According to the optimal solution (3.3.37), the optimum of the k level can be

rewritten as follows:

x∗k := Jρ]k y
k

(3.3.84)

=
[
(Ik − YkΣ̂−1

k UT
k Jk)J

ρ]
k−1 YkΣ̂

−1
k UT

k

]yk−1

yk

 (3.3.85)

= Y k S
ρ]
k W T

k yk, (3.3.86)

where x∗k−1 = Jρ]k−1yk−1
is used and Sρ]k is defined as follows:

Sρ]k :=

 Sρ]k−1 0 0

−Σ̂−1
k EkS

ρ]
k−1 Σ̂−1

k 0

 . (3.3.87)

It is worth mentioning that the matrix Jρ]k in (3.3.84) is just defined to rep-

resent the optimum by convention. It respects none of the Moore-Penrose condi-

tions (2.2.9)-(2.2.12). However, a generalized inverse J ]k can be obtained by setting
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ρk = 0 for all k as follows:

J ]k :=
[
(Ik − YkΣ−1

k UT
k Jk)J

]
k−1 YkΣ

−1
k UT

k

]
(3.3.88)

= Y k S
]
k W

T
k (3.3.89)

where S]k can be acquired from (3.3.87) with ρk = 0 as follows:

S]k =

 S]k−1 0 0

−Σ−1
k EkS

]
k−1 Σ−1

k 0

 . (3.3.90)

As S]kSk is an identity matrix, the following relation holds

J ]kJk = Y kY
T
k . (3.3.91)

Three of the four Moore-Penrose conditions are satisfied by J ]k except that JkJ
]
k

is symmetric in (2.2.11), and thus J ]k is a reflexive generalized inverse of Jk. The

relation (3.3.91) will be used to find the Lagrange multiplier.

Finally, we can check that the following conditions in (3.3.26) are also satisfied

if the regularization matrix (3.3.35) is used

HkZk = (Y kS
2
kY

T
k + ρ2

kY kY
T
k )Zk = 0 (3.3.92)

hTkZk = yT
k
W kSkY

T
kZk = 0, (3.3.93)

where Y T
kZk = 0 is used.

3.3.4 Illustrative Examples for Regularized Hierarchical Optimization

To verify the effectiveness of RHQP, a simple mobile manipulator example is bor-

rowed from [16]. Consider again the mobile robot as shown in Figure 3.1. We use

the integration interval ∆t = 0.1 s, task function gains K1 = K2 = 1 in (3.2.6),

and the regularization coefficient ρ1 = ρ2 = 0.5. This problem can be interpreted
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as the first-order closed-loop inverse kinematics to generate joint space motions

[94, 95]. The common purpose of two task functions is to drive their values to the

origin [0, 0]T as close as possible.

Let us consider two cases according to whether the target is reachable or not.

At first, consider the target point ds = [0.5, 1.0]T . This point is within the reach-

able space, and there is no task confliction. We compare the solutions of unregu-

larized HQP and RHQP in terms of the magnitude of the task function, distance

to the optimum, and robot configurations.

As depicted in Figure 3.3, all task function values converge to zeros regardless

of regularization. Note that the unregularized solution starting near singular point

(case 5) requires high velocity to abruptly change the initial wrong direction of

task function as presented in Figure 3.3 (top left corner). The convergence speed

of the unregularized solution is faster than that of the regularized one. The robots

with the unregularized solution have already reached the target point at 3 s, but

the robots with regularization reach the target at 5 s as you can see in Figure 3.3.

Because RHQP penalizes the velocity solution for singularity robustness.

Next, the desired point is assigned as ds = [2.0, 0.0]T . From the task func-

tion (3.2.8), the two task functions cannot be zeros at the same time. This un-

reachability means that these two functions cannot be realized concurrently and

the two tasks are conflicting. The position of mobile base q1 = 1 and joint angle

q2 = 2jπ (j = 0, 1, 2, . . .) make the first level task function zero, but the second

task cannot be perfectly executed. The task Jacobian of (3.2.9) becomes linearly

dependent, and the two objectives tend to exploit the same joints so that there

is no resource to satisfy multiple objectives simultaneously. In other words, the

solution lies on algorithmic singularity.

However, the second task is achieved as much as possible by making the joint
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Figure 3.3: Numerical simulation results computed via unregularized HQP (left

column) and RHQP (right column). Two tasks can be realized at the same time.

We compare the results in terms of time history of the magnitude of the task

function (top row), distance to the optima (middle row), and time history of the

robot poses according to various initial conditions (bottom row). The convergence

speed of the unregularized solution is faster than that of the regularized one. How-

ever, the unregularized solution starting near singular point (case 5) requires high

velocity.
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Figure 3.4: Numerical simulation results computed via unregularized HQP (left

column) and RHQP (right column). Two tasks cannot be satisfied simultaneously:

there is a conflict between two tasks. We compare the results in terms of time

history of the magnitude of the task function (top row), distance to the optima

(middle row), and time history of the robot poses according to various initial con-

ditions (bottom row). As it can be seen, the solution sequences of unregularized

HQP does not converge to the optima while all solutions of RHQP converge to

the optima respecting hierarchy.
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angle q2 zero. If q2 has a nonzero value, then the second level objective has a larger

task error. As can be seen from Figure 3.4, the solution sequences of unregularized

HQP does not converge to the optima[
|g1(q∗)| |g2(q∗)|

]T
=
[
0 1

]T
(3.3.94)

except for the Case 4 which happen to be on the reachable boundary. However,

all RHQP solutions converge to the optima while respecting hierarchy.

To summarize, every task is achieved as much as possible according to the

levels in the task priority structure and the regularization can guarantee the con-

vergence of the solution even if the solution is near singular points. Reference [16]

resorts to a trust region method, where the convergence can be obtained only when

the trust bound is carefully adjusted based on heuristics. In contrast to the trust

region scheme, we can obtain the robustly converging sequences in the face of sin-

gularities with a constant regularization coefficients under the strict hierarchical

structure.

3.4 Regularized Hierarchical Optimization with Inequality Con-

straints

Now we turn our attention to the inequality tasks. We are going to fully inte-

grate task regularization and the inequality-constrained hierarchical optimization

to guarantee the robustness and convergence of the solution in the face of sin-

gularity. All Lagrange multipliers necessary to handle inequality constraints are

analytically obtained by leveraging the robust optimal solution, task error, and

the hierarchical matrix decomposition developed in the previous sections. Then we

propose the modified active set algorithm which is simple and fast because it does
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not use a step direction nor a step length usually used in numerical optimization.

The sign of Lagrange multipliers is exploited to handle inequality constraints.

3.4.1 Lagrange Multipliers

We rewrite the optimization problem (3.3.11) as the regularized hierarchical quadratic

program (RHQP) composed of a set of p stacked of all individual linear inequality

constraints as follows:

min
xk,ek,wk

1

2
||ek||22 +

1

2
||wk||22 (3.4.95a)

subject to

 Jk

ρkY
T
k

xk −
yk

0

 ≤
ek
wk

 (3.4.95b)

 Jk−1

ρY T
k−1

xk −
yk−1

0

 ≤
e∗k−1

w∗k−1

 (3.4.95c)

where Jk−1, ρY k−1, y
k−1

, w∗k−1 and e∗k−1 are the stacked matrices and the vec-

tors augmented from level 1 to k − 1, i.e.,

Jk−1 =


J1

...

Jk−1

 , (3.4.96)

ρY k−1 =
[
ρ1Y1 · · · ρk−1Yk−1

]
. (3.4.97)

The fixed stacked error e∗k−1 and the stacked regularized solution w∗k−1 are ac-

crued from the previous level QP. The current level solution x∗k should respect

the constraint (3.4.95c), which is referred to the strict constraint. When tasks are

incompatible, the solution with the strict constraints inevitably restricts the fulfill-

ment of the tasks (3.4.95b), which can be best optimized in the least-square sense
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by increasing ek and wk to the minimum magnitude. Therefore, the task (3.4.95b)

is also denoted by the relaxed constraint.

As discussed in the previous Section 3.3.3, if the regularization matrix Dk =

Y T
k in (3.3.35) and the solution x∗k in (3.3.37) are used, then the strict constraints

ρY T
k−1xk = w∗k−1 of (3.4.95c) is automatically satisfied due to the property of

Y T
k−1x

∗
k = Y T

k−1x
∗
k−1. Therefore, the k level optimization can be conducted irre-

spective of this constraint and RHQP of (3.4.95) can be rewritten as

min
xk,ek

1

2
||ek||22 +

1

2
ρ2
k||Y T

k xk||22 (3.4.98a)

subject to Jkxk − yk ≤ ek (3.4.98b)

Jk−1xk − yk−1
≤ e∗k−1 (3.4.98c)

The role of slack variable ek is to relax the constraint (3.4.98b) when the task is

infeasible.

The Lagrangian function associated with the constrained problem is introduced

as follows:

Lk :=
1

2
eTk ek +

1

2
ρ2
kx

T
kYkY

T
k xk + µTk (Jkxk − yk − ek)

+ µT
k

(Jk−1xk − yk−1
− e∗k−1) (3.4.99)

where µk and µ
k

are the Lagrange multipliers corresponding to the relaxed con-

straint (3.4.98b) and the strict constraint (3.4.98c), respectively. Suppose that x∗k

and e∗k is a local solution of (3.4.98), and then there are Lagrange multiplier vec-

tors µ∗k and µ∗
k
. Differentiating the Lagrangian over the dual variables (µk and

µ
k
) and the primal variables (ek and xk) gives the Karush-Kuhn-Tucker or KKT
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conditions satisfied at (x∗k, e
∗
k,µ

∗
k,µ

∗
k
):

Jkx
∗
k − yk − e∗k ≤ 0 (3.4.100)

Jk−1x
∗
k − yk−1

− e∗k−1 ≤ 0 (3.4.101)

µ∗k − e∗k = 0 (3.4.102)

JTk−1µ
∗
k

+ JTk µ
∗
k + ρ2

kYkY
T
k x
∗
k = 0 (3.4.103)

µ∗k ≥ 0 (3.4.104)

µ∗
k
≥ 0 (3.4.105)

µ∗Tk (Jkx
∗
k − yk − e∗k) = 0 (3.4.106)

µ∗T
k

(Jk−1x
∗
k − yk−1

− e∗k−1) = 0 (3.4.107)

The equations (3.4.106) and (3.4.107) are complementarity conditions, which mean

either constraint is active or µ∗k = 0, µ∗
k

= 0, or possibly both.

As we know the optimal task error e∗k from (3.3.76), the dual optimum µ∗k is

found using (3.4.102)

µ∗k = v∗k + u∗k. (3.4.108)

The Lagrange multiplier µ∗
k

is also obtained from (3.4.103) by using (3.3.91) as

follows:

µ∗
k

= −J ]Tk−1J
T
k (v∗k + u∗k). (3.4.109)

As in the case of µ∗k, the multiplier µ∗
k

in (3.4.109) has also been separated into the

infeasible task and the regularization error associated with v∗k and u∗k, respectively.

Let us verify that the solution (3.4.109) satisfies the optimality condition(3.4.103).

By using µ∗k in (3.4.108), the optimality condition (3.4.103) is rewritten in the

form

JTk−1µ
∗
k

= −JTk (v∗k + u∗k)− ρ2
kYkY

T
k x
∗
k. (3.4.110)
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Premultiplying both sides of the solution (3.4.109) by matrix JTk−1 and using (3.3.91)

we get

JTk−1µ
∗
k

= −Y k−1Y
T
k−1J

T
k (v∗k + u∗k). (3.4.111)

Now we show that each right side of (3.4.110) and (3.4.111) is equal. Referring to

v∗k in (3.3.78), the first term of (3.4.111) is written as

Y k−1Y
T
k−1J

T
k v
∗
k = Y k−1(Y T

k−1J
T
k Vk)V

T
k (Jkx

∗
k−1 − yk)

= Y k−1F
T
k V

T
k (Jkx

∗
k−1 − yk)

=
(
Y k−1(ET

k U
T
k + F T

k V
T
k ) + YkΣkU

T
k︸ ︷︷ ︸

JT
k

)

× VkV T
k (Jkx

∗
k−1 − yk)

= JTk v
∗
k (3.4.112)

where the orthonormal property (3.3.2) and the hierarchically decomposed Jaco-

bian of (3.3.67) are used.

Similarly, by recalling u∗k in (3.3.80), the second term of right hand side in

(3.4.111) associated with the regularization error is expressed as

Y k−1Y
T
k−1J

T
k u
∗
k = Y k−1(Y T

k−1J
T
k Uk)TkU

T
k (Jkx

∗
k−1 − yk)

= Y k−1E
T
k TkU

T
k (Jkx

∗
k−1 − yk)

=
(
Y k−1(ET

k U
T
k + F T

k V
T
k ) + YkΣkU

T
k︸ ︷︷ ︸

JT
k

)

×UkTkUT
k (Jkx

∗
k−1 − yk)−YkΣkTkU

T
k (Jkx

∗
k−1 − yk)︸ ︷︷ ︸

ρ2kx̂
∗
k

= JTk u
∗
k + ρ2

kYkY
T
k x
∗
k (3.4.113)
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where the orthonormal property of (3.3.2), relation ΣkTk = ρ2
kΣ̂
−1
k , the solution

(3.3.40), and the hierarchically decomposed Jacobian matrix in (3.3.67) are uti-

lized. Thus we have verified that the solution (3.4.109) satisfies the optimality

condition (3.4.110).

By recalling J ]k in (3.3.88) and µ∗k in (3.4.108), Lagrange multiplier µ∗
k

of

(3.4.109) is written as:

µ∗
k

=


µ∗

1,k
...

µ∗
k−1,k

 =

−J ]Tk−2(JTk µ
∗
k + JTk−1µ

∗
k−1,k

)

−Uk−1Σ
−1
k−1Y

T
k−1J

T
k µ
∗
k

 . (3.4.114)

We thus can recursively obtain the components µ∗
j,k

of the Lagrange multipliers

µ∗
k

from j = k − 1 to 1

µ∗
j,k

= −UjΣ−1
j Y T

j

 k−1∑
i=j+1

JTi µ
∗
i,k

+ JTk µ
∗
k

 . (3.4.115)

These two Lagrange multipliers can be expressed in the matrix form [44]:

M∗
p =

µ∗1 µ∗
2

. . . µ∗
p

µ∗2 . . . µ∗p

 =



µ∗1 µ∗
1,2

. . . µ∗
1,p−1

µ∗
1,p

µ∗2 . . . µ∗
2,p−1

µ∗
2,p

...
...

µ∗p−1 µ∗
p−1,p

µ∗p


. (3.4.116)

From (3.4.108) and (3.4.114), each column of the Lagrangian multiplier matrix M∗
p

is calculated sequentially from level k = 1 to p. Moreover, all necessary components

of Lagrange multiplier µ
k

are obtained in recursive procedure.

Indeed, one of the most attractive features of the RHQP solver is that the

Lagrange multiplier matrix M∗
p of (3.4.116) allows us to control inequality con-

straints very efficiently by considering all level’s hierarchical tasks together with
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only one active set. The sign of the components of two Lagrange multipliers in

(3.4.104) and (3.4.105) of M∗
p play a significant role to treat inequality constraints.

The multiplier matrix eliminates the iterative process used to find each level op-

timal active set.

If the active set is optimal for all levels, then all constraints are satisfied by

the optimal solution and all µ∗
k

and µ∗k of the active constraints can be nonneg-

ative. Otherwise, if some of the components of the multipliers of M∗
k are strictly

negative, the constraint having the lowest component can be deactivated accord-

ing to the priority. However, the cascade-QP should perform this iterative process

at each level of QP.

In the next section, hierarchy is considered for treating inequality constraints

with the sign convention. As we have found a way to compute the Lagrange multi-

pliers to control inequality constraints, we will exploit them in the modified active-

set algorithm. The Lagrange multipliers of unregularized HQP of [44] can be ob-

tained from the RHQP solution µ∗k in (3.4.108) and µ∗
k

in (3.4.109) by setting each

level regularization coefficient to zero. Therefore, we generalize the HQP frame-

work by integrating regularization.

3.4.2 Modified Active Set Method

The basic underlying idea of the active set method for solving an inequality con-

strained QP is to classify inequality constraints into active and inactive constraints.

The active constraints are treated as equality ones while the inactive constraints

are essentially ignored. However, we usually do not know the optimal active set, an

iterative process is involved to find a set of equality constraints, termed a working

set. The working set W is expressed by the finite set of indices (k, r) or cst(k, r)

which denotes the rth constraint of the level k.
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Algorithm 1 Regularized hierarchical quadratic programming

1: Input: Initial guess W(0)

2: Output: q̇∗(tk+1), q∗(tk+1)

3: Initialize: W =W(0), S = ∅

4: repeat

5: // Hierarchical matrix decomposition

6: HMD of W = HMD(W) Eq. (3.3.81)

7: [x∗, e∗] = RHQP primal(HMD of W) Eq. (3.3.86) and (3.3.76)

8: M∗
p = RHQP dual(x∗, e∗, HMD of W) Eq. (3.4.116)

9: [β, cstβ] = min M∗
p

10: [α, cstα] = blocking cst(x∗,Wc) Eq. (3.4.117)

11: // Selection of strongly active constraints

12: S ← (S
⋃
{cst | µ∗

cst > 0}
⋃
{cst | µ∗

cst
> 0})

⋂
W

13: if α < 1 then

14: // Add a blocking constraint

15: W ←W
⋃
{cstα}

16: else if (β < 0) and (cstβ /∈ S) then

17: // Remove an inactive constraint

18: W ←W\{cstβ}

19: else

20: break

21: end if

22: until α = 1 and β > 0

23: q̇∗(tk+1)← x∗, q∗(tk+1)← q(tk) +
∫ ∆t

0 x∗dζ

24: // Time update for all parameters

25: J ← J(q∗(tk+1)),y ← y(q∗(tk+1))

26: return q̇∗(tk+1), q∗(tk+1)
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The method starts with an initial guess which subset of the inequality con-

straints hold as equalities at the optimum whose subset is called the active set.

