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ABSTRACT

Robust Industrial Video Anomaly Detection

by

Young-Uk Jin

Department of Mechanical Engineering

Seoul National University

Industrial video anomaly detection is an important problem in industrial in-

spection, possessing features that are distinct from video anomaly detection in

other application domains like surveillance. No public datasets pertinent to the

problem have been developed, and accordingly, robust models suited for indus-

trial video anomaly detection have yet to be developed. In this thesis, the key

differences that distinguish the industrial video anomaly detection problem from

its generic counterparts are examined: the relatively small amount of video data

available, the lack of diversity among frames within the video clips, and the ab-

sence of labels that indicate anomalies. We then propose a robust framework for

i



industrial video inspection that addresses these specific challenges. One novel as-

pect of our framework includes a model that masks regions in frames that are

irrelevant to the inspection task. We show that our framework outperforms ex-

isting methods when validated on a novel database that replicates video clips of

real-world automated tasks.

Keywords: Industrial Video Anomaly Detection, Robustness, Mask, Attention Map,

Weakly Supervised Learning, Cycle
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1
Introduction

The rapid expansion in automated manufacturing triggered the need for faster and

accurate inspection. Unlike the significance of the task, however, automated in-

spection has not received much attention for quite a long time. Recently though,

the field gained popularity, and various computer vision algorithms for automated

inspection have emerged. This interest in the field was reinforced with an increase

in interest in developing machine learning algorithms.

Unlike their rule-based counterparts, [1], machine-learning-based computer vi-

sion inspection algorithms are flexible and cost-effective. When programming in-

spection algorithms in a rule-based fashion, the method’s deterministic style be-

comes troublesome in industrial inspection because the appearance and location of

defects are almost impossible to predict. Unless all possible abnormal depictions

of a product are considered, some cases of anomalies may never be labeled as er-

roneous. On the other hand, machine learning-based algorithms exploit a model

trained on various images and learns patterns that aid in discerning errors out of

regular instances. Therefore the method demonstrates greater flexibility compared

1
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to deterministic methods for anomaly detection.

Moreover, rule-based models quickly become obsolete when unexpected changes

in the environment surrounding products occur since most of the variables defined

within their algorithms were tuned under specific conditions. When such abrupt

alternations in the surroundings do occur, all variables require tuning, or lines of

code may need to be modified completely. Contrary to rule-based models, frame-

works that use machine-learning methods only require their models to be trained

on new data acquired after the shift in the environment. During this procedure,

parameters that define the model and algorithm are tuned automatically and more

precisely than when it is done by hand. Machine-learning methods require less ef-

fort and time than their deterministic counterparts. Thus they are easier to deploy

to various industrialized settings.

Most research regarding industrial inspection is centered on image-based in-

spection on the exterior of products. Various public datasets have been proposed

to facilitate research on the problem [2], and diverse methods have been devised

to tackle the image inspection task [3, 4, 5, 6].

In retrospect, though, faulty products are usually the results of erroneous man-

ufacturing processes. For instance, incorrect assembly of a part moving on a con-

veyor belt may cause a sequence of errors downstream, with the end result being

a grasping error that damages the part. Thus, industrial inspection based on video

clips is as critical as the image-wise inspection problem. Despite its significance,

the subject has yet received sufficient interest. Rule-based methods for video-based

inspection algorithms do indeed exist. However, the methods lack flexibility and

are costly compared to their machine-learning-based counterparts. Therefore, it is

natural to seek machine-learning video anomaly detection algorithms, which has

not received much attention in the literature.



3

Figure 1.1: Examples of samples within datasets for image-based product inspec-

tion. [1] The DAGM texture dataset, where the objective is to find cuts, ruptures,

and stains on images of various fabric samples. [2] The MVTEC-AD dataset, where

the task is to recognize and locate anomalies on the surface of diverse industrial

artifacts.

In contrast to its application to industrial problems, video anomaly research on

more general use-cases has enjoyed a recent surge in interest due to the increasing

need for everyday applications based on analysis of video clips. The most prevalent



4

Figure 1.2: An intuitive example illustrating the importance of detecting erroneous

processes that occur during manufacturing tasks.

problems among such tasks are those regarding surveillance. Numerous frameworks

have been proposed for video anomaly detection on these surveillance video clips

gathered from cameras installed in various places [7, 8, 9, 10].

These frameworks, however, are not suitable for the industrial variant of video

anomaly detection for three reasons. First, surveillance video clips contain typical

actions and abnormal actions, usually depicted with a stark difference in appear-

ance. On the other hand, due to the perfection of machinery, almost no abnormal

actions are observed nor recorded in manufacturing video clips. Thus unlike in the
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Figure 1.3: Exemplary normal and abnormal samples extracted from the UCSD

Pedestrian Dataset.

surveillance application of video anomaly detection, where clips can be labeled,

and such clip-label pairs can be used to teach a model to discriminate between

normal and abnormal clips, supervised learning is not a valid option in indus-

trial video anomaly detection. Frameworks for industrial video anomaly detection

should be trained solely on normal data without labels, which hint the model on

which features within the data should be prioritized.

Second, unlike surveillance video clips, which can readily be gathered or up-

dated, unless permission to access the data has been declined, industrial video clips
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are challenging to accumulate due to the short time available to gather the data

before the manufacturing task is updated. Due to the same limitations, repetitive

frames with similar appearance and hardly any variations are usually sampled and

used to train an inspection framework. These restrictions make industrial video

anomaly detection more complicated to solve. Usually, in machine learning, data

used to train models are expected to satisfy two crucial requirements for the result-

ing model to show more significant performance and generalize better: 1) sufficient

size and 2) sufficient variation among data. However, as emphasized, data avail-

able in the industrial video anomaly detection setting lack these aspects, making

the problem more complicated.

Not surprisingly, when adopted to industrial video anomaly detection, existing

frameworks show poor performance. The main issue that degrades their perfor-

mance is their failure in generalizing to irrelevant features in video clips. Because

abnormal clips are not available for training the models, frameworks must rely only

on usual clips to learn patterns. Furthermore, these clips are gathered in small

numbers due to the insufficient time to film the data.

Third, the data lacks variations in appearance. Industrial videos usually fea-

ture a worker, a workspace, and the background, where all features irrelevant to

the workspace exist. Anomalies to catch occur in the workspace and not in the

background. Therefore, any variations in the background are out of interest. The

problem is that there are hardly any changes in the background of data in the

train-set, causing the inspection model to fail to generalize to these irrelevant and

subtle deviations.
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Figure 1.4: An illustrative example that depicts the case when existing frameworks

for video anomaly detection fail in the problem’s industrial variant. When unseen,

random, yet irrelevant changes occur in videos, the model fails to generalize to

these clips, thus triggering unwanted alarms.

Due to the limitations in data used to train the frameworks, they become sus-

ceptible to irrelevant changes outside the region of interest within frames, trigger-

ing a myriad of false alarms. This frequent occurrence of false alarms may be trou-

blesome when the method is deployed to the field. Frequently responding to the

alarms and halting industrial processes leads to a decrease in total yields. Thus,

a framework that demonstrates greater robustness to the problem is sought-after.

In this work, we propose a novel framework robust to changes in video frames

irrelevant to industrial video anomaly detection. Instead of observing the entire im-

age within each frame, our framework applies a learned mask to the input frames,
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which veils regions that lay outside the zone in which the industrial process is

taking place. This way, although random changes, not shown when training the

inspection framework, occur in parts of each frame where no work is being done,

the mask guides the framework not to consider these partitions. For convenience,

let us now shorten the phrase ”the region where work is being done” into a com-

pact term ”work-space” and the region outside the work-space, ”background.”