At each iteration, it solves the equality only QP subject to only the active con-

straints as equalities. Once the solution is obtained from this sub-QP, we apply

modification to the current active set. A blocking constraint violated by the solu-

tion is added to the working set and an unnecessary constraint is removed. The

algorithm then iterates until the optimal active set is found, for which the associ-

ated equality QP provides the optimum of the inequality QP [55, 56]. The RHQP

solver is working with one active set because the Lagrange multiplier matrix M∗
p

contains all information to handle inequality constraints for all level’s hierarchy.

The proposed algorithm is summarized in Algorithm 1. At each time step tk,

the RHQP solver operates as follows. First, it begins by making an initial guess of

the optimal active set. We use a warm start for the selection of W(0). In robotic

problems, the smoothness and continuity of the robot state are usually guaranteed

at least locally, and therefore, it is likely that the optimal active set of the time

step tk can be an initial working set at the next time step tk+1.

Second, the algorithm performs the hierarchical matrix decomposition (3.3.81)

with the working set W(i) at the iteration i. Then the candidate primal optimum

x
∗(i)
p and each level task error e

∗(i)
k are computed through the function of the

RHQP primal. The function RHQP dual allows us to obtain the Lagrange mul-

tiplier matrix M
∗(i)
p in (3.4.116).

Third, once the candidate solution and the Lagrange multipliers are obtained,

the optimal active set should be found. The first part of this constraint control

algorithm activates a blocking constraint from (k, r) /∈ W(i) violated by x∗(i), while

the second part removes an unnecessary constraint. If x∗(i) is feasible with respect

to all the constraints in the complementary set of W(i), then there is no blocking
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constraint.

Conversely, if x∗(i) is not feasible, we find a new working set W(i+1) by append-

ing the blocking constraint to W(i). We select the blocking constraint maximally

violated by x∗(i) with

α(i) = min

{
1,min

k,r
{α(i)

k,r}
}

(3.4.117)

where

α
(i)
k,r =


∣∣∣ yk,r

Jk,rx∗(i)

∣∣∣ if Jk,rx
∗(i) > yk,r, (k, r) /∈ W(i)

1 otherwise

If α(i) = 1, then no new constraint is activated with x∗(i), and thus there is no

blocking constraint on this iteration. Otherwise, if α(i) < 1, the constraint (k, r)

with the smallest α
(i)
k,r is appended to a new working set W(i+1). Then, a new iter-

ation begins by performing the hierarchical matrix decomposition with W(i+1). As

we do not use a step direction nor a step length usually used in numerical opti-

mization [55], our algorithm is simple. Moreover, it operates regardless of whether

the initial point x∗(0) is feasible or not for an initial working set.

Now it is time to remove an unnecessary constraint in the working set if there

is no blocking constraint. Toward this end, the sign of the components of two La-

grange multipliers in (3.4.104) and (3.4.105) play a significant role. If the active

set is optimal, then all constraints are respected at the optimal point x∗(i), and all

components of µ∗
k

and µ∗k are nonnegative. Otherwise, if some of the components

of the multipliers are strictly negative, the constraint having the lowest component

can be deactivated.

Here, care must be taken when deactivating the constraints due to the hier-

archy. Strongly active constraints with the strictly positive Lagrange multipliers
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are stored in the set S(i) to prevent a lower level task from deactivating a strong

active constraint with higher priority [44]. Thus, if a constraint has the smallest

negative component in the Lagrange multipliers and at the same time it does not

have a strictly positive component of the multipliers of all previous levels, then it

should be dropped. If a constraint needs to be activated or deactivated, it implies

that the current working set is not optimal.

Once the optimal active set and the solution are found, and then all parame-

ters and constraints are updated based on the primal optimum for next time step

optimization. The RHQP solver can find the robust optimal solution efficiently

because it uses a single active set composed of all possible combinations of active

constraints for all levels.

3.4.3 Illustrative Examples of Modified Active Set Method

To compare the active set method and modified one used in the numerical opti-

mization and RHQP respectively, an illustrative example is shown in Figure 3.5.

As the active constraints restricts the domain of feasibility in neighborhoods of

feasible point, they are treated as equality constraints. While inactive constraints

have no influence in the vicinity of feasible point, they are essentially ignored. It

should be clear that if the optimal active set were known, then the optimization

problem could be solved with equality constraints only.

For a general active set method, once a working set W(i) at the current itera-

tion i is obtained, then we have to choose a direction and step size to move along

its direction to obtain maximum benefit without violating all constraints. A new

working set W(i+1) is constructed by adding the blocking constraints to W(i) . On

the other hand, we remove an index (k, r) corresponding to the smallest negative

Lagrange multipliers of µk,r and µ
k,r
∈ W(i). Then a new working set W(i+1) is
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Figure 3.5: Comparison of the active set method and modified active set method.

(a) Active set method: 1: starting point (1′: unconstrained optimum) → 2: con-

straint A is activated (2′: optimum on constraint A) → 3: constraint A is de-

activated and B is activated → 4: optimum (b) Modified active set method: 1:

unconstrained optimum → 2: optimum (constraint B is activated).
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established. This process is repeated until the optimal active set is obtained and

it is depicted in Figure 3.5 (a).

The modified active set method does not determine a step length nor step di-

rection as shown in Figure 3.5 (b). Instead, it focuses only on finding the blocking

constraint (k, r) /∈ W(i) that is maximally violated by the current optimal point

x∗(i) and removing an unnecessary constraint. If there is a blocking constraint, a

new working set W(i+1) is constructed by appending the blocking constraint to

W(i). Then optimal solution can be found directly from (3.3.37) or (3.3.86) with

the new blocking constraint. The process to remove an unnecessary constraint is

similar to the active set method except hierarchy. As the warm start for the selec-

tion of the initial working set W(0) is used, the optimum is found at once if there

is no change in W(0) between tk−1 and tk.

As a step direction and a step length are not required, the modified active set

algorithm is simple and fast. Moreover, it operates regardless of whether the initial

point x∗(0) is feasible or not for an initial working set.

3.4.4 Examples for Hierarchical Optimization with Inequality Constraint

Let us consider again the mobile robot as shown in Figure 3.1. Suppose two tasks

are assigned with a given desired effector’s pose ds. The first priority task is to

reach a target point ds1 as close as possible with the arm’s horizontal position

q1 + cos(q2), and the second level task is to position the mobile base within ql ≤

q1 ≤ qu. The task function described in (3.2.1) can be cast as

g(q) =


g1

g2

g3

 =


(q1 + cos q2)− ds1

−q1 + ql

q1 − qu

 (3.4.118)
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and the associated augmented Jacobian matrix is

J3(q) =


J1

J2

J3

 =


1 − sin q2

−1 0

1 0

 . (3.4.119)

The vector y is specified as follows:
y1

y2

y3

 =


−K1g1 + ds1

−K2g2

−K3g3

 . (3.4.120)

We use the integration interval ∆t = 0.1 s, task function gains K1 = 1, K2 =

K3 = 10 in (3.2.6), and the regularization coefficient ρ1 = ρ2 = ρ3 = 0.5. The

purpose of task functions are to drive the values g1(q) to the origin as close as

possible and satisfy the second level constraintg2

g3

 ≤
0

0

 . (3.4.121)

Consider two cases according to whether the two priority level tasks are si-

multaneously satisfied or not. At first, consider the target point ds1 = 0.1 and the

position limits of mobile base are ql = 0.2 and qu = 0.5 in (3.4.118). The first pri-

ority reference point ds1 is reachable while satisfying the position limit constraints

having the second priority. There is no task confliction. We compare the solutions

of unregularized HQP and RHQP in terms of the magnitude of the task function,

distance to the optimum, and robot configurations.

As depicted in Figure 3.6, all task function values converge to zeros regardless

of regularization. The shaded areas represent the position range constraints of the

mobile base. The convergence speed of the unregularized solution is faster than
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Figure 3.6: Numerical simulation results computed via unregularized HQP (left

column) and RHQP (right column). Two tasks can be realized at the same time.

We compare the results in terms of time history of the magnitude of the task

function (top row), distance to the optima (bottom row). The convergence speed

of the unregularized solution is faster than that of the regularized one. All task

function values converge to zeros
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Figure 3.7: Time history of the robot poses computed via unregularized HQP (top

row) and RHQP (bottom row) where target point is within the reachable space.

The shaded areas represent the position range constraints of the mobile base.
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that of the regularized one. Because RHQP penalizes the optimal velocity solution

for singularity robustness. In Figure 3.7, the time history of the robot poses are

presented. The position ranges are satisfied by properly activating an inequality

constraint. The robots with the unregularized solution have already reached the

target point at 3 s, but the robots with regularization reach the target at 4 s as

you can see in Figure 3.7.

Next, the reference point of the hand is specified at ds1 = 2.0 and the position

limits of mobile base are ql = 0.2 and qu = 0.5 in (3.4.118). The two task functions

cannot be satisfied at the same time and the two tasks are conflicting. The joint

angle q2 = 2jπ (j = 0, 1, 2, . . .) makes the first level task function zero, but the

second priority inequality constraints cannot be perfectly satisfied. The solution

lies on algorithmic singularity. As can be seen from Figure 3.8 and 3.9, all solu-

tion sequences of unregularized HQP cannot converge to the optima. However, all

RHQP solutions converge to the optima[
|g1(q∗)| |g2(q∗)|

]T
=
[
0 0.5

]T
(3.4.122)

while respecting hierarchy. The second level task is achieved at t = 1 s as shown

in Figure 3.9 (bottom row), but from t = 2 s this constraint cannot be satisfied

anymore for executing the priority task. Nevertheless, the second task is achieved

as much as possible by making the joint angle q2 = 0. If q2 has a nonzero value,

then the second level objective has a larger task error.

As a result, we can confirm again every task is achieved as much as possible

according to the priority, and the regularization can guarantee the convergence of

the solution even if the solution is near singular points.
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Figure 3.8: Numerical simulation results computed via unregularized HQP (left

column) and RHQP (right column). Two tasks cannot be satisfied simultaneously

and there is a conflict between two tasks. We compare the results in terms of time

history of the magnitude of the task function (top row), distance to the optima

(bottom row). As it can be seen, the solution sequences of unregularized HQP

cannot converge to the optima while all solutions of RHQP converge to the optima

[ |g1(q∗)|, |g2(q∗)| ]T = [0, 0.5]T respecting hierarchy.
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Figure 3.9: Time history of the robot poses computed via unregularized HQP (top

row) and RHQP (bottom row) where target point is within the unreachable space.

The shaded areas represent the position range constraints of the mobile base.
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3.5 DLS-HQP Algorithm

For comparison, the DLS-HQP algorithm [44, 70] is briefly described. Similar to

(3.3.30), each k level COD (Complete Orthogonal Decomposition) is computed as

JkZk−1 =
[
Uk Vk

]Qk 0

0 0

Ỹ T
k

Z̃T
k

 (3.5.123)

= UkQkỸ
T
k (3.5.124)

where Qk is the upper triangular matrix. A singularity robust solution is

x∗k = x∗k−1 + YkQ̂
−1
k U

T
k (yk − Jkx∗k−1) (3.5.125)

where

Q̂−1
k := (QT

kQk + ρ2
kIk)

†QT
k . (3.5.126)

With the solution (3.5.125), Lagrange multiplier µ∗k (3.4.108) can be obtained nu-

merically with the optimal task error e∗k of (3.3.76), but references [44] and [70]

do not take into account the regularization induced error u∗k in µ∗k.

The RHQP algorithm based on SVD allows us to acquire the Lagrange multi-

pliers µ∗k and µ∗
k
, however, the upper triangular matrix Qk of COD and the square

matrix Q̂−1
k make it difficult to obtain two Lagrange multipliers in the analytical

form. The value of u∗k in µ∗k and µ∗
k

is small, but without considering it, the algo-

rithm cannot properly handle inequality constraints. For example, DLS-HQP can

incorrectly drop an active constraint. Then, at the next iteration for obtaining the

optimal active set, this constraint would be added as a blocking constraint because

it is violated by x∗k.

This alternating repetition is called cycling [16, 41, 55, 82, 83, 84]. In that

case, the iteration counts and the computation time increase significantly while
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the algorithm returns the same active set and solution as the previous steps with-

out convergence. Moreover, an unnecessary constraint cannot be deactivated at

the right time. We are going to show numerically these two inequality constraint

treatment problems in the next chapter.

3.6 Concluding Remarks

We develop the fast and robust solver for regularized hierarchical quadratic pro-

gram without resorting to any off-the-shelf QP solver for the fast translation of the

task space objectives into the full-body joint space motion. As a complete reliable

and rank revealing SVD centric approach is leveraged, we recursively obtain the

singularity robust optimal solution, task error, hierarchical matrix decomposition

(HMD), and Lagrange multiplier matrix necessary to solve inequality-constrained

optimization.

We show that the optimal solutions of unregularized HQP of [44] can be ex-

actly recovered from the RHQP optimum by setting each level regularization co-

efficient to zero. Therefore, we provide a generalization of the HQP framework.

We mathematically show that regularization requires for us to trade off robust-

ness against performance. The regularization error does not vanish if the regular-

ization coefficients are not zero. Thus the priority task can interfere with all lower

level tasks. This small coupling error is the only price we have to pay instead of

guaranteeing convergence and robustness of the solution near singular points.

The RHQP solver enables to find the optimal solution very efficiently by con-

sidering all level’s hierarchical tasks together with only one active set by using the

Lagrange multiplier matrix. The multiplier matrix eliminates the iterative process

used to find each level optimal active set. All necessary Lagrange multiplier and
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optimal solution are acquired in a recursive procedure. Consequently, under the

equality and inequality constraints, the proposed algorithm works fast. We modi-

fied the active set algorithm with the primal solutions, thereby we do not need a

step direction nor a step length usually used in numerical optimization. The algo-

rithm is simple and fast, and moreover it operates regardless of whether the initial

point is feasible or not for an initial working set.

We verified the power of the regularization for the hierarchical optimization

via the simple mobile manipulator example. The regularization can guarantee the

convergence of the solution near singular points while the solution without regu-

larization shows unstable behavior. It is also shown that the hierarchical structure

can precisely resolve conflicts by creating a priority in which every task is achieved

as much as possible according to the levels. In the next chapter, the effectiveness

of the proposed method will be demonstrated through extensive numerical simu-

lations and experimental tests with the real rescue robot, Hurcules.
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4
Rescue Robot Design and

Experimental Results

4.1 Introduction

Over the last several years, a new generation of robots has emerged that shows

great promise in being able to accomplish complex tasks associated with human

behavior. For example, DARPA Robotics Challenge (DRC) has spawned real world

humanoid robots and accelerated relevant technology advancement [1, 2, 3, 4, 5, 6].

DRC has a scenario for a large-scale disaster response given the hazard involved,

and the quick response needed. Robots can be one of the best solutions in miti-

gating such events in a safe and timely manner.

However, DRC shows that there are still challenging problems including falls,

failed attempts at tasks, long periods of robot inactivity, and operator errors, and

it seems that some of problems can be addressed by a novel robot hardware design

and a control strategy for real world robotic applications [7]. While most of DRC

83



84 Rescue Robot Design and Experimental Results

teams used bipedal humanoid robots, some pursued statically stable hybrid mobile

platform with a combination of legs and wheels. As a statically stable mobile plat-

form provides a large, stable, and flexible support polygon, the hybrid platform is

advantageous for movement in various terrains [73, 74, 75, 76, 77]. However, these

DRC robots and other rescue robots do not attain all-terrain mobility on the chal-

lenging environments and do not have a high load carrying capacity for executing

real rescue missions in a highly unstructured environment [78, 79, 80, 81].

The core design concepts of the Hurcules (HUmanoid ResCUe robot caLamity

reSponse) rescue robot are firstly presented to realize how a mechanical structure

can be developed to have an effect to both manipulation capability and all-terrain

mobility. The upper body is designed humanoid in form with replaceable modu-

larized dual arms. The lower body is featured with a hybrid tracked and legged

platform to simultaneously acquire versatile manipulability and mobility on diffi-

cult terrain. A human like robot posture enables to execute complex manipula-

tion tasks without concerning about balancing control. Yet the robot takes advan-

tage of the stable tank like posture when the versatile mobility is required. As a

result, Hurcules can efficiently perform a driving task, dangerous object manip-

ulation, and casualty extraction missions by changing the pose and modularized

equipments in an optimized manner.

As the second topic of this chapter, the effectiveness and performance of the

proposed solver for regularized hierarchical quadratic program (RHQP) are proved

through extensive numerical simulations and experimental tests with the Hurcules

robot. We demonstrate that the task regularization and the inequality-constrained

optimization are fully integrated via RHQP to guarantee the robustness and con-

vergence of the solution in the face of a singularity. The proposed method can

also acquire the optimal solution without showing any cycling and deactivate an
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unnecessary constraint at the right time. Especially, we show that, without consid-

ering the regularization errors in Lagrange multipliers, the optimization algorithm

brings about a cycling in the neighborhood of a singularity, and thus it yields the

same solution and working set repeatedly to the earlier iteration. As the RHQP

algorithm can impose the top-most priority on the physical inequality constraints

such as joint angle ranges, it eliminates the possibility that the motion tasks vio-

late the physical constraints.

The algorithm works fast enough to be used as a practical means of real-

time motion control system. The control frequency is set at 1kHz for the Hurcules

robot, and the hierarchical optimization algorithm should provide the calculated

results within 1 ms. The average computation time for the 19-DoF rescue robot is

less than 0.1 ms on a typical personal computer. Finally, we show that the Hur-

cules robot can successfully execute a dangerous object disposal and a casualty

extraction in a highly unstructured environment.

4.2 Rescue Robot Design

The main question of this section to be answered is: “what is the design concepts

for a rescue robot to provide both versatile manipulation capability and all-terrain

mobility.” Because dextrous manipulability and reliable mobility are essentially re-

quired for a robot to rescue and assist humans in various environments. Although

the development of a field robot involves various engineering details, we concen-

trate on the core design concepts based on the knowledge and experience gained

while developing the Hurcules robot [96, 97].
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(a) (b)

(c)

Figure 4.1: Missions of the rescue robot, Hurcules (HUmanoid ResCUe robot

caLamity reSponse): (a) casualty extraction (b) explosive ordnance disposal and

transportation (c) driving activities on various terrains

4.2.1 System Design

The goal of the Hurcules robot is to extract an impaired person in the battlefields

or hazardous environments. Another crucial mission is to dispose a dangerous or

explosive object as shown in Figure 4.1. This type of missions asks for two distinct

and unique capabilities compared to other conventional humanoid robots. The first

requirement is to have a high weight lifting capacity to extract a person over 120kg

and the other is to traverse over various kind of difficult terrain. When designing,

we set the following priorities in decreasing order of importance, and the main six
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Table 4.1: Hurcules hardware specifications for rescue and manipulation missions

For rescue mission For manipulation mission

Weight lifting capacity 120kg 30kg per arm

DoF controlled by RHQP 13 19

DoF of a manipulator 4 7

Passive compliance Elbow Wrist and finger

Auxiliary equipment Transfer bed Finger type grippers

Normal standing height 1.9m 1.9m

Driving posture height 1.678m 1.678m

Weight 680kg 680kg

Maximum velocity 20km/h 20km/h

topics are consisting of:

• To enhance traversability over rough terrains and dexterous manipulability.

• A robust framework for real-time whole-body motion control.

• Maximizing payload capability to lift and transfer an injury over 120kg.

• Replaceable modularized hardware to efficiently perform a casualty extrac-

tion and a dangerous object disposal respectively.

• Passive compliance mechanism for a safe interaction with the environment.

• To maximize operation time.

The overall specification and schematic overview of Hurcules are shown in Ta-

ble 4.1 and Figure 4.2 respectively. The easily replaceable two different lower arms
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Figure 4.2: Configurations of the rescue robot, Hurcules for manipulation (left)

and rescue (right) missions.

are designed. To carry out a manipulation mission, seven-DoF arms and finger

type grippers are equipped. On the other hand, light weight four-DoF manipula-

tors and automatically expandable transfer bed are utilized for the rescue mission.

Rather than designing the manipulators satisfying all competing requirements at

the same time, modular type arms are developed that can be easily replaced de-

pending on the given mission.

As the configuration is depicted on Figure 4.3, the robot can change the pose

and modularized equipments to maximize driving and manipulation performance.

To manipulate objects in a human centered environment and to handle a heavy

object efficiently, Hurcules stands upright to exploit all joints in the lower body

platform as well as the upper body. As the robot attains near-human shape, it



4.2. Rescue Robot Design 89

Figure 4.3: Various poses of the rescue robot, Hurcules: drive and task execution

postures.
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provides very dexterous manipulability and intuitive feedback for a distal oper-

ator. Thus, a short training time is usually required to proficiently operate the

robot. Dual arm manipulators are useful for lifting and carrying injured as well as

dealing with heavy objects. All joints are powered by electric motors. The anthro-

pomorphic upper body for a manipulation mission includes 7 DoF on each arm, 1

for waist, 2 on neck, and 1 on each gripper. The lower body has 2 DoF on knee

and hip joints and 1 DoF on each leg for driving. The stable tank like posture is

exploited when the mobility is required.

A human-in-the loop operation is the primary working mode for human robot

interaction. An operator is receiving visual information and the robot status, per-

forming high level motion planning and control, communicating with the wounded

in voice, and quickly intervening whenever critical event or emergency occurs. In

order that the operator needs not concentrate on the details of multiple joint con-

trol, the user interface enables to control the robot in a natural and intuitive way.

As frequently used motions are pre-programmed and optimized beforehand, the

user can select and combine these motions to accomplish given tasks. Real-time

motion control algorithms are essential to carry out complex or unstructured tasks

in the operational space. The bimanual haptic master device (Geomagic Touch X)

and joystick allow to intuitively synthesize task space motions of the slave robot.

The maximum weight lifting capacity is demonstrated in Figure 4.4. For the

joint space trajectory tracking control of the robot, an inverse optimal robust Pro-

portional Integral Derivative (PID) controller is designed to cope with a wide range

of payload variation from 0kg to 120kg without any feedforward compensation

[98, 99, 100, 53]. We can obtain not only a control law but also state and control

input weighting matrices inversely from H∞ optimal control framework. Although
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(a) (b)

Figure 4.4: Maximum weight lifting capacity: (a) casualty extraction (120kg) (b)

explosive ordnance transportation (30kg per arm)

this robust PID trajectory tracking controller cannot guarantee globally asymp-

totic stability, it promises extended disturbance input-to-state stability. Moreover,

it provides two gain tuning laws. Please see Appendix for a detailed explanation.

The adoption of LIDAR (light detection and ranging), infrared and stereo cam-

eras as well as a wide angle camera on the head can provide enhanced situational

awareness. Especially, the infrared camera enables us to detect the injured who

has body temperature from a far distance and helps to operate the robot at night.

The line of sight of head mounted cameras and the auxiliary camera can be ad-

justed using active joints to monitor the state of the injured and environment. The

pose of the target object is estimated by using the stereo cameras. With the help

of the pose estimation information of the object, the RHQP control system can

automatically plan a joint space trajectory making the grippers in an appropriate

grasping configuration. This look-and-move approach can assist the robot operator

to perform a grasp mission.
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Figure 4.5: Mechanical design of the variable configuration mobile platform.

4.2.2 Variable Configuration Mobile Platform

The wheeled or tracked mobile robots are generally faster and more stable than

legged robots. Relative to speed, wheels are the most energy efficient way to travel.

The lower body of Hurcules is designed to be stable and sufficiently fast for travers-

ing. At the same time, in order to obtain improved manipulability, the lower body

is featured with individually controllable knee, hip, and waist joints as shown in

Figure 4.5, 4.6 and 4.7.

As the lower and upper legs have continuous or caterpillar tracks, the mobile

platform has better mobility over rough terrain. It can smooth out the bumps,

glide over small obstacles and is capable of crossing trenches. In addition, tracks

are much less likely to get stuck in soft ground, mud, and snow because they dis-

tribute the weight of the robot over a large contact area. This passively stable
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Figure 4.7: Lower leg structure of the mobile platform.
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mobile platform has advantage of maintaining balance and handling a heavy ob-

ject on uneven areas. Finally, skid-steered tracked platform can turn easily in place

without forward and backward movement by driving the tracks in opposite direc-

tions.

To safely transfer an injured, an automatically expandable transfer bed is ap-

plied, and it can be attached or detached depending on the mission. When trav-

eling over rough ground, the robot cannot avoid shock and vibration which in-

evitably lead to structural fatigue and deteriorate riding quality and steering per-

formance. Multiple springs with shock absorbers are mounted on each legs and the

transfer bed to alleviate these effects.

When driving on an unpaved road, a large driving torque is necessary. On the

contrary, a fast driving performance is needed on a paved road. As it is difficult

to achieve the two competing requirements only with a motor, the vehicle usually

uses a transmission. However, it is not suitable for humanoid robots due to the

heavy weight and bulky size. To cover wide ranges of driving speed and torque,

a small continuously variable transmission (CVT) is adopted which is often used

on motorcycles. The gear ratio can be continuously varied by the centrifugal force

proportional to the rotational speed of the drive shaft. A large torque is acquired

at low speeds with a gear ratio of 3:1 (input:output), a fast maneuver performance

is achieved at high speeds with a ratio of 1:1. The continuous gear ratio is provided

between low and high speed. Thus, the mobile platform has the ability to move

with the maximum velocity of up to 20km/h and to drive on 30 degree slope ter-

rain. Consequently, this variable configuration mobile platform helps us to deploy

Hurcules in even more challenging outdoor environment.
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4.2.3 Dual Arm Manipulators

The powerful electric motors are employed and the actuated torques are deliv-

ered by means of mechanical transmissions with large gear reduction ratio as il-

lustrated in Figure 4.8. As the drive trains have power-on-to-disengage magnetic

safety breaks, the robot is able to hold the limb at the output side without power

consumption. The rescue scenario is composed of several small missions such as

standby, driving, acquisition, and returning to the command post. The power of

dual arms can be completely removed when there is no upper body movement.

Only the acquisition and manipulation missions require the upper body motion

and the power of dual arms is completely shut down when driving. This power

management strategy enables the robot to be highly energy efficient. Therefore,

the continuous operation time is significantly extended up to two hours based on

the rescue scenario.

As the environment becomes unstructured, the interaction between the end-

effector and environment more complex and uncertain. Moreover, it is very diffi-

cult for an operator to acquire accurate information of the robot and environment.

The control, planning, and an operator error may cause an excessive contact force

during robot-environment interaction. A passive compliance mechanism can effec-

tively mitigate this problem by modifying the end-effector trajectory when the in-

teraction forces arises. This passive approach is simple and the response is much

faster than active compliance control. As shown in Figure 4.8, a passive elastic

components are applied to the elbow, wrist, and finger joints.

Nevertheless, the passive compliance mechanism can only handle small devia-

tions from the rest position and it is difficult to accurately regulate the interac-

tion force. In order to overcome these drawbacks and to obtain a reasonable force
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regulation accuracy, direct force control is used in combination with the passive

compliance element. The active force control strategy is the topic of Chapter 5.

4.2.4 Software Architecture

The torso and back pack contain three computers, network device, inertial mea-

surement unit, and power electronics. The navigation computer handles GPS and

IMU data, and the vision computer processes image data. The motion control com-

puter is allocated for managing whole-body motion control where real time control

tasks are executed on the Linux Ubuntu 16.04 operating system. To strength the

capability of real time tasks, Xenomai patch is used. The latest industrial Ethe-

CAT field bus provides higher bandwidth to communicate with local joint con-

trollers, and thus 1kHz frequency sensing and control are enabled. The torque

reference command resulting from the PID controller is sent to each local joint

current controller via EtherCAT field bus.

Software structures are depicted in Figure 4.9. The inter-process communica-

tion is working via shared memory, and it has an advantage in data exchange

speed and implementation convenience. As we easily select controlled objects ei-

ther a dynamic simulation model or real robot hardware without any software and

hardware modification due to the shared memory structure. The integrated simu-

lation environment helps us to expedite the software development process. Before

starting the experiment, all control algorithms are tested in advance through the

dynamic model in a virtual environment provided by Gazebo [101].

Socket handler processes all messages coming from an operator, navigation and

vision computers, and stores the data in the shared memory. The control data

is passed to Message parser and then delivered to Real-time Control (RC) task.

In every period, the motion control RC task calculates the joint references with
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Figure 4.9: Block diagram of software structures

the RHQP algorithm and then writes the commands in the shared memory. The

concurrently working multiple RC tasks contain various algorithms such as RHQP,

driving control, center of mass (COM) monitoring, and self-collision detection. The

Daemon process can directly access the hardware and handles the joint sensor data

and command with the shared memory. The control frequency of the thread is set

at 1kHz and all algorithms of RC tasks should provide the results within 1 ms.

Please refer to [76, 102] for a detailed explanation.
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4.3 Performance Verification for Hierarchical Motion Control

The RHQP algorithm is applied to the Hurcules robot for motion control. As

the configuration is shown in Figure 4.10, a human operator can perform high-

level motion planning and control through the bimanual haptic device and joystick

while receiving visual information. The weight of the robot is approximately 680

kg, and the height of the posture shown in Figure 4.10 (b) is 1.9 m.

A 19-DoF robot is composed of two 7-axis arms, two axes on the neck, and

one on the waist, hip, and knee joints, respectively. The RHQP solver allows the

distal operator to intuitively control all level tasks without being overly concerned

with the joint range constraints, task conflicts, and singularities. The aim of the

solver is to compute the joint space reference angle q∗ and angular velocity q̇∗, as

shown in Algorithm 1, and then transmit them to the local joint controllers.

An i7-6700 CPU with a base frequency of 3.4 GHz is used. Numerical compu-

tations of the SVD and COD are realized using JacobiSVD and CompleteOrthog-

onalDecomposition, respectively, provided by the Eigen C++ library [103].

4.3.1 Real-Time Motion Generation

For considering task hierarchy and singularity robustness, the RHQP framework

(3.4.95) can be utilized by defining the following relations:

xk : = q̇k (4.3.1)

yk : = −Kkgk + dṡk, (4.3.2)
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where gk := sk − dsk. The RHQP problem of (3.4.98) can be rewritten as

min
q̇k,ek

1

2
||ek||22 +

1

2
ρ2
k||Y T

k q̇k||22 (4.3.3a)

subject to Jkq̇k − yk ≤ ek (4.3.3b)

Jk−1q̇k − yk−1
≤ e∗k−1 (4.3.3c)

Similarly, the task error, hierarchical matrix decomposition, Lagrange multipliers,

and all other solutions described in Chapter 3 can be obtained.

The motion specifications or constraints can be assigned in the operational

space and/or joint space. The task space velocity command dṡk is given by the

operator, and the position command dsk is computed by numerically integrating

dṡk over time. Then the RHQP algorithm is exploited to find joint space refer-

ence position q∗ and velocity q̇∗. Therefore, the solver is used for the first-order

closed-loop inverse kinematics scheme to generate joint space motions [28, 63, 94,

95, 104, 88].

The optimal solution in (3.3.37) can be rewritten as follows:

q̇∗k =
k∑
j=1

(
YjΣ̂

−1
j UT

j (dṡk −Kkgk − Jj q̇∗j−1)
)

(4.3.4)

= q̇∗k−1 + YkΣ̂
−1
k UT

k

(
dṡk −Kkgk − Jkq̇∗k−1

)
, (4.3.5)

where

Σ̂−1
k := (Σ2

k + ρ2
kIk)

†Σk. (4.3.6)

Because the initial posture q(0) is known, the reference joint positions can be ob-

tained by integrating velocities q̇∗(tk) over time

q∗(tk+1) = q∗(tk) +

∫ ∆t

0
q̇∗(ζ)dζ, (4.3.7)
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Representative tasks for manipulation. (a) position and orientation of

hand (b) pelvis traversal position control (c) pelvis pitch angle control (d,e) swivel

angle control (f) gaze control.

where ∆t is integration interval.

A task specifies a bound on a function relying only on the configuration vector,

it can be expressed as follows: q

slk ≤ gk(q) ≤ suk . (4.3.8)

The first-order Taylor approximation yields the linear constraint as follows:

Jk(q)q̇ ≤ Tk
∆t

(suk − sk) (4.3.9)

−Jk(q)q̇ ≤ −Tk
∆t

(slk − sk) (4.3.10)

where Tk is the time horizon and ∆t is integration interval.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Pelvis pose and swivel angle control: (a) ready for manipulation (b)

pushing the pelvis forward (15cm) (c) lowering the pelvis down (d, e, f) swivel

angle control.

4.3.2 Task Specifications

The tasks are composed of controlling the positions of the left and right hands

(glhpos, grhpos) and orientations (glhori, grhori) (12-DoF). The others are to control

the pelvis traversal position and pitch angle gpel (2-DoF), body posture gbody (1-

DoF), swivel angle gswivel (2-DoF), and gaze ggaze (2-DoF). Representative tasks

are shown in Figure 4.11 and 4.12.

The swivel angle is defined as an angle between the plane passing through the
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(a) (b) (c) (d)

Figure 4.13: Constrained dual arm manipulation: (a) ready for manipulation (b)

moving hands sideways (c) rotating hands in roll direction (d) rotating hands in

roll and yaw direction.

arm and a reference torso plane [105, 106]. It is useful to avoid self-collision be-

tween arms and torso as well as to make a robot to execute a mission with human

like posture. The body posture task is to force the torso to look forward as much

as possible. The joint operation range gjoint has the top priority among all con-

straints and the regularization parameter ρk = 0.1 is used for all level tasks.

The eight levels of tasks are established in decreasing order of importance, i.e.,

gjoint ≺ glhpos ≺ grhpos ≺ glhori ≺ grhori ≺ gpel, gbody ≺ gswivel ≺ ggaze. The

notation gA ≺ gB implies that gA task has higher priority than gB. The joint angle

range constraint has top priority because unless the joint angle limits expressed by

inequality constraint is explicitly included in the optimization, then the solution

is not physically applicable to the real robot. Because the motions of real robots

as well as Hurcules are severely restricted by each joint operation range due to

collision of mechanical structure and additional equipments such as battery and

backpack and the stiffness of internally routed cables as shown in Figure 4.10.