Our background masking framework consists of two parallel models: 1) the

anomaly detection model and 2) the background masking model. Any existing

method developed previously for video anomaly detection may be applied for the

anomaly detection model, but we adopted an auto-encoder-based approach for con-

venience. The novel component of our framework is the visual attention-based

background masking model, which conveys the masking mentioned above on the

background of each scene and encourages the framework to focus on regions per-

tinent to the workspace.

Moreover, we propose a small database that suits the conditions that differen-

tiate data available for industrial video anomaly detection from its more general

counterparts, such as surveillance. Using this small database, we train and eval-

uate our model and show that using our framework enhances robustness to the

data compared to when no such background masking is used.

1.1 Related Works

Video anomaly detection (VAD) has recently gained popularity, and numerous pa-

pers on new methods have been published. The problem can be classified into two

sub-problems on the grandest scale: 1) multi-scene anomaly detection, 2) single-

scene anomaly detection. In multi-scene anomaly detection, a camera is attached
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Figure 1.5: Representative scenes in single scene video anomaly detection and

multi-scene video anomaly detection. [1] The single scene case, and [2] the multi-

scene variant.

to a moving platform; thus, the background in the scene is constantly changing.

On the other hand, in the single-scene case, the camera is fixed to a particular

position and orientation. In industrial VAD, most cameras for inspection are in-

stalled on a fixed holder. Therefore the problem is one example of the single-scene

case.

Before introducing some methods previously devised for single-scene VAD, we

summarize some existing datasets for the problem. The UCSD Pedestrian dataset
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provides gray-scale video clips filmed on roads on campus, where anomalies in-

clude scenes of people riding a bicycle or employees traveling through the sidewalk

on a golf cart. The CUHK dataset features scenes filmed on a busy road. Unlike

in typical scenes where people show dull movements such as moving in the same

direction, reading a newspaper, or standing still, abnormal scenes contain unfore-

seen motions such as a man throwing his bag or walking in the wrong direction.

The Street Scene dataset is the most recent single monocular surveillance video

dataset, filmed on several streets, where anomalies are abnormal activities on the

road.

Various research has been done on single-scene VAD, though the specific use-

case had been limited chiefly to surveillance tasks. Although many other approaches

exist, most research has focused on using an auto-encoder as the primary choice of

model for anomaly detection. The simplest among such methods was introduced in

[11]. In this work, the authors implement an auto-encoder with an LSTM model

embedded in the bottleneck. Unlike most auto-encoders, the LSTM auto-encoder

encodes the latent information along the temporal axis, which is required since

frames within video clips are dependent on each other concerning time.

[12] introduce a variant of [11], where they use a 3D convolution network to

encode temporal information instead of using a separate LSTM model for the same

purpose. A 3D convolution block is a simple variation of the more popular 2D

convolution filter, where an additional depth axis is added apart from the existing

height and width. By manipulating the stride of the filter applied along the depth

axis, part of the sequence of video frames is compressed, where the compressed

information contains time-wise information extracted from the input video. The

model is more compact and straightforward to implement than the former LSTM

auto-encoder model. However, it has a smaller receptive field along the temporal
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axis than the LSTM or RNN based models.

Unlike the studies mentioned above, The authors of [13] propose a prediction-

based video anomaly detection method. In this method, when provided several

frames in a sequence, the prediction model learns to predict the contents of the

unseen part of the same sequence. If an anomaly occurs, the model fails to predict

this change. An advantage of this approach is that the bottleneck of data is more

intense than that of the reconstruction case. Unlike reconstruction-based methods,

prediction-based models use compressed, encoded data to guess the most proba-

ble appearance of consecutive images with dimensions of much greater size. The

drawback, however, is that when too many frames are to be predicted, the models

perform poorly.

Finally, in [14] , and [15] the authors apply a memory-guided auto-encoder

model to industrial VAD. In this approach, instead of using RNN modules to en-

code temporal information, a memory module is used to memorize representations

of frames input to an encoder. During the training phase, the model receives clips

containing only typical frames, learning to extract and memorize compressed fea-

tures that contain information sufficient to reconstruct frames in train-set video

clips. After training, when the model is shown clips similar to the train-set data,

it successfully reconstructs the frames. On the contrary, when abnormal clips are

provided, the model tries to reconstruct frames within the train-set, which are

most similar to these anomalies. Because irregular frames look very different from

typical frames, the model triggers an alarm, indicating an anomaly within the clip.

Although these models demonstrate state-of-the-art performance on public VAD

datasets, the models are unsuitable for video anomaly detection. As aforemen-

tioned in this literature, public datasets are limited to the specific task of surveil-

lance, which shares characteristics distinct from industrial VAD. Models developed
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and evaluated on the existing datasets, thus, fail to show robust performance when

adapted to industrial VAD tasks.

Indeed, video frame segmentation may be applied to enhance the robustness of

video anomaly detection models. By segmenting videos into partitions according

to their similarity in semantic information they carry, a mask that hides the back-

ground of industrial tasks can easily be obtained. However, since data with little

or no variations in appearance is provided to train models, many existing meth-

ods for segmentation on video clips become outdated. For instance, the methods

introduced in [16, 17] are developed on popular public video datasets such as the

DAVIS dataset [18], those that contain ground-truth segmentation masks.

In [16], the authors suggest a simple framework that trains on only the first

frame of each video clip to produce masks for the whole clip during the inference

phase. The segmentation model is implemented by taking the backbones of pop-

ular image classifiers pre-trained on image datasets and replacing the final linear

layers with upscaling layers that magnify the embeddings of the backbone to the

size of input images.

[17] proposes a novel approach based on the intuition that most consecutive

frames in video clips do not show a significant discrepancy between each other.

The method consists of two steps: 1) coarsen and feed the model with a mask

predicted on the frame preceding the current frame in time, 2) upon receiving this

mask and the current frame, predict the mask for the current frame. The authors

use both offline and online training to boost the performance of the model.

Both methods, though they perform well on video segmentation tasks, rely on

ground-truth segmentation masks. In the industrial VAD problem, due to the limi-

tation of diversity and size of acquired data, video clips with varying appearances
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Figure 1.6: An example of a popular dataset used for video segmentation. [1] The

input frame. [2] The corresponding segmentation ground truth map.

paired with ground truth segmentation results are challenging to obtain. There-

fore, the two methods and other methods not listed in this literature that share

similar strategies do not suit our framework.

[19] introduces a method that considers the human gaze for segmentation

tasks. In this research, pairs of data and human gaze fixation maps are provided

for training the model. Here, the term human gaze fixation map refers to a map

with the size of the input frames, whose elements that constitute the array indi-

cate whether a human volunteer has stared at the respective pixel or not. However,

this method is inappropriate for industrial VAD due to the difficulty of gathering

the human gaze labels corresponding to each frame. A gaze tracker must gather

information on the human gaze, which is costly and redundant.
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An unsupervised line of research on video frame segmentation has recently

emerged [20, 21]. These methods usually exploit optical flow maps obtained from

frames adjacent to each other in videos. In [20], the authors first introduce a gen-

erator that attempts to guess a mask that hides relatively static regions in an op-

tical flow map. Then they propose another model named the inpainter, which at-

tempts to predict the contents of the regions that were masked out using the mask

generated from the generator. The two models are trained simultaneously, where

the generator tries to learn a perfect mask that separates dynamic and static re-

gions in each flow map, whereas the inpainter seeks to complete the masked re-

gion perfectly so that the prediction matches the input flow map. By competitively

training the generator and inpainter, one can obtain a mask that effectively hides

video frames’ background.

The more recent paper, [21], demonstrates that an auto-encoder with a slot

attention module embedded in its bottleneck may be used to create a mask that

removes the background region from input videos. A slot attention module [22]

is a model that groups regions in each image according to the semantic similarity

of features that constitute them, like that of capsule networks [23]. The mod-

ule was initially introduced with test results obtained from an evaluation dataset

consisting of features with simple textures and appearances. The authors of [21]

assert that optical flow arrays consist of pixels that show similar values to their

neighbors, thus displaying an image with simple textures. The slot-attention auto-

encoder then learns and generates segmentation maps for video clips using these

flow maps as given inputs.

Although both methods are relatively favorable compared to those mentioned

above, they both rely on optical flow maps, arrays that are relatively difficult to

determine or estimate. State-of-the-art models for optical flow maps indeed exist,
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but most of these models are trained on labeled video datasets, which contain

synthetic video clips. Furthermore, the flow map estimators require input video

clips with high resolution, data that is difficult to acquire from relatively cheap

cameras installed in factories, in great numbers.

1.2 Contributions of Our Work

The main contribution of our work is the proposal of a novel and robust framework

for industrial video anomaly detection. To elaborate more deeply into our proposed

framework, the model consists of two main components: 1) an anomaly detection

model and 2) a visual attention-based background masking model.

The former is the part of the framework trained on normal samples to detect

abnormal frames in video clips during the inference phase. Any existing method

for video anomaly detection may be applied to this part of the framework, but for

convenience, we applied an LSTM auto-encoder with a structure similar to that

of [11].

The latter is the novel part of our framework and is the critical contribution

of our research. The model predicts a mask using a visual attention map com-

puted from a model trained to leave features relevant to the task being done in

each scene of industrial video clips intact. On the other hand, the background is

masked out and unused for computing the final score map that decides whether

or not to indicate an anomaly. Because random changes in the background do not

correspond to an error in an industrial process, masking them out prevents the

framework from generating false alarms, which leads to enhanced robustness of

the method.

The background masking model is trained on a sequence order prediction task.
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To elaborate on this task, a cycle, the most prominent feature in the industrial

inspection video clips, is divided into several partitions, which are assigned labels

that indicate the temporal order of the partitions within the cycle. The model has

to sort each frame in a video to one of the partitions that constitute a complete

cycle. To make a correct guess, the model focuses on the repeating motions in

video clips. If so, regions in the output activation maps of each layer of the model

pertinent to such component in each frame will be activated the most, which re-

sults in high visual attention values.

Since there are no existing datasets to test our framework designed for in-

dustrial VAD, we make our second contribution: a database designed to satisfy

the characteristics of the problem. With this simple database, we show that our

method effectively reduces false anomaly alarms while correctly detecting actual

anomalies in videos.

1.3 Organization

In chapter 2, we cursor through the prerequisite terms required to understand the

methods adopted to implement our framework. First, we summarize the difference

between weakly supervised learning to unsupervised and supervised learning. This

short explanation will help the readers understand why our method of training the

background masking model is classified as a weakly supervised task. Second, we

briefly review the method of class activation map (CAM) and those of its variants,

grad CAM and Eigen CAM. This summary will help demystify the method used

to obtain the background masks from the respective model. Third, we introduce

the concept of dynamic time warping (DTW), a strategy used to map sequences

that are asynchronous but display very similar aspects. Explanation of this idea
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will guide the readers to understand how we obtain the weakly supervision labels.

Fourth, we take a brief look at label smoothing, a method required in our research

when labeling frames that are adjacent in time and look similar to each other but

are assigned to different partitions in each cycle.

Upon moving on to chapter 3, we introduce how we implemented our robust

framework for industrial video inspection. We use two models, each for anomaly

detection and background masking. The framework can easily be added to existing

video anomaly detection models, where the background masking module minimizes

the susceptibility of the framework to unseen random yet irrelevant changes in the

frames of the video clips.

Then in chapter 4, we share implementation details for our model and database

for evaluation. We then reveal the results of experiments done using our frame-

work. We compare the performance of our method to that of a simple implementa-

tion of one of the existing methods. We also compare the robustness of our frame-

work to another framework that uses an ideal mask to veil the background.

Finally, in chapter 5, we sum up all results and contemplate the advantages

and drawbacks of our model. We then propose further plans that extend from

this research and some lines of studies that may probably be undertaken in the

future.



2
Preliminaries

In this chapter, we skim over some crucial concepts required to understand the

successive literature in this paper. First of all, we clarify the difference between

weakly supervised learning and other lines of machine learning, namely, super-

vised and unsupervised learning. Then we briefly overview the class activation map

(CAM) concept and compare two variants of the method, Grad-CAM and Eigen-

CAM. Furthermore, we review the dynamic time warping required to train the

background masking model when creating the weak labels. Finally, we summarize

the concept of label smoothing, a method widely used when data is noisy, and the

boundaries that divide clusters of data are fuzzy.

18



2.1. Weakly Supervised Learning 19

2.1 Weakly Supervised Learning

2.1.1 Supervised Learning and Unsupervised Learning

Before scrutinizing the concept of weakly supervised learning, and comparing the

method to other approaches, let us shortly review the definitions of supervised

learning and unsupervised learning. In a supervised learning problem, a straight-

forward reference, or in other words, ground truth labels, is provided to guide a

model to learn to operate on a specific machine learning task such as classifica-

tion, detection, or segmentation. The point here is that such reference corresponds

to the desired output of the model.

On the other hand, unsupervised learning is defined as a machine learning

problem, where no labels are provided when training the model. Under this set-

ting, models should exploit features within the given data to obtain hints that help

them perform well on the task at hand. Various clustering methods introduced in

classical machine learning literature are examples of solutions to the unsupervised

learning problem.

With the advent of powerful CNN-based feature extractors and various deep-

learning-based techniques, new methods designed for unsupervised learning, known

as self-supervised methods, have been introduced. The term self refers to the data

itself, whereas the word supervision indicates that the provided data is used to

supervise the model. Combining the two words leads to self-supervised learning,

which means that a model uses the input data as a reference to guide them to ex-

tract useful features. To do so, some tasks that can exploit the input data are pre-

cariously designed to guide models to extract semantic information within them.
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Figure 2.1: Examples of self-supervised tasks. [1] Jigsaw puzzle case, [2] occluded

fragment prediction case.

One representative example of such a task is compressing the data to a more

miniature representation and reconstructing them back to their original scale, us-

ing an auto-encoder. Here, supervision is provided by comparing the input frame

and its reconstructed counterpart. Other tasks include the jigsaw puzzle problem
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[24], where input data is fragmented and shuffled, and the model has to learn to

arrange the partitions back in its original place, or the inpainting problem [25],

where one part of the given data is removed, and the model should precisely pre-

dict the empty segment of data.

2.1.2 Demystification on Weakly Supervised Learning

Weakly supervised learning is a method defined under a setting where indirect and

noisy labels supervise models on machine learning tasks. Unlike the direct refer-

ence that corresponds to the ideal outputs of models used in supervised learning,

weak labels only provide hints to the desired outputs of models.

For instance, assume a model is assigned to segment a video clip of an athlete

doing push-ups in an empty room into a region including the person and one that

does not. Supervised learning will require an exact ground truth mask that cov-

ers the background and leaves the partition of each video frame that depicts the

person intact. On the other hand, weakly supervised learning can be performed

even if the model is given a sequence of integers, indicating how many push-ups

had been done until the frame within a video clip was filmed. Undoubtedly, the

integers do not directly indicate the region where the person is illustrated, but it

alludes to the model that the person is in the part of each frame where certain

features appear and disappear periodically.