As can be seen in Figure 4.13, in order to handle a heavy object, dual arm

manipulation has also been used. Because bimanual manipulation has several ad-

vantages over single arm, for example, to provide similarity to human form factor
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t = 0s t = 15s

t = 25s t = 35s

Figure 4.14: Stretching motion of the left arm for grasping a distal object with

the RHQP solver. The dashed line represents the activated joint limit constraint

at REB (right elbow) and RS (right shoulder) Roll joints.

of a human operator, flexibility, and stiffness [107]. When forming a closed kine-

matic chain by means of fixed grasps, the high structural stiffness and strength

can be acquired at the price of having a reduced workspace. Here, instead of solv-

ing loop closure equations, we impose a rigid body kinematic constraint on each

individual hand to generate coordinated Cartesian motion.
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4.3.3 Singularity Robust Task Priority

To verify the singularity robustness of the proposed solver, we compare the three

solutions of RHQP, HQP [44], and DLS-HQP [70]. Recall that DLS-HQP uses the

COD and DLS-inverse, as described in (3.5.125), and it does not consider the regu-

larization error u∗k in the Lagrange multipliers µ∗k in (3.4.108) and µ∗
k

in (3.4.109).

In particular, the latter µ∗
k

is difficult to acquire analytically due to the triangular

matrix of the COD. The active set method described in Chapter 3 is applied to

all algorithms.

When the left hand reaches out to grasp a distal object, singularity is encoun-

tered, as shown in Figure 4.14. Because the left arm is outstretched, the mobility

is reduced and the corresponding Jacobian becomes rank deficient. Three numer-

ical solutions are presented in Figure 4.15. From t = 17 s, the left arm velocity

of RHQP begin to decrease gradually because the regularization in (3.3.39) has

a strong impact on the solution as the singular value decreases near singularity

as shown in Figure 3.2. However, the HQP solution grows unboundedly, and an

excessive joint velocity occurs. Every physical robot has the maximum allowable

joint velocity, which prevents the solution from diverging indefinitely, but induces

oscillations as depicted in Figure 4.15 (middle). Thus, the state of the robot is

completely uncontrollable, and the posture becomes arbitrary.

As can be seen from Figure 4.16, DLS-HQP shows a cycling in the singularity

region. The activation of a blocking constraint and its incorrect deactivation are

repeated in turn, and thus the number of iterations increases significantly. Here, to

prevent this infinite repetition, the maximum number of iterations is limited to 12,

and the corresponding constraint is forced to be active at the maximum iteration.

If the constraint is not intentionally activated, then the joint angle quickly reaches
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Figure 4.16: Number of iterations of RHQP (Left) and DLS-HQP (Right). The

RHQP algorithm can find the optimal active set in 2 iterations. The DLS-HQP

solution shows cycling from 24 s to 26 s with the maximum number of iterations.

the limit condition, and the robot enters emergency mode for safety. Even if a

constraint is forced into activation, it is incorrectly dropped and the cycling occurs

again at the next time step. This cycling significantly increases the computation

time, and the solution is not always obtained in 1 ms. In this case, the solution is

set to zero for safety, and therefore the joint angular velocities often become zero

from 24 s to 26 s, as shown in Figure 4.15 (bottom).

It is worth noting that in the absence of a task conflict the RHQP solution

trajectories of the right arm, lower body, and neck, shown in Fig. 4.15 (top row

(b) and (c)), have nonzero angular velocities for up to 24 s despite the reference

movement command being only given by the left hand. It is because of the reg-

ularization error. By recalling the optimal task error of (3.3.80), the k − 1 level

solution x∗k−1 affects all following j levels for j > k− 1 through the regularization

parameter ρj 6= 0, and the regularization error u∗j occurs. This error is also ob-

served in the DLS-HQP solution shown in Fig. 4.15 (bottom row (b) and (c)). By
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Figure 4.17: Reference joint angle trajectories (left) and task errors (right) of

RHQP. (Left) The elbow and shoulder roll joint constraints are activated at t =

25 s and t = 33 s respectively. (Right) The RHQP solver automatically gives up

low-priority tasks, i.e. gbody, gpel, and gswivel to satisfy the hand pose tasks. Thus

the task errors increase.

contrast, for up to 15 s, the HQP solution trajectories have zero angular velocities

except for the left arm, which means that the left-arm tasks are perfectly executed

without interfering with any lower-level tasks (middle row (b) and (c)).

The right arm solution of RHQP in Figure 4.15 (top middle) indicates that the

angular velocities of the elbow (REB) and shoulder roll (RS Roll) joints become

zero at t = 24 and t = 33 s, respectively. We can see the activated joint angle

constraints as shown in Figure 4.17. Each joint angle constraint gjoint is activated

to satisfy the joint angle range as shown in Figure 4.14. This sudden activation of

a constraint results in a velocity discontinuity for all trajectories, which suddenly

increases the joint control errors as shown in Figure 4.18. However, a robust PID

joint controller can guarantee the stability and keep the control errors sufficiently
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Figure 4.18: Joint space control errors with the RHQP solution: (a) left arm (b)

right arm.

small to execute a given reaching task. The velocity discontinuity can be resolved

using a smooth task transition method [108, 109, 110]. In summary, the motion

tasks cannot violate the physical constraints.

In Figure 4.15 (top right), the velocity of the waist joint increases abruptly at

t = 24 s. The waist joint is used for positioning the left hand further forward by

turning the torso because the left arm is no longer stretched forward on its own.

As shown in Figure 4.14 and 4.17 (right), the RHQP solver automatically gives up

low-priority tasks, i.e. gbody, gpel, and gswivel although these tasks are to maintain

initial poses as much as possible. This movement is similar to the way humans try

to grab a distant object by sequentially sacrificing less important tasks.
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As the SVD-centric approach is leveraged, a wide range of well-known regular-

ization methods and parameter adaptation strategies can be applied to the pro-

posed solver to trade off robustness against performance. According to [62, 63, 65,

68], the regularization parameter is increased in proportion to the inverse of the

minimum singular value when the robot configuration is near a singularity. In a

singularity free region, the regularization parameter is set to zero, and thus the

regularization error can be completely eliminated.

The simulated bimanual manipulation is shown in Figure 4.19. In a bimanual

manipulation, since dual arms are physically interacting with the same object, the

robot motions are severely restricted by joint operation ranges. Moreover, internal

singularity can occur inside the reachable workspace. This singularity is more se-

rious than boundary singularity because it occurs in the reachable workspace and

it is difficult to notice [104].

In Figure 4.19 (b) we can see internal singularity is encountered by the align-

ment of two wrist yaw joints when the left forearm is outstretched. As depicted

in Figure 4.20, both RHQP and DLS-HQP are singularity robust but DLS-HQP

shows cycling. The RHQP algorithm activates the right elbow joint constraint at

5sec due to the restricted operation ranges and then deactivates it at 12 s. How-

ever, DLS-HQP cannot remove the right elbow joint constraint around 12 s. There-

fore, one more task should be abandoned compared to RHQP in order to satisfy

the elbow joint angle constraint.

4.3.4 Inequality Constraint Handling and Computation Time

The main drawback of the clamping method [67] and artificial potential function

[20] for treating the inequality constraint is the ambiguity regarding which active

constraint should be removed when unnecessary. This problem is addressed by an
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(a) (b)

(c) (d)

Figure 4.19: Robot poses for bimanual manipulation with the RHQP solver. (a)

Initial pose (b) Internal singularity is encountered by the alignment of two wrist

yaw joints when the left forearm is outstretched. (c) Right elbow (REB), right

shoulder roll (RSR), and left wrist yaw2 (RWY2) joint constraints are activated.

(d) Right elbow (REB) joint constraint becomes deactivated.
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Figure 4.20: Joint angle trajectories (top) and number of iterations (bottom) for

bimanual manipulation. (a) Results for RHQP (left). (c) Results for DLS-HQP

(right). The RHQP algorithm deactivates the right elbow joint constraint at t =

12 s and does not show any cycling. The DLS-HQP solver cannot remove the right

elbow constraint at that time and shows cycling with the maximum number of

iterations (bottom right). Edges of shaded areas represent the time of activations

or deactivations of inequality constraints.
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(a)

(b)

(c) (d)

(e) (f)

Keeping 

elbow joint 

constraint

Removing 

elbow joint 

constraint

Activated

elbow joint 

constraint

Figure 4.21: Snapshots of bimanual manipulation. The arrows represent the di-

rection of each task. The robot configurations associated with the RHQP solu-

tion trajectory: (a) → (b) → (c) → (d) and the DLS-HQP solution trajectory:

(a) → (b) → (e) → (f). As the robot pulls its hands toward its body, the elbow

joint constraints are activated in (b). The RHQP solver removes the elbow joint

constraints as soon as the hand task direction reverses as shown in (c). However,

the DLS-HQP solver maintains the elbow joint limit constraint even though the

constraint should be removed. Thus, the DLS-HQP gives up the pelvis task by

moving the knee and hip joints to perform the hand tasks with priority.
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Figure 4.22: Computation time for RHQP, HQP and DLS-HQP with respect to the

number of levels. The computation costs of RHQP is nearly equal to the HQP and

is cheaper than that of DLS-HQP for p > 3.

optimization-based approach, and the RHQP algorithm is also able to properly

handle this problem as shown in Figure 4.21. As the robot pulls its hands toward

its body, the right and left elbow joint angle constraints are activated (Figure 4.21

(b)). Next, as the robot pushes its hands in the opposite direction, the RHQP

solver immediately removes the elbow joint constraints; however, the DLS-HQP

cannot deactivate them. Because the DLS-HQP does not involve the regularization

error in the Lagrange multipliers for treating inequality constraints. Therefore, the

hand task is only achieved by giving up the pelvis task by moving the knee and

hip joints since the inequality constraint is not deactivated.

We compare the computation time of RHQP, HQP, and DLS-HQP in the ab-

sence of a singularity. The number of level changes from p = 2 to p = 8 with the

same number of DoFs (n = 19) and the total task size (
∑
mk = 19). The mean
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Table 4.2: Computation time (msec) for RHQP, HQP and DLS-HQP with respect

to the number of levels.

Number of Levels 2 3 4 5 6 7 8

RHQP(mean) 0.1878 0.0920 0.0700 0.0833 0.0868 0.0838 0.0828

RHQP(std) 0.0264 0.0141 0.0114 0.0164 0.0214 0.0166 0.0106

HQP(mean) 0.0492 0.0673 0.0672 0.0628 0.0700 0.0949 0.0888

HQP(std) 0.0139 0.0172 0.0177 0.0099 0.0165 0.0240 0.0138

DLS-HQP(mean) 0.0728 0.0803 0.0833 0.0928 0.1017 0.1193 0.1241

DLS-HQP(std) 0.0073 0.0144 0.0137 0.0134 0.0120 0.0123 0.0186

and standard deviation of the computation time for each algorithm are calculated

using 500, 000 data points, and the results of which are presented in Figure 4.22

and Table 4.2. These results show that the computation cost of RHQP is nearly

equal to HQP and it is cheaper than that of DLS-HQP for p > 3. Specifically,

when applying the number of levels, p = 8, used in all previous results, the ma-

trix sizes mk×ok of each matrix JkZk−1 ∈ Rmk×ok are 3×19, 3×16, 3×13, 3×10,

2 × 7, 3 × 5, and 2 × 2 according to levels. In this case, interestingly RHQP and

HQP have a nearly equal computation time, as shown in Figure 4.22, although it

is known that the COD is generally more efficient than SVD. We confirmed that

the calculation times of the COD and SVD are nearly equal, if each task size is

small, i.e., mk ≤ 8 and ok ≤ 30, where a typical humanoid robot is applied.

At each level k, DLS-HQP uses one COD to decompose the matrix JkZk−1

in (3.5.124) and computes two inverses of Q−1
k and Q̂−1

k necessary to obtain the

Lagrange multiplier (3.4.115) and regularized solution (3.5.125), respectively. As a
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consequence, DLS-HQP requires a longer computation time than HQP because the

DLS-HQP should obtain an additional matrix inverse Q̂−1
k for each level k. Here,

we conducted a forward substitution using the property of the triangular matrix

of Qk for HQP and DLS-HQP to avoid a matrix inversion of Qk. However, we

cannot use this technique to acquire Q̂−1
k because the matrix Q̂k is square.

By contrast, RHQP cheaply acquires Σ−1
k and Σ̂

−1
k by inverting each main

diagonal element of Σk and Σ̂k respectively. Therefore, the computation time of

RHQP is nearly constant regardless of the number of levels for p > 3, whereas

the cost of DLS-HQP increases as the number of levels increases. However, the

smaller the number of levels, such as p = 2 or p = 3, the closer the Jacobian

matrix is to the large square matrix, and the computational complexity of SVD

increases significantly. For example, when the number of tasks is p = 2, we have

the relatively large square matrix J2Z1 ∈ R19×19. In this case, the computational

cost of the SVD is much higher than that of COD.

In terms of the computational cost, we can see that RHQP is not always dis-

advantageous compared to HQP if tasks are divided into several hierarchical layers

with an appropriate task size mk for robotic applications. In Figure 4.22, the av-

erage computation time of RHQP is within 0.1 ms.

4.4 Singularity Robustness and Inequality Handling for Res-

cue Mission

For a rescue mission, the transfer bed is integrated and the 4 DoF manipulator is

equipped as shown in Figure 4.23. The motion tasks are composed of controlling

left and right hand positions ghpos (six DoF) and corresponding pitch angles ghpitch

of the lower arms (two DoF), pelvis traversal position gpel (single DoF), and gaze
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Figure 4.23: Joint configuration of the Hurcules robot for a rescue mission where

arrows represent the axis of rotation.

angle ggaze (two DoF). The motion tasks or motion primitives are shown in Figure

4.24. The purpose of controlling pitch angle is to ensure proper insertion of the

lower arms as they enter between the ground and the injured by adjusting the

angle. The priority order of five level tasks is then gjoint ≺ ghpos ≺ ghpitch ≺

gpel ≺ ggaze, and we use all ρk = 0.1. The schematic control block diagram for the

rescue mission is presented in Figure 2.1.

For the robot to lift the inured, the robot should be able to reach out the lower

arms. As can be seen from Figure 4.25 (top left), the battery and transfer bed

severely restrict the operation ranges of the hip and knee joints, and the backpack

also limits the operation ranges of shoulder joints. When the operator uses a single

joystick button to extend the lower arms forward and does not control any other

tasks. In that case, the robot postures are presented in Figure 4.25. The joint angle

trajectories and control errors with respect to time are shown in Figure 4.26.
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Pelvis position control
Hand position control

Hand pitch 

angle control

Gaze angle control

Figure 4.24: Motion tasks for rescue mission. (Left) Pelvis traversal position con-

trol (Top) Gaze angle control (Right) Hand position control (Bottom) Hand pitch

angle control
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t = 0s

Hip

KneeElbow

ShoulderNeck joint

pitch angle

Battery Bed

t = 15s t = 25s

t = 30s t = 40s

Backpack

Figure 4.25: Snapshots of stretching motion for the rescue mission. Equipments can

severely restrict the joint operation range (top left). The dashed line represents the

activated or deactivated joint limit constraint.
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Figure 4.26: Experimental results for RHQP solution: (a) reference joint angular

velocities (b) joint space control errors.

Near the time of 15 s, the hip joint angle reaches the limit value established to

prevent the battery and torso from colliding. Since the hip joint is locked, the knee

joint begins to move in order to satisfy higher level tasks such as ghpos and ghpitch

by increasing the positional task error of the pelvis task gpel. At the same time

we lose control over gpel. As the lower arms extend further forward, the shoulder

joint reaches its limit value at the time of 25 s, but the hip joint begins to move

again since this joint is automatically released from the active constraints due to

the knee motion. Here, we confirm that the inequality constraints are well handled

by being activated and deactivated at the right time. You can see that the control

error increases rapidly when the constraint is suddenly activated or deactivated as

illustrated in Figure 4.26 (b). However, the clamping method and artificial poten-

tial function have difficulty to decide which active constraint should be deactivated

when it is unnecessary.
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At all times, the line of sight is maintained to keep the gaze at the injured by

adjusting the tilt angle of the neck. At the end of the stretching motion, the pelvis

task has the position error of 40cm since this task has supported the fulfillment

of higher level tasks. We show again that the hierarchical strategy can precisely

resolve conflicts by creating a priority in which every task is achieved as much as

possible according to the levels.

4.5 Field Tests

Actual field tests for an injured extraction and dangerous object disposal have

been conducted at Korean army advanced Combat Training Center (KCTC) and

Changwon Proving Ground of Agency for Defense Development. The sequential

operations are composed as follows:

• Driving: moving to the destination with the stable tank like posture.

• Turning the waist.

• Folding dual arms to avoid self collision and rotating both lower legs.

• Manipulation ready: standing up and being ready for manipulation.

• Acquisition: task space control for an acquisition of a target object.

• Sitting down, turning the waist, and rotating the right lower leg.

• Turning the waist in the opposite direction and rotating the left lower leg.

• Pointing the torso in the forward direction and being ready to drive.



4.5. Field Tests 123

The injured extraction and explosive ordnance acquisition missions are successfully

executed by the sequential pose transformations as shown in Figure 4.27 and 4.28

respectively.

One of the key requirements for the successful execution of the rescue mission

is to regulate interaction force between the lower arm and environment because

the robot’s lower arms should penetrate the gap between the injured and ground

as shown in Figure 4.28 (6) and (7). A high value of contact or friction force with

the ground prevents the robot to achieve this motion. Moreover, it can stress or

break mechanical components or damage electrical parts due to the high current.