Moreover, weakly supervised learning is distinguished from unsupervised learn-

ing, specifically self-supervised learning, because labels that require human inter-

vention are required in its implementation. In self-supervised learning, only the

data or characteristics that can be readily extracted from them are available when

training models. To be specific, the method does not exploit any labels that can

only be obtained via human effort and intuition.
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Let us elaborate on this discrimination using the example above of detecting

an athlete doing push-ups in an empty room. We observed that a practitioner that

opts on applying a weakly supervised approach to the problem would attempt to

count the repetition of the motion and use the numbers as labels. In contrast to

this approach, unsupervised learning uses no such reference that requires human

intuition and effort, such as counting. Instead, a practitioner may choose to show

the model several frames of the video and then expect the model to predict the

expression of the unseen frames of the same clip. In the latter case, no reference

requires any form of human effort, and all self-supervision labels can be obtained

solely using the information within the input data themselves.

2.2 Class Activation Maps

2.2.1 Overview on Visualizing Activations

Ever since deep learning has gained unforeseen popularity, a question arose on

what neural nets see and learn and how they use such information to make de-

cisions. This enthusiasm led to the development of various methods applied to

achieve a common goal of unveiling the black-box embedded in neural networks

[26, 27, 28, 29], which is better known as explainable artificial intelligence or XAI

in short. One channel of research focuses on visualizing the activations triggered

within convolutional neural networks (CNN) [30, 31, 29]. Methods pertinent to

this field are designed to obtain activation maps, also known as attention maps,

highlighting regions in image data where the neural network models pay the most

attention.

To understand how activations obtained from the output of layers within CNN’s

can lure which part of an image contributes most to make a particular decision,
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Figure 2.2: Comparison of methods used to obtain visual attention maps. [1] Grad-

CAM, [2] Eigen-CAM.

we take a simple glimpse into the characteristics of convolutional neural networks

(CNN). CNN’s are models that consist of layers containing convolution filters. A

convolution filter is a matrix or tensor-like entity that extracts prominent features

within an image by simply moving them along the axes of the data and computing

a linear transform between the filter and the region covered by the moving filter.

This convolution outputs a compression of the data, where local regions along the

data are embedded, but spatial variations are preserved.

To be specific, a filter encodes a patch of pixels as it slides over an image.

After the filter traverses all regions in the image, every section is summarized into

a compact representation. The encoded patches represent a region within the input

image. Therefore, the information of each encoded patch corresponds to that of a

particular region in the original image.
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2.2.2 Overview on CAM

The earliest method introduced in the sector of XAI uses attention maps in class

activation mapping (CAM) [29]. In CAM, assuming the target task is a classifi-

cation task, the activation map is obtained by exploiting the output array of the

final convolution layer in a deep neural network. It assumes that the last four lay-

ers of the CNN consist of 1) a convolution layer, 2) a global average pooling layer,

3) a linear layer whose length matches the number of classes, and 4) an activa-

tion layer such as soft-max. The authors compute a weighted sum on the units of

the convolution layer’s output array, where the weights match that of the linear

transform between the global average pooling layer and linear layer. They assert

that this results in a map that highlights which regions within an image contribute

most to the model’s decision.

Let us take a deeper look into the idea of CAM. Assume fk(x, y) indicates

the activation result of unit k in the output of the last convolution layer, Fk, its

pooled representation, and wc
k, the weight that maps each unit to its correspond-

ing node in the final linear layer. Here, (x, y) refers to a specific region within

the input image, and c denotes a specific class. The authors point out that an at-

tention map for class c, Mc, can be obtained by simply taking the weighted sum∑
k w

c
kfk(x, y) over all regions lying along with the image, which may be expressed

in the following form,

Mc =
∑
x,y

∑
k

wc
kfk(x, y). (2.2.1)

The regions emphasized for each class using activation maps obtained from

CAM reasonably comply with the actual parts of images that display features per-

tinent to the class. However, application of CAM is limited since the method is

valid for target models with an architecture similar to GoogLeNet [32], where
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global average pooling is applied to the output of the last convolution layer, whose

result is mapped to a linear layer followed by an activation layer that outputs the

final decision of the networks.

2.2.3 Overview on Grad-CAM

Grad-CAM is a variant of CAM, applicable to a broader spectrum of models [30].

Instead of using the weights that map the activation output array of the final con-

volution layer in a GoogLeNet-style CNN to compute a weighted sum of activa-

tions, the method uses the gradients computed from the loss between the predicted

output ground truth label for the weights. Furthermore, the activation maps are

not constrained to the outputs of the final convolution layer and may be extracted

from any layer in CNN’s, which enables the method to be applied to more diverse

types of CNN-based models.

The specific intuition behind Grad-CAM can be summarized into the following.

Let us express the activation obtained from a layer within a CNN model as A

and express its k’th unit as Ak. Also, assume yc denotes the score or objective

computed for class c with respect to the ground truth. Then the gradient of the

score yc with respect to unit Ak is written in the form ∂yc
∂Ak . Taking an average

over the spatial dimensions, to be specific, the elements along the directions of

the width and height of the tensor, 1
WH

∑W
i=1

∑H
j=1

∂yc
∂Ak

i,j

, where W and H are the

width and height of a unit of the activation, we obtain αc
k, the weight of unit

Ak for class c. The weighted sum of activation maps thresholded using a ReLU

operator, ReLU = max (X, 0), where X is the input to the operator, is used to

obtain the Grad-CAM,

Lc
Grad−CAM = ReLU(

∑
k

αc
kA

k). (2.2.2)
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2.2.4 Overview on Eigen-CAM

Another variant of CAM named Eigen-CAM [31] obtains an attention map by

applying singular value decomposition (SVD) on an output activation of layers

in a CNN. Borrowing some notations from the specifications mentioned above on

Grad-CAM, let us express the activation from a specific layer in the CNN model

as A, where A ∈ RW×H×C and W , H, C denote the width, height, and the number

of channels of the layer output, respectively.

Unlike Grad-CAM, where gradients are computed on these components, SVD

is applied to A in Eigen-CAM. To be specific, after flattening A along its spatial

dimensions each with size W and H into Aflat ∈ RW ·H×C for convenience, we

apply SVD to this array to get,

Aflat = UΣV T . (2.2.3)

We then extract and express the first column of V T , the column of the matrix

that corresponds to the most significant singular value of A, as V T
1 for simplicity

in notation. This vector is then multiplied to the activation A to obtain the desired

attention map,

LEigen−CAM = AV T
1 . (2.2.4)

One notable difference between Eigen-CAM to CAM and Grad-CAM is that

the method does not require any knowledge on the output class of a classifier layer

that lies after the CNN layers of a neural network. This independence to the class

terms enables the method to be easily applied to various models trained with di-

verse tasks. It is even possible to apply Eigen-CAM to layers of neural networks

trained in an unsupervised fashion, where no ground truth labels salient in super-

vised classification tasks are provided, making the idea more flexible for various

applications than Grad-CAM.
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Figure 2.3: Illustration on the method implemented in Eigen-CAM.

2.3 Dynamic Time Warping

Imagine having to match points that lie along two strings of data that vary with

time. Assume the two strings of data show similar features. To be specific, similar

patterns in the change of values with respect to time are prominent in each stream.

Human intuition easily maps one point from the first sequence to another point

on the other.

However, the same task becomes problematic when developing a rule-based al-

gorithm that determines the correspondence between the points without any hu-

man intervention. Simply comparing each pair of points using crude metrics such

as the widely used euclidean or L2 norms may lead to excessive computation ex-

penses or erroneous mapping results. Fortunately, one line of a method known as
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”dynamic time warping” exists to resolve this task and is currently being used in

various domains that require template matching between two different streams of

sequential data.

Ever since its introduction to speech recognition [33], dynamic time warping

has widely been used to correlate points that lie along with two or sequences with

periods that do not coincide but change in time with a similar pattern [34]. The

method is designed based on dynamic programming [35], and computes an opti-

mal path between data under the following constraints:

(i) The starting point of one sequence is always mapped to the starting point

of the other sequence.