To make matters worse, as Hurcules adopts position control strategy, the afore-

mentioned situation is more likely to occur. However, a passive compliant element

can effectively reduce the excessive contact force. Furthermore, an operator is able

to physically feel and monitor the interaction force via the haptic master device

and control computer respectively. Because the contact force acting on the lower

arms is measured from the angular displacement of the elastic element as shown

in Figure 4.8.

In Figure 4.28 (11), the robot automatically expands the transfer bed, and

puts the impaired person down to prevent secondary injury to the wounded during

transferring.

When driving, the power of dual arms is completely shut down and the posture

is maintained by using magnetic breaks in each arm joint. Therefore the robot’s

continuous operation time is significantly extended. We confirmed that traveling

400m on a round trip, the rescue missions composed of Figure 4.27 and 4.28 are

repeatedly performed seven times in two hours without battery replacement.

Although visual images are provided, still it is lacking for an operator to fully

recognize the environment and robot status as shown in Figure 4.29. However, the
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure 4.27: Motion sequences of a dangerous object acquisition mission: (1) Driv-

ing: moving to the destination (2) turning the waist (3) rotating both lower legs

at the same time (4) Manipulation Ready: standing up and being ready for the

grasp task (5,6,7,8) Acquisition: task space control via RHQP solver to grasp a

dangerous object (9) Lifting and sitting down (10) turning the waist and rotating

the right leg (11) turning the waist in the opposite direction and rotating the left

lower leg (12) Transfer: pointing the torso in the forward direction and leaning the

torso.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure 4.28: Motion sequences of the rescue mission: (1) Driving: moving to the

destination (2) turning the waist (3) folding dual arms to avoid self collision and

(4) rotating both lower legs at the same time (5) Rescue Ready: standing up and

being ready for the rescue task (6,7) Acquisition: task space control via RHQP

solver to lift the injured (8) Lifting (9) sitting down, turning the waist, and rotat-

ing the right leg (10) turning the waist in the opposite direction, rotating the left

lower leg and pointing the torso in the forward direction of driving (11) Putting

Down: deploying the transfer bed and putting safely the injured on the bed (12)

Transfer: pulling out the arms and being ready to transfer.
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(a) (b)

(c) (d)

Wide angle camera image Auxiliary camera image

Figure 4.29: Visual information of cameras corresponding to the motion sequences

of the rescue mission: (a) Lifting Ready (b,c) Acquisition (d) Lifting.

RHQP motion control algorithm enables the operator to be less concerned with the

detailed motion control problems such as task confliction, singularity, and robot’s

physical constraints.

4.6 Concluding Remarks

We present novel hardware design concepts of the rescue robot, Hurcules and demon-

strate the effectiveness of the RHQP algorithm through extensive numerical sim-

ulations and experimental tests.

The robot is uniquely designed for mobile manipulation with statically stable

platform. The upper body of the robot is designed humanoid in form with replace-

able modularized dual arms. The lower body is featured with a hybrid tracked and

legged platform to simultaneously acquire versatile manipulability and mobility on
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difficult terrain. The robot make use of the stable tank like posture when the ver-

satile mobility is required. As a result, the Hurcules robot can efficiently perform

a driving task, dangerous object manipulation, and casualty extraction missions

by changing the pose and modularized equipments in an optimized manner.

We demonstrated that the task regularization and the inequality-constrained

hierarchical optimization are fully integrated to guarantee the robustness and con-

vergence of the solution in the face of a singularity. The proposed method can also

acquire the optimal active set without showing any cycling. The inequality con-

straints are properly handled by being activated and deactivated at the right time.

The RHQP algorithm works fast enough to be used as a practical means of real-

time motion control system. The average computation time for a 19-DoF rescue

robot is less than 0.1 ms on a typical personal computer.

Consequently, the Hurcules robot successfully performs a casualty extraction

and explosive ordnance disposal mission in an outdoor environment that none of

the existing robots has performed.
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5
Hierarchical Motion and Force

Control

5.1 Introduction

When the end-effector manipulates an object or executes a work on a surface, the

environment imposes constraints on the certain task space direction of geometric

path of the end-effector, and a suitable compliant behavior is required. One of the

key requirements for the successful execution of the rescue mission is to regulate

an interaction force between the lower arm of Hurcules and environment because

the lower arms should penetrate the gap between the injured and ground for lift-

ing. However, high value of contact and friction force with the ground prevents the

robot to achieve this motion and can stress or break mechanical components or

damage electrical parts due to high current. Moreover, as Hurcules adopts the po-

sition control strategy in the joint space, the aforementioned situations are more

129
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likely to occur. Otherwise, the lower arms do not contact the ground with ap-

propriate force, and then the injured acquisition mission cannot be accomplished.

Because the injured person may be pushed out by the robot’s lower arms. There-

fore, a direct force control scheme is necessary to precisely regulate the contact

force.

While modern hierarchical solvers can handle both motion and force control,

the mixed problem of singularity robustness and inequality-constrained hierarchi-

cal optimization is not thoroughly investigated [12, 13, 30, 31, 44, 71, 86, 87,

111]. Nearly rank deficient Jacobians coming from kinematic and algorithmic sin-

gularities lead to numerical instability, excessive joint accelerations, and large joint

torques. These approaches may require that the singularity problem should be

solved outside the control loop [104].

In order to address the mixed problem of singularity robustness and inequality-

constrained task-priority optimization in a single hierarchical motion and force

control loop, the RHQP algorithm is leveraged. While maintaining all of the ad-

vantages mentioned in Chapter 3 and 4, the RHQP algorithm is extended to deal

with motion and force control. However, instead of concentrating on force con-

trol itself, we focus on the integration of RHQP and existing force control laws

[104, 112, 113, 114, 115, 116].

We present the resolved acceleration-based motion and force control that can

be applied to both torque-controlled and position-controlled robots. The goal of in-

verse dynamics approach usually used for a torque-controlled robot is the determi-

nation of the accelerations or joint torques necessary to generate motions specified

in terms of the operational space motion and force [117]. However, it is difficult to

use model-based control schemes when a complete dynamic model is unavailable.

Usual industrial robots as well as typical field robots are equipped with the joint
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space position controllers, and they do not have a joint torque sensor nor direct

motor current interfaces.

When the force control is implemented for a position-controlled robot, it is

termed to implicit force control where the force control loop is closed around the

position control loop [112, 118, 119, 120, 121, 122, 123, 124]. The implicit force

control schemes exploit a joint space position control loop, which can be the use

of PID control or a model-based control laws. The position control loop tends to

decouple and linearize the complex robot dynamics.

The behavior of a spring-mass-damper system is obtained by the additional op-

erational space inner position or velocity control loops, and then the force control

is conducted according to this dynamic system by closure of the force control loop

around the inner loop. As often the force measurement is noisy, it is difficult to

directly use a derivative action of the force measurement. Instead, the stabilizing

damping effect is obtained through the virtual damper realized by the operational

space velocity feedback. Therefore, the force control scheme is realized with a sta-

bilizing PD control action based on the position and velocity measurements as well

as force error. If an integral action is applied to the system, zero steady-state force

error can be achieved. However, integral action can lead to slow response, wind-

up, and reduced stability margin. Thus, instead of resorting to the integral action,

we reject steady-state force error by suitably designing the operational space dy-

namics with the inner position or velocity control loops.

We verify the performance of the RHQP algorithm integrated with motion and

force control schemes through numerical simulation results. This control method

ensures to obtain a stable optimal solution when facing singularity. The modified
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active set method of RHQP correctly activates a blocking constraint and deacti-

vates an unnecessary constraint at the right time. The velocity-based RHQP al-

gorithm is also integrated with the motion and force control, and the effectiveness

is demonstrated through experimental tests. As a result, a safe interaction force is

guaranteed from the inner position or velocity control loop in conjunction with an

outer force feedback controller, and thus the Hurcules robot successfully extracts

an injured lying on the ground.

5.2 Operational Space Control

The interaction force between robot and environment is naturally described in the

operational space. At first, inverse dynamics operational space control is briefly

presented. Consider the robot dynamics

A(q)q̈ + b(q, q̇) + c(q) = τ − JT (q)he, (5.2.1)

where q ∈ Rn is joint angle, A(q) ∈ Rn×n is the the symmetric positive defi-

nite inertia matrix, b(q, q̇) denotes Coriolis/centrifugal torque, c(q) is gravitational

torque, τ is the actuation torque, and he is the vector of contact force.

For multi-level hierarchical control, k level task space dynamics can be written

as [20, 85, 117]:

Λk(q)s̈k + νk(q, q̇) + pk(q) = F k − he, (5.2.2)
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where

Λk(q)−1 = JkA
−1
k P

T
k−1J

T
k , (5.2.3)

J
T
k = ΛkJkA

−1, (5.2.4)

νk = J
T
kC(q, q̇)−ΛkJ̇kq̇, (5.2.5)

pk = J
T
kG(q). (5.2.6)

The the null space projecting matrix Pk−1 in (3.3.42) is used, and the following

kinematic relation of the k level is employed

s̈k = Jkq̈ + J̇kq̇, (5.2.7)

where s̈k is the effector’s operational space acceleration of the controlled robot.

The index k (1 ≤ k ≤ p) refers to the level, where p is the least rank of priority

or total number of levels.

We introduce inverse dynamics control law with the force measurement as fol-

lows:

Fk = Λkak + νk(q, q̇) + pk + he, (5.2.8)

where ak is a new task space control input vector. The nonlinear control law

(5.2.8) is denoted by inverse dynamics control because an exact linearization of

robot dynamics is realized by a nonlinear state feedback. Substituting the control

law (5.2.8) into the task space dynamics (5.2.2) yields

s̈k = ak, (5.2.9)

where ak is to be designed for tracking a reference trajectory dsk or force com-

mand dfk. The goals of a model-based solution using the inverse dynamics control

are linearizing and decoupling the robot dynamics via nonlinear feedback control
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(5.2.8). Nonlinear forces acting on the system such as Coriolis/centrifugal torque

and gravity force are cancelled by adding the control input, and decoupling is

achieved by weighting the control input by the inertia matrix Λk.

We assume that the linearized and decoupled dynamics holds on for a position-

controlled robot, where the position control loop tends to decouple and linearize

the complex robot dynamics [118]. The contact force can be compensated for by

direct feedback of measured force to the robot actuator or can be neglected. The

joint controllers can cancel out the effect of robot dynamics to a large extent while

rejecting disturbances acting on the system and make the corresponding joints

faithfully follow the reference trajectories. Particularly in the case of slow motion,

the behavior of the position-controlled robot can be approximated by [112, 114]

s̈k = Jkq̈k + J̇kq̇, (5.2.10)

where q̈k is the joint space control signal. The operational space acceleration can

be directly controlled by q̈k, and this control scheme is termed to resolved accel-

eration control [112].

5.3 Acceleration-Based Hierarchical Motion Control

The task-priority motion control described in Chapter 4 is viewed as first order

algorithm, in that it allows the inversion of a task space motion trajectory speci-

fied in terms of position and velocities into the equivalent values in the configura-

tion space. This velocity-based resolution has traditionally been preferred in many

robotics applications due to the simplicity [12]. Moreover, it is appropriate for the

tele-operated velocity control via haptic devices as in our case. Nevertheless, for

more smooth motion generation or force control purposes it is necessary to trans-

late a task space motion trajectory specified in terms of position, velocity, and
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acceleration into the corresponding configuration space variables. It is termed to

second order algorithm.

To track the reference command of dsk, the task function is defined as:

gk := sk − dsk (5.3.11)

where sk is the k level task or pose of an effector. It is a function of the joint

variables

sk = φk(q), (5.3.12)

where φk a forward mapping from the configuration space to the task space. To

bring the task function to zero, the choice of the control law in (5.2.10) is given

as follows:

Jkq̈k := −Lkġk −Kkgk + ds̈k − J̇kq̇, (5.3.13)

where Lk and Kk are positive definite gain matrices. The derivative of the task

function ġk is

ġk = ṡk − dṡk, (5.3.14)

where ṡk is the operational space velocity vector acquired from ṡk = Jkq̇. The

position and velocity command, dsk and dṡk can be computed by numerically in-

tegrating a given ds̈k over time.

Substituting the acceleration control input (5.3.13) into (5.2.10) yields the fol-

lowing operational space dynamics

g̈k +Lkġk +Kkgk = 0, (5.3.15)

which denotes the operational space error dynamics. If k level task is feasible, then

the task function (5.3.11) converges to zero along the trajectory (5.3.15), and a
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convergence rate depends on the choice of the gain matrices Lk and Kk. In other

words, once the task space commands dsk,
dṡk, and ds̈k are given, then the accel-

eration solution q̈k of (5.3.13) makes the task function gk converge to zero if the

corresponding task is feasible.

In order for the acceleration solution to satisfy task hierarchy and guarantee

singularity robustness, the RHQP framework (3.4.98) is leveraged by using the

following relations:

xk : = q̈k (5.3.16)

yk : = −Lkġk −Kkgk + ds̈k − J̇kq̇. (5.3.17)

Thus, the resulting regularized hierarchical optimization problem is written as fol-

lows:

min
q̈k,ek

1

2
||ek||22 +

1

2
ρ2
k||Y T

k q̈k||22 (5.3.18a)

subject to Jkq̈k − yk ≤ ek (5.3.18b)

Jk−1q̈k − yk−1
≤ e∗k−1 (5.3.18c)

The optimal solution is obtained by using (3.3.37):

q̈∗k =
k∑
j=1

(
YjΣ̂

−1
j UT

j (yk − Jj q̇∗j−1)
)

(5.3.19)

= q̈∗k−1 + YkΣ̂
−1
k UT

k

(
yk − Jkq̇∗k−1

)
, (5.3.20)

where

Σ̂−1
k := (Σ2

k + ρ2
kIk)

†Σk. (5.3.21)

The optimal task error is also obtained as:

e∗k = v∗k + u∗k (5.3.22)
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Figure 5.1: Block diagram of operational space motion control with the RHQP

solver.

where

v∗k = Vk(FkY
T
k−1q̈

∗
k−1 − V T

k yk) (5.3.23)

= VkV
T
k (Jkq̈

∗
k−1 − yk) (5.3.24)

u∗k = UkTk(EkY
T
k−1q̈

∗
k−1 −UT

k yk) (5.3.25)

= UkTkU
T
k (Jkq̈

∗
k−1 − yk). (5.3.26)

Similarly hierarchical matrix decomposition, Lagrange multipliers and all other so-

lutions described in Chapter 3 can be obtained.
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As a matter of fact, the presence of kinematic and algorithmic singularities in-

fluences on the rank of the task Jacobian Jk, and the effect is difficult to deal with

an operational space control [104]. However, the RHQP algorithm allows to seam-

lessly integrate regularization with inequality-constrained hierarchical optimization

in a single loop, and thus the convergence and robustness of the solution are en-

sured in the face of singularity. The block diagram of operational space motion

control (5.3.13) with RHQP (5.3.18) is presented in Figure 5.1. For a position-

controlled robot, we assume that the decoupled and linearized dynamics (5.2.10)

is satisfied. The p level solutions q̈∗p, q̇
∗
p, and q∗p are directly used as reference tra-

jectories for the joint space position controller. Where p is total number of levels.

5.4 Force Control

Interaction control methodologies can be classified into two groups: indirect force

control and direct force control. Indirect force control is working via motion control

and does not need a force feedback in principle. There are compliance, impedance,

and admittance control [114]. A direct force control is used to regulate the contact

force to a desired value via the closure of an outer force feedback loop. Our interest

lies on the direct force control because the rescue mission requires to regulate the

interaction force between the lower arm and the ground.

Usual industrial robots as well as typical field robots are equipped with the

joint space position controllers, and they do not have a joint torque sensor nor

direct motor current interfaces. Moreover, the robot joints have transmissions such

as harmonic drives, worm, cycloidal, and ball screw, which typically show hard

nonlinear characteristics due to friction force. Therefore, it is difficult to obtain an

exact dynamic model and hard to design a model-based controller for conventional
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Virtual mass

M
k

Virtual spring
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L
k

Figure 5.2: Spring mass damper system for force control. The stabilizing damping

and spring effects are obtained by the inner operational space position or velocity

feedback. Thus, the force control scheme attains a stabilizing PD control action

based on velocity and position measurements as well as force error.

industrial robots.

One important requirement of Hurcules is to lift an injury weighing more than

120kg. Thus the robot should attain the ability to cope with large payload vari-

ation from 0kg to 120kg without knowing the exact weight of the manipulated

object. The joint position controllers are inevitably applied to the Hurcules robot.

Therefore, the force control is realized by generating the reference motion com-

mand to regulate an interaction force. The joint position controller linearizes the

complex robot dynamics and tracks the modified reference by force control to

achieve a compliant behavior [112, 118, 119, 120, 121, 122, 123, 124].

The direct force control law is based on the errors between the desired and
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Figure 5.3: Block diagram of force control.

measured contact forces. A spring-mass-damper system is realized by the addi-

tional operational space inner position or velocity control laws, and then the force

control is performed according to this controlled dynamic system as shown in Fig-

ure 5.2. The force measurement is often noisy, and it is difficult to directly employ

a derivative action of the force measurement. Instead, the stabilizing damping and

spring effects are obtained by the operational space position or velocity feedback.

Therefore, the force control scheme requires a stabilizing PD control action based

on the position and velocity measurements as well as force error. Moreover, zero

steady-state force error is guaranteed by suitably designing the controlled dynam-

ics with the inner control loop. The schematic diagram of force control architecture

is depicted in Figure 5.3.
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5.4.1 Force Control with Inner Position Loop

Let us assume that the force control space is defined only by position variables

and the contact constraint surface is frictionless. For analysis purposes, a point

contact is assumed and the generalized spring contact force is used between the

end-effector and environment which can be written as

fk = Gk (sk − rk) , (5.4.27)

where Gk is a stiffness matrix of the environment, rk denotes the environment’s

rest position, and sk is the task space position variable.