(ii) The ending point of one sequence is always mapped to the ending point of

the other sequence.

(iii) Between the starting and ending points of the sequences, each index from

one sequence must be mapped to at least one index from the other sequence,

where the opposite should also hold.

(iv) The mapping index from one order to another must be assigned in a mono-

tonically increasing order.

2.4 Label Smoothing

First introduced in [36], label smoothing has been applied throughout various

pieces of work on image classification, where the boundary that divides categories

of data is opaque or lacks confidence. Strictly speaking, the method is applied to

situations where the classifier cannot, or should not, make confident predictions.

One illustrative example is when a handful of data within a dataset have been
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Figure 2.4: Illustration of a situation where hard, one-hot encoded labels may de-

grade performance when training a model.

incorrectly labeled. Under such circumstances, although most pairs that have been

assigned precisely provide solid and valid references for classifiers, the erroneous

instances may, on the contrary, degrade the performance of the model.

Another situation can be seen in action classification tasks with images depict-

ing human activities. Most actions are consecutive; in other words, depictions of

actions do not vary abruptly but instead show a smooth transition in appearance.

Then, for example, when predicting the time-wise order of the tasks, classification

on such images can be complicated. This burden is caused by frames that lie at
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the boundary of different phases in a specific action, which are usually adjacent to

each other in time and may show a slight discrepancy. Label smoothing mitigates

these situations by feeding less confident reference labels, created by smoothing

out the one-hot encoded label vectors when training classifiers. To elaborate on

this opaque and concise statement about the method, let us firstly skim through

the mechanism used to train classifiers, then briefly review the details of the label

smoothing algorithm.

2.4.1 Review on Cross Entropy Function

To understand how to train classifiers, we first look into the objective function

that drives the procedure of interest. The most common choice of objective func-

tion used to train classifiers is the cross-entropy loss function, a method usually

used in information theory to compare the similarity of two distributions. Assum-

ing p and q each denote the reference distribution, and the predicted distribu-

tion, respectively, and x denotes an element in the support for the distributions,

X ⊂ RC , where C is the number of classes, cross-entropy is defined in the form

H(p, q) = −
∑
x∈X

p(x) log q(x). (2.4.5)

It may seem awkward to apply a function intended to compare distributions, to

measure the similarity between reference and predicted labels in a classification

setting. However, this method is valid because classifiers’ output indicates predic-

tions on probability distributions of the actual class the input data belongs to.

Specifically, each element of the output vector of a classifier indicates the proba-

bility that the input data corresponds to a particular class, which lures the distri-

bution the data was sampled from.
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2.4.2 Summary on Label Smoothing

In common practice, the reference labels are one-hot encoded. To be specific, when

a vector is one-hot encoded, it is converted in a manner in which a value of one is

assigned its element with the greatest value, and all other elements are substituted

with a value of zero, hence the notation, ”one-hot.” Such labels depict a proba-

bility distribution function which resembles the Dirac delta function, expressed as

δc,y, whose value along the vector of length c is 1 only if the label y, matches the

vector index c ∈ 1, . . . , C. Let us now denote the ground truth label for class c as

pc = δc,y.

As aforementioned, however, this relatively sharp label may lead to detrimental

effects when training classifiers under cases where the predictions made should be

less confident. Thus, in label smoothing, the one-hot encoded ground-truth vectors

are replaced with a weighted sum of a delta function δc,y and a fixed distribution

u(k) in the form p′ = (1−ε)δc,y +εu(k). Here, the weight ε refers to the smoothing

parameter that reduces the confidence of the largest value in the label vector while

simultaneously adding uncertainty to the rest. Upon applying label smoothing, we

then obtain an objective function, when using cross-entropy, of the form

H(p, q) = −
∑
y∈Y

((1− ε)δc,y + εu(k)) log q(y), (2.4.6)

Y ⊂ RC . (2.4.7)



3
Robust Framework for Industrial

Video Anomaly Detection

In this chapter, we introduce our framework designed for industrial video anomaly

detection. In the first section, we overview the two main components of the pro-

posed framework, 1) the anomaly detection model and 2) the background mask-

ing model. We introduce the ideas behind each model that drive them to detect

anomalies and mask out regions irrelevant to the manufacturing task of interest,

respectively.

We then present some methods used to train the background masking model

in the next section. We share the details of the weakly supervised task, which is

designed to train the model used to create background masks. We also introduce

a variant of the label smoothing method, which is required to create weak labels

that better suit the characteristics of video data and the weakly supervised task

used to train the masking model. Figure 3.1 depicts a full view of the components

and processes of the framework.

32
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3.1 Components of the Framework

3.1.1 Anomaly Detection Model

The anomaly detection model receives consecutive frames in a video clip and de-

tects the existence and location of an anomaly within an anomalous frame. Any

existing video anomaly detection models that are trained without supervision, such

as the methods using auto-encoders for surveillance tasks [14, 13, 11, 15, 12] may

be adapted to this part of our framework. The reason this model should be trained

in an unsupervised fashion is, as emphasized in chapter 1, because it is challenging

to acquire video clips depicting anomalous events from an automated manufactur-

ing process. For convenience, we exploited that of [11], which has a relatively

simple architecture, as a baseline for our detection model.

The model is trained on clips that contain only regular events and are then

used to infer whether an anomaly exists in videos not seen when training them.

Here, anomalies are detected based on the inability of auto-encoders to reconstruct

frames that contain contents that were not shown when training them. Using this

discrepancy in the input frame and reconstruction, the model can recognize an

anomaly within a frame and highlight the region’s location, indicating an anoma-

lous event.

3.1.2 Background Masking Model

The background masking model enhances the robustness to rare but irrelevant

variations in video frames, making it the critical component of our framework. The

model creates a mask that covers regions unrelated to the manufacturing task be-

ing inspected, such as a component of another machine operating behind the point

being observed or a factory worker passing behind the machine.
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Figure 3.2: Illustration of the CLSTM auto-encoder used to detect anomalies in

video frames.

The mask is generated using an attention map extracted from a CNN model

trained on the very video clips used to train the anomaly detection model. The

backbone of the CNN model we used in our framework is a 3D variant of the

18 layer ResNet model, R3D-18 [37]. We used a 3D CNN instead of the more

common 2D CNN to make use of sequential contexts within the clips used for

training, which is not supported when using 2D CNN architectures.

Among the diverse methods developed to acquire an attention map from a

CNN model, we chose Eigen-CAM [31] since it does not require explicit ground

truth labels, unlike Grad-CAM, and can be applied to a relatively wide range

of CNN architectures and a greater variety of layers within them compared to

CAM. Borrowing the notation from chapter 2, we express our attention map as

LEigen−CAM,t = AtV
T
t , where t ∈ {0, . . . , Nsequence} and Nsequence denote a single

frame in a sequence fed into the model and the length of such sequence. We did
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Figure 3.3: Illustration of the network that creates masks that veil regions in the

frames irrelevant to the video inspection task.

not apply Eigen-CAM along the temporal dimension to obtain a map that morphs

synchronous to the change in frames.

A raw Eigen-CAM attention map consists of elements with real values in the

range [0, 1]. To effectively map out regions out of interest, we threshold the values

of the attention map, where values above the threshold retain the current value,

whereas those below are reduced to zeros. Also, the maps obtained are usually

noisy; thus, we apply average pooling along the temporal dimension with small

window size to smooth out the abrupt changes in the masks with respect to time.

To sum up, the process required to obtain the background mask consists of three

phases: 1) apply Eigen-CAM to the CNN backbone to extract an attention map,

2) threshold the attention map to obtain a noisy mask, and 3) smooth the mask



3.2. Details of the Weakly Supervised Learning Method 37

with respect to time.