In order to obtain a desired operational space dynamics from (5.2.10), the ac-

celeration input q̈k is determined by

Jkq̈k = M−1
k

(
−Lkṡk +Kk(δk − sk)−MkJ̇kq̇

)
, (5.4.28)

where δk is a reference task space position command to be determined which is

related to a force control error. The gains Mk ∈ Rmk×mk , Lk ∈ Rmk×mk and

Kk ∈ Rmk×mk are positive definite and usually diagonal matrices. The gain matri-

ces Mk, Lk and Kk can be interpreted as the desired mass, damping, and stiffness

respectively, and they can be adjusted to suitably determine the dynamic charac-

teristic along the operational space directions.

The vector δk is calculated by the force controller as follows:

δk = Ck(
dfk − fk), (5.4.29)

where dfk is the desired constant force, fk is the measured force of (5.4.27), and

Ck is the diagonal matrix representing compliance. The force controller (5.4.29)

has a form of admittance control that takes as an input, the error between a de-

sired force dfk and the end-effector’s sensed force fk, and then it converts the force
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error into the position command with the compliance matrix Ck. Consequently

this admittance controller admits a certain amount of motion δk. The force con-

trol algorithm described in (5.4.28) and (5.4.29) is presented in Figure 5.4.

Substituting the force control law (5.4.28) into the linearized and decoupled

dynamics (5.2.10) leads to the following operational space dynamics

Mks̈k +Lkṡk +Kksk = Kkδk. (5.4.30)

Note that the control input q̈k in (5.4.28) takes the position sk to δk. This force

control method is termed to the force control with inner position loop [104, 115].

With the elastically compliant environment (5.4.27) and the force control law (5.4.29),

the operational space dynamics (5.4.30) is rewritten as follows:

Mks̈k +Lkṡk +Kk

(
Ik +CkGk

)
sk = KkCk

(
dfk +Gkrk

)
, (5.4.31)

where Ik ∈ Rmk×mk is the identity matrix. This second order system is stable be-

cause the matrices Mk,Lk, and Kk(Ik +CkGk) are positive definite. If an equi-

librium point is reached (s̈k = 0, ṡk = 0), then the point is

sk =
(
Ik +CkGk

)−1
Ck

(
dfk +Gkrk

)
. (5.4.32)

The equilibrium point leads to the steady state force in (5.4.27) as follows:

fk = Gk

(
(Ik +CkGk)

−1Ck(
dfk +Gkrk)− rk

)
. (5.4.33)

Therefore, it is difficult to make fk equal to dfk because Ck has pure proportional

control action.

An integral control is additionally applied to the force error

δk = Ck(
dfk − fk) +Nk

∫ t

(dfk − fk)dζ, (5.4.34)



5.4. Force Control 143

C
k

K
k

M
k

-1

L
k

G
k

δ
k

d
f k

f k
y

kkk
R

H
Q

P

.. q
p

F
o
rw

a
rd

K
in

em
a
ti

cs

.
..

T
a
sk

 N
o.

 1
T

a
sk

 N
o.

 2
..
.

T
a
sk

 N
o.

 p

M
k

J
kq.

 r
k

 s
k

 s
k

J
o
in

t
P
o
si

ti
o
n
 

C
o
n
tr

o
ll

er

R
o
b
o
t

D
y
n
a
m

ic
s

q

f k

 s
k

.

 *
. s k

∫
s k

∫

F
ig

u
re

5.
4:

B
lo

ck
d

ia
gr

am
of

fo
rc

e
co

n
tr

ol
w

it
h

in
n

er
p

os
it

io
n

lo
o
p

.
If

th
e

p
o
si

ti
o
n

fe
ed

b
a
ck

lo
o
p

(d
a
sh

ed

li
n

e)
is

d
el

et
ed

,
it

re
p

re
se

n
ts

fo
rc

e
co

n
tr

ol
w

it
h

in
n

er
ve

lo
ci

ty
lo

o
p

.



144 Hierarchical Motion and Force Control

where Nk is the integral control gain matrix. The resulting dynamics coming from

(5.4.30) and (5.4.34) becomes third order, and fk = dfk can be achieved due to

the integral control. Nevertheless, the integral action can guarantee zero steady

state force error, it makes the system slow and can reduce the stability margin

due to the characteristic of the third order system [125]. Moreover, it may bring

about integral induced wind-up. We are going to reject steady-state force error by

suitably designing the operational space controlled dynamics.

5.4.2 Force Control with Inner Velocity Loop

Now we focus our attention on accomplishing zero steady state force error. Instead

of using the inner position loop in (5.4.28), if we choose the following control law

Jkq̈k = M−1
k

(
−Lkṡk +Kkδk −MkJ̇kq̇

)
, (5.4.35)

and then we can obtain the resulting dynamics from the task space dynamics of

(5.2.10)

Mks̈k +Lkṡk = Kkδk, (5.4.36)

where

δk = Ck(
dfk − fk). (5.4.37)

This scheme is called the force control with inner velocity loop [104, 115]. In this

case, the force error is converted into the velocity command with the compliance

matrix Ck.

The controlled dynamics (5.4.36) can be rewritten by using the elastic model

(5.4.27) and the force control law (5.4.37) as follows:

Mks̈k +Lkṡk +KkCkGksk = KkCk

(
dfk +Gkrk

)
. (5.4.38)
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A stable equilibrium point is reached (s̈k = 0, ṡk = 0), because Mk,Lk, and

KkCkGk are positive definite matrices. The equilibrium point is

sk = rk +G−1
k

dfk. (5.4.39)

Substituting the point (5.4.39) into the elastic environment model (5.4.27) yields

the measured force as follows:

fk = dfk. (5.4.40)

Thus we can obtain fk = dfk at steady state. This force control scheme in (5.4.35)

is shown in Figure 5.4, and it can be also derived from the force control with inner

position loop by deleting the position feedback loop (dashed line in Figure 5.4).

5.5 Motion and Force Control

If the motion and force control have different priority, then the task priority strat-

egy allows that every task is achieved as much as possible according to the levels.

The lower level tasks do not interfere with the fulfillment of the higher priority

tasks. However, as the environment imposes constraints on the end-effector, mo-

tion and force control references should be chosen to be compatible with environ-

ment features. The hierarchical motion and force control is naturally extended to

hybrid motion/force control that provides position and force control with two sep-

arate control loops.

The hybrid motion/force control was introduced in [126] and the explicit in-

clusion of the robot dynamic model is described in [86]. This control problem is

a complex, because the robot joints should contribute to both unconstrained mo-

tion directions and force directions along the constrained task. For many robotic
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systems, an orthogonal reference frame can be specified in terms of natural and

artificial constraints of the task or constraint frame.

The natural constraint does not admit translation along a direction or rota-

tion about an axis and the application of force or moment. While the artificial

constraint enables us to assign arbitrary reference motion and force values which

is not subject to natural constraints. Two sets of constraints are complementary,

and selection matrices applied to both the desired and feedback quantities allow

to achieve motion and force control for planar contact surfaces [104, 113].

The motion and force control laws integrated with RHQP can be written as

min
q̈k,ek

1

2
||ek||22 +

1

2
ρ2
k||Y T

k q̈k||22 (5.5.41a)

subject to Jkq̈k − yk ≤ ek (5.5.41b)

Jk−1q̈k − yk−1
≤ e∗k−1, (5.5.41c)

where the motion control task shown in (5.3.17) is

yk : = −Lkġk −Kkgk + ds̈k − J̇kq̇. (5.5.42)

The force control tasks are as follows:

• Proportional force control with inner position loop described in (5.4.28) and

(5.4.29) is:

yk := M−1
k

(
−Lkṡk +Kk(δk − sk)−MkJ̇kq̇

)
, (5.5.43)

where

δk = Ck(
dfk − fk). (5.5.44)
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• Proportional-integral force control with inner position loop shown in (5.4.28)

and (5.4.34) is:

yk := M−1
k

(
−Lkṡk +Kk(δk − sk)−MkJ̇kq̇

)
, (5.5.45)

where

δk = Ck(
dfk − fk) +Nk

∫ t

(dfk − fk)dζ. (5.5.46)

• Proportional force control with inner velocity loop presented in (5.4.35) and

(5.4.37) is:

yk := M−1
k

(
−Lkṡk +Kkδk −MkJ̇kq̇

)
, (5.5.47)

where

δk = Ck(
dfk − fk). (5.5.48)

The block diagram of the k level motion and force control framework is shown in

Figure 5.5, where the motion and force control references are chosen to be com-

patible with environment features.

The p level optimal acceleration solution of RHQP in (5.5.41) is expressed as

q̈∗p, and reference joint angles and angular velocities are obtained by integrating

the solution q̈∗p and q̇∗p over time. Where p is total number of levels. They are

used for the joint space position controller as commands. As Hurcules adopts the

inverse optimal PID controllers, these references are given as follows:

A(q)q̈ + b(q, q̇) + c(q) + d = −
(
K +

1

γ2
I
)(
ε̇+KP ε+KI

∫
ε
)
, (5.5.49)

where A(q) ∈ Rn×n is the the symmetric positive definite inertia matrix, and

b(q, q̇) denotes the nonlinear forces including Coriolis and centrifugal torque, c(q)
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Figure 5.5: Block diagram of acceleration-based motion and force control

is gravitational torque. The vector ε = q∗p − q is a control error and d is an un-

known bounded disturbance input. The matrices K, Kp and KI are constant di-

agonal matrices and γ is a scalar L2 gain. Please see the Appendix for a detailed

explanation.

5.6 Numerical Results for Acceleration-Based Motion and Force

Control

We verify the performance of the acceleration-based RHQP algorithm integrated

with motion and force control schemes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.6: Injured acquisition movement sequences. (a) Driving: arriving at the

destination (b) open the arms to avoid self-collision (c) turning the waist (d) fold-

ing dual arms and (e) rotating both lower legs at the same time (f) Rescue Ready:

standing up and being ready for the rescue task (g) Lowering: The lowering motion

phase is executed under acceleration-based motion control at first. If the contact

force exceeds a specified threshold, the force control begins to work. (h) Acqui-

sition: task space control via motion and force control for the acquisition of an

injured lying on the ground (i) Confirm: To move out of contact is executed by

only motion control scheme. (j) Embracing (k-l) Lifting.
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5.6.1 Task Specifications

The motion sequences for an injured acquisition mission are presented in Figure

5.6, where the pose transformation is used to obtain enhanced manipulability by

using the knee, hip, and waist joints of the mobile platform. An interaction force

regulation is required in the lowering and acquisition motions as shown in Figure

5.6 (g) and (h). The robot’s lower arms should contact with an appropriate mag-

nitude of force to penetrate the gap between the injured and ground for lifting.

For successful rescue mission, singularity robustness and the physical constraints

satisfaction should be ensured.

The main tasks are composed of controlling left and right hand positions ghpos,

interaction forces gforce, pitch angles ghpitch of the lower arms, pelvis traversal

position gpel, and gaze angle ggaze as shown in Figure 4.24. The priority order

is specified as gjoint ≺ ghpos, gforce ≺ ghpitch ≺ gpel ≺ ggaze, and ρk = 0.1 is

used for all task regularization coefficients. We impose the top-most priority on the

physical constraints of the joint angle ranges gjoint to eliminate the possibility that

the motion tasks violate the physical constraints. The task gforce denotes force

control to regulate the contact force between the lower arms and the ground. The

operational space command yk based on sensed interaction forces is provided to

the RHQP algorithm for fast transcription of the objectives into the configuration

space motion as shown in Figure 5.5.

The joint angle ranges are expressed by inequality constraints with the highest

priority. If the joint angle limits are not explicitly included in the optimization,

then the solution is not physically applicable to the real robot. Since the motions

of real robots as well as the Hurcules are severely restricted by each joint operation

range due to collision of mechanical structure, the stiffness of internally routed
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cables, and additional equipments such as battery, backpack, and transfer bed as

shown in Figure 4.25. Note that the battery and transfer bed severely restrict the

operation ranges of the hip and knee joints, and the backpack limits the operation

ranges of shoulder joints.

The joint angle constraints gjoint can be specified in terms of accelerations

[127]. Each joint has an admissible maximum angle qu and minimum value ql,

and the constraints are expressed by two inequality as q ≤ qu and −q ≤ −ql
where q := q(tk) is the joint angle at the time tk. Then the angle constraint is

represented as:

ql ≤ q + q̇∆t+
1

2
q̈∆t2 ≤ qu, (5.6.50)

where ∆t is integration interval. Thus each constraint is described by the acceler-

ation

q̈l ≤ q̈ ≤ q̈u (5.6.51)

where

q̈l =
2

∆t2

(
ql − q − q̇∆t

)
(5.6.52)

q̈u =
2

∆t2

(
qu − q − q̇∆t

)
. (5.6.53)

The inequality constraint (5.6.51) can be written as the form of Jkq̈k ≤ yk where

Jk ∈ R2n×2n represents all joints having joint angle limit constraints, and yk is

the augmented vectors of q̈l and q̈u.

5.6.2 Force Control Performance

The Hurcules robot is equipped with a spring element near the elbow joints as

shown in Figure 4.8, but the numerical simulation models do not consider this pas-

sive compliance element. Therefore, the simulation condition is more severe than



152 Hierarchical Motion and Force Control

(a) (b)

Figure 5.7: Lowering motions: (a) with force control laws (b) without force control

laws.

the actual experimental condition because the force controller can result in insta-

bility when interacting with the stiff environment.

When lowing motion is performed, the numerical simulation results are de-

picted in Figure 5.7, 5.8 and 5.9, in terms of the robot poses, measured force,

and solution trajectories respectively. As a distal human operator is difficult to

obtain accurate information of the robot and its environment, the planning and

control errors may lead the robot pose with the high contact force as shown in

Figure 5.7 (b) and 5.8 (d). The reference trajectories do not change as depicted

in Figure 5.9 (b).

If the force control laws are applied, the interaction force can be regulated

around the desired value. As can be seen in Figure 5.8, the measured force fk

of the proportional force control with inner position loop cannot reach the de-

sired force dfk at steady state. Because the force controller has pure proportional

control action with Ck. The proportional-integral force control with inner posi-

tion loop can reject the steady state force error, however the response is slow due
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Figure 5.8: Time histories of the measured force when three force control laws are

applied. (a) Measured force for the proportional force control with inner position

loop cannot reach the desired force at steady state because Ck is pure proportional

control action. (b) The proportional-integral force control with inner position loop

can reject the steady state force error, however the response is slow due to the

third order system characteristics with the reduced the stability margin. (c) The

proportional force control with inner velocity loop shows that the desired contact

force −5N is achieved. (d) Excessive contact force arises when only motion control

is applied.
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(a) Force control with inner velocity loop

(b) Without force control

Figure 5.9: Lowering motions with and without force control laws. Two solution

trajectories (angular acceleration, angular velocity) with force control law (a) and

without force control law (b).
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to the third order system dynamics. Although the integral action guarantees zero

steady-state force error, it can lead to stability problems due to the reduced sta-

bility margin and integral induced wind-up.

In Figure 5.8 (c), the time history of the measured force for force control with

inner velocity loop shows that the contact force is regulated around the desired

force −5N . It should be noticed that there is no significant force error at steady

state, and it verifies that the controlled dynamics stated in (5.4.38) is valid with

the equilibrium point (5.4.39). Thus we can obtain fk = dfk at steady state as

predicted in (5.4.40). The reference joint trajectories are modified by the force

controller (5.5.47) to regulate the interaction force which are reported in Figure

5.9 (a).

5.6.3 Singularity Robustness and Inequality Constraint Handling

After the lower arms contact with the ground, the robot should acquire an injury

as depicted in Figure 5.6 (third row). Now the force control with inner velocity

loop is employed because the desired contact force is achieved with the second

order operational space dynamics as demonstrated in the previous Section 5.6.2.

Let us consider that both hands of the robot reach out to extract a person

and other tasks are to maintain the initial poses as close as possible. In this case,

a singularity is encountered as shown in Figure 5.10. Because the arms are out-

stretched, the mobility is reduced, and the corresponding Jacobian becomes rank

deficient. Numerical acceleration and velocity solutions are presented in Figure

5.11. From t = 12 s, the angular accelerations and velocities begin to decrease

gradually because the regularization in (3.3.39) has a strong impact on the so-

lution as the singular value decreases as shown in Figure 3.2. Thus singularity

robustness is ensured.



156 Hierarchical Motion and Force Control

t = 0s t = 4s

t = 8s t = 12s

t = 16s t = 20s

Motion

Force

Figure 5.10: Snapshots of an injured acquisition motion with the motion and force

control laws. The dashed lines represent the activated or deactivated joint limit

constraints. The inequality constraint of the hip joint is activated at t = 8 s and

deactivated t = 11 s. The RSP (right shoulder pitch) and LSP (left shoulder pitch)

joint limit constraints are activated at 11 s. The arrows (top left corner) represent

the directions of motion and force control where an orthogonal reference frame is

specified.
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(a) Force control with Ck = 0.05

(b) Force control with Ck = 0.10

Figure 5.11: Solution trajectories for hierarchical motion and force control with

inner velocity loop for two compliance gains: (Left) angular acceleration (Right)

angular velocity.
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Figure 5.12: Number of iterations and joint angle trajectories. (a) The acceleration-

based RHQP algorithm activates and deactivates the hip joint angle constraint at

t = 8 s and t = 11 s respectively. The number of iteration is 2 at t = 8 s to

activate the hip joint constraint. The number of iteration becomes 3 at t = 11 s,

because the left and right shoulder joint constraints are activated and the hip joint

constraint is deactivated. (b) Hip and shoulder pitch joint angle constraints are

satisfied for stretching motion.
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(b) Force control with Ck = 0.10

Figure 5.13: Numerical simulation results for measured force with hierarchical mo-

tion and force control laws.