3.1.3 Fusing Results from the Components of the Framework

Upon computing the reconstruction and background mask from each component

of the framework, we now use both results to detect anomalies in the videos more

robustly. To do so, we first apply the mask, through element-wise multiplication of

two arrays, to the reconstruction obtained from the auto-encoder and the reference

frame, which is a mere replica of the frame input to the auto-encoder. Instead of

computing a pixel-wise score on the whole reference and reconstructed frames, we

now compute the score only on regions that were not masked out. Thus we do not

consider any failure in reconstruction that occurs out of the region of interest. By

ignoring redundant regions in frames, the framework becomes robust to random

and unpredictable events in video frames irrelevant to the task to be inspected at

the moment.

3.2 Details of the Weakly Supervised Learning Method

3.2.1 Partition Order Prediction Task

In order to obtain masks that effectively mask out regions that contain features

not pertinent to the industrial task, the model used to extract them should learn

to focus on parts of the frame whose contents depict the task of interest. To do

so, we focused on one preeminent aspect of depicting an automated task operated

by the worker, which is its periodic motion. Based on this observation, we define

a task for weakly supervised learning, where the model has to predict which part

of the cycle each frame in the input sequence belongs to.
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To better understand the training method and how it results in a model that

effectively pays attention to the automated worker, let us thoroughly examine the

details of our weakly supervised training process. Firstly, we observe the video

clips and determine the length of cycles that repeat within the clips. We then

divide each cycle into several parts and assign integer labels to the partitions,

which indicate the relative position of each partition within a single cycle. Here,

all frames that belong to the same partition are assigned the same label. For ex-

ample, assume that we divide a cycle into three parts and label each frame within

each partition with an integer value. Then, the first partition of the cycle is as-

signed 1, the second, 2, and the last, 3. Let us denote such labels as partition

order labels for convenience.

Then, we feed a sequence of frames into our model, which predicts the label

assigned to each frame. Ground truth labels are then compared to the predictions

using a cross-entropy loss, whose gradients update the model’s parameters. For

this objective function to be minimized, the model should correctly predict the

cycle partition order labels. Ultimately, the same model should recognize regions in

videos, which depict a machine showing repetitive motion. Thus, when the model

is trained sufficiently on this task, its CNN backbone learns to highlight regions

in videos containing illustrations of the automated worker while not paying much

attention to other regions in the same clips.
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3.2.2 Partition Order Labels

We take a deeper look into the steps and respective methods applied to obtain the

partition order labels. The first step required is to determine the size of the period

shown in the repetitive task. To do so, we sample N > Tclip/Ncycles consecutive

frames, where Tclip and Ncycles each indicate the length of a single clip sampled

from the train-set and the number of apparent cycles observed in the clip. Then,

pairs of frames are made, where the first element of the pair is the first frame of

the clip and the second element is any frame sampled from the clip, including the

first frame itself.

We then measure the L2 norm distance between pixel values of the pairs of

frames and compute its mean. The outcome of this process is a list of mean values

of the L2 norm distance between the first frame and all frames of a sequence,

which displays a periodic pattern. We divide this sequence of scalar values into

partitions of nearly equal length and similar shape and measure the length of one

of these partitions to obtain the size of the period, Tperiod. In addition, we save

one of the partitionsTperiod and use it as a template for the step consecutive to

the current step.

Before moving on to the next step, some may wonder why such a redundant

method should be used to determine the length of each cycle, instead of the more

straightforward method of dividing Tclip by Ncycles. This method is not preferred

because each cycle may have different lengths, which may occur due to small fluc-

tuations in the motion of the machine or the mismatch in the frame rate of the

camera and the speed of the automated worker. Under such circumstances, if the

length of the cycle is obtained through
Tclip

Ncycles
, the clip may be divided erroneously.

Upon obtaining the partition template and its length, we copy the partition
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Figure 3.4: Illustration on the method used to obtain weak labels.

N ′cycles times to obtain a sequence consisting of N ′cycles repetitions of a task in

which all cycles have completely equal length, where N ′cycles indicates the number

of cycles in each clip that compose the whole dataset used for training.

Now, we iterate over all clips in the train-set and compute the pixel-wise L2

distance-vector, whose elements indicate the distance between pairs of the clip’s

first frame and all frames in the clip, as it was done when obtaining the length

and template of a cycle. These vectors are then mapped to points along the ideal

repetition template using dynamic time warping. This way, we can safely and fea-

sibly obtain frame-wise labels that point out the position of each frame within a

cycle. Afterward, we divide the period Tperiod into C equal classes, where C indi-

cates the number of partitions each cycle will be divided into and c ∈ 1, dots, C

indicate an index of a single partition. The outcomes of this step are the weakly

supervised partition order labels required to train the background masking model.

By applying one-hot encoding to our integer value labels, we finally obtain weakly
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supervised labels of the form,

y(t) =



y1(t)
...

yc(t)
...

yC(t)


(3.2.1)

.

yc(t) =


1 k = c

0 k 6= c
, k =

t− bt/TperiodcTperiod
Tperiod/C

(3.2.2)

.
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Figure 3.5: Comparison of the one-hot encoding labeling scheme and the smoothed

labeling scheme.
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3.2.3 Conditioning the Labels

One last problem remains yet to be resolved. Indeed, the labels obtained seem

to reasonably divide an input clip into partitions that build up cycles when con-

sidering only the temporal context. However, when scrutinizing events that oc-

cur at the boundary between two partitions, one may quickly notice that adjacent

frames have a very similar appearance and that the labels currently in use do not

reflect this continuous change in representation. Therefore, we applied a method

that smooths out the values of labels that lay at the border between two different

partitions of a cycle, an idea similar to label smoothing but implemented and used

differently.

Let us elaborate further on our novel smoothing method. Before applying any

smoothing, each element in the one-hot encoded partition order vector is assigned

according to the equation mentioned above 3.2.2. We apply a simple twist to this

label assignment scheme, where we replace the unit step function-like transition

from 0 to 1 and vice versa with a smoother transition. For convenience, we use

a linear function resembling a slope, unlike its step-like counterpart. Assume the

transition takes place for Ttrans number of frames. Moreover, assume the bound-

aries that differentiate the class of interest from its neighbors is represented as bc

and bc+1. Having t denote the index of a frame in a sequence of length Tclip, the
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slope-like transition is then defined as,

yc(t) =



0 t < tc,

t− tc +
⌊
Ttrans

2

⌋
Ttrans

tc −
⌊
Ttrans

2

⌋
≤ t < tc +

⌊
Ttrans

2

⌋
,

1 tc +

⌊
Ttrans

2

⌋
≤ t < tc+1 −

⌊
Ttrans

2

⌋
,

tc+1 − t−
⌊
Ttrans

2

⌋
Ttrans

tc+1 −
⌊
Ttrans

2

⌋
≤ t < tc+1 +

⌊
Ttrans

2

⌋
,

0 t ≥ tc+1.

(3.2.3)

.



4
Experiments

In this chapter, we present the details of experiments done to validate the per-

formance of the proposed industrial video anomaly detection framework. We also

share the results obtained from the experiments.

In section 4.1, we introduce a database that we have gathered to evaluate the

performance of our industrial video anomaly detection framework. We then intro-

duce, in section 4.2, how we obtained masks, used as a reference to evaluate the

performance of ones created from our framework and verify the effectiveness of

using masks in industrial VAD. Afterward, in chapter 4.3, we measure the perfor-

mance of our masking network. We do so by comparing the quality of its outcomes

to that of the ideal masks. Next, we evaluate the enhancement in performance

when applying our framework to industrial video anomaly detection, when com-

pared to using only the anomaly detection model, the setting used in previous

studies [11] [CLSTM-CAE]. Finally, we present some results of several ablation

studies conducted to test the effects of several parameters required to configure

the background masking model on the performance of our framework.
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4.1 Database for Industrial Video Anomaly Detection

This paper presents a novel video database for the development and evaluation of

industrial video anomaly detection frameworks. The video clips in this database

were filmed on two automated tasks operated by a robot manipulator. The tasks

include carrying a wooden block next to another block placed earlier and stacking

a block on top of an array of blocks. For each task, we then devised four abnormal

motions that might occur when conveying the tasks, such as moving the blocks to

another position, dropping them on the floor, or failing to pick up the blocks in

the first place.