The number of iteration for controlling inequality constraints and joint angle

trajectories are presented in Figure 5.12. The number of iteration is 2 at t = 8 s

because the inequality constraint of the hip joint becomes the active constraint.

The hip joint angle is expected to reach the limit value imposed to prevent the

battery and torso from colliding. Thus, the hip velocity starts to decrease as can

be seen in Figure 5.11 (right). At the same time, the knee joint moves in order

to execute the higher level tasks such as ghpos, gforce and ghpitch. We can also

confirm it through the robot poses and joint angle trajectories reported in Figure

5.10 and 5.12 (b) respectively. Thus, from t = 8 s, the position of the pelvis is

moving by increasing the positional error of the pelvis task, and therefore we lose

control over gpel.

In Figure 5.10, at the time of t = 11 s, as the lower arms extends further
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forward, the shoulder pitch joints are expected to reach the limit values. Thus,

corresponding constraints are activated and the joint velocity begins to decrease

significantly as shown in Figure 5.11 (right). As the knee joint keeps moving, the

hip joint begins to move again by being deactivated from the active constraint due

to the knee motion. As the left and right shoulder joint constraints become active

and the hip joint constraint is deactivated, and therefore the number of iteration is

3 at t = 11 s. Figure 5.12 clearly shows the proper inequality-constraint handling.

The time histories of the contact force are presented in Figure 5.13, where the

contact force is regulated around desired value −5N , but a certain amount of force

error exists for the compliance gain Ck = 0.05. To achieve a fast and accurate force

regulation performance, a large magnitude of Ck and q̇k is required, but the mo-

tion controller with the limited control bandwidth makes it difficult to accomplish.

Because the bandwidth of the joint space position controller should be higher than

the bandwidth of the outer operational motion and force control loops for closed-

loop stability [112, 124]. Thus the position controller makes the system stiff, and

the outer force loop render it soft. If the compliance gain matrix Ck is too small

to prevent a large value of q̇k, contact instability may occur and force control per-

formance is degraded.

5.7 Velocity Resolved Motion and Force Control

We integrate the velocity-based RHQP algorithm with the motion and force con-

trol and then demonstrate the performance through experimental results
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5.7.1 Velocity-Based Motion and Force Control

The velocity-resolved control is suitable for a tele-operation using the joystick or

haptic device as depicted in Figure 4.10. The force control scheme applied at the

velocity level is called damping control [128]. If the joint controllers can cancel out

the effect of robot dynamics to a large extent, then the position controlled robot

shows kinematic behavior expressed as

ṡk = Jkq̇k, (5.7.54)

where ṡk is the effector’s operational space velocity and q̇k is the control input to

be determined from RHQP.

Let us consider an elementary displacement between the environment rest po-

sition rk and the lower arm’s position sk respectively. The corresponding elastic

force fk is

fk = Gk(sk − rk). (5.7.55)

where Gk is a stiffness matrix of the environment. The reference velocity input q̇k

for force control is chosen with an active compliance gain matrix Ck as follows:

Jkq̇k := Ck(
dfk − fk), (5.7.56)

where dfk is the constant desired force and fk is the measured force. Therefore,

the force error is converted into the velocity command with the compliance matrix

Ck.

With the elastically compliant environment (5.7.55) and the force control law

(5.7.56), the operational space dynamics (5.7.54) is rewritten as follows:

ṡk +CkGksk = Ck
dfk +CkGkrk. (5.7.57)
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Figure 5.14: Block diagram of velocity-based motion and force control

A stable equilibrium point is reached since CkGk is positive definite matrix. The

equilibrium point is

sk = rk +G−1
k

dfk. (5.7.58)

From the elastically compliant environment of (5.7.55), the equilibrium point leads

to

fk = dfk. (5.7.59)

Thus we can obtain fk = dfk at steady state.

The force control law (5.7.56) can be integrated with the RHQP formulation
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of (3.4.98) as follows:

min
q̇k,ek

1

2
||ek||22 +

1

2
ρ2
k||Y T

k q̇k||22 (5.7.60a)

subject to Jkq̇k − yk ≤ ek (5.7.60b)

Jk−1q̇k − yk−1
≤ e∗k−1 (5.7.60c)

where the tasks yk are given for motion and force control respectively

yk : = −Kkgk + dṡk, (5.7.61)

yk : = Ck(
dfk − fk). (5.7.62)

The optimal solution for force control is obtained by using (3.3.37)

q̇∗k = q̇∗k−1 + YkΣ̂
−1
k UT

k (yk − Jkq̇∗k−1), (5.7.63)

where Σ̂−1
k := (Σ2

k + ρ2
kIk)

†Σk.

The angular velocity solution q̇∗p and angle solution q∗p are directly used as

reference trajectories for the position controller in (5.5.49). Figure 5.14 shows the

block diagram of the k level motion and force control framework. The control

structure of the velocity-based approach is simpler than that of acceleration-based

force control presented in Figure 5.5. However, the second order controlled dynam-

ics can be obtained from the acceleration-based force control.

5.7.2 Experimental Results

The experimental results for the injured acquisition movements are depicted in

Figure 5.15 and 5.16 in terms of robot poses and time history of contact force

respectively. From Figure 5.16, we can see that the force controller regulates the

contact force to the desired value −5N . Note that there is no significant force error
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at steady state, and it verifies that the controlled dynamics stated in (5.7.57) is

valid with the equilibrium point (5.7.58), and therefore fk = dfk is accomplished

at steady state.

As the compliance gain increases, the faster response is obtained. In fact, when

the lower arm contacts with the stiff environment, the compliance gain matrix Ck

in (5.7.56) should be large to prevent excessive contact forces. In this case, al-

though a large magnitude of q̇k is also required, the joint position controller with

a limited control bandwidth make it difficult to achieve fast force regulation perfor-

mance. As the compliance gain Ck increases, higher bandwidth of position control

loop is required. This is one of the limitations of the implicit force control when a

low impedance or high gain Ck is desired. Consequently, admittance control shows

high performance in non-contact tasks but it can result in instability when inter-

acting with the stiff environment. On the contrary, small values of Ck can provide

small damped movement, and it causes contact instability [116, 129]. The instabil-

ity problem arises when the robot comes into contact with the stiff environment

[130].

The impact induced instability or transition phase problem occurring from free

to constrained motion is mitigated by a passive compliance mechanism. The im-

pact force is observed from the numerical simulation result as shown in Figure

5.8, where the passive compliance mechanism is not considered in the numerical

model. However, experimental result, Figure 5.16 shows that smooth transition is

achieved. Because the Hurcules robot is equipped with the spring element near the

elbow joints as depicted in Figure 4.8.

Generally, the response of the passive compliance control is much faster than

the active force control algorithm. Moreover, the passive approach is simple and

cheap. However, the passive compliance control can only handle small deviations
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t = 5s 20s < t < 32s Acquisition

Lifting

Figure 5.15: Injured acquisition movements with the velocity-based of RHQP. The

force control gain Ck = 0.05 is applied.

from the rest position, and it is difficult to accurately regulate the interaction

force. In order to overcome these drawbacks and to obtain a reasonable force regu-

lation accuracy and stability, active force control is exploited in combination with

the passive compliance mechanism.

For safety, the value of measured force fk,r is restricted between

|fk,r| ∈ [fmin, fmax], (5.7.64)

where k, r denotes the rth force component of the level k. If the magnitude of the

measured force |fk,r| exceeds fmin = 2.5N , then force controller begins to operate

as shown in Figure 5.16. The threshold fmin prevents the end-effector to move

when it has not yet been in contact with the ground (fk,r = 0). If the magnitude

of the measured force exceeds fmax, the robot enters emergency mode for safety.



166 Hierarchical Motion and Force Control

10 15 20 25 30

-6

-5

-4

-3

-2

-1

0

1

Figure 5.16: Experimental results for velocity-based motion and force control.

Time history of the estimated contact force for various compliance gains. As the

compliance gain increases, the faster response is obtained.
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Figure 5.17: Joint velocity solutions for motion and force control. The force control

gain Ck = 0.05 is applied.
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Figure 5.17 shows the experimental results in terms of velocity solution tra-

jectories. Near the time of t = 21 s, the angular velocities of all joints suddenly

change to accommodate to the interaction force after |fk,r| reaches the threshold

fmin. As can be seen in Figure 5.15, the robot movements with force control law

demonstrate that the performance of the force control is good enough to achieve

the lower arms’ successful penetration motion even on the stiff ground. High value

of contact and friction force with the ground prevents the robot to achieve this

motion. Otherwise, if the lower arms do not contact the ground with appropriate

force, the injured person is pushed out by the lower arms.

5.8 Concluding Remarks

The RHQP algorithm is extended to hierarchical task-priority motion and force

control to ensure singularity robustness and proper inequality-constraint handling

in a single hierarchical control loop. We demonstrated that the proposed RHQP

solver can obtain the robust optimal solution in the face of singularity. Moreover,

the algorithm activates a blocking constraint and deactivates an unnecessary con-

straint at the right time in the acceleration level. The velocity-based RHQP algo-

rithm is also integrated with the motion and force control schemes.

For acceleration-based force control, a spring-mass-damper system is realized

with the additional operational space inner position or velocity control laws, and

then the force control is performed by closure of the force control loop around

this inner loop. Instead of using a derivative action of noisy force measurement,

the stabilizing damping and spring effects are obtained by the operational space

position or velocity feedback. Therefore, the force control scheme is realized by a

stabilizing PD control action based on velocity and position measurements as well
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as force error. Moreover, steady-state force error is rejected by suitably designing

the controlled dynamics.

We show that a safe interaction force is guaranteed from the motion control

loop in conjunction with an outer force feedback loop through numerical and ex-

perimental results. Finally, the Hurcules robot successfully extracts an injured ly-

ing on the ground.



6
Conclusion

6.1 Summary

This dissertation proposed a novel hardware design concept and hierarchical task-

priority based motion planning and control methodologies for a rescue robot to

operate in a highly unstructured environment. In summary, the main contributions

are described as follows:

• Robust Hierarchical Task-Priority Control

The main objective is to find the optimal and robust solution for online hi-

erarchical optimization for whole-body robotic manipulation subject to both

equality and inequality tasks or constraints. A generic solver is developed

for regularized hierarchical quadratic program (RHQP) without resorting to

any off-the-shelf QP solver for fast and efficient transcription of the objec-

tives into the configuration space motion. We concentrate on the reasoning

about the task regularization to ensure the convergence and robustness of

169
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the solution in the face of singularity. The regularization is fully integrated

into the inequality-constrained hierarchical optimization by considering reg-

ularization from the very beginning of the problem.

The robust optimal solution is obtained from RHQP while resolving regu-

larization induced problems such as a non-convexity, task errors, difficulty

to obtain Lagrange multipliers, and not leaving redundant resources from

higher to lower levels. As a singular value decomposition centric approach

is leveraged, all hierarchical solutions and Lagrange multipliers are analyti-

cally obtained while considering regularization induced errors. We mathemat-

ically show that regularization requires for us to trade off robustness against

performance. The small coupling error induced by regularization is the only

price we have to pay instead of guaranteeing convergence and robustness of

the solution in the vicinity of singular points.

The RHQP solver is able to find the optimal solution efficiently by consid-

ering all level’s hierarchical tasks together with only one active set. The La-

grange multiplier matrix eliminates the iterative process used to find each

level optimal active set. All necessary Lagrange multiplier and optimal so-

lution are obtained in a recursive procedure. As the modified active set al-

gorithm does not need a step direction nor a step length usually used in

numerical optimization, it is simple and fast. Moreover, it operates regard-

less of whether the initial point is feasible or not for an initial working set.

Consequently, under the equality and inequality constraints, the proposed al-

gorithm works fast.

As a result, we thoroughly investigated the underlying principles of regular-

ized hierarchical optimization for whole-body robot motion control.
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• Rescue Robot Design and Experimental Results

We propose a new hardware design concept for a rescue robot to safely ex-

tract a patient and to dispose a dangerous object instead of humans. The

robot is designed to realize how a mechanical structure is developed to si-

multaneously obtain both manipulation capability and all-terrain mobility.

The upper body has humanoid in form with replaceable dual arms, and the

lower body is featured with the hybrid tracked and legged mobile platform.

Thus, the robot can execute a driving task, dangerous object manipulation,

and casualty extraction missions successfully over various kinds of difficult

terrain by changing the pose and replaceable modularized equipments in an

optimized manner.

The effectiveness and performance of the RHQP solver are demonstrated

through extensive numerical simulations and experimental tests using the

Hurcules robot. We show that the task regularization and the inequality-

constrained optimization are fully integrated via regularized hierarchical op-

timization to guarantee the robustness and convergence of the solution in

the face of singularity. The inequality constraints are also properly handled

without showing any cycling. Particularly, without considering the regular-

ization errors in Lagrange multipliers, the optimization algorithm can bring

about a cycling in the neighborhood of a singularity, and thus it yields the

same solution and working set repeatedly to an earlier iteration.

Due to the recursive structure of the solutions and the modified active set

method, the RHQP algorithm operates fast enough for use in real-time mo-

tion planning and control systems. The average computation time for the

19-DoF rescue robot is less than 0.1 ms on a typical personal computer.
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• Hierarchical Motion and Force Control

While maintaining all of the strength of RHQP, the algorithm is extended to

motion and force control. The acceleration-based RHQP method is also able

to acquire the robust optimal solution when facing singularity. Moreover, the

method activates a blocking constraint and deactivates an unnecessary con-

straint at the right time.

For acceleration-based force control, a spring-mass-damper system is realized

with the additional operational space inner position or velocity controllers,

and then the force control is performed according to this system. Instead

of using a derivative action of the noisy force measurement, the stabilizing

damping and spring effects are obtained by the operational space position

or velocity feedback. Therefore, the force control scheme is composed of a

stabilizing PD control action based on velocity and position measurements

as well as the outer force feedback loop. Moreover, steady-state force error

is also rejected by suitably designing the controlled dynamics with the task

space velocity feedback. The first order velocity-based RHQP algorithm is

also integrated with the motion and force control.

As a result, we show that a safe interaction force is guaranteed and the Hur-

cules robot can extracts an injured lying on the ground.

Throughout the dissertation, all proposed design methods and online optimization-

based control algorithms are validated via extensive numerical simulations and ex-

perimental tests. We show that the Hurcules robot can successfully execute injured

extraction and explosive ordnance disposal missions in both indoor and outdoor

environment that none of the existing robots has performed.
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6.2 Concluding Remarks

The RHQP algorithm would be applied to any other regularized hierarchical opti-

mization problems such as motion generation [38, 44], parameter estimation [131],

operational space inverse dynamics control [132, 133, 134, 135, 136]. Online opti-

mization based control in robotics are becoming powerful warehouse for ever more

complex robotic systems such as humanoids and unmanned autonomous vehicles

[137, 138, 139]. Recently the roles of robots are no longer limited to the automa-

tion in the industrial process but are changing into explorers for a wide range of

unstructured environment. To more safely interact with the complex environment

while achieving high performance, model based control strategies [87, 140, 141]

and learning-based approaches [58, 142, 143] should be tightly integrated.

The model based control can face difficult problems in the real world if a dy-

namic model is unavailable or uncertain. Then the performance degradation and

unstable behaviors can occur due to the unmodelled dynamics and nonlinearities

[50]. Nowadays a grey box model becomes more popular, and there are a nonlin-

ear model with a partial theoretical structure and some unknown parameters or

models estimated from data [59, 60, 144].

The tremendous progress in machine learning over the last decades offers us

the promise of less human driven approaches to motor skill acquisition [51, 145,

146, 147, 148, 149]. Especially, reinforcement learning is closely related to the op-

timal control theory and dynamic programming that most robotics and control

engineers are very familiar with. Both reinforcement learning and optimal control

have the same goal to find an optimal control or policy that optimizes an objec-

tive function. If a robot task can be specified as an optimization problem with

temporal structure, reinforcement learning can be leveraged to find the optimal
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policy [150, 151]. The RHQP algorithm is also interpreted as the model-based re-

inforcement learning problem that maximizes an immediate reward. A regularized

hierarchical differential dynamic programming can solve the hierarchical optimiza-

tion problem for robot motion control [47]. At each level, the algorithm involves

iterating forward pass computing the cost of all tasks for a given locally optimal

control policy, and it is followed by a backward pass which finds a locally optimal

solution.

However, the reinforcement learning method can be very complex problem by

requiring interaction with the environment, sequential prediction, handling curse

of dimensionality due to the high dimensional continuous robot states, and com-

plex reward structure [152]. Moreover, the learning methods should be safe, data

efficient, and reliable because a robot interacting with the physical world suffers

from cost, physical labor, long period of experiment for learning, and safety crit-

ical issues. Thus, some problems of the reinforcement learning approach can be

addressed by the optimal control strategies, and vice versa [153, 154, 155, 156,

157, 158, 159, 160].

We expect a robot to be safer, more dynamic and agile than the current state-

of-the art. We hope that the real-time hierarchical optimization-based control method

proposed in this dissertation is extended to synthesize human like optimal robotic

behaviors at runtime with the model and data driven approaches, and further ex-

tended in several ways to allow robots to perform more dynamic, robust, and com-

plex tasks in a human centered environment.
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Appendix

A.1 Introduction to PID Control

Even though the control theory has experienced a striking development in the last

50 years [161], PID controller still strives to survive today. More than 90% of in-

dustrial controllers are still implemented based on PID control or its variations

[162]. The three actions of a PID controller execute three common requirements

of most control problems. Each term in the PID controller is reasonably intuitive,

and it allows control engineers to intuitively understand the essential functionality

of the controller’s action [163, 164, 165, 166].

As the integral action is able to track a set point value, zero steady-state error

can be obtained and constant disturbance rejection is also ensured. While integral

control filters higher frequency sensor noise, it is slow in response to the current

error. However, the proportional action responds immediately to the current er-

ror, yet typically cannot achieve the fast response to reach the desired set point

without an unacceptably large gain. There may be large transient errors when PI

175
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control is used. Derivative action resolves this problem by using a prediction of

future error.

The H∞ control is a suitable design framework to accomplish both stability

and robustness in the face of uncertainty, and it proves to be able to provide

promising solution for linear and nonlinear systems [167, 168, 169, 170, 171]. How-

ever, nonlinear H∞ control methods have not been widely used because the com-

plex partial differential Hamilton-Jacobi-Isaacs (HJI) equation should be solved

[172, 173]. At this point, it is worthwhile to note the result that extends the the-

oretical basis of PID control to robust H∞ control theory. The H∞ optimality of

PID control is satisfied for trajectory tracking control of Lagrangian system using

inverse optimal control technique [53, 98, 99]. For the inverse optimal control prob-

lems, we are searching for not only a control law but also state weighting Q(x)

and control input weighting matrix R(x). The inverse problem is more tractable

than the direct one in which Q(x) and R(x) are given and then the HJI partial

differential equation is solved.

The maximum weight lifting capacity of Hurcules is shown in Figure 4.4. The

robot should attain an ability to cope with large payload variation from 0kg to

120kg, and hence robust joint controllers are required. Here, we briefly describes

the design strategies of robust PID controllers by reorganizing and summarizing

the method proposed by [98]. The effectiveness of the inverse optimal PID con-

troller is demonstrated through experimental results with the Hurcules robot.
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A.2 Inverse Optimal Control

Consider the following Lagrangian equation of motions

M(q)q̈ +C(q, q̇)q̇ + g(q) + d = τ , (A.2.1)

where M(q) ∈ Rn×n is the the symmetric positive definite inertia matrix, C(q, q̇)

denotes the nonlinear forces including Coriolis/centrifugal torque, g(q) is gravita-

tional torque, τ is the actuation torques, and d is the external disturbance. The

extended disturbance is defined for the trajectory tracking control system as:

w
(
t, ė, e,

∫
e
)

:= M(q)(q̈d +KP ė+KIe)

+C(q, q̇)
(
q̇d +KPe+KI

∫
e) + g(q) + d(t), (A.2.2)

where KP , KI are the constant diagonal gain matrices, e = qd−q is the configu-

ration error. Applying extended disturbance (A.2.2) to the Lagrangian system of

(A.2.1) yields the following trajectory tracking control system

M(q)ṡ+C(q, q̇)s = w
(
t, ė, e,

∫
e
)

+ u, (A.2.3)

where u = −τ and s = ė + KPe + KI

∫
edt. If the state vector is defined as

x = [
∫
eT , eT , ėT ] ∈ R3n for the controlled system (A.2.3), then the state-space

model is obtained as follows:

ẋ = A(x, t)x+B(x, t)w +B(x, t)u, (A.2.4)

where

A(x, t) =


0 I 0

0 0 I

−M−1CKI −M−1CKP −KI −M−1C −KP

 ,
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and

B(x, t) =
[
0 0 M−T

]T
.

The nonlinear H∞ control is formulated as the induced L2-gain attenuation

problem of a nonlinear closed-loop system [174]. The energy gain is equal to or

less than a specified value γ > 0. Let the H∞ performance index J be

J(t,x,u,w) = lim
t→∞

[
2V (x(t), t) +

∫ t

0
(xTQ(x)x+ uTR(x)u− γ2wTw)dσ

]
.

(A.2.5)

The Hamilton Jacobi Issacs(HJI) equation is derived from the optimization for the

H∞ performance index. The difficulty of finding solutions for an HJI equation can

be tackled by an inverse optimal controller. The inverse optimal control problems

are to search for, not only a control law, but also function Q(x) when there is

given Lyapunov function V (x) which is the solution of HJI. While the control in-

put weighting matrix R(x) can be found inversely. Suppose that the control input

weighting is given as follows:

R(x) =
(
K +

1

γ2
I
)−1

. (A.2.6)

Let the Lyapunov function be

V (x, t) =
1

2
xTP (x, t)x. (A.2.7)

Here Lyapunov matrix is given by [99]

P (x, t) =


KIMKI +KIKPK KIMKP +KIK KIM

KPMKI +KIK KPMKP +KPK KPM

MKI MKP M

 , (A.2.8)
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where the positive definiteness of P (x, t) is guaranteed if the following conditions

are satisfied

K,KP ,KI > 0, K2
P > 2KI , γ > 0, (A.2.9)

where K, Kp and KI are constant diagonal gain matrices. The HJI equation can

be reformulated to the following differential matrix Riccati equation

Ṗ +ATP + PA− PBR−1BTP +
1

γ2
PBBTP +Q = 0. (A.2.10)

Then the state weighting matrix can be inversely obtained from the differential

Riccati equation (A.2.10) by using the characteristics Ṁ − CT − C = 0 of La-

grangian system and control input weighting (A.2.6)

Q = −(Ṗ +ATP + PA− PBKBTP )

=


K2
IK 0 0

0 (K2
P − 2KI)K 0

0 0 K

 , (A.2.11)

where Q is a diagonal and constant matrix, and positive definite because of K2
P >

2K. The minimum H∞ performance index is achieved by the following control law

u = −R−1BTPx =
(
K +

1

γ2
I
)(
ė+KPe+KI

∫
e
)

=
(
K +

1

γ2
I
)
s, (A.2.12)

and it happen to have PID control structure.

The magnitude of state-weighting matrix Q of (A.2.11) effects on the system

performance or control errors. If we would like to enhance the performance by two

times, the magnitude of the diagonal elements in state-weighting Q should be four

times larger. Then the control errors would be reduced by half times. It means that

the magnitude of a matrix K in state weighting matrix should be larger. At the
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t = 4s  t = 8s t = 12s

t = 16s t = 20s t = 24s

Figure A.1: Gain tunning postures with the seven-DoF manipulator.
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Figure A.2: Joint space control errors for the seven-DoF manipulators.
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t = 3s  t = 20s t = 50s

50s <t < 80s

Figure A.3: Weight lifting motions with the maximum payload 120kg.

same time, the increased gain matrix K decreases the magnitude of the control

input weighting (A.2.6), and it requires more control energy.

On the contrary, if the magnitude K is decreased, then it require less control

effort, and it induces larger control errors. The gain matrix K shows the trade-off

between the performance and control energy. It is well agreed with the result of

linear quadratic optimal control theory [175]. Note that L2-gain γ has an effect

only on the control input weighting, and it enhances the control performance by

increasing the disturbances rejection capability. The globally asymptotic stability

is not guaranteed for a PID trajectory tracking controller, but extended distur-

bance input-to-state stability is guaranteed. It means that the behavior of the sys-

tem remains bounded when the disturbance inputs are bounded, and the response

should tend to equilibrium when the disturbance input tends to zero.
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Figure A.4: Joint space control errors for the weighting lifting motions with the

maximum payload (120kg).

A.3 Experimental Results and Conclusion

Experimental tests are conducted to verify the control performance under two dif-

ferent conditions. One experiment is conducted using the seven-DoF manipulator,

and the other one was conducted using the four-DoF arm with the maximum load

120kg. The results are shown in Figure A.1, A.2, A.3, and A.4 where we can see

that the controller is able to cope with large payload variation from 0kg to 120kg.

Although the globally asymptotic stability is not guaranteed for a PID trajectory

tracking controller, it guarantees the extended disturbance input to state stability

for the Lagrangian system. From Figure A.4 we see that the maximum control

error under the maximum load conditions is within 0.4 degrees. The robust PID

joint controller maintains the control errors sufficiently small to execute a given

rescue task.
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[164] Karl Johan Åström, Tore Hägglund, Chang C Hang, and Weng Kuen Ho.

Automatic tuning and adaptation for pid controllers-a survey. In Adap-

tive Systems in Control and Signal Processing 1992, pages 371–376. Elsevier,

1993.

[165] Nick J Killingsworth and Miroslav Krstic. Pid tuning using extremum seek-

ing: online, model-free performance optimization. IEEE control systems,

26(1):70–79, 2006.

[166] Katsuhiko Ogata. Modern control engineering. Prentice hall, 2010.

[167] John C Doyle, Bruce A Francis, and Allen R Tannenbaum. Feedback control

theory. Courier Corporation, 2013.

[168] Huibert Kwakernaak. Robust control and H∞ optimization—tutorial paper.

Automatica, 29(2):255–273, 1993.

[169] Sigurd Skogestad and Ian Postlethwaite. Multivariable feedback control: anal-

ysis and design, volume 2. Wiley New York, 2007.

[170] Seongil Hong and Ki Dae Cho. Kinematic algorithms and robust controller

design for inertially stabilized system. IEEE/ASME Transactions on Mecha-

tronics, 19(1):76–87, 2012.

[171] Vijay Sekhar Chellaboina and Wassim M Haddad. Nonlinear dynamical sys-

tems and control: A Lyapunov-based approach. Princeton University Press,

2008.

[172] Alberto Isidori and Alessandro Astolfi. Disturbance attenuation and H∞-

control via measurement feedback in nonlinear systems. IEEE transactions

on automatic control, 37(9):1283–1293, 1992.



206 BIBLIOGRAPHY

[173] Eduardo D Sontag and Yuan Wang. On characterizations of the input-to-

state stability property. Systems & Control Letters, 24(5):351–359, 1995.

[174] Arjan J Van Der Schaft. L2-gain analysis of nonlinear systems and non-

linear state-feedback H∞ control. IEEE transactions on automatic control,

37(6):770–784, 1992.

[175] Brian DO Anderson and John B Moore. Optimal control: linear quadratic

methods. Courier Corporation, 2007.



국문초록

최근에 등장한 새로운 세대의 로봇은 기존에는 인간만이 할 수 있었던 복잡한 일을 로

봇 또한 수행할 수 있음을 보여주었다. 특히 DARPA Robotics Challenge를 통해 이러

한 사실을 잘 확인할 수 있으며, 이 로봇들은 공장과 같은 정형화된 환경에서 자동화된

일을 반복적으로 수행하던 임무에서 더 나아가 극한의 환경에서 인간을 대신하여 위

험한 임무를 수행할 수 있는 방향으로 발전하고 있다. 그래서 사람들은 재난환경에서

안전하고 시의 적절하게 대응할 수 있는 여러 가지 대안 중에서 실현 가능성이 높은

대처 방안으로 로봇을 생각하게 되었다. 하지만 이러한 로봇은 동적으로 변화하는 비

정형 환경에서 임무를 수행할 수 있어야 하기 때문에 불확실성에 대해 강건해야하고,

다양한 환경 조건에서 능동적으로 반응을 할 수 있어야 한다. 본 학위논문에서는 로봇

이 비정형 환경에서 강건하면서도 적응적으로 동작할 수 있는 실시간 최적화 기반의

동작 계획 및 제어 방법과 구조 로봇의 설계 개념을 제안하고자 한다.

인간은 많은 자유도를 가지고 있으며, 하나의 전신 동작을 생성할 때 다양한 기구

학 혹은 동역학적 특성을 가지는 세부 동작 혹은 작업을 정의하고, 이를 효과적으로

종합할 수 있다. 그리고 학습을 통해 각 동작 요소들을 최적화할 뿐만 아니라 상황

에 따라 각 동작 요소에 우선순위를 부여하여 이를 효과적으로 결합하거나 분리하여

실시간으로 최적의 동작을 생성하고 제어한다. 즉, 상황에 따라 중요한 동작요소를

우선적으로 수행하고 우선순위가 낮은 동작요소는 부분 혹은 전체적으로 포기하기도

하면서 매우 유연하게 전체 동작을 생성하고 최적화한다.

인간과 같이 다자유도를 보유한 로봇 또한 기구학과 동역학적 특성을 가지는 다양

한 세부 동작 혹은 작업을 작업공간(task space) 혹은 관절공간(configuration space)

에서 정의할 수 있으며, 우선순위에 따라 이를 효과적으로 결합하여 전체 동작을 생

성하고 제어할 수 있다. 서로 양립하기 어려운 로봇의 동작 문제를 해결하기 위해

동작들 사이에 우선순위를 부여하여 계층을 생성하고, 이에 따라 로봇의 전신 동작을

구현하는 방법은 오랫동안 연구가 진행되어 왔다. 이러한 계층적 최적화를 이용하면
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우선순위가 높은 동작부터 순차적으로 실행하지만, 우선순위가 낮은 동작요소들도 가

능한 만족시키는 최적의 해를 찾을 수 있다.

하지만 관절의 구동 범위와 같은 부등식의 조건이 포함된 계층적 최적화 문제에서

특이점에 대한 강건성까지 확보할 수 있는 방법에 대해서는 아직까지 많은 부분이 밝

혀진 바가 없다. 따라서 본 학위논문에서는 등식과 부등식으로 표현되는 구속조건 혹

은 동작요소를 계층적 최적화에 동시에 포함시키고, 특이점이 존재하더라도 강건성과

수렴성을 보장하는 관절공간에서의 최적해를 확보하는데 집중한다. 왜나하면 비정형

임무를 수행하는 로봇은 사전에 계획된 동작을 수행하는 것이 아닌 변화하는 환경조

건에 따라 실시간으로 동작을 계획하고 제어해야 하기 때문에 특이점이 없는 자세로

로봇을 항상 제어하기가 어렵다. 그리고 이렇게 특이점을 회피하는 방향으로 로봇을

제어하는 것은 로봇의 운용성을 심각하게 저해시킬 수 있다. 특이점 근방에서의 해

의 강건성이 보장되지 않으면 로봇 관절에 과도한 속도 혹은 토크가 발생하여 로봇의

임무 수행이 불가능하거나 환경과 로봇의 손상을 초래할 수 있으며, 나아가 로봇과

함께 임무를 수행하는 사람에게 상해를 가할 수도 있다.

특이점에 대한 강건성을 확보하기 위해 우선순위 기반의 계층적 최적화와 정규화

(regularization)를 통합하여 정규화된 계층적 최적화 (RHQP: Regularized Hierarchi-

cal Quadratic Program) 문제를 다룬다. 부등식이 포함된 계층적 최적화에 정규화를

동시에 고려함으로써 야기되는 많은 문제점들을 해결하고 해의 최적성과 강건성을 확

보할 수 있는 방법을 제안한다. 특히 외부의 최적화 프로그램을 사용하지 않고 수치적

최적화 (numerical optimization) 이론과 우선순위에 기반을 두는 여유자유도 로봇의

해석 기법을 이용하여 계산의 효율성을 극대화할 수 있는 이차 프로그램(quadratic

programming)을 제안한다. 또한 이와 동시에 정규화된 계층적 최적화 문제의 이론

적 구조를 철저하게 분석한다. 특히 특이값 분해 (singular value decomposition)를

통해 최적해와 부등식 조건을 처리하는데 필요한 라그랑지 승수를 재귀적인 방법으

로 해석적 형태로 구함으로써 계산의 효율성을 증대시키고 동시에 부등식의 조건을

오류 없이 정확하게 처리할 수 있도록 하였다. 그리고 정규화된 계층적 최적화를 힘
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제어까지 확장하여 환경과 로봇의 안전한 상호작용을 보장하여 로봇이 적절한 힘으로

환경과 접촉할 수 있도록 하였다.

불확실성이 존재하는 비정형 환경에서 비정형 임무를 수행할 수 있는 구조로봇

의 핵심 설계 개념을 제시한다. 비정형 환경에서의 조작 성능과 이동 성능을 동시에

확보할 수 있는 형상으로 로봇을 설계하여 구조 로봇으로 하여금 최종 목적으로 설정

된 인간을 대신하여 부상자를 구조하고 위험물을 처리하는 임무를 효과적으로 수행할

수 있도록 한다. 구조 로봇에 필요한 매니퓰레이터는 부상자 구조 임무와 위험물 처리

임무에 따라 교체 가능한 모듈형으로 설계하여 각각의 임무에 따라 최적화된 매니퓰

레이터를 장착하여 임무를 수행할 수 있다. 하체는 트랙과 관절이 결합된 하이브리드

형태를 취하고 있으며, 주행 임무와 조작임무에 따라 형상을 변경할 수 있다. 형상

변경과 모듈화된 매니퓰레이터를 통해서조작 성능과 험한 지형에서 이동할 수 있는

주행 성능을 동시에 확보하였다.

최종적으로 구조로봇의 설계와 실시간 계층적 제어를 이용하여 비정형 실내외 환

경에서 구조로봇이 주행임무, 위험물 조작임무, 부상자 구조 임무를 성공적으로 수

행할 수 있음을 해석과 실험을 통하여 입증함으로써 본 학위논문에서 제안한 설계와

정규화된 계층적 최적화 기반의 제어 전략의 유용성을 검증하였다.

주요어: 구조로봇, 작업 우선순위, 정규화, 최소제곱 최적화, 특이점 강건성, 부등식의

구속조건.
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