For the clips featuring the regular operation on two tasks, we gather a total of

80 clips, with 26 clips containing some form of unexpected change in the appear-

ance of the frame and 54 clips without any such change. Examples of unexpected

change include a person doing activities behind the robot or several people gath-

ering or discussing near the robot. Each regular clip contains portrayals for six

repetitions of the task. Meanwhile, the four abnormal sets of clips that correspond

to a specific task contain ten clips, with five clips containing random changes in

the robot’s background and the rest without any variations. Each video clip con-

tains two repetitions of the task, one showing a regular operation of the worker

and the other showing an abnormal motion. Table 4.1 represents the number of

regular frames, abnormal frames, and the total number of frames of clips filmed

on each task. In the literature, however, we only share results obtained on the first

task, task 0. We present the results on the other tasks in the appendix.

The clips were filmed on a camera with a three-channel RGB format, 5fps

frame-rate, and 1280 x 720p resolution. We then crop out a region of interest

within frames within each clip and resize the cropped section to frames with a
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Figure 4.1: Exemplary scenes sampled from the proposed industrial video anomaly

detection database.

Table 4.1: Statistics of the Database

normal frames abnormal frames total frames

task 0 1896 22792 24688

task 1 1822 17762 19584

size of 128 x 128p. For convenience, we convert clips into folders with frames ex-

tracted from each clip. Each image is encoded in a JPEG format to minimize the

total memory load of the database.
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4.2 Ideal Background Mask

Before evaluating our model on the proposed dataset, we acquired ideal masks for

our database for two primary purposes: 1) verifying the idea of applying masks

to images to facilitate robust industrial video anomaly detection, and 2) using

the masks as a reference to measure the effectiveness of masks obtained from the

masking network of our model.

4.2.1 Acquiring Ideal Masks

In order to generate the ideal masks for the clips in our database, we first sample

several clips per task, whose contents include random changes in the background

and contain no abnormal motions. Then, we select all frames within the clips that

display drastic changes in their appearance. On these selected frames, we designate

the region within each image that shows the region of interest at the respective

moment to obtain segmentation labels, repeating the process on all the chosen

frames. We then train an FCN network [38] on these frames and their correspond-

ing segmentation labels. The trained network is then fed all of the clips filmed on

the same task used to create the labeled train-set, which outputs the desired ideal

masks.

4.2.2 Enhancing Robustness in VAD Using Masks

Using the ideal masks, we verify whether applying masks enhances the robust-

ness of a video anomaly detection framework to irrelevant changes that occur ran-

domly and abruptly. As discussed in chapter 3, we apply a mask to the recon-

struction output and the reference frame, a mere copy of the input fed into the

auto-encoder. We replace the mask, which is obtained from the masking network
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of the proposed framework, with the ideal mask. In figure 4.2 we visualize the

effect when the mask is applied to target frames, and in table 4.2 we show the

statistics of the results of this experiment. As shown in the column corresponding

to the number of false-positive alarms, such alarms are significantly reduced when

applying the ideal mask to the data and its respective reconstruction. The false-

positive alarms indicate the alarms triggered by irrelevant changes in scenes. Thus,

minimizing these alarms indicates enhanced robustness of the detection framework.

Therefore, we conclude that the idea of applying a mask for enhanced robustness

in video anomaly detection is valid.

4.3 Masking Using the Proposed Method vs Using an Ideal

Mask

In this section, we evaluate the performance of the proposed framework, which

uses a background masking model that generates masks from attention maps. The

reference, which is to be compared to our framework, is a framework with the

same anomaly detection model as ours but uses the ideal mask obtained from the

methods introduced in the previous section instead of those created from the back-

ground masking model. As shown in table 4.3, although some false negatives oc-

cur when using our framework, the discrepancy in the number of false positives

between the setting where we use our framework and one that uses ideal masks

instead is reduced than one between a framework without any masks and one that

uses the ideal masks.
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4.4 Performance Enhancement Using the Proposed Method

In this section, we verify that robust video anomaly detection can be achieved

by using our framework. We compare the performance of our framework to that

shown when using a framework that uses no masks. As shown in table 4.4, al-

though some false negatives occur, the number of false-positive alarms is decreased

on a notable scale when using our framework. Therefore we prove that our frame-

work, as we have intended, is robust to random events in the scenes that are not

relevant to the task being inspected.
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Figure 4.2: Results regarding task 0. Visualization of the effect of using an ideal

mask, generated using an FCN. The segmentation labels used to train FCN were

obtained by manually designating regions irrelevant to the inspected task.

Table 4.2: Results regarding task0. Results obtained using an ideal mask.

True Positives False Negatives False Positives AUROC AUPR

No mask 1896 0 5354 0.99 0.92

Ideal mask 1896 0 1335 0.99 0.91
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Figure 4.3: Results regarding task 0. Comparison of the visualization of ideal

masks and masks obtained using the background masking model. As shown in this

figure our model masks out regions similar to that of the ideal mask.

Table 4.3: Results regarding task 0. Comparison of results obtained when using an

ideal mask and the mask generated from the background masking model.

True Positives False Negatives False Positives AUROC AUPR

Ideal mask 1896 0 1335 0.99 0.91

Our mask 1835 61 2151 0.98 0.81
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Figure 4.4: Results regarding task 0. Comparison between the qualitative results

obtained when no masks were applied and when the mask obtained from the back-

ground masking model is applied.

Table 4.4: Results regarding task 0. Comparison of results obtained when using no

masks and the masks generated from the background masking model.

True Positives False Negatives False Positives AUROC AUPR

No mask 1896 0 5354 0.99 0.92

Our mask 1835 61 2151 0.98 0.81
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4.5 Ablation Study

While tuning several parameters required when obtaining the background mask,

we noticed that three parameters affect the quality of the mask and the overall

performance of the framework, the most: the number of layers to apply Eigen-

CAM to, the value of the threshold applied to the visual attention maps, and the

size of the window to smooth the maps along the temporal dimension. We con-

ducted an ablation study on these parameters and shared the results. The target

data we used for these tests was the clips filmed on the first task, task 0.

4.5.1 Number of Layers for Eigen-CAM

We tested the effect of changing the number of layers used when computing Eigen-

CAM. An R3D-18 network consists of 4 consecutive blocks, with each unit com-

posed of two convolution units and one down-sampling unit. We restrict the range

of layers chosen for our experiment to the two convolution units of the fourth block

of the model, which results in the most global activation results. For a fair com-

parison, we fixed the threshold applied to the attention maps to obtain masks to

0.0 and the window size for smoothing along the temporal dimension of activation

maps to 1. As shown in table 4.5, using more layers leads to more remarkable

performance. Of course, more layers may be added to enhance the framework’s

performance further, but this comes with a great price: the increased time required

for Eigen-CAM computation.

4.5.2 Threshold on Attention Maps

As described in chapter 3, we apply a threshold to the attention maps obtained

from Eigen-CAM to obtain masks that hide irrelevant regions in the video clips
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Table 4.5: The effect of changing the number of layers used for Eigen-CAM.

True Positives False Negatives False Positives AUROC AUPR

Last convolution 1781 115 2234 0.97 0.71

Last 2 convolutions 1864 32 2299 0.98 0.81

Last 4 convolutions 1881 15 2507 0.98 0.82

Table 4.6: The effect on the performance of the framework when changing the

threshold applied to visual attention maps to obtain masks.

True Positives False Negatives False Positives AUROC AUPR

Threshold=0.0 1881 15 2507 0.97 0.98

Threshold=0.1 1782 114 2012 0.97 0.71

Threshold=0.2 1473 115 2234 0.97 0.71

Table 4.7: The effect on the performance of the framework when changing the win-

dow size for smoothing applied along the temporal axis of visual attention maps

to obtain masks.

True Positives False Negatives False Positives AUROC AUPR

Window=3 1868 28 2289 0.98 0.82

Window=7 1886 10 2485 0.98 0.83

Window=11 1887 9 2658 0.99 0.85
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more effectively. As shown in table 4.6, higher thresholds result in lower false pos-

itive values, where we fixed the layers referred to compute the activation maps to

the last four layers of the backbone of the masking network, and the window size

for smoothing along the temporal dimension of activation maps to 1. We observed

that when thresholds with high values are applied to obtain the mask, the number

of false negatives increases, leading to poor performance. The results indicate that

a threshold with a value around 0.1 is the most appropriate option.

4.5.3 Temporal Smoothing Window Size

In our framework, we apply smoothing along the temporal dimension to attention

maps to obtain masks with better quality. As shown in table 4.7, longer smooth-

ing window lengths result in lower false negative values. However, when the lengths

become excessively long, the number of false-positive alarms increases, leading to

poor performance. The quality of the model is also marred since a large window

size means fewer variations in the mask over time. We observed that a window

size within the range [5,10] was most appropriate as a choice for the length of the

window for smoothing. In this experiment, we fixed the layers considered for ac-

tivation maps to the last four layers of the backbone of the masking network and

the threshold applied to the attention maps to obtain masks to 0.0.



5
Conclusion

In this paper, we introduce a novel framework for robust industrial video anomaly

detection. Although the problem of industrial video anomaly detection is signifi-

cant, the problem has yet been dealt with. Previous works on video anomaly detec-

tion for surveillance exist, but due to the different characteristics between surveil-

lance and industrial video inspection, the models developed on surveillance show

poor performance on industrial video anomaly detection tasks. Specifically, these

models are susceptible to random and diverse events within the clips that are ir-

relevant to inspection and raise countless false positive alarms.

To remedy this issue, we present a framework consisting of an anomaly detec-

tion model, paired with a separate model that masks out regions in the frames

that do not contain any information on the inspected industrial task. To obtain

the masks, we used Eigen-CAM to obtain attention maps, conditioned using a

threshold, and smoothed along the axis of time to create the desired masks. The

masks were then applied to the reference frames that are copies of input frames

and images reconstructed by the auto-encoder. Furthermore, we gathered video
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clips filmed on repetitive automated tasks that resemble real-world industrial in-

spection video clips to evaluate our method’s performance.

We created ideal masks crafted manually to verify whether using masks to

hide regions irrelevant to the task being inspected leads to enhanced robustness

in industrial video anomaly detection. We applied these masks to the input and

output frames of the auto-encoder of the anomaly detection model, where we ob-

served that the number of false-positive alarms decreases in noticeable numbers.

We then applied the same ideal masks to a VAD framework and compared its per-

formance to our framework. This experiment shows that our framework displays

a similar performance to that of the framework using an ideal mask. Finally, we

tested whether our framework demonstrates an increase in robustness to irrele-

vant variations in video frames compared to methods introduced previously and

observed that it outperforms previous work regarding this aspect.

We have, however, noticed some flaws in our framework; the masking backfires

and decreases the sensitivity of the framework to actual anomalies. We plan to

tune our model further to reduce the number of anomalies not being appropri-

ately noticed while minimizing the false positive alarms close to the results shown

when using manually assigned ideal masks. We also plan to add more clips to the

database, increase the frame rate and resolution of each clip, and accelerate the

motion of the robot manipulator featured in the clips to strengthen our database’s

quality. Ultimately, we expect to expand it to a public dataset, hoping this dataset

will facilitate further research in the field of industrial video inspection.



A
Appendix

A.1 Experimental Results for All Tasks in the Database

This section summarizes the performance of frameworks on the three tasks within

our proposed industrial video database. We compare frameworks with the same

anomaly detection method but use different methods to obtain masks applied to

enhance the robustness of the framework: one that uses no masks, another that

uses ideal masks that were obtained manually, and the other that applies masks

acquired from a background masking model proposed in our framework.
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Figure A.1: Result obtained on task 0. A comparison on the appearance of the raw

frames, those masked using ideal masks, and ones overlaid with masks obtained

using the background masking model.

Table A.1: Results regarding task 0. Comparison of results obtained using no

masks, an ideal mask, and the mask generated from the background masking

model.

True Positives False Negatives False Positives AUROC AUPR

No mask 1896 0 5354 0.99 0.92

Ideal mask 1896 0 1335 0.99 0.91

Our mask 1835 61 2151 0.98 0.81
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Figure A.2: Result obtained on task 1. A comparison on the appearance of the raw

frames, those masked using ideal masks, and ones overlaid with masks obtained

using the background masking model.

Table A.2: Results regarding task 1. Comparison of results obtained using no

masks, an ideal mask, and the mask generated from the background masking

model.

True Positives False Negatives False Positives AUROC AUPR

No mask 1822 0 3970 0.98 0.88

Ideal mask 1822 0 1328 0.98 0.79

Our mask 1805 17 2079 0.98 0.86
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국문초록

공정 검사라는 다소 방대한 분야의 여러 문제 중에서, 산업용 비디오 이상 탐지는 큰

중요성을 지닌 문제이지만, 그 중요성에 비해 충분히 주목을 받지 못하고 있다. 이

문제를 연구할 때 사용할 공적인 데이터셋이 부재하며, 이를 기반으로 고안된 산업용

비디오 이상 탐지에 특화된 기법에 대한 선행 연구도 진행 된 적이 없었다. 본 논문

에서는 일반적인 비디오 이상 탐지 문제와 산업용 비디오 이상 탐지 문제의 상이한

특성들을 분석하여 규명하였다. 일반적인 비디오 이상 탐지에서와 달리, 산업용 비디

오 이상탐지 문제에서는 사용 가능한 데이터의 양이 한정되어 있으며, 학습에 필요한

라벨이 없기 때문에 이를 활용한 모델을 개발하는 것이 불가능하다. 이와 같은 이유

로 인해, 기존 모델을 산업용 비디오 이상 탐지 문제에 적용할 시, 검사하고자 하는

동작과 무관한 요소의 출현과 움직임으로 인한 거짓 알람이 지나치게 자주 발생한다.

분석을 기반으로, 강건한 비디오 이상 감지가 가능한 산업용 비디오 이상 탐지 방안

을 고안하였다. 이 기법에서는 이상 탐지를 위한 모델과 별개로, 영상 내의 요소들 중

동작 감지와 상관 없는 것들을 가리는 모델을 활용한다. 제안하고자 하는 방안의 효

용성을 검증하기 위해, 실제 공정 영상과 유사한 특성들을 보이는 로봇 동작을 촬영해

수집한 데이터베이스를 구축하였으며, 이를 활용해 모델의 성능들을 측정하였다. 본

연구에서 제시하는 강건한 비디오 이상탐지 방안과 데이터 베이스를 논문을 통해 공

개함으로써, 이 분야와 관련한 더 다양한 연구를 촉진하는데 기여 할 수 있을 것이라

기대한다.

주요어: 산업용 비디오 이상 탐지, 강건, 마스크, 어텐션 맵, 약지도학습

학번: 2019-28107
